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AB STRACT D

Based on arbitrarily right-censored observations from a prob-
0

ability density function f , the existence and uniqueness of the
0

maximum penalized likelihood estimator (HPLE) of f is proven,
In particular, the "first MPLE of Good and Gaskins" of a density

defined on [0,m-) is shown to exist and to be unique under arbi-

trary right-censorship. Furthermore, the MPLE is shown to be in

the form of the solution to a linear integral equation whose

forcing function is an exponential spline with knots at the observ-

ad censored and uncensored data points.

1. INTRODUCTION

The problem of nonparametric probability density estimation

has been studied for many years. Suaries of results for comn-
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plate (uncensored) random samples have been listed by Tapia and

Thompson (1978), Wertz and Schneider (1979), and Bean and Tsokos .

(1980), for example. Also, a review of results for censored

samples has been given by Padgett and McNichols (1984). In addi-

tion to its importance in theoretical statistics, nonparametric

density estimation has been used in hazard analysis, life testing,

and reliability, as well as in the areas of nonparametric discrim-

Ination and high energy physics (Good and Gaskins, 1971).

One approach to estimating a density function nonparametri-

cally is that of maximum likelihood. Nonparametric maximum like- .

lihood estimates of a probability density function do not exist in

general. That is, the likelihood function for a complete sample

is unbounded over the class of all possible densities. However, ---

by suitably restricting the class of densities, a nonparametric

maximum likelihood estimator (MLE) may be found within the restric-

ted class. For complete samples, the maximum likelihood estimator

of a density g was given by Barlow, Bartholomew, Brenner and

Brunk (1972) if g was assumed to be either decreasing (nonin-

creasing) or unimodal with known mode. Wegman (1970a,b) assumed

unimodality with unknown mode and found the MLE of the density and

studied its properties for complete samples. McNichols and Padgett

(1982) studied the nonparametric MLE of monotonic or unimodal den-

sities based on arbitrarily right-censored observations. Even with-

in the class of decreasing (or unimodal) density functions, however,

when the largest observation was censored, McNichols and Padgett

(1982) had to restrict their estimator to a finite interval [0,T]

where T was an arbitrarily large positive number, greater than

the largest observation.

Another approach to the problem of nonparametric maximum S
likelihood estimation of a density from complete samples was pro-

posed by Good and Gaskins (1971). This sethod allowed any smooth

integrable function on the interval of interest (a,b) (which may

be finite or infinite) as a possible estimator, but added a
"penalty function" to the likelihood. The penalty function penal-

* ..-...-..- *
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ized a density for its lack of smoothness, so that a very "rough"

density would have a smaller likelihood than a "smooth" density,

and hence, would not be admissible. De Montricher, Tapia, and

Thompson (1975) showed that the natural mathenatical setting for

the solution of the maximum penalized likelihood estimation (MPLE)

problem of Good and Gaskins (1971) was provided by the Sobolev

subspaces of the Hilbert space L2 (R), the square-integrable func-

tions on the real line R. They proved existence and uniqueness

results for the MPLE. Later, Klonias (1982) obtained the strong

consistency of the MILE of the density function in appropriate

norms. He also derived the "first MPLE of Good and Gaskins" for

"4 the case that the density g has support only on the half line,

essentially by reflecting g around zero and using results for

g having support R.

In this paper we obtain existence and uniqueness results for

,I the nonparametric MPLE of a density g based on arbitrarily

right-censored observations from g. General results are first

obtained for densities with support n c R and penalty function

and then the problem of "Good and Gaskins' first MPLE" is con-

sidered for arbitrarily right-censored data observed on R. The

existence and uniqueness results are then obtained for densities

g with only positive support by using a symnetry argument, re-

flecting g about zero, and then utilizing the general results

for support R. It is also shown that the MILE is In the form of

a solution to a linear integral equation wbose forcing function is

an exponential spline with knots at the data points.

2. NOTATION AND BASIC DEFINITIONS

Let 0 c R be a finite or infinite interval and let f0

denote a probability density function with support in n. Let

,....X be n independent identically distributed random

variables with common density fs. Later, Xl, i-l,...,n, will

* be interpreted as the true survival times of n items or indi-

-q ...
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viduals under observation, vhere fo wili have support in [0,-).

Suppose that UiU..,U Is a sequence of constants or random

variables which "censor" Xi , i1i,...,n, on the right. In sur-

vival analysis or reliability studies, the U 's represent pos- ...

sible "loss" times of items or individuals from the test.

The observed data are denoted by the pairs (Xivai) ,

i-l,...,n, where

0

Wm'n" UI f i Ui

ipxi "inXx'Ui' "

It is desired to obtain the MPLE of f based on these observa-
tions.

In reliability or survival analysis, where f has support

in [0,0), the nature of the censoring depends on the Ui's.

(i) If U1,...,U are fixed constants, the observations are time

truncated. If all U 's are equal to the same constant, then the

case of Type I censoring results. (ii) If all Ut = Xr )  the
0 0 (r)'

rth order statistic of X .. ,X°, then the situation is that of1ln
Type II censoring. (iII) If U,...,Un constitute a random

sample from a distribution H (usually unknown) and are independ-

ent of -q,...,Xo, then (X,ft, i-l,...,n, is called a ran-

, domly censored sample. See Gill (1980, Ch. 3 and Ex. 4.1.1) for

further discussion. An observed value of (Xi,It) will be

denoted by (xi,di).

By LP($I) we will mean the space of functions v such that

flv (t) Pdt < - with norm I,, lIp - [4alv(t)lPdt]1/p for p z 1.

Let H(SI) be a manifold in L (n).

Following notation similar to that of De Montricher, Tapia,

and Thompson (1975), let * denote a functional 0: H(n) -I R.

Given the arbitrarily right-censored sample (xi,dt), i11,2,... ,n,

the #-penalized likelihood of v c H(n) is defined by
%I

n d 1-dI

L(v)- 1 [v(xI)] [I-V(xi)] exp(-4(v)),
i--

-*.4

'o'.%''

"--,.T

::-:::



5S

where V(x) -f v(t)dt denotes the cumulative distribution

function with density v and * is the penalty function. By the

maximum penalized likelihood estimator (HPLE) of fo correspond-

Ing to manifold H(O) and penalty function *, we will mean any
solution to the problem:

maximize L(v) subject to (2.1)

v e H(n), f/ v(t)dt - 1, and
v(t) a 0 for all t C 11

The function L(v) is the censored form of the penalized likeli- ,

hood of Good and Gaskins (1971).

When H(01) is a Hilbert space, a natural penalty function

to use is *(v) _ 11v11 2, where 1I1!- is the norm on H(n). If

no reference is given to when we are considering the MWLE -

corresponding to a Hilbert space H(n), it is assumed that is

the square of the norm on H(n). A Hilbert space inner product

will be denoted by <-,> so that <v,v> - Jv112. When B(P)

is a Hilbert space, it is a reproducing kernel Hilbert space (RKHS) P

if point evaluation is a continuous operation, that is, v - v
n

in H() implies that v (t) * v(t) for all t c 0. See Goffman
n

and Pedrick (1965) for further details.

3. EXISTENCE AND UNIQUENESS OF AN IPLE

In this section we establish the existence and uniqueness of

a solution to problem (2.1) when H(2) is a RKHS. The inner

product on H(n) is defined by <u~v> =  u(t)v(t)dt for

u,v 1il).

Theorem 3.1. Assume that H(SI) is a RKRS, integration over

is a continuous functional, and D is a closed convex subset of

(V C R(fl): v(xi) Z 0, i-l,...,n) with the property that D con- S

tains at least one function which is positive at the data points

Xl9 .. . ,xn. Then the NPLE of fo corresponding to penalty

function *(v) - 11vll 2  in (2.1) exists in D and is unique,
where 11-11 denotes the norm on B(U).

• v . e " ' • * " " . . . . . . . .... . . . o - -- - " °o o ° - ° - ° '
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The proof of Theorem 3.1 Is omitted. It is analogous to the

proof of Proposition 2.1 of De Montricher, Tapia, and Thompson

nn

where k - Il d~ is the number of uncensored observations andi-1I.
K is such that 1v(X fl s K il1vi1 for each iin,2,...,n. Also,

the first and second Fr~chet derivatives of 3(v) 1 n L(v) are

given by (Tapia, 1971)

n d I n(xi) n (1-d)I X I
iv MxZ) '-t)dt -2 < v,rn

and

n d 2. (X-n

j~i (v)i : -2z2 2 n->
ilj V (X.) i-i [l-V(x

We note that the constraints in (2.1) define a closed convex

subset of {v e EG(): v,'x) z 0, i-l,...,n). Also, let (a,b) be

a finite interval. For each integer s k 1, let H s(a,b) denote
0

the Sobolev space of functions on Ia,b] whose s-1 derivatives

are absolutely continuous and vanish at a and b and whose s th
2s

derivative is in L (a,b). The inner product on H Cab) is

defined by

-uv fa u s(t)v s(t)dt,

where u denotes the ath derivative. It is well known that

H (a,b) is a RIOIS with the above inner product and integration

over (a,b) is a continuous operation (Le-ma 2.1 of De

Montricher, Tapia, and Thompson, 1975).

Corollary 3.1. The MPLE corresponding to H (a,b) with 4(v)
2 0

<v>- 1 lVII exists and is unique.

As a special case of Corollary 3.1, we can consider the 1PLE

of a lifetime density f0 over a finite interval [0,T] for

very large T > 0 based on an arbitrarily right-censored sample

00
fromg Th ex PEeit n i nqei :Otensitn to

penalty function 4(v) fTIW()2d. Teetnint

0I
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10,m) is considered in the next section.

4. THE FIRST ESTIMATOR OF GOOD AND GASKINS UNDER CENSORING

For complete samples, Good and Gaskins (1971) considered the

penalty function

2
Vv) a [v'(t)] dt,*(v) - _ dv(t)

for a > 0, which is equivalent to

1 6 (v) - 4al ?_ d(v(t)) dt2
L dt r

De Montricher, Tapia, and Thompson (1975) indicated that the under-

lying manifold for the INLE with this penalty function should be

v H ( -mi), where H (-,=) is the Sobolev space of functions

f: R - R such that the first derivative f' exists almost every-
2

where and ff' c L (-,-) with inner product

<f'g> f(t)g(t)dt + !. f'(t)g'(t)dt-

Letting u v , we have the penalty function

2( 4a t  (',(t)] 2 dt £ H1

This substitution avoids the nonnegativity constraint in problem

(2.1). -

For the data (xi,di) , i-l,...,n, described in Section 2, we

now would like to maximize

L(u [u() (X] _ u2 (t)dt l-dex ....i-u) i i exp(-4c[ [u'I 12).....

Since L(u) 2 0, maximizing L(u) is equivalent to maximizing

L(u) [L(u). Thus, we have the problem:

A n d ~ (1-d )/2
Maximize L(u) - [(xi) (t)dt exp(-2i u' I )

subject to r.. u()dt 1. (4.1)

Letting J(u) - ln L(u), problem (4.1) is equivalent to:

. . . . .". .
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n
Maximize 3(u) -E d i in u(x

jii

+ £ 1( d Ln[lf u2 -dt 2cf[u t]2

subject to I'fu (t)dt -1. (4.2)

Theorem 4.1. Problem (4.2) has a unique solution in the set

S a fu e H1 u..oa) 2 (t)dt - 1).

Proof: The first part of the proof is similar to arguments

in the proof of Proposition 3.3 of De Montricher, Tapia, and

Thompson (1975), but the details are somewhat different. The

Fre'chet derivatives of 3(u) are

J'(u(T E Z f u(t)ri(t)dtii u(x) i- U2 xi)

-4at f u'(t)ri'(t)dt,

where U (x) a ( 2 t~dt, and

2 x

22

xi c

Since J"(u) is negative definite, J is strictly concave, and

by Theorem 2, page 160, of Tapia and Thompson (1978), 3(u) has

at most one maximizer in the set

so {u e H ~ u (t)dt 5 1).

If 3(u) is continuous on S', by Theorem 4 on page 162 of

Tapia and Thompson (1978), J will have at least one maximizer

in S'. To show this continuity, we note that by properties of

a RKHS, if u ~u as m 4 in H'(-mW),S then

mS
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u (xi) * u(x1) for each i-l,...,n. Also, lu - ull 0 as

2 - implies, by definition of the norm in HI(-','), that

1 0 and HU-I U'2 - 0as m Furthermore,
fo ay ixdconstant c -o 2- uj 2

for ny fxedu'(t)dt u(t)dt as * -m c.

Hence, J: S' - R is continuous. Therefore, J(u) has a unique

maximizer u, in S'.

Next, suppose that u,(t)dt < 1. Since u*(t) -* 0 as

t * -, then u,(t) and u,(t) both converge to zero as t .
Thus, there exists a number M such that u,(t) < 1 for t 5 M.

Consider a function v,(t) defined so that (i) v (t) = u, (t)

for t 5 M, (ii) v,(t) > u,(t) for t > M and rv*(t)dt - 1,

and (iii) [v,(t)] 2 < [ul(t)] 2  for t > M. Then by (i) and

(iii) fJ_[v(t) 2dt = /L[u(t) 2dt and

"-[u*(t)] dt -Mfv*(t)]2dt. Also, by (ii), for each x.,

iil,...,n, r V,(t)dt > f' u,(t)dt. These results imply that
i 3.

J(u,) < J(v,), a contradiction, since u, is the unique maximizer

of J in S'. Therefore J11 u (t)dt 1 1, completing the proof. S

I0f

Now, we assume that fo is a lifetime density on the half-

line R+ = (0,-) and use a symmetry argument about zero to obtain

the results for fo. Thus, assume that the censored sample 9

(X ,6), i=l,...,n, is such that X. > 0 with probability one.
ii

Then the problem (4.1) becomes:

n di  x i  (1-d)

Maximize L(u) = 1 [u(x )] [f. u2(t)dt] i

i-l

exp[-2a 0(u())2dt], (4.3)x0

vhere xi> 0, iil,...,n, J'u2()dt - 1, and u(t) a 0, t > 0. S

Let X-i = Xi and di =d i , i-l,...,n, and define
-i i

u(x) - u(Ixj) for x c R\{O) and u(0) lm u(x). Then
r+O

define the following problem:

S.

"S

............-.-.-....-....................-...
L , ",. .: .."..-.."..'....-..."..... ....-... ... ..•"". .... ..".' ..-. ".".. . . . . . . ..'. .'"..-'."" ". .. .. . . . .... . . . . ...." . .. .-. ,".. -". "." . .---
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i n di  ;(1-d)

Maximize L(u) 1 [u(xi)] [2-fM _2(t)dt)

* xexp [-2cx J((t)dt], (4.4)

-21
where u (t)dt - 2 and u c H S 

= g c Hl(-,,): g(x) g(-x)).
A 2

Notice that L(u) - [L(u)] . Also, HS is equivalent to the

Sobolev space H (0,-).

Proposition 4.2. If u* solves (4.4), then u*(t) =u*(t),

t a 0, and u*(t) = 0, t < 0, solves (4.3).

Proof: Suppose u* solves (4.4). Since L(u) [L(u)]4

and u* is syimnetric about zero implies that 0[u*(t)] 2dt - 1,

u. solves (4.3). //

From Proposition 4.2, the "first MPLE of Good and Caskins"
2

under arbitrary right-censorship will be given by (u*) (t). We

next show that this solution exists and is unique.

Theorem 4.3. Problem (4.3) has a unique solution.

Proof: H defines a closed convex subset of H.
S

Thus, by a proof similar to that of Theorem 4.1, problem (4.4)

has a unique solution. By Proposition 4.2, u* is the unique

solution to problem (4.3). //

To discover the general form of the unique solution u* of

problem (4.4), we consider the following problem:

For given A > 0 and a in (4.1), let

*lCu).= 2:j [u'(tr)] 2 dt + (t)dt.

n di .(l-di)
Maximize n [; i [2-f* u2 (t)dt]

x exp[- x(u)), (4.5)

subject to u e Hs and . ;2(t)dt - 2.

The inner product <u,v> - 2csw u'(t)v'(t)dt + X u(t)v(t)dt- 2 - -

defines a norm u - *Xju) equivalent to the original norm

on H- ) Let v denote the representer in the h-inner

........-..--...... • .......

... , ....... : ., .. .. ..... .. . .. . ,. . ,, .. .. . .. . .... .. .... . . . .. . . _ :: - :;: .:-- ..: - .. ... . .*. :. ...... .
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product of the continuous linear functional given by point evalu-

ation at xt, that is <vi >, =(x i )  for all n c Hl(-o,).

Let S - (v c H : v(xI) a 0). Then S is closed and convex.
Si

Letting JX - in L, we have the first and second Frichet

derivatives,
S

n dI r)(x )  n (1-d ) x i

-X G - f u(t)ri(t)dt -2<un>,Ji:(n il-1 ;(x t ) ) -U2(x
i

where U2(xi) -
2 (t)dt, and

xi

n dI 2(xi) n (l-d i ) x

1• 2
iAu('I -2 2- 2 (x f r, (t)dt

+ i u(t)n(t)dt] 2 - 2<ri>

Thus -J" is uniformly positive definite relative to S. This

implies that -J is uniformly convex on S. Therefore, if we
can show that J is continuous on S, by Theorem 6, page 162

of Tapia and Thompson (1978), J1 will have a unique maximizer

in S. By an argument similar to that in the proof of Theorem 4.1,

J is continuous on S, and has a unique maximizer uA in S.

Now, at the solution i) we must have the gradient of J

vanish. Let g, be the element of H1 (-,-) such thatx -- n d v

<gi i> X f h(t)n(t)dt. Then V J(u,) -iE -i ! ,

n (1-d )g.
- I --il u2(x) 0, where (x i dt. Hence

n d v n 1
= Z (1-d) (x • (4.6)

n i f-1 too i tef v(x i( ..) f

In order to obtain the form of v I in (4.6), from the :-::



* ....--...

12

definition of the )X-inner product, we have

2arJ" v'(t)ri'(t)dt + X. v (t)n(t)dt - n(x ). (4.7)

Integrating the left-hand side of (4.7) by parts (in the distri-

bution sense) gives

[. Ev(t) - 2tv"(t)],(t)dt - JD8 (t)n(t)dt, (4.8)

where 6 (t) 8 6 (t-x ) and 6 denotes the Dirac delta function.
i 0 0

Equation (4.8) is equivalent to the differential equation

vi (t) - 2av"(t) = 6.(t) (4.9)

which, for i-0, has the solution

vo M - (2x) -k exp[-(-L)kjtj, t 0."

Hence, v (t) - v 0(t-x i) + v 0(t+x i) solves (4.9).

Next, to determine the form of gi in (4.6), replacing the

right-hand side of (4.7) with . ux(t)n(t)dt yields the non-

homogeneous differential equation

"" g (t)s" - (X/2a)gi(t) = -(2a) -  Y(tI(.,i Wt, (4.10) :;:,

where I (t) denotes the indicator function of the set A. Using

the theory of Green's functions, the solution to equation (4.10)

is

g1 9 W exp [-(2a)- tj + exp [(Et]

-(2)- ft sinh [j-> (t-.) I(.. (jTi)aX(T)dT

Substitution of v (t) and gi(t) into equation (4.6) gives

the result that % solves the linear integral equation

,n (1-di)

x sinh [(X/2m) (t-1)] X (x)dT, (4,11)

7 %7 .2

-.p.-.
9..•.o

. . .. . . . . . . . . . . . . . . . . . . . . . .. * . '-'2
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where the forcing function is defined by 0

n d W '
2 : [exp(-(Al2oi)4 [t-x] I

+ exp(-(X/2o)I It+xi)]-

n (l-d1) -'

- " [exp(-(1/2a)t) + exp((Xl2)t)0
jil-1 U2A (xi) " -....

Note that over the constraints of problem (4.4), problems

(4.4) and (4.5) have the same solution for any X > 0 since

f u2 (t)dt is constant. By an argument similar to that in Tapia

and Thompson (1978, p. 113), the unique solution u to (4.4) P

also must solve (4.5) with a positive X, and thus, has the same

form as the solution to (4.11). The unique solution to problem

(4.3) is then u+(t) - u (t), t > 0, from (4.11), and hence,
+-.* 2 -

the "first MPLE of Good and Gaskins" is (u+),.

5. CONCLUSION

In this paper we have shown the existence and uniqueness of

the MPLE of a density function in an appropriate general mathe-

matical setting, based on arbitrarily right-censored observations

from that density. For the first penalty function of Good and

Gaskins (1971), the existence and uniqueness of the MPLE of the

density function on (0,a) was also shown for this type of data.

This "first MPLE of Good and Gaskins" under arbitrary right-cen-

soring was shown to be in the form of a solution to a linear

integral equation. These results are analogous to the complete

sample case, except that the form of the penalized likelihood, P

and therefore, the MPLE, is complicated by the term involving

the survival function.

Statistical properties of the MPLE under censoring have not

been considered here. The consistency, which seems to be quite S

difficult to prove, and other statistical properties need to be

%•. .V % V %... * . . .. o-.**.-..o-* --.-* .,..*,
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investigated. The problem of computation of the MPLE from the

general form (4.11), at least approximately, is currently under

study by the authors.
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