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ABSTRACT

Based on arbitrarily right-censored observations from a prob-
ability density function fo, the existence and uniqueness of the
maximum penalized likelihood estimator (MPLE) of fo is proven.

In particular, the "first MPLE of Good and Gaskins" of a density
defined on [0,») 1is shown to exist and to be unique under arbi-
trary right-censorship. Furthermore, the MPLE is shown to be in
the form of the solution to a linear integral equation whose
forcing function is an exponential spline with knots at the observ-

ed censored and uncensored data points.

1. INTRODUCTION

L
e f.
. W . )

e

The problem of nonparametric probability density estimation

has been studied for many years., Summaries of results for com-
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plete (uncensored) random samples have been listed by Tapia and
Thompson (1978), Wertz and Schneider (1979), and Bean and Tsokos
(1980), for example. Also, a review of results for censored
samples has been given by Padgett and McNichols (1984)., 1In addi-
tion to its importance in theoretical statistics, nonparametric
density estimation has been used in hazard analysis, life testing,
and reliability, as well as in the areas of nonparametric discrim-
ination and high energy physics (Good and Gaskins, 1971).

One approach to estimating a density function nonparametri-
cally is that of maximum likelihood. Nomparametric maximum like-
lihood estimates of a probability density function do not exist in
general. That is, the likelihood function for a complete sample
is unbounded over the class of all possible densities. However,
by suitably restricting the class of densities, a nonparametric
maximum likelihood estimator (MLE) may be found within the restric-
ted class. For complete samples, the maximum likelihood estimator
of a density g was given by Barlow, Bartholomew, Bremner and
Brunk (1972) if g was assumed to be either decreasing (nonin-
creasing) or unimodal with known mode. Wegman (1970a,b) assumed
unimodality with unknown mode and found the MLE of the density and
studied its properties for complete samples. McNichols and Padgett
(1982) studied the nonparametric MLE of monotonic or unimodal den-
sities based on arbitrarily right-censored observations, Even with-
in the class of decreasing (or unimodal) density functions, however,
vhen the largest observation was censored, McNichols and Padgett
(1982) had to restrict their estimator to a finite interval [0,T)
where T was an arbitrarily large positive number, greater than
the largest observation.

Another approach to the problem of nonparametric maximum
likelihood estimation of a density from complete samples was pro-
posed by Good and Gaskins (1971). This method allowed any smooth
integradle function on the interval of interest (a,b) (which may
be finite or infinite) as a possible estimator, but added a
"penalty function" to the likelihood. The penalty function penal-
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ized a density for its lack of smoothness, so that a very "rough"
density would have a smaller likelihood than a "smooth" density,
and hence, would not be admissible. De Montricher, Tapia, and
Thompson (1975) showed that the natural mathematical setting for
the solution of the maximum penalized likelihood estimation (MPLE)
problem of Good and Gaskins (1971) was provided by the Sobolev
subspaces of the Hilbert space LZ(R)’ the square-integrable func-
tions on the real line R. They proved existence and uniqueness
results for the MPLE., Later, Klonias (1982) obtained the strong
consistency of the MPLE of the density function in appropriate
norms, He also derived the "first MPLE of Good and Gaskins" for
the case that the density g has support only on the half line,
essentially by reflecting g around zero and using results for

g having support R.

In this paper we obtain existence and uniqueness results for
the nonparametric MPLE of a density g based on arbitrarily
right-censored observations from g. General results are first
obtained for densities with support £ ¢ R and penalty function
¢ and then the problem of "Good and Gaskins' first MPLE" is con-
gidered for arbitrarily right-censored data observed on R. The
existence and uniqueness results are then obtained for densities
g with only positive support by using a symmetry argument, re-
flecting g about zero, and then utilizing the general results
for support R. It is also shown that the MPLE is in the form of
a solution to a linear integral equation whose forcing function is
an exponential spline with knots at the data points.

2. NOTATION AND BASIC DEFINITIONS

let R cR be a finite or infinite interval and let f°

denote a probability demsity function with support in . Let

x;....,x: be n independent {dentically distributed random

variables with common density £°, Later, x:, {=1,...,n, will

be interpreted as the true survival times of n items or indi-
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viduals under observation, where £° will have support in [0,®).
Suppose that UI'UZ""'Un ig a sequence of constants or random

variables which "censor" x:, i=1,...,n, on the right. In sur-

vival analysis or reliability studies, the U, 's represent pos-

i
sible "loss" times of items or individuals from the test.
The observed data are denoted by the pairs (xi,Ai).

i=1,...,n, where

0y 1 if x: < U,
X, = min{X,,U,}, A, =
i i1 i 0 1f X2 >U .

It is desired to obtain the MPLE of f° based on these observa-
tions.

In reliability or survival analysis, where £° has support
in [0,»), the nature of the censoring depends on the Ui's.
(1) 1f Ul""’un are fixed constants, the observations are time
truncated. If all Ui's are equal to the same constant, then the
case of Type I censoring results. (ii) If all Ui = X?r), the
rth order statistic of X;,...,x;, then the situation is that of
Type II censoring. (iii) If Ul,...,Un constitute a random
sample from a distribution H (usually unknown) and are independ-
ent of x;,...,x:, then (xi'Ai)’ i=1,...,n, 1s called a ran-
domly censored sample. See Gill (1980, Ch. 3 and Ex. 4.1.1) for
further discussion. An observed value of (xi,Ai) will be
denoted by (x )

By LP(Q) we will mean the space of functions v such that
fnlv (t)|Pdt < » with norm |lv|| = [! [v(e) |Pae) 1/p for p 2 1.
Let H(Q) be a manifold in L (9)

Following notation similar to that of De Montricher, Tapia,
and Thompson (1975), let ¢ denote a functional ¢: H(R) -+ R.
Given the arbitrarily right-censored sample (xi’di)’ i=1,2,...,n,

the ¢-penalized likelihood of v ¢ H(Q) is defined by 3ti§?
n d 1-d N

Lv) = T [v(x)] ' [1-vx)] texp(40v)),
i=1 T




vhere v(xi) - ]:: v(t)dt denotes the cumulative distribution
function with density v and ¢ 4is the penalty function. By the
maximum penalized likelihood estimator (MPLE) of £° correspond-
ing to manifold H() and penalty function ¢, we will mean any
solution to the problem:

maximize L(v) subject to (2.1)
v e @), [o v(t)de =1, and
v(t) 20 forall te .

The function L(v) is the censored form of the penalized likeli-
hood of Good and Gaskins (1971).

When H(Q) 1s a Hilbert space, a natural penalty function
to use is ¢(v) = |!v||2, where ||+]] is the norm on H(Q). 1f
no reference is given to ¢ when we are considering the MPLE
corresponding to a Hilbert space H(R), it is assumed that ¢ 1is
the square of the norm on H(R). A Hilbert space inmer product
will be denoted by <+,*> so that <v,v> = Ilvllz. When H(D)
is a Hilbert space, it is a reproducing kernel Rilbert space (RKHS)

if point evaluation is a continuous operation, that is, v, +v
in H(Q) implies that vn(t) + v(t) for all t € ). See Goffman
and Pedrick (1965) for further details.

3. EXISTENCE AND UNIQUENESS OF AN MPLE

In this section we establish the existence and uniqueness of
a gsolution to problem (2.1) when H() 1s a RKHS. The inner
product on H(Q) is defined by <u,v> = Iﬂ u(t)v(t)dt for
u,v ¢ H(Q).
Theorem 3.1. Assume that H(?) is a RKHS, integration over Q
is a continuous functional, and D 4is a closed convex subset of A
{v ¢ B(Q): v(x,) 20, i=1,...,n} with the property that D con- QA -
tains at least one function which is positive at the data points ?;iilj

xl,...,xn. Then the MPLE of £° corresponding to penalty
function ¢(v) = Ilvllz in (2.1) exists in D and is unique,
vhere ||¢]| denotes the norm on B(Q). L
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The proof of Theorem 3.1 is omitted. It is analogous to the
proof of Proposition 2.1 of De Montricher, Tapia, and Thompson

n
(1975), using the inequality L(v) < ||v[|k exp(-llvl]z)( n Ki),
i=]1
where k = 2:_ d, 1is the number of uncensored observations and 2
K, is such that lv(xi)l < Killvll for each i=1,2,...,n. Also, | J )
the first and second Fréchet derivatives of J(v) = ln L(v) are D
given by (Tapia, 1971) ’
n d, n(x,) n (1-4)) Xy : 3
J'W() = L L?_;-_ T i:—'(_:c_%f ~(t)dt - 2 < v,n > o
i=1 VY% i=1 Ty l
and x
i 2
o di“z("i’ o (l-di)[:f“r(t)dt] e
J"(v)(n.n) = -1 3 -z 3 - 2 <n,m>. S |
1=l vi(x,) i=1 [1-V(x,)] *

We note that the constraints in (2.1) define a clesed convex
subset of {v ¢ H{Q): v{xi) 2 0, i=1,...,n}. Also, let (a,b) be
a finite interval. For each integer s 21, let H:(a,b) denote ®
the Sobolev space of® functions on [a,b] whose s-1 derivatives '
are absolutely continuous and vanish at a and b and whose sth
derivative is in Lz(a,b). The inner product on H:(a,b) is

defined by
<u'v> - I: u(S)(t)V(S)(t)dt, 1
vhere u(s) denotes the sth derivative. It is well known that .

H:(a,b) is a RKHS with the above inner product and integration
over (a,b) 1is a continuous operation (Lemma 2.1 of De

Montricher, Tapia, and Thompson, 1975).

Corollary 3.1. The MPLE corresponding to Hz(a,b) with ¢(v) = :
<v,v> = IIvI[z exists and is unique, .' ~;

As a special case of Corollary 3.1, we can consider the MPLE ~L-i=}
of a lifetime density £® over a finite interval [0,T] for S
very large T > 0 based on an arbitrarily right-censored sample

from £°. The MPLE exists and is unique in B:(O.T) with
(s)

penalty function ¢(v) = I: [v (:)]zdt. The extension to

oW (W e ¢ LI
L0 WL e I I
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[0,#) 1s considered in the next section.

4, THE FIRST ESTIMATOR OF GOOD AND GASKINS UNDER CENSORING

For complete samples, Good and Gaskins (1971) considered the

penalty function

2
$(v) = a f;ﬁ%—d:,

for a > 0, which is equivalent to

% a2
[dv(e))*®
o) = 4o [T |50 | e
De Montricher, Tapia, and Thompson (1975) indicated that the under-
lying manifold for the MPLE with this penalty function should be
vk € Hl(-ﬂ,ﬂ), where Hl(-m,w) is the Sobolev space of functions
f: R+ R such that the first derivative f' exists almost every-

where and f,f' ¢ Lz(dw,ﬁ) with inner product

<f,g> = [ £(e)g(t)de + [ £'(t)g" (r)dr.
X%

Letting u = v°, we have the penalty function
oud) = 4a . [w'(©))%de, u e B (=),

This substitution avoids the nonnegativity constraint in problem
(2.1).
For the data (xi’di)’ i=1,...,n, described in Section 2, we
now would like to maximize
R N 1-dy 2
Lw = T [u(x)] [ v®(e)ae) exp(-4a] |u']1%).
i x 2
i=] i
fince L(u) 2 0, maximizing L(u) 1is equivalent to maximizing
L(u) = [L(u)]%. Thus, we have the problem:

" n d (1~d,)/2

Maximize L) = M lux)] P (fS v’(ael 1 exp(-2allu'|]2)
i1 *4

subject to f:” nz(t)dt =1, (4.1)

“~
Letting J(u) = 1o L(u), problem (4.1) is equivalent to:

....... s e
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n

Maximize J(u) = 151 di In u(xi) o
n x .
1 i 2 .
I F-a)1n01-f Sukerde] - 2af7 fu'(e))%ae :
subject to f:'uz(t)dt =1, (4.2) ~' -

Theorem 4.1. Problem (4.2) has a unique solution in the set
S = {u ¢ B (=,m): . wl(t)de = 1),

Proof: The first part of the proof is similar to arguments .
in the proof of Proposition 3.3 of De Montricher, Tapia, and
Thompson (1975), but the details are somewhat different. The

Fréchet derivatives of J(u) are

n d, n(x,) n (1-d4.) % L

i i i o

J'(W() = I ———- I —2_ [ y(t)n(t)dt S
=1 OO g B

- 4a [ u'(t)n'(t)dt, )
- L

where UZ(xi) = f uz(t)dt, and L

x

noa nx) b (-4 5, o

J"(uw)(n,n) = - L 3 - = {1,(x)) ] n°(t)ae o
i=1 u (xi) i=1 (Uz(xi)) -0 ‘

xi -}
s2rf weyr(e)de B -sa  n' (o) e,

-0

Since J"(u) is negative definite, J 1is strictly concave, and
by Theorem 2, page 160, of Tapia and Thompson (1978), J(u) has

at most one maximizer in the set

s' = {ue B (== [0 uP(o)de s 1), o

If J(u) 1is continuous on S', by Theorem 4 on page 162 of

Tapia and Thompson (1978), J will have at least one maximizer
in S'. To show this continuity, we note that by properties of IO
a RKHS, if u *u as @+ in Hl(-".@), then

’

v,
-

s
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9
“m(xi) -+ u(xi) for each i=1,...,n. Also, ][u - u[l + 0 as
m+ o implies, by definition of the norm in H (==,=), that
llu - u|],+0 and [lu* - u'f|, +0 as w+=. Furthermore,
m 2 m 2

for any fixed comstant ¢, f: ui(t)dt -+ f: uz(t)dt as m + >,
Hence, J: S' + R 1is continuous. Therefore, J(u) has a unique
maximizer u, in S°.

Next, suppose that IT; ui(t)dt < 1. Since ui(t) + 0 as
t + o, then u,(t) and ui(t) both converge to zero as t + =,
Thus, there exists a number M such that u;(t) <1 for t>M.
Consider a function v, (t) defined so that (i) wv,(¢t) = u, (t)
for t < M, (ii) v*(t) >u (t) for t > M and fjwv*(t)dt =1,
and (iii) [v (t)] [u (t)] for t > M. Then by (i) and
(i1) M [va(t)] Zat )’ [u)(t)] %4t and
[ylua(e))%ae 2 F(v*(t)] dt. Also by (11), for each x,,
i=1,...,n, fw v, (t)dt > fm u (t)dt. These results imply that

i

J(u*) < J(v*), a contradiction, since u, is the unique maximizer

of J in S'. Therefore f:x ui(t)dt = 1, completing the proof.
/11
Now, we assume that fo is a lifetime density on the half-
line R+ = (0,») and use a symmetry argument about zero to obtain
the results for fo. Thus, assume that the censored sample
(xi’Ai)’ i=1,...,n, 1is such that Xi > 0 with probability one.
Then the problem (4.1) becomes:

A n d X, '/(l-d)
Maximize L(u) = I [u(xi)] i[l-fd; uz(t)dtlz i

i=]
x exp[-2a f;(u'(mza:], (4.3)

where Xy >0, i=1,...,n, f:uz(t)dt = 1, and u(t) 20, t >0.
Let X_1 = Xi and d—i = di’ i=1,...,n, and define
u(x) = u(|x|]) for x e R\{0} and u(0) = lim_ u(x). Then

define the following problem: x0

e
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_ n d x, _ %L(1-4,)
Maximize L(u) = | ? (u(x,)] 1 (2-f 2 uz(t)dtlz 1
ii=1

xexp[-2a [°_(3'(t))%ar), (4.4)

wvhere fjn Gz(t)dt =2 and u ¢ Hg z {ge Hl(dw,w): g(x) =g(-x)}.

- A 2
Notice that L(u) = [L(u)] . Also, HS is equivalent to the
Sobolev space HI(O,Q).

Proposition 4.2. If u* solves (4.4), then u:(t) = u*(t),
t 20, and u:(t) =0, t< 0, solves (4.3).

Proof: Suppose u* solves (4.4). Since i(u) = [L(l-x')]z5
and u* is symmetric about zero implies that f:[u*(t)lzdt =1,
u: solves (4.3). 11/

From Proposition 4.2, the "first MPLE of Good and Gaskins"

under arbitrary right-censorship will be given by (u:)z(t). We

A

next show that this solution exists and is unique. Tl_f
Theorem 4.3. Problem (4.3) has a unigque solution. ff:;
Proof: HS defines a closed convex subset of Hl(db,w). ﬁ:%:
Thus, by a proof similar to that of Theorem 4.1, problem (4.4) f}ﬂ:
. . : 0 * [ '..!:
has a unique solution. By Proposition 4.2, uy is the unique AN
solution to problem (4.3). 17/ <
To discover the general form of the unique solution u* of f:f:
problem (4.4), we consider the following problem: 5»%}
For given A > 0 and a in (4.1), let I
- e - 2 -2

6, (@) .= 23 [3'(e)) % + Af__u%(o)de. 4
_ n o _ d, X _, %(l-di) i
Maximize LX(“) = ] [u(xi)] [2-fd; u (t)dt) 3
ife1 1y
x exP["¢x(;)]9 (4.5) j
- -2 .
subject to u ¢ Hs and fjm u (t)dt = 2. e
R
The inner product <u V> = Zaf” u'(t)v'(t)de + A[' u(t)v(et)de
defines a norm ||u|] = ¢A(u) equivalent to the original norm 1

on Hl(-m,ﬁ). Let vi denote the representer in the ¢X—inner
e A T T T N N e S e
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R
11 L
product of the continuous linear functional given by point evalu- e,
ation at Xy that {is <Vi'n>k = n(xi) for all n ¢ Hl(aw,w). .ﬁ
Let S = {ve Hs: v(xi) 2 0}, Then S 1s closed and convex. 3{{?5
Letting JA = 1n L,» we have the first and second Fréchet ff‘n4
derivatives, -
’
- n 4, n(x,) n o (1-4) *1_ -
Jwmy = I =—- I TNCR) ] s(tIn(e)de - 2<u,n>, ,
[1]=1 u(x,) [1]=1"2 -
T -2
where Uz(xi) z [ u(t)dr, and ’
x
i
_ nod nfx)  m (M) X L
R mn) = =L S - T 5 U, ) [ n"(erae S
lil=1 G (xi) [1!=1 [Uz(xi)] o ) .
xi- 21 _ '_:
+2[f "G(e)n()de] F=2<n,n>, Wl
Thus -J{ is uniformly positive definite relative to $S. This ) ;;
implies that -JA is uniformly convex on S. Therefore, if we ol
can show that JA is continuous on S, by Theorem 6, page 162 ;ﬁf{;
of Tapia and Thompson (1978), JA will have a unique maximizer fj{ji
in S, By an argument similar to that in the proof of Theorem 4.1, i,;-j
Jk is continuous on S, and has a unique maximizer ;X in S.
Now, at the solution ;X’ we must have the gradient of J)
vanish. Let 8; be the element of Hl(dn,w) such that
X n di \A -
—2 1 LS

i_ -
<81'n>l = f ux(t)n(t)dt. Then V Jk(uk) = % =
-0 li)'l ux(xi)

n (l-di)si _ ) ? _2( )
- I ——= -2 = 0, where U, ,(x,) = u, (t)dt. Hence RRes
li]=1 U2 () " 2 x, A .
Y - . 8y
== T - I @1-4) . (4.6)
E z[m-; G N L IO

In order to obtain the form of vy in (4.6), from the
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definition of the A-inner product, we have
L L] =
2af__ vi(tn' (e + A, v, (on(e)de = n(x,). (4.7)

Integrating the left-hand side of (4.7) by parts (in the distri-

bution sense) gives
[, Dy (0) - 2avi(e)In(e)de = [2 8, (n(e)ae, (4.8)

where Si(t) = éo(t-xi) and 60 denotes the Dirac delta function.
Equation (4.8) is equivalent to the differential equation

lvi(t) - ZGV;(t) = Gi(t) (%.9)

which, for i=0, has the sclution

vyt = (2007 expl-2)¥]e]1, € #0.

Hence, vi(t) = vo(c—xi) + vo(t+xi) solves (4.9).
Next, to determine the form of - in (4.6), replacing the

x
right-hand side of (4.7) with f_i Gl(t)n(t)dt yields the non-

homogeneous differential equation
g)(8) = (V2)g (1) = - 2T HOT (0, (4.10)
i

where IA(t) denotes the indicator function of the set A. Using
the theory of Green's functions, the solution to equation (4.10)
is

A 1
gi(t) = exp [- (%)!‘ t:} + exp [(3; 4 t]
-'/2 t r A !f |
- (2a0)7F [ sioh | (5% (e-D) I(_a’xi](qu)uA(T)dT .

Substitution of vi(t) and gi(t) into equation (4.6) gives

the result that ;1 solves the linear integral equation

: ST P = B
B.(8) = C(t; x,0,1) + (8a\) [ T 1 (| ]
A 0 Ljyla1 Unn(®g) (==%y)
x stoh [(A/20)¥(e-1)] §, (DT, (4.11)
e S T L S e e e L Ll I D

.........
.......
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where the forcing function is defined by P

Lf o di(zmx)"1 y
c(t; x,0,1) = 3 [exp(-()A/2a) l""il)

[1]=1 GA(xi)

+ exp(-(/20)% [tax )

n (l'di) %
- I I nen) [exp(~(2/2a)t) + exp((A/22)7t)) ) .
1;=1 "22™4

Note that over the constraints of problem (4.4), problems
(4.4) and (4.5) have the same solution for any X > 0 since
f:' ;z(t)dt is constant. By an argument similar to that in Tapia

and Thompson (1978, p. 113), the unique solution ;* to (4.4)
also must solve (4.5) with a positive ), and thus, has the sawe
form as the solution to (4.11). The unique solution to problenm
(4.3) is then G:(t) = G*(t), t >0, from*(;.ll), and hence,
the "first MPLE of Good and Gaskins" is (l-l+) . P

5. CONCLUSION

In this paper we have shown the existence and uniqueness of
the MPLE of a density function in an appropriate general mathe- ®__
matical setting, based on arbitrarily right-censored observations R
from that density. For the first penalty function of Good and
Gaskins (1971), the existence and uniqueness of the MPLE of the

density function on (0,®) was also shown for this type of data. Q_:._
This "first MPLE of Good and Gaskins" under arbitrary right-cen- -
soring was shown to be in the form of a solution to a linear

integral equation. These results are analogous to the complete

sample case, except that the form of the penalized likelihood, Q.‘V
and therefore, the MPLE, is complicated by the terms involving o

the survival function.

Statistical properties of the MPLE under censoring have not
been considered here. The consistency, vhich seems to be quite ®
difficult to prove, and other statistical properties need to be fﬁﬁi;

A L IL T PRI TS S I
Lo .‘...',..".',:'&.'\l. Sty
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investigated. The problem of computation of the MPLE from the
general form (4,11), at least approximately, is currently under

study by the authors.
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