. AD-A148 733 ?EPRESENTRTION AND REFINEHENT OF VISUHL SPECIFICRTIDNS 771)1

N PEGASYS(U> SRI INTERNATIONAL MENLO PARK CR COHPUTER
SCIENCE LAB M S MORICONI JUN 84 RADC-TR-84-12
UNCLASSIFIED F30602-81-K-8176 F/G 9/2

END
FLuen
oric

I T A P DA I A S AL ey) W - v
e e O o P ———y - ey
" B s e e W LS M VLT ILEE VD W S S S R A A R R A P ————— ——
e .

]
|
R e

|||| I O E m lé‘; : |

= = k& g ,

e l2-0 | I -
- . '\.’.:_,

"" Ll E= L

=
ll=

[z s

=
E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

.

NS
-
. @

ROME AIR DEVELOPMENT CENTER
. Alr Force Systems Command
Grl"lu Alr Force Base, NY 13441

r-.-..—- ry Py - T — . . - P — s ———

L a4

This report has been reviewed by the RADC Public Affairs Office (PA) and
s is releassble to the National Technical Information Service (NTIS). At NTIS
r.' : it will be releasable to the general public, including foreign nations.

RADC-TR-84-128 has been reviewed and is approved tor publication.

h APPROVED: %"/M A %M

" DOUG! A. WHITE
Project Engineer

APPROVED: 'Y(é‘rm(/ //,éc_

RAYMOND P. URTZ, JR.
I : Acting Technical Director
(]

Do aue o

Command and Control Division

FOR THE COMMANDER: MZ—
DONALD A. BRANTINGHAM

Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list. ﬂ

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

= e ot o - T - - .) e T — < ~
L ST M BBy i U L gt 2l Sy A Ay Sl Sl N Al S Auic Arongil sl My Ao n gl Al Rl il nil M S SR A A A A A

;'.‘.-' PR
[P PETLPRY ? -

[d
s

REPRESENTATION AND REFINEMENT OF VISUAL SPECIFICATIONS IN PEGASYS

Mark S. Moriconi

Contractor: SRI International S
Contract Number: F30602-81-K-0176 SRR
Effective Date of Contract: 1 May 1984 NI
Contract Expiration Date: 29 February 1984 R
Short Title of Work: Graphics Oriented Environment e
Program Code Number 3p20 . @
Period of Work Covered: May 81 - Feb 84 o

Principal Investigator: Dr. Mark S. Moriconi
Phone: (415) 859-5364

Project Engineer: Douglas A. White
Phone: (315) 330-2748

Approved for public release; distribution unlimited

- This research was supported by the Defense Advanced
- Research Projects Agency of the Department of
Fo Defense and was monitored by Douglas A. White (COES),

./ Griffiss AFB NY 13441 under Contract F30602-81-K-0176.

r_: T T T T T T T T T T T T T v T T T T Y W T W W Y T T T YT

UNCLASSIFIED AD__ ﬂ ! 5{?733 o
SECURNITY CLASSIFICATION OF THIS PAGE j
REPORT DOCUMENTATION PAGE e
18 AEPOAT SECUMITY CLASSIFICATION 1b. AESTRICTIVE MARKINGS C.

UNCLASSIFIED N/A S
20 SECURITY CLASSIFICATION AUTHORAITY 3. DISTRIBUTION/AVAILABILITY OF REPORT . '_'.‘ .. .Y
Approved for public release; ST
2. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited. R

4. PERFOAMING ORGANIZATION REPORT NUMBER(S) 8. MONITORING ORGANIZATION AEPORT NUMBEA(S) . d
N/A RADC-TR-84-128

e NAME OF PERFORMING ONGANIZATION OFPICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
SRI Internationa (1f applicabie)]
Computer Science Laboratory Rome Air Development Center (COES)]

Ge. ADORESS (City. Stete end ZIP Code) 5. ADORESS (City. State and ZIP Coda) j

333 Ravenswood Ave Criffiss AFB NY 13441
Menlo Park CA 94025-3493

8a. NAME OF runocmmoamo T OFFICE SYMBOL |9. PROCUAEMENT INSTRUMENT IDENTIFICATION NUMBER 1

pPeANE Mi¥anced Research 11 applionbio) F30602-81-K-0176
1PTO . R
Se. ADDAESS (City, State and ZIP Code) [10. soUncE OF FuNDING NOS.]

1400 Wilson Blvd . ::&G:TAM rnoucr TASK WORK UNIT ())
NO. NO. NO.
Arlington VA 22209 $1101E D139 19 _

77, TITLE (ncinde Security Cia) §
D REFINEMENT OF VISUAL SPECIFICATIONS IN PEGASYS 1
12. PEASONAL AUTHORS) o 1
Mark S. Moriconi .
T3a TYPE OF REFORT 136 TIME COVEREO [14. OATE OF RRPORY (Vr. Me.. Day)] '8 PAGE couNT | e
Final snqu _May 81 o Feb 84 June 1984 .o
p—————————— —

16. SUPPLEMENTARY NOTATION i D

N/A /* o |

',;, Tc?':—ﬂ'%—_ﬁ sus_an. T?YZZ%&'&" N ,cgfﬁut gz’?rogrming ,“'t"‘i ﬂaﬂ%‘ﬁ"égentat ion,
nl'!q" l) interactive computer graphics, ptogram design methodology, = k.
Zesign refinement . - e 4
19. AGBTRACT (C. i and idemtify by Mock number)
. 4—~This report describes techniques for the representation and refinement of visual specifi-
cations in the context of PegaSys (Programming Environment for the Graphical Analysis of
SYStems), a system that supports a visual paradigm for the development and explamation of
large software designs. Visual specifications are pictorial, mostly non-textual,
descriptions of interactions among conceptual entities in a system design. Pictures have]
a computational meaning that is represented in a formal language, called the forum caleulus,
The form calculus is extensible in that it contains a core set of primitives which can be
used to build a variety of abstract design models. Complexity is managed by means of
picture hierarchies, whose construction is guided by a precise refinement methodology.

iacald A v

The representation and refinement techniques presented ere-have been implemented and all '_-:;
reasoning is fully automatic and efficient. Determining the validity of a picture refine-
ment, for example, involves either the application of a single graph algorithm or the . ®

A 2 a

20. DISTRISUTION/AVAILABILITY OF ASSTRACT 2. ABSTRACT SECUAITY CLASSIFICATION

’

uncLassisiso/unuimiTEo K3 same as ner. O oTic ussns O UNCLASSIFIED R

.
u

22a. NAME OF RESPONSIBLE INDIVIDUAL 22p. TELEPHONE NUMBER szc. OFREICE SYMBOL
(Inciude Aree Code}

Douglas A. White (315) 330-2748 RADC (COES)

IFIED o
SECURITY CLASSIFICATION OF THIS PAGE L .

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

A s & ak

., N v
. ®a "L A a2 A

el

N R S T W L L R LS TR TR S T T T T E T S T A T T A T W T A T e Pl ga Il o
B e o AL TR T, . D N A e A i i P 4
3\ .

SECUMTY CLASBIFICATION OF THIS PAGE

roof of a formula whose predicates range over small, finite sets. Excerpts from a sample
session with PegaSys are used to illustrate a hierarchy of visual specificationms.

\

. . . . ' . 7 . \

p r %7 ‘?;\f/’, 'guff’é ?(/ KP‘/JIC.) 1‘: ol 'vul"“) ‘///' ‘o N ,f: »/;//3/ /!)
<.. b,

S

T
[RERT Y KXY PP
DAL PR

s
LY

.

“ONCLESSITIED

SECURITY CLASSIFICATION OF THIS PAGE

fol ' ‘L
[Sk
e A

CONTENTS

Acknowledgments iv ’ ‘. =
d .4
. 1. Introduction 1 ‘ L
: 2. Related Work 3) 3
S. Overall Design of PegaSys 4 'y ’;';'i
. 4. An Example Scenario 6
‘. 8. Representing the Meaning of Pictures 8 L
! 5.1. Lexical Structureof Forms 10 o 1‘
§.2. Core von Neumann Model 12 [
. 5.2.1. DataObjects 14 e
& 5.2.2. Operations 15 SRS
¥ 523. Comtrol 15
5.2.4. Manipulation of Data Objects 16
5.25. NamingandScope 18
5.3. A Derived von Neumann Model 18 TS
5.4. A Derived Dataflow Model 22 e]
S
6. Picture Refilnement Methodology 28 R
6.1. Active Entity Refinement 24]
6.1.1. General Procedure 24 L
6.1.2. Additional Constraints 25 SO
6.2. Interaction Refinement 26
7. Conclusions and Future Work 27
References 29
f Appendix A: Levels and Forms for the Scenario 30

e

A M At

Appendix B: More Derived Relations

!

N A

oL

B IR R

Acknowledgments

The form calculus was developed in collaboration with Amy Lansky and
the version of PegaSys described here was implemented by Dwight Hare.
The work has also benefitted from the comments, suggestions, and efforts

of Ed Ashcroft, Alain Conchon, David Plaisted, Leslie Lamport, Stan R '7 4
Rosenschein, and Fritz Vogt.

The aspects of this research dealing with hierarchies was funded in
part by the Office of Naval Research under Contract N00014-83-C-0300.

T ——— ———— e T R T e A sy
Ly e G A G A A O A L A N e K

1
}:1
1
A
!

‘v
)
e

Pl

o 8,TeR

L - &
B A

1. Introduction

.

Much of the high cost of software can be attributed directly to the PR ;

PERS

’:'_‘. inadequacy of system documentation and the tools for generating and

manipulating it. This inadequacy especially impacts software mainte- s
nance, which, according to many studies, accounts for most of the life- .]
cycle cost of a system. Regardless of the documentation language used, o 1

formal system documentation has tended to be difficult to understand.
One reason for this is the use of unfamiliar specification constructs. An-
other is the absence of explicit information about interactions between

different parts of the documentation or between different parts of the o :'_4
actual system code. Unfortunately, it is impractical, if not impossible, - . o
to generate a comprehensible description of system interactions from fi- T

nal documentation or code. Interactions should be described in terms of el
the abstractions used in their conceptualization; most often, neither doc- AR
umentation nor code directly mirrors (or should directly mirror) these

abstractions. o]

What is needed, then, is a formal language for explicitly describing - ‘“.‘” -y
system interactions that is easy to understand and use, yet is rich enough e

to express important interactions at multiple levels of abstraction. Ide-
ally, this language would be supported by a system capable of recording
the hierarchy of refinements which led to the interactions in the final
design and, most importantly, of ensuring that each refinement step is
methodologically sound.

Our approach to these problems involves the use of visual (graphical)
specifications of the “form” of a system — that is, the important concep- .
tual entities of a design and how they interact. Because of their intuitive S R
appeal, pictures have been used extenmsively by computer scientists in Y
textbooks, professional publications, and on blackboards to explain the ’)
form of a system. In the past, however, such uses have tended to be quite
imprecise as a means of documentation, resulting in pictures that are con- . :
fusing and easily misinterpreted. For example, the same graphic symbol e
is often used to represent a process, a subprogram, and a data structure, AR
all in the same picture. Similarly, the same arrow might represent the
flow of data to a process, the flow of control between subprograms, or
the writing of data into a data structure, all quite distinct concepts.

1

This paper describes a technical basis for the use of pictures as for- e -
mal, machine-processable documentation. In particular, we discuss:

¢ Picture Representation. Pictures must be treated as struc-
tures in a language for describing properties of computer pro-
grams, not as bitmaps or graphical structures devoid of compu-
tational meaning. To this end, we have developed a language to - 4
encode the meaning of pictures, called the form calculus, which . @
contains a small set of primitive predicates for describing entities '
and interactions useful in conceptualizing a design. Sentences in
the form calculus are called forms. The form calculus is extensi-
ble in that this core of primitive predicates can be used to build

more abstract notions about the form of a design. It is possible - . B
to define, for example, both a dataflow model of form (with asyn- ;
chronous processes communicating by value passing) and a von o)

Neumann model (which uses stored, possibly shared, variables). .

e Picture Refinement. We have also developed a picture refine- RS
ment methodology and precise rules for determining whether it e e
has been applied properly. The methodology only allows refine- -—»~.-~-—.—1
ments that preserve certain important properties dealing with, R
among other things, transmission of data, logical consistency of RS
interactions, and the use of names and values. It does this by e

means of machine-enforceable rules which take into account both . j:-:
the syntax and semantics of pictures. The methodology is ex- o]
tensible in the sense that it is possible to introduce specialized ST

restrictions on how newly defined concepts can be refined. T

PegaSys supports the structured composition and refinement of pictures AR
in the form calculus. It automatically checks the syntactic and type LT
corsistency of entities and relationships within a picture, as well as the g
adherence of each picture refinement to the requirements of our picture : 4
refinement methodology. Needed proofs are done quickly and without o
human intervention because all formulas to be proved involve predicates URIRSRRE

whose variables range over small, finite domains. PSRRI

Eventually, we expect PegaSys to provide two important capabilities ARG
not discussed in this paper. The first concerns the connection of a hi- L . 4
erarchy of visual specifications to system code. Except in the simplest RO,
cases, there appears to have been few attempts to verify the consistency L

2

« Calth wtaet
f e e YT

ULt e e N e e ey -
ndndiadadoa o aboas s

e et e e, PRI . . .
T T T L A N Ao T, 0T
PGS Tl Vo Sl Sl OV Y. P LS Y Y P T P S P Y Y

. A A R T S T A T A E.AFSh A aie e e ail N e AR e . S S R S A T T
SRS W i St S AL R ORI A A A e R AT AR R - T

between a specification of the form of a system and its actual form. The
richness of the form calculus makes the requisite analysis considerably
more difficult than, say, a control flow analysis. For example, one may
define an information flow relation that takes into account indirect flows,
or the possibility of aliased names.

The second concerns the use of animation to provide the user with an
intuitive explanation of system behavior. In the past, the most common
approach has been what might be called “language-based” animation, the
use of predefined displays of structures (usually of data) appearing in the
actual program text as the basis for what the user sees. The drawback
of the language-based approach is the near impossibility of predefining
good design abstractions for pictures. In contrast, our approach avoids - . o
the animation of the complete and intricate behavior of a system, and
instead, presents only that information dictated by a user-defined picture.

We call this a “content-based” approach, since the meaning of a visual
specification is the basis for what is zeen.

P & L L

This paper is organized as follows. After reviewing related work, we
present an overview of the current PegaSys system and an example of
its use. Following that, we describe the initial solutions we have found
for picture representation and refinement. This discussion includes two
examples of derived models of computation (von Neumann and dataflow)
which are constructed from the core primitives of the form calculus. The
final section concludes with a discussion of how this work contributes to
the area of software development and cutlines some future and ongoing

work.]
-
' . U .{
2. Related Work ;
e
<
There has been a number of attempts to capture the form of a system
and to explain its behavior in graphical terms.
o Previous attempts to develop formal visual specification languages IR
have met with limited success, primarily because the languages T
were not expressive enough and the abstraction techniques were ®]
inadequate. Examples of formal visual specifications include _ '
flowcharts, dataflow diagrams (such as in [2], (3], and [6]), and RORENRRNE
3 SRR
. @ .

ey e e - R e A T et i el R S SR S S T e e B e Y e el e I A e T s e
.

structure charts [6]. A richer visual formalism is the plan cal- BT
culus [5], which has been used primarily to represent standard
programming knowledge, not the form of a system design. Our
formalism differs from previous ones in that it supports at least
two models of computation, a greater, yet unified, array of con-
cepts for von Neumann-style descriptions, and the introduction
of user-defined concepts. 'Y

¢ Complexity is typically managed by means of visual hierarchies,
as in the dataflow hierarchies in [4] and the plan hierarchies in
[5]. Refinements of form must normally satisfy simple connec-
tivity constraints. Our refinement methodology, on the other _
hand, provides for more powerful notions of logical and form °®
refinement. Moreover, while it provides generic constraints on
all refinements, it is possible to introduce specialized refinement
constraints. Examples of this are given in Section 6.1.2.

3. Overall Design of PegaSys . _

This section presents an overview of the entire system. The reader s
should note that only the parts dealing with representation and refine- Tl
ment, as well as the user interface, are fully implemented.

PegaSys is being implemented in Interlisp-D and runs on a Xerox o
1100 (aka Dolphin) personal computer. Figure 1 shows its main data
structures (denoted by “blobs”) and sequential subsystems (denoted by
rectangles), as well as important “information-flow” relationships be-
tween them (denoted by arcs).

The primary inputs to PegaSys are pictures and Ada source code. ®o
The user interface, which mediates all user interaction with the system, ‘
includes separate structure-oriented editors for constructing pictures and
programs. Pictures are represented internally as forms and Ada programs
as abstract syntax trees. The hierarchy manager is responsible for en-
suring that each level in a picture hierarchy is a valid refinement of the
next higher level and for supporting the structured perusal of a hierar- L
chy. A perusal may follow steps in the design refinement history and ’
may also take advantage of design “views”, which group smaller subsets S

4 P

CO A A T i "‘."J'Af."', M BV . S e st et g N T A T T —
oot Nt P R - te T

]
- - - - -4
*
Do
*
L]
- 4
®
Figure 1: Architecture of PegaSys o j
B ————————
of logically related graphic symbols. The form verifier will ensure that - O
the picture hierarchy is logically consistent with the Ada code that it is e
intended to describe. The animator will explain the dynamic execution]
of an Ada program in terms of forms. AR
There are at least three important characteristics of the overall de- e
sign. The first is that pictures always are treated as computationally R
meaningful objects. They are never considered simply as bitmaps or S
as graphic structures devoid of computational meaning. This property]
manifests itself in the design of every system component. For exam- ST
ple, PegaSys’ picture editor enforces constraints on picture construction RO
which correspond to the syntactic and type constraints of the underlying ®
form calculus. If graphic symbols are arranged in such a way as to denote o !
a property that is not computationally meaningful, an error message is
given.
The second important characteristic concerns the user interface. In-
teraction with PegaSys takes place in terms of pictures, not the internal
logic of the form calculus. This means, for example, that the process of . ._ R
visual specification has been designed to allow all reasoning about pic- L]
tures to occur automatically and efficiently. The technical implication of . '.j
5 S
ety .._'1
.. ® 1
d
-1
|

o e

T et -
CANARADAN
Ay

‘.-

‘-"'-_-".'-.'-'-_'-_'-_'- -* « '.-',-,-,. . IR TR EPRR PRI SR I - tet '_-. o . e .""'.A' PRl
. Bl ST AN AT S R Nl BT G S I P W Wy i satal A A A at ae B A p A e B b e 'a e ad

this, as explained in the next section, is that specifications state potential,
instead of actual, relationships.

The last key characteristic of PegaSys is that its internal representa-
tion and manipulation of the meaning of pictures (in the form calculus)
is independent of specific graphic conventions or textual languages. If
graphical conventions are changed, only the picture editor need be mod-

ified. If a specification or programming language other than Ada were A Q ‘
to be described by pictures, only those aspects of the system that deal
f with the semantics of the language would have to be recoded.
- L
= 4. An Example Scenario S <

Figure 2 illustrates a use of the PegaSys refinement methodology.
S Starting with the window in the upper left-hand corner and moving
D clockwise, we depict the construction and refinement of the form of a
distributed communication protocol intended to achieve reliable message
transfer over an unreliable transmission line. We refer to this example,
and explain it in full detail, in subsequent sections.

Figure 2a depicts the protocol as a high-level network service. A
source and destination process send messages to and receive messages
from a network communication layer. In order to refine the network layer,
the user positioned the cursor within the ellipse labeled Network_Layer
. and pressed a button on the mouse. This selects the associated predicate R
in the underlying form. The user then constructed a picture and told)

; PegaSys that it was intended to be a refinement of the selection. The

result is Figure 2b, in which the network layer has been refined into a data

link service. (The “sockets” with numbers specify the correspondence i S
between pictures.) Messages from the source are sent to a sender process L]
which communicates directly with the data link layer. Similarly, messages .
received from the data link layer are handled by a receiver process before
being passed on to their destination.

Note that PegaSys found Figure 2b to be a valid refinement of the o
network layer. This analysis, in general, is based on logical, as well as ®
methodological, considerations.

LI I I |
.

In Figure 2¢, the window in the lower right-hand corner, the data

" 6 e

.:.Ia: asimyo]d 3ussosdoud pue (e) mopum, yyoj-aaddn

A w SummBaq ‘Ayosseson] uonedyads ensia sjdwexd uy :7 aandiy

BAYY WY (PNSAYY

J0A190H 10

2BAVY WY [eNsAug

J0A[9204— QY
Jepues—Ia

WO9| M
moyg
|eqe

o.o.onJu Sow
PPY

suyey
meaQq
[Sarig |
SjswuY
Aydiuiepy
@iMdig P3
xe1 wp3

Jepues—@v

el il i'vu'v'i'n'qhvu - v ., e Nl g P aul S s e it i S il gy . > - -~ - B 0 -) - o 3 —
P P vele JTeel o LI o e - L. PPN . P ot . . D . R B

link layer has been refined into a picture that includes the actual physical s
link. Messages from the network-layer sender are buffered by a queue.
A data-link sender takes messages from the queue and interacts with
the physical link layer via packets and acknowledgments. Similarly, a
data-link receiver process communicates directly with the physical link
layer. Once messages have been received, they are buffered before being ,
transmitted to the network-layer receiver. K)

Finally, in Figure 2d, the queues have been refined into icons repre- L
senting data abstractions. (See Figure 6 and Section 5.3 for an explana- 3
tion of how the queues were refined.) DL _Sender and DL_Recesver have

been renamed to be AB_Sender and AB_Recesver (to suggest that the ,
i alternating bit protocol is used to transmit messages over the unreliable .
\ line). Packets have been further defined as sequences consisting of two '
X elements, a message and an acknowledgment.

It is understood that these pictures, as well as any other pictures
representable in the form calculus, specify potential relationships. For S
example, an informal interpretation of Figure 2a is that messages flow ®
from process Source to process Network_Layer. “Uncertainty” in the
interpretation of relations stems from the mathematical undecidability
of the primitive relations in the form calculus when interpreted with
respect to actual executions of source code. In other words, we can only
state that messages misght flow, but not that the will flow. In fact, any
reasonable set of relations for specifying the form of a system would
have the same characteristic. Although this notion of potentiality should
always be kept in mind, we henceforth describe specifications as though
they express “certainties”.

5. Representing the Meaning of Pictures °

Our approach to the use of pictures separates the computational s
meaning of a picture from how it is expressed graphically on a display. L o
The computationally important aspects of a picture are represented in- Sl . ~
ternally by a form — a sentence in a simple logic. The entities and ®

predicates in a form may be primitive or derived.

The primitive predicates used in forms were chosen to be suitable

-
Se
-
.
-
Dy
‘e
-,
® .
D

8

N ,
N e 8

.
f'.
'
.

y

.
.~ - .’ . -

I.'c.- ot RONDAE AR I ST S
AR AP L S NS A I SRR R

et e T T e e e
AP S I PR G S W A

.................

for describing a low-level von Neumann mode! of computation. We at-
tempted to identify concepts that:

o Are precise enough to avoid multiple or unintended interpreta-
tions of a picture.

o Easily compose to describe useful, higher-level concepts about
the form of a system.

e Do not bias the way in which a specification is realized by an
implementation.

A small set of primitive concepts that satisfy these goals were chosen
(seven entities and seven interactions). These concepts appear to be
sufficient for describing a wide range of useful models of form.

The form calculus is extensible in the sense that new notions (derived
predicates) can be defined in terms of existing ones. It is possible to define
not only more elaborate von Neumann models, but also conceptually
different models, such as dataflow. The ability to represent the form
of many models of computation is crucial to a flexible design system.
For example, it is often convenient to conceptualize a system design in
terms of dataflow initially, and then refine that conception into a von
Neumann-style description of an imperative program.

The cosmetic (computationally unimportant) aspects of a picture
are represented by a graphic structure consisting of graphic symbols and
their characteristics, such as size and location. The graphical and logical
representations of a picture are connected so that manipulations of the
graphic structure can be related to the associated form, and vice versa.

The representation of a picture as two separate, but connected, struc-
tures has three major benefits. The first is that the underlying form
calculus can be used to guide the construction of pictures in much the
same way that structured editors guide the construction of programs.
Secondly, cosmetic changes to a picture do not require internal update of
the associated form and, therefore, no reasoning need be done to deter-
mine whether the change was logically correct. An example of a cosmetic
change is an adjustment to the size or location of a graphic symbol.
Lastly, changes in display conventions do not require any recoding of
the logical machinery for representing and reasoning about the compu-
tational meaning of pictures.

S e 4

- = v -
P
%
+eala’a
.
r
v

o

-
L

1

'

13

]
i L

.
XA SO S N

P

-
i
sl

P

%X

We now describe the basic lexical structure of forms. We then present
the core von Neumann mode! and illustrate how it can be used to define ®
a derived von Neumann model and a derived dataflow model.

e 5.1. Lexical Structure of Forms i]

A form is a finite conjunction of predicates on the elements of a finite o
set of symbols. Unary relations denote the types of conceptual entities in
a design, symbols (constants) denote particular instances of these entities,
and non-unary relations denote relationships among instances. Different
instances must be denoted by distinct constants.

A simple example of a form, corresponding to the picture in Fig-
ure 2a, is the following:

process(Source) A process(Destination) A
process(Network_Layer) A type(msg) A
DataFlow(Source, Network_Layer,msg) A
DataFlow(Network_Layer, Destination, mag)

This form represents three different “process” entities, one “type” entity
(representing a set of possible values), and two “dataflow™ relations be-
tween entities. The type msg is used as an argument of the DataFlow
predicate to indicate that data of type msg is transmitted between pro-
cesses.

Constraints on the set of relations allowed in a form restrict how
entities may fit together. Associated with every non-unary relation R
is an acceptabslity constraint, a first-order formula, that must be sat-
isfied before R can be added to a form. Intuitively, an acceptability
constraint provides strong typing constraints on the entities related by
R. For example, suppose that we want to restrict the use of the relation
DataFlow(z,y,d) so that it can only be applied to processes. This is
expressed by the acceptability constraint process{z)Aprocess(y).

An acceptability constraint is checked by means of a logical proof.
A form 7 is a legal form if and only if, for every relation R in 7, the
formula 7 D R4 is true, where R, is the acceptability constraint for R.
Henceforth, when we use the term “form™, we mean “legal form” unless
stated otherwise.

10

P
.

A

a: LA
a 8 & B

.n:'l

o‘. r‘l

IR AR ORI/ At /R 0t A AN AN

.y - o B e e 200 e e o T
LI UL SRR R LS IR I e S S R L - PO AR - .

fn_’g,!.-,-".(i.’.‘&fl ‘

Let 7 denote the form for Figure 2a. In order to check the type con-
straints for DataFlow({Source,Network_Layer,msg), PegaSys would prove

F D process(Source) A process{ Network_Layer)

If the proof fails, either Source or Network_Layer, or both, is of the wrong

type. . @
e The truth (or falsehood) of such formulas is easily determined. Most o "
":_:j often, each predicate of an acceptability constraint is an explicit premise D
o3 belonging to 7. In other cases, the proof of acceptability may involve R
"Z:: quantification over entities of F. But, since the number of entities is SR
always finite and relatively small, all possibilities can be enumerated) .']
o very quickly.

Notice that there is a direct mapping between the pictures in our
scenario and their forms. Intuitively, a form describes a finite, directed
graph, whose nodes and edges have “kind” and “label” properties. Each

|

unary relation is represented by a node whose label property is a symbol
and whose kind property is the relation; a non-unary relation is repre- -«-‘—-———'
) sented by an edge, whose label property is a symbol denoting transmitted LT]
; data and whose kind property is the relation. For example, the relation A
process(Source) is depicted by a node with label property Source and o ‘;.1;
c 4

kind property process. DataFlow(Source, Network.Layer,msg)is depicted el
by an edge from Source to Network_Layer with label msg and kind)
DataFlow. In the figures, different node shapes (such as an ellipse or B

|

a rectangle) denote different kinds of nodes. Edge annotations are used T%
to denote the kind property of edges. For example, an edge annotation TR
d may be used as an abbreviation for relation symbol DataFlow. Al- IIRENS
though these annotations were suppressed in our scenario, they can be K
made visible by pressing a button on the mouse. LA -1
L It should be pointed out that it is possible, and sometimes useful, . -
A to define derived concepts that suggest a visual presentation other than X o
‘;-} graphs. For instance, a relation among three entities cannot be repre- . b
" sented, at least directly, by the graph model just described. In such : R
» situations, the present implementation of PegaSys displays the relations .9
e as text.! e
.:. In fact, primitive relations declare and aliased of the core von Neumann model are 2
of :.: displayed as text. 'i
X 11 :
ﬂ 4

NIRRT
I\I.J..‘-

P A4 l“
"t S

v -y T Ty —————— —————————————T—T .
At g e St Bt st Jt Tt Bt Se ot ; " XTI T T Y T T

E SO
|
@
|

I
LA)
2 8 8 8 &

3

DRI NINONO

dataAbs: Denotes an instance of a data abstraction. 1

type: Denotes a set of possible values.

name: Denotes the name of a data object which may contain a S J
value of a given type. -]

value: Denotes an element of some domain. o

tuple: Denotes a sequence of data objects.

process: Denotes an entity whose execution may proceed in paralle!

with other processes.

subprogram: Denotes the set of sequentially executed actions within a
procedure or function.

Figure 3: Primitive unary relations for conceptual entities.

5.2. Core von Neumann Model

The von Neumann model of computation has two intrinsic character-
istics, both of which are reflected in imperative programming languages.
First, it has an updatable memory which is manifested in programs by
the use of stored variables. Secondly, it has an instruction counter, which
is manifested in programs by a rigid notion of transfer of control. The
following describes how the primitives of the form calculus account for
these two concepts. The notions of “control” and “data” have been for-
mulated generally enough to allow derived models to be formed which
do not utilize stored variables or a von Neumann notion of control. An
example of such a model is the dataflow model.

In describing the core model, we will find it useful to distinguish
between two kinds of entities. Active entities are entities which may ac-
cess or modify a data object; passive entities are transmittable entities
that describe properties of an unprotected data object. We begin by
describing data objects (both active and passive) and their role in spec-
ifications. All of the core concepts described below are summarized in
Figures 3 and 4.

12

B
......

PPN)

.

P1.

P2.

P3.

P4.

P5.

Pé.

P7.

declare (z,y) : name(z) A type (y)

signal (z,y) : operation (z) A process (y)

control (z,y) : operation (z) A subprogram (y)
returnOfControl (z,y) : subprogram (z) A operation (y)

modDataOf (z,y,n) : operation (z) A
(operation (y) V dataAbs(y)) A name(n)

aliased (z,y) : name(z)Aname(y)Az# eAy#¢

accessDataOf (z,y,v) : operation(z) A
(operation (y) v dataAbs (y)) A value(v)

Figure 4: Primitive non-unary relations.

R PR I B B S e B4 T I St e e g l A'."‘ PR ol e art st S e D v T T T Y T

P

4

+
s

8 SASSEIENES
t
b
'
Ve
L

L
”

-
S L
a

%
.

§.2.1. Data Objects R

An instance of a data abstraction is denoted by the unary relation
dataAbs and represents an “encapsulated” data object. Examples of its B
realization in a programming language are the “class” in Simula and the clo]
“package” in Ada. Encapsulation implies an explicit separation of the '

l concrete realization (implementation) of a data object from its use in a .
program. The data objects within a data abstraction may only be ac- o
cessed through a set of specified operations. Thus, each data abstraction)
instance functions as an active entity with a controlled interface between
- itself and the rest of a program. The queue in Figure 2¢ is an example I

’ of a data abstraction. To reflect the fact that it is an active entity, it is _
i displayed as a separate node in the graph, as opposed to a label on an °]
, arc. -)
In contrast, the properties of passive data objects (variables) may RN

g be directly accessed, modified, and transmitted. A passive data object is L

: characterized by three properties: B
I e A type denotes a set of values and a set of associated operations. 3
;;: If t is a type, type(t) is true. ”—-3
= e A name is used to refer to the data object. The predicate R
. name(n) is true if n is a pame. Names are needed in order to SRR
control access to data objects. e Z'_j
. e A valucis an element of some domain. If v is a value, value(v) is R
2 true. If a data object has type ¢, the value of the object must be o
" an element of the domain denoted by t. We henceforth use the . >
s potation “n.val” to denote a value of a data object with name ; 'jl ?_ A
Ky n. Specific values (e.g., “0”, “abc”, or “true”) are not used in sl]
i forms. Such values would be needed to specify what a system DR

g is intended to do, i.e., its behavior; in describing form, we need ®

only “generic values” such as n.val.

.
.
IS NN

ALA Sl A &

A special relation is employed to explicitly state that a particular name
and type is associated with the same data object. The binary relation Ll -
declare(n,t) specifies that the object with name n is “bound to” type ¢. ’
It implies that n.val has type t.

The entities denoted by these unary predicates are called passive en-
tities because they characterize properties of unprotected data. Passive

st e
1tale
v e e

N ol T A

.

14

A T 2T S PIRL T 00T

tet \'.' AN .

{
- %" e"e"a"a"a". - - --'Q‘Q - » - u.\'\.
D O S NP, L IP LIPSO IO, IO Y |

> e s s Wt e S

A ...

« D Ty TR 0 ST

. ..

PR R

*

>
2
0
",
X
-
4
".
,
'
"
*,
-
~
-
.

entities are used by specifications to describe and transmit information
about a data object. Sometimes, we shall want to indicate the tranmis-
sion of a passive entity without identifying a particular one. In such cases,
we use ¢, the “empty” datum. An example of its use is DataFlow(a,b,¢).
All three relations (type, name, and value) are satisfied by e.

It is desirable, at times, to provide a more structured description of
a data object. This is done by means of ordered tuples, each element
of which represents a different data object. For example, the type pkt
in Figure 2c is refined to a tuple of types (msg, ack) in Figure 2d. This
refinement indicates that a packet consists of two components, a message
and an acknowledgment.

§.2.2. Operations

The form calculus contains two types of primitive active entities that
manipulate data objects — processes and subprograms. A process, de-
noted by the unary relation process, may be thought of as an entity
operating concurrently with every other process entity. It consists of a
series of sequentially executed actions, including those occurring as a re-
sult of subprogram invocation. (Note, however, that forms do not include
information about the identity or order of the actions within a process;
they only specify its relationships with other entities and the identity of
the data objects it modifies and accesses.)

A subprogram entity is denoted by the unary relation subprogram,
which can be thought of, in programming language terms, as a procedure
or a function. Actions within a subprogram can result in communication
with a process, another subprogram, or itself (in the case of recursive
subprograms).

We will use the derived unary relation operation as shorthand for an
entity which satisfies either the process or the subprogram relation.

5.2.3. Control

In general, the pure notion of “transfer of control” refers to commu-
nication between active entities in which there is no ezplicit transfer of
data. Two examples of this in the von Neumann model are the “signal-
ing” of a process or the transfer of control to a parameterless subprogram.

15

“TE e CA Yl - e R - -
S CANORER TN CaOASC O SRS g

v e Lt NN

- The form calculus primitives separate the notion of how control flows in
a program from that of how data flows. As seen later, this makes it easy
to define derived relations that mix the two in various ways.

There are three primitive relations in the form calculus for describing
transfer of control. One describes communication between two threads
! of control; the other two describe control transfer to a called subprogram

l (within the same thread of control). The primitive relation for trans-
j ferring control from an operation to a process is signal(z,y) (see P2 of
- Figure 4). It says that operation z attempts to communicate with pro-

cess y; it does not indicate whether data is transmitted. Note that z may
be a subprogram or a process.

.

Control is transferred to a subprogram by means of the control re-
lation (P3). This type of control transfer may be initiated by a process
; or a subprogram; recursive subprograms pass control to themselves. The
o return of control from a subprogram to the point of transfer is denoted by
" the returnOfControl relation (P4). Using two relations to model transfer
and return of control, rather than two instances of the same “control”
relation, avoids possible misinterpretations. First, using control to de-
scribe both transfer and return of control would suggest that they are R
the same. Transfer of control to a subprogram always initiates execution R,
at the beginning of the subprogram, while return of control from a sub- L
program resumes execution at the point of transfer. A second possible R
misinterpretation concerns the role of processes. A process can initiate -———‘-—:
this type of control transfer to a subprogram, but not vice versa. Us- T
ing control to describe return of control would suggest that subprograms o
could initiate this type of control transfer to a process. This would be
inconsistent with our intuitive notions about the role of processes and
subprograms.

i As seen later, derived “subprogram call” relations may be defined e

o by combining control and returnOfControl. However, since we have sepa- EREI
rated the notions of control and return of control, it is possible to define ey R
specialized derived relations that involve only one of them. ’

. B

’
A

a s n.a

s . -
NP TOR U PV U PV WP uw vy

X 5.2.4. Manipulation of Data Objects R .-. ‘

: There are two possible kinds of interaction with data — modification L
(writing) and access (reading). Data that is shared between processes and AR

16

ML T S i Mt T B i B S A S T W T Y W T T Y T W T YW VYW T

subprograms may be represented as (passive) unprotected variables or as
(active) data abstractions.

The relation modDataOf (see P5) is used to specify all modifications
to data. When the shared data is an unprotected variable, the relation
modDataOf(z,y,n) says that operation z modifies the value of a passive
data object with name n belonging to operation y. Note that, when we
interpret this relation with respect to an actual programming language,
n may be a formal parameter of z or a local variable of z (in which case
z = y), or nonlocal to z (in which case z # y).

Derived relations can be used to define special kinds of interaction
with data by placing restrictions on any combination of z, y, or n. An
example is the notion of “side effect”, which can be specified by the
restriction z # y. In practice, a side effect can occur as a result of a
modification to a data object transmitted by reference (i.e., a name was
passed) or a modification to a nonlocal variable.

For a data abstraction, mod DataO f(z,y, n) specifies that an opera-
tion r modifies some variable n associated with data abstraction y. As
seen later in Section 6.1.2, z must be an operation explicitly associated
with protected data object n in abstraction y. In Ada, for example, T
z would be an operation in package y. Special refinement constraints

ensure that other operations do not directly access data within y. RaO]
The modDataOf relation does not account for the fact that modifi- ._......._.J.
cation of data can have sindirect effects due to aliasing of names. Aliasing N

occurs when two different names refer to the same data object. The
alsased relation (P6) is a symmetric relation between names. We show
later how the aliased relation may be used in defining a derived predicate)
expressing the notion of modification via aliasing. That is, if an object -

with name n is modified, and alsased(m,n), then an object with name °®
"9 m may have been modified as well. L 1
- Simple access to data is specified with the relation access DataO f(z, y,v) .'l-f '._'_'4'-}:'_-]
s (see P7) which says that z accesses a data value v belonging to y. Just as IR
‘ with modDataOf, we consider local and nonlocal access to data, as well O,
as shared variables and data abstractions. For unprotected shared vari- N
ables, accessDataO f(z.y.v) says that operation z accesses the values v ‘ o 1
- belonging to operation y. If y is a data abstraction, z accesses a value v
o belonging to abstraction y.
- 17 DR
% R,
N ‘

o R,
.'.. .. >‘) ‘._.1

. > |

P ———

§.2.5. Naming and Scope

The linguistic details of naming and scope are handled in a straight-
forward fashion. First of all, we avoid the problem of handling dupli-
::j cate names (symbols) within different scopes by requiring that all unique
entities have unique names. This does not preclude a more elaborate
' naming structure in the actual implementation, since different names in
. forms need not be associated with different names in programs. e

As an aid to the user, unique names can constructed automatically
by PegaSys in certain situations. For the purposes of this paper, assume
that this is done in only two situations. Local variables are qualified by
the name of their “owner”. For example, z.n denotes the unique name of
data object n belonging to entity z. PegaSys may also generate unique °
names for instances of data abstractions, such as Queue.l and Queue.2.

\ e 4

()

AR # arhek

5.3. A Derived von Neumann Model

Derived relations are defined using first-order logic with equality.
Variables must range over finite domains, in particular, the entities and .. :, _
relations in a form. Every derived relation has an acceptability constraint, RO
as defined earlier, and a definition of the form R = P, where R is a -

new relation and P is a formula containing only existing relations. As wo el
explained later, definitions have several uses. For example, they are used et
in determining how a derived relation can be refined into more primitive - ®

. relations. For example, a use of StmpleCall(a, b) could be refined into the
- relations control(a,b) and returnO fControl(b,a) if SimpleCall(z,y) is
" defined to be (controi(z,y) AreturnO fControl(y, z)) (see B1, Appendix
- B).
' The derived relations employed in the scenario are contained in Fig-
ure 5 and explained below; examples of other useful derived relations can | S
be found in Appendix B. We have already seen a derived unary relation,
namely, operation. e
The relation in our derived von Neumann model for expressing uni-
directional communication with a process is vDataFlow(z,y,d) (see DI
in Figure 5). Its acceptability constraint allows both subprograms and ®
processes to communicate with a process, Communication may involve Sl
the transfer of values or names of shared data. Its definition (the sec- -’,:j:'.'_r,"-":‘_-i

18 _:_» R

vDataFlow (z,y,d) :
¢ operation (z) A process (y) A (value (d) V name (d))

e[d=¢ DO signal(z,y)] A
[d#¢ D signal(z,y) A (accessDataOf (y, z,d) V modDataOf (y, z,d)) |
Read (z,y,v) :
e operation (z) A value (v)A

[(dataAbs(y) A (B z)(Ad)[modDataOf (z,y,d) V accessDataOf (z,y,d)]) V.
(operation (y) A (3dt) ReadChain (y, dt)) |

e accessDataOf (z,y,v)
Write (z,y,n) :

e operation (z) A name (n)A
[(dataAbs (y) A (Az)(Ad)[modDataOf (z,y,d) V accessDataOf (z,y,d)]) Vv
(operation (y} A (3 dt) WriteChain (y,dt))]

¢ modDataOf (z,y,n)
DataFlow (z,y,t) :
® process (z) A process (y) A type (t)

e signal (z,y) A accessDataOf (y, z,t)

Figure 5: Derived relations employed in scenario.

-
o |
. 4
i
............................. 4
----------------------------- S - . R e -~‘4
...... SoO - R I e See
-- e e e e oo e e
ettt Pt Tt T e " PP I PRI PP AP PU W SRS PP PP, W IR T WL, VT AT S U VLU, S

T N T S T TR TS T TR TN T A TG T v e T ~— Ty - - - - e E T T w3 m T m e T w—— w

~ e N

ond formula at D1) says that communication takes the form of a signal, Lo
possibly coupled with data transmission.

Next, we consider two derived relations describing interactions with
data abstractions. The pictures in Figures 2¢ and 2d illustrate the use of
these relations. There are at least two ways of using data abstractions.
At a very abstract level, data types may simply be “read” or “written”.
At a lower level, we explicitly identify the operations that have sole direct ®
access to the protected data. Once these operations have been explicated,
direct “reading” or “writing” of protected data may not occur.

. For example, the picture in Figure 2c says that sender process
- NL_Sender “writes” into a queue. In Figure 6, the queue has been refined o
E into a set of operations having exclusive access to an data abstraction. Y
At this level of abstraction, the Eng and Deq operations are seen as op-
erations which manipulate an asynchronous, first-in-first-out queue. The
entire system refinement is depicted in Figure 2d, where the user chose
- to display the queue icon, rather than the queue replacement form of
' Figure 6.2

D2 and D3 define the read and write relations. Notice that the RS
acceptability constraints never allow users of a data abstraction to bypass el
the operations associated with it. For example, if we have Write(z,y, v),
y can be a data abstraction only if no operations have been specified
that directly access or modify y. In fact, we can have Write(z,y,v)
only if there is some chain of writes between y and a data abstraction,
terminating in a write or a direct modification of the data abstraction. o
This is captured by predicate WriteChain(y,dt), which is defined as o

follows: S ~
(321,...,2a,do,...,dn) [Write (y, z1,dp) A Write (2y, 22,d))A R
Write (22, zs,d2) A ... A (Write (z4,dt,ds) V modDataOf (z,,dt,d,))] ®

As explained in Section 6.1.2, WriteC hain allows us to define hierarchies
of data abstractions. The analagous restrictions must hold for Read.

The definitions of Read and Write state that they are equivalent to

*The queue icon was created by the user as a bitmap. We are in the process of o
building a library of standard data abstractic ne with associated icons. These may be ®
connected to actual instances of a data abstraction for animation purposes. However,
we have not yet extended the form calculus to allow such icons to be treated as formal L
objects. S

P, DS

LU S e

A R RO
B

e

()
!

]

.
o
’

.

.

R ~.- -. ‘-' - ‘-‘ . - . "-."a '.. .'- < - - LN « T &t
BT T L e e T e e e e T T T TN N T T T e e . R SR
Aataltatolatataloadtetes. o s, w el e w4 a et e Tl L . . - tatat

F oo

Asyn_FIFO_Queue.1

-
L]
)
’
'
L]
'
1]
L]
L]
4
L]
[)
]
[)
)
)
)
+
1

F)

Replacement form for Queue.1.

Figure 6

LR RS B)

21

e aTaw

DRI P WAE AT

- . - .
- - - -

e
«a® a a

AEEE T R TR Rarth A P ava. Aol v Aol S S S Lo et e i - T Y e
e B T N " P P A A L T Nk .

——— e b

access DataO f and modDataO f, respectively.

5.4. A Derived Dataflow Model
- The dataflow model encourages one to think about a problem in
- terms of data flowing from one functional entity to another. Each of these
entities may be viewed as operating concurrently with every other entity, o

and can be understood independently of other entities as well. Enabled
entities consume input values, execute, and produce a set of output values

f for use by other entities. In line with standard dataflow philosophy, a
h-, functional entity cannot have side effects. A good description of dataflow)
models can be found in {1]. : °

A dataflow program can be thought of as a graph, where func-
tional entities are denoted by nodes and data is viewed as flowing on
arcs from one node to another. This is represented by the relation
DataFlow(r,y.t) (see D4 of Figure 5) which says that process z commu-
nicates with process y by transmitting values of type t. The DataFlow ®
relation does not bias the choice of communication mechanism (syn-
chronous or asynchronous) used in an underlying system implementation.

Transmitted data is specified as a type. For example,
DataFlow(Source. Network Layer.msg) says that values of type masg (mes-
sages) flow from Source to Network Layer. Unlike the von Neumann
- model, there is no concept of names (since there is no updatable store).
- Notice that DataFlow is a special case of von Neumann data flow in
) which z will always be a process and the mod DataO f relation will never
be satisfied.

Finally, we point out that this derived dataflow model may provide a ®
useful conceptual tool for high-level design that is quite distinct from our
von Neumann models. For example, dataflow specifications omit details
of data storage and access. The refinement techniques described in this
paper only partially accomodate the transition from a dataflow specifi-
cation to a von Neumann-style specification. Ongoing research in pas-
sive entity refinement techniques should resolve the remaining problems.
Note, however, that our scenario does illustrate a particular transition
between the two models (see Appendix A).

2 W

Ve - PR ..
et e . B -, * Ve . . o0t * "™ DR V™ te . . . -

. ety e T T PR I I AR A I I AR TR LYY . - . [.. .
PP Skt 0”2 " n"n’ s a' s ' a’a’a’a’aea' AT a"»Nata - a - a - - PR - PN

6. Picture Refinement Methodology

A design consists of a hierarchy of levels, where each level is a com-
plete description of the form of a system at a particular level of detail. A
level is formed by a sequence of refinements to the immediately preceding
level in the hierarchy. Hence, a design can be described as a sequence

LW rmra.rm b .0y

where each [; is a level and each r; is the result of a refinement. Each
{; and r; must be a legal form. A legal refinement must start with a
legal form and result in a legal form. However, intermediate steps in a
tefinement may manipulate forms that are not legal.?

The methodology for constructing this hierarchy was designed to
support the refinement of entities and interactions from the highest-level
form to a form describing the actual implementation of a system. It has
been carefully specified so that inappropriate refinements can be detected
{automatically by the computer) by referring to refinement rules. Two
kinds of form refinements have been particularly useful:

o Active Entity Refinement. An active entity may be replaced
by a form, provided the replacement is done in such a way that
preserves interactions involving the replaced entity.

e Interaction Refinement. An interaction may be replaced by
more detailed interactions, provided that the interaction is a log-
ical consequence of its replacement. This means that the interac-
tions at different levels of a hierarchy must be logically consistent.

Note that, in our refinement model, both kinds of refinements replace
something with something else.*

In PegaSys, a new level of a hierarchy is formed by first making a
copy of the form at the previous level. Then, a series of replacements
are made, the last of which completes the specification of the new level.

3Allowing only legal forms at all times would require that certain desirable refinements
would be impossible or would have to occur in a particular order.

*This paper does not discuss passive entity refinement. Although we utilized an in-
stance of passive entity refinement in the scenario (the replacement of pkt by the
tuple (meg, ack)), a more general methodology is presently under development.

23

[
AT .
slata’ata’ata

N ; R

.'. 4'7.'. -

" . .

S
]

- Lt ..;

e,

_‘ . .‘.‘-, ﬂi-l

g 2_".“—'

xiks '

¥ s
Ry

rrrrrrr-:'.
nll.l.l‘..’l. e 'e a

The complexity of depicting a particular level can be managed by inter-
actively constructed views, which are portions of a form. The scenario
in Figure 2 contained views of four levels in the protocol design. The
complete hierarchy and the refinements between levels are recorded by
PegaSys, as seen in Appendix A.

6.1. Active Entity Refinement

Any refinement of an active entity must obey certain constraints. We
begin by defining constraints that apply to all active entity refinements.
Then, we explain how it is possible to introduce additional constraints
for the purpose of enforcing a specialized refinement methodology.

6.1.1. General Procedure

Given a legal form 7, an active entity e in f; may be replaced by a
legal form § provided:

e The resultant form 7, is legal.
e Active entity e does not appear in §.

o The replacement form “hooks up” with the original form in the
same way that ¢ did. That is, the resultant form was obtained by
substituting an active entity of § for each occurrence of ¢ in ;.
Note that different occurrences of ¢ may be replaced by different
entities of §.

Active entity refinement can best be illustrated by returning to our
example. If we think of a form as a graph, the notion of preserving
interactions reduces to that of preserving the connectivity of the graph.
An example of this can be found at the beginning of the scenario, where
process(Network_Layer) of Figure 2a was replaced in Figure 2b by the
form

process (NL_Sender) A process(Data.Link_Layer) A
process (N L_Recesver) A
DataFlow (N L_Sender, Data_Link_Layer,msg) A
DataFlow (Data_Link_Layer, NL_Receiver, msg)

and then connected to Source and Destination by

DataFlow (Source, NL_Sender,msg) A

24

. PR .
s AT
h s B g g e b L _e .

)
a4

FIR R S e I

- —— o e e Sar- T I Sr iy S G S -7 Pl e it A
g P i T TEACI Byt S e A A s T B B e e e T A Doy 1

2 RN,
1 o
- R
Y
".3 - - 4
2]
. -
AN
N
P .
N . . . S |
. DataFlow (N L_Recesver, Destination, msg) - . S
% Observe that this is a legal form; process(Network_Layer) has been re- *
) placed, and the DataFlow relations preserve the connectivity of the o]
7-:: graph in Figure 2a. T
= 6.1.2. Additional Constraints B j
e
) It is possible to further restrict the refinement of an active entity by .
N means of an active entity refinement constraint. As a simple example,]
suppose that we require that an operation can only be refined into a]
process or a subprogram. This can be done by imposing the following]
constraint on the refinement of an entity ¢ when operatson(e) is true: ° "4
size(g)=1 A . ‘
R (3z)[(inForm (subprogram (z),) V inForm (process (z), §)) A L
o (VR)| inForm (R, /) D inForm (R[S, %2)]] -
'_'3 where inForm(R, 7) means that relation R is in form ¥ and R|¥ denotes DR
- a relation where every occurrence of y in R is replaced by z. size(¥) ® y
denotes the number of relations (conjuncts) in form 7. T
_:3 The refinement of data abstraction entities must also follow certain
N specialized rules. In particular, refinement must preserve the integrity of
23 encapsulated data by guaranteeing that only explicitly designated opera-
tions have access to it. In addition, conventions used by the unique name oo
_ generator of PegaSys guarantee that each instance of a data abstrac- -9
::-j tion has a unique name, and is associated with operations with reiated e]
e unique names. For example, in Figure 2d, the two queue abstractions e j
' are identical in form, except for naming conventions, to the abstrac- AR
T tion shown in Figure 6. For instance, queues Asyn_FIFI Queue.l and T
y Asyn_FIFO _Queue.2 are associated with operations process(Eng.1) and ® 4
process(Enq.2), respectively. e
! These naming decisions and the derived relations in Figure 5 encour- j..._-'-'.j'-'.;--'.‘

age a particular paradigm for data abstraction refinement. Figures 2c,
2d, and 6 provide an example of this refinement technique. We begin in
) Figure 2¢ with the relation

P Read (DL_Sender, Queue.1, msg)
- Next, in Figure 6, Queue.1 is replaced by

25

dataAbs (Asyn_FIFO _Queue.1) A operation (Eng.1) A
operation (Deq.1)A

modDataOf (Eng. 1, Asyn_FIFI Queue.1,msg) A

accessDataOf (Degq. 1, Asyn FIFO _Queue.1,msg)

and then connected to our original form by
Read (DL _Sender, Enq. 1, msg)

Note that the refinement rule for Read does not allow DL _Sender to
read the queue directly now, because of the presence of Eng and Deq
and their direct access to the queue.

This refinement illustrates the way in which the notion of “reading”
an abstract data object can be refined into one of using a data object
by means of its associated operations. This paradigm can be applied
recursively. For example, if the asynchronous queue is to be implemented
by a list abstraction, the queue would be replaced by a form containing
a list data abstraction and some list operations. However, the original
users of the queue would still regard the queue operations as the interface
to the data object, even though it is now represented as a list. This
indirect “chain” of reading or writing results in a legal form because of
the predicate WriteChain (ReadChain) in the acceptability constraints
for Write (Read).

These notions are captured by the following active entity refinement
constraint. For a data abstraction entity e,

(Vdt) [inForm (dataType (dt), §) A
(30p, R) [inForm (operation (op), §) A inForm (R(...0p...dt...), §)A
(R(...0op...dt...) D
(3 d){modDataOf (op, dt, d) V accessDataOf (op, d¢, d)])]
D (AP) [inForm (P, #) AinForm (P |,)] |

This constraint is checked by PegaSys whenever a data abstraction is
replaced.

6.2. Interaction Refinement

The refinement of interactions (relationships among active entities)
must obey the following general procedure. For a relation R of a form
A, let 72 denote the form obtained by replacing the relation R by its

26

............

.......
""""""

AR
ISR R R A B
PO AT IR A o R

LIl
“oe o

LI)
PRV Iy g W

L)
AN

A b < PLPIRIR)

<

e
,-;:
" 4

¢

NN ..o R

A
e e
ottt

o
-
*
.

.

.

-
.

.
.

refinement (a set of one or more relations). What must be shown is
that the new form 7 logically implies the replaced relation R. That
is, we require that an interaction be a logical consequence of its more
primitive refinement (plus any other relations in %). This proof will use
the definition of R, and possibly definitions and acceptability constraints
of other derived relations. Such proofs are easy, since predicates range
over small finite sets and usually need to be evaluated over only one
element of a set.

Interaction refinement is illustrated by returning to Figures 2b and 2¢
of our scenario. In Figure 2b, we have the relation

DataFlow (Source, N L_Sender,msg)
which is replaced in Figure 2¢c by
vDataFlow (Source, NL_Sender,msg) A accessDataOf (N L_Sender, Source, msg) .

These relations are not displayed in the figures, but are contained in the
complete forms in Appendix A5 We must show that
DataFlow(Source, NL_Sender,msg) follows from the entire form for
Figure 2¢. First note that, by the definition of vDataFlow, we have

vDataFlow (Source, NL_Sender,msg) D signal (Source, NL_Sender) .

Using ssgnal(Source, N L_Sender) and access DataO f(N L_Sender, Source, msyg),
we get DataFlow(Source, NL_Sender,msg) (by the definition of DataFlow).

7. Conclusions and Future Work -

Visual representation of system properties appears to be a highly
promising approach to the development, documentation, and mainte-
nance of large software systems. Past experience has shown that humans
find it easy to express and communicate certain knowledge about pro-
grams graphically.

PegaSys combines the use of graphics with formal logic. Through a
coupling of graphics and logical representation, pictures intended to de-
scribe the form of a system are given underlying meaning. Thus, PegaSys

®Recall that the “kind" properties on arcs in the scenario figures have been suppressed.

27

1 ",
_——d

S
T
‘ataia

. P
. .
PUNUIR STy

is able to support the construction and refinement of system specifications
in a way that is not only pictorial (and intuitive), but computationally
meaningful.

We feel that PegaSys makes a contribution to the field of visual spec-
ification in several ways. First of all, we have found our formulation of
the form calculus, the primitive relations we have chosen, and our tech-
nique for building derived relations, to be a simple, useful, and powerful
system for building a broad class of specifications. We have found it pos-
sible to model the structure of not only von Neumann-style systems, but
dataflow systems as well. Because of the simplicity of our representa-
tion, we have been able to define a general refinement methodology that
can be checked automatically. This methodology can also be extended
to accomodate specialized restrictions on how derived concepts may be
refined.

PegaSys becomes even more interesting when viewed as a complete
framework for system development and testing. Future plans for PegaSys
include two main objectives.

o A mechanism for connecting a picture hierarchy to actual system
code and verifying that the form specified by a picture matches
the form of the code. This requires, among other things, a pro-
cedure for automatically deriving a form from a program.

o A visual debugging facility, which includes an animator for illus-
trating the execution of an actual program in the visual frame-
work constructed by the user. Note that our approach to anima-
tion alleviates the problem of presenting a mass of intricate com-
putational detail by allowing a user to choose the most beneficial
way of viewing system execution. We also plan to incorporate
a testing facility for associating predicates with certain icons in
pictures and evaluating them during program execution.

Our current research is continuing our focus on the static aspects of
PegaSys, which provide a basis for the capabilities mentioned above. Our
primary efforts involve the development of an automatic form generator
for Ada programs and further work on specification refinement. This
includes refinement of both passive and active entities, as well as changes
to specifications that constitute a restructuring or reformulation, rather
than direct substitution. Work on the dynamic aspects of PegaSys is

28

o e e L L B R
R AR A I I IR I R . . R R e . L T L e i e AT
P A AP AT AP LS P P N LR P P WL W P e | Skl oot Ly Sdninand ot ol el ade tessatoladeteledetes

R e
PPN R PR N WS

O T

N

L v —T b DR Sl e Benie ant - " T
i e hare e aavet 0 mies e e Juun gare s Y——— ——y T, S IR = 4 T Cad RPN Aadit Aiad
AN A) - [N

I e
‘ - .‘\
N . :
. S
) B5h
: N _ ;;41
l expected to start in the near term. - . - d
i
. 1
REFERENCES]
S [1] Davis, A.L., and Keller, R.M., Data flow program graphs, Com- g -
i puter, vol. 15, no. 2, February 1982, pp. 26-41. °)
4

[2] Dennis, J.B., First version of a data flow procedure language,

Lecture Notes sn Computer Science, Springer-Verlag, 1974, pp.

362-376.
' [3] Keller, R.M., Jayaraman, B., Rose, D., Lindstrom, G., FGL -)
" (Function Graph Language) programmers’ guide, Technical re- ®
* port AMPS no. 1, University of Utah, Computer Science De- . *
' partment, July 1980. '
[4) Maguire, G.Q., Jr., A graphical workstation and programming .

- environment for data-driven computation. PhD thesis, Depart- R

I’ ment of Computer Science, The University of Utah, March 1983.

[5] Rich, C., and Shrobe, H., Initial report on a Lisp Programmer’s
Apprentice. [EEE Transactions on Software Engineering, vol.
SE-4, no. 6, November 1978, pp. 456-466.

: [6] Yourdan, E., and Constantine, L.L., Structured design: Funda-
i mentals of a discipline of computer program and systems design,
Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632, 1979.

] e

) -

n.' - - "-

at b A‘.

l‘

- . 3
.. _'.. 4
,.' 4
N -1
. IR
- 29)
~

PR R
e tataaad

I Appendix A: Levels and Forms for the Scenario

e The following presents the forms for each of the four levels ir ur
o scenario, which are contained in Figure 7. (Note that Figure 2 contained
views of these levels.)

Level 1 (Network Service)

process(Source)
process(Network_Layer)
process(Destination)
type(msg)

P N R

DataFlow(Source,Network_Layer, msg)
DataFlow(Network_Layer,Destination,msg)

Level 2 (Data Link Service)

process (Source)

i process(NL_Sender)
process(Data_Link_Layer)

process(NL_Receiver)

process(Destination)

type(msg)

DataFlow(Source,NL_Sender,msg)
DataFlow(NL_Sender,Data_Link_Layer,msg)
DataFlow(Data_Link_Layer, NL_Receiver,msg)
DataFlow(NL_Receiver,Destination,msg)

SR T

Level 3 (Data Link Architecture)

B O R
e SHRY, T

process(Source)

30

~1
R
74
- 4
K

L

-

T

——

e e T T T Sy ————— vy P — - -
N R .~ ..s~. ..,
e ®] e P R
“astmydo)d> 3uissaifosd pue mopuim
aj-1addn ayy ul Suluuw3aq ‘ourudds IY) W §|IAI] Inoj Y, 2 iy
AR AT |eNsAYd A) |PASAYY
woe d nd wow
JeA9a4TIQ J9puas—q J0pues gy
Bsw _ Beous
="~ =="=" f===="===*3
! gzenenp | ! yenend | . -
[PP [PR | : :
. Baw Sows
e J0A1920H —IN J0PUSS—IN
Bsuws Bsws Sew b=
uopeupseq °2N0S
02 0}04 T

J040 13U neq

amoyg
1oqe")
LI Ya|

Bsws
PPV
suyey
Slew|uy
AysieieiH

e.nidid WP3
xe) upe3

coe et SN Nt wat ot v e o P
S . e AR . IO
s PPN LA ,0 e bt v

T

i
!
L
Q.
<€
1
ot
p
b
‘
.
¢

®

process(NL_Sender)
dataType(Queue.1)

process (DL_Sender)
dataType(Physical_Link_Layer)
process (DL_Receiver)

dataType (Queue.2)
process(NL_Receiver) e
process(Destination)

type(msg)

type(pkt)

type(ack)

Unique internal names Queue.l and Queue.2 were created to distinguish °
between two instances of a queue type data abstraction.

vDataFlow(Source ,NL_Sender,msg)

accessData0f (NL_Sender,Source,msg) .
Write(NL_Sender,Queue.1,msg) -
Read (DL_Sender, Queue.1,msg)
Write(DL_Sender ,Physical_Link_Layer,pkt)
Read(DL_Sender ,Physical_Link_Layer,ack)
Read(DL_Receiver,Physical_Link_Layer,pkt)
Write(DL_Receiver,Physical_Link_Layer,ack)
Write(DL_Receiver,Queue.2, msg)

Read (NL_Receiver, Queue.2,msg)
vDataFlow(NL_Receiver,Destiration,msg)
accessDataOf (Destination. NL_Receiver,msg)

I ————

Notice that Write (NL_Sender,Queue.1,msg) and Read(NL_Receiver,Queue.2,msg)

are not legal refinements of DataFlow(NL_Sender,Data_Link_Layer,msg) ° ’
and DataFlow(Data_Link_Layer,NL_Receiver.msg) according to the :
methodology explained in this paper. This is a simple instance of a more
more complex type of refinement presently under investigation. Note
however, that Write(NL_Sender,Queue.1,msg) intuitively implies some
signal and data transfer between NL_Sender and an operation of abstrac-
tion Queue.1. In fact, this refinement is made in the next layer. ®

In addition, note that this level makes a complete transition from the Ll
dataflow to the von Neumann model. S

32

Level 4 (Alternating Bit Protocol)

process(Source)
process(NL_Sender)
process(AB_Sender)
dataType(Physical_Link_Layer)
process (AB_Receiver) C 4
process(NL_Receiver) o *
process(Destination) S
type (msg)
type(ack) ,
tuple(<msg,ack>) DRI

vDataFlow(Source,NL_Sender,msg)
accessData0f (NL_Sender,Source,msg)
Signal (NL_Sender,Enq.1)
accessData0f (Enq.1,NL_Sender,msg) L
Write(NL_Sender,Enq.1,msg) M
Read (AB_Sender,Deq.1,msg) - *.v. 4
Write (AB_Sender,Physical_Link_Layer,<msg,ack>) jﬁ-;;;njn.<
Read (AB_Sender,Physical_Link_Layer,ack) D
Read (AB_Receiver,Physical_Link_Layer,<msg,ack>)
Write (AB_Receiver,Physical_Link_Layer,ack)
Write(AB_Receiver,Enq.2,msg)

Read (NL_Receiver,Deq.2,msg)
Signal(Deq.2,NL_Receiver)
vDataFlow(NL_Receiver,Destination,msg)
accessDataOf (Destination,NL_Receiver,msg)

The following is added as a refinement of Queue.l and Queue.2. o

datalype (Asyn_FIF0_Queue.1)

process(Enq.1)

process(Deq.1)

modDataOf (Enq.1,Asyn_FIFO_Queue.!, epsilon) el
accessDataOf (Deq.1,Asyn_FIFO_Queue.1,epsilon) ' ®

dataType (Asyn_FIFO_Queue.2) e

33 e

g

p—— ————— W T g T

process(Enq.2)

process(Deq.2)

modDatalf (Enq.2,Asyn_FIFO_Queue.2,epsilon)
accessData0f (Deq.2,Asyn_FIFO_Queue.2,epsilon)

Appendix B: More Derived Relations

This appendix presents several examples of derived relations, none
of which appear in the scenario. The networking example dealt with pro-
cesses, data abstractions, and values; the relations discussed below deal
with subprograms and names. Figure 8 contains seven derived relations
for use in von Neumann-style specifications; four deal with subprogram
calls and two with side effects. As before, associated with each derived
relation is its acceptability constraint and definition.

Five calling relations are defined in Figure 8. A parameterless sub-
program call in which no data is communicated, is defined by B1. Three
subprogram calls, each of which differs in its method of data communica-
tion, are defined by B2-B4. In line with the philosophy behind the form
calculus, these relations do not dictate how specified data communica-
tion is to be implemented. It can be done by means of explicit parameter
passing or through global shared variables, whichever is appropriate.

The relation CallByValue specifies that values are transmitted {rom
z to y, while ReturnValue specifies that a value is transmitted back to y
from z. A combination of these relations would be used to specify a sub-
program call having both passed and returned values. Call by reference,
at B4, differs in that names, not values, are transmitted. Finally, at BS,
a generic subprogram call is defined to be any of the four possibilities
B1-B4.

Two notions of side effects are defined, both of which are concerned
with the modification of data. A simple notion of a side eflect is defined
at B6, which says that z has a side effect on y if £ modifies y’s data and
z # y. A more subtle notion is defined at B7, which describes side effects
that result because of aliasing. It says that z may have a side effect on y

34

L B

e

]
d

I s S s aegs o v~ - o -

T ey

= because z modifies a data object referenced by a name aliased to a name wr el
_ owned by y. The predicate contasned(n, z) is defined to be °

accessDataO f(z,z,n.val) V modDataO f(z,z,n)

T and is used to model the fact that n “belongs to” z. Observe that Side-
h Effect ThroughAlsasing will still be satisfied if z is the same as z, i.e., n;
may be declared in z.

ol
|

Ve

- Bl. SimpleCall (z,y) :
; e operation {z) A subprogram (y)

e control (z,y) A returnOfControl (y, z)
CallByValue(z,y,v) : . @

e operation (z) A subprogram (y) A value (v)

e control (z,y) A returnOfControl (y, z) A accessDataOf (y, z,v)
ReturnValue (z,y, v) :

e subprogram (z) A cperation (y) A value (v) °

e control (y, z) A returnOfControl (z, y) A accessDataOf (y, z, v)
CallByRef (z,y,n) :

e operation (z) A subprogram (y) A name (n)

e control (z,y) A returnOfControl (y, z) A modDataOf (y, z,n)

Call (2, ¥y, n,v, "2) :
e operation (z) A subprogram (y) A name (n) A value (v;) A value (vs)
e n # ¢ D CallByRef (z,y,n) A
vy # ¢ D CallByValue(z,y,v,) A
vz # ¢ D ReturnValue(y,z,v2) A ®
vy = vz = n = ¢ D SimpleCall (z,y)
SideEfect (z,y,n) :
e subprogram (z) A operation (y) A name (n)
o modDataOf (z,y,n) Az #y
SideEffect ThroughAliasing (z,y,n1,n2) :
e subprogram (z) A operation (y) A name (n;) A name (n2)

e (3z)[contained (ny, z) A modDataOf(z,z,n;)] A
aliased (ny, n2) A contained (n2, y)

Figure 8: Six derived relations for von Neumann specifications.

3 s

Rl e i
.......

............

DISTRIBUTION LIST

addres ses

Douglas A, White

RADC/COES

RADC/TSTO
GRIFFISS AFS NY 13441

RADC/DAP
GRIFFISS AFB NY 13441

ADMINISTRATOR

DEF TECH INF CTR
ATTN: DOTIC-CDA
CAMERON STA 86 S
ALEXANDRIA VA 22314

HQ ESC (XPZP)
SAN ANTONIO Tx 78243

HQ ESC/D0O
SAN ANTONIO Tx 78243

DMA HYDROGRAPHIC/TOPOGRAPHIC CENTER
ATTN: STT
WASHINGTON DC 20315

HQ USAF/Sam]
WASHINGTON 0C 20330

4

number
of copies

20

12

LR S 'q~vv‘

UMt il a2 L A i AR G S et e dunte Seet st Eb gt s gt Begv I n I ey st S i SR S e e e T T g " g FRAR A B el i Sk g

A7.. ;
e e
®
)
HQ USAF/SITT 1 . ;W
WASHINGTON 0C 20330 S
L
HQ USAF/RDSS 1

WASHINGTON DC 20330

DIRECTOR 1 -
DMANTC L
ATTN: SOSIM .- A
6500 Brookes Lane o |
WASH DC 20315 ~]
"4
RADC/1S1S1 1 4

8ldg 3, Rm 43
Griffiss AFB NY 13441

PENTAGON > DR
ATTN: (31 RS

WASHINGTON DC 20301

HQ AFSC/DLAE 1
ANDREWS AFB DC 20334

ANDREWS AFB DC 20334 SR
° .
2 HQ AFSC/XRKR 1 VL
x ANDREWS AFB MD 20334 R
o
HQ AFSC/XRK 1 ;3.&;$i

ANDREWS AFB MD 20334

.................... R R T

[.'t'.‘,‘..“,.’v..v'"-“"“_-" AR R A A A S AR - A AT M dr T A A S APIL PSSR ae gy T, ———_———————wr= e
b3

LRy

R
LY Wiy K2 T

HQ SAC/NRI (STINFO LIBRARY) 1 o
OF FUTT AFB NE 68113 SRS

R I

et e MR
|
. ‘
t
b
L

3246 TESTW/TZE 1
EGLIN AFB FL 32542

TAFIG/110D 1 R
LANGLEY AFB VA 23665 R
o
HQ TAC/XPS (STINFO)) 1 SRR
LANGLEY AFB VA 23665 R
,'21534
o 4
MAJOR JOHN MORR I[SON 2 S
USMTM/JOINT SECTION e
APO NEW YORK 09038 RONRRD
4@ TAC/00Y 1

LANGLEY AFB VA 23565

HQ TAC/DRCC 1 BRCUR

LANGLEY AFB VA 23565 B

-

° |

S AFSC LIAISON OF FICE 1 Rt
N LANGLEY RESEARCH CENTER (NASA) el T

LANGLEY AFB VA 235665

HQ TAC/DOF 1
LANGLEY AFB VA 23565

o
%
--t‘ .I

9

.
s

,‘ B . :

e,

. -

LI ST

''''''''''''

3 ',: -

)

h * .
ASD/ENS SA 1 f' if
WRIGHT-PATTERSON AFB OH 45433 i

°

AFWL/SUL 1
ATTN: TECHNICAL LIBRARY
KIRTLAND AF8 NM 87117

A 4 -

ASD/RUEE 1 .
ATTN: MR LARRY WEAVER Soee
WRIGHT-PATTERSON AF8 OH 45433 @ i
: 9
-]
ASD/ENEGA 1 ‘

WRIGHT-PAT TERSON AF8 OH 45433

- an

® |
ASD/ENAMM 1 o]
WRIGHT-PATTERSON AFB OH 45433 DR
ASD/XRS 1 -itﬁ,fii
WRIGHT-PATTERSON AFB OM 45433 AR

i

AFIT/LDEE - TECHNICAL LIBRARY 1 L
BUILDING 640, AREA B BRI,
WRIGHT-PATTERSON AFB ON 45433 RERORRO
o |

AFWAL/MLTE 1
WRIGHT=PATTERSON AFB OH 45433

AFAMRL/HE 1
WRIGHT=PATTERSON AFB OM 45433

......................

o
‘

l‘ .-

[: . -
i ——]

: AFHRL/LRS=TDC 1 _ ~
WRIGHT-PATTERSON AFB OH 45433 i

: ASD/EN 1 SRR

: ATTN: MR JEFFERY L., PESLER, STAFF ENGINEER AP

' ASD COMPUTER RESOURCE FOCAL POINT OF FICE Te
WRIGHT-PATTERSON AFB OH 45433 L

1

ASD/AFALD/AXT 1 :

WRIGHT-PATTERSON AFB OH 45433

: AFHRL/OTS 1 |

v Wil liams AFB A2 85224 . 1

5 g {

] *

- AUL/LSE 67-342 1

g MAXWELL AFB AL 36112

| o]
HQ AFCC/DAPL 1

BLDOG P-40 NORTH, RM 9 B
SCOTT AFB 1L 62225 A

. e
- S
3 AWS Technical Library 1 ‘;:f3:t:
= FLAG14 R
= SCOTT AFB IL 62225

5

N AFHRL/1D 1

LOWRY AF8 CO 80230

3420 TCHTG/TTMNL 1
LOWRY AFB CO 80230

CODE R1418 TECHNICAL LIBRARY 1 , o
OEFENSE COYMUNICATIONS - }
ENGINEERING CENTER A

1860 WIEMLE AVENUE]
RESTON VA 22090 S

COWMAND CONTROL AND COYMUNICATIONS D1V 1

OEVELOPMENT CENTER R
MARINE CORPS DEVELOPMENT § EDUCATION COMMAND e
ATTN: COOE 010

QUANTICO VA 22134

EDWARD D GRAMAM, JR 1 _
DIVISION 2101 j
SANDIA NATIONAL LABORATORIES °

ALBUQUERQUE NW 87112

AFLNC/LGY 1
ATTNZ CHo SYS ENGR DIV | |
GUNTER AFS AL 36114 o |
COMMANDER 1 R

BALLISTIC MISSILE OEFENSE SYSTEMRS COMMAND
ATTIN: BMDSC~AOLIB

PO B8OX 1S00

HUNTSVILLE AL 35807

DIRECTOR 1
8MD AODVANCED TECHNOLOGY CENTER

ATTIN: ATC=0, FRANK L BROWN

PO BOX 1500

HUNTSVILLE AL 25807

DIRECTOR 1
BMD ADVANCED TECHNOLOGY CENTER

ATTN: ATC-P, CHARLES VICK

PO B8OX 15)0

HUNTSVILLE AL 35807

0ET 1, AFOSR 1
EOARD/CI

TECHNICAL INFORMATION OFFICE

BOX 14

FPO NEW YORK NY 09510

COMMANDING OF FICER 1
NAVAL AVIONICS CENTER
LIBRARY = CODE 765

INOIANAPOLILIS IN 46218

DL-6

»' LR N ™ Wty e ot o, W, *
S AR RO AR A A A A R AT

. T B I
SeraN N

-

N AT T e e
- "."".

T T W e
NI P PN T A P

>~ —r——————— - -—v—v = T T e
OO TN Mg St gl s P st e Py (A e S S i e M MSe i g A S S & S0 A | i SRR R T T v | ~
-------------------------------------- .

: COMMANDING OF FICER 1

" NAVAL TRAINING EQUIPMENT CENTER

- TECHNICAL INFORMATION CENTER :

| BUILDING 2068 ¢
- ORLANDO FL 32813 '

PV W

COMMANDER 1
NAVAL OCEAN SYSTEMS CENTER S
ATTN: TECHNICAL LIBRARY, CODE 44738 : ""”‘
SAN DIEGO CA 92152 1

e

L LYL

US NAVAL WEAPONS CENTER, CODE 343 1
. ATTN: TECHNICAL LIBRARY
l CHINA LAKE CA 93555

:: SUPERINTENDENT (CODE 1424) 1
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93940

PTG G T W S

AR

COMMANDING OF FICER 1 o]
- NAVAL RESEARCH LABORATORY -
I CODE 2627 Py
' WASHINGTON DC 20375 PO

NAVELEXSYCOM 1 N
oy PME-117-22 i
. WASHINGTON DC 20360) o,_fj

COWMANDER 1

US ARMY ELECTRONIC WARFARE LABORATORY -
OFFICE OF MISSILE ELECTRONIC WARFARE °
ATTN: DELEW-M=FM (MR ANDERSON) R,
WHITE S#0S MISSILE RANGE NM 88002 B

) W SN IR

-

REDSTONE SCIENTIFIC INFORMATION CENTER 2
ATTN: ORSMI-RPRD

US ARMY MISSILE COMMAND

REDSTONE ARSENAL AL 35809

SR v LI A

MILITARY SEALIFT COvMMAND 1
TECHNICAL INFORMATION CENTER M=16

DEPARTMENT OF THE NAVY

WASH 0C 20390

"- 'j "‘ ..I ‘.l 'vl .“

. e

DA

l-" DL— 7

NSO R
P L‘L.‘_L‘L'L;_d

o
it

R IR
L AP WP

R I T/ At SIS T Pt T i T A A S JCI R - S A Je-ih A1 S S Sy S S Sl et o r— ——— YT - ad ~— T

B R L A DR

B ¥ PR
@

ADVISORY GROUP ON ELECTRON DEVICES 2

- FTS (FEDERAL COMM SYSTEM)

] 201 VARICK STREET, Rm 1140 °
NEW YORK NY 10014 -

FRANK J SEILER RESEARCH LA 1
- FISRL/INHL Sy
| US AIR FORCE ACADEMY (O 80840 °

K LOS ALAMOS SCIENTIFIC LABORATORY 1

: ATTN: REPORTY L IBRARY e
| WAIL STATION 5000 °
PO BOX 1663

LOS ALAMOS NM 87545

ta e M m Al =

AIR FORCE ELEMENT (AFELM) 1

THE RAND CORP ,
1770 MAIN STREET °
SANTA MONICA CA 90406

WL

- AEDC LIBRARY (TECH FILES) 1
i ARNOLD AFS TN 37389

Director 1 ST

National Security Agency — g
l ATTNG TSV12/70L .9
fort Meade MO 2075° :

- Director 1 AR
i National Security Agency a7

ATTN: W22 L
Fort Meade MD 20755 Lo

Director 1
i National Security Agency

ATTN: W31 * |
Fort Meade MD 20755 R

3 Director .
i National Security Agency
h Attn: R=8314 (Mr, Alley)

. Fort Meade MD 20755

DL-8

Director

National Security Agency
ATTN: S63

fort Meade MD 20755

Director

National Security Agency
ATTN: SO7

fort Meade MO 20755

Director

National Security Agency
ATTN: R21 VICE R2

Fort Meade MD 20755

Director

National Security Agency
ATTN: RS

Fort Meade MD 20755

Director

National Security Agency
ATTN: RO2(T) (Me, Orlosky)
Fort Meade MD 20755

Director

National Security Agency
ATTN: R7

Fort Meade MD 20755

Director

National Security Agency
ATTN: RS

Fort Meade MD 20755

pirector

National Security Agency
ATTN: P207

Fort Meade MD 20755

HQ ESD/FASE
HANSCOM AF8 MA 01731

DL-9

"o
PRI
- g
®
. ’ 74
* |
3
L4 1
-
. S
e _]
i
.o
R
. .- 1
S
]
L]
DR,
.»'.- -» .1
. 1
Sy
BN
'.,l
oy

rf_'v.r'-j‘rv-.rir\ﬂr‘v — T T T T A iaat > - v T T T T T —y—y

HQ ESD/TCSR (BURT HOPKINS) 1
HANSCOM AFB MA 01731

HQ ESD/TCIE 1
HANSCOM AFB MA 01731

ESD/XRT 1
HANSCOM AFB MA 01731

®

°
ESD/XRVT 1
HANSCOM AFB MA 01731
°
ESD/XRW 1
HANSCOM AFB MA 01731 e e
[J
ESD/XRTR 1 -
HANSCOM AFB MA 01731 SRR,
[]
ESD/TCG (MR RON LANZA) 1 L
HANSCOM AF8 MA 01731 .
ESO/XRC CAFSC) 1
HANSCOM AFB MA 01731 .

ESO/XR 2
HANSCOM AFB MA 0173

DL-10

vod

HQ ESD/DCR-1I
HANSCOM AFB MA 01731

AFEWC/ESRI
San Antonio TX 78243

485 EIG/EIEXR (OMO)
Griffiss AF3 NY 13441

ESD/TCIE
ATTN: MR CLIFTON DOIRON
HANSCOM AFB MA 01731

ESD/TCS-2
ATTN: C A MATHEWSON
HANSCOM AFB MA 01731

ESD/TCS-1D
ATTN: LT ROBERT GINGRICH
HANSCOM AFB MA 01731

ESD/TCS-1D
ATTN: LT JEANNE MURTAGH
HANSCOM AFB MA 01731

ESD/TCS~1D
ATTN: LT TERRY TAYLOR
HANSCOM AFB MA 01731

ESO/TCS-1D
ATTN: E O SPRAGUE
HANSCOM AFB MA 01731

p——— v.v-‘wvvﬂ_
. <
o
{
4
<
"
4
9
o]
- £
e
p
p
9
j
A
o
— -
7 _' - 4
e R T
N R _ .
e |
a
*
. T 9
- L
T q
- q
) 4
o <
P ‘
SRR
Lo U
. N
."'A'_... _.I
s -, -l
e s L
.._..'--- --l
L .
i
-”
[] |

R

Tl e, e
D N .

. . N . N . L
PPN PR WY L.V W S e |

<‘ r 4'
M .'.:._ i
. AN N

S IR Q%
N - - LA
. . . Y - . -

[

“e”a’s

NAVELEX DET PAX
PME 120-132

MAVAL AIR STATION
PATUXENT RIVER MD 20670

ASD/AXPP
WRIGHT-PATTERSON AFB OH 45433

ASD/AXPM
WRIGHT=PATTERSON AFB OH 45433

ASD=-AFALD/AXAE
WRIGHT-PAT TERSON AFB OH 45433

ASD-AFALD/AXT
WRIGHT-PATTERSON AFB OY 45433

1839 EIG/ELEM
KEESLER AFB MS 39534

Pr. Mark S. Moriconi
Computer Science Laboratory
SRI International

333 Ravenswood Avenue

Menlo Parks, CA 94025-3493

LCDR Ronald B. OhlLander

Information Processing Techniques Office
Defense Advanced Research Projects Agency
14)0 Wilson Boulevard

Arlingtons VA 22209-2389

DL-12

MR v FEMIFE Sl S el el e o SEC o o B A7 A it S e i e S i B T e e e e TR e

S Dr. Craig I, Fields 1

b Sys. Sciences Div,,» Def. Sciences Office .

i Defense Advanced Research Projects Agency — e
1430 Wilson Boulevard o
Arlington, VA 22209-2389

0r. David Foxs, Director 1
Mathematical & Information Sciences DR
AFOSR/NM ST
Bldg. 410, Bolling AFB hd
b Washington, 0C 20332

S Dr. Robert B, Grafton 1
o Office of Naval R:asearch
h Code 433

800 N.Qu‘incy St.

Arlington, VA 22217

SN Dr. Glen Al lgaier 1
- Naval Ocean Systems Center

i: Code 8242

B 271 Catalina Boulevard

o San Diegos, CA 92152

: Dr. Robert M, Balzer 1
N University of Southern Cal. e
EI Information Sciences Institute ..

L4676 Admiralty Way BoR st
Ll Marina Del Ray, CA 90291 .

-?f Or. Cordell Green 9
- Kestrel Institute T
1801 Page Mill Pnad o
Palo Alto, CA 94304 S

Mr. Thomas E., Cheatham 1 S
Harvard University PY
Aiken Computation Laboratory
33 Oxford Street

Cambridge, MA (02138

ODr. David C. Luckham 1 S
), Stanford University o
- Computer Systems Laboratory -
Stanfords, CA 94305

- e
.

LAMI onm Gatl ves cems am Ty v

0r. Charles Rich

Al Laboratory

MIT (NE43=-350)

545 Technology Square
Cambridge, MA 02139

Ms Lorraine M, Duvall
Director of Research
11T Research Institute
199 Liberty Plaza
Rome, NY 13440

or. Elaine Kant
Carnegie~Mel lon University
Computer Science Department
Schenley Park

Pittsburg, PA 15213

ODr. Bernard A. Kulp
Chief Scientist
AFSC/0L2

Andrews AFO
Washington, DC 20334

Pr. Karl N, Levitt

SRI International

Computer Science Laboratory
333 Ravensuwood Ave,

Menlo Parks, CA 94025

Dr. Richard Yenry Brown
MITRE Corp.

Pp.0. Box 208

Bedford, MA 01730

Dr. Brian McCune

Advanced Information & Decision Systems
Suite 224

201 San Antonia Circle

Mountin Views CA 94040

Mr. John Entzainger
virector

DARPA/TTO

1430 Wiltson Blvd,
Arlington, VA 22209-2389

0Or. Stephen Squires

Defense Advanced Projects Agency
Information Processing Techniques Office
14)0 Wilson Blvd

9
Arlington, VA 2220 DL-14

T

°
€@ 125 90 £ 90 A5 9C1F 95 9K 9015 € £ 90 1S 9CAF 9C A 9C A HAF K
°
of
Rome Avr Development Center .
RADC plans and executes nesearch, development, test and
selected acquisition programs in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence °
48 provided to ESD Program 0ffices (P0s) and othen ESD
elements. The principal technical mission areas are %
communications, electromagnetic guidance and contrnol, sur- 0
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology, »
Lonospheric propagation, solid state sciences, microwave L
physics and electronic neliability, maintainability and
compatibility.
%
X :
3
) €595 9C 45 90 65 2L 5 90 A5 05 90 1 90 5 L AF 90 5 HAF LK 9
[.)
3
ic .
E::.
i.’ °
r‘ﬁ
[...............
;;J...;-l-;;.;‘>-;.:.4~A..J_l_D‘J_‘AJ o »y Py -~ S Er) ol

