
AD-A148 733 REPRESENTATION AND REFINEMENT OF VISUAL SPECIFICATIONS i/il
IN PEGASYS(U) SRI INTERNATIONAL MENLO PARK CA COMPUTER
SCIENCE LAB M S MORICONI JUN 84 RADC-TR-84-i28

UNCLASSIFIED F386e2-9i-K-Wi6 F/G 9/2 N

MEEMhhMhMhhhEI
EhhhmhmmhhhhlM
Mhhhmmmhmhhhhl
ME..".

rt

2.2

'Lo *imo

1.8IIII1.25 14I l .

MICROCOPY RESOLUTION TEST CHART
NATIONAL SARAU OF SAIANDAS-1963- A

I

I.'- ;..,-

.I ._. -..- .. -.o,,,. ,. . . -..- .,., -..., ,- .. -. -. .- .._-.-,..] -:

'.4 AD-A 148 733

OF 0

Air~ i' No Cmmn

Orlifn Ai Force Easen NY 3" O

12 14~ 024

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-84-128 has been reviewed and is approved tor publication.

APPROVED: DUI 9 ~ ~ I

O WHITE
Project Engineer

APPROVED:

RAYHOND P. URTZ, JR.
Acting Technical Director
Command and Control Division •

FOR THE COMDE4:

DONALD A. BRANTINGHA24 1

Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

.. 0 i- - . . : -ii i ' i i i - .

REPRESENTATION AND REFINEMENT OF VISUAL SPECIFICATIONS IN PEGASYS

Hark S. Moriconi

Contractor: SRI International
Contract Number: F30602-81-K-0176
Effective Date of Contract: 1 May 1984

*Contract Expiration Date: 29 February 1984
Short Title of Work: Graphics Oriented Environment
Program Code Number 3D20
Period of Work Covered: Hay 81 - Feb 84

Principal Investigator: Dr. Hark S. Moriconi
Phone: (415) 859-5364

Project Engineer: Douglas A. White -

Phone: (315) 330-2748

Approved for public release; distribution unlimited

This research was supported by the Defense Advanced
Research Projects Agency of the Department of
Defense and was monitored by Douglas A. White (COES),
Griffiss AFB NY 13441 under Contract F30602-81-K-0176.

s0

UNCLASSIFIED ~J
SECURITY CLASSIFICATION 00 THIS PAGE -733

REPORT DOCUMENTATION PAGE
I& APON SECRIT CLSSIFCATONlb. RESTRICTIVE MARKINGS

2L PSECURING OCAIATION AUEPORITY NUMBER(S)N/VILSII F EPR

N/A RADC-TR-84-128

E6 NAME OP PSRPORMING ORGANIZATION OPPICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION
SRI International (if NNKComputer Science Laboratory Rome Air Development Center (COES)

S& A0002 (Cift. Sl" Old~ I cft f ADDRSS (CUphe SM*od ZIP COOa)

S& NAMEI OF PUNOINtGJSPONtSORItG ab OFICE SYMBOL SL PROCUREMENT INSTRUMENT IDENTIFICATION NUMEER

* ~D~'"Mced Research J________ F02-1-O6
Pii~nAopng~ IPTO _______________________________

SI. ADDRESSIII (City. Sha mid ZIP Co&a) 106 SOURCE OF FUNDING NOB.

1400 Wilson Blvd PROGRAM PROJECT TASK WORK UNIT
* rlngo V 220ILEMEN4T NO. NO. No. NO.

Arigo A22961101E D139 19
111. TITLE Ifiwahad SawmIf C~iffi~AMM

REPRESNTATI N D REFINEMENT OF VISUAL SPECIFICATIONS IN PECASYS
* 12. PERSONAL AUTHORISI

* Mark S. Moriconi
12g. TYPE OP REPORT 136. TIME COVERED 14, OATS OP RPORT (Yr.. X*6. fla) IS. PAGE COUNT

Final PRQM My 1 O Feb 84 June 1984
IS, SUPPLEMENTARY NOTATION

N/A

1.CGTCO I 1 EI5TERMS 9i00m n m~mm ifaaihPIE ~o GROUP SUB. ioI,,cmue progracigt oio rpe~naion,
IS. IOAT Q ol Rn. 3pec: -ficLJgon-gmpupe

________________________interactive computer graphics, program design methodology, .

lesign refinement ~
19. ASTRACT g.aaa-mmC aa a d.h pMa a.p
-s--This report describes techniques for the representation and refinement of visual specifi-

cations in the context of PegaSys (Programming Environment for the Graphical Analysis of
SYStems), a system that supports a visual paradigm for the development and explanation of
large software designs. Visual specifications are pictorial, mostly non-textual,
descriptions of interactions among conceptual entities in a system design. Pictures have
a computational meaning that is represented in a formal language, called thel~o'U' catcudtwS. 5
The form calculus is extensible in that it contains a core set of primitives which can be
used to build a variety of abstract design models. Complexity is managed by means of

-picture hierarchies, whose construction is guided by a precise refinement methodology.

The representation and refinement techniques presented -herihave been implemented and all .-

reasoning is fully automatic and efficient. Determining the validity of a picture refine- -

ment, for example, involves either the application of a single graph algorithm or the

Ir2G, DISTRIBUTION/AVAILAEILITY OP AESTRACT 21. ABSTRACT 8ECURITY CLASSIFICATION

UNCLAESIPIEO/UNLIMITEOU3 SAME AS RIT. C3OTIC USERS C3 UNCLASSIFIED

22& NAME OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22C. OPPICE SYM8OL

Douglas A. White (1)3024 AC(OS

00 FORM 1473, 83 APR EDITION OP I JAN 72 1S OBSOLETE. UNLSIFIED
SECURITY CLASSIFICATION OP THIS PAGE

ijS

r

g5CMY CLAMIuPCATIe4 OPTI miswa

roof of a formula whose predicates range over small, finite sets. Excerpts from a sample
session with PegaSys are used to illustrate a hierarchy of visual specifications.

-6-

ne

-

-.•.3 -

-:S')i

o ... o

CONTENTS
J0

Acknowledgments IV

1. Introduction1

2. Related Work 3

3. Overall Design of PegaSys 4

4. An Example Scenario 8

S. Representing the Meaning of Pictures8
5.1. Lexical Structure of Forms 10
5.2. Core von Neumann Model 12 0

5.2.1. Data Objects 14
5.2.2. Operations 15

-5.2.3. Control 15
45.2.4. Manipulation of Data Objects 16

5.2.5. Naming and Scope 18
5.3. A Derived von Neumann Model 18-
5.4. A Derived Datafiow Model. 22

6. Picture Refinement Methodology 23
6.1. Active Entity Refinement 24

6.1.1. General Procedure 240
6.1.2. Additional Constraints. 25

6.2. Interaction Refinement 26

7. Conclusions and Future Work 27

References 29
4:

Appendix A: Levels and Forms for the Scenario 30

Appendix B: More Derived Relations 34

p H

Acknowledgments

The form calculus was developed in collaboration with Amy Lansky and
the version of PegaSys described here was implemented by Dwight Hare.
The work has also benefitted from the comments, suggestions, and efforts
of Ed Ashcroft, Alain Conchon, David Plaisted, Leslie Lamport, Stan
Rosenschein, and Fritz Vogt.

The aspects of this research dealing with hierarchies was funded in
part by the Office of Naval Research under Contract N00014-83-C-0300.

.4 .

1. IntroductionI0

Much of the high cost of software can be attributed directly to the
inadequacy of system documentation and the tools for generating and
manipulating it. This inadequacy especially impacts software mainte-
nance, which, according to many studies, accounts for most of the life-
cycle cost of a system. Regardless of the documentation language used, S

formal system documentation has tended to be difficult to understand.
One reason for this is the use of unfamiliar specification constructs. An-
other is the absence of explicit information about interactions between
different parts of the documentation or between different parts of the
actual system code. Unfortunately, it is impractical, if not impossible,
to generate a comprehensible description of system interactions from fi- -
nal documentation or code. Interactions should be described in terms of
the abstractions used in their conceptualization; most often, neither doc-
umentation nor code directly mirrors (or should directly mirror) these
abstractions.

What is needed, then, is a formal language for explicitly describing
system interactions that is easy to understand and use, yet is rich enough
to express important interactions at multiple levels of abstraction. Ide-

ally, this language would be supported by a system capable of recording
the hierarchy of refinements which led to the interactions in the final
design and, most importantly, of ensuring that each refinement step is .
methodologically sound.

Our approach to these problems involves the use of visual (graphical)
specifications of the "form" of a system - that is, the important concep-
tual entities of a design and how they interact. Because of their intuitive
appeal, pictures have been used extensively by computer scientists in
textbooks, professional publications, and on blackboards to explain the
form of a system. In the past, however, such uses have tended to be quite
imprecise as a means of documentation, resulting in pictures that are con-
fusing and easily misinterpreted. For example, the same graphic symbolI" is often used to represent a process, a subprogram, and a data structure,
all in the same picture. Similarly, the same arrow might represent the S
flow of data to a process, the flow of control between subprograms, or
the writing of data into a data structure, all quite distinct concepts.

*. --. ..- .

.. ,-..,.. ..- -., , .. ,.-:.-- '..-.........-.....,....-..,............,.........,..,.........,..............,..-. .,................,.......--.....-...........-..,.-...-.

0

This paper describes a technical basis for the use of pictures as for-
mal, machine-processable documentation. In particular, we discuss:

* Picture Representation. Pictures must be treated as struc-
tures in a language for describing properties of computer pro-
grams, not as bitmaps or graphical structures devoid of compu-
tational meaning. To this end, we have developed a language to
encode the meaning of pictures, called the form calculus, which
contains a small set of primitive predicates for describing entities
and interactions useful in conceptualizing a design. Sentences in
the form calculus are called forms. The form calculus is extensi-
ble in that this core of primitive predicates can be used to build
more abstract notions about the form of a design. It is possible
to define, for example, both a dataflow model of form (with asyn-
chronous processes communicating by value passing) and a von
Neumann model (which uses stored, possibly shared, variables).

* Picture Refinement. We have also developed a picture refine-
ment methodology and precise rules for determining whether it
has been applied properly. The methodology only allows refine- 0
ments that preserve certain important properties dealing with,
among other things, transmission of data, logical consistency of
interactions, and the use of names and values. It does this by
means of machine-enforceable rules which take into account both
the syntax and semantics of pictures. The methodology is ex-
tensible in the sense that it is possible to introduce specialized
restrictions on how newly defined concepts can be refined.

PegaSys supports the structured composition and refinement of pictures
in the form calculus. It automatically checks the syntactic and type
corsistency of entities and relationships within a picture, as well as the
adherence of each picture refinement to the requirements of our picture
refinement methodology. Needed proofs are done quickly and without
human intervention because all formulas to be proved involve predicates
whose variables range over small, finite domains.

Eventually, we expect PegaSys to provide two important capabilities .

not discussed in this paper. The first concerns the connection of a hi-
erarchy of visual specifications to system code. Except in the simplest
cases, there appears to have been few attempts to verify the consistency . .

2

.

Q, |.

7 •~

between a specification of the form of a system and its actual form. The
richness of the form calculus makes the requisite analysis considerably 0
more difficult than, say, a control flow analysis. For example, one may
define an information flow relation that takes into account indirect flows,
or the possibility of aliased names.

The second concerns the use of animation to provide the user with an
intuitive explanation of system behavior. In the past, the most common
approach has been what might be called "language-based" animation, the
use of predefined displays of structures (usually of data) appearing in the
actual program text as the basis for what the user sees. The drawback
of the language-based approach is the near impossibility of predefining
good design abstractions for pictures. In contrast, our approach avoids
the animation of the complete and intricate behavior of a system, and
instead, presents only that information dictated by a user-defined picture.
We call this a "content-based" approach, since the meaning of a visual
specification is the basis for what is seen.

This paper is organized as follows. After reviewing related work, we
present an overview of the current PegaSys system and an example of . ..
its use. Following that, we describe the initial solutions we have found

for picture representation and refinement. This discussion includes two

examples of derived models of computation (von Neumann and dataflow)

which are constructed from the core primitives of the form calculus. The
final section concludes with a discussion of how this work contributes to
the area of software development and outlines some future and ongoing
work.

2. Related Work

There has been a number of attempts to capture the form of a system
and to explain its behavior in graphical terms.

a Previous attempts to develop formal visual specification languages
have met with limited success, primarily because the languages
were not expressive enough and the abstraction techniques were 0
inadequate. Examples of formal visual specifications include
flowcharts, dataflow diagrams (such as in [2], [3], and [6]), and

3

. " . .

.
- - - "....

structure charts [6]. A richer visual formalism is the plan cal-
culus [5], which has been used primarily to represent standard S
programming knowledge, not the form of a system design. Our
formalism differs from previous ones in that it supports at least
two models of computation, a greater, yet unified, array of con-
cepts for von Neumann-style descriptions, and the introduction
of user-defined concepts.

9 Complexity is typically managed by means of visual hierarchies,
as in the dataflow hierarchies in [4] and the plan hierarchies in
[5]. Refinements of form must normally satisfy simple connec-
tivity constraints. Our refinement methodology, on the other
hand, provides for more powerful notions of logical and form
refinement. Moreover, while it provides generic constraints on
all refinements, it is possible to introduce specialized refinement
constraints. Examples of this are given in Section 6.1.2.

3. Overall Design of PegaSys

This section presents an overview of the entire system. The reader
should note that only the parts dealing with representation and refine-
ment, as well as the user interface, are fully implemented.

PegaSys is being implemented in lnterlisp-D and runs on a Xerox . .0
1100 (aka Dolphin) personal computer. Figure 1 shows its main data
structures (denoted by "blobs") and sequential subsystems (denoted by
rectangles), as well as important "information-flow" relationships be-
tween them (denoted by arcs).

The primary inputs to PegaSys are pictures and Ada source code.
The user interface, which mediates all user interaction with the system, .-

includes separate structure-oriented editors for constructing pictures and
programs. Pictures are represented internally as forms and Ada programs
as abstract syntax trees. The hierarchy manager is responsible for en-
suring that each level in a picture hierarchy is a valid refinement of the
next higher level and for supporting the structured perusal of a hierar- S
chy. A perusal may follow steps in the design refinement history and
may also take advantage of design "views", which group smaller subsets

4

. . . . -.

.-.°- .-'. ,-

1.7

Figure 1: Architecture of PegaSys

of logically related graphic symbols. The form verifier wilt ensure that
the picture hierarchy is logically consistent with the Ada code that it is
intended to describe. The animator will explain the dynamic execution
of an Ada program in terms of forms.

There are at least three important characteristics of the overall de-
sign. The first is that pictures always are treated as computationallye
meaningful objects. They are never considered simply as bitmaps or
as graphic structures devoid of computational meaning. This property
manifests itself in the design of every system component. For exam- --

ple, PegaSys' picture editor enforces constraints on picture construction
which correspond to the syntactic and type constraints of the underlying
form calculus. If graphic symbols are arranged in such a way as to denote
a property that is not computationally meaningful, an error message is
given.

The second important characteristic concerns the user interface. In-
teraction with PegaSys takes place in terms of pictures, not the internal
logic of the form calculus. This means, for example, that the process of
visual specification has been designed to allow all reasoning about pic-
tures to occur automatically and efficiently. The technical implication of

. . "•. . ."....

- - - - - -.. ' ..-..-.. ".- . -

0

this, as explained in the next section, is that specifications state potential,
instead of actual, relationships. 0

The last key characteristic of PegaSys is that its internal representa-
tion and manipulation of the meaning of pictures (in the form calculus)
is independent of specific graphic conventions or textual languages. If
graphical conventions are changed, only the picture editor need be mod-
ified. If a specification or programming language other than Ada were
to be described by pictures, only those aspects of the system that deal
with the semantics of the language would have to be recoded.

4. An Example Scenario

Figure 2 illustrates a use of the PegaSys refinement methodology.
Starting with the window in the upper left-hand corner and moving
clockwise, we depict the construction and refinement of the form of a
distributed communication protocol intended to achieve reliable message
transfer over an unreliable transmission line. We refer to this example, 0
and explain it in full detail, in subsequent sections.

Figure 2a depicts the protocol as a high-level network service. A
source and destination process send messages to and receive messages
from a network communication layer. In order to refine the network layer,
the user positioned the cursor within the ellipse labeled Network-Lager
and pressed a button on the mouse. This selects the associated predicate
in the underlying form. The user then constructed a picture and told
PegaSys that it was intended to be a refinement of the selection. The
result is Figure 2b, in which the network layer has been refined into a data
link service. (The "sockets" with numbers specify the correspondence
between pictures.) Messages from the source are sent to a sender process 0
which communicates directly with the data link layer. Similarly, messages
received from the data link layer are handled by a receiver process before
being passed on to their destination.

Note that PegaSys found Figure 2b to be a valid refinement of the
network layer. This analysis, in general, is based on logical, as well as
methodological, considerations.

In Figure 2c, the window in the lower right-hand corner, the data

6

. - ..

,. ~ . ,.... ..

SI
L

I i ,

o

* sO. *
0o Io v

*)-.
.....

'am

0 -3
0.0

-.En-u-

*

. .0 .'

"Oe oO .. • % . .- • o , - o . . • -,,o %o . -o + ,. , ,
•

• • , • .. .- -o , , o • . • . + -. o - o ., , - ,. - % ," +- " U+

°or '*" " ° " ,°, " o , ' " °o .o."•. - "
4,

% ," ,'% ' ,° % - + " +"° " ' ' , " '° " .. , + " . - . ' " " " " + " + -

",~ . " -, .. , .. " "o o .o .. o o + o, % ° ° - - +. o . + ,+ , " " . . + o ,. o % - _ " " .+, . . 'oN. -- ,. . - o .

... ,_o. .. .• ..%_. .• .-. _. ...'.- '._ - .,,':..'.." , +..'. - . . . - , -U+ .

link layer has been refined into a picture that includes the actual physical
link. Messages from the network-layer sender are buffered by a queue.

* A data-link sender takes messages from the queue and interacts with
the physical link layer via packets and acknowledgments. Similarly, a
data-link receiver process communicates directly with the physical link
layer. Once messages have been received, they are buffered before being
transmitted to the network-layer receiver. .

* Finally, in Figure 2d, the queues have been refined into icons repre-
senting data abstractions. (See Figure 6 and Section 5.3 for an explana-
tion of how the queues were refined.) DL-Sezder and DL-Receiver have
been renamed to be AB-Sendcr and AB-Receiver (to suggest that the
alternating bit protocol is used to transmit messages over the unreliable
line). Packets have been further defined as sequences consisting of two
elements, a message and an acknowledgment.

It is understood that these pictures, as well as any other pictures
representable in the form calculus, specify potential relationships. For
example, an informal interpretation of Figure 2a is- that messiages flow
from process Source to process Network-Layer. "Uncertainty" in the

* interpretation of relations stems from the mathematical undecidability
of the primitive relations in the form calculus when interpreted with
respect to actual executions of source code. In other words, we can only
state that messages might flow, but not that the will flow. In fact, any
reasonable set of relations for specifying the form of a system would
have the same characteristic. Although this notion of potentiality should
always be kept in mind, we henceforth describe specifications as though- - -

they express "certainties".

5. Representing the Meaning of Pictures

Our approach to the use of pictures separates the computational
meaning of a picture from how it is expressed graphically on a display.
The computationally important aspects of a picture are represented in-
ternally by a form - a sentence in a simple logic. The entities and
predicates in a form may be primitive or derived.

The primitive predicates used in forms were chosen to be suitable

8

-~- -.. .- * - -- - -- -

77 77 ..

A0

for describing a low-level von Neumann model of computation. We at-
tempted to identify concepts that:

9 Are precise enough to avoid multiple or unintended interpreta-
tions of a picture.

9 Easily compose to describe useful, higher-level concepts about
the form of a system.

• Do not bias the way in which a specification is realized by an
implementation.

A small set of primitive concepts that satisfy these goals were chosen
(seven entities and seven interactions). These concepts appear to be
sufficient for describing a wide range of useful models of form.

The form calculus is extensible in the sense that new notions (derived .
predicates) can be defined in terms of existing ones. It is possible to define
not only more elaborate von Neumann models, but also conceptually
different models, such as dataflow. The ability to represent the form
of many models of computation is crucial to a flexible design system. -

For example, it is often convenient to conceptualize a system design in S
terms of dataflow initially, and then refine that conception into a von
Neumann-style description of an imperative program.

The cosmetic (computationally unimportant) aspects of a picture
are represented by a graphic structure consisting of graphic symbols and
their characteristics, such as size and location. The graphical and logical
representations of a picture are connected so that manipulations of the
graphic structure can be related to the associated form, and vice versa.

The representation of a picture as two separate, but connected, struc-
tures has three major benefits. The first is that the underlying form
calculus can be used to guide the construction of pictures in much the
same way that structured editors guide the construction of programs.
Secondly, cosmetic changes to a picture do not require internal update of
the associated form and, therefore, no reasoning need be done to deter-
mine whether the change was logically correct. An example of a cosmetic
change is an adjustment to the size or location of a graphic symbol.
Lastly, changes in display conventions do not require any recoding of
the logical machinery for representing and reasoning about the compu-
tational meaning of pictures.

1' " 9-

.. -- . _

4"" "i-]'

-4" - .. '''

,., 6• f,,

-77

We now describe the basic lexical structure of forms. We then present
the core von Neumann model and illustrate how it can be used to define •
a derived von Neumann model and a derived dataflow model.

5.1. Lexical Structure of Fornm

A form is a finite conjunction of predicates on the elements of a finite . . .
set of symbols. Unary relations denote the types of conceptual entities in •

a design, symbols (constants) denote particular instances of these entities,
and non-unary relations denote relationships among instances. Different
instances must be denoted by distinct constants.

A simple example of a form, corresponding to the picture in Fig-
ure 2a, is the following:

process(Source) A process(Destination) A
process(NetworkLayer) A type(m9g) A
Data Flow(Source, Network-Layer, msg) A
Data Flow(NetworkLayer, Destination,msg)

This form represents three different 'process" entities, one 'type" entity
(representing a set of possible values), and two 'dataflow" relations be.
tween entities. The type meg is used as an argument of the DataFlow
predicate to indicate that data of type meg is transmitted between pro-
cesses.

Constraints on the set of relations allowed in a form restrict how
entities may fit together. Associated with every non-unary relation R
is an acceptability constraint, a first-order formula, that must be sat-
isfied before R can be added to a form. Intuitively, an acceptability
constraint provides strong typing constraints on the entities related by
R. For example, suppose that we want to restrict the use of the relation .
DataFlow(z, y, d) so that it can only be applied to processes. This is
expressed by the acceptability constraint process(z)Aprocess(y).

An acceptability constraint is checked by means of a logical proof.
A form 7 is a legal form if and only if, for every relation R in 7, the
formula .7 : RA is true, where RA is the acceptability constraint for R. S
Henceforth, when we use the term 'form", we mean "legal form" unless
stated otherwise.

10

lt

. o .

.-. "... --..

.*.*.* .•

7S

Let I denote the form for Figure 2a. In order to check the type con-
straints for DataFlow(Source,Network-Layer,msg), PegaSys would prove

7 D process(Source) A process(NetworkLayer)

If the proof fails, either Source or Network-Layer, or both, is of the wrong
type. 0

The truth (or falsehood) of such formulas is easily determined. Most
often, each predicate of an acceptability constraint is an explicit premise
belonging to 7. In other cases, the proof of acceptability may involve
quantification over entities of 7. But, since the number of entities is
always finite and relatively small, all possibilities can be enumerated
very quickly.

Notice that there is a direct mapping between the pictures in our
scenario and their forms. Intuitively, a form describes a finite, directed
graph, whose nodes and edges have "kind' and "label" properties. Each
unary relation is represented by a node whose label property is a symbol
and whose kind property is the relation; a non-unary relation is repre- -
sented by an edge, whose label property is a symbol denoting transmitted
data and whose kind property is the relation. For example, the relation
process(Source) is depicted by a node with label property Source and
kind property process. DataFlow(Source,Network..Layer,mag) is depicted - -
by an edge from Source to Network _Layer with label msg and kind
DataFlow. In the figures, different node shapes (such as an ellipse or
a rectangle) denote different kinds of nodes. Edge annotations are used
to denote the kind property of edges. For example, an edge annotation
d may be used as an abbreviation for relation symbol DataFlow. Al-
though these annotations were suppressed in our scenario, they can be
made visible by pressing a button on the mouse.

It should be pointed out that it is possible, and sometimes useful,
to define derived concepts that suggest a visual presentation other than
graphs. For instance, a relation among three entities cannot be repre-
sented, at least directly, by the graph model just described. In such
situations, the present implementation of PegaSys displays the relations - 9
as text.,
'In fact, primitive relations declare and 4iiased of the core von Neumann model are .' - -..

displayed as text.

JI'

11 .-'.-.'.. -.

S

-. , -.--,.

....-..-...

dataAbs: Denotes an instance of a data abstraction. 0

type: Denotes a set of possible values.

name: Denotes the name of a data object which may contain a
value of a given type.

value: Denotes an element of some domain. S

tuple: Denotes a sequence of data objects.

process: Denotes an entity whose execution may proceed in parallel
with other processes.

subprogram: Denotes the set of sequentially executed actions within a
procedure or function.

Figure 3: Primitive unary relations for conceptual entities.

5.2. Core von Neumann Model _

The von Neumann model of computation has two intrinsic character-
istics, both of which are reflected in imperative programming languages.
First, it has an updatable memory which is manifested in programs by
the use of stored variables. Secondly, it has an instruction counter, which
is manifested in programs by a rigid notion of transfer of control. The
following describes how the primitives of the form calculus account for
these two concepts. The notions of "control" and "data have been for-
mulated generally enough to allow derived models to be formed which
do not utilize stored variables or a von Neumann notion of control. An
example of such a model is the dataflow model.

In describing the core model, we will find it useful to distinguish
between two kinds of entities. Active entities are entities which may ac-
cess or modify a data object; passive entities are transmittable entities
that describe properties of an unprotected data object. We begin by'. , . "
describing data objects (both active and passive) and their role in spec-
ifications. All of the core concepts described below are summarized in
Figures 3 and 4.

12

S.:?:

,."."""'. ,.,,.,...** " "*. %. "."," . .."."-. , ••".".....'" ." . .*.."". ' ... ,. "..- ' ".,", .. "

PI. declare (z, V) :name (z) A type (y)

P2. signal (z, y) operation (z) A process (y)

P3. control (z, :operation (z) A subprogram (y)

P4. returnOf~ontrol (z, y) subprogram (z) A operation (y)

PS. modDataOf (z, y, n) :operation (z) A
(operation (y) VdataAbs (y)) A name (n)

P6. aliased (z, V) name (z) Aname (y) A z 1Ay

P7. accessDataOf (z, y, v) :operation (z) A
(operation (y) V dataAbs (v)) A v'alue (v)

Figure 4: Primitive non-unary relations.

13

5.2... Dat Objects

n i

' a

g5.2.1. DaT objects
An instance of a data abstraction is denoted by the unary relation between

dataAbs and represents an encapsulated" data object. Examples of its
realization in a programming language are the 'class in Simula and the -is
dpackage" in Ada. Encapsulation implies an explicit separation of the
concrete realization (implementation) of a data object from its use in a
program. The data objects within a data abstraction may only be ac-
' cessed through a set of specified operations. Thus, each data abstraction
instance functions as an active entity with a controlled interace between

itself and the rest of a program. The queue in Figure 2c is an example
of a data abstraction. To reflect the fact that it is an active entity, it is .

displayed as a separate node in the graph, as opposed to a label on an]
arc.

In contrast, the properties of passive data objects (variables) maybe directly accessed, modified, and transmitted. A passive data object is . -

characterized by three properties: b th
notype denotes a set of values and a set of associated operations.

If t is a type, type(t) is true. . " " -.r-.

and• A name is used to refer to the data object. The predicate
"' larename(n,) is true if n is a name. Names are needed in order to
t i control access to data objects.

* A value is an element of some domain. If v is a value, value(v) is -O .I

true. If a data object has type t, the value of the object must be.

an element of the domain denoted by t. We henceforth use the
notation 'n.val" to denote a value of a data object with name "-
ns. Specific values (e.g., '0", 'abc", or 'true") are not used in ...
forms. Such values would be needed to specify what a system
is intended to do, i.e., its behavior; in describing form, we need ... • ,

only 'generic values" such as n.val. .- ..]

A special relation is employed to explicitly state that a particular name y. y.
and type is associated with the same data object. The binary relation'."-"-"-
declare(n,t) specifies that the object with name ns is 'bound to" type t.-. ..]
It implies that n.val has type t. S

The entities denoted by these unary predicates are called passive en- -.-.-.

tities because they characterize properties of unprotected data. Passive

14. - '

a a . ~ a . - *"

* a,,o-*- --.-q"-. '.,

_m
° ,

'~~~~~~~~~~.... "Oo. ".°%...,'o" " "... a *, , - a a....... .. a ., . -. o , I .1

0

entities are used by specifications to describe and transmit information
about a data object. Sometimes, we shall want to indicate the tranmis- 0
sion of a passive entity without identifying a particular one. In such cases,
we use t, the "empty" datum. An example of its use is DataFlow(a, b, e).
All three relations (type, name, and value) are satisfied by e.

It is desirable, at times, to provide a more structured description of
a data object. This is done by means of ordered tuples, each element 0
of which represents a different data object. For example, the type pkt
in Figure 2c is refined to a tuple of types (msg, ack) in Figure 2d. This
refinement indicates that a packet consists of two components, a message
and an acknowledgment.

5.2.2. Operations 0

The form calculus contains two types of primitive active entities that
manipulate data objects - processes and subprograms. A process, de-
noted by the unary relation process, may be thought of as an entity
operating concurrently with every other process entity. It consists of a
series of sequentially executed actions, including those occurring as a re- "* .. -

suit of subprogram invocation. (Note, however, that forms do not include .. "
information about the identity or order of the actions within a process; .-.
they only specify its relationships with other entities and the identity of "
the data objects it modifies and accesses.)

A subprogram entity is denoted by the unary relation subprogram, -. 3- -

which can be thought of, in programming language terms, as a procedure
or a function. Actions within a subprogram can result in communication
with a process, another subprogram, or itself (in the case of recursive
subprograms).

We will use the derived unary relation operation as shorthand for an ,

entity which satisfies either the process or the subprogram relation.

5.2.3. Control

In general, the pure notion of "transfer of control" refers to commu-
nication between active entities in which there is no explicit transfer of S
data. Two examples of this in the von Neumann model are the "signal-
ing" of a process or the transfer of control to a parameterless subprogram.

__ _ _ _ _ _ _ _,__ _ _ _ _ _ _ __ _ _ _ _ _ _ _ .: •

-7 --.7 .'-

The form calculus primitives separate the notion of how control flows in
a program from that of how data flows. As seen later, this makes it easy •
to define derived relations that mix the two in various ways.

There are three primitive relations in the form calculus for describing
transfer of control. One describes communication between two threads
of control; the other two describe control transfer to a called subprogram
(within the same thread of control). The primitive relation for trans-
ferring control from an operation to a process is signal(x, y) (see P2 of
Figure 4). It says that operation z attempts to communicate with pro-
cess y; it does not indicate whether data is transmitted. Note that x may
be a subprogram or a process.

Control is transferred to a subprogram by means of the control re-
lation (P3). This type of control transfer may be initiated by a process
or a subprogram; recursive subprograms pass control to themselves. The
return of control from a subprogram to the point of transfer is denoted by
the returnOfControl relation (P4). Using two relations to model transfer
and return of control, rather than two instances of the same "control"
relation, avoids possible misinterpretations. First, using control to de- S
scribe both transfer and return of control would suggest that they are

.4 the same. Transfer of control to a subprogram always initiates execution
at the beginning of the subprogram, while return of control from a sub-
program resumes execution at the point of transfer. A second possible
misinterpretation concerns the role of processes. A process can initiate
this type of control transfer to a subprogram, but not vice versa. Us-

ing control to describe return of control would suggest that subprograms
could initiate this type of control transfer to a process. This would be
inconsistent with our intuitive notions about the role of processes and
subprograms.

As seen later, derived "subprogram call" relations may be defined 0
by combining control and returnOfControl. However, since we have sepa-
rated the notions of control and return of control, it is possible to define
specialized derived relations that involve only one of them.

5.2.4. Manipulation of Data Objects 0

There are two possible kinds of interaction with data - modification
(writing) and access (reading). Data that is shared between processes and

16

.--.

. . ° • ".., .~~~~~~~~~~~~.'.'..o.'%1."
o

.......-....°'o..,"•, -.. . . o.-.......... . --. - ,-

.v

subprograms may be represented as (passive) unprotected variables or as
(active) data abstractions.

The relation modDataOf (see PS) is used to specify all modifications
to data. When the shared data is an unprotected variable, the relation
modDataOf(z,y,n) says that operation z modifies the value of a passive
data object with name n belonging to operation y. Note that, when we
interpret this relation with respect to an actual programming language, B
n may be a formal parameter of z or a local variable of z (in which case
z = y), or nonlocal to z (in which case z 0 y).

Derived relations can be used to define special kinds of interaction
with data by placing restrictions on any combination of x, y, or n. An
example is the notion of "side effect", which can be specified by the
restriction z # y. In practice, a side effect can occur as a result of a
modification to a data object transmitted by reference (i.e., a name was
passed) or a modification to a nonlocal variable.

For a data abstraction, modDataOf(z, y, n) specifies that an opera-
tion x modifies some variable n associated with data abstraction y. As
seen later in Section 6.1.2, z must be an operation explicitly associated
with protected data object n in abstraction y. In Ada, for example,
x would be an operation in package y. Special refinement constraints
ensure that other operations do not directly access data within y.

The modDataOf relation does not account for the fact that modifi-
cation of data can have indirect effects due to aliasing of names. Aliasing
occurs when two different names refer to the same data object. The
aliased relation (P6) is a symmetric relation between names. We show
later how the aliased relation may be used in defining a derived predicate
expressing the notion of modification via aliasing. That is, if an object
with name n is modified, and aliased(m, n), then an object with name
m may have been modified as well.

Simple access to data is specified with the relation accessDataOf(z, y, v)
(see P7) which says that z accesses a data value v belonging to y. Just as
with modDataOf, we consider local and nonlocal access to data, as well
as shared variables and data abstractions. For unprotected shared vari-
ables, accessDataOf(x. y. v) says that operation z accesses the values v
belonging to operation y. If y is a data abstraction, z accesses a value v
belonging to abstraction y.

17

................................... -.--- ----

Pt*"
- .- •.

"." "-.-' ..i..

;i%. *.. .°"o-.-•-% '. '..• -. '. . 1 " .° . '. " - ." ~" . . 2 "ii~i'i'l

-." --- . . -- -- -.'." -:.? '.-'. - "-" .'. : -'-: '' - .-'''-: -' '.°- '-'--- -. -"" -. . ' ' " ' .'-- ' '.". " -" " -,- , -- - •" " " - -

5.2.5. Naming and Scope

The linguistic details of naming and scope are handled in a straight-
forward fashion. First of all, we avoid the problem of handling dupli-
cate names (symbols) within different scopes by requiring that all unique
entities have unique names. This does not preclude a more elaborate
naming structure in the actual implementation, since different names in
forms need not be associated with different names in programs. 0

As an aid to the user, unique names can constructed automatically
by PegaSys in certain situations. For the purposes of this paper, assume
that this is done in only two situations. Local variables are qualified by
the name of their "owner". For example, x.n denotes the unique name of
data object n belonging to entity x. PegaSys may also generate unique S
names for instances of data abstractions, such as Queue.1 and Queue.2.

5.3. A Derived von Neumann Model

Derived relations are defined using first-order logic with equality. -

Variables must range over finite domains, in particular, the entities and .. 0
relations in a form. Every derived relation has an acceptability constraint,
as defined earlier, and a definition of the form R P, where R is a
new relation and P is a formula containing only existing relations. As
explained later, definitions have several uses. For example, they are used
in determining how a derived relation can be refined into more primitive
relations. For example, a use of SimpleCall(a, b) could be refined into the
relations control(a, b) and returnOfControl(b, a) if SimpleCall(z, y) is
defined to be (controi(z, y) A returnOfControl(y, z)) (see BI, Appendix
B).

The derived relations employed in the scenario are contained in Fig-
ure 5 and explained below; examples of other useful derived relations can 0
be found in Appendix B. We have already seen a derived unary relation, .
namely, operation.

The relation in our derived von Neumann model for expressing uni-
directional communication with a process is vDataFlow(x, y, d) (see D"
in Figure 5). Its acceptability constraint allows both subprograms and 9
processes to communicate with a process, Communication may involve
the transfer of values or names of shared data. Its definition (the sec-

18

0

!i!:~ i~i i :i::i!i:?i~i::i-~iii:!? .::i !!i . i::::i ::iii9

DI. vDataFlow(z,y,d)

*operation (z) A process (y) A (value (d) V name (d))
d [=E t signal (z, y)] A

[d3 i D signal (z, y) A (accessDataOf (y, z, d) V modDataOf (y, x, d))
D2. Read (z,y, v)

*operation (x) A value (v)A
(dataAbs (y) A (,z)(. d) [modData~f (z,y, d) vaccessData~f (z, y,d) 1) V.
(operation (y) A (3 dt) ReadChain (y, dt))

accessaDataOf (z, V, v)S

- -D3. Write (z, y, n)

* - operation (z) A name (n)A
- . (~~(dataAbs (y) A (,z)(A d) [modData~f (z,y, d) VaccessData~f (z, y,d) I) V

(operation (y) A (3 dt) WriteChain (y, de))
* mod DataOf (z, y, ns)

D4. DataFlow (z, y, t)

e process (z) A process (y) A type (t)

* Signal (z, y) A accessDataOf (y, x, t)

Figure 5: Derived relations employed in scenario.

% 2",

-'----, -• ,- - -C --. - -

ond formula at DI) says that communication takes the form of a signal,
possibly coupled with data transmission.

Next, we consider two derived relations describing interactions with
data abstractions. The pictures in Figures 2c and 2d illustrate the use of
these relations. There are at least two ways of using data abstractions.
At a very abstract level, data types may simply be "read" or "written".
At a lower level, we explicitly identify the operations that have sole direct •
access to the protected data. Once these operations have been explicated,
direct "reading" or "writing" of protected data may not occur.

For example, the picture in Figure 2c says that sender process
NLSender "writes" into a queue. In Figure 6, the queue has been refined
into a set of operations having exclusive access to an data abstraction.
At this level of abstraction, the Enq and Deq operations are seen as op-
erations which manipulate an asynchronous, first-in-first-out queue. The
entire system refinement is depicted in Figure 2d, where the user chose
to display the queue icon, rather than the queue replacement form of
Figure 6.2

D2 and D3 define the read and write relations. Notice that the __ __

acceptability constraints never allow users of a data abstraction to bypass
the operations associated with it. For example, if we have Write(z, V, v),
y can be a data abstraction only if no operations have been specified """ -

that directly access or modify y. In fact, we can have Write(z,y, v)
only if there is some chain of writes between y and a data abstraction,
terminating in a write or a direct modification of the data abstraction.
This is captured by predicate WriteChain(y, dt), which is defined as -

follows:

(3 z. z, do.....) d,.)[Write (y, z,, do) A Write (z,, Z2 , d,)A
Write (z2, Z3, d2.) A ... A (Write (z,., dr, d,) V modDataOf (z,., dt, dJ))]

As explained in Section 6.1.2, WriteChain allows us to define hierarchies
of data abstractions. The analagous restrictions must hold for Read.

The definitions of Read and Write state that they are equivalent to
2The queue icon was created by the user as a bitmap. We are in the process of . -
building a library of standard data abstracti, n with associated icons. These may be
connected to actual instances of a data abstraction for animation purposes. However,
we have not yet extended the form calculus to allow such icons to be treated as formal
objects.

20

7.7 7'--. .-. "

.. . . - . " -.

L .-- -- - --

O

0W4D&O

Figure ~ Asei 6:Rpaemn Iomfo.Queue. I

21q. o

.3

-i S

........... '---.-.-

A.. . - "- '. i .

-- w~ -.rY'-r --.

accessDataOf and modDataOf, respectively.

5.4. A Derived Dataflow Model

The dataflow model encourages one to think about a problem in
terms of data flowing from one functional entity to another. Each of these
entities may be viewed as operating concurrently with every other entity, •
and can be understood independently of other entities as well. Enabled
entities consume input values, execute, and produce a set of output values
for use by other entities. In line with standard dataflow philosophy, a
functional entity cannot have side effects. A good description of dataflow
models can be found in (1].

A dataflow program can be thought of as a graph, where func-
tional entities are denoted by nodes and data is viewed as flowing on
arcs from one node to another. This is represented by the relation -

DataFlow(x, y, t) (see D4 of Figure 5) which says that process z commu-
nicates with process y by transmitting values of type t. The DataFlow _

relation does not bias the choice of communication mechanism (syn-
chronous or asynchronous) used in an underlying system implementation.

Transmitted data is specified as a type. For example, ..- -

DataFlou,(SourceNetwork Layermag) says that values of type mag (mes-
sages) flow from Source to Network-Layer. Unlike the von Neumann .
model, there is no concept of names (since there is no updatable store). .

Notice that DataFlow is a special case of von Neumann data flow in
which z will always be a process and the modDataOf relation will never
be satisfied.

Finally, we point out that this derived dataflow model may provide a
useful conceptual tool for high-level design that is quite distinct from our
von Neumann models. For example, dataflow specifications omit details
of data storage and access. The refinement techniques described in this -'-"-. . '
paper only partially accomodate the transition from a dataflow specifi-
cation to a von Neumann-style specification. Ongoing research in pas- -

sive entity refinement techniques should resolve the remaining problems.
Note, however, that our scenario does illustrate a particular transition
between the two models (see Appendix A). .

22

" S2ii -

S. - - -. . .

6. Picture Refinement Methodology

A design consists of a hierarchy of levels, where each level is a com-
plete description of the form of a system at a particular level of detail. A
level is formed by a sequence of refinements to the immediately preceding
level in the hierarchy. Hence, a design can be described as a sequence

11 rlr.)...rm 12 ... In

where each Ii is a level and each ri is the result of a refinement. Each
li and ri must be a legal form. A legal refinement must start with a
legal form and result in a legal form. However, intermediate steps in a
refinement may manipulate forms that are not legal.' .

The methodology for constructing this hierarchy was designed to
support the refinement of entities and interactions from the highest-level
form to a form describing the actual implementation of a system. It has
been carefully specified so that inappropriate refinements can be detected _ .-_

(automatically by the computer) by referring to refinement rules. Two
kinds of form refinements have been particularly useful:

* Active Entity Refinement. An active entity may be replaced
by a form, provided the replacement is done in such a way that
preserves interactions involving the replaced entity.

e Interaction Refinement. An interaction may be replaced by .-
more detailed interactions, provided that the interaction is a log-
ical consequence of its replacement. This means that the interac-
tions at different levels of a hierarchy must be logically consistent.

Note that, in our refinement model, both kinds of refinements replace
something with something else. 4

In PegaSys, a new level of a hierarchy is formed by first making a
copy of the form at the previous level. Then, a series of replacements " - .-

are made, the last of which completes the specification of the new level.
3 Allowing only legal forms at all times would require that certain desirable refinements
would be impossible or would have to occur in a particular order. "

"This paper does not discuss passive entity refinement. Although we utilized an in-
stance of passive entity refinement in the scenario (the replacement of pkt by the
tuple (meg, ack)), a more general methodology is presently under development.

23
•S

- C--.-.

..

2 ''

The complexity of depicting a particular level can be managed by inter-
actively constructed viewa, which are portions of a form. The scenario
in Figure 2 contained views of four levels in the protocol design. The
complete hierarchy and the refinements between levels are recorded by
PegaSys, as seen in Appendix A.

6.1. Active Entity Refinement

Any refinement of an active entity must obey certain constraints. We
begin by defining constraints that apply to all active entity refinements.
Then, we explain how it is possible to introduce additional constraints
for the purpose of enforcing a specialized refinement methodology.

6.1.1. General Procedure

Given a legal form 71, an active entity e in 7T may be replaced by a
legal form g provided:

9 The resultant form 2 is legal.

* Active entity e does not appear in 9.
9 The replacement form "hooks up" with the original form in the

same way that e did. That is, the resultant form was obtained by

substituting an active entity of 9 for each occurrence of e in 71.
Note that different occurrences of e may be replaced by different
entities of 9. -

Active entity refinement can best be illustrated by returning to our
example. If we think of a form as a graph, the notion of preserving
interactions reduces to that of preserving the connectivity of the graph.
An example of this can be found at the beginning of the scenario, where
process(Netvork-Layer) of Figure 2a was replaced in Figure 2b by the S
form

process (NLSender) A process (Data-LinkLayer) A
process (NLReceiver) A
DataFlow (N L_-Sender, DataLink..Layer, msg) A
DataFlow (DataLinkLayer, NLReceiver, msg) 0

and then connected to Source and Destination by

DataFlow (Source, N LSender, msg) A

24

S

. .. -. .. .- •

• . .

7 7 7

S

DataFlow (N L -Receiver, Destination, msg)

Observe that this is a legal form; process(NetworkLayer) has been re-
placed, and the DataFlow relations preserve the connectivity of the
graph in Figure 2a.

6.1.2. Additional Constraints

It is possible to further restrict the refinement of an active entity by
means of an active entity refinement constraint. As a simple example,
suppose that we require that an operation can only be refined into a
process or a subprogram. This can be done by imposing the following
constraint on the refinement of an entity e when operation(e) is true:

size(I)=1 A
(3 z) (inForm (subprogram (x), g) V inForm (process (z), A)) A

(VR)[inForm (R, 11) D inForm (RI ,) 1
where inForm(R, 7) means that relation R is in form 7 and R13 denotes
a relation where every occurrence of y in R is replaced by x. size(7)
denotes the number of relations (conjuncts) in form T.

The refinement of data abstraction entities must also follow certain
specialized rules. In particular, refinement must preserve the integrity of
encapsulated data by guaranteeing that only explicitly designated opera-
tions have access to it. In addition, conventions used by the unique name
generator of PegaSys guarantee that each instance of a data abstrac-
tion has a unique name, and is associated with operations with related
unique names. For example, in Figure 2d, the two queue abstractions
are identical in form, except for naming conventions, to the abstrac-
tion shown in Figure 6. For instance, queues AsynFIFlQueue.1 and
AsynF IFO _Queue.2 are associated with operations process(Enq.l) and
process(Enq.2), respectively.

These naming decisions and the derived relations in Figure 5 encour-
age a particular paradigm for data abstraction refinement. Figures 2c, - ."-

2d, and 6 provide an example of this refinement technique. We begin in
Figure 2c with the relation

Read (DLSender, Queue. 1, msg)

Next, in Figure 6, Queue.1 is replaced by

25

.-..

. ° . O o • .. .

dataAbs (Asyn-.FIFO.-Queue. 1) A operation (Enq.1) A
operation (Deq.1)A

modDataOf (Enq. 1, AsynFIFlQueue. 1, msg) A
accessDataOf (Deq. 1, Asyn.YIFO-Queue. 1, meg)

and then connected to our original form by "

Read (DL-Sender, Enq. 1, msg)
Note that the refinement rule for Read does not allow DL-Sender to
read the queue directly now, because of the presence of Enq and Deq
and their direct access to the queue.

This refinement illustrates the way in which the notion of "reading"
an abstract data object can be refined into one of using a data object S
by means of its associated operations. This paradigm can be applied
recursively. For example, if the asynchronous queue is to be implemented
by a list abstraction, the queue would be replaced by a form containing
a list data abstraction and some list operations. However, the original
users of the queue would still regard the queue operations as the interface
to the data object, even though it is now represented as a list. This
indirect "chain" of reading or writing results in a legal form because of
the predicate WriteChain (ReadChain) in the acceptability constraints .'" .-

for Write (Read).
These notions are captured by the following active entity refinement

constraint. For a data abstraction entity e, AR

(Vdt)[inForm (dataType(dt), 9) A
(3 op, R) [inForm (operation (op),) inForm (R(... op ... dt...), .)A

(R(... op ... dt ...). -, .

(3 d)(modDataOf (op, dt, d) V accessDataOf (op, dt, d)])]
S(4 P) [inForm (P, 11) A inForm (P I', 7)] I

This constraint is checked by PegaSys whenever a data abstraction is
replaced.

6.2. Interaction Refinement

The refinement of interactions (relationships among active entities) S
must obey the following general procedure. For a relation R of a form
7, let 72 denote the form obtained by replacing the relation R by its

26

• "

-.-.. -°* b ..

refinement (a set of one or more relations). What must be shown is
that the new form 72 logically implies the replaced relation R. That
is, we require that an interaction be a logical consequence of its more
primitive refinement (plus any other relations in 2). This proof will use
the definition of R, and possibly definitions and acceptability constraints
of other derived relations. Such proofs are easy, since predicates range
over small finite sets and usually need to be evaluated over only one •
element of a set.

Interaction refinement is illustrated by returning to Figures 2b and 2c
of our scenario. In Figure 2b, we have the relation

DataFlow (Source, NL-Sender, msg)

which is replaced in Figure 2c by

vDataFlow (Source, NL.Sender, msg) A accessDataOf (N LSender, Source, meg).

These relations are not displayed in the figures, but are contained in the
complete forms in Appendix A.s We must show that __

Data Flow(Source, NLSender, mag) follows from the entire form for
Figure 2c. First note that, by the definition of vDataFow, we have

vDataFlow (Source, NLSender, msg) 3 signal (Source, NLSender) .

Using signal(Source, NLSender) and access DataOf(N LSender, Source, msg),
we get Data Flow(Source, NLSender, meg) (by the definition of DataFlow).

7. Conclusions and Future Work

Visual representation of system properties appears to be a highly
promising approach to the development, documentation, and mainte-
nance of large software systems. Past experience has shown that humans
find it easy to express and communicate certain knowledge about pro-
grams graphically.

PegaSys combines the use of graphics with formal logic. Through a
coupling of graphics and logical representation, pictures intended to de- S
scribe the form of a system are given underlying meaning. Thus, PegaSys
bRecall that the "kind" properties on arcs in the scenario figures have been suppressed.

27

2.•

. .

.- .-.,.
_.. .--...--.....--.... .- ..-..-' ... ,-. . ,...-...... '. . .".."......

-. * -. • .,. . -. --..- ... " .. *"' . - ..

is able to support the construction and refinement of system specifications
in a way that is not only pictorial (and intuitive), but computationaly
meaningful.

We feel that PegaSys makes a contribution to the field of visual spec-
ification in several ways. First of all, we have found our formulation of
the form calculus, the primitive relations we have chosen, and our tech-
nique for building derived relations, to be a simple, useful, and powerful S
system for building a broad class of specifications. We have found it pos-
sible to model the structure of not only von Neumann-style systems, but
datallow systems as well. Because of the simplicity of our representa-
tion, we have been able to define a general refinement methodology that
can be checked automatically. This methodology can also be extended
to accomodate specialized restrictions on how derived concepts may be 0
refined.

PegaSys becomes even more interesting when viewed as a complete
framework for system development and testing. Future plans for PegaSys .
include two main objectives.

e A mechanism for connecting a picture hierarchy to actual system
code and verifying that the form specified by a picture matches .

the form of the code. This requires, among other things, a pro-
cedure for automatically deriving a form from a program.

* A visual debugging facility, which includes an animator for illus-
trating the execution of an actual program in the visual frame- - -
work constructed by the user. Note that our approach to anima-
tion alleviates the problem of presenting a mass of intricate com-
putational detail by allowing a user to choose the most beneficial
way of viewing system execution. We also plan to incorporate
a testing facility for associating predicates with certain icons in
pictures and evaluating them during program execution.

Our current research is continuing our focus on the static aspects of
PegaSys, which provide a basis for the capabilities mentioned above. Our
primary efforts involve the development of an automatic form generator
for Ada programs and further work on specification refinement. This
includes refinement of both passive and active entities, as well as changes S
to specifications that constitute a restructuring or reformulation, rather
than direct substitution. Work on the dynamic aspects of PegaSys is . .

28

7.- 7.-

-• . . -

.~~~~~

• - . -

expected to start in the near term.

REFERENCES

[1] Davis, A.L., and Keller, R.M., Data flow program graphs, Com-

puter, vol. 15, no. 2, February 1982, pp. 26-41.

[21 Dennis, J.B., First version of a data flow procedure language,
Lecture Notes in Computer Science, Springer-Verlag, 1974, pp.
362-376.

[3] Keller, R.M., Jayaraman, B., Rose, D., Lindstrom, G., FGL
(Function Graph Language) programmers' guide, Technical re-
port AMPS no. 1, University of Utah, Computer Science De-
partment, July 1980.

[41 Maguire, G.Q., Jr., A graphical workstation and programming
environment for data-driven computation. PhD thesis, Depart-
ment of Computer Science, The University of Utah, March 1983.

[51 Rich, C., and Shrobe, H., Initial report on a Lisp Programmer's
Apprentice. IEEE Transactions on Software Engineering, vol.
SE-4, no. 6, November 1978, pp. 456-466.

[6] Yourdan, E., and Constantine, L.L., Structured design: Funda-
mentals of a discipline of computer program and systems design,
Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632, 1979.

29

-4 0

~ ~ . ~ -... ".|

Appendix A: Levels and Forms for the Scenario

The following presents the forms for each of the four levels ir .ir
scenario, which are contained in Figure 7. (Note that Figure 2 contained
views of these levels.)

Level I (Network Service)

process (Source)
jprocess (Network-.Layer) 4

process (Dstination)
type (mag)

DataFlow (Source, Network-.Layer ,msg)

DataFlow (Network-.Layer .Destination. meg)

Level 2 (Data Link Service)

process (Source)
process CNL..Sender) Aep
process (Data-.Link-.Layer)
process (NL-.Peceiver)
process (Destination)
type (mug)

DataFlow (Source. NL-.Sender .meg)
DataFlow CNL..Sender, Data-.Link-.Layer .mug)
DataFlow(Data-Link-.Layer ,NL...feceiver .msg)
DataFlow (NL-Receiver ,Destination, mug)

Level 3 (Data Link Architecture) 0

process (Source)

30

00

5- c0 0

C a C_

o -1 F, S

C

U b5

* IL * * I I I

LE E Ml m0

CO < ce -i
< -

CID An 3

.0

mm C

F F

.~E31

. -.

0

0

process (NLSender)
dataType(Queue. 1)
process (DLSender)
dataType (PhysicalLinkLayer)
process (DLReceiver)
dataType(Queue.2)
process (NLReceiver)
process (Destination)
type (msg)
type (pkt)
type(ack)

Unique internal names Queue.1 and Queue.2 were created to distinguish
between two instances of a queue type data abstraction.

vDataFlov (Source, NLSender, msg)
accessDataOf (NLSender .Source, msg)
Write (NLSender,Queue. 1 ,msg)

Read(DLSenderQueue. 1, msg)
Write (DLSender.PhysicalLinkLayer.pkt)

Read(DLSenderPhysicalLinkLayer,ack)
Read(DLReceiver,PhysicalLinkLayer,pkt)
Write (DL.eceiver, PhysicalLinkLayer, ack)

Write (DLReceiver, Queue.2,msg) 0
Read(NLReceiver,Queue. 2,msg)
vDataFlow (NLReceiver,Destination, msg)

accessDataOf (Destination.NLReceiver,msg)

Notice that Write (NLSender, Queue. 1,msg) and Read (NLReceiver, Queue. 2, msg)
are not legal refinements of DataFlow (NLSender, Data-_Link-Layer, mSg) 0
and DataFlow(DataLinkLayer,NLReceivermsg) according to the
methodology explained in this paper. This is a simple instance of a more
more complex type of refinement presently under investigation. Note
however, that Write(NLSender,Queue. 1 ,rosg) intuitively implies some
signal and data transfer between NLSender and an operation of abstrac-
tion Queue. 1. In fact, this refinement is made in the next layer. S

In addition, note that this level makes a complete transition from the
dataflow to the von Neumann model.

32

.:% .:.,.2.:-:.:,::::::::::::::::::::::: ::~..:. :.. .':. .:. :. .. . ".: • ••....... ..°.....
' - - .- -A . . - " ' . - . - . .. - . " " " " " " ' ' ' . " - . - " . " i " - " "

Level 4 (Alternating Bit Protocol)

process (Source)
process (NL-Sender)
process CAB-.Sender)
dataType (Physical-Link-.Layer)
process (AB-fteceiver)
process (NL-.Receiver)
process (Destination)
type (msg)
type (ack)
tuple(C<msg. ack>)

vDataFlow (Source. NL-.Sender .msg)
accessData~f (NL-Sender ,Source .msg)
Signal (NL..Sender ,Enq. 1)
accessData~f (Enq. 1 Nk.Sender .msg)
Write(NL-.Sender.Enq. I msg)
Read (AB-.Sender,Deq. 1,msg)
Write (AB-.Sender .PhysicalLink-Layer. (msg. ack>)
Read(AB-.Sender ,Physical-Link-.Layer, ack) -

Read(AB.Receiver .Physical-.Link-.Layer. (msg. ack>)
Write (AB-.Receiver ,Physical-.Link-.Layer, ack)
Write (AB..Receiver .Enq. 2. msg)

fead(NL-Receiver .Deq. 2,msg)
Signal (Deq. 2.NL-.Receiver)
vDataFlow (NL-Receiver.Destination, msg)
accessData~f (Destination, NL-Receiver ,msg)

The following is added as a refinement of Queue. 1 and Queue. .2.

dataType (Asyn-.FIFO..Queue. 1)

process(Enq. 1)
process(Deq. 1)
modData~f(Enq.l1.Asyn-.FIFO_.Queue.l1 epsilon)
accessData~f(Deq. 1.Asyn-.FIFO-.Queue. 1,epsilon)

dataType (Asyn-.FIFO-.Queue .2)

33

process(Enq. 2)
process(Deq.2)
nodData0f (Enq. 2. AsynFIFOQueue.2. epsilon)
accessDataOl (Deq. 2.AsynFIFOQueue.2, epsilon)

Appendix B: More Derived Relations

This appendix presents several examples of derived relations, none
of which appear in the scenario. The networking example dealt with pro- S
cesses, data abstractions, and values; the relations discussed below deal
with subprograms and names. Figure 8 contains seven derived relations
for use in von Neumann-style specifications; four deal with subprogram
calls and two with side effects. As before, associated with each derived
relation is its acceptability constraint and definition.

Five calling relations are defined in Figure 8. A parameterless sub-
program call in which no data is communicated, is defined by BI. Three
subprogram calls, each of which differs in its method of data communica-
tion, are defined by B2-B4. In line with the philosophy behind the form
calculus, these relations do not dictate how specified data communica-
tion is to be implemented. It can be done by means of explicit parameter 5
passing or through global shared variables, whichever is appropriate.

The relation CallBy Value specifies that values are transmitted from
z to y, while Return Value specifies that a value is transmitted back to y
from z. A combination of these relations would be used to specify a sub-
program call having both passed and returned values. Call by reference, •
at B4, differs in that names, not values, are transmitted. Finally, at B5,
a generic subprogram call is defined to be any of the four possibilities
Bl-B34.

Two notions of side effects are defined, both of which are concerned
with the modification of data. A simple notion of a side effect is defined
at B6, which says that z has a side effect on V, if z modifies y's data and
z # y. A more subtle notion is defined at B7, which describes side effects
that result because of aliasing. It says that z may have a side effect on y

34

-;;.., -.'.

because x modifies a data object referenced by a name aliased to a name
owned by y. The predicate contained(n, z) is defined to be

access DataO f(z, x, n.vol) V modData~f(z,z, n)

and is used to model the fact that n "belongs to" z. Observe that Side-
Effect ThroughAhiausng will still be satisfied if z is the same as z, i.e., n,
may be declared in x.

35

BI. SimpleCall (z,y)

e operation (z) A subprogram (y)

a control (z, y) A returnOfControl (y, z)

B2. CallByValue (z, v, v) .

* operation (z) A subprogram (y) A value (v)

* control (z, y) A returnOfControl (y, z) A accessDataOf (y, z, v)

B3. ReturnValue (z, y, v)

* subprogram (z) A operation (y) A value (v)

9 control (y, z) A returnOfControl (z, y) A accessDataOf (y, z, v)

B4. CallByRef (z, y, n)

* operation (z) A subprogram (y) A name (n)

* control (z, y) A returnOfControl (y, z) A modDataOf (y, z, n)

B5. Call (z, y, n, vI,v) :

* operation (z) A subprogram (y) A name (n) A value (vj) A value (v2)

9 n #tCallByRef (z, y, n) A
v, # i D CallByValue (z, y, vj) A
V2 0 D ReturnValue (y, z, v2) A 7*- .

VI = V2 = n = t D SimpleCall (z, v)
B6. SideEffect (z, y, n)

0 subprogram (z) A operation (y) A name (n)

e modDataOf (z,y,n) A z # y

B7. SideEffectThroughAliasing (z, y, nj, n2)

* subprogram (z) A operation (y) A name (ni) A name (n2)

* (3 z) [contained (n1 , z) A modDataOf(z, z, hi)] A
aliased (nj, n2) A contained (n2, v)

Figure 8: Six derived relations for von Neumann specifications.

36

• °S

DISTRIBUTION LIST

addressles number
of copies

Dougtas A. White 20
RADC/COES

RADC/TSTO 1
G RI F FI SS AFS NY 134.41

RAOCIDAP 2
GRIF FIS S AF8 NY 131.41

ADMINISTRATOR 12
DEF TECH INF CTR
ATTN: DTIC-CDA
CAMERON STA BG 5

- . ALEXANDRIA VA 22314

* H4Q ESC CXPZP)1
SAN ANTONIO TX 78243

4Q ESC/0OO
_ SAN ANTONIO TX 78243

DMA HYDROGRAPHIC/TOPOGRAPHIC CENTER 2
ATTN: STT7
WASHINGTON DC 20315S

4Q USAF/SAMI I
WASHINGTON OC 20330

DL-1

0

NO USAFISITT
WASHINGTON CC 20330

HO USAF/RDSS
WASHINGTON DC 20330

DIRECTOR1
ONHC
ATTN: SOSIM
6530 Srookes Lane
WASH OC 20315

RADC/ISISI1
Stdg 3. Ru 43
Grif ftis AFS NY 13441

PENTAGON
USDR&E* RM 3E-187
AT TN: C31
WASHINGTON DC 20301S

NQ AFSC/DLAE1
ANDREWS AFS DC 20334

HO AFSC/SOE 1
ANDREWS AS MO 20334

NO AFSC/XRK
ANDREWS AFB MD 20334

DL-2

-~~~- 77..--.-- -. 7. -- - 0 70-.

NO SAC/MAI (STINFO LIBSARY)1
OFFUTT AFI ME 68113

3246 TESTW/TZE1
EGLIN AFB FL 32542

TAFIG/I 100 1
LANGLEY AFS VA 23665

LANGLEY S VA 23661

MAJOR JOHN MORRISON2

USMTM/JOINT SECTION
APO NEW YORK 09038

'4Q TACUDOY 1-
LANGLEY AF8 VA 23665

40 TACIORCC1
LANGLEY AFB VA 23665

AFSC LIAISON OFFICE1
LANGLEY RESEARCH CENTER (NASA)
LANGLEY AF13 VA 23665

HO TAC/DOF 1
LANGLEY AFS VA 23665

DL- 3

. '.

.:.......-... . .

A SO/ENS SA1
WRIGHT-PATTERSON AFS 0ON 45433

0

AFWLISUL1
ATTN: TECHNICAL LIBRARY
KIRTLAND API M 87117

ASDIRWEE1
ATTN: MR LARRY WEAVERiWRIGI4T-PAVTERSO4 AFS O1H 45433

ASh ENEGA1
WRIGHT-PATTERSON AFI ON 45453

ASOI ENAMW1
WRIGHT-PATTERSON AF8 OH 45453

ASO/XRS1
WRIGHT-PATTERSON AFI OH 45433

AFITILDEE -TECHNICAL LIBRARY1
BUILDING 640a AREA S
WRIGHT-PATTERSON API OH 45433

A FWAL/MLTE
wRIGHT-PATTERSON API OH 45433I

APAMAL/HEI
* WRIGHT-PATTERSON API OH 45433

DL-4

AFHRL/LRS-TDC
WRIGHT-PATTERSON AFO3 ON 45433

ASO/EN
ATTN: MR JEFFERY L. PESLERo STAFF ENGINEER
ASO COMPUTER RESOURCE FOCAL P0114T OFFICE

WRIGHT-PATTERSON AFS OH4 45433

£501 AFALD/AXT1
WRIGHT-PATTERSON AFS ON 45433

AFIBUL/OTS1
Wittiams AFS AZ 85?24

AUL/LSE 67-3421

MAXWELL AFS AL 36112

NO AFCC/DAPL1
BLDG P-40 NORTHe RM 9
SCOTT AFS IL 6ZZ25.

AWS TechnicaL Library1
FL4 414
SCOT T AFB IL 6Z225

A FHRL/I 01
LOWRY AF8 CO 80230

3420 TCHTGITTMNL1
LOWRY AFS CO 80230

* DL-5

CODE R1411 TECHNICAL LIBRARY
DEFENSE CoMMUNICATIONS
ENGINEERING CENTER
1860 WIEHLE AVENUE
RESTON VA ?2090

COqNAND CONTROL AND COqMUNICATIONS DIV
DEVELOPMENT CENTER
MARINE CORPS DEVELOPMENT & EDUCATION COMMAND
ATTNZ CODE 010
QUANTICO VA 22134

EDWARD 0 GRAHAMP JR
DIVISION 2101
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE NM 87112

AFLMCILGY
ATTN: CH* SYS ENGR DIV
GUNTER AFS AL 36114 0

COIMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS COMMAND
ATTN: 8MOSC-AOLIB
PO BOX 1500
HUNTSVILLE AL 3580?

DIRECTOR
ON ADVANCED TECHNOLOGY CENTER
ATTN: ATC-Do FRANK L BROWN
PO BOX 1500

HUNTSVILLE AL '5807

DIRECTOR
BNO ADVANCED TECHNOLOGY CENTER
ATTN: ATC-Pp CHARLES VICK
PO BOX 1530
HUNTSVILLE AL 35807

OET 1 AFOSR
EOARDIC I
TECHNICAL INFORMATION OFFICE
SOX 14
FPO NEW YORK NY 09510

COrMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY - CODE 765
INDIANAPOLIS IN 46218

DL-6

..........

J

COCMANDING OFFICER
NAVAL TRAINING EQUIPMENT CENTER
TEC4NICAL INFORMATION CENTER

BUILDING 2068 0
ORLANDO FL 32813

CORMANDER
NAVAL OCEAN SYSTEMS CENTER
ATTN: TECHNICAL LIBRARY# CODE 44738
SAN DIEGO CA 92152

US NAVAL WEAPONS CENTER* CODE 343 1
ATTN: TEC4NICAL LIBRARY
CHINA LAKE CA 93555

SUPERINTENDENT (CODE 1424)
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93940

COMMANDING OFFICER '
NAVAL RESEARCH LABORATORY
CODE 2627
WASHINGTON DC 20375

NAVELEXSYCOM 1
PME-117-22
WASHINGTON DC 20360

COMMANDER 1
US ARMY ELECTRONIC WARFARE LABORATORY
OFFICE OF MISSILE ELECTRONIC WARFARE
ATTN: DELEW-M-FM (MR ANDERSON)

WHITE SIDIS MIS SILE RANGE NM "8002

REDSTONE SCIENTIFIC INFORMATION CENTER 2
ATTN: DRSMI-RPRD
US ARMY MISSILE COMMAND
REDSTONE ARSENAL AL 35809

MILITARY SEALIFT COMMAND 1
TECHNICAL INFORMATION CENTER M-16
DEPARTMENT OF THE NAVY 9
WASH DC 20390

DL- 7

..
..

ADVISORY GROUP ON ELECTRON DEVICES 2

* FYS (FED)ERAL COMM1 SYSTEM)
?01 VARICK STREET& Re 114.0
NEW YORK MY 10014

* FRANK J1 SEILER RESEARC4 LAB I

* FJSRL/NHL
* US AIR FORCE ACADEMY CO 8084.0

LOS ALAMO0S SCIENTIFIC LABORATORY 1-
ATTN: REPORT LIBRARY

* MAIL STATION 5000
P0 BOX 1663
LOS ALAMOS NM 87545

AIR FORCE ELEMENT (AFELM)1
THE RAND CORPi 1730 MAIN STREET
SA14TA MONICA CA 90406

AEDC LIBRARY (TECH FILES)1p ARNOLD AFS TN 37389

Director1
National. Security Agency
ATTNs T51121TOL
Fort Meade Mb 20759!

Director1
National Security Agency
ATTN: W22
Fort Meade MD 20755

Di rector1
National Security Agency
AT TN: w31
Fort Meade MD 20755 *

Director1:.
National Security Agency
A tt n R-8314 (Mr. Alleoy) _

Fort Meade MD 20755

DL-8

A- 1_

Di rector1
National Security Agency
AT TN: S63 0
Fort Meade MO ?0755

Director1
National Security Agency
AT TN: SO?7
Fort M~eade MD 20755

Director1
National Security Agency
ATTN: R21 VICE R2
Fort Meade mD 20755

Di rec tor1
Nation&(Security Agency
ATTN: Rs
Fort Meade mD 20755

Director1
Nat iona. Securi ty Agency
ATTN: ROZ(T) (Mr. Ortosky)
Fort Meade MD 20755

Director
National Security Agency
ATTN: R7
Fort Meade MD 20755

Director1
National Security Agency
AT TN: R8

- . Fort Meade MD 20755

Director1
National Security Agency
ATTN: P207
Fort Meade M D 20755

NGQ ESO/FASE1
HANSCOM AFS MA 01731

DL-9

HO ESD/TCSR (BURT HOPKINS)I
HANSOM A8 MA01731

HQ ESD/TCIE1
HANSCOM AFB MA 01731

ESD/XRT
4ANSCOM AFS MA 01731

K ESD/XRVT1
4ANSCOM AFS MA 01731

ESD/XRW1
HANSCOM AFB MA 01731

ESD/XRTR1
HANSCOM AFS MA 01731

ESD/TCG (MR RON LANZA)1
HANSCOM AFB MA 01731

ESD/XRC (AFSC)1
HANSCOM AFS MA 01731

E SO/XR 2
HANSCOM AFS MA 0173i

DL.-10

HQ ESD/DCR-1I
HANSCOM4 AFS MA 01?31

AFEWC/ESRI1

San Antonio TX 78243

485 EIG/EIEXR (DM0) 2
G ri ff is s AFS NY 13 441

ATTN: MR CLIFTON DOIRON
HANSCOM AFB MA 01731

ESD/TCS-21
AT TN: C A MATHEWSON
HANSCOM AFB MA 01731

* ESD/TCS-lD1
- . ATTN: LT ROBERT GINGRICH

HANSCOM AFB MA 01731

ESD/TCS-ID1
ATTN: LT JEA14NE MURTAGH

- HANSCOM AFB MA 01731

ESDITCS-101
ATTN: LT TERRY TAYLOR
"IANSCOM AFO MA 01731

- . ~ESD/TCS-1O :
AT TN: E 0 SPRAGUE
HANSCOM AFB MA 017310

DL-11

0

NAVELEX DET PAX1
PfqE 120-132

* 0
-' NAVAL AIR STATION

PATUXENT RIVER MD 20670

ASD/ AXP 1
WRIGHT-PATTERSON AFS OH 45433

ASDIAXPM1PWR IGHT-PAT TERSON AF8 OH 4 543 3

ASD-AFALD/AXAE10

WRIGHT-PATTERSON AFB OH 45433I: ASD-AFALD/AXT10
WRIG4T-PATTERSON AFB 04 45433

1839 EIG/EIEM1
KEESLER AF8 MS 39534

Dr. Mark S. Moricon* 5

Computer Science Laboratory
SRI Internationat
333 Ravenswood Avenue
Mento Park* CA 94025-3493

ICOR RonaLd 8. OhtanderI
Information Processing Technicjues Of fice
Defense Advanced Research Projects Agency
1430 Witson Boutevard
Artingtons, VA 22209-2399

DL.-12

.~ .9

Dr. Craig 1. Fields
Sys. Sciences Div.* Def. Sciences Office
Defense Advanced Research Projects Agency
1430 Wilson Boulevard
Arlington* VA Z2209-2389

Dr. David Fox* Director 1
Mathematical 6 Information Sciences
AFOSR/IN.

Bldg. 410. Boiling AFS
Washington. DC 20332

Dr. Robert B. Grafton
Office of Naval Rtsearch
Code 433
800 N.Quincy St.
Arlington* VA 22217

Dr. Glen Atlgaier
Naval Ocean Systems Center
Code 8242
271 Catalina Boulevard
San Oiego* CA 92152

Dr. Robert M. Balzer 1
University of Southern Cal.
Information Sciences Institute
4676 Admiralty Way
Marina Del Ray# CA 90291

Dr. Cordell Green 1
Kestrel Institute
1801 Paqe Miti PnAd
Palo Alto* CA 94304

Mr. Thomas E. Cheatham 1
Harvard University
Aiken Computation Laboratory

33 Oxford Street
Cambridge, MA 02138

Dr. David C. Luckham-
Stanford University
Computer Systems Laboratory
Stanford# CA 94305

DL-13

.-.:-

. .*

Or. Charles Rich
Al Laboratory
MIT (NE43-350)
545 Technology Square

Cambridge# MA 02139
0

Ms Lorraine M. Ouvalt 1

Director of Research

IIT Research Institute
199 Liberty Plaza 0
Rome* NY 13440

Dr. Elaine Kant
Carnegie-Mellon University
Computer Science Deoartment

Schenley Park
Pittsburg* PA 15213

Dr. Bernard A. Kutp 1

Chief Scientist

K AFSC/DLZ
Andrews AFS

Washington. DC 20334

Dr. Karl N. Levitt 1

SRI International
Comouter Science Laboratory

333 Ravenswood Ave... •

Menlo Park. CA 94025

Dr. Richard 4enry Brown 1
MITRE Corp.
P.O. Box 208

Bedford. MA 01730

Dr. 9rian McCune 1
Advanced information 9 Decision Systems

Suite ?24 0
201 San Antonia Circle
Mountin View, CA 94040

Mr. John Entzminger 1
ui rector

DARPA/T TO S
1410 Wilson 9tvd.
Arlington. VA 22209-2389

or. Steohen Squires 1

Oefense Advanced Projects Agency

information Processing Techniques Office 0
1430 Wilson Rlvd
Arlington, VA ?2209 D.-"-;. ~~DL-14 "' "''

.......................................

In

AS

MISSION
Of

Rome Air Development Center
R.AVC ptanz and executeA te.6each, development, teh6t and
-6etected aczqui.ition p409'wm6 in Auppoit o4 Command, ContAot

*Comma nication6 and Intettiqence (C31) activit1e,6. TechnZcat
and enginee'uing 6uippot.t wihin auea. o4 technicat competence
i,6 p'wviLded to ESP) Pkogtan 066ice,6 (P06) and other ES?)
etement6. The p~'inc2 pat technicaZ ntL&~on a~eah ate
commnication,6, etectromagneti'c guidance and covWLott, 6Wt-
veittnce oj gtound and aetozpace object6, intetLence data
cotection and handLing, in~o~'ration .6ytem technotogy,
iono.6pheuic puopagation, .6oZid .6tte .6cence,6, mictocwzve
phy~ict and etectonic 'tfiaiZLt, main&nabitity and

* cornpatibi&tt.

D TIC

Zv-. ~ . . .Z

