~AD-A148 732 JOVIRL J73 _RUTOMATED VERIFICATION SVSTE
IMPLEMENTATION PHASE(U) GENERAL RESEBECH CORP SANTA

BARBARA CA C GANNON MAR 84 GRC-CR-9-947 RADC-TR-84-33
UNCLASSIFIED F306082-79-C-8265 F/G 9/2

v : S S = :
. Sl Sl =l < s
~ === = o5
. - = = » 8
, ddaa £
. B of o - ‘3 Ilo 5z
0 h & u ..Er_v—m_._._..__ —_— m c
.. == 3 2
X ¥
. . . 5 W %
| =l = o~ g
- — €3
-. o 1l S 3
. —] 3 =
'
[
-.
.
Y
‘.
/ --.
e ..-.
.\ --
h .
., .
. -.
", ..-\ ‘
. -l- _
- .
[[N n NIRRT NNV . h et B By s RELY \.'- \f--ﬂ y MR AR Y RO n\- "y N .-
. .v.r....l\n LN T A A .-.|-4bu -.-,:\nh.“u“ A --“I TJ\ \\-\\. ,\ -.......h.. =v\f\.-.-\.. . ,..-1.-..\.1. !.-\-u.-\..

Mnxm»nanu»wymwuuu»pw- WA WN

L e

-

fe s A

H
;
]
b
§
;
:
i
|
§
:
|

gt B

i 4

AR NN RN .

SRR

.
|

et B o

o ol

. ry
-

..,D .:-\ .-- LAY

LYl SRR LA

PN RS v\

ol

AL

$-~;‘ \..“\‘3'(\ <

s e %

PR AN

a e alaat Yy

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ta ARPOAT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTARICTIVE MARKINGS
N/A

28 SECURITY CLASSIFICATION AUTHORITY
N/A

3. DISTAISUTION/AVAILABILITY OF REPORT
Approved for public release;

2n. OECLASSIFICATION/OOWNGRADING SCHEQULE
N/A

distribution unlimited.

4. PEAFOAMING ORGANIZATION AEPOAT NUMBERI(S)
CR-9-947

8. MONITORING ORGANIZATION REPORT NUMBER(S)

RADC-TR-84-33

(I applicadie)
General Research Corporation

Sa. NAME OF PEREORMING ORGANIZATION r.. OFFICE SYMBOL

7a. NAME.OF MONITORING OAGANIZATION

Rome Air Development Center

6c. ADDRESS (City. Siate end ZIP Code)

P O Box 6770
Santa Barbara CA 93111

7. ADORESS (City. Siat end ZIP Code)

Griffiss AFB NY 13441

ORGANIZATION {if applicadle)

Sa. NAME OF PUNDING/SPONSORING OFFICE SYMBOL
Rome Air Development Center COEE

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F30602-79-C-0265

Ss. ADORESS (City. Stase end ZIP Cods)
Griffiss AFB NY 13441

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT
ELEMENT NO. NO.

63278F 2532

D VERIFICATION SYSTEM - IMPLEMENTATION PHASE

13a TYPE OF AEPORT 130. TIME COVERED

Final smom _May80 vo _Sep83

16. SUPPLEMENTARY NOTATION

e T —————
14. DATE OF REPORT (Yr., Mo.. Day)

18. PAGE COUNT
March 1984 86

COSATI COOES

anoue sue.gn

JOVIAL J73.

18 SUBJECT TEAMS (Conlinus on reverss if nessssary ond identify by dioeh numiber)
Verification
Q2 Software testing

Static testing
Dynamic testing

19. ABSTRACT (Continue on meeree if necsssary and identify by beek number)

>The JOVIAL J73 Automated Verification System was developed under sponsorship by the
Rome Air Development Center (RADC) at Griffiss AFB NY, under Contract F30602-79-C-0265.

The resulting tooY? {J73AVS) is an interactive computer program that analyzes any source
code written in JOVIAL J73. The primary objective of J73AVS is to provide static and
dynamic testing assistance. To do this, J73AVS detects a variety of semantic and data
flow errors, reports execution coverage (i.e., frequency of statements, control branches,

and procedures executed by each test case), reports execution timing (in terms of CPU milli-
seconds) for procedures or certain user-designated portions of the JOVIAL J73 program,
reports execution tracing (ordering) of control branches or procedures, and keeps track of
To assist with function testing of programs,
J73AVS provides a local assertion construct which triggers an output message when it is

the test coverage history from run to run.

violated.

{See reverse)

20 OISTRISUTION/AVAILABILITY OF ABSTRACTY

uncLassitiso/unuinnTeo 0 same as mer. O otic usans O

21. ASSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

220 NAME OF AESPONSIBLE INDIVIOUAL
Frank S. LaMonica
DD FORM 1473, 83 APR

220 TELEPHONE NUMBER
(Ineinde Area Code)
(315) 330-3977

22¢. OPPICE SYMBOL
RADC (COEE)

EDITION OF 1 JAN 73 IS OBSOLETE. SIF1ED

SECURITY CLASSIFICATION OF THIS PAGE

TR T AT AL 2l

UNCLASSIFIED
SECUMITY CLASSIFICATION OF TMiS PAGE

+J73AVS also provides a large number of source analysis reports, ranging from symbol cross
references and descriptions of symbol usages to procedure calling trees and descriptions
of all procedures being analyzed. These reports are“Geryjuseful for original code
development, rehosting "foreign'¥ code, debugging and testing, code enhancement, and code
maintenance. - - y o o

, e e P S
This repottb escribeg the features of J73AVS in a brief manner, the history of the project,
documents and technical papers resulting from the project, and specific details on how to
obtain the J73AVS software and selected project reports._ Also included are implications on
further research in software engineering as it pertains yo J73AVS.

-~
» ' - . / 7 /,,’\.,

"

Vel

[y
-

DS P

- e Ty
I’l""t' ¢
s

s o & ¢
. 4":"

‘y

< L)
LA A
AR

I i) lag)
vf'r'*‘.'”‘r 27, Age ¥ v Td i

T
.l

e
74

o,
)
TN S84

%

‘.AA
A
A

)
R

s
Al

v
xN

X -__\\.-t\~\» T T Tt A L S e P e e e i el
*, PR A A P .. A S VT AT e SR

h SR X - -._'.','...' ".'-':\._‘. AT \1'.\- _.J\. AR .'\ R '(._-_-"_." - '.,.‘i'.'h‘. ‘-“'j\.:\::.: LS
-51.. .S .‘.. ‘.'.!.. "\:h'v- N \}'."\'.\; v "\".’-‘\‘ . -"..f...'\f\-' ‘.i\.l.' et - :’:\l .‘,\

T VO N AT APC AN A A WA S LA S ARENRN, (08 s1e X

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

. -
N Y Y VY I I T T W NI TN E TV R eT T WY T VT T T ——"

A v B O s v T R OFe T ST e om

PACIAE St A A et ity A s Jiuh il it et s 1ot gt fa Ik AN IF R ALY LAl RRARA ANk A

“ 3 o
o
WY o
\:‘:-. ok
o R
b
o e
Y CONTENTS A
\': e
: ﬁ:’: ':"::
e o
W SECTION PAGE e
L) %E"
o, Jd (W
& "3 »
o R
o 1 INTRODUCTION 1 A
*2
X 2 OVERVIEW OF CAPABILITIES 3 f -
\ 2.1 J73AVS Operation 3 v
s 2.2 Role in the Software Development Cycle 5 R
L S\
4 L
~ 51{ 3 PROJECT HISTORY 11 SRRt
j' 3.1 Project Goals 11 el
3.2 Project Deliverables 11 Lt
- 3.3 Project Activities 12 '.!""-'.
-.'.,'; 3.4 Project Administration 13 o
> v
o 4 J73AVS AVAILABILITY 15 R
o :._;\.‘
oy 5 RELATED DOCUMENTS 19 2
’ ; 6 IMPLICATIONS FOR FURTHER RESEARCH 31 RN
-7, 6.1 Testing Embedded Software 31 o
-3 6.2 Enhancements for lmproving Software Retesting 33 o ‘
e 6.3 Aids for Software Measurement and Project Management 35 _,,-.::;
) APPENDIX
> A TECHNICAL PAPERS en
a7 B TERMS AND ABBREVIATIONS R
3 c J73AVS PROCESSING AND REPORTING COMMANDS ‘g:-l_::
. o
S = ...

NS
f

R
"‘ .'

", 3

" D ASES
\ ton 0 f R
o 1 Om\« .n\.\‘w
N . T y
! . ‘: .) \-"“ .
e] ety N S
o il ~
T Lvag e~ A
= [Tanil e o wi

‘..'. val 1 f'rl- oo ‘:‘\:'.‘
% Dist Speciay 5\ Ry
[)

o d g :\J'~ ‘
2
o~ -

X! t e

‘-4

.t :

-)

- . e 2% : LN I ‘W -y w LA d . MRS Tl Nl Tl R R LY L S N Gl T T -“s .'
:(’:i:jw};ﬁ':_f\ '.\F{'f:':‘;s "-._’.\"5';‘}.';&}:"3 . ‘-""-}‘.'-‘;-.f:si-\f.s"& :‘; “ ‘_-:-,5“ "C_:t: S : '
; n)\ a1 WX -’. X ..'s 'f-.‘ 't nlﬁ‘oiz '« ('! \ L% ““‘ ‘t‘ Y '\“4 ' ' . .l .?“ '. !

ES

FIGURES

PAGE

[\-{' 2 . l
oy 2,2
2.3

RALDEAN

Ay

NO,

Overview of J73AVS
J73AVS Interaction with User
Role of J73AVS in the Software Development Cycle

TABLES

PAGE

A

DRRA

Y

4.1
4.2

DR . VYNNI MY
AR - CEORRARRE X

@
!

P AN

DRSNS

A..-:.“ e .".'-.

O >

A

.,,,
70,22,

e @

-

J73AVS VAX Installation at Wright-Patterson
J73AVS IBM-Equivalent Installation at Wright-Patterson

i1ii

16
17

Pov v s e

N AN LA AT COOAE STt SR DL R A Sk, ks S s S I Y
z_s

0
R
N 1 INTRODUCTION
s The JOVIAL J73 Automated Verification System was developed under
,;z sponsorship by the Rome Air Development Center (RADC) at Griffiss Air Force
2 Base, NY, under Contract F30602-79-C-0265.

%

: - The resulting tool, J73AVS, is an interactive computer program that

:E{ analyzes any source code written in JOVIAL J73. The primary objective of
fﬂ? J73AVS is to provide static and dynamic testing assistance. To do this,

izj J73AVS detects a variety of semantic and data flow errors, reports execution
;.' coverage (i.e,, frequency of statements, control branches, and procedures

;g executed by each test case), reports execution timing (in terms of CPU
;%f milliseconds) for procedures or certain user-designated portions of the JOVIAL
(3: J73 program, reports execution tracing (ordering) of control branches or

> procedures, and keeps track of the test coverage history from run to run. To
fi? assist with functional testing of programs, J73AVS provides a local assertion
:j; construct which triggers an output message when it is violated.

\j.
. J73AVS also provides a large number of source analysis reports, ranging
'xj from symbol cross references and descriptions of symbol usages to procedure

Ei calling trees and descriptions of all procedures being analyzed. These
{:; reports are very useful for original code development, rehosting "foreign"
f) code, debugging and testing, code enhancement, and code maintenance.

j: J73AVS features and its ease of operation are described more fully in

i: Sec. 2. Since the contract has had two major phases (test tool study and tool
; implementation), the project history is covered in Sec. 3. J73AVS avail-

}b ability and installation configuration are discussed in Sec. 4. Each deliver-
‘ﬂi able document is briefly described in Sec. 5 along with information concerning
x: how to obtain each report.

i;

XA BARAONRE I IRAAXAAS

Following the overview of J73AVS capabilities in Sec. 2 is a discussion
in Sec, 6 of possible future research regarding J73AVS. Three conference
papers resulted from the development of J73AVS. These are reprinted in

‘. ‘._ Wiy \._1.3\'- \"s.‘s:‘i-s J1\$

}'-. N ‘. \ \"’ I" "&'P

4

TR T o BT

®
v ol
b, pat
. =
¢ W
3 £ e u
’ £ 0
1] .m T m..-
v, o
4 L]
’. d w O
; 0 v &
X n A
! > v
y 5 g
4 B O >
. O o
e w o
¢ s o
X , 8 2
,Q S
" > ®
o
° QM -t 1]
. ~ & &
- .m m
4 o ©
v v o, B
‘e c H 0
.. E et
d E § % O
3 e > a
g © .n.. " .wn.
: w © 0 o
; E§ - S §
’ o Do B
y o -~ v a
. 0 o <
g - > 0
. > ol & [~
[1) L] i
TER
! - < 0
g c O o >
M &~ Lol
g v & = o
. P=2r=] o o
' w0 ¥
' w o o o
y g8 2 =
/ bW M - ®
I 1] [VI -] e
. ¢ 80 3
y O @ ®
g . £ o
. < I
' X < 0 v
' R -]
J Y O~ £ W
] g > ©§
LY m 13,
3 =% 9
o a s« 0 A
Pl < @ (3] /]
s
7’
o
3 : LI St S
-. 4 o / -\\\\. -..Qn-n.-. v...-\..--...
X -v-ﬁ.-u.w.-hﬁ. ™, -4.-....'\{.......\{.-.\i\l\l.”. r.\. ‘, .-\.. -v -. e S e - .f..-.-.- e ..- VoL -u\.n.
- \\:q-.' \\-\-w\ . \-‘ﬂﬂn‘h\-\ i.:.d ,..II-A-.. [y] MRRA AR ¢

1]

LR I

—v“ﬂ

] oY
B

' e

" »
A

s
4 5
oo

-
Id ~)

. .) ..a

S

5 X

AU
c.‘

COC I T
PR

”
3

. B
t.l [
.
‘
- i

S0
‘v‘", 4

1 ‘.l_

P ——— prap— T
P -'. 1"'(":'\". 1"4 A% A
DOOARP T AN

* *‘l‘l
XX

..."
) l“.

LA

(z‘ﬁ_

50

[]
st s’
de ' A

’

[MC™ (@ s
fatal

'y bn'

LD

€
Lty

t
'y

e

.

CRN NN

(] v
. I
?

)
»

@
@

Ny

>
*
o
>
"y
-

EASAREAR AR LG LA TR, VoW YV LA NGRS A A et Ay AL AL I AR AR AR E A Y (R

2 OVERVIEW OF CAPABILITIES

J73AVS can operate in either batch or interactive mode. The user

directs J73AVS through a command language; each major processing activity has
a command keyword associated with it and command parameters are used to
specify processing or reporting options. The type of processing and its
general sequence are shown in Fig. 2.1. While the flowchart in Fig. 2.1 shows
a number of processing activities, J73AVS performs a number of them collec-
tively when a user gives a J73AVS command. Prompts are output by J73AVS if
commands are incorrect, out of order, or prerequisite information is needed.

J73AVS process and reporting commands are given in App. C.

2.1 J73AVS OPERATION

One or more JOVIAL J73 source modules (compilation units) or J73 COPY
texts are supplied to J73AVS as input. There are no restrictions on the
length of modules. Up to 250 modules can be stored on the J73AVS database.
The source text must be in the same form as if it were being input to the
JOVIAL J73 compiler. Job control setups are provided in the User's Manual
(Appendix B for the IBM and in Appendix C for the VAX).

The source text for an entire program need not be supplied to J73AVS for
static and data flow processing and for procuring automated reports. Some
modules may be supplied as stubs (e.g., module heading, possibly some logical
assertions describing the function, and a return) or not at all. J73AVS
builds a database of module interface information, which can be saved and
re-used from run-to-run during program development or testing. Therefore,
J73AVS can be used to incrementally build and test software. Updated modules
automatically replace old ones on the J73AVS database. This database is
highly compressed, even though it contains a wealth of information about the
user's source code. The saved database is approximately three times the size

of the user's source code file,

Execution analysis by J73AVS requires instrumenting the source text,
which J73AVS performs automatically when the user requests it. Anywhere from

one J73 procedure to all the source modules available on the database can be

o 4 ‘!l;'

| W 2

AR hLMER LY MLA A N A 2 e A At I Rt At

Branch sequences
and test history

JOVIAL
SOURCE

]

SOURCE TEXT
ANALYSIS,
STRUCTURAL
ANALYSIS

)

STATIC
ANALYSIS
DATA FLOW
ANALYSIS

One or more modules of JOVIAL J73 source code
is input for processing and analysis. The
source code may contain J73AVS executable
assertions,

AN-59489

J73AVS generates a directed graph of the
control structure. All syntax, semantics,

and structural information is stored on

a database. Additional or changes to the source
code causes an existing database to be updated.

Possible errors, warnings, and dangerous
programming practices are reported.

are reported.

RETESTING
ASSISTANCE

|

CORRECT
SOURCE

YES

ERRORS
FOUND
?

(2 n e
-,

.l“l.l

A

-

[
“v
~
-~
(N

AN
\
L1

e

!

Reports for pregram
documentation, debugging,
maintenance, testing and
retesting are produced.

PROGRAM ANALYSIS
REPORTING

\

STRUCTURAL &
ASSERTION
INSTRUMENTATION

)

TEST EXECUTION,
DYNAMIC DATA
COLLECTION

]

EXECUTION
ANALYSIS

!

TEST GOALS
ACHIEVED
?

Software probes are automatically inserted
for dynamic analysis of execution coverage,
and tracing. Timing probes and assertions
are translated into executable code.

Program execution produces a data collection
audit file for analysis by J73AVS. Assertion
violations and tracing output appear
interspersed with normal program output.

Execution coverage is reported by
testcase and by set of testcases. Execution
timing is reported once for the entire run.

INSTALL PRosamj

Figure 2.1,

Overview of J73AVS

’
.:u'.:d'uixfxisf\f\’\f\“\ﬂ\i&i\’ui*xfs‘ .
ROAC A AL A ISR ¥t R A I D
SRR ._,__:}._, '~ n,\ ~~ (% A *_;\ e J\'.‘\ &. N _;-
Yoot .A-'.h?’.h“i\.p\.‘ib;‘.p\.n"‘.a\;. 2%) N’.u\i

1

. r N A
o' e e
T . . A

alag]

2
.
LI

NN O
4.

“n {l "A '.l

-

a

a_a

LR I B

A

-«
Ca
'
'
-
¢
L4
L4

. iy
R

L

9.5,
l'_.

{
N

[S &

RN

o7,

’ ®
l.l..l.l.

\ ~'$.

I,

e @ e @

N W]

‘l: 'l’ v‘. .‘_ .

instrumented. J73AVS outputs the instrumented source as a complete module,
ready for input to a JOVIAL J73 compiler. To obtain J73AVS output for

assertion violations, timing, coverage, or tracing, the program (with some or

"y
B

all modules instrumented) is executed with test data supplied by the user.
Programs instrumented for tracing or assertions will produce short messages
from J73AVS, interspersed with the program's own output, during execution.
For coverage and timing analysis, program execution in the J73AVS environment
differs from normal program execution in the following ways: (1) one or more
modules have been instrumented before compilation, (2) a small J73AVS data
collection routine is loaded before execution, and (3) a J73AVS audit file is
written during execution. This file is used by J73AVS to produce reports for
coverage and timing analysis, The J73AVS database is not used during the
program's execution. These major functions and data files are illustrated in

Fig. 2.2.

Although J73AVS exists as a single program, it is best considered as a
collection of tools that interact with the user. Some of the facilities, such

as automated documentation, static error reporting, and instrumentation are

completely automated and require only that the user initiate the tasks. Other

K

processes, such as execution-time data collection or retesting assistance,

require more information. The user must provide test data and select the test

. F T_*,

targets.

J73AVS provides detailed information about the static and execution-time
behavior of the program. The user directs the processing performed by J73AVS,

Lyt G 86N W

analyzes the output produced by J73AVS, and determines subsequent action.

2.2 ROLE IN THE SOFTWARE DEVELOPMENT CYCLE

The role of J73AVS in the software development cycle is to provide
automated assistance wherever possible during program development: coding,
debugging, testing, maintenance, and retesting. J73AVS users play an active
part in the cycle, as shown in Fig. 2.3, This figure breaks up the develop-
ment cycle and shows the flow of control and information between J73AVS and

the user.

.
e e e PO - el “ . . - ()
T LR e LML W T St Y e e e W W - “ (v -
e D L MR AR S R, AR N
e I e N TRt i SSRARSY
WWhEV T IRy .-'\.u. 9, L N), AN e h

RS R SO G DA Nk S S0 A0

ROGRAM -~ :
SOURCE DATA| 32

TEXT BASE +)

5 .

0°)

L '

/ o oy ;

‘ .:

W“:k?oa .

BATCH JOVIAL ::

: REPORTS J73 ~

o COMPILER 1

o]

Y :
. N
&

PROGRAM
REPORTS

PROGRAM
EXECUTION

Figure 2.,2. J73AVS Interaction with User

Using Fig. 2.3 as a basis, a typical sequence of J73AVS-supported

operations is:

1. JOVIAL J73 source text, perhaps with assertions, is read by J73AVS

as one or more compilable modules.

2, J73AVS produces program analysis reports showing control struc-
ture, symbol usage, calling hierarchy, etc., as well as a static

analysis report showing errors and dangerous programming prac-

tices.
; 3. Using the reports as a guide, the source modules are changed or
(YRS '. -
AR new modules are added to the program.
.,
ﬁf:: 4. J73AVS reports the interaction of the new or changed modules with
%;}j the rest of the program. This information, in turn, may show the
— need to modify other modules.
Bl
o
R 6
o

*natpr,.v, B h A L, Ny v S M
-_"~.'..-' ."’ .f;%'\) .-' B \V_ ..‘-) ‘\')-\,-‘ o * AR ;\('*‘ ~ NN TS
REAC AR TCL IO N LIS IS DA ~ AP E S N "N
"‘h " ...- S e '.‘. --'. .\‘.\'.‘,;'\.: " X “\"‘\’. . N -‘\\

- ~ R MR
VL SV SAR S CR O O ARG TN

SOFTWARE LIFE-CYCLE PHASES

PROGRAM DEVELOPMENT! TESTING/
MAINTENANCE DEBUGGING RETESTING

PR "l."l".t."l' [N *

v
T I

BUILD MODIFY GENERATE
MODULES MODULES TEST CASES

i

MANUAL

r
1

T

.
LI IR

o
a a
'.l " >

J73AVS FACILITIES

IDENTIFY OBTAIN ANALYZE PROVIDE

gsgg:%;E PROGRAM PERFORMANCE || nsTRUMENT| [TEST RETESTING
INTERACTION AND ASSERTION EXECUTION ASSISTANCE
RESULTS

AUTOMATED

Figure 2.3. Role of J73AVS in the Software Development Cycle

For debugging, the program is instrumented by J73AVS and executed
with an initial test case supplied by the user.

Assertion messages, variable and module tracing, and execution

timing reports can be used for debugging.

Using the J73AVS reports, the user chooses to create more test

data or instrument other modules.

For testing, the same cycle of instrumentation and execution is

repeated, but for a different goal: rather than detecting and
locating errors, testing aims to demonstrate that the entire

program has been exercised to some degree. The J73AVS execution

analysis reports show the thoroughness of execution coverage.

The user evaluates execution coverage reports, the program's own

execution results, and the program specification to determine if

«

testing is complete.

PO
44,

J73AVS provides branch sequence information to retest targets

chosen by the user. A test history of execution coverage assists

.
L Y "
s, 0, 1, 88 2, 0 "

the user in choosing targets for retesting.

RTRVRVEM
PAFRACIN

Y

]

L AR

ﬁ?lf

LR

~
8)
~

LU B A I R DA P DA 4 & AN NS TRl N ST S G L O ITAE A G i

s 4 8 0
ol
. P

Program Development and Maintenance

Executable assertions provide a means for a programmer to specify
expected behavior. Logical condition assertions can be used for reporting
execution-time exceptions, stress testing, and manual or automated test data
generation. When assertions are left as comments in the source code they can

be used as inline documentation of the program's specifications.

To assist with reliable system development and maintenance, J73AVS
provides substantial program analysis reporting on structural hierarchy,
symbol usage, invocations, certain J73 constructs, and system characteristics.

The user has control over obtaining high- or low-level information through

the tool's command language.

Debugging
Normal compilation using JOVIAL J73 compilers can detect many syntax and

semantic errors. Other errors, such as uninitialized variables, possible
intfinite loops, unreachable code, certain improper constructs, and dangerous
coding practices (like transferring into CASE or IF statements) will be
repor-ed by J73AVS. The user can specify the degree of analysis to the error,

warnin;', or message level.

Debugging is also supported by assertion exceptions, variable and module
execution tracing, and execution timing reports. When the program's execution
behavior deviates from the acceptable logical behavior as specified by the
assertions, it is immediately reported in the program's output. The user-
embedded assertions have no effect on program control flow until they are
violated; at that time the violation is reported with the source statement

number of the assertion,

Testing
The primary purpose of program coverage analysis is to provide a measure

of the level of testing. This measuring technique uses the

program's control structure as a guide. Structure-based testing means that

the program's control structures are analyzed for execution behavior; that is,

-'-.._! \' .".-." L%l -.'--"1 - T m" P‘x'.'.f L] ..‘.-." a -’\. -".'-..' A | R L R R Ty LW AR RS
SN -.‘:'.:.-{:-.j',i":- sl A SO0 ,\‘.‘:ﬁ-:.}'_a::'-‘:'.""-’\::‘-\j‘\“h) \Q'\?{';'-
A P U R N R R A IS TR n.u' LY L%

R nmm;ﬁm&&im iy

,

e

“~

AN AR At A AU R e A

whether the structures are exercised and in what order. Structure-based
testing can uncover errors due to untested branches or improper sequences of
branches. J73AVS provides program unit or branch tracing and analyzes
execution coverage of program units, branches, and statements. Further,
J73AVS assembles the timing information from program unit tracing and user-

directed timing probes into an execution timing report.

Retesting Assistance

Retesting software is performed when analysis shows that prior testing
is inadequate (insufficient branch coverage, not all functions demonstrated,
etc.) or when program changes have taken place. The proper approach to take
in retesting 1s highly dependent upon the characteristics of the program being
tested as well as the measures being used to evaluate testing completeness.
Section 2 of the User's Manual provides a methodology for testing and re-

testing software for the purpose of improving structural-testing completeness.

To determine the sequences of branches which lead to an untested branch
or statement, the user can request that the "reaching set” be computed between
two specified statements (or from the program unit's entry). After the flow
of control is identified by J73AVS, the user can backtrack through the program
to the actual test data, New test data can be created by using J73AVS module
interaction, invocation, and execution coverage reports. Unfortunately,
automatic test data generators which use symbolic execution are not yet
general enough, easy to use, or reliable. Therefore, J73AVS has no test data
generation capability at this time.

The testing history maintained by J73AVS is useful in attaining coverage
testing goals and for determining targets for retesting. Program unit and
coverage information is saved in a concise way for each test case. The
results of subsequent execution runs can be added, providing a cumulative

report of all tests.

A NGO ¢ ANCICANE NGt ACHCATINACAL N OO SLME LA EWE COLEAL L G ERTLEDERELLE M W M T “ava

3 PROJECT HISTORY N

3.1 PROJECT GOALS

The J73AVS contract was awarded in September 1979 during the period of
final JOVIAL J73 language definition.l’2 The primary goals of the project
were to identify useful automated testing techniques for the new dialect of
JOVIAL and to develop an automated tool that incorporated the best and most
feasible of the identified techniques. The intent was to make such a tool
available to Air Force contractors shortly after the JOVIAL J73 compilers
became available. Therefore, the project was in two parts: (1) a six-month
study phase and (2) a seventeen-month implementation phase (separhted by a
short project review period).

3.2 PROJECT DELIVERABLES s
The basic contract called for delivery of J73AVS, written in JOVIAL J73, |
on two computers: the ITEL AS/5-3 (0S/MVS) at the Aeronautical Systems
Division Computer Center (ASD/AD) at Wright-Patterson Air Base and the DEC20
(TOPS20) at RADC. Modifications to the contract resulted in one delivery of
J73AVS written in structured FORTRAN first, then in JOVIAL J73, on the Amdahl
470 (TSO, 0S/MVS) at ASD/AD, a partial delivery on the DEC20 at RADC, and a
delivery in structured FORTRAN on the VAX 11/780 (VMS) at ASD/AD. T

Two sets of J73AVS training classes were given at ASD/AD: one for the :
Amdah13 (the IBM 370-equivalent version of J73AVS) and one for the VAX (the
VAX version of J73AVS). Both fully delivered versions of J73AVS underwent]
formal acceptance testing. The VAX version included a six-month maintenance

period. Both versions of J73AVS are functionally equivalent.

lMIL-STD-1589A, Military Standard JOVIAL J73, March 15, 1979,
2MIL-STD-1589B, Military Standard JOVIAL J73, June 6, 1980.

3The Amdahl computer at ASD was later replaced by an NAS 7000 (another IBM
370-equivalent computer).

i

‘\'\.'\\‘\‘\(.%
LA XY
Ay o “

11

-
o .,
-

\
LIRS
a

KRN 221G A0 A6 R0 NS

3.3 PROJECT ACTIVITIES
The primary project activities can be highlighted as follows:

1.7.%"%,."

¢
&
"
c
5
E

. Sept. 1979 - Study phase began.

. Jan. 1980 - Preliminary J73AVS design briefing given at the
JOVIAL User's Group. Solicited input on desir-~
able J73AVS capabilities.

o March 1980 - Study phase teportsl delivered:

1. Functional Description
2. System/Subsystem Specification
3. Final Report

° May 1980 = Implementation phase began.

® July 1980 - Gave status briefing at the JOVIAL User's Group.
Solicited input on what J73AVS analysis is
desired for the J73 DEFINE construct and how J73
programmers plan to handle input and output.

° August 1980 - Contract modified to add J73AVS analysis of
MIL-STD-1589B.

° October 1981 - Test plan delivered for the Amdahl host.

° Nov. 1981 ~ Formal acceptance testing and training course
given on the Amdahl at ASD/ADOL. User's Manual
delivered.

° June 1982 - Contract was modified to translate J73AVS from

‘9 structured FORTRAN to JOVIAL J73 on the Amdahl

i

S and complete a data flow analysis capability.
h._‘~._‘.

e ° Sept., 1982 - Contract modified to add structured FORTRAN

N

e version of J73AVS on the VAX 11/780, along with
:!) six months of maintenance.

i

E:::: 1 ann reports are listed in Sec. 5.

PN

.

b

>..‘-::\'

L 12

.::\.::-.

e

]

S

:,-:' - ,-_‘.. J.-n..\: ‘-.,:-.,_ S .:.:_..:_-_.‘:.. NI AT T T ST e e e e d. SN N X
R T e T S N &
RS CR TR O AN g.{._(‘ LR PUICA A I A M DS RTINAS AIS IS IV SR R Oy '-'. '.\"_\ Ly -..' q.’\-\-u\\\-‘:"-ﬂ.l' .\'\F\- 2ty

vy ey -y Ty - o v v_ga« pat ., - v o -, .
JERNCANE AN A LA LR Y AR LONONL L PL GO A CU S CRA R LR RS CRLE SR SRR AL RN AT T AT TR e NN L LR N,

o
<3
’ -f!-
; 4
. Rt
o .
. ° Nov. 1982 ~ Formal acceptance testing on the J73 Amdahl
{1 version of J73AVS. DEC20 version partially .
o installed. N
‘- :
Eﬂ-) Dec. 1982 - Program Specification and Program Maintenance ;
- manuals delivered. Final Amdahl J73AVS User's v
v
s Manual delivered. f
N .
= ° March 1983 - VAX J73AVS installation completed. Acceptance 4
{ testing and training performed at ASD/AD. New ;'
[; User's Manuals issued containing both IBM- .
AR equivalent and VAX operating instructions for 4
A 9
i; ® May 1983 = VAX J73AVS Program Maintenance Manual delivered. 3
-1 Y
- ° Sept. 1983 - End of contract. Final VAX and Amdahl versions i
Eﬁ delivered to ASD/ADOL. Final Report delivered. N
3y &
ﬁx‘ Final Program Specification delivered. $=
oy :
yo- 3.4 PROJECT ADMINISTRATION %
fii The contract has been sponsored and administered by RADC, with project o
L5 %
,:{ monitoring performed by Frank S. LaMonica. VAX rehosting and maintenance were ~
K. funded by the Embedded Computer Standardization Program Office (ASD/AXS). >}
w, -
N ;
o ,
Y >
= »
-
L3 \
o ';. \S
:'. :q,
- S
- .l.
. K
..'_ .‘
@
'ﬂ:

P . . % 4
‘.A '.A.,l L..L -.u‘ LA

Y,

2l

LAl
g

4 J73AVS AVAILABILITY

J73AVS is available in source or binary object form from the Language
Control Facility (LCF) at Wright-Patterson Air Force Base. The J73AVS User's
Manual, Program Maintenance Manual (both described in Section 5), and a
version description document are also available through the LCF, J73AVS

software is distributed on 9-track, 1600 bits-per-inch magnetic tape. The LCF
point of contact is:

Georgeanne Chitwood
ASD/ADOL

WPAFB, Ohio 45433
513-255-4472
AV785-4472

The LCF can provide distribution tapes for either the VAX or IBM
370-equivalent versions of J73AVS. A summary of each installation configura-
tion is provided in Table 4.1 for the VAX and Table 4.2 for the IBM.

15

Py LR

o~

s cenel 4

)

4 &

3
Q!
!

1% a2 0’2" "2")

TABLE 4,1
J73AVS VAX INSTALLATION AT WRIGHT-PATTERSON

Date September 27, 1983

Version VF092783

Computer VAX 11/780

Operating System VMS 3.2

Source Language JTRAN (Structured FORTRAN)
Preprocessor JTRAN (generates ANSI FORTRAN-66)
Compiler VAX-11 FORTRAN V3,3-45
Non-Standard Features None

Configuration ANSTI FORTRAN 66
Internal J73AVS assertions disabled

Memory Requirements Depends on host VAX system parameters.
A host with a minimum of IMB of core is
recommended for reasonable performance.

Executable Task Image Size J73AVS .EXE needs approximately 800
disk blocks

O v L) of
. PP RIS L P L N
*a®,¥a"at, 4

)
L4
L s
L
z
4
’4
s
A
’
.
L
’l
2

%

'-:, .
'. - 4
N E.'_

I‘.‘ .)

o

- TABLE 4.2 o

-P_. e

. J73AVS IBM-EQUIVALENT INSTALLATION AT WRIGHT-PATTERSON .

v >4
-ji ~
-~ S
3 s
< N
‘. .'

- ate September 27, 1983

-::' Version IBMJ092783 ::
Ny
- Computer NAS 7000 (IBM 370 equivalent) -:'-
2 >

o Operating System Multiple Virtual System (MVS) 3.8

A v
< Source Language MIL-STD 15898 JOVIAL/J73 4
e (utility routines in FORTRAN and
~ assembler) i,
=
. Preprocesgsor None =

Compilers JOVIAL/J73 Version R0201-03.000 (040183) 2
" FORTRAN H Extended .

o IBM Assembler o

" o

L Non-Standard Features FORTRAN 1/0 -

M BAL PDS—member access system routines A
S (provided by SofTech, Inc.)
> JOVIAL J73 PDS-member access utilities 3
% BAL CPU-clock access routines NS
- \l.

Configuration Batch, Interactive ’
Non-overlayed X
JOVIAL/J73 code is not optimized P

Core Memory Requirements: 954K Bytes (non-overlayed, non-optimized) '.j:

. Executable Load Module: A790684.J73AVS . LOADMOD(J7 3AVS) =
- e
N N
o N
-

. 5
¢ X
. :.;
-' .:'
: 2
.‘ .\
f -
4
o

< 17

b)

A ¢
q
! RO fV'J' A PG A N
. SO AP AN SRR LKLY
» "«.‘ ~,;.- ":‘., - ":‘ \'~;{ .: 5": '.::;ﬁ'.\' X :' y

‘_H‘ . A _ A -‘__ ALY ~ L. . SCAR MBS LN ., - TN RN St AL N
RN .
A .
W'Y E
'@
'Cati)
N .
A :
."\'.1 -
I i
o~ 5 RELATED DOCUMENTS -

This section contains descriptive information on each documentation item

g:‘ that was delivered under the contract. The format for this information is the

-:c report title, abstract or purpose of the document, followed by the report's N
':ﬁ table of contents. For the Training Course workbook, the course agenda is E
?i} provided as a description, =

- -
i - ‘I L
N .
r..-‘l »
by .
L} . E
; ¢
" !
-~ e *
ot
“~
[)
-
o "
e
L
-
.\ \
1
W . ™
AN
b v
" . »
o :
'l. ‘-"' p
', b
4 ‘.-'.
\ L}
o Iy
o g
- .
S [%
-'_A Ry
.- .
Fa .
:::.:' :-
;'--.~. L)
PP R
- :
. - ..
e ,
~ . '
Yy .
~ .
K !
’ R
“» ", :
-
-.' . +
o 5
-:. - \
- 19 .
.
-
F

‘e

L \ . P ST 4 LI I D £ L S I R |
T SN AT AL T A a2 Ak S

1 . -.‘q ..‘ - ".\...-ﬂ -, ~l ,.Q - .- .' o~ ‘~’\ Q“ \‘ L] “ .' ~.. \wv
M SATALA AS AR REN AOR SUEaN t .d:*\fﬁ’\f\'n ’
AR e AT 'v‘.. < '-".‘. ¥ ‘-\ “'.\& ﬁ \.. ‘(."ﬂ
. et 26 CR N0y, Che

el
TP MW N B,

¢
]

\,.\ SAASAREALSAG LELIEN LN CLEGEA U SNt B AR AT AP et A iel AL AN S Ot AR RIS)
s .
(Y g
SN 0
@
-\--\
N
N
"::{ 1. Title: JOVIAL J73 Automated Verification System Functional Descrip-
[tion
“‘ Report No.: CR-1-947
N Authors: C. Gannon, N.B. Brooks s
.{"_: Date: March 1980 :
o .~
N Abstract: N
\J
D This report describes the functions of an Automated Verification System g
AR (AVS) for the JOVIAL J73 computer language, from the point of view of the y
N user, The purpose of the AVS is to improve the reliability and maintain- p
L ability of JOVIAL J73 software. The internal operations of the AVS are -
AN described in another report, the System/Subsystem Specification,
’; . Table of Contents: .
25;: CONTENTS B
e SECTION PAGE X
2;:;‘: ABSTRACT i .
~p 1 GENERAL 1-1
'y 1.1 Purpose of the Functional Description 1-1
n 1.2 Project References 1-1 K
= 1.3 Terms and Abbreviations 1-2 .
~- 2 SYSTEM SUMMARY 2-1 X
N 2.1 Background 2-1
A 2,2 Objectives 2-4
{ 2.3 Existing Methods and Procedures 2-5
NN 2.4 Proposed Methods and Procedures 2-9 h
.,-:.: 3 DETAILED CHARACTERISTICS 3-1 .
o 3.1 Specific Performance Requirements 3-1 .
" 3.2 System Functions 3-12
N 3.3 Inputs - Qutputs 3-60
3.4 Data Characteristics 3-63
4 ENVIRONMENT 4-1
4.1 Equipment Environment 4-1
4,2 Support Software Environment 4-1
5 COST FACTORS 5-1
6 SYSTEM DEVELOPMENT PLAN 6-1)
{ 2 6.1 Introduction 6-1
NS 6.2 Implementation Requirements 6-1 :
. 6.3 Target Systems 6-5 .
e 6.4 Acceptance Testing 6-8 :
T 6.5 Maintenance Service 6-10 y
o 6.6 Software Maintainability 6-11 K
K
:::: '
- '.- b
2!
[]
o)
Lo
2 20
5
5
@_
s o p e p e oo A PRt p A Pt e e e g e :
% B T s I LY AV gy s TN A S A AR r L L YRRl
ST, Nl . '.' W el ,,.\ .t AR AT \:.. AR

- i) v » 0

A A D A L LA AN AR AR A A R

-

Ce " »

<

o

?ﬁf‘ 2. Title: JOVIAL J73 Automated Verification System System/Subsystem g
i Specification '
_, Report No: CR-2-947 -
iﬂit Authors: C. Gannon, N.B. Brooks 'Q
g Date: March 1980

}:%T Abstract:

U This report defines the software functions, database, and system

K4
4

.
NN

interface for the J73 Automated Verification System. A summary of the

"o system's requirements and capabilities 1is provided as background. The
:xi software functions are described according to each independent processor
,Qq segment. The database is described in terms of data structures, management of
In the database, and usage by each processor segment.
\ - Table of Contents:
b CONTENTS <
;::: SECTION ~ PAGE :
o ABSTRACT i 3
e 1 GENERAL 1-1
1.1 Purpose of the System/Subsystem Specification 1-1
‘s 1.2 Project References 1-1 .
g 1.3 Terms and Abbreviations 1-8 '
S 2 SUMMARY OF REQUIREMENTS 2-1 .
oo 2.1 J73AVS Implementation 2-2 .
T 2.2 System/Subsystem Functions 2~7
(2.3 Flexibility 2-10
e 3 ENVIRONMENT 3-1 R
T 3.1 Equipment Environment 3-1 -
i 3.2 Support Software Environment 3-1
N 3.3 Interfaces 3-3 |
4 DESIGN DETAILS 4-1 :
) 4,1 General Operating Instructions 4-1
o 4,2 System Logical Flow 4-1
'ﬁf. 4,3 System Data 4~9
ol 4.4 Program Description 4-12
ﬂdt
o
®
g) ' '
;:;'J‘a
o
®
s: :
§ 21 .
e '
o
T,
'y . e e et ATt Y WY L e T e G e T R o R SN T N A LN T LN TS T .
L e N A
e s O G A g Al)

KA

. W

147
A x
SRS -

)
.

.
(4

.‘...

SALBG

3

—

CLEARPASATISN

1, .l' -‘

.- (LR N RS
' ' R
[e . .

.\%S‘\.‘\ *

.
e .-
.

l" a J" “"' . J

W EAAONOO Y P

Title: JOVIAL J73 Automated Verification System Final Report: Study
Phase

Report : CR-3-947
Author: C. Gannon
Date: March 1980
Abstract:

This report is primarily a review of the state-of-the-art of software
testing and verification with emphasis on techniques applicable to JOVIAL J73
programs. Since the project concerns the development of computer-based tool,
the need for such a tool, the capabilities for the tool, and the high-level
design of the tool are also described. Future capabilities for the tool are
identified.

This report is also available from the National Technical Information
Service (NTIS), 5285 Port Royal Road, Springfield, Virginia, 22151. Reference
RADC-TR-80-261, accession number A091-190.

Table of Contents:

CONTENTS
SECTION

ABSTRACT
1 INTRODUCTION
2 THE NEED FOR J73AVS

2.1 Characteristics of J73 Programs

2.2 Characteristics of Application Programs
2.3 Testing Measures
STUDY OF AUTOMATED TOOLS AND TECHNIQUES
3.1 General Background
3.2 Existing Methods and Procedures
3.3 Currently Implemented Test Tools
FUNCTIONAL DESCRIPTION OF J73AVS
4,1 Summary of Capabilities
4.2 J73AVS Operation
DESIGN OF J73AVS
F
6.1
6.2
6.3
6.4
6.5

[Y

N 0o

|
[

UTURE EFFORT

Test Data Generation
Instruction-Level Simulation

Code Auditing

Units Consistency

Executable Assertions Precompiler

1
BN e b D b N b et e U D N e

|
~

APPENDIX

A LITERATURE SURVEYED FOR STUDY
B REVIEW OF RELEVANT TECHNIQUES

B
‘ ‘.\‘.l 'l"

TN

I R NI
l‘.j‘P’l‘b(‘

A
.

’

o . .“‘r‘f{"- 4

b e e

L

8 YTy
U

AR DN

T .
» e
.

Y YW
Dy
e

4 .

Qﬁ\f\“\f\’’c“ty

LYy YA
."‘. ".' Sl]

[P]
v v u
R |

s

e
o L]
’ I,t'lr"‘
LK AR

)
I,l

" .
LA
A 1'_‘.'_ e

e &
<

'P.. 4 °,

L
‘@
’l

..«
i

X YOO
AN TN
» 4 ce el

< I .-
]

P AL
YN

. ll'.

-

S I TR

A\

w" .
4. Title: JOVIAL J73 Automated Verification System User's Manual
Report No.: CR-4-947/2
Authors: C. Gannon, R.F. Else
Date: March 1983
Abstract:

This report describes the capabilities and user operation of an Auto-
mated Verification System for the JOVIAL J73 computer programming language.
This tool, known as J73AVS, provides interactive and batch users with static
and dynamic program evaluation, test coverage measurement, retesting assis-
tance, and automated reports that are useful for debugging, documentation, and
maintenance of the software.

J73AVS is a command-driven tool that analyzes one or more JOVIAL J73
modules during a session. J73AVS maintains a database that describes the J73
source being analyzed. The saved database allows incremental software
analysis and testing. This report describes tool operation during code
development, debugging, testing, and documentation. Sample output is pro-
vided, as well as job control setups, resource estimations, and error
messages.,

J73AVS operates on the Amdahl 470 (an IBM 370 equivalent) at the ASD
Computer Center and the VAX 11/780 at ASD/AD, both at Wright Patterson AFB.
J73AVS recognizes both MIL-STD-1589A and -B versions of JOVIAL J73. It
produces instrumented code that can be compiled with any validated 1589A or -B

compiler,
Table of Contents:

CONTENTS
SECTION PAGE
ABSTRACT
ACKNOWLEDGEMENT i
1 INTRODUCTION -

l.1 Manual Organization
1.2 Background
1.3 Overview of Capabilities
2 GETTING READY TO USE J73AVS
2.1 Preparing the J73 Source
2,2 J73AVS Commands
3 J73AVS OPERATION
3.1 Sample Program Description
3.2 How to Use J73AVS
4 COMMANDS AND RESPONSES
4,1 General Information
4,2 Page Control at a CRT
4.3 J73AVS Command Prompts
J73AVS SYSTEM CAPACITIES AND CONSTRAINTS
6 DIAGNOSTICS
6.1 User Error Messages

(9]
UL L |

AN B WWWN NN = = e
|
NI 0= et DO rmt e bt o et e U = b B ND e

23

..
PV NP PR

X'._'A VL SO 1

PN

L

.

~

6.2 J73AVS Internal Assertions Violation Messages 6-7 o
APPENDIX 4
A TERMS AND ABBREVIATIONS iy
B JOB CONTROL SETUPS (IBM 370 EQUIVALENT)]
C JOB CONTROL SETUPS (VAX 11/780) ,‘
D DATA FILE DESCRIPTIONS
E RESOURCE REQUIREMENTS "
F NOTES ON SOURCE TEXT PREPARATION AND REFORMATTING -
G J73AVS IBM AND VAX INSTALLATIONS AT WRIGHT~PATTERSON <
BACKCOVER N
COMMAND SYNTAX _j

4

o

»
L
e
-l.v

R LN
o

@..
. .

T

8 AL K

THY T A SRR)
PR
el tet e
L3 T R

A2

DENCAR SIS RSV S R TS R AN S A A S St Il ot SR (AR IR A N G AL MO AT ALL N COEE L)

Y)
< 3
..]
\‘_'.: e
-‘-“' M
:::E-\ 5. Title: JOVIAL J73 Automated Verification System Test Plan
" Report No.: CR-5-947 .
Authors: C. Gannon, R.F. Else, R.K. Boxer :
Date: October 1981 i
Abstract: :.
This report provides a set of test specifications, procedures for
2 testing, and evaluation criteria for the formal testing of the JOVIAL J73
e Automated Verification System (J73AVS). J73AVS will be installed and formally -
tested at ASD/AD, Wright-Patterson AFB, on the ITEL AS/S5 and at Rome Air R
- Development Center (RADC), Griffiss AFB, on the DEC20, Formal testing of .
\ J73AVS requires a validated JOVIAL J73 (MIL-STD-1589B) compiler and a FORTRAN B
- compiler (for input/output processing only). i
Table of Contents:
o CONTENTS
A SECTION PAGE
N ABSTRACT i
1 GENERAL 1
2 l.1 Purpose of the Test Plan 1
A 1.2 Project References 1 !
}\':' 1.3 Terms and Abbreviations 2 .
- 2 DEVELOPMENT TEST ACTIVITY 5 X
wu 2.1 Statement of Pretest Activity 5 .
o 2.2 Pretest Activity Results 5 .
{ 3 TEST PLAN 6
e 3.1 System Description 6
o 3.2 Test Description Overview 13 p
::f.: 3.3 Testing Schedule 15 3
~ 4 TEST SPECIFICATION AND EVALUATION 23
v 4,1 Test Specification (Source Recognition) 23
~) 4.2 Test Evaluation (Source Recognition) 26
e 4.3 Test Specification (J73AVS Functions) 27
R 4.4 Test Evaluation (J73AVS Functions) 29 3
e 4.5 Test Specification (Branch Coverage) 32 :
o 4.6 Test Evaluation (Branch Coverage) 40 3
- - 4.7 .Test Specification (Installation Procedures) 40 ;
;;.“ 4.8 Test Evaluation (Installation Procedures) 43 ;
.__f_. 5 TEST DESCRIPTIOM (J73 SOURCE RECOGNITION) 44 '
AP 5.1 Test Description 44 3
d 5.2 Test Control 44
:f 5.3 Test Procedures 45 .
- 6 TEST DESCRIPTION (J73AVS FUNCTIONS) 46
? 6.1 Test Description 46
‘:-f’_ 6.2 Test Control 46 N
oS 6.3 Test Procedures 48 X
‘u 7 TEST DESCRIPTION (BRANCH EXECUTION COVERAGE) 49 .
e 7.1 Test Description 49 N
’. 7.2 Test Control 49 3
oo !
o .
7 25 :
iy :
o »

Q =t =t N
Wy N N
z M
o o
- [
= By
3 3
: 2 :
z 2
- 5
£ ¥
< (=}
a o [~
wr~ 0 n [
[B B | [} m
bl N D 5]
=] A 2 (&)
V& O
YO W WO =]
U= U o
O OWE O lor]
oAU O N
A= A0 A 0 w
L m e] |
SHIEL
[2= 2 O] <] "Hu._
¢
[1e] ﬂ123 [} m
e fz] o o o < O
~ & 00 a0 a o
>
g
3]
© B <t m
<
NN PR IR PN -«ﬂ ..».' RPN SORY — [Pl Y -~ .f P J.J%.-.a\w-...-w o 3
.t . (AR~\\.~... ; ¢1 .. . -b.- vy Y e -n-\. .. L, Seh)a INACAEA N ! S AT e
iv... RACRCOEY /A .. AR g U [N %y ‘- ‘- i .!.l“li.\ 4,... .-\\ - J .r- A .Ip-c u.,‘..._....... R ..\\-- -..-.-nf.. LA

A A AHOICAC N P OO SRR AR A S A A e e e R A L SR RN R AR A S ER R

r
P
14

.A
I B
1]
.
1]
1]
« ot
a % M
snaboclad

~" ;’:_-1
.';. ‘ 1
Em v
}."\. 9
be e
. e
6. Title: JOVIAL J73 Automated Verification System Program Maintenance \;
Manual (VAX and I1BM-Equivalent Versions) =]

Report No,: CR-6-947/1

Authors: R.F. Else, C. Gannon, R.K. Boxer
Date: April 1983

Purpose of the Program Maintenance Manual:

The Program Maintenance Manual for an Automated Verification System for
JOVIAL J73, called J73AVS, (PR No. B-9-3278) is written to provide the
maintenance programmer with the information necessary to effectively maintain
the system,

The installations of J73AVS are on the Amdahl 470 (IBM 370 equivalent,
0S/MVS) at ASD, Wright-Patterson AFB and VAX 11/780 computers at ASD/ENAF,
Wright-Patterson AFB and RADC/CO, Griffiss AFB. 1t is intended that J73AVS be
compatible with all JOVIAL J73 and FORTRAN compilers; therefore, the system is
designed to be highly machine-transferrable and not dependent upon particular
operating systems or other support software.

The primary language in which J73AVS is written for the IBM 370 equi-
valent is JOVIAL J73 (MIL-Std-1589B). The IBM version contains a few modules
written in BAL and a few written in structured FORTRAN. The structured
FORTRAN processor source code is included on the IBM J73AVS magnetic tape
(described in Sec. 4.4.1). For the VAX version of J73AVS, the language is
structured FORTRAN (a subset of IFTRAN). The structured FORTRAN preprocessor
(written in FORTRAN) will be included on that delivery tape.

Table of Contents:

CONTENTS
SECTION PAGE
1 GENERAL 1-1
l.1 Purpose of the Program Maintenance Manual 1-1
1.2 Project References 1-1
1.3 Terms and Abbreviations 1-2
2 SYSTEM DESCRIPTION 2-1
2.1 System Application 2-3
2,2 Security and Privacy 2-6
i 2.3 General Description 2-6
N 2.4 Program Description 2-8
o 3 ENVIRONMENT 3-1
2, 3.1 Equipment Environment 3-1
3 3.2 Support Software Environment 3-4
‘@ 3.3 Database 3-11
-t 4 PROGRAM MAINTENANCE PROCEDURES 4-1
- 4,1 Conventions 4-1
}: 4,2 Verification Procedures 4-3
S 4,3 Error Conditions 4-3
-~ 4.4 Special Maintenance Procedures 4-9
o 4.5 Special Maintenance Programs 4-26
.’N
o
> 27
¢
S R TR UL TN SO T T SR E S S [)
o S e S R
AN il Dy ; i3:)i§:?53;E:?i):?:lﬁ;:&:ﬁinjﬁutdﬁi

.......
N ' e

7. Title: JOVIAL J73 Automated Verification System Program Specifi-

cation
Report No.: CR-7-947/1
Authors: R.F. Else, C. Gannon
Date: September 1983

Purpose of the Program Specification:

The objective of the Program Specification for an Automated Verification
System for JOVIAL J73, called J73AVS, (PR No. B-9-3278) is to describe the
program design in sufficient detail to permit program production by the
programmer/coder.

Table of Contents:

CONTENTS

SECTION PAGE
1 GENERAL) 1-1
l.1 Purpose of the Program Specification 1-1

1.2 Project References 1-1

1.3 Terms and Abbreviations 1-1

2 SUMMARY OF REQUIREMENTS 2-1
2.1 Program Description 2-1

2.2 Program Functions 2-3

2.3 Flexibility 2-6

3 ENVIRONMENT 3-1
3.1 Support Software Environment 3-1

3.2 Interfaces 3-7
3.3 Storage 3-10
3.4 Security and Privacy 3-12
3.5 Controls 3-12

4 DESIGN DETAILS 4-1
4,1 Program Operating Procedures 4-1

4,2 Inputs 4-4

4.3 Outputs 4-5

4,4 Data Environment 4-5

4,5 Program Logic 4-5
4,6 Comparison of the JOVIAL-Based and FORTRAN-Based 4-11

J73AVS
APPENDIX
A MODULE DOCUMENTATION
B COMMON (COMPOOL) SUMMARY AND USAGE MATRICES
C INVOCATION SUMMARY

28

8. Title:
Report No,:
Author:
Date:
Agenda:

First Daz

.,
.
£

D
o -';s

"
-
5
o s a

(1
P 2

e

l‘ ,. "‘

Third Day

.........
. .

Second Day

J73AVS Training Course

CR-8-947
C. Gannon
March 1983

9:00 - 10:30am
break

10:45 - 12:00 noon
lunch

2:00 - 3:00pm
break

3:15 - 4:30pm

9:00 -~ 10:30am
break

10:45 ~ 12:00 noon
lunch

2:00 - 3:00pm
break

3:15 - 4:30pm

9:00 - noon

R R N,
S R N A T AR
LAY RERASARACLERY
Ve s oV, N

W e A,

Overview of J73AVS Capabilities
Selected Output Capabilities
Overview of J73AVS Operation

J73AVS as a Test Tool

Discuss Class Exercises
Review J73AVS Analysis Reports
Work on Sample Exercises

Sample Exercises

Continued Workshop

29

PR
- ‘A_J,A_JA.AI

L, t Ty

AN |

~»
F R4

“d

B
A e a

6 IMPLICATIONS FOR FURTHER RESEARCH

There are several fruitful research areas in which J73AVS can play an

important role. Some of these areas call for modifying and extending J73AVS
current capabilities and other areas make use of the tool as part of an

overall system. The major areas are:
° Enhancements for testing embedded software.
) Enhancements for improving software retesting.
) Aids for project management.
] Aids for software measurement.

Each of these areas 1s discussed in more detail in the following subsections.

Even though JOVIAL J73 is a new dialect, its “phasing out™ by the advent
of Ada was known at the beginning of J73AVS design activities. Therefore,
further research should support the continued JOVIAL J73 software developers

as well as be applicable to Ada usage.

6.1 TESTING EMBEDDED SOFTWARE
Most of the J73AVS training course participants from industry expressed
one major difficulty in using J73AVS to test embedded software: the use of a

mainframe for program execution.

J73AVS is not intended to replace Performance Monitoring Units (PMUs) or
Program Control and Monitoring Systems (PCMSs). These test stations provide
powerful, but low-level support to embedded computers, such as Mil-Std-1750A.
As currently configured, typical PCMS functions are debugging activities like
stepping through instructions, observing all input/output transfers, main-
taining “hindsight™ of the last 500 instructions, and recording timing
performance without the overhead of added instructions to log timing.

The type of PMU or PCMS developed by 1750A computer manufacturers might

consist of:

b o
Launy

A A

LI NP AL S S L PR AT AT SRR I
. - e, . . . o+
CANC A N ST g R LIRS ST T A .

.
......
.........

<
2 ¢ N
ad
S

P S A
A

/‘~

[l 2 A

) jn‘ ‘r

B
[Y 2
T I |

v s

L "' "

P
1

R AR A
2 e saa_ 7

C

"

{
-,
i

.
.

W
2t

) A microprocessor-based system with a CRT terminal for user
interface,
° A Mi1-Std-1553B interface to pass information to and from the

1750A machine.

° A RS-232C interface for loading the test program into the 1750A.

° Peripherals such as magnetic tape, floppy disk, hard disk, and a

printer for recording execution behavior.

[Sometimes connection to a mainframe computer, like a VAX 11/780,
for direct downlinking from the JOVIAL J73 compiler and VAX JOVIAL
linker.

These types of development monitors can be more than adequate for
extensive software testing, as well as the basic computer hardware and bus
checkout, for which they are intended. The addition of J73AVS in the PMU/PCMS
environment would provide considerable code development, testing, and documen-

tation power for embedded 1750A software developers too.

In such an environment, J73AVS would reside on the VAX. Static code
analysis and automated code documentation would take place on the VAX, just as
in non-embedded software systems. Dynamic testing (execution coverage,
tracing, timing, and assertion violation checking) would require these
modifications to J73AVS:

1. Rewrite the J73AVS execution-time data collection routine in 1750A
assembly code.

2, Replace the !TRACE directive usage in J73AVS with calls to
appropriate assembly output routines (the !TRACE directive is used
by J73AVS to report assertion violations and tracing results).

3. Replace the calls to the mainframe's system clock routine with
appropriate 1750A clock calls, if available, for the timing

analysis.
32
B R LT RN 3 T UL UL I SR SR A R L L T, TR e e SR ““ ~ “w TN W
AN ﬁ".’-"i":".-" AR ASALASANLN, \'_\‘;\’\':\ O A N A AL AN B
T e T e v et
A S A (o R O A S G N N R RN, A A

s

P

v

M

'r v
S

.I.I\.l
Soleele

..._..,,
e "

f}fflra l DA

_--...--
P e N |

A

o al

e red”

WA AARA

WW’?W‘W NI LR A LA AN ,V‘*_ :"'_-"T-';_— '\ [.‘H'-‘r‘ ."_‘.ﬁ_xv". '_i ot ‘- -".'. L™ r .r T

J73AVS provides a great deal of high-level capabilities under simple
operator control. It is recommended that embedded software developers take
advantage of these code checkout facilities before submitting 1750A software
to final PMU/PCMS or other low-level analysis.

6.2 ENHANCEMENTS FOR IMPROVING SOFTWARE RETESTING
J73AVS currently offers these capabilities for retesting due to (1)
modifying the originally tested code and (2) wanting to improve the thorough-

negs of test data sets:

° Checking all module interfaces (i.e., COMPOOL variables and
module-level parameters) for changes and inconsistencies.
Ramifications of interface changes are checked throughout the
entire program's database (which is built by J73AVS and saved on a
compressed, sequential file).

. Data flow analysis (set-use checking of variables) is performed on
a designated (changed) module, looking at all interface variables
in that module's calling tree.

° In order to improve thoroughness of test data sets, J73AVS

provides a list of control branches not yet executed.

] Execution branch and statement coverage history is saved on the
J73AVS~built database,

° The set of branches leading up to a designated (unexercised)
branch is specified by J73AVS.

J73AVS provides a good foundation for additional retesting analysis.

The information preserved in the database, the current assertion facility,

interface checking, and data flow analysis can all be advanced to provide

greatly needed retesting assistance.

"l)
" SPATRPAS

A A AR A Ay by

........

Yo
S}e‘f¢¢‘:)

"E: Computer Sciences Cor;por:atj.onl’2 (CSC) recently reported some techniques
5'4 for improving software retesting in a very narrow, structural sense. The
:{ basic approach that CSC took during this study contract is a good one:
ne identify a particular test case with changed code., If the changes do not
§§ involve the addition of branches or modules or the implementation of new
FQ: functions, the test cases used during the development (called the testbed by
E:% CSC) may be used to re-test the system. Most of the time, however, new test
e cases will need to be constructed.
’f}’ The reasons for making software changes are generally:
:ft L To correct development errors
l&i) To correct specification errors
:E: ° To satisfy changing requirements
"i o To improve performance
.:SE Therefore, changes to programs usually entail adding or deleting branches in
"i&l the program, and they often entail slightly or radically modifying the
:jt: function of the program.
{
nti: To identify what has changed in a module, the re-testing tool must have
?i; an extensive database containing sequencing information, location information,
;{j: and attribute information describing each module in the software system.
‘it Interface descriptions of the original and modified modules must also be
5€§ maintained in the database. These descriptions would include the entry point
- names of the module, a description of the parameters of the module, a descrip-
»-2. tion of any global variables set or used by the module, the input/output
o interfaces to the module, the other modules called by the module, and the
jiﬁ sequence of these calls. The parameters to the module need to be described
' 1
A Software Retest Techniques Functional Description, prepared for RADC,
:i: 2Computer Sciences Corporation, Feb. 1982,
2:: Software Retest Techniques Final Technical Report, prepared for RADC,
o Computer Sciences Corporation, Feb. 1982,
ii.
.
e
E: 34
&3
&N
o NI RN e T A
I 5 T N SR G e

* 0g% Bat fat XYY
“~ . \\~l -l v UMY e S Rt T U R W PO A F A R D R A et s T T AT AT T

d
"

X
&
2
.ézi by their attributes: number, type, dimensions, set/use, ranges and enumerated :
o5 values, Global variables should be described by their type, dimension, use in
(S; the module, range, and initial value. Input and output operations (imple-
f:: mented as calls to non-JOVIAL routines in J73 programs) need to be described
i;: by their sequence, number of records read or written, file type, and record
o~ format,
‘if Several things must be done in order to re-test software effectively:
:}é ° The changes to the software must be identified
i ; ° The parts of the software which need to be re-tested must be
ot identified
)
25 ° Test cases must be chosen to test these parts
S The major problem with the CSC approach to software re-testing is that
ij it focuses almost entirely on a very small class of re-testing needs; that is,
:i- the class of small changes to a program in which the actual structure is not
*a modified. In the cases of adding or deleting branches to a program, the
&_ methodology offers very little assistance. In fact, the retesting tool
T% specified in the Functional Description provides no additional help over what
?i J73AVS currently offers in deriving new testcases to exercise modified code.
.- The second major problem is that the methodology does not address re-testing
:i new functions or performance changes. To support these testing activities,
e more extensive interface checking, a formal use of J73AVS assertions, and
EE implementing the execution perform?nce instrumentation component described in
WY the J73AVS Functional Description, Execution performance value ranges can be
::j used to support unit-level testing of modified modules.
Eﬂ 6.3 AIDS FOR SOFTWARE MEASUREMENT AND PROJECT MANAGEMENT
-

Quantifying certain aspects of software development can illuminate

v,

trends and problem areas. In particular, obtaining software measurements can:

lJOVIAL J73 Automated Verification System Functional Description, C. Gannon
and N.B., Brooks, CR-1-947, General Research Corporation, March 1980,

35

R ..’ ” 2 Vo™ s .\:\‘.\ - \.. ‘-" .\..\ R _\‘:- *
s}& *x \,ut 4 :‘f {.ﬂ\}x uﬁx.\} j.’.z O R T L C R AL LRI, SO
..»«, - L ~ L e L] R T
(t . W~ "‘.‘-_‘. RS N DN T I R :\

- . W™ E YE" WY " Lt " ' LA ai aad adil ot o nd -~ Ty T - —
AL R S I A SN AE A 2 CMC A ML A e A A L A S A A A A A S SRS S S-S et Jen 4 LN 2y
) . - - - - - . P T - - -t - T. ‘e *

2]

. e
l...
a'a

b,
i
° Guide the testing process EF
. Record project status RS
® Provide parameters for cost estimation
] Quantify software quality
® Help formulate system testing requirements

J73AVS already automatically collects a variety of measures through its
execution coverage analyzer, static analyzer, and test history reporting.
Other current features such as assertion violation reporting, system overview
description (number and types of modules, dates analyzed, lines of code, etc.)
and invocation structure reporting can be modified to provide project status

monitoring.

We recommend augmenting the current J73AVS test history recording with
accumulated statistics on the number and severity of static errors for each ff
modified (presumably "corrected”) version of a module. As part of measuring
static errors, we also suggest adding more extensive data flow analysis

capabilities to J73AVS. With JOVIAL J73's rich data types and scoping rules,

many programming errors could be uncovered by more exhaustive analysis of
referenced COMPOOL variables, table or block subscripted values, etc. A
description of the current data flow capabilities of J73AVS is provided in the

User's Manual.1

While the programmer may be interested in the types of errors uncovered
in each module, the project manager may be more interested in how many modules
have undergone gtatic analysis, have been executed with assertions turned on,
or have been analyzed for timing performance and branch coverage. Statistics
of this nature would be easy to include in J73AVS.

s
L A AT
L 2k R

WA
=

Software metrics engineers usually lament about the quality of software

:: error data collected during (or, usually, after) a project. Automatic
.
N
2 ,
ﬁ: JOVIAL J73 Automated Verification System User's Manual, CR-4-947/2, March
® 1983,

NANS

36

XXX
." -..

T
I'd
o

5t

. &

s vey

[}

I _ X

“

.
. L)
R R A A LYy
S te e 0 Ty .
R I R BN

[
;‘4 .‘.J'-;:..'o S "

R 1

OO

collection and output onto a sequential file by J73AVS would also be an easy
and useful addition to J73AVS. The user could specify certain data collection

formats (such as “by module,” “"by date of analysis,” “by error type,” etc.)
for the output file. Such a data file could be valuable for software problem
analysis and feedback programs, error data archiving, partial input to cost

models, and project management programs,

37

_ .
3" AP S

RN

d L

P f‘j'.li "' i

B, L_"

PN

5

L

vt h S

LR

-_'{A

E o

[
.
-

P
Shu”

s a0

a

o)

L)

APPENDIX A

This appendix consists of three technical papers that describe J73AVS and
how it was implemented. Two of the three conference papers were presented to
audiences who have a keen interest in high-level language support for avionics

applications.
The technical papers included in this appendix are:
1. A Debugging, Testing, and Documentation Tool for JOVIAL J73
2. An Automated Verification System for JOVIAL J73

3. J73AVS: A JOVIAL J73 Automated Verification System

pyS

el A

.
| Y

baaaa'araad Les o S8

o b

AR RN

> -
Satw¥ Y -t -~

AT-22
RM-2236

A DEBUGGING, TESTING, AND DOCUMENTATION TOOL FOR JOVIAL J73

C. Gannon

COMPSAC

October 27-31, 1980
Chicago, Illinois

o GENERAL
| RESEARCH B corroration

P.O. BOX 6770, SANTA BARBARA, CALIFORNIA 9311

T
a e

g niag
Sl

v
¥V e ¥ &

"
T .
M. e

P ol adki)

et e

. e - ., ® P R
. "t Sl

R P R i
N e

TR A AR A R a S e et e AN ARG M A NSNS AL RSACAC, X ACHCRCAOICAL U ACALOC OO
A AN A e A ENERNL A IS S AR AR A ATy

Parare

"J; '.‘_A

LR N |
PR
. o

PR

-~ v v
)

o

\-_' :_';_5

Ty

T
\n-\f.\
.
.
Al
»
f
.
)
.
¥
.
.
’
]
.
.
.
0
v
v
I
<3
«
«
»
v
»
v
.
.
.
v
o
.
«
.
R
-4
'y
.
’
9
.
.
o
s’
L4
LN
]
»
'
.
’
.
3
e
3
.
g
N
<4
0
.
]
&
.
.
v

2 0 0ac0n

i Q

| SRR A

tv\.... .\..\ .4\\.»\..

by 4 A 0, ¢

e vw "

v

[N A WS

--4

D |

e e e

o &L
¥)ﬂ Y
=

Tl

.\.

.
,-.- J». .\u\.q\.v.\-. " g.

AN g i

(e}
o s _w_ 4 A ad A s A a4

» 4 .
§,..x...,.n...-.... =

0 .
b N et
A DO

s
.

A .
IR

Y W

A Debugging, Testing, and Documentation Tool for JOVIAL J73

C. Gannon

General Research Corporation

Introduction

This paper describes an automated tool
which is being developed to assist in debugging,
testing, and documenting software written in
JOVIAL J73. Many of the techniques incorporated
in this tool have already been found successful
{n testing and maintaining FORTRAN and JOVIAL J3
programs and may be considered viable techniques
for future Ada tools. Features of this tool,
called J73AVS (for JOVIAL J73 Automated Veri-
fication System), that distinguish it from other
AVS's are primarily due to the specific charac-
teristics of the JOVIAL J73 language and the
applications programs written in J73. Addition-
al distinguishing features are to provide a
realistic approach to testing program paths,
maintain multi-run testing history informatiom,
and operate in both batch and interactive modes.

As background material, characteristics of
the J73 language and applications programs are
described briefly. The paper then provides a
functional degcription of the tool.

The Need For J73AVS

The need for this automated verification
system i3 based upon (1) the emergence of a new
JOVIAL language dialect which will supersede the
previously approved JOVIAL dialects, (2) the
characteristics of the language that make it
complex and error-prone, (3) the type of appli-
cations expected to be written in the language,
(4) and the standardization of certain testing
measures.

In an effort to prescribe a standard
policy for using computer programming languages
and for testing computer programming language
compilers, the Air Force issued AF Regulation
300-10 in 1976, Two JOVIAL languages, J3 and
J73/1, were specified as Afir Force standard
high-order programming languages. Both JOVIAL
languages are primarily designed for command and
control system programming. They are especially
well suited to large systems requiring efficient
processing of a large volume of data with
complex structure.

Another JOVIAL language, J3B, evolved from
J3 for the purpose of developing computer
programs for the Boeing B-l. Derivatives of J3B
have been widely used for avionics computer

programming. However, JOVIAL J3B is not a
language approved by AF Regulation 300-10.
Therefore, a blend of J73/I and J3B, plus
additional features not in either language, has
been created to satisfy the programming needs of
both the avionics and systems communities. This
language, JOVIAL J73, was specified im March
1979 as MIL-STD~1589A and was refined in June
1980 to become MIL-STD-1589B. In the spring of
1980, AF Regulation 300-10 was revised to cancel
both J3 and J73/1 languages, leaving J73 as the
only approved JOVIAL language.

It was the desire to improve software
reliability that prompted the Air Force's
request for an Automated Verification System
(AVS) to be developed and made available as soon
as possible following release of validated
JOVIAL J73 compilers. Encouragement for an AVS
and other support tools also came from the
JOVIAL Users Group, a body of interested
management and technical people from industry,
Government, and the Air Force.

Characteristics of J73 Programs

As defined in MIL-STD-1589B, JOVIAL J73
permits the independent processing of functional
modules which communicate through compools and
argument transmission. J73 permits both
recursive and reentrant procedures for effective
oulti-processing. The language provides a rich
variety of data types and supporting data
manipulation functions, making assembly code
programming unnecessary for most applications.
However, except for a trace directive which
supplies limited output facility, there is no
input/output capability in the language.
Linkages to assembly or alternate-language
routines are required for input and output.

Storage allocation for data objects can be
both automatic (in which storage is released
when control exits from the program unit) or
static (in which storage space is saved through-
out the entire execution of the program).
Automatic allocation uses storage efficiently
but makes certain data-usage errors possible.

The DEFINE construct associates a name
with a text string such that whenever that name
i8 referenced, the text string replaces {t.
DEFINE statements can be nested and can be
redefined based upon scope. Thus, while the ca-

ol

P
.
P E Y

PR
oty -y

it

K

T I }
AN

pability 1{s extremely useful, it adds another
dimension of complexity to JOVIAL programs.

Unfortunately for advocates of structured
programming, the control statements in JOVIAL
J73 are not confined to the “structured program
ming” constructs of sequential flow, IF-THEN-
ELSE, and WHILE-loops. The language does at
least have these constructs, so that programmers
can write structured code 1if they desire.
However, unstructured statements as GOTO,
FALLTHRU, EXIT, and ABORT are also permitted.
The GOTO statement allows transfer from the
outside of an IF or CASE comstruct into the body
of the IF or CASE. GOTO statements can also be
directed to labels that are external to a
program unit, if the label 1s passed as a
parameter., The FALLTHRU statement allows
contro. to pass from one CASE alternative to
another without making the test normally
required at each CASE option. The EXIT state-
ment allows escape out of an immediately
enclosing loop. The ABORT statement provides
transfer of control to the label specified in
the most recently executed, currently active
procedure having an ABORT phrase. Thus, control
transfer is not defined until execution time.

The wunstructured control statements
provide flexibility and execution-time efficien-
cy; but at the same time they {ncrease the
chance of committing errors and make the program
more difficult to understand. Since 602 of the
total cost of software is generally attributed
to maintenance, source code scrutability is
important.

J73AVS will provide extensive static and
data-flow analysis to detect and report possible
errors regarding control transfers, data
contention due to static allocation, uninitial-
ized variables, structurally unreachable code,
potential infinite loops, etc. Program analysis
reports can be generated on command by the user
to describe such detailed information as DEFINE
usage, label references, symbol properties, and
global data. Static and data~flow analysis are
testing and program analysis techniques in which
the program is not executed with real data.
Rather, the code is analyzed for inconsistencies
{(static analysis) or for variable set-use
behavior (data flow analysis) using symbolic
execution through a directed~graph of the
program.

Characteristics of Application Programs

The programs that will be implemented in
JOVIAL J73 will be of similar nature to those
written in the separate JOVIAL dialects: J3,
J3B, and J73. Applications will be for navi-
gation, information management, flight controls,
communications, etc. The software character-
istice of the applications are varied. For
example, flight control software has the
following characteristics:

- synchronization

- distributed processing

- structurally simple control state-
ments

- simple data types

- real-time processing

On the other hand, applications such as command
and control systems have very different charac-
teristics such as:

- batch and interactive modes
- complex data structures

- complex control structures
- large, monolithic modules
- non-real-time processing

Avionics applications are often destined
for small on-board computers. For those
computers not having a JOVIAL J73 or J73-subset
compiler, the programs are developed on a host
machine and cross-compiled to the target
machine. There are no software checkout tools
available on these small computers, so an AVS
operating on the host computer must supply as
much aseistance as possible to detect errors in
program performance and assure some level of
testing thoroughness before the program is
cross-coapiled.

Command and control systems, on the other
hand, tend to be very large (several hundred
thousand lines of code). They also tend to
evolve as needs change. Therefore, not only is
testing a major problem -— code modification and
retesting only what is necessary are also
difficult tasks. In the face of these problems,
one of the most valuable assets of any software
support tool is the ability to asutomatically
produce concise but helpful program documen-
tation.

Functional Description of J73AVS

This section presents a brief description
of the capabilities of J73AVS and describes in
what phases of the software life cycle the
capabilities should be used. A thorough
description is provided in the Functional

Ducription.l
Our approach to the design of an AVS for

JOVIAL J73 is to provide automated assistance
for

- program development
- debugging

- testing

- retesting

The approach excludes
verification of requirements
- verification of specifications
- automated design aids
- formal program verification (proof
of correctness)

PR] '\\.\‘*- ’- ﬁ.- _\"-‘
oY \.‘\:P}\-‘:s‘“‘-‘ﬂ"
O

-;‘- ~Y
Lt

-*J‘\

LGSR AR S LB TN

The techniques for automating these processes
are not developed well enough to be reliable for
general-purpose, large software systems.

The specifications for the J73 dialect and
compilers include rigorous data-type checking
and scope rules. The language allows, however,
constructs and control structures which demand
caution in their usage (such as recursive and
reentrant procedures, jumps into certain control
structures, abnorsal exits, etc.). Further, the
language does not contain a mechanisa for
specifying expected behavior or reporting
user-specified abnormslities (since there is no
input/output facility).

J73AVS will not duplicate the static
consistency checking of the compiler, but,
rather, provide the following set of facilities
to support program development, debugging,
testing, maintenance, and documentation of
JOVIAL J73 programs:

1. Logical assertions and timing probes
2. Static and data flow analysis

3. Program structure and characteristic
reporting

4. Statement performance dynamic
analysis

5. Branch, path, and program unit

execution coverage analysis

6. Branch and prograam unit execution
trace analysis

7. Execution timing analysis
8. Structural retesting assistance
9. Test history reporting

J73AVS will support interactive and batch
facilities since the various stages of program
development through testing and maintenance lend
themselves to both modes of operation. The
coumand language will be similar for interactive
and batch usage, except that the interactive
user will be proapted for information where
necessary.

Summary of Capabilities

A summary of capabilities is provided as a
flow diagram {n Fig. l. This diagram describes
the primary functions supported bdy J73AVS as
well as the sequence in which they are per-
formed. Figure 2 shows the interaction between
J73AVS and the user. The user can direct the
sequence of analysis activities, using infor-
mation provided at each stage of processing.

Although J73AVS will exist as & single
progran (with overlays to keep it compact), ft
is best considered as a collection of tools or
facilities with which the user interacts. Some
of the facilities, such as automated documen-
tation, etatic error reporting, and {instrue~
entation, are completely automated and require

L

LRI ST B AP S N NN PR R

only that the user initiate the tasks by
command. Other processes, such as execution-
time data collection or retesting assistance,
require sore information from the user like test
dats input and test target selection.

J73AVS provides detailed information both
statically and dynamically about the program
being analyzed. It {s the role of the user to
direct the processing performed by J73AVS, to
analyze the output produced by J73AVS, and to
determine subsequent action.

The role of J73AVS in the software
development cycle is to provide automated
assistance wherever possible during the program
development and maintenance, debugging, testing,
and retesting phases of the cycle.. Because
J73AVS systematically provides execution
coverage, timing analysis, execution performance
reporting, and test history, it is expected to
be valuable to independent verification and
validation contractors as well as software
developers of J73 programs.

The user of J73AVS plays an active part in
the cycle as shown in Fig. 3. This figure
partitions the phases of the development cycle
and shows the flow between the automated
processing of J7JAVS and user-supplied input or
direction.

Using Fig. 3 as a basis, a typical
sequence of J73AVS~gupported processing can be
described as follows:

1. JOVIAL J73 source text is generated
and provided to J73AVS as one or
more compilable modules.

2. J73AVS produces program analysis
reports showing control structure,
syabol usage, calling hierarchy,
etc., as well as a static analysis
report showing errors and dangerous
programming practices.

3. Using the reports as a guide, the
source modules can be modified or
new modules added to the program.

4. J73AVS identifies the interaction of
the new or modified modules with the
rest of the program; this informa-
tion, ia turn, is used as the basis
for modifying other modules.

5. For dynamic debugging, the program
is instrumented (i.e., calls to data
collection routines are automatical-
ly inserted) by J73AVS and executed
vith an initial test case supplied
by the user.

6. J73AVS reports assertion violatious,
if any, and generates an evaluation
of statement and variable perform—
ance.

eyt

v v - e,
o

FIR

TN,

Te e e Te e e

'.".'c

.

'S
e«
w

e

o
]

S

LIPS

N

. e
W
.

.
o

I T I T

Y'DM.& .-.-..-.
TN

2

s' o'

‘ff 3

ﬂ
Y

-~ ‘r %
L)

. v .
[

L

R N S s

Branch and

Path sequences
and test history
are reported.

JOVIAL J73
SOURCE

SOURCE TEXT

(R AN A e USRIy, V)
2
L)

One or more modules of JOVIAL J73 source code 3,

s input for processing and analysts. The z

source code may contain J7JAVS logical
assertions and timing probes.

J71 AVS generates a directed graph of the
control structure. All syntax, semantics,
and structural information s stored on

3 database. Additional or changed source code
causes an existing database to be updated.

Possible errors, warnings, and dangerous
programming practices are reported.

|

RETESTING
ASSISTANCE

!

CORRECT
SOURCE

Figure 1.

Reports for program

PROGRAM ANALYSIS documentation, debugging,
REPORTING maintenance, testing and

retesting are produced.

STRUCTURAL &
ASSERTION
INSTRUMENTATION

i

TEST EXECUTION,
OYNAMIC DATA
COLLECTION

1

EXECUTION
AMALYSTS

| S

Software probes are automatically inserted
for dynamic analysis of execution coverage,
tracting, and performance. Timing probes
and logical assertions are translated into
executable code.

Program execution produces a data
collection trace file for analysis by J?23 AVS.

Execution coverage and tracing, statement
performance, and execution timing are
reported by testcase and by a set of
testcases.

Overview of J73AVS

AN-56561

COMPILER

Figure 2.

PROGRAM
EXECUTION

J73AVS Interaction with User
A=-8

.
bl

e
. @

v D
_\.‘&‘ ‘".‘ R
alae ety

(h”
e

v
L

DMNCNMEEND
A .l."l.{l.‘.l"" .

¢C R

.

LI W e
DROROIN S

" 3l P
W ’.";'*_. - '

'f
= B

7. Using this evaluation, the user may
choose to generate additional test
dats to pinpoint errors or instru-
ment other wmodules for additional
dynamic debugging.

8. Like debugging, the same procedures
of test data generation, instrumen-
tation, and execution are performed
for testing but for a different
goal: rather than detecting and
locating errors, testing aims to
demonstrate the absence of errors
and that the software conforms to
its specification. Therefore,
J73AVS produces execution analysis
reports in terms of the thoroughness
of execution coverage and violations
of asserted behavior.

9. The wuser evaluates execution
coverage and other program perform~
ance output, along with the pro-
gram's own execution results and the
program specification, to determine
1f testing is complete.

10. J73AVS provides branch sequence
information to retest targets chosen
by the user. A test history of
execution coverage and assertion
violations assists the user in
choosing targets for retescing.

SOFTWARE LIFE-CYCLE PHASES 3
h-J
PROGRAM DEVELOPMENT/ TESTING/ <
MAINTENANCE DEBUGGING RETESTING -
2
BUILD MODIFY GENERATE
2
@ Z MODULES MODULES DESUG TEST CASES TEST
£ 3
3
<
[’
[
2 a
a w
-
i | IDENTIFY OBTAIN YZE
JANAL PROVIDE
E | REpomrs | | PRocRAM PERFORMANCE || INGTRUMENT| [TEST RETESTING
% INTERACTION ::gukggim" [EXECUTION | ASSISTANCE
L

Figure 3. Role of J73AVS in the Software Development Cycle

Program Development and Maintenance

Executable assertions perait a programmer
to specify expected behavior. J73AVS supports
the technique of embedding programmer-specified
assertions into the code through the use of the
ASSERT keyword followed by any legal logical
(Boolean) expression. Logical assertions can be
used for execution-time exception reporting,
stress testing, test data generation filtering,
and (left as comments in the source code)
stating in~line specifications.

To assist with reliable system develop~
ment, maintensnce, and documentation, J73AVS
will provide substantial program analysis re~
porting om structural hierarchy, symbol usage,
invocations, certain J73 constructs, and systea
characteristics. The user has control over
obtaining high- or low-level information through
the command language. The types of prograa
analysis reporting include the following:

- indented source listing with control
structure identification

- symbol cross reference with set-use
information

- compool symbol description

- properties of all or specified
symbols

- declaration and reference of labels
(statement names)

- declaration and reference of
user-defined data types

- declaration and reference of
constants

- usage of external reference (REF)
and definition (DEF)

- declaration and reference of DEFINE
text strings

- description of program unites on the
database

Debugging

Normal compilation wusing JOVIAL J73
compilers will detect many syntax and semantic
errors. Additional errors such as uninitialized
variables, possible infinite loops, unreachable
code, certain improper constructs, and dangerous
coding practices (like transferring iato CASE or
IF statements) will be reported by J73AVS. The
user can command different levels of static
reporting.

vy Yy Ty

w s v e -

F_F Faw-> -

> s e = e

P

__...._-,,-._ AREOKO Lo AN LA LAty O T TG N MEFE L UERICAC S B IO Wi s A ien gy oty A AP RRIE A e g
q\» - - .J
Y A
.;.‘

- -
o ”
o -
\\.'- ,."
L =
X -
-.‘: Dynamic debugging will be supported by demonstrated, etc.) or when program changes have :-'
e statement execution performsnce and assertion taken place. The proper approach to take in -
(t exception reporting. Statement execution retesting is highly dependent upon the charac-

N perforsance provides execution counts of teristics of the program being tested as well as R
I 7\ statements, values and ranges of variables in the measures being used to evaluate testing)-
- assignments and loops, and the execution completeness. ~
S behavior of 1IF statements. This debugging >

~ information appears adjacent to the source In order to determine the sequences of Vi
B\ statements theasslves, which assists the task of branches which must be executed to reach an -
O code correction. The execution of timing probes untested branch or statement, the user can ~

(inserted by command) can be reported in the request that the “reaching set”™ be computed
A debugging performance report at the user's between two specified statements (or from the R
al request. program unit's entry). The user can also »
F request a list, in terms of branches, of all -
. When the prograa's execution behavior control paths between two specified statements. -
);.:' deviates from the scceptable logical behavior If certain loop structures make this list impos- -
~ specified by the embedded assertions, it will be sible, subsets of the paths will be identified. ;
f*. reported during execution. This is called an X
o assertion violation. The user-supplied asser~ With the control flows identified, the
&, tions remain relatively transparent to the user can develop new test data by backtracking
e program until they are violated; at that time through the program to the input space, using
‘.-: the violation is reported along with the module statement exscution performance reports, module LS
", name and source statement number where the interaction and iavocation reports, and execu~ A
Y violation occurred. tion coverage information for each testcase. Y

) Unfortunately, automatic test data generators 4y
g Testing which use symbolic execution are not yet !
158 developed to the point of being general-purpose,]
P When used in conjunction with static easy to use, or reliable. 4
., checking and statement-level perforaance =
NN analysis, structure-based testing can uncover The cumulative test coverage history .
. errors dus to untested branches (where a branch maintained by J73AVS will be useful in attaining K
iy is a control flow outcome dus to a decision testing goals and determining targets for _
.':\ statement) or improper q of branches. retesting. Typically, the results of executing d
e J73AVS will provide execution tracing of program test cases are difficult to manage. Program R
"»:,.' units and braaches and execution coverage unit and branch coverage information will be "
Caa analysis of program units, braaches, and saved in a councise way on the database for each
(sequences of branches (paths). PFurther, J73AVS test case. The results of subsequent execution
- will assemble the timing information from runs can be added, providing a cumulative report h
:.' program unit tracing and user-supplied timing of all tests. Also saved in the history N
S, probes into an execution timing report. database table will be any assertion violations A
> that occur. This will provide a mechaniss for .
:: Although an AVS can provide an objective {dentifying which input test case caused a .
- measure of testing thoroughness in terms of violation. "

. statement or branch execution coverage, fre-

P quently errors in software are overlooked during Acknowledgement
- testing because only certain sequences of My
Y branches are ever executed. Obviously, it is The design and development of J73AVS 1s "
~ generally impossible to define all paths in being sponsored by the Rome Air Development »
,“-f programs because of loops. Furthermore, the Center, Griffiss Air Force Base, New York. ,
R most likely subset of paths to test can bast be »
identified by a person familiar with the Reference -
e function of the program. The wmost efficient L "
: role of an AVS in this regard is to identify the C. Gannon and N. B. Brooks, JOVIAL J73
bt set of control paths between two statements in a Automated Verification System Functiomal
° - program unit (an invokable unit of code) cto Description, General Research Corporation, Y
. which the human tester attaches importance. Of CR-1-%47, March 1980. B
the set of paths identified by the tool, the .
user can choose those that are to be analyzed .
. for coverage during execution. If the set of \
KA paths is too large to enumerate, a descriptive X
.7 message vwill be issued and the user allowed to '
@ choose another pair of statements for path

? identification.
~Y N
::: Retesting Assistance ;
?. Retesting esoftware is perforsed when
b . analysis shows that prior testing is inadequate
o (1osufficient branch coverage, not all functions !

A-10

“,} - '\.
NN
PPN

e

-

*i:g' R A A

- @R
Iy

S
A R]

e O O Y

g .'r.'\F'b) .“.- 4 Y -F.. . L L';& .\'\ A\\ \"\.\\, \.() L LA u'.'-‘."- ".','.-‘_ RA G R RRNCRE T U AR em Lt SR PR SR

..

.:"3 ‘
o '
h oo 2
.- K
A .
(t IM=-2420

T~ AT=-31 -
R .
o :
{i: AN AUTOMATED VERIFICATION SYSTEM FOR JOVIAL J73 K

RC

'\‘" Robert F. Else A
&' - o
A]
S -
= ;
rS NAECON e
N May 18-20, 1982 N
3 X
_.: Dayton, Ohio S
o .
l.--\ ‘~
s X

e
LH YN
- . ad

. .
- .-
2 K
- A
el

C

: 7
L]
:
B R
5
o
i
= GENERAL)

RESEARCH CORPORATION

P.O. BOX 6770, SANTA BARBARA, CALIFORNIA 93111.0770

SRRy

e

e
L} oo

A-11

’
LR R S

Al

@

2

L

P oL e : LRI I € e e . WL W
R I S N y MBS
L R AR o -,-_\.‘:__ ,'..1--' _-ﬁ..-..‘-.". --.-...".J' 3 e o "‘h AN, i e N X _'.:... ‘..‘-.
A . . e ‘ AN
U, A S e Y A NN N T T e W v .

. -" :'.«' f‘l.‘
P N]

e e e, A4
;.r‘l.‘ [P
(S LA

—

]
¥
L

»
2. ,‘. f_ ot

(AN

. P

8, s‘.'l
.
PRIt b R

s - . oy,
A AL R

v
]

& .""y a"':' %

OO NN L

AN AUTOMATED VERIFICATION SYSTEM FOR JOVIAL J73

ROBERT F. ELSE

GENERAL RESEARCH CORPORATION
P.0. BOX 6770
SANTA BARBARA, CALIFORNIA 83111

ABSTRACT

The introduction of the J73 dialect of the
JOVIAL programming language created a need for new
software tools to help develop, test, and maintain
J73 software systems. This need is especially
great in software for aviation electronics
(avionics), where rigid functional snd reliability
requirements make the automation of software
analysis s necessity.

To £111 this need, General Research
Corporation (GRC) has developed the JOVIAL/J73

Automated Verification System (J73Avs).l'2 It 1s
s tool that processes J73 source code like a
compiler, but maintains s permanent database of
information making repested processing of source
code unnecessary. It operates in either batch or
interactive mode. This paper describes the
features and use of J73AVS.

BACKGROUND

In 1976, in an effort to standardize
computer programming languages and compilers, the
Air Force 1issued AF Regulation 300-10 which
specified two JOVIAL languages, J3 sand J73/1, as
standards for svionics and comsunication systems.
Another JOVIAL dialect, J3B, had evolved from J3
primarily for use in the Boeing B-l computer
system, although J3B was not approved by the AF
regulation. A new dialect, J73, specified in 1979
as MIL-STD-1589A was & blend of J73/1 and J3B,
plus some nev features; this specification was
refined in mid-1980 to become MIL~STD-1589B. In
the spring of 1980, AF Regulation 300~10 was
revigsed to eliminate J3 and J73/1, leaving J73 as
the only approved JOVIAL dialect.

The request for a J73 Automated Verificatiom
System (AVS) was part of the Air Porce's desire to
improve software reliability, and it ves planned
for release as soon as possible after the release
of new validated J73 compilers. Encouragement for
an AVS and other support tools came also from the
JOVIAL User's Group, a body of interested
management and technical people from indusctry,
Government, and the Air Force.

JOVIAL J73 is sn extremaly rich and complex
language, and will be used for a fairly wide
variety of applications, including navigatiom,
information management, flight controls, comauni-
cations, and command and control systeas. The

language's complexity and its verying applications
reinforce the need for an AVS to help analysts and
programmers handle the difficult task of develop~
ing and maintaining J73 softvare systams.

J73AVS FUNCTIONS

J73AVS vas specifically designed to be used
in the post-design phases of the software life
cycle: program development, debugging, testing
(and retesting), and maintenance. Since automated
tools already exist for the specification and
verification of requirements and design, we felt
that concentrating oo the actusl code production
and maintenance phases would result in a wore
poverful, concentrated set of capabilities.
J73AVS can also produce a wide variety of progrss
documentatior; although this activity is not
generally included in the software life cycle, it
is often a wesk link in the chain holding together
a otherwise strong system.

The tool's capabilities were designed to
complement those of the J73 compiler, so that the
two together would cover as many trouble spots as
possible. The compiler provides rigorous
data=type checking and scoping rules, but there
are csses vwhere the programmer can circumvent
these checks, whether intentionally or not. In
addition, the language itself allows potentially
disastrous control comstructs such as jumps into
CASE and IF statements, abnormal exits froa
procedures, etc., and it is beyond the scope of
the compiler to 1issue warning messages for
prograns which use them. We also wanted to avoid
duplicating capabilities of other tools which have
a bearing om J73; SDDL (System Design and
Documentation Language), for exsmple, works at the
pseaudo-code level, and the Jovial Interactive

chuucr3 will operate at execution time.

J73AVS provides the following set of
functions:

1. Static sand data-flov snalysis

2, Program structure and interface report-

ing

3. Execution coverage malysis (at state~
ment, branch, and procedure levels)

4. Exeuction tracing analysis (at branch
procedure, and variable levels)

5. Execution timing analysis
6. Test history reporting

H

A-13

e
>

PRI

LI
AL s

L

7. Structural retesting assistance

8. Logical assertions for reporting devia-
tion from expected program behavior

9. A wide range of documentation reports

A summary of all the J73AVS capabilities is
provided in Figure 1. This diagram describes the
primary functions supported, as well as the
sequence in which they are performed., Figure 2
shows the interaction between J73AVS and the user;
a command language is used to direct the sequence
of activities. The command language is identical
in either batch or 4ianteractive wmode. It is
keyword-oriented, has parameters that specify
options, allows abbreviations, and is flexible in
the order of parameters. In interactive wmode,
prompts and a2 help function assist users.

Although J73AVS exists as s single prograam,
it is really a collection of tools or facilities
from which the user can choose. Some, such as
automated documentation, static error reporting,
and instrumentation, are completely automated and
require only a single comsand from the user.
Others, such as execution-time data collection and
retesting assistance, require more input snd
interaction with the user.

SAMPLE OQUTPUT

Some samples of actual output give a quick
picture of how J73AVS can be used. Figure 3(a) is
a J73AVS report summarizing the contents of the
user's database, itemized by module name. It
shows each wmodule's name, type (compool, program,
or procedure), number of statements, program units
(individual invokable procedures), compool
references, DEFINE name declarations, and creation
and update dates. J73AVS databases are retained
from run to rur, allowing them to grow incremen~
tally as a systeama is being developed. One
database may be used to retain data about an
entire system; altermatively, different program-
mers may maintain different databases which can be
combined at a convenient point in development.
Figure 3(b) 1s another form of J73AVS database
sumpary, itemized by program unit name. Each
procedure’s parent (enclosing procedure, 1if any)
is given, along with nesting information.

The next report, Figure 4, shows execution
timing data produced by J73AVS. This report is
obtained by instrumenting one or more procedures
with tiaing probes (inserted automatically om
command by J73AVS), executing the instrumented
code, then using J73AVS to analyze the “audit”
file produced by the execution. The bottom half
of this example shows that two segments of code
were chosen by the J73AVS user for wmonitoring
execution time. These "clock intervals”™ need not
be wholly contained in the same procedure or
module. The execution times shown are in
milliseconds and are as accurate as the systems—
level CPU clock.

The user may also instrument source code to
record which coantrol branches are covered
(executed) during a test execution of the code.
J73AVS reports exactly which branches have or have

not been hit, and wmaintains a history of the
coverage results in its database. Statement and
branch execution coverage can be reported by
J73AVS as part of a source listing, or wmore
abbreviated reports can be selected at user
option. For example, Figure 5 shows the "NOT RIT"
report for two testcases (sections of source code
chosen as test boundaries by the user) and a
cumulative branch coverage history. The bdranch
numbers in this report can be keyed back to the
source code through several other J73AVS reports.

A system—level branch coverage report 1is
available and is shown in Figure 6. This report
shows the results of all testing so far and
includes the number or procedure invocations,
branches, and statements hit, and percentage of
total coverage.

THE HOST/TARGET DICHOTOMY

A major concern in avionics software is the
difficulty of performing thorough dynamic testing
on embedded software. Target computers are
usually much smaller than the original host, with
limited memory snd processing resources and little
or no I/O0 capability. Dynamic testing, and
aeasuring its thoroughness, are difficult problems
in these small real-time environments.

The instrumentstion capabilities of J73AVS
offer a solution to this problem. The software to
be tested can be instrumented autor . ically under
the user's control, and the :i:sulting code
compiled, linked, and loaded (but not executed) on
the host coamputer, then transferred to the target
on magnetic tape, punched cards, or whatever 1/0
medium is available., Executing the instrumented
code on the target produces an asudit file for
subsequent analysis by J73AVS on the host.
Alternately, if the target has enough main memory,
or lacks an output device for the audit file, the
J73AVS data collection and analysis routines can
easily be modified to use a "HITS" array (one cell
per branch, each holding a "hits™ counter);
post-execution analysis of this data would then
take place on the target computer.

Since the user has complete control over
vhich segments of code to instrument, overhead and
code expansion can be minimized; testing can be
done in segments, or the testers can “zero in" on
a particularly critical procedure or module. This
is a significant gain over previous approaches
which involve either the tedium of inserting the
software probes by hand, or a lack of a fine-
grained automatic control over the segments of
code to be instrumented, thus causing unnecessary
overhead.

This wethod of testing on a small target
computer has already been proven with a tool named

EAVS (Extensible AVS), also developed at GRC.“
EAVS was an early precursor of J73AVS, and the
software technology advances since that time make
J73AVS a very important testing tool for embedded
systems.

TR

v 5N
» . e

|

‘.‘5

Y

.
.
-
-
.
N

ONE OR MORE MODULES OF JOVIAL J73 SOURCE CODE 2
JOVIAL JT3 1S INPUT FOR PROCESSING AND ANALYSIS. THE s
SOURCE SOURCE COOE MAY CONTAIN J73AVS LOGICAL e

ASSEATIONS 3

SOURCE TEXT 73 AVE GENERATES A DIRECTED GAAPM OF THE
ANALYSIS COATROL STRUCTURE. ALL SYNTAX, SEMANTICS,
'W AD STRUCTURAL INFORMATION 18 STORED ON
ANALYSIS 4 DATASASE. ADOIMONAL OA CHANGED SOURCE CODE

CAUSES AN EXISTWG DATABASE TO B UPDATED

ANALYSIS POSSIILE EARORE, WARNMINGS, AND DANGEROUS

SOFTWARE PROBES ANE
STRUCTURAL & FOR DYNAMIC ANALYSIS OF EXECUTION COVERAGE,
ASSEATION TRACKING, AND PERFORMANCE. TIMING PROBES
INSTRUMENTATION AND LOGICAL ASSENTIONS ARE TRANBLATED INTO

EXECUTABLE CODE-

DYNAMIC DATA ANAL AVE.
COLLECTION COLLECTION TRACE FILE FOR YSIS 8Y J73 AVS.

* PROGRAM EXECUTION PROOUCES A OATA

EXECUTION COVERAGE AND TRACKING, STATEMENT

PERFORMANCE. AND EXECUTION THMING ARE
AEPORTED BY TEST CASE AND BY A SET OF
TESTCASES.

Pigure 1. Overview of J73AVS

DATA
BASE

AN-56561

JOVIAL
J73
COMPILER

PROGRAM PROGRAM
AEPORTS | EXECUTION
Figure 2, J73AVS Interaction With User

A-15

4

()

D e e 08 0 "R Yy B A " NP D R ol i ane -2 00 o o AL Al A e e T T v
D A A A A N S AL A G E A W St A AV DA ACH Ao S I R A i et P i g
i B . - - - - - S . - - - . - L - . . ‘. T “e

o

v
)

r, = v
¢L N4

v
'. -. l.
L AL 4 4,

%,
2%

J73AVS DATABASE 11/06/81 PAGE 2
ITEMIZED BY MODULE NAME

DATE OF LAST
NO, MODULE NAME TYPE STMIS UNITS OCMPLS DEFNS CREATION ALTERED

1. TYPES QMPL 7 1 0 1 11/06/81 11/06/81
2. EXTERNS a1PL 23 1 1 1 11/06/81 11/06/81
3. LOOKUP PROG 68 2 1 2 11/06/81 11/06/81
4. FINDP PROC 27 1 1 1 11/06/81 11/06/81
S. ERROR PROC 25 1 0 0 11/06/81 11/06/81
- Pigure 3(a). J73AVS Database Summasry
s
-5
o
J73AVS DATABASE 11/06/81 PAGE 3
ITEMIZED BY PROGRAM UNIT NAME
UNIT FIRST LAST
NO. UNIT NAME TYPE PARENT NAME MODULE RAME NEST STMT SIMT
1. TYPES orFL (COMPOOL) TYPES 0 1 7
2. EXTERNS OfPFL (COMPOOL) EXTERNS 0 1 23
3. LOOKUP PROG (MAIN PRGRM) LOOKUP 0 3 67
4. CONVERT PROC LOOKUP LOOKUP 1 S0 66
5. PINDP PROC (NON~NESTED) PINDP 0 4 26
6. ERROR PROC (NON=-NESTED) ERROR 0 2 24

RAARARL
O v‘n"-‘-v
PR

Figure 3(b). J73AVS Database Summary

4
'l" I" l“ l. "A‘ l")“c

* i

,
NN

A-16

NSNS
PNENERE A

| P LRILINE S |

B |

A a i aa s ah Rl 2" o N

s o a o 2 g"a o

S A a & s 8 z a

T T, W T T e r - vﬁﬁﬁv-ﬁrwrwfv]‘r'Y*t" F‘Y’V'W'V‘Y‘WF‘W\"Y" n?‘&"‘- ryvL.vywLyvLYw
LA TR P T I R R I N RV B IR RS IR MPYL IR AN SN a0 MR e I

0
LAt

L
:: M
\ EXECUTION TIMING REPORT 07/06/81 PAGE 2
- PROGRAM TIMES MIN MAX AVG TOTAL TOTAL
UNIT MODULE CALLED UNIT UNIT UNIT UNIT LEVEL
ERROR ERROR 9 2 4 3 24 24
TSTINST TSTINST 1 5 5 5 5 93
TSTABRT TSTABRT 1 4 4 4 4 4
TESTLOOP TSTINST 1 78 78 78 78 78
TESTIF TSTINST 1 6 6 6 6 6
CLOCK INTERVAL TIMES
START START END END TOTAL AVG
MODULE ST™T MODULE STMT COUNT TIME TIME
EBROR 23 ERROR 30 1 17 17
ERROR 27 TSTABRT 11 1 20 20
Figure 4, J73AVS Timing Report
BRANCHES NOT HIT REPORT PAGE 1
TEST CASE 1 07/06/81 TERMINATING AT STMT 27 OF MODULE ERROR
MODULE I TOTAL BRCHS PER I BRANCHES
NAME I BRCHS HIT CENT 1 NOT HIT
ERROR I 7 3 43 1 3 4 6 7
TEST CASE 2 07/06/81 TERMINATING AT STMT 7 OF MODULE TSTINST
MODULE 1 TOTAL BRCES PER I BRANCHES
NAME I BRCHS HIT CENT I NOT HIT
ERROR I 7 6 86 I 4
TSTINST 1 29 1 3 1 2 3 &4 S 6 1 8 9 10
I I 12 13 14 15 16 17 18 19 20
: 1 1 22 23 26 25 26 27 28 29
: TSTABRT I 13 3 23 1 3 4 6 7 8 9 10 11 12
8 I 1
[~
o
»
- CUMULATIVE
h -
- MODULE I TOTAL BRCHS PER 1 BRANCHES
1 BRCHS HIT CENT 1 NOT HIT

ERROR 1 7 7 100 I “NONE*

TSTINST I 29 17 59 1 8 9 13 16 19 20 22 24 25
I I

TSTABRT I 13 k] 23 I 3 4 6 7 8 9 10 11 12

Figure S. Branch Execution Coverage Report

A-17

L A N A " Balnt Ae el 8y y s DRI IR e D R AN RS AN g BN ST .
O S A L R N A N R R R N SR et . e PR L .
3
™

QAN o
Ay N
.'! i -4
~ 5
S a
- TEST COVERAGE SUMMARY

T
l‘ TEST CASE 1 07/06/81 TERMINATING AT STMT 27 OF MODULE ERROR

e I TEST CASE 1 CUMULATIVE

-‘:.- MODULE TOTAL TOTAL I NO.OF BRCHS PER SIMTS PER I NO.OF BRCHS PER STMTS PER

- ~ NAME BRCHS STMIS 1 INVKS HIT CENT HIT CENT I INVKS HIT CENT HIT CENT

‘~ ERROR 7 23 1 4 3 432 13 5772 I 4 3 432 13 572

o

X TEST CASE 10 07/08/81 TERMINATING AT END OF RUN EXECUTION

A

T 1 TEST CASE 1 CUMULATIVE

:;'_ MODULE TOTAL TOTAL I NO.OF BRCHS PER SIMIS PER 1 NO.OF BRCHS PER STMTS PER

:\r. NAME BRCHS SIMTS I INVKS HIT CENT HIT CENT I INVKS HIT CENT HIT CENT

s

Ng

'\.t' ERROR 7 23 1 0 0 0z 0 0z I 9 7 100% 23 100%

" TSTINST 29 78 1 0 16 55% S& 692 1 1 17 59% 61 782

. e TSTABRT 13 29 1 0 0 0z 0 0z I 1 3 23z 12 412

':. *TOTAL®* 49 130 1 16 332 S& 422 1 27 55% 96 74X
~.::~:

‘."':: Figure 6. Testing History Summary

Mo LOGICAL ASSERTIONS code, and the assertions still exist in the source

N This is a simple yet powerful technique in cods of the tool.
p - vhich the programmer inserts special statements

. called “assertions™ 1into the source code that OTHER FUNCTIONS OF J73AVS

"N specify the expected behsvior of the program at a Beeides those discussed above, J73AVS

o given point. This facility provides the most provides the following:
~' payoff when assertions are programmed duriag e indented source listings

™

>
A
s e e

R

P
[}

.
b .
12 8 » s

R
,
t,

S
PR ST

S
Vo
LYy

Chiing
T
'
i

3|
]

R
LA S

v‘v.'

CAR S

design or early coding stages. For example, the
assertion

"« ASSERT (STACK'POINTER >« 0) *

states that the value of the data item STACK'
POINTER is at least zero.

Assertions provide a very convenient way of
reporting execution-time deviations from expected
or required behavior and can be used for stress
testing, test~data generation, etc. After code is
thoroughly checked out, they can simply be left as
comments in the code (as shown above). Ome of the
instrumentation options provided by J73AVS expands
these statements into executable code; when the
expanded code is execured, violations of the
asserted conditions are reported as part of the
program output. For example, a negative value of
STACK'POINTER (above) would produce a message like

IN MODULE POP'STACK: ASSERT FALSE AT STMT 149

A special FAIL statement is also provided
for the programmer to use in specifying “contin-
gency code” for devistions from the asserted
conditions. In developing J73AVS, we made liberal
use of assertions to help us debug and test the

e single- or multi-module symbol cross
references with set-use information.
The J73AVS user can select symbol names
and/or data types.

L) static amnalysis to piopoint error-prone
coding practices, mismatched formal and
actual parameters (when the compiler is
unable to do e0), unused labels, data
contention in recursive or reentrant
procedures, possible infinite loops, and
unreachable code.

¢ instrumentation to provide statement or
branch execution counts and procedure,
branch, or user-specified variable

tracing.

e DEFINE name declarations and usage
cross-reference,

® wmodule and system interface descrip-
tions, including calling trees, etc.

SUMMARY

J73AVS 1s s tool that can lower software
production costs and improve software reliability.
It provides a framework for the use of standard-

A-18

L&

Y .'a ,
LAV

AT
v e
|}‘_

At
v‘nvl‘l:-'
PR T i
[I
B R

2

‘I.‘f_

R
G
e e

i)
R T TR
ST
..l‘-l

ized, organized testing measures, and 1is useful as
a software development and maintenance tool.

It can operate in either batch or interac-
tive mode and uses a flexible command language
complete with a "HELP" feature. Keeping J73AVS as

machine-independent as possible has been a goal .

throughout its development. Dynamic testing on
target computers can be performed by analyzing the
execution-data file, produced by any target that
can output sequential files to off-line storage,
on the host coamputer. Current and planned host
computers for J73AVS are the IBM 370, DEC 20, and
VAX 11/780.

ACKNOWLEDGEMENT

The design and development of J73AVS was
sponsored by the Rome Air Development Center,
Griffiss Air Force Base, New York, under comntract
F30602~79-C=-0265. The contract monitor was Mr.
Frank LaMonica.

REFERENCES

l. C. Gannon and N.B. Brooks, JOVIAL J73 Automated
Verification System Functional Descriptionm,
General Research Corporation CR-1-947, March
1980.

2. C. Gannon and R.F. Else, JOVIAL J73 Automated
Verification System User's Manual, General
Research Corporation CB-4-947, November 1982.

3. Maj. D. Burton, S. May, sad T. Pujaws, "A
JOVIAL Interactive Debugger,” NAECON 81, pp.
1121-1129.

4, $.0. Campbell and S.H. Said, “Embedded Software

Verification Through Instrumentation,” NAECON

81, pp. 395-401.

A-19

-

[

i
@
v

L]
e

oo A
_.! .‘l _“ _.I .Y .A

AT-38

J73AVS: A JOVIAL J73 Automated Verification System

Carolyn Gannon

AFSC Standardization Conference
Dayton, Ohio November 29 -
December 2, 1982

GENERAL
RESEARCH CORPORATION

P.O. BOX 6770, SANTA BARBARA, CALIFORNIA 93111-0770

3
~
.
-
L]
»
13

T,
. »

L
‘
'

€
agn gy
v

.
LY -
a0 @,

IV
v 4 3 2

J73AVS: A JOVIAL J73 Automated Verification System
Carolyn Gannon

General Research Corporation
P.0. Box 6770
Santa Barbara, CA 93111
805-964-7724

ABSTRACT

The development of J73AVS reflects the commitment of the Air Force
to facilitate JOVIAL J73 standardization. This paper describes software
verification as it is automated by the J73AVS tool. The concept of
software verification is discussed, as well as the capabilities and
operation of J73AVS. J73AVS provides much of its payoff by detecting
certain software errors and measuring the thoroughness of testing far
more accurately and efficiently than could be achieved manually. While
J73AVS operates as a standalone program on several host computers, it
augments the JOVIAL J73 support environment when used with other Air
Force-sponsored tools such as the code auditor [l], debugger (2], and
Program Support Library [3].

INTRODUCTION

What is "software verification"? According to the IEEE committee
on standardizing software terminology, it is

“the iterative evaluation of evolving software to ensure
compliance with requirements”

Thus, verification differs from validation or certification in that it
is an activity that is performed continuously throughout a software
development cycle. It incorporates a variety of automated and manual
techniques to determine consistency between the requirements, design,
coding, testing, and documenting stages of software projects.

Our focus in designing and building Automated Verification Systems
(AVS) for JOVIAL [4], FORTRAN [5], and COBOL (6] has been on static and
dynamic code analysis. That is, each AVS reads source code as input for
static analysis and uses the program's regular input data during dymamic
analysis. Therefore, requirements and design are not verified directly
by the AVS. However, because the AVS analyzes the actual code, the tool
reports true program characteristics. This approach interferes very
little with normal program development, since the AVS does not require
additional information other than the source code and initial set of
test data.

-
:J

v B
A LS AR OUCE AL AU SC OLSCNE I AL AN SRS AR AP S A E SR At Jy b bt A a IR s At S oy o g ARt it M AR g At s
“ .

Measuring execution coverage of statements, branches, and
program units

\-.:\

__\

Y

C

. One very important, but often neglected, area of software veri-

‘33 fication is that of ensuring that the program documentation reflects the

a;ﬁ real code. The most time-consuming aspect of conforming to Mil-Std-483

i\: or other documentation standards is generating program symbol, struc-

f:s ture, and interface information. Because it maintains a database of

LA intra- and inter-module characteristics, the AVS can generate some of .
3 this information automatically. As code is modified due to error :

correction or enhancements, the reports can be easily regenerated to

N reflect the changed code. In contrast, manually generated documentation

C is rarely up to date.

-\‘:.
(*1 J73AVS CAPABILITIES

et J73AVS should play a role in JOVIAL J73 software development as

:;f soon as some of the modules are compilable. The source code is gener-

o ated based upon a design, which in turn is based on a set of require- .
o ments. It is recommended that the expected program output (acceptance K
'ni: criteria) and at least an initial set of input test data be generated .
| concurrently with the program’'s design. The requirements, design, and

N acceptance criteria play an indirect role in J73AVS's analysis of the

o software.

o

- The types of J73AVS analysis capabilities are:
(° Static and data-flow analysis (symbol usage anomalies and

dangerous coding)

’:S; ° Reporting of program structure and characteristics

S
'3}) Execution tracing of variables, branches, and program units
RN
A . Execution timing
i;; ° Structural (branch) retesting assistance
Lo] Test history reporting
;ff Figure 1 shows how the requirements, design specification,

. acceptance criteria, and test data interact with J73AVS-supported

p testing. The acceptance criteria are used to judge the proper perform-
ot ance of the program. J73AVS provides detailed source analysis reporting
~ge which aids the analyst in determining that certain acceptance criteria
:4. are being met. The bold path marked number one in Figure | indicates
u:' the cycle of static code checking.

.‘;.
o
P
. A-24
l'-
N
e

S RN AT
W :_. :‘*.__i -n:-”&\a Ry ?:; & \“Q\ -rt::.::.::::: :., s e
’ '(. " e, "" [) L (X aX X' i) H 3 .":MJL&A

Iy

AL AP
R

R A
'v‘.ll

H

AR

-

A

Ao

. . v ¥ " - " " . . & L) \J (]) N ¥
RS L B A A A S St X hL L Gl Bl L E O -_4.‘ INE R R A T e A O A A A TR A

’JREQUIREMENTS

v

DESIGN ACCEPTANCE
SPECIFICATION

CRITERIA

Q

STATIC
ANALYSIS

AN- 59458

d
<

1

| 3

SOURCE PROGRAM |I 9

[/' CODE DOCUMENTATION ANALYST e

o

h

y

e 3

INSTRUMENTED EXECUTION ,]

SOURCE CODE ANALYSIS 3

3

TEST TEST | TEST 'i
DATA EXECUTION RESULTS]
R

I -*

N

o

()
T

Figure 1. Using an AVS ;

Once the static errors are removed, the program can be analyzed
dynamically by driving it with the initial set of test data. Dymnamic
analysis is indicated by bold path number two in Figure 1. J73AVS
outputs execution coverage, timing, and tracing information, along with
the normal program output, which aids the analyst in determining .
acceptable performance. Unexercised statements and branches are '
indicated by J73AVS so that additional test data can be generated to ;
ensure that all parts of the code are tested. Dynamic analysis,
therefore, is usually an iterative activity that continues until the
desired level of exercise is achieved. J73AVS maintains the coverage
levels for each test in its database,

As shown in Figure 1, compilable source code generally is first
analyzed by J73AVS to detect semantic errors that are outside the scope
of the compiler's static analysis capabilities. As each module is
analyzed by J73AVS, a database is built that contains single and
multi-module detailed characteristics. This database is used and
augmented each time additional analysis (static or dynamic) 1is requested
by the user, Thus, J73AVS is a partner in the development, testing, and
documentation phases.

A-25

e g e T T e TN W Wy o e W W T "o e,
. N...b".’:"..\ o, :\. ~’.-~'\-'} } .l‘.:‘ ~.-.\-~..h L ‘%\:’\"\.\:.\n' ':'.‘-[' s ‘o '(' \:\::...‘.- "‘
E A A AR N T I IO ‘f‘f\f\ B R Y 1\ S
S5 \.\\"\'.\-.v ¥ ", T AN Ty NN i
» . > » » a . Wa¥ Ve

o
o)

It should be pointed out that, because of the database feature,
J73AVS supports top-down code development in the following way.
High-level modules can be coded early with stubs (module skeletons) for
lower~level modules. Both fully coded modules and stubs can be input to
J73AVS for analysis and documentation. J73AVS includes the stubs in 1its
database. Module interaction and interfaces (COMPOOL usage and para-
meter passing) will be analyzed and reported to the extent that they
occur in the code. Then, as lower—level stubs are replaced with full
source code, J73AVS replaces the modules on the database.

A typical sequence of J73AVS-supported verification of fully coded
source modules is:

1. JOVIAL J73 source text, perhaps with assertions (Boolean
expressions, recognized by J73AVS, that specify expected
behavior), is read by J73AVS as one or more compilable
modules.

PSS
-.‘.‘.\'.'v" «
PRV RV

;‘

J73AVS produces program analysis reports showing control
structure, symbol usage, calling hierarchy, etc., as well as
a static analysis report showing errors and dangerous
programming practices.

H

-
-
AN
-

w

b s,

Using the reports as a guide, the source modules are changed
or new modules are added to the program.

~—

J73AVS reports the interaction of the new or changed modules
with the rest of the program. This information, in turm,
may show the need to modify other modules.

e
PR) Ay

v
LI

‘s
50

For debugging, the program is instrumented by J73AVS and
executed with an initial test case supplied by the user.

{
O\

I‘l

Assertion messages, variable, branch, and module tracing,
and execution timing reports can be used for debugging.

0 “oa
ot
LIPS

Using the J73AVS reports, the user chooses to create more
test data or instrument other modules.

1. I" ..

>

3

For testing, the same cycle of instrumentation and execution
is repeated, but for a different goal: rather than detecting
and locating errors, testing aims to demonstrate that the
entire program has been exercised to some degree. The
J73AVS execution analysis reports show the thoroughness of
execution coverage.

st

’
Al ‘.SJ

27
vl

.
o

v e
Ty

The user evaluates execution coverage reports, the program's
own execution results, and the program specification to
determine 1f testing is complete.

u ' 'l
l‘ 4
SN

" 1@
H

A AT A AT AL St ; AT e A AL PR ESA OO

T T e Ta g T, e y o DR b SORE SRt
) WSS CC ALY o, Wo o . ! S _a.\\;\"x(\ S .
W !’\ [} £} \ N ™ ,,, \. "

»

10. J73AVS provides branch sequence information to retest
targets chosen by the user. A test history of execution
coverage assists the user in choosing targets for retesting.

As just noted, J73AVS can be used to assist with several phases of
software development. These phases can be grouped as:

. Program development and maintenance
® Debugging
] Testing

° Retesting assistance

Program Development and Maintenance

Executable assertions provide a means for a programmer to specify
expected behavior. Assertions can be used for reporting execution-time
exceptions, stress testing, and manual or automated test data genera-
tion. When assertions are left as comments in the source code they can
be used as inline documentation of the program's specifications. An

example of an executable assertions is:
"+ ASSERT (STACK'POINTER >= Q)"

To assist with reliable system development and maintenance, J73AVS
provides substantial program analysis reporting on structural hierarchy,
symbol usage, invocations, certain J73 constructs, and system character-
istics. The user has control over obtaining high- or low-level infor-
mation through the tool's command language.

Debugging

Normal compilation using JOVIAL J73 compilers can detect many
syntax and semantic errors. Other errors, such as uninitialized
variables, possible infinite loops, unreachable code, certain improper
constructs, and dangerous coding practices (like transferring into CASE
or IF statements) will be reported by J73AVS. The user can specify the
degree of analysis to the error, warning, or message level.

Debugging is supported by assertion exceptions, variable and
module execution tracing, and execution timing reports. When the
program’s execution behavior deviateg from the acceptable logical
behavior as specified by the assertions, it is immediately reported in
the program's output. The user-embedded assertions have no effect on
program control flow until they are violated; at that time the violation
is reported with the source statement number of the assertions.

,.'.._._...~ o
. .“_ o .' [v e
LR “-\:n ‘ \ e .
o \Lu.u&h‘x‘..zh‘

k RIAIN | P RPN

RSO

._‘.,\-.\ .'.‘..’ o "r(.r'(r,"l AN '\v}hw'_rﬂ

. .
. L -*e e e e "y \ - RS - LML I e S W .
e . [-

:.'. '\.:.-:'.
F

B
g,y s
[A
. by %
PRSI O Y

AT,
N
it' Testing
;:{Q The primary purpose of program coverage analysis is to provide a
::3: measure of the level of testing. One measuring technique uses the
K- - program's control structure as a guide. Structure-based testing means
;:}: that the program’s control structures are analyzed for execution
o behavior; that is, whether the structures are exercised and in what
order. Structure-based testing can uncover errors due to untested

.7 branches or improper sequences cf branches. J73AVS provides program

3; unit or branch tracing and analyzes execution coverage of program units,
T branches, and statements. Further, J73AVS assembles the timing infor-
e mation from program unit tracing and user-directed timing probes into an
s execution timing report.

L\
A Retesting Assistance

Software is retested when analysis shows that prior testing is
. inadequate (insufficient branch coverage, not all functions demon-

® strated, etc.) or when program changes have taken place. The proper

approach to take 1in retesting is highly dependent upon the character-

.-ﬂ' istics of the program being tested as well as the measures being used to
ﬁSPi evaluate testing completeness.

o To determine the sequence of branches which lead to an untested

branch or statement, the user can request that the “"reaching set” be

. computed between two specified statements (or from a procedure's entry).
}i_ After the flow of control is identified by J73AVS, the user can back-
;{{} track through the program to the actual test data. New test data can be
TS created by using J73AVS module interaction, invocation, and execution
i?:} coverage reports. Unfortunately, automatic test data genmerators which
J use symbolic execution are not yet general enough, easy to use, or

EAEA reliable. Therefore, J73AVS has no test data generation capability at
Lo this time.

:;f. The testing history maintained by J73AVS is useful in attaining
e testing coverage goals and for determining targets for retesting.

® Procedure invocation and coverage information is saved in a concise way
0 for each test case. The results of subsequent execution rums can be
e added, providing a cumulative report of all tests.

g J73AVS OPERATION

Lot a

:kn J73AVS operates in either batch or interactive mode on a host

o computer. If the JOVIAL J73 code being analyzed is destined for

o execution on a target computer, the J73AVS dynamic analysis operation is
?%:Q modified slightly, as shown in Figure 2.
s
‘-

®

\._'.'
¥ '.._:.
P A-28

s
pre

o_

n L

?&_
A

f‘ 'n'-\

\. I
‘¢ ‘\ a\:

. e .
- A .-jq*:?.::'~"¢"a\3?1'1\ *} Ry
- hd o “ e’ ‘- @™ e . » -
X o ALY Y -\"\ N DALY \‘

;‘u'\

&
A

f
Q

* l,. R 23400

R LD M A O AR

v

PROGRAM
SCURCE

| DATA
‘e——{ BASE

AN-03019

I’_—____ " HOST] ’
L) BATCH | JOVIAL |

REPORTS J73 I

| COMPILER I

r— ———————— -

| TARGET| \

| h

|)

L «
PROGRAM PROGRAM '
REPORTS EXECUTION

Figure 2. Using J73AVS in a Host-Target Environment

The user directs J73AVS analysis through a simple command lan-
guage. The basic commands are verbs that select the type of analysis, .
followed by command parameters that specify the scope of the analysis or)
level of error reporting. As much as a whole program or as little as a
single symbol can be analyzed.

J73AVS displays or prints reports during static analysis. For
dynamic analysis, the instrumented source (augmented by expanded
assertions and by probes for execution coverage, tracing, or timing) is
passed to the JOVIAL J73 compiler. 1In a host execution environment,
input data is read by the program and normal program output is accom-
panied by an execution data collection file required for the J73AVS
post—execution analysis reports. J73AVS uses that file, along with its
database, to provide readable, user-selected reports that describe
execution behavior,

In a host-target environment, the target computer must have a
sequential output device such as a disk or tape to transfer the data
collected during execution back to the host. In the absence of any
sequential output device, the J73AVS data collection routines can be
modified to output test coverage information on the target in an
abbreviated manner.

o a- Sl aride st ey v g - el 9 g 5 A -y - - A) Fos radiiar - -
PN - DA et L . BN A SRR M i R el
L A T NN R T Lo T e, . ot . N R .

..
e e o
.
v
’

R
's

B

LA v e
e & ' . 3

J73AVS was developed for operation on IBM 370 and DEC 20 compu-~
ters. It is currently being rehosted to the VAX 11/780. J73AVS {is
written in JOVIAL J73, except for a few small input/output routines
written in FORTRAN. The VAX version of J73AVS is written in a struc-
tured dialect of FORTRAN,

o

Ay e |
v e Te 8y

e e

ACKNOWLEDGEMENT

AR .
.]

PR

St .

The design, development, and current rehosting of J73AVS is being
o sponsored by Rome Air Development Center, Griffiss Air Force Base, New
- York, under Contract F30602-79-C-0265. The project officer is Frank
;*: LaMonica, RADC/COEE. The VAX rehosting effort is being funded by the

= Embedded Computer Standardization Program Office (ECSPO), ASD-AFALD/AXS,
k‘i Air Force Wright Aeronautical Laboratory.

s
PO N T DI W AP YO SN W W I DU S U ¥

[4

NASA NS

SRt

R

-
]

TTTTT
L T N

A-30

B A

I - B T LT Yot i ot L v aw

AN RIS | ERC -'-.l DRIES Ll -, xS .‘_‘-‘ . ‘ Sy } L A AT A .1...-\.. . e \
e R _**«g\ns- SR N .;-.¢ st u.”xu-.u-n_r...i
> LS Y) - -)
b y X

'

M .Lh.u.&.mt

ot
'
.

. [T O W
* .

YT .
A ~
e
)

el
ot
of2' s
Pl
. .
S,

1.

2.

3.

4.

REFERENCES

Manual, Proprietary Software Systems, Inc., 16 March 1982.

L. Brownell and R. J. Gilinsky, JOVIAL (J73) Code Auditor User's

Maj. D. Burton, S. May, and T. Fujawa, "A JOVIAL Interactive
Debugger,” NAECON 82, pp. 1121~1129.

JOVIAL J73 Programming Support Library User's Manual, SofTech,

Inc., Jan. 1982.

C. Gannon and R. F. Else, JOVIAL J73 Automated Verification System
User's Manual, General Research Corporation CR-4-947, November

1981.

RXVP80"™ User's Manual, (Preliminary Draft) General Research

Corporation RM-2419.

P. Roberson, R. Melton, and C. Andrews, COBOL Automated Verifi-
cation System User's Manual, General Research Corporation

CR-4-970, May 1982.

PRI L P T T T T % TR N P I PR B PRt e et
T e L e L N L A
2R ! CaPi b Wt et e T T
" ": Ly - " > "..‘:-"'".\.\.~.:.. :‘ ".-. CRr
-

- R
& :
- 4
o APPENDIX B A
f; TERMS AND ABBREVIATIONS :i
f;' The following terms pertain to software verification and to the charac- o~
\ teristics of JOVIAL software. :;
-]
Assertion - 2{
Statement of a condition that must be true whenever control f-
" reaches that point in the program.,
\'E AVS -
. Automated Verification System. A computer program or collection
ii of programs which assists ir verifying the correspondence between
‘? software and the set of functional specifications defining the
ff software.
; Branch -
2 A continuously executable sequence of statements between two
decision statements. It may include unconditional transfers.
:t: Branch testing -
;:“ A testing technique that measures the number of executions of each
f branch in a module and computes a measure for testing thoroughness
3 in terms of the fraction of all branches executed at least once.
;f Data Flow Analysis -
;E A program analysis technique which tracks the usage of symbols
- through a program. The technique is used to detect uninitialized
ﬁ: variables and other program anomalies based on symbol usage and
F& control flow. The program is not actually executed.
<£‘ Dynamic Analysis -
“S A debugging or testing technique in which the program is executed
:& with data and the program output, together with any additional
'E execution-time reports, is analyzed for conformity to functional

or structural performance specification.

L Instrumentation -

The technique of automatically inserting software probes (sub-
routine calls or counters) into code or of translating special
statements (like an assertion) into executable code for the

purpose of collecting information during program execution.

| GRS | B AR CRER

Interface Description -

Information in the AVS describing global data passed between

modules.

R
s ‘a'a"a'a 2.

. - s

J73AVS -
An Automated Verification System for JOVIAL J73 Software.

NI A

JOVIAL J73 -
A JOVIAL programming language as defined in MIL-STD-1589B for

kil

command and control, avionics, and defense systems applications.

Module -
The smallest entity in JOVIAL J73 that can be separately compiled.

(Note the difference between module and program unit.)

P_a-t—h_
A continuous sequence of control flow (branches) between two
points in a program (usually between a program unit's entry and
exit).

Program Unit -
The smallest entity in JOVIAL J73 that can be invoked, or, in the

case of compools, referenced by name., In JOVIAL J73 program units

are compool-modules, main-programs, procedures, and functions.

Reaching Set -

A set of statements that incorporates all of the branches leading

-
3
5
t
3

to a specified statement.

Static Analysis -

cld k.o

A technique which analyzes program source but does not actually

execute the program. Program statements and symbols are analyzed

LA L J 5 3

to detect inconsistencies in semantics or in asserted versus

actual conditions.

B-2
WL > T ,: S L S T P R T e T e A T L Sh T it ot UL JS LY PRI
"_5\.“«. “ A .f i _”,' .'L\. DA SRR C LA LR O ::'\«.‘"’ NARL QAL CRRR NG "" “ \.’- j:: o ‘,-:, ': }‘,
. P e e T e e e et e \. A K
5 P ISP ALY N AL AT O AT A S A < & ~
N -J:A\:LA"J_A_-‘I;‘L}.‘.\‘.L..'_-‘!:.'r;.'_‘n_.\f_u ‘Pi““‘ \‘Ai 1.\.‘ .;).‘P‘ ‘Ff

LA A Al S B sl - Saie Sl il
R A AR A e i)

- P S - - PN - Fa - - - . PR . - - o o o

Test Target Selection -

The process of selecting a module, or a set of statements within a

module, to be executed with data for the purpose of improving the j

quality of testing. Goals for improving the quality of testing 3

may be exercising unexecuted branches, paths, or statements, 1

executing all boundary conditions, etc. b

=% 5

i S
‘g ‘1
. D
Ao N

o P ﬂ

&

»

v

'
il

;. .
i E\' ‘L’
I) K
2 N
[. -

[

N i

-3 P
.:,_3' .
Ld -
‘-kJ .

- N o
-.M: J
CaNt] J

Lt L
O AU

1

."‘b fig

':‘
)

.
o

L

] .l \ ll' ‘l “

¢

_",“’ AR

Dl
" v (Y
N " Uit}

)
o
[}

- e ..
oo
(:nan o«
NI R

.,,
2ty .
h

S,

AP SN .

watite ittt
8_w_ o _»

{

w?|

BOR RN S e WPt a s a ey L L Lt * . . te
. RE TR, e S S S Tt e ot A I IR S Tl I AN S I U AU ISR S A ST D A g AL

o APPENDIX C

LA '
J73AVS Processing and Reporting Commands

’. :
y
-‘:. :J
it Command (Defaults Underlined) 3
R READ {,ECHO} :
- STATIC {,DATA} {,SUMMARY/FULL}
o~ { ,LIST=ERRORS ,WARNINGS ,MESSAGES}]
- LIST +
e LIST,DATABASE {,UNITS} g
.'; _: ’,1
o INSTRUMENT { ,ASSERTIONS} {,COVERAGE} {,TRACE=BRANCH/ENTRY} R
o INSTRUMENT ,NEWTEST ,<m-name)> ,{stmt>]
3 INSTRUMENT , CLOCK ,ON=<m-name> ,{stmt> ,0FF=<m-name> ,{stmt> Y |
. INSTRUMENT ,VARIABLE ,{v-name> {,{start-stmt>},{<stop-stmt>} A
o INSTRUMENT ,GO. 5
5
o DOCUMENT , INVOCATIONS {,SOURCE} {,BANDS/BANDS=<n)>} -
N {,TREE} {,GLOBAL} .
(. DOCUMENT ,SYMBOLS { ,SOURCE/XREF} { ,NAMES=<s-name>,.«.} 5
_; DOCUMENT LABELS/TYP S/CNSTANTS/COMPOOLS/REFDEF {, SOURCE/XREF}

- { ,NAMES=<namel>,...} 1
s DOCUMENT ,DEFINES { ,XREF/EXPANSIONS/FULL} {,NAMES=<namel>,...} :
‘n% EXECUTION {,SUMMARY} {SOURCE} {,NOTHIT} { ,TIMING}

. EXECUTION,GO

v ASSIST,BRANCHES{{,<first stmt>},<last stmt>{,ITERATIVE}}

L:: ASSIST ,HISTORY{ ,RESET}

..

.J'_ -
- note: {} indicates optional parameter ?
o <> indicates user-supplied name R
/ 1indicates selection of one parameter h
. -
_"'\ All command keywords and parameters can be abbreviated to two or more letters. K
'.. 3
K R
‘.-‘ K
..V" .'
.:_-. Y
"]
@

-"T

:::' c-1

o

e

‘y
)

LR S)

-"' - ..-
-'--*.-"-r.-\ N

,-"\.- .1" \’r ’J"'f‘_.-_ _‘." "a,_ “ ,,yf'.f- -'\,'4' 'é\‘ at-‘~
yis % -;x'x .,x R

'
AT NE -r\r.

B i
R))

g
"

- lt')

v

.........
o« "o "e .

"' /l Il

MISSION

a4

..‘:.‘ ‘“.’ 7 "j" ",

selected acquisition progha Supp
Ca»mmnd (cations and Intelligence (C71)
and engineering Aupport wclun axeas
is provided to ESD Program Offices ;’l;
elements. The principal technical
communications, eleci nedi J QRO
veillance of ground and ww&me ob;w&, £nt j
collection and handling, {information system Lech notogy,
donospheric mopagauon, soud &m &mm, mi.eron
physics and electronic neli "
commtch

.
L T

e a0

L) l1 < "‘V, Ll
0N ¥

P
. .)

wy, - 2 o W W oWc ‘c.- 4 -l %t " - _‘c _‘b .-‘-4 ~‘\v ‘Q"\. \-_
. .tf ‘“""3".-:4':. 2.:":3"."":‘.' ol ‘u-'; :"*‘f _: v -' :1 SR .:._-:.:: NN
o' .“'\" gy -."\'. ARy s > No% \' L AT A

L 3 L) . .

5 N ,y
.'_ ~. ‘.'“' }\'

1-85

)

«
N
»

ASH ™ '\.,‘\ A
Y \"\‘\

et
L\ \-"

«

~ ™
NS

o
-t
Il

o

My

