
,AO-A148 732 JOVIAL J73 AUTOMATED VERIFICATION SYSTEM:
IMPLEMENTATION PHASE(U) GENERAL RESEARCH CORP SANTA

S BARBARA CA C GANNON MAR 84 GRC-CR-9-947 RADC-TR-84-33
UNCLASSIFTED F38682-79-C-0265 F/6 9/2 NI

EEECAShEonhEsomhmmhI
mhhhhhhhhhhhml
smmhhmhhhohhh
SEhhhEhESEE
II.'.ESSSS

IN11 1. 82

111111.25 11111_L.4 1 1.

MICROCOPY RESOLUTION TEST CHART
NATINAL fiREAU -)F STANDAR~DS 1-b3 A

'p

SI%

*15

AD-A 148 732

........

~4R,

-f 1-*

-c Asj. P

'.4. V.

0'~..

.4 .4.4"V
'p

* *1

V

-. 4 V

"-.4-v
-. 4.-.

4,.'

.4.Y*

".4,'

.4'..

- *.p

S

4'.V

*s V
"A
'.4.4.4%

VA
V

.4...

.4'

.4.4.

5.44'
V

A

V.
.4-

V

V
.4-
'.4

.4 ' ~ * <~. ~ ~*~w~%

UNCLASSIFIED A.
SECURITY CLASSIFICATION OP THIS PAGS A Dl A j ~ g~

REPORT DOCUMENTATION PAGE
I& REPORT SE[CURITY CLASSIFICATION 1L. RE1STRICTIV6 MAARKIGS

UNCLASSIFIED N/A
2& SECURITY CLASSIFICATION AUTHORITY 3. OiSTRISUTIONIAVAILASILITY OP REPORT

N/A Approved for public release;
3. OECLASSIFICATIONIOOW01NGNAOING SCHEDULE dist ribut ion unlimited.

N/A __________________

4L PENPORMING ORGANIZATION RE1PORNT NUM1ERIS14S. MONITORI NG ORGANIZATION RGPORT NUMSaR(S1

CR-9-947 RADC-TR-84-33

0&. NAM@ OP PERFPORMING ORGANIZATION IL OFFICE SYMDOL 7&. NAMEOP MONITORING0 ORGANIZATION

General Research Corporation Rome Air Development Center%

Santa Barbara CA 93111 Griffiss AFB NY 13441

Ow NAME OP PUNOING)SPGNSORING ~ .OPPICS SYMOOL 96 PR1OCUREMENT INSTRUMENT IOGNTIPICATION NUMSER
-'ORGANIZATION Ifpmob

Rome Air Development Center j COEE F30602-79-C-0265
ft. A00N10ES (City. Stft Md ZIP COW) t0. SOURCE OF FUNDING MOS.

PROMGRAMO. PROJECT TASK WORKC UNIT

ur...~s5AP NY±JJ. LEENTO. NO. NOX NO,

1.TTE63278F 2532 02 06

_J0VTAL -173 AUTOMATED VERIFICATION SYSTEM - IMPLEMENTATION PHASE
* 12. PERSONAL AUI140R51

Carolyn Gammon
13& TYPE OF REIPORT 13b. TIM@ COVERED14 DATE OP REPORT (. . &w ISL PAGE COUNT

Final IPROM May80 TO Sep83 14 March 1984 0" 86
IS. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 11. SUEJECT TIKRME (conama on 'uWmi.1fX6mr amd idmmy 6V 66"k aamh

P1ELO GROUP SUE. GR. Veiicto Static testing

(1 2Software testing Dynamic testing

IS. AESTRACT (Comsrn m - ,WW It assgm wed Ibin~ft by 61wh nombn'D

- The JOVIAL J73 Automated Verification System vas developed under sponsorship by the
Rome Air Development Center (ILADC) at Griffiss AFB NY, under Contract F30602-79-C-0265.

The resulting Jof '3AS) is an Interactive computer program that analyzes any source
code written in JOVIAL J73. The primary objective of J73AVS is to provide static and
dynamic testing assistance. To do this, J73AVS detects a variety of semantic and data

* flow errors, reports execution coverage (i.e., frequency of statements, control branches,
ft-. and procedures executed by each test case), reports execution timing (in terms of CPU milli-

seconds) for procedures or certain user-designiated portions of the JOVIAL J73 program,

reports execution tracing (ordering) of control branches or procedures, and keeps track of

the test coverage history from run to run. To assist with function testing of programs,
J73AVS provides a local assertion construct which triggers an output message when it is

* ________________________________(See reverse)

* ~ 2 DE IGTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT UCUNIT'v CLASSIFICATION

*UNCLASSIFO/UNLIMITGO 9)SAME AS NPT. C 0160 UasR 0 UNCLASSIFIED

22&. NAME OF RESPONSIBLE INCI VISUAL 2LTELEPHONEs NUMEER S OFFICE SYMBOL%

Frank S. LaMonica (315) 330-3977 RADC (COEE)

DOPORM 1473,83 APR EIIGNf O91 JANM 7S If OBSOLETE. UCLASSIFIED
SECtRITY CLASSIFICATION OF THIS PAGE

.n7,-

UNCLASSIFIED
8CUIrY C.LiAWPICATION OF tM4s PAGE1

J73AVS also provides a large number of source analysis reports, ranging from symbol cross

references and descriptions of symbol usages to procedure calling trees and descriptions
. of all procedures being.analyze4. These reports are -ery/useful for original code

development, rehosting"'foreig'!) code, debugging and testing, code enhancement, and code
maintenance.

This reportgdescribes the features of J73AVSin a brief mannert the history of the project,
documents and technical papers resulting from the project, and pecific details on how to
obtain the J73AVS software and selected project reports. Also included are implications on
further research in software engineering as it pertains*o J73AVS.

. 41

.o %

-.-

'I

.1..-,,

.6 %

%++1%

S.

, -SA

y ,, UNCLASSIFIED

".?' ,, ' ,+. .. ., '.v .' '.. ''..''''."-",-.".., , .,. ,.,-... . . -, ,- ,5, _._. ,. . .~ . .

- * * * 4 4 . >-. . - - -. ,-...

V.

%. ..

*..
' ..

i t
" CONTENTS "

SINTRODUCTION I

2 OVERVIEW OF CAPABILITIES 3
2.1 J73AVS Operation 3
2.2 Role in the Software Development Cycle 5

3 PROJECT HI STORY 11
3.1 Project Goals 11 "4i-
3.2 Project Deliverables 11
3.3 Project Activities 12
3.4 Project Administration 13'.,. .

4 J73AVS AVAILABILITY 15 0.
.4.

5 RELATED DOCUMENTS 19

6 IMPLICATIONS FOR FURTHER RESEARCH 31 K'.:
6.1 Testing Embedded Software 31
6.2 Enhancements for Improving Software Retesting 33
6.3 Aids for Software Measurement and Project Management 35

APPENDIX
A TECHNICAL PAPERS
B TERMS AND ABBREVIATIONS
C J73AVS PROCESSING AND REPORTING COMMANDS

9v I

°.4%

• . .'

I "'a 1 --~ ._ .-- *"---4-

Dist SPC
. a-.- .

'4i

-
4 O_

* * ** ~% ~ . & ** . . .

FIGURES

- *NO. PAGE

2.1 Overview of J73AVS 4

2.2 J73AVS Interaction with User 6

2.3 Role of J73AVS in the Software Development Cycle 7

-4 TABLES

NO. PAGE

4.1 J73AVS VAX Installation at Wright-Patterson 16

4.2 J73AVS IBM-Equivalent Installation at Wright-Patterson 17

4.f

IleZ-

kkU&AM

- 1 INTRODUCTION

The JOVIAL J73 Automated Verification System was developed under

sponsorship by the Rome Air Development Center (RADC) at Griffiss Air Force

Base, NY, under Contract F30602-79-C-0265.

The resulting tool, J73AVS, is an interactive computer program that
analyzes any source code written in JOVIAL J73. The primary objective of

J73AVS is to provide static and dynamic testing assistance. To do this,
J73AVS detects a variety of semantic and data flow errors, reports execution

coverage (i.e., frequency of statements, control branches, and procedures

executed by each test case), reports execution timing (in terms of CPU

milliseconds) for procedures or certain user-designated portions of the JOVIAL

J73 program, reports execution tracing (ordering) of control branches or

procedures, and keeps track of the test coverage history from run to run. To

assist with functional testing of programs, J73AVS provides a local assertion

construct which triggers an output message when it is violated.

J73AVS also provides a large number of source analysis reports, ranging

from symbol cross references and descriptions of symbol usages to procedure

. calling trees and descriptions of all procedures being analyzed. These

reports are very useful for original code development, rehosting "foreign"
code, debugging and testing, code enhancement, and code maintenance.

"' J73AVS features and its ease of operation are described more fully in
Sec. 2. Since the contract has had two major phases (test tool study and tool

implementation), the project history is covered in Sec. 3. J73AVS avail-

ability and installation configuration are discussed in Sec. 4. Each deliver-

able document is briefly described in Sec. 5 along with information concerning
how to obtain each report.*5'

Following the overview of J73AVS capabilities in Sec. 2 is a discussion

in Sec. 6 of possible future research regarding J73AVS. Three conference

papers resulted from the development of J73AVS. These are reprinted in

. 1

Appendix A. Terms and abbreviations common to J73AVS are provided in Appendix
B. J73AVS operates interactively, driven by simple user commands. The

commands that direct J73AVS to either perform some activity or to report

specific results are given in Appendix C.

-.

.

% %

'S

'a.'

.)N .. ,* * aa. * *- ' .a
* , % * ..:* <'*4'

2 OVERVIEW OF CAPABILITIES

J73AVS can operate in either batch or interactive mode. The user

directs J73AVS through a command language; each major processing activity has

a command keyword associated with it and command parameters are used to

specify processing or reporting options. The type of processing and its

general sequence are shown in Fig. 2.1. While. the flowchart in Fig. 2.1 shows

a number of processing activities, J73AVS performs a number of them collec-

tively when a user gives a J73AVS command. Prompts are output by J73AVS if

commands are incorrect, out of order, or prerequisite information is needed.

J73AVS process and reporting commands are given in App. C.
.d m

2.1 J73AVS OPERATION

One or more JOVIAL J73 source modules (compilation units) or J73 COPY

texts are supplied to J73AVS as input. There are no restrictions on the

length of modules. Up to 250 modules can be stored on the J73AVS database.

The source text must be in the same form as if it were being input to the

JOVIAL J73 compiler. Job control setups are provided in the User's Manual

(Appendix B for the IBM and in Appendix C for the VAX).

The source text for an entire program need not be supplied to J73AVS for

static and data flow processing and for procuring automated reports. Some

"'p modules may be supplied as stubs (e.g., module heading, possibly some logical

assertions describing the function, and a return) or not at all. J73AVS

builds a database of module interface information, which can be saved and

re-used from run-to-run during program development or testing. Therefore,

J73AVS can be used to incrementally build and test software. Updated modules

automatically replace old ones on the J73AVS database. This database is

highly compressed, even though it contains a wealth of information about the

user's source code. The saved database is approximately three times the size
of the user's source code file.

Execution analysis by J73AVS requires instrumenting the source text,Fl which J73AVS performs automatically when the user requests it. Anywhere from

one J73 procedure to all the source modules available on the database can be

Il 3

P % V %,

/.€., -,.-.'... €•,,,.-%,".r. . .'.-%., . #%.(... . . 'O'.j.2. "_32 _',.,. .'O~e".,_,,%, ., "..". ', ..%? "."&,..-A ", ..".'. "- ,,,

h• .. b .- h, W*, J. , .*,, b L,, ... ,. - j .- ,-%,r.-. .r-. - .. w.- .. ,,,.-. .- . ,..

'I6'O

One or more modules of JOVIAL J73 source Lode
JOVIAL is input for processing and analysis. The
SOURCE source code may contain J73AVS executable

assertions.

SOURCE TEXT J73AVS generates a directed graph of the

control structure. All syntax, semantics,
ANALYSIS, and structural information is stored on

.. TRUAUALY a database. Additional or changes to the source '.

code causes an existing database to be updated.

STATIC

ANALYSIS Possible errors, warnings, and dangerous
B DATA FLOW programming practices are reported.- Branch sequences ANALYSIS
and test history
are reported.

Reports for program
NG PROGRAM ANALYSIS documentation, debugging,
NCE REPORTING maintenance, testing and

retesting are produced.

Software probes are automatically inserted
CORRECT STRUCTURAL & for dynamic analysis of execution coverage,

SOU ASSERTION and tracing. Timing probes and assertions
INSTRUMENTATION are translated into executable code.

TEST EXECUTION, Program execution produces a data collection

DYNAMIC DATA audit file for analysis by J73AVS. Assertion

COLLECTION violations and tracing output appearJ interspersed with normal program output.-.

SEXECUTIO Execution coverage is reported by
ANALYSIS testcase and by set of testcases. Execution

timing is reported once for the entire run.

I
4

• W,- INSTALL PROGRA.'

• w'Figure 2. 1. Overview of J73AVS

A4

Lz~z . . 4.%%

instrumented. J73AVS outputs the instrumented source as a complete module,

ready for input to a JOVIAL J73 compiler. To obtain J73AVS output for

assertion violations, timing, coverage, or tracing, the program (with some or

all modules instrumented) is executed with test data supplied by the user.

Programs instrumented for tracing or assertions will produce short messages

from J73AVS, interspersed with the program's own output, during execution.

For coverage and timing analysis, program execution in the J73AVS environment

differs from normal program execution in the following ways: (1) one or more

modules have been instrumented before compilation, (2) a small J73AVS data

collection routine is loaded before execution, and (3) a J73AVS audit file is

written during execution. This file is used by J73AVS to produce reports for

coverage and timing analysis. The J73AVS database is not used during the

program's execution. These major functions and data files are illustrated in

Fig. 2.2.

Ao.

Although J73AVS exists as a single program, it is best considered as a

collection of tools that interact with the user. Some of the facilities, such

as automated documentation, static error reporting, and instrumentation are

*. completely automated and require only that the user initiate the tasks. Other

.. processes, such as execution-time data collection or retesting assistance,

.' require more information. The user must provide test data and select the test

targets.

J73AVS provides detailed information about the static and execution-time

behavior of the program. The user directs the processing performed by J73AVS,

analyzes the output produced by J73AVS, and determines subsequent action.

2.2 ROLE IN THE SOFTWARE DEVELOPMENT CYCLE

The role of J73AVS in the software development cycle is to provide

automated assistance wherever possible during program development: coding,

debugging, testing, maintenance, and retesting. J73AVS users play an active

part in the cycle, as shown in Fig. 2.3. This figure breaks up the develop-

ment cycle and shows the flow of control and information between J73AVS and

the user.

5

...

% %, .% %-

* - . b . .* L * .- ,. .m _".oN.

SOURCE TOOLS ATEXT

MENTED

jS RCE

BATCH JOVIAL TES
REPORTS J73 PROBE

• COMPILCER DATA

,0-4 r j
PROGRAM PROGRAM
REPORTS EXECUTION

Figure 2.2. J73AVS Interaction with User

'. Using Fig. 2.3 as a basis, a typical sequence of J73AVS-supported

operations is:

1. JOVIAL J73 source text, perhaps with assertions, is read by J73AVS

as one or more compilable modules.

2. J73AVS produces program analysis reports showing control struc-

ture, symbol usage, calling hierarchy, etc., as well as a static

analysis report showing errors and dangerous programming prac-

tices.

O 3. Using the reports as a guide, the source modules are changed or

new modules are added to the program.

4. J73AVS reports the interaction of the new or changed modules with

-.. the rest of the program. This information, in turn, may show the

need to modify other modules.

6

.,.
ve%

SOFTWARE LIFE-CYCLE PHASES

PROGRAM DEVELOPMENT/ TETIG
* MAINTENANCE I DEBUGGING TSIG

MANTNAC RETESTING

4~BUILD MODIFY DEBUG GNRT
'aZ MODULES MODULESTETCSS ET

>

0 GENERATE IDNTF OBANANALYZE IPROVIDE
I-PROGRAM PERFORMANCE INSTRUMENT ITEST IRETESTING

< EOT INTERACTION AND ASSERTION EXECUTIO ASSISTANCE

Figure 2.3. Role of J73AVS in the Software Development Cycle

5. For debugging, the program is instrumented by J73AVS and executed

with an initial test case supplied by the user.

6. Assertion messages, variable and module tracing, and execution

timing reports can be used for debugging.

7. Using the J73AVS reports, the user chooses to create more test

data or instrument other modules.

8. For testing, the same cycle of instrumentation and execution is

repeated, but for a different goal: rather than detecting and

locating errors, testing alms to demonstrate that the entire

* program has been exercised to some degree. The J73AVS execution

* analysis reports show the thoroughness of execution coverage.

9. The user evaluates execution coverage reports, the program's own

execution results, and the program specification to determine if

testing is complete.

10. J73AVS provides branch sequence information to retest targets

chosen by the user. A test history of execution coverage assists

the user in choosing targets for retesting.

7

•~ %' :

%** .-. %

": -

Program Development and Maintenance

Executable assertions provide a means for a programmer to specify

expected behavior. Logical condition assertions can be used for reporting

execution-time exceptions, stress testing, and manual or automated test data

generation. When assertions are left as comments in the source code they can

be used as inline documentation of the program's specifications.

To assist with reliable system development and maintenance, J73AVS

provides substantial program analysis reporting on structural hierarchy,

symbol usage, invocations, certain J73 constructs, and system characteristics.

The user has control over obtaining high- or low-level information through

the tool's command language.

Debugging

Normal compilation using JOVIAL J73 compilers can detect many syntax and

semantic errors. Other errors, such as uninitialized variables, possible
* infinite loops, unreachable code, certain improper constructs, and dangerous

coding practices (like transferring into CASE or IF statements) will be

reported by J73AVS. The user can specify the degree of analysis to the error,

warning, or message level.

Debugging is also supported by assertion exceptions, variable and module

execution tracing, and execution timing reports. When the program's execution

behavior deviates from the acceptable logical behavior as specified by the

assertions, it is immediately reported in the program's output. The user-

*" embedded assertions have no effect on program control flow until they are

violated; at that time the violation is reported with the source statement

number of the assertion.

* Testing

The primary purpose of program coverage analysis is to provide a measure

of the level of testing. This measuring technique uses the

program's control structure as a guide. Structure-based testing means that

* the program's control structures are analyzed for execution behavior; that is,

8

,% t

.. whether the structures are exercised and in what order. Structure-based

testing can uncover errors due to untested branches or improper sequences of

branches. J73AVS provides program unit or branch tracing and analyzes

A execution coverage of program units, branches, and statements. Further,

. J73AVS assembles the timing information from program unit tracing and user-

directed timing probes into an execution timing report.

Retesting Assistance

Retesting software is performed when analysis shows that prior testing

is inadequate (insufficient branch coverage, not all functions demonstrated,

etc.) or when program changes have taken place. The proper approach to take

in retesting is highly dependent upon the characteristics of the program being

tested as well as the measures being used to evaluate testing completeness.

Section 2 of the User's Manual provides a methodology for testing and re-

testing software for the purpose of improving structural-testing completeness.

To determine the sequences of branches which lead to an untested branch

or statement, the user can request that the "reaching set" be computed between

4,- two specified statements (or from the program unit's entry). After the flow

of control is identified by J73AVS, the user can backtrack through the program

to the actual test data, New test data can be created by using J73AVS module

interaction, invocation, and execution coverage reports. Unfortunately,

automatic test data generators which use symbolic execution are not yet

general enough, easy to use, or reliable. Therefore, J73AVS has no test data

generation capability at this time.

The testing history maintained by J73AVS is useful in attaining coverage

testing goals and for determining targets for retesting. Program unit and

coverage information is saved in a concise way for each test case. The

-0* results of subsequent execution runs can be added, providing a cumulative

report of all tests.

'.

9I
%•°.

V % ,

[-.. 4 *%-,* **.

3 PROJECT HISTORY

3.1 PROJECT GOALS

The J73AVS contract was awarded in September 1979 during the period of

final JOVIAL J73 language definition. I1 2 The primary goals of the project

" were to identify useful automated testing techniques for the new dialect of

JOVIAL and to develop an automated tool that incorporated the best and most

feasible of the identified techniques. The intent was to make such a tool

available to Air Force contractors shortly after the JOVIAL J73 compilers

became available. Therefore, the project was in two parts: (1) a six-month

Nstudy phase and (2) a seventeen-month implementation phase (separated by a

short project review period).

3.2 PROJECT DELIVERABLES

-.: The basic contract called for delivery of J73AVS, written in JOVIAL J73,

* ~- on two computers: the ITEL AS/5-3 (OS/MVS) at the Aeronautical Systems

Division Computer Center (ASD/AD) at Wright-Patterson Air Base and the DEC20

(TOPS20) at RADC. Modifications to the contract resulted in one delivery of

* J73AVS written in structured FORTRAN first, then in JOVIAL J73, on the Amdahl

" 470 (TSO, OS/MVS) at ASD/AD, a partial delivery on the DEC20 at RADC, and a

delivery in structured FORTRAN on the VAX 11/780 (VMS) at ASD/AD.

Two sets of J73AVS training classes were given at ASDIAD: one for the

Amdahl3 (the IBM 370-equivalent version of J73AVS) and one for the VAX (the

%41 VAX version of J73AVS). Both fully delivered versions of J73AVS underwent

formal acceptance testing. The VAX version included a six-month maintenance

period. Both versions of J73AVS are functionally equivalent.

IMIL-STD-1589A, Military Standard JOVIAL J73, March 15, 1979.
2MIL-STD-1589B, Military Standard JOVIAL J73, June 6, 1980.
3 The Amdahl computer at ASD was later replaced by an NAS 7000 (another IBM
370-equivalent computer).

"' % %* VV. :-" : .:.. , ...- .' ., .', .. , . -.".:-, ', -, -. .. -. ;-.-Z- : .-' -::-.. -. %---" %- .-. - ;.; _ .. ,,!X . :.•~~~~~ ~~ r" "2:-"::' ":

S. 3.3 PROJECT ACTIVITIES t

The primary project activities can be highlighted as follows:

_ Sept. 1979 - Study phase began.

* Jan. 1980 - Preliminary J73AVS design briefing given at the

JOVIAL User's Group. Solicited input on desir-

able J73AVS capabilities.

" March 1980 Study phase reports I delivered:

1. Functional Description

2. System/Subsystem Specification

3. Final Report

0 May 1980 - Implementation phase began.

* July 1980 Gave status briefing at the JOVIAL User's Group.

Solicited input on what J73AVS analysis is

desired for the J73 DEFINE construct and how J73

programmers plan to handle input and output.

* August 1980 - Contract modified to add J73AVS analysis of

MIL-STD-1589B.

0 October 1981 - Test plan delivered for the Amdahl host.

- Nov. 1981 - Formal acceptance testing and training course

given on the Amdahl at ASD/ADOL. User's Manual

delivered.

0 June 1982 - Contract was modified to translate J73AVS from

*structured FORTRAN to JOVIAL J73 on the Amdahl

and complete a data flow analysis capability.

- Sept. 1982 - Contract modified to add structured FORTRAN

version of J73AVS on the VAX 11/780, along with

- six months of maintenance.

All reports are listed in Sec. 5.

12
4.

*,.. (e4..., %A,... %..... , ,.... %... . .

, .. ';,e ,', .. ,,, • ... ,,',',",. . /. ./.',;. A4 -.*. 4 ,'...,',. .. .%'.%C'-. 'f. .f.. .,... . ..

-..

, Nov. 1982 Formal acceptance testing on the J73 Amdahl

version of J73AVS. DEC20 version partially

installed.

. Dec. 1982 - Program Specification and Program Maintenance

-' manuals delivered. Final Amdahl J73AVS User's

Manual delivered.

" March 1983 VAX J73AVS installation completed. Acceptance

testing and training performed at ASD/AD. New

User's Manuals issued containing both IBM-

equivalent and VAX operating instructions for

J73AVS *

M May 1983 - VAX J73AVS Program Maintenance Manual delivered.

, Sept. 1983 - End of contract. Final VAX and Amdahl versions.p

4.. delivered to ASD/ADOL. Final Report delivered.

Final Program Specification delivered.
-£

3.4 PROJECT ADMINISTRATION

The contract has been sponsored and administered by RADC, with project

monitoring performed by Frank S. LaMonica. VAX rehosting and maintenance were

funded by the Embedded Computer Standardization Program Office (ASD/AXS).

.13

"p

-% %

i'a
5"* .

..

'

,% -. % 7..

4 J73AVS AVAILABILITY

J73AVS is available in source or binary object form from the Language

Control Facility (LCF) at Wright-Patterson Air Force Base. The J73AVS User's

Manual, Program Maintenance Manual (both described in Section 5), and a

version description document are also available through the LCF. J73AVS

software is distributed on 9-track, 1600 bits-per-inch magnetic tape. The LCF

point of contact is:

Georgeanne Chitwood

ASD/ADOL

WPAFB, Ohio 45433

513-255-4472

AV785-4472

The LCF can provide distribution tapes for either the VAX or IBM

-. 370-equivalent versions of J73AVS. A summary of each installation configura-

tion is provided in Table 4.1 for the VAX and Table 4.2 for the IBM.

4; I
se'.

.1k15

F.

". .

*0'"j

0).: ; , .::i: i ! . .' :: : " "-:-:"'. . ." .. " ,. . ,:." " i!:-

-. .-. -. 7. • k . -:. . . . _ . 7- 7' T, - 7 Z7 K- -7 77 V.

-S7.

TABLE 4.1

J73AVS VAX INSTALLATION AT WRIGHT-PATTERSON

%p

Date September 27, 1983

Version VF092783

Computer VAX 11/780

Operating System VMS 3.2

Source Language JTRAN (Structured FORTRAN)

Preprocessor JTRAN (generates ANSI FORTRAN-66)

Compiler VAX-I1 FORTRAN V3.3-45

Vr5

Non-Standard Features None

Configuration ANSI FORTRAN 66
Internal J73AVS assertions disabled

Memory Requirements Depends on host VAX system parameters.
A host with a minimum of IMB of core is
recommended for reasonable performance.

Executable Task Image Size J73AVS.EXE needs approximately 800

disk blocks

,9-.

16

4e
J-

**- ..
......

• es"

b.b .h '.I

p TABLE 4.2

J73AVS IBM-EQUIVALENT INSTALLATION AT WRIGHT-PATrERSON

)ate September 27, 1983

Version IBMJ092783

Computer NAS 7000 (IBM 370 equivalent)

Operating System Multiple Virtual System (MVS) 3.8

Source Language MIL-STD 1589B JOVIAL/J73
(utility routines in FORTRAN and
assembler)

Preprocessor None

Compilers JOVIAL/J73 Version R0201-03.000 (040183)
FORTRAN H Extended
IBM Assembler

Non-Standard Features FORTRAN I/O
BAL FDS-member access system routines
(provided by SofTech, Inc.)
JOVIAL J73 PDS-member access utilities
BAL CPU-clock access routines

Configuration Batch, Interactive
Non-overl1ayed

JOVIAL/J73 code is not optimized

Core Memory Requirements: 954K Bytes (non-overlayed, non-optimized)

Executable Load Module: A790684.J73AVS.LOADMOD(J73AVS)

17 IVI
%A % %

So* %.S.* %,..I: ~**'.** '~*'~'~ 1

iS.

.5 RELATED DOCUMENTS

This section contains descriptive information on each documentation item

that was delivered under the contract. The format for this information is the
report title, abstract or purpose of the document, followed by the report's

table of contents. For the Training Course workbook, the course agenda is

provided as a description.

,@

19S

J..

%..

-pw

I'
ele.' V *** *. ,".,'".9 .

'S -,

1. Title: JOVIAL J73 Automated Verification System Functional Descrip-
tion

Report No.: CR-1-947

Authors: C. Gannon, N.B. Brooks

Date: March 1980

Abstract:

This report describes the functions of an Automated Verification System
e.." (AVS) for the JOVIAL J73 computer language, from the point of view of the

user. The purpose of the AVS is to improve the reliability and maintain-
ability of JOVIAL J73 software. The internal operations of the AVS are
described in another report, the System/Subsystem Specification.

Table of Contents:

CONTENTS
SECTION PAGE

ABSTRACT i
1 GENERAL 1-1

* 1.1 Purpose of the Functional Description 1-1
1.2 Project References 1-1

1.3 Terms and Abbreviations 1-2
2 SYSTEM SUMMARY 2-1

2.1 Background 2-1
2.2 Objectives 2-4
2.3 Existing Methods and Procedures 2-5
2.4 Proposed Methods and Procedures 2-9

3 DETAILED CHARACTERISTICS 3-1
3.1 Specific Performance Requirements 3-1
3.2 System Functions 3-12
3.3 Inputs - Outputs 3-60
3.4 Data Characteristics 3-63

4 ENVIRONMENT 4-1
4.1 Equipment Environment 4-1
4.2 Support Software Environment 4-1

5 COST FACTORS 5-1
6 SYSTEM DEVELOPMENT PLAN 6-1

S 6.1 Introduction 6-1
6.2 Implementation Requirements 6-1
6.3 Target Systems 6-5
6.4 Acceptance Testing 6-8

V- 6.5 Maintenance Service 6-10
6.6 Software Maintainability 6-11

02

SC.

6-I

-.............. --.- **°

2. Title: JOVIAL J73 Automated Verification System System/Subsystem
Specification

Report No: CR-2-947

Authors: C. Gannon, N.B. Brooks

Date: March 1980

Abstract:
This report defines the software functions, database, and system

interface for the J73 Automated Verification System. A summary of the
system's requirements and capabilities is provided as background. The
software functions are described according to each independent processor
segment. The database is described in terms of data structures, management of
the database, and usage by each processor segment.

Table of Contents:

CONTENTS

SECTION PAGE
ABSTRACT i

I GENERAL 1-1
1.1 Purpose of the System/Subsystem Specification 1-1
1.2 Project References 1-1
1.3 Terms and Abbreviations 1-8

2 SUIMARY OF REQUIREMENTS 2-1
* 2.1 J73AVS Implementation 2-2

2.2 System/Subsystem Functions 2-7
2.3 Flexibility 2-10

3 ENVIRONMENT 3-1
3.1 Equipment Environment 3-1

3.3 Interfaces 3-3
4 . DESIGN DETAILS 4-1

4.1 General Operating Instructions 4-1
4.2 System Logical Flow 4-1
4.3 System Data 4-9
4.4 Program Description 4-12

[1. 1

'> 21

6

% K

3. Title: JOVIAL J73 Automated Verification System Final Report: Study
Phase

Report No: CR-3-947

Author: C. Gannon

Date: March 1980

Abstract:

This report is primarily a review of the state-of-the-art of software

testing and verification with emphasis on techniques applicable to JOVIAL J73
programs. Since the project concerns the development of computer-based tool,

the need for such a tool, the capabilities for the tool, and the high-level C-.
" design of the tool are also described. Future capabilities for the tool are

identified.

This report is also available from the National Technical Information

Service (NTIS), 5285 Port Royal Road, Springfield, Virginia, 22151. Reference
RADC-TR-80-261, accession number A091-190.

Table of Contents:

CONTENTS
SECTION PAGE

ABSTRACT i
1 INTRODUCTION 1-1
2 THE NEED FOR J73AVS 2-1

2.1 Characteristics of J73 Programs 2-2
2.2 Characteristics of Application Programs 2-3
2.3 Testing Measures 2-5

3 STUDY OF AUTOMATED TOOLS AND TECHNIQUES 3-1
3.1 General Background 3-1
3.2 Existing Methods and Procedures 3-18
3.3 Currently Implemented Test Tools 3-22

4 FUNCTIONAL DESCRIPTION OF J73AVS 4-1
4.1 Summary of Capabilities 4-3
4.2 J73AVS Operation 4-11

5 DESIGN OF J73AVS 5-1
6 FUTURE EFFORT 6-1

6.1 Test Data Generation 6-2
6.2 Instruction-Level Simulation 6-4
6.3 Code Auditing 6-4
6.4 Units Consistency 6-6

I. 6.5 Executable Assertions Precompiler 6-7
APPENDIX

A LITERATURE SURVEYED FOR STUDY
B REVIEW OF RELEVANT TECHNIQUES

I

22

.*~ 4 ,,. , , *--. e. -S*** **** * S""" -" *. " h \?" " - -- l '%
' -' .

" .•" • S . ". ' - -" -""" " .V ** ' ' "' " "" ". "" c-".'. ", '" - ' " - '- %" 4= ' ," ." *1

4. Title: JOVIAL J73 Automated Verification System User's Manual

Report No.: CR-4-947/2

Authors: C. Gannon, R.F. Else

Date: March 1983

Abstract:

This report describes the capabilities and user operation of an Auto-

mated Verification System for the JOVIAL J73 computer programming language.
" This tool, known as J73AVS, provides interactive and batch users with static

and dynamic program evaluation, test coverage measurement, retesting assis-
. tance, and automated reports that are useful for debugging, documentation, and

- maintenance of the software.

J73AVS is a command-driven tool that analyzes one or more JOVIAL J73

modules during a session. J73AVS maintains a database that describes the J73
source being analyzed. The saved database allows incremental software
analysis and testing. This report describes tool operation during code
development, debugging, testing, and documentation. Sample output is pro-

* vided, as well as job control setups, resource estimations, and error
messages.

J73AVS operates on the Amdahl 470 (an IBM 370 equivalent) at the ASD
*' Computer Center and the VAX 11/780 at ASD/AD, both at Wright Patterson AFB.

J73AVS recognizes both MIL-STD-1589A and -B versions of JOVIAL J73. It

produces instrumented code that can be compiled with any validated 1589A or -B
compiler.

Table of Contents:

CONTENTS
*SECTION PAGE

ABSTRACT i
ACKNOWLEDGEMENT ii

1 INTRODUCTION 1-1
1.1 Manual Organization 1-1
1.2 Background 1-2

1.3 Overview of Capabilities 1-4
2 GETTING READY TO USE J73AVS 2-1

2.1 Preparing the J73 Source 2-1

2.2 J73AVS Commands 2-5
-°3 J73AVS OPERATION 3-1
" 3.1 Sample Program Description 3-1

. 3.2 How to Use J73AVS 3-7
4 COMMANDS AND RESPONSES 4-1

4.1 General Information 4-1

4.2 Page Control at a CRT 4-I
4.3 J73AVS Command Prompts 4-2

5 J73AVS SYSTEM CAPACITIES AND CONSTRAINTS 5-1
6 DIAGNOSTICS 6-1

6.1 User Error Messages 6-2

23

P~~~~~~~~~. ".......".".: " .".. -- '--.'-...'-..--"-.. ".,-"

-J-

6.2 J73AVS Internal Assertions Violation Messages 6-7
APPENDIX
A TERMS AND ABBREVIATIONS
B JOB CONTROL SETUPS (IBM 370 EQUIVALENT)

- C JOB CONTROL SETUPS (VAX 11/780)
" D DATA FILE DESCRIPTIONS

- E RESOURCE REQUIREMENTS
F NOTES ON SOURCE TEXT PREPARATION AND REFORMATTING

G J73AVS IBM AND VAX INSTALLATIONS AT WRIGHT-PATTERSON
"- BACKCOVER

COMMAND SYNTAX

'

,. 24

V %

... :.. .- ., . . " .- . . . } .. , , t.:,

5. Title: JOVIAL J73 Automated Verification System Test Plan
,.'

Report No.: CR-5-947

Authors: C. Gannon, R.F. Else, R.K. Boxer

Date: October 1981

Abstract:

This report provides a set of test specifications, procedures for
testing, and evaluation criteria for the formal testing of the JOVIAL J73
Automated Verification System (J73AVS). J73AVS will be installed and formally
tested at ASD/AD, Wright-Patterson AFB, on the ITEL AS/5 and at Rome Air

*Development Center (RADC), Griffiss AFB, on the DEC20. Formal testing of
J73AVS requires a validated JOVIAL J73 (MIL-STD-1589B) compiler and a FORTRAN
compiler (for input/output processing only).

Table of Contents:

CONTENTS
SECTION PAGE

ABSTRACT i
I GENERAL I

1.1 Purpose of the Test Plan 1
1.2 Project References I
1.3 Terms and Abbreviations 2

2 DEVELOPMENT TEST ACTIVITY 5
2.1 Statement of Pretest Activity 5
2.2 Pretest Activity Results 5

3 TEST PLAN 6
3.1 System Description 6
3.2 Test Description Overview 13
3.3 Testing Schedule 15

4 TEST SPECIFICATION AND EVALUATION 23
4.1 Test Specification (Source Recognition) 23
4.2 Test Evaluation (Source Recognition) 26
4.3 Test Specification (J73AVS Functions) 27
4.4 Test Evaluation (J73AVS Functions) 29
4.5 Test Specification (Branch Coverage) 32
4.6 Test Evaluation (Branch Coverage) 40
4.7 -Test Specification (Installation Procedures) 40

- 4.8 Test Evaluation (Installation Procedures) 43
5 TEST DESCRIPTIOn: (J73 SOURCE RECOGNITION) 44

5.1 Test Description 44
5.2 Test Control 44
5.3 Test Procedures 45

6 TEST DESCRIPTION (J73AVS FUNCTIONS) 46
0 6.1 Test Description 46

6.2 Test Control 46
6.3 Test Procedures 48

7 TEST DESCRIPTION (BRANCH EXECUTION COVERAGE) 49
7.1 Test Description 49
7.2 Test Control 49

25

0%

.'. ,....'....-~~~~ ~~~~...° %.;...........% .,. '.'........... ,......... ',....'

-7.3 Test Procedures 50

*8 TEST DESCRIPTION (J73AVS INSTALLATION) 51
8.1 Test Description 51
8.2 Test Control 51
8.3 Test Procedures 52

- APPENDIX
A DATA FILES

*B COMPILATION JOB CONTROL LANGUAGE PROCEDURE

*:% %

pee

6. Title: JOVIAL J73 Automated Verification System Program Maintenance

Manual (VAX and IBM-Equivalent Versions)

Report No.: CR-6-947/1

Authors: R.F. Else, C. Gannon, R.K. Boxer

Date: April 1983

Purpose of the Program Maintenance Manual:

The Program Maintenance Manual for an Automated Verification System for k..

JOVIAL J73, called J73AVS, (PR No. B-9-3278) is written to provide the
maintenance programmer with the information necessary to effectively maintain
the system.

The installations of J73AVS are on the Amdahl 470 (IBM 370 equivalent,

OS/MVS) at ASD, Wright-Patterson AFB and VAX 11/780 computers at ASD/ENAF,
Wright-Patterson AFB and RADC/CO, Griffiss AFB. It is intended that J73AVS be

compatible with all JOVIAL J73 and FORTRAN compilers; therefore, the system is
designed to be highly machine-transferrable and not dependent upon particular
operating systems or other support software.

The primary language in which J73AVS is written for the IBM 370 equi-

valent is JOVIAL J73 (MIL-Std-1589B). The IBM version contains a few modules
written in BAL and a few written in structured FORTRAN. The structured
FORTRAN processor source code is included on the IBM J73AVS magnetic tape
(described in Sec. 4.4.1). For the VAX version of J73AVS, the language is
structured FORTRAN (a subset of IFTRAN). The structured FORTRAN preprocessor
(written in FORTRAN) will be included on that delivery tape.

Table of Contents:

CONTENTS
SECTION PAGE
I GENERAL 1-1

1.1 Purpose of the Program Maintenance Manual 1-1
1.2 Project References 1-1
1.3 Terms and Abbreviations 1-2

2 SYSTEM DESCRIPTION 2-1
2.1 System Application 2-3
2.2 Security and Privacy 2-6
2.3 General Description 2-6
2.4 Program Description 2-8

3 ENVIRONMENT 3-1
3.1 Equipment Environment 3-1
3.2 Support Software Environment 3-4
3.3 Database 3-11

4 PROGRAM MAINTENANCE PROCEDURES 4-1
4.1 Conventions 4-1
4.2 Verification Procedures 4-3
4.3 Error Conditions 4-3
4.4 Special Maintenance Procedures 4-9
4.5 Special Maintenance Programs 4-26

27

.* %

jC hl

%'%7

7. Title: JOVIAL J73 Automated Verification System Program Specifi-
cation

Report No.: CR-7-947/1

Authors: R.F. Else, C. Gannon

Date: September 1983

Purpose of the Program Specification:

The objective of the Program Specification for an Automated Verification

System for JOVIAL J73, called J73AVS, (PR No. B-9-3278) is to describe the

program design in sufficient detail to permit program production by the
programmer/coder.

Table of Contents:
CONTENTS

SECTION PAGE
1 GENERAL 1-1

1.1 Purpose of the Program Specification 1-1
1.2 Project References 1-1

1.3 Terms and Abbreviations 1-1
2 SUMMARY OF REQUIREMENTS 2-1

2.1 Program Description 2-1

2.2 Program Functions 2-3

2.3 Flexibility 2-6

3 ENVIRONMENT 3-1
3.1 Support Software Environment 3-1
3.2 Interfaces 3-7
3.3 Storage 3-10
3.4 Security and Privacy 3-12

3.5 Controls 3-12
4 DESIGN DETAILS 4-1

4.1 Program Operating Procedures 4-1
. 4.2 Inputs 4-4
- 4.3 Outputs 4-5

4.4 Data Environment 4-5

4.5 Program Logic 4-5

4.6 Comparison of the JOVIAL-Based and FORTRAN-Based 4-11
J73AVS

[:::::.:APPENDIX
A MODULE DOCUMENTATION
B COMMON (COMPOOL) SUMMARY AND USAGE MATRICES
C INVOCATION SUMMARY

7. 28

-%::

....-.

8. Title: J73AVS Training Course

Report No.:. CR-8-947

Author: C. Gannon

Date: M4arch 1983

Agenda:

First Day
9:00 - 10:30am Overview of J73AVS Capabilities

break
10:45 - 12:00 noon Selected output Capabilities

lunch
2:00 - 3:00pm Overview of J73AVS Operation

break
3:15 - 4:30pm J73AVS as a Test Tool

* Second Day
9:00 - 10:30am Discuss Class Exercises

break
10:45 - 12:00 noon Review J73AVS Analysis Reports

* lunch
2:00 - 3:00pm Work on Sample Exercises

break
3:15 - 4:30pm Sample Exercises

Third Day
9:00 - noon Continued Workshop

'-29

% %p
% % % %

4..

4

6 IMPLICATIONS FOR FURTHER RESEARCH

There are several fruitful research areas in which J73AVS can play an

important role. Some of these areas call for modifying and extending J73AVS

current capabilities and other areas make use of the tool as part of an

overall system. The major areas are:

• Enhancements for testing embedded software.

* Enhancements for improving software retesting.

@ Aids for project management. 4.

0 Aids for software measurement.

Each of these areas is discussed in more detail in the following subsections.

Even though JOVIAL J73 is a new dialect, its "phasing out" by the advent

- of Ada was known at the beginning of J73AVS design activities. Therefore,

further research should support the continued JOVIAL J73 software developers

.... as well as be applicable to Ada usage.

6.1 TESTING EMBEDDED SOFTWARE

Most of the J73AVS training course participants from industry expressed

one major difficulty in using J73AVS to test embedded software: the use of a

mainframe for program execution.

J73AVS is not intended to replace Performance Monitoring Units (PMUs) or

*: Program Control and Monitoring Systems (PCMSs). These test stations provide

powerful, but low-level support to embedded computers, such as Mil-Std-1750A.

* As currently configured, typical PCHS functions are debugging activities like

stepping through instructions, observing all input/output transfers, main-

taining "hindsight" of the last 500 instructions, and recording timing

performance without the overhead of added instructions to log timing.

The type of PMU or PCMS developed by 1750A computer manufacturers might

consist of:

4% 0

31

V01* %~ *

eA %,

* A microprocessor-based system with a CRT terminal for user .

interface.

0 A Mil-Std-1553B interface to pass information to and from the

1750A machine.

* A RS-232C interface for loading the test program into the 1750A.

* Peripherals such as magnetic tape, floppy disk, hard disk, and a

printer for recording execution behavior.

0 Sometimes connection to a mainframe computer, like a VAX 11/780,

for direct downlinking from the JOVIAL J73 compiler and VAX JOVIAL

linker.

These types of development monitors can be more than adequate for

extensive software testing, as well as the basic computer hardware and bus

checkout, for which they are intended. The addition of J73AVS in the PMU/PC4S

environment would provide considerable code development, testing, and documen-

tation power for embedded 1750A software developers too.

In such an environment, J73AVS would reside on the VAX. Static code

analysis and automated code documentation would take place on the VAX, just as

in non-embedded software systems. Dynamic testing (execution coverage,

tracing, timing, and assertion violation checking) would require these

modifications to J73AVS:

1. Rewrite the J73AVS execution-time data collection routine in 1750A

assembly code.

2. Replace the !TRACE directive usage in J73AVS with calls to

appropriate assembly output routines (the ITRACE directive is used

by J73AVS to report assertion violations and tracing results).

3. Replace the calls to the mainframe's system clock routine with

appropriate 1750A clock calls, if available, for the timing

analysis.

32

.p*~~~~ ~~ V.*~ * . ** *

d* J, %p %~ %V, %

f
!

, :- _ , " " . , .~ w o -.," ,.-.. ,.. '- ,, .' -. -. % - ~ ~. "' '' ' "- "-".'.-

J73AVS provides a great deal of high-level capabilities under simple

operator control. It is recomended that embedded software developers take

d advantage of these code checkout facilities before submitting 1750A software

to final PMU/PCMS or other low-level analysis.

6.*2 ENHANCEMIENTS FOR IMPROVING SOFTWARE RETESTING

J73AVS currently offers these capabilities for retesting due to (I)
modifying the originally tested code and (2) wanting to improve the thorough-

ness of test data sets:

* Checking all module interfaces (i.e., COMPOOL variables and

module-level parameters) for changes and inconsistencies.

Ramifications of interface changes are checked throughout the

entire program's database (which is built by J73AVS and saved on a 7

compressed, sequential file).

* Data flow analysis (set-use checking of variables) is performed on

* a designated (changed) module, looking at all interface variables
in that module's calling tree.

* In order to improve thoroughness of test data sets, J73AVS

provides a list of control branches not yet executed.

0 Execution branch and statement coverage history is saved on the

JJ 3AVS-built database.

* The set of branches leading up to a designated (unexercised)

branch is specified by J73AVS.

h -

- J73AVS provides a good foundation for additional retesting analysis.

' The information preserved in the database, the current assertion facility,

* interface checking, and data flow analysis can all be advanced to provide %d,

greatly needed retesting assistance.

33

% % %

Cootfctosofitraecage r hce hruhu h ,

ST

. 1,2 '

Computer Sciences Corporation (CSC) recently reported some techniques

for improving software retesting in a very narrow, structural sense. The

basic approach that CSC took during this study contract is a good one:

identify a particular test case with changed code. If the changes do not

V involve the addition of branches or modules or the implementation of new

functions, the test cases used during the development (called the testbed by

CSC) may be used to re-test the system. Most of the time, however, new test

cases will need to be constructed.

The reasons for making software changes are generally:

- To correct development errors

* To correct specification errors

. To satisfy changing requirements r

* To improve performance

Therefore, changes to programs usually entail adding or deleting branches in

the program, and they often entail slightly or radically modifying the

"1 function of the program.

- To identify what has changed in a module, the re-testing tool must have

an extensive database containing sequencing information, location information,

and attribute information describing each module in the software system.

Interface descriptions of the original and modified modules must also be

maintained in the database. These descriptions would include the entry point

*names of the module, a description of the parameters of the module, a descrip-

* tion of any global variables set or used by the module, the input/output

interfaces to the module, the other modules called by the module, and the

sequence of these calls. The parameters to the module need to be described

Software Retest Techniques Functional Description, prepared for RADC,

. Computer Sciences Corporation, Feb. 1982.

2Software Retest Techniques Final Technical Report, prepared for RADC,
Computer Sciences Corporation, Feb. 1982.

', 34

.!!

a .

00rq, , *r'.
-

' "..,,.,..*." °a w ' p',' % - ° . -' - / .. -." *" -'P
o ' -%

by their attributes: number, type, dimensions, set/use, ranges and enumerated

values. Global variables should be described by their type, dimension, use in

the module, range, and initial value. Input and output operations (imple-

mented as calls to non-JOVIAL routines in J73 programs) need to be described

by their sequence, number of records read or written, file type, and record

format.

Several things must be done in order to re-test software effectively:

% The changes to the software must be identified

* The parts of the software which need to be re-tested must be

MV identified

- Test cases must be chosen to test these parts

The major problem with the CSC approach to software re-testing is that

it focuses almost entirely on a very small class of re-testing needs; that is,

the class of small changes to a program in which the actual structure is not

' modified. In the cases of adding or deleting branches to a program, the

* methodology offers very little assistance. In fact, the retesting tool

specified in the Functional Description provides no additional help over what

J73AVS currently offers in deriving new testcases to exercise modified code.

"- The second major problem is that the methodology does not address re-testing

new functions or performance changes. To support these testing activities,

more extensive interface checking, a formal use of J73AVS assertions, and

implementing the execution performance instrumentation component described in

the J73AVS Functional Description. 1 Execution performance value ranges can be

used to support unit-level testing of modified modules.

" 6.3 AIDS FOR SOFTWARE MEASUREMENT AND PROJECT MANAGEMENT

Quantifying certain aspects of software development can illuminate
.0

trends and problem areas. In particular, obtaining software measurements can:

IJOVIAL J73 Automated Verification System Functional Description, C. Gannon

and N.B. Brooks, CR-1-947, General Research Corporation, March 1980.

35

% ° %

"-" -" - " '".' ;,".', .' . . .' ,- - -- '-- . -' " ,,". .'. . -.... ' , ,' .'' .. '" ' ... '."C - ' C .,'"---" "- -"%

%'

S.0 Guide the testing process

0 Record project status

& Provide parameters for cost estimation

0 • Quantify software quality

" Help formulate system testing requirements

J73AVS already automatically collects a variety of measures through its

execution coverage analyzer, static analyzer, and test history reporting.

% Other current features such as assertion violation reporting, system overview

description (number and types of modules, dates analyzed, lines of code, etc.)

and invocation structure reporting can be modified to provide project status

monitoring.

We recommend augmenting the current J73AVS test history recording with

accumulated statistics on the number and severity of static errors for each

modified (presumably "corrected") version of a module. As part of measuring

static errors, we also suggest adding more extensive data flow analysis

capabilities to J73AVS. With JOVIAL J73's rich data types and scoping rules,

many programming errors could be uncovered by more exhaustive analysis of

% referenced COMPOOL variables, table or block subscripted values, etc. A

description of the current data flow capabilities of J73AVS is provided in the

User's Manual.1

While the programmer may be interested in the types of errors uncovered

in each module, the project manager may be more interested in how many modules p

* have undergone static analysis, have been executed with assertions turned on,

or have been analyzed for timing performance and branch coverage. Statistics

of this nature would be easy to include in J73AVS.

Software metrics engineers usually lament about the quality of software

error data collected during (or, usually, after) a project. Automatic

JOVIAL J73 Automated Verification System User's Manual, CR-4-947/2, March
• 1983.

F., 36 "
-..

%~~~~~~~A %- -A _ , _ - -P.. P

collection and output onto a sequential file by J73AVS would also be an easy

and useful addition to J73AVS. The user could specify certain data collection

formats (such as "by module," by date of analysis," "by error type," etc.)

- for the output file. Such a data file could be valuable for software problem

" analysis and feedback programs, error data archiving, partial input to cost

* models, and project management programs.

S,...

.4F

f37

.5'. --

I% %

%.%

'p

.5"%

~~.'.

* ft
-. ft

.*

.4,.. ,*-*°o '.f~

"....... ,. .* . • 4*4-... .. -.- -% *ft ***S, . • . . - . ,

APPENDIX A

This appendix consists of three technical papers that describe J73AVS and

how it was implemented. Two of the three conference papers were presented to

audiences who have a keen interest in high-level language support for avionics

applications.

The technical papers included in this appendix are:

1. A Debugging, Testing, and Documentation Tool for JOVIAL J73

2. An Automated Verification System for JOVIAL J73

3. J73AVS: A JOVIAL J73 Automated Verification System

m
'

2. N

-°.

0

., ;" A- 1i

• .
02:.. ,. -....- .4" -" -- -: " '"' -""""" -...'."-" - " : . '-. -T-:.

-. AT-22

A DEBUGGING, TESTING, AND DOCUMENTATION TOOL FOR JOVIAL J73

- C. Gannon

COMPSAC

October 27-31, 1980

Chicago, Illinois

* GENERAL~
RESEARCH CORPORATION
P.O. BOX 6770, SANTA BARBARA, CALIFORNIA 93111

A- 3

.2 6

* .'- .. * -* * -- S ** * ~ . . . - - *- ..- *S~ **~

6

S.

-. 4

.4'.

.4'
S.

.4. - S.

'S

-A
6

6

~

S

K

6

*. - - . - -~- .j' L . Y '

°.2.

I%°

A Debugging, Testing, and Documentation Tool for JOVIAL J73

C. Gannon

General Research Corporation

Introduction programing. However, JOVIAL J3B is not a
language approved by AF Regulation 300-10.

This paper describes an automated tool Therefore, a blend of J73/I and J3B, plus
which is being developed to assist in debugging, additional features not in either language, has
testing, and documenting software written in been created to satisfy the programing needs of
JOVIAL J73. Many of the techniques incorporated both the avionics and systems comunities. This
in this tool have already been found successful language, JOVIAL J73, was specified in March
in testing and maintaining FORTRAN and JOVIAL J3 1979 as MIL-STD-1589A and was refined in June
programs and may be considered viable techniques 1980 to become MIL-STD-1589B. In the spring of
for future Ads tools. Features of this tool, 1980, AF Regulation 300-10 was revised to cancel

* called J73AVS (for JOVIAL J73 Automated Veri- both J3 and J73/I languages, leaving J73 as the
fication System), that distinguish it from other only approved JOVIAL language. e
AVS's are primarily due to the specific charac-
teristics of the JOVIAL J73 language and the It was the desire to improve software
applications program written in J73. Addition- reliability that prompted the Air Force's
al distinguishing features are to provide a request for an Automated Verification System
realistic approach to testing program paths, (AVS) to be developed and made available as soon
maintain multi-run testing history information, as possible following release of validated
and operate in both batch and interactive modes. JOVIAL J73 compilers. Encouragement for an AVS

and other support tools also came from the
As background material, characteristics of JOVIAL Users Group, a body of interested

the J73 language and applications programs are management and technical people from industry,
described briefly. The paper then provides a Government, and the Air Force.
functional description of the tool.

Characteristics of J73 Programs
The Need For J73AVS-.

As defined in MIL-STD-1589B, JOVIAL J73

The need for this automated verification permits the independent processing of functional
system is based upon (1) the emergence of a new modules which comunicate through compools and
JOVIAL language dialect which will supersede the argument transmission. J73 permits both
previously approved JOVIAL dialects, (2) the recursive and reentrant procedures for effective
characteristics of the language that make it multi-processing. The language provides a rich
complex and error-prone, (3) the type of appli- variety of data types and supporting data
cations expected to be written in the language, manipulation functions, making assembly code
(4) and the standardization of certain testing programing unnecessary for most applications.
measures. However, except for a trace directive which

supplies limited output facility, there is no
In an effort to prescribe a standard input/output capability in the language.

policy for using computer programing languages Linkages to assembly or alternate-language
and for testing computer programing language routines are required for input and output.
compilers, the Air Force issued AF Regulation
300-10 in 1976. Two JOVIAL languages, J3 and Storage allocation for data objects can be
J73/I, were specified as Air Force standard both automatic (in which storage is released
high-order programming languages. Both JOVIAL when control exits from the program unit) or
languages are primarily designed for comand and static (in which storage space is saved through-
control system programing. They are especially out the entire execution of the program).
well suited to large systems requiring efficient Automatic allocation uses storage efficiently
processing of a large volume of data with but makes certain data-usage errors possible.
complex structure.

The DEFINE construct associates a name
Another JOVIAL language, J3B, evolved from with a text string such that whenever that name

J3 for the purpose of developing computer is referenced, the text string replaces it.
programs for the Boeing B-1. Derivatives of J3B DEFINE statements can be nested and can be
have been widely used for avionics computer redefined based upon scope. Thus, while the ca-

-5 A-

% %°%

% %
6%

pability is extremely useful, it adds another synchronization
dimension of complexity to JOVIAL programs. - distributed processing

Unfortunately for advocates of structured - structurally simple control state-
programing, the control statements in JOVIAL ments
J73 are not confined to the "structured program- simple data types
ming" constructs of sequential flow, IF-THEN-
ELSE, and WHILE-loops. The language does at - real-time processing
least have these constructs, so that programmers On the other hand, applications such as comeand
can write structured code if they desire.Onteohradplitossuhncmadcanowrter, unstructured codea t heys dsiO and control systems have very different charac-
However, unstructured statements as GOTO,• " teristics such as: ,
FALLTHRU, EXIT, and ABORT are also permitted. ts
The GOTO statement allows transfer from the - batch and interactive modes
outside of an IF or CASE construct into the body - complex data structures
of the IF or CASE. GOTO statements can also be - complex control structures
directed to labels that are external to a - large, monolithic modules
program unit, if the label is. passed as a - non-real-tims processing
parameter. The FALLTHRU statement allows
contro! to pass from one CASE alternative to Avionics applications are often destined
another without making the test normally for small on-board computers. For those

-.. required at each CASE option. The EXIT state- computers not having a JOVIAL J73 or J73-subset
ment allows escape out of an immediately compiler, the programs are developed on a host

- . enclosing loop. The ABORT statement provides machine and cross-compiled to the target
transfer of control to the label specified in machine. There are no software checkout tools
the most recently executed, currently active available on these small computers, so an AVS
procedure having an ABORT phrase. Thus, control operating on the host computer must supply as
transfer is not defined until execution time. much assistance as possible to detect errors In

program performance and assure some level of
The unstructured control statements testing thoroughness before the program is

provide flexibility and execution-time efficien- cross-compiled.
cy; but at the same time they increase the
chance of comitting errors and make the program Command and control systems, on the other
more difficult to understand. Since 60% of the hand, tend to be very large (several hundred
total cost of software is generally attributed thousand lines of code). They also tend to
to maintenance, source code scrutability is evolve as needs change. Therefore, not only is
important. testing a major problem - code modification and

retesting only what is necessary are also
J73AVS will provide extensive static and difficult tasks. In the face of these problems,

data-flow analysis to detect and report possible one of the most valuable assets of any software
errors regarding control transfers, data support tool is the ability to automatically
contention due to static allocation, uninitial- produce concise but helpful program documen-
ized variables, structurally unreachable code, tation.

r, potential infinite loops, etc. Program analysis
reports can be generated on command by the user Functional Description of J73AVS

. to describe such detailed information as DEFINE
.*,usage, label references, symbol properties, and This section presents a brief description

- - global data. Static and data-flow analysis are of the capabilities of J73AVS and describes in
testing and program analysis techniques in which what phases of the software life cycle the

* the program is not executed with real data. capabilities should be used. A thorough
Rather, the code is analyzed for inconsistencies description is provided in the Functional
(static analysis) or for variable set-use
behavior (data flow analysis) using symbolic
execution through a directed-graph of the Our approach to the design of an AVS for
program. JOVIAL J73 is to provide automated assistance

Characteristics of Application Programs forprogram development

deprogagdveopen
* The programs that will be implemented in - debu ing- testing

JOVIAL J73 will be of similar nature to those - retesting
written in the separate JOVIAL dialects: J3,
J3B, and J73. Applications will be for navi-
gation, information management, flight controls,
communications, etc. The software character- - verification of secifiains
istics of the applications are varied. For - automat in ads
example, flight control software has the - formal program verification (proof

following characteristics: of correctness)

F. A-6

. % %

.. -

The techniques for automating these processes only that the user initiate the tasks by
are not developed well enough to be reliable for command. Other processes, such as execution-
general-purpose, large software systems. time data collection or retesting assistance,

require more information from the user like test
The specifications for the J73 dialect and data input and test target selection.

compilers include rigorous data-type checking
and scope rules. The language allows, however, J73AVS provides detailed information both
constructs and control structures which demand statically and dynamically about the program
caution in their usage (such as recursive and being analyzed. It is the role of the user to
reentrant procedures, Jumps into certain control direct the processing performed by J73AVS, to
structures, abnormal exits, etc.). Further, the analyze the output produced by J73AVS, and to
language does not contain a mechanism for determine subsequent action.
specifying expected behavior or reporting
user-specified abnormalities (since there is no The role of J73AVS in the software
input/output facility). development cycle is to provide automated

assistance wherever possible during the program
J73AVS will not duplicate the static development and maintenance, debugging, testing,

consistency checking of the compiler, but, and retesting phases of the cycle.. Because
rather, provide the following set of facilities J73AVS systematically provides execution
to support program development, debugging, coverage, timing analysis, execution performance
testing, maintenance, and documentation of reporting, and test history, it is expected to
JOVIAL J73 programs: be valuable to independent verification and " .

validation contractors as well as software :e
1. Logical assertions and timing probes developers of J73 program.

2. Static and data flow analysis The user of J73AVS plays an active part in

3. Program structure and characteristic the cycle as shown in Fig. 3. This figure
reporting partitions the phases of the development cycle

and shows the flow between the automated
4. Statement performance dynamic processing of J73AVS and user-supplied input or

analysisdirection.

5. Branch, path, and program unit
execution coverage analysis Using Fig. 3 as a basis, a typical

sequence of J73AVS-supported processing can be
6. Branch and program unit execution described as follows%

trace analysis Irv-.

7. Execution timing analysis 1. JOVIAL J73 source text is generated

6. Structural retesting assistance and provided to J73AVS as one or
more compilable modules.

9. Test history reporting
2. J73AVS produces program analysis

reports showing control structure,
J73AVS will support interactive and batch symbol usage, calling hierarchy,

facilities since the various stages of program etc., as well as a static analysis
development through testing and maintenance lend report showing errors and dangerous
themselves to both modes of operation. The progrtsing practices. ad ago
comsnd language will be similar for interactive pr
and betch usage, except that the interactive 3. Using the reports as a guide, the
user will be prompted for information where source modules can be modified or
necessary. new modules added to the program.

4. J73AVS identifies the interaction of
Summry of Capabilities the new or modified modules with the

rest of the program; this informa-
A sumary of capabilities is provided as a tion, in turn, is used as the basis

flow diagram in Fig. 1. This diagram describes for modifying other modules.
the primary functions supported by J73AVS as
well as the sequence in which they are per- 5. For dynamic debugging, the program I
formed. Figure 2 shows the interaction between is instrumented (i.e., calls to data
J73AVS and the user. The user can direct the collection routines are automatical-

sequence of analysis activities, using Infor- ly inserted) by J73AVS and executed
mation provided at each stage of processing. with an initial test case supplied

by the user.
Although J73AVS will exist as a single 6. J73AVS reports assertion violations,

program (with overlays to keep It compact), it if any, and generates an evaluation
is best considered as a collection of tools or of statement and variable perform-
facilities with which the user interacts. Some
of the facilities, such- as automated documen- ante.
tation, static error reporting, and instrumr
entation, are completely automated and require

A- 7]

.

One or more odules of JOVIAL J73 source code
JOVIAL 073 Is input for processing and analysis. TheSOURCE source code my contain J7AVS logical

assertions and timing probes.

SOURCE TEXT J73 AVS generates.a directed graph of the
ANALSIS. control structure. All syntax. semantics,

STRUTURAL and structural information is stored onAN Lss daaae diinlo hne source code
ANALSIS ca~uts n eistig dtabae t beupdated.

"rnhadANALYSIS Possible errors, warnings, and dangerous
Path sequence% DATA FLOW programing practices are reported.

Reports for program
RETESTING PROGRAM ANAYSIS documentation, debugging,
ASS ISTANCE REPORTING mintenance, tasting and

retesting are Produced.

Software probes are automatically inserted
CRCT STRUCTURAL a for dynamic analysis of execution coverage.

SOURCE ASSERTION tracing, and performnce. Timing probes
% O"INSTRWIENTATION and logical assertions are translated into

DYNAMIC DATA Pram execution produces a date

ERR NO COLLECTION coection trace file for analysis by 073 AUS.

? Execution coverage and tracing, statement
EXECUTION prformance, and execution timing are

% ANALYSIS reported by testcase and by a set of
testcases.

Figure 1. Overview of J73AVS

Figure 2. IALAV TEeSTio wt U

A-9

'IW,

0
e,% .

7. Using this evaluation, the user my 9. The user evaluates execution
choose to generate additional test coverage and other program perform-
data to pinpoint errors or instru- once output, along with the pro-
s ent other modules for additional gram's own execution results and the

* *dynamic debugging. program specification, to determine

a . Like debugging, the sawe procedures if testing is complete.
of test data generation, instrumen- 10. J73AVS provides branch sequence

- -tation, and execution are performed Information to retest targets chosen
*for testing but for a different by the user. A test history of

goal: rather than detecting and execution coverage and assertion
locating errors, testing aims to violations assists the user in
demonstrate the absence of errors choosing targets for retesting.

* - and that the software conforms to
*Its specification. Therefore,
* J73AVS produces execution analysis

reports in terms of the thoroughness
of execution coverage and violations
of asserted behavior.

SOFTWARE LIFE-CYCLE PHASES

PROGRAM DEVELOPMENT/ EUGNGTSIG
MAINTENANCE DEREIGTESTING

BIDMODIFY OIG GNRT

U.

%'. .

0 GENERATE IDENTIFY OBTAIN JANALYZE PROVIDEPROGRAM PERFORMANCE INTUE T EST RETESTINGS REPORTS INTERACTION AND ASSERTION 1EXECUTIO ASSISTANCE

Figure 3. Role of J73AVS in the Software Development Cycle

Program Development and Maintenance - properties of all or specified

;
symbol@

* Executable assertions permit a programersymols
to specify expected behavior. J73AVS supports - declaration and reference of labels
the technique of embedding programmer-specified (statement name)
assertions into the code through the use of the - declaration and reference of
ASSERT keyword followed by any legal logical user-defined data types

o(oolean) expression. Logical assertions can be - declaration and reference of
used for execution-time exception reporting, constants

"-stress testing, test data generation filtering,
*and (left as comments in the source code) - usage of external reference (REF)

stating in-line specifications. and definition (DEF)

rzTo assist with reliable system develop- tx tigmant, maintenance, and documentation, J73AVS tdeclations ad r ee of IN

will provide substantial program analysis re- - description of program units on the
porting on structural hierarchy, symbol usage, database
invocations, certain J73 constructs, and system
characteristics. The user has control over Debugging
obtaining high- or low-level information through

-*the command language. The types of program Normal compilation using JOVIAL J73
analysis reporting include the following: compilers will detect msny syntax and semantic

errors. Additional errors such as uninitialized
*- indented source listing with control variables, possible infinite loops, unreachable

structure identification code, certain improper constructs, and dangerous
- symbol cross reference with set-use coding practices (like transferring into CASE or

aIF statements) will be reported by J73AVS. The

user can command different levels of static
*- compool symbol description reporting.

A-9

.O

T A9

.

V o--
V4.% .-

%%%.%%*

il~~~~~~~~
%

EEAEOTI NLZ RVD

T.V

Dynamic debugging vill be supported by demonstrated, etc.) or when program changes have
statement execution performance and assertion taken place. The proper approach to take in
exception reporting. Statement execution retesting is highly dependent upon the charac-
performance provides execution counts of teristics of the program being tested as well as
statements, values and ranges of variables in the measures being used to evaluate testing
assignments and loops, and the execution completeness.

.q.behavior of IF statements. This debugging
information appears adjacent to the source In order to determine the sequences of
statements themselves, which assists the task of branches which must be executed to reach an
code correction. The execution of timing probes untested branch or statement, the user can
(inserted by command) can be reported in the request that the 'reaching set" be computed
debugging performance report at the user's between two specified statements (or from the
request. program unit's entry). The user can also

request a list, in terms of branches, of all
When the program's execution behavior control pathe between two specified statements.

deviates from the acceptable logical behavior If certain loop structures make this list impos-
specified by the embedded assertions, it will be sible, subsets of the paths will be identified.
reported during execution. This is called an
assertion violation. The user-supplied asser- With the control flows identified, the
tions remain relatively transparent to the user can develop new test data by backtracking
program until they are violated; at that time through the program to the input space, using
the violation is reported along with the module statement execution performance reports, module
name and source statement number where the interaction and invocation reports, and execu-
violation occurred. tion coverage information for each testcase.

Unfortunately, automatic test data generators
Testing which use symbolic execution are not yet

developed to the point of being general-purpose,
When used in conjunction with static easy to use, or reliable.

checking and statement-level performance
analysis structure-based testing can uncover The cumulative test coverage history
errors due to untested branches (where a branch maintained by J73AVS will be useful in attaining
is a control flow outcome due to a decision testing goals and determining targets for
statement) or improper sequences of branches. retesting. Typically, the results of executing
J73AVS will provide execution tracing of program test cases are difficult to manage. Program

.- units and breaches and execution coverage unit and branch coverage Information will be
analysis of program units, branches, and saved in a concise way on the database for each
sequences of branches (paths). Further, J73AVS test case. The results of subsequent execution
will assemble the timing information from runs can be added, providing a cumulative report
program unit tracing and user-supplied timing of all tests. Also saved in the history
probes into an execution timing report. database table will be any assertion violations

that occur. This will provide a mechanism for
Although an AVS can provide an objective identifying which input test case caused a

measure of testing thoroughness In term of violation.
statement or branch execution coverage, fre-
quently errors in software are overlooked during Acknowledgement
testing because only certain sequences of
branches are ever executed. Obviously, it is The design and development of J73AVS is
generally impossible to define all paths in being sponsored by the Rome Air Development

.5. program because of loops. Furthermore, the Center, Griffies Air Force Base, New York.
most likely subset of paths to test can best be

S-identified by a person familiar with the Reference
d . function of the program. The most efficient

role of an AVS in this regard is to identify the C. Cannon and N. B. Brooks, JOVIAL J73
set of control paths between two statements in a Automated Verification System Functional
program unit (an invokable unit of code) to Description, General Research Corporation,

• which the human tester attaches importance. Of 9-1 7, March 1980.
the set of paths identified by the tool, the
user can choose those that are to be analyzed
for coverage during execution. If the set of

* paths is too large to enumerate, a descriptive
message will be issued and the user allowed to

-choose another pair of statements for path

identification.

Retesting Assistance
5-

Retesting software is performed when

analysis shown that prior testing is inadequate
(insufficient branch coverage, not all functions

A-10

a.Y

S%

IM-2420
AT-31

AN AUTOMATED VERIFICATION SYSTEM FOR JOVIAL J73

Robert F. Else

* NAECON

-May 18-20, 1982
SDayton, Ohio

-° ,

GENERAL
RESEARCH **CORPORATION
P.O. BC IX 6770, SANTA BARBARA, CALIFORNIA 93111-0770

A-il

-e- Ics
o . .

aA,.: Ma 8-2 , 19 2

'..

AN AUTOMATED VERIFICATION SYSTEM FOR JOVIAL J73

ROBERT F. ELSE

GENERAL RESEARCH CORPORATION
P.O. BOX 6770

SANTA BARBARA, CALIFORNIA 93111
ABSTRACT language's complexity and its varying applications

reinforce the need for an AVS to help analysts and
The introduction of the J73 dialect of the programers handle the difficult task of develop-

JOVIAL programing language created a need for new ing and maintaining J73 software systems.
software tools to help develop, test, and maintain
J73 software systems. This need is especially J73AVS FUNCTIONS
great in software for aviation electronics J73AVS was specifically designed to be used
(avionics), where rigid functional and reliability In the post-design phases of the software life
requirements make the automation of software cycle: program development, debugging, testing
analysis a necessity. (and retesting), a id aintenance. Since automated

tools already exist for the specification and
To fill this need, General Research verification of requirements and design, we felt

Corporation (CRC) has developed the JOVIAL/J73 that concentrating on the actual code production P
Automated Verification System (J73AVS). 1,2 It is and maintenance phases would result in a more

powerful, concentrated set of capabilities.
a tool that processes J773 source cede like a J73AVS can also produce a wide variety of program
compiler, but maintains a permanent database of docuentation; although this activity is not
information making repeated processing of source gensrally Included in the software life cycle, it
code umnecessary. It operates in either batch or
interactive mode. This paper describes the is often a weak link In the chain holding together

features and use of J73AVS. an otherwise strong system.

BACKGROUNrD The tool's capabilities were designed to
In 1976, In an effort to standardize complement those of the J73 compiler, so that the

computer programing languages and compilers, the two together would cover as many trouble spots as
Air Force issued AF Regulation 300-10 which possible. The compiler provides rigorouslr orceissud AFReguatio 30010 wich date-type checing8 ad scopng rules, but there "
specified two JOVIAL languages, J3 and J73/1, as are cases where the prograner can circment .
standards for avionics and communication systems. these check , whether intentionally or not In
Another JOVIAL dialect, J33, had evolved from J3 tios, thege itselfallo pot.nt
primarily for use in the Boeing B-1 computer adiatrous ctrlnguatcsu alos pteintol
Syet=, although J311 was not approved by the AF disastrous control constructs such as jumps into

sytm8 lhuh.3 a o prvdb h CASE and IF statements, abnormal exits from
regulation. A new dialect, J73, specified in 1979 procedes, tet, and its f
as MIL-STD-1589A was a blend of J73/1 a1 J33 prcedures, etc., and it is beyond the scope ofJ3,the compiler to issue warning messages for
plus some new features; thia specification was porm hc s hm eas atdt virefined in mid-1980 to become HILoSTD-1589B. In program which use them. We also wanted to avid,,
the sprin of 1980, Al egulation 300-10 wa duplicating capabilities of other tools which havetesring of 1980, A3 Redgu/lation 3000 was a bearing on J73; SDDL (System Design andrevised to eliminate J3 and J73/1, leaving J73 as Documentation Language), for example, works at the
the only approved JOVIAL dialect. pseudo-code level, and the Jovial Interactive

The request for a J73 Automated Verification Debugger will operate at execution time.
System (AVS) was part of the Air Force's desire to

- improve software reliability, and it was planned J73AVS provides the following set of
for release as soon as possible after the release functionas:
of new validated J73 compilers. Encouragement for
an AVS and other support tools came also from the 1. Static and data-flow analysis
JOVIAL User's Group, a body of interested 2. Program structure and Interface report-
management and technical people from industry,
Goverment, and the Air Force.

3. Execution coverage analysis (at state-
JOVIAL J73 is so extremely rich and complex ment, branch, and procedure levels)

language, and will be used for a fairly wide uoat
variety of applications, including navigation, 4. Ezeuction tracing analysis (at branch,
information management, flight controls, comut•- procedure, and variable levels)
cations, and comand and control systems. The 5. Execution timing analysis

6. Test history reporting

A-13

,'---.
% % %

% %

I%

7. Structural retesting assistance not been hit, and maintains a history of the
coverage results in its database. Statement and

8. Logical assertions for reporting devia- branch execution coverage can be reported by
tion from expected program behavior J73AVS as part of a source listing, or more

9. A wide range of documentation reports abbreviated reports can be selected at user
option. For example, Figure 5 shove the "NOT HIT"

A summary of all the J73AVS capabilities is report for two testcaaes (sections of source code
provided in Figure 1. This diagram describes the chosen an test boundaries by the user) and a
primary functions supported, as well as the cumulative branch coverage history. The branch
sequence in which they are performed. Figure 2 numbers in thia report can be keyed back to the
shows the interaction between J73AVS and the user; source code through several other J73AVS reports.

o a command language is used to direct the sequence
of activities. The command language is Identical A system-level branch coverage report is
in either batch or interactive mode. It is available and is shown in Figure 6. This report
keyword-oriented, has parameters that specify shows the results of all testing so far and
options, allows abbreviations, and is flexible in includes the number or procedure invocations,
the order of parameters. In interactive mode, branches, and statements hit, and percentage of
prompts and a help function assist users, total coverage.

Although J73AVS exists as a single program, THE HOST/TARGET DICHOTOMY
it in really a collection of tools or facilities A major concern in avionics software is the
from which the user can choose. Some, such as difficulty of performing thorough dynamic testing
automated documentation, static error reporting, on embedded software. Target computers are
and instrumentation, are completely automated and usually much smaller than the original host, with
require only a single command from the user. limited memory and processing resources and little
Others, such as execution-time data collection and or no I/0 capability. Dynamic testing, and
retesting assistance, require more input and measuring Its thoroughness, are difficult problems
interaction with the user. in these small real-time environments.

SAW'LE oUTPUT The instrumentation capabilities of J73AVS
Some samples of actual output give a quick offer a solution to this problem. The software to

picture of how J73AVS can be used. Figure 3(a) is be tested can be instrumented autor, ically under
a J73AVS report summarizing the contents of the the user's control, and the ti-sulting code
user's database, itemized by module name. it compiled, linked, and loaded (but not executed) on
shows each module's nanme, type (compool, program, the host computer, then transferred to the target
or procedure), number of statements, program units on magnetic tape, punched cards, or whatever 1/O
(individual invokable procedures), compool medium is available. Executing the instrumented
references, DEFINE name declarations, and creation code on the target produces an audit file for
end update dates. J73AVS databases are retained subsequent analysis by J73AVS on the host.
from run to ruc, allowing them to grow incremen- Alternately, if the target has enough main memory,
tally as a system is being developed. One or lacks an output device for the audit file, the
database may be used to retain data about an J73AVS data collection and analysis routines can
entire system; alternatively, different program- easily be modified to use a "HITS" array (one cell
mere may maintain different databases which can be per branch, each holding a "hits" counter);

*. combined at a convenient point in development, post-execution analysis of this data would then
Figure 3(b) is another form of J73AVS database take place on the target computer.

w sary, itemized by program unit name. Each
procedure's parent (enclosing procedure, if any) Since the user has complete control over
Is given, along with nesting information, which segments of code to instrument, overhead and

code expansion can be minimized; testing can be
The next report, Figure 4, shows execution done in segments, or the testers can "zero in" on

timing data produced by J73AVS. This report is a particularly critical procedure or module. This
obtained by instrumenting one or more procedures is a significant gain over previous approaches
with timing probes (inserted automatically on which involve either the tedium of inserting the
command by J73AVS), executing the instrumented software probes by hand, or a lack of a fine-
code, then using J73AVS to analyze the "audit" grained automatic control over the segments of
file produced by the execution. The bottom half code to be instrumented, thus causing unnecessary
of this example shows that two segments of code overhead.
were chosen by the J73AVS user for monitoring
execution time. These "clock intervals" need not This method of testing on a small target
be wholly contained in the same procedure or computer has already been proven with a tool named
module. The execution times shown are in EAVS (Extensible AVS), also developed at GRC.4
milliseconds and are as accurate as the system- LAVS was an early precursor of J73AVS, and the
level CPU clock. software technology advances since that time make

J73AVS a very important testing tool for embedded
The user may also Instrument source code to systems.

record which control branches are covered
(executed) during a test execution of the code.

* J73AVS reports exactly which branches have or have

A-14

do, , % "

OWE OR1 MORE MODULES OF JOVIAL 032 SOURACE CODE
JOVIAL 073 IS INPUT FOR PROCESSING AND ANALYSIS. THlE
SORC SOURCE CODE MdAY CON6TAIN .IflAVS LOGICAL

SOUP= Ym 3 AVE GENIRATES A DIRECTED GRAP% OF THlE
ANLSI.04TR0L STRUCTURE ALL SYNTAX. SEMANTICS.*

A'4D STRUCOTURAL INFORMATION IS STORED ON
STRUCTURAL 4 DATABAE. A00OONAL ON CH4ANGED SOURCE GCDE
ANALYS4CAUSEES AN EJUSTiNG DATABASE TO SE UPDATIED

ANALYSIS 0E91SL EROPS. WARNINGS. AND DANGEROUS

% REPORTS FOR PROGRAM
RETSTIG rPROGRAM ANALYS1IS DOCUMENTATION. DESUGGING1.

RETrESTNO AIN PRODUCED.

- SOFTWARE PROME ARE AUTOMATICALL.Y INSERTED
STR~CTL~AL A FOR DYNAMIC ANALYSIS OF EXECUTION COVERAGE.

*Ol§ SETO TPACKING. AND PERFORMANCE. TiING PR0BES
/ INSTRUMENTATION AMI LOGICAL ASSERTIONS AM TRANSLATED INTO

TEST EXECUTiON. PROGRAM EXECUTION PRO0UCES A DATA
DYMAW DTA OLLECTION TRACE PILE FOR ANALYSIS BY 032 AVS.

.p. TOEX(ECUTION COVERAGE AND TRACKING. STATEMENT
ExSCU~m" PERFORMANCE AND EXECUTION TIMING AME

60010ll N ANAYSISREPORTED BY TEST CA"E AND BY A SET OF

POUORD TSECAiON

Figure 1. Oeiwo J73AVS rA inWihUe

TEX A-i L E]

IPINS

J7AV DAAAE1/0/1PG

3.9 LOOKUP PROG AB2AS 11/06/81 11/062 81

4. TYNP 011. 27 1 1 1 11/06/81 11/06/81

5. EMR. PROC 25 1 0 0 11/06/81 11/06/81

Figure 3(a). J73AVS Database Smary

JAVDAAAE11/06/81 PAGE 31
11IZED By PROGRAM UNIT NME

UNIT FIRST LAST
90. UNIT MANE TYPE PAW NM NODULE MANZ NEST STNT SITT

1. TYPES 0411. (0141001.) TYPES 0 1 7

2. KITERNS 0411. (CON!OL) EE=S 0 1 23

*3. LOOKUP PROG (MAIN PRGRN) LOOKUP 0 3 67
4. CONVERT PROC LOKUP LOOKUP 1 50 66

5. FIND PROC (NON-NESTED) FINDP 0 4 26

6. ERROR PROC (NOR-NESTE) ERROR 0 2 24

Flgure 3(b). J73AVS Database Suary

A-16

- S -. **-.. .*%A L.--.r

EXECUTION TIMING REPORT 07/06/81 PAGE 2

PROGRAM TIMES MIN MAX AVG TOTAL TOTAL
UNIT MODULE CALLED UNIT UNIT UNIT UNIT LEVEL

ERROR ERROR 9 2 4 3 24 24
TSTINST TSTINST 1 5 5 5 5 93
TSTABRT TSTABRT 1 4 4 4 4 4
TESTLOOP TSTINST 1 78 78 78 78 78
TESTIF TSTINST 1 6 6 6 6 6

CLOCK INTERVAL TIMES
START START END END TOTAL AVG
MODULE STMT MODULE STMT COUNT TIME TIME

ERROR 23 ERROR 30 1 17 17
ERROR 27 TSTABRT 11 1 20 20

Figure 4. J73AVS Timing Report

BRANCHES NOT HIT REPORT PAGE I

TEST CASE 1 07/06/81 TERMINATING AT STMT 27 OF MODULE ERROR

MODULE I TOTAL BRCHS PER I BRANCHES
NAME I BRCHS HIT CENT I NOT HIT

ERROR I 7 3 43 I 3 4 6 7

TEST CASE 2 07/06/81 TERMINATING AT STNT 7 OF MODULE TSTINST

MODULE I TOTAL BRCHS PER I BRANCHES
NAME I BRCHS HIT CENT I NOT HIT

ERROR I 7 6 86 1 4
TSTINST 1 29 1 3 1 2 3 4 5 6 7 8 9 10 11

I I 12 13 14 15 16 17 18 19 20 21
1 1 22 23 24 25 26 27 28 29

TSTABRT I 13 3 23 1 3 4 6 7 8 9 10 11 12 13
* I

CUMULATIVE

MODULE I TOTAL BRCES PER I BRANCHES
NAME I BRCHS HIT CENT I NOT HIT

ERROR 1 7 7 100 1 *NONE*
TSTINST 1 29 17 59 I 8 9 13 16 19 20 22 24 25 26

1 1 28 29
TSTABRT 1 13 3 23 I 3 4 6 7 8 9 10 11 12 13

Figure 5. Branch Execution Coverage Report

A- 17

:-... ,......
..A~ ,... . .. ,,.. ..,m_,'m -,,,.. '._ ,.. ,

TEST COVERAGE SUMMARY

TEST CASE 1 07/06/81 TERMINATING AT ST 27 OF MODULE ERROR

ITEST CASE I CUMULATIVE

NODULE TOTAL TOTAL I NO. OF BRCHS PER SThTS PER I NO. OF BRCES PER STMTS PER
NAME BRCHS STMTS I IVS HIT CENT HIT CENT I DIVES KIT CENT HIT CENT

-ROR 7 23 1 4 3 43% 13 572 1 4 3 43Z 13 57%

TEST CASE 10 07/08/81 TERMINATING AT END OF RUN EXECUTION

I TEST CASE I CUMULATIVE

MODULE TOTAL TOTAL I NO.OF 5RCHS PER STKTS PER I NO.OF BRCES PER STHTS PER
p* NAMIE BRCES STMTS I iVS HIT CENT HIT CENT I INVKS HIT CENT HIT CENT

ERROR 7 23 1 0 0 0% 0 0 1 9 7 1OOZ 23 100%
* TSTINST 29 78 1 0 16 55 54 6911 1 17 59% 61 78%

TSTABRT 13 29 1 0 0 0Z 0 OZ 1 1 3 23% 12 41%
TOTAL 49 130 1 16 33% 54 422 1 27 55% 96 74%

Figure 6. Testing History S try

LOGICAL ASSERTIONS code, and the assertions @till exist in the source

This Is a simple yet powerful technique in code of the tool.

which the programer inserts special statments
called "assertions" into the source code that 0THER FUNCTIONS OF J73AVS

specify the expected behavior of the program at 4 Besides those discussed above, J73AVS
given point. This facility provides the most provides the following:

payoff when assertions are programed during * indented source listings
, design or early coding stages. For example, the

assertion S single- or multi-module symbol cross
references vlth set-use information.

ASSERT STAC'POINTER >- 0) " The J73AVS user can select symbol names

states that the value of the data item STACK' and/or data types.
POINTER is at least zero. static analysis to pinpoint error-prone

coding practices, mismatched formal and
Assertions provide a very convenient way of actual parameters (when the compiler is

reporting execution-time deviations from expected unable to do so), unused labels, data
or required behavior and can be used for stress contention in recursive or reentrant
testing, test-data generation, etc. After code is procedures, possible infinite loops, and
thoroughly checked out, they can simply he left as unreachable code.
coments in the code (as shown above). One of the
instrumentation options provided by J73AVS expand: 0 instrumentation to provide statement or
these statements into executable code; when the branch execution counts and procedure,
expanded code is executed, violations of the branch, or user-specified variable
asserted conditions are reported as part of the acing.
program output. For example, a negative value of * DEFINE name declarations and usage
STACK'POINTER (above) would produce a message like cross-reference.

IN MODULE POP'STACC. ASSERT FALSE AT STMT 149 * module and system interface descrip-
tions, including calling trees, etc.

A special PAIL statement is also provided
-. for the programmer to use in specifying "contin- SUMMARY

gency code" for deviations from the asserted J73AVS is a tool that can lover software
conditions. In developing J73AVS, we made liberal production costs and improve software reliability.
use of assertions to help us debug and test the It provides a framework for the use of standard-

A-18

, p%% V
*. ~ * *.•" . .~. . .

ized, organized testing measures, and is useful as
a software development and maintenance tool.

It can operate in either batch or interac-
U.,..tiv omoe wihan usesa feture cemping languase

cmchine-idependet fatouibe haKeen J7AV oal

throughout its development. Dynamic testing onl
target computers can be performed by analyzing the
execution-data file, produced by any target that
can output sequential files to off-line storage,
on the host computer. Current and planned host
computers for J73AVS are the IBM 370, DEC 20, and
VAX 11/780.

ACKNOWJLEDGEMENT
The design and development of J73AVS was

sponsored by the Rome Air Development Center,
Griffisa Air Force Base, New York, under contract
F30602-79-C-0265. The contract monitor was Mr.
Frank LaMonica.

1 . C. Gannon end N.B. Brooks, JOVIAL J73 Automated

Verification System Functional Description,
General Research Corporation CR-1-947, March
1980.

2. C. Gannon and R.F. Else, JOVIAL J73 Automated

Verification System Userrs Manual, General
Research Corporation CR-4-947, November 1982.

3. Mal. D. Burton, S. May, md T. !u~aws, "L
JOVIAL Interactive Debugger," NARCON 81, pp.
1121-1129.

4. 5.0. Campbell and S.H. Saib, "Embedded Software

Verification Through Instrumentation," NAECON
81, pp. 395-401.

A- 19

r~~~~~~~~~~~.... "..........P. ' r "

I
]

4...

• '.4

0%

b' . °"

4
t,.'

,' r:i

,0..

0'.,'

0. v...i . - ' , . ,.- % ° , . . . % .. - - . .- -% . ° . ". . . ,% -o -oO% °% .% .

° 4 . - .o•- °-•s ,, - - - - - . -, . . % - ° , . o •. - . - . % • - • ° . • .

AT-38

J73AVS: A JOVIAL J73 Automated Verification SystemI

Carolyn Gannon

AFCStnadiaio ofeec

5A/2

Dayon Ohi Noeme 2

- " " - ?

J73AVS: A JOVIAL J73 Automated Verification System

Carolyn Gannon

General Research Corporation
P.O. Box 6770

Santa Barbara, CA 93111
805-964-7724

" ABSTRACT

The development of J73AVS reflects the commitment of the Air Force
to facilitate JOVIAL J73 standardization. This paper describes software
verification as it is automated by the J73AVS tool. The concept of
software verification is discussed, as well as the capabilities and
operation of J73AVS. J73AVS provides much of its payoff by detecting
certain software errors and measuring the thoroughness of testing far
more accurately and efficiently than could be achieved manually. While
J73AVS operates as a standalone program on several host computers, it
augments the JOVIAL J73 support environment when used with other Air
Force-sponsored tools such as the code auditor [11, debugger [21, and

Program Support Library [3].

"-. INTRODUCTION

What is "software verification"? According to the IEEE committee
on standardizing software terminology, it is

the iterative evaluation of evolving software to ensure
compliance with requirements"

Thus, verification differs from validation or certification in that it

is an activity that is performed continuously throughout a software
development cycle. It incorporates a variety of automated and manual

. techniques to determine consistency between the requirements, design,
*coding, testing, and documenting stages of software projects.

-? Our focus in designing and building Automated Verification Systems
(AVS) for JOVIAL [4], FORTRAN [51, and COBOL [61 has been on static and
dynamic code analysis. That is, each AVS reads source code as input for

static analysis and uses the program's regular input data during dynamic

0 analysis. Therefore, requirements and design are not verified directly
by the AVS. However, because the AVS analyzes the actual code, the tool

reports true program characteristics. This approach interferes very
little with normal program development, since the AVS does not require

"I" additional information other than the source code and initial set of
". test data.

A-23

". J . %.. .

One very important, but often neglected, area of software veri-
fication is that of ensuring that the program documentation reflects the
real code. The most time-consuming aspect of conforming to Mil-Std-483
or other documentation standards is generating program symbol, struc-
ture, and interface information. Because it maintains a database of
intra- and inter-module characteristics, the AVS can generate some of
this information automatically. As code is modified due to error
correction or enhancements, the reports can be easily regenerated to
reflect the changed code. In contrast, manually generated documentation
is rarely up to date.

J73AVS CAPABILITIES

J73AVS should play a role in JOVIAL J73 software development as
soon as some of the modules are compilable. The source code is gener-
ated based upon a design, which in turn is based on a set of require-
ments. It is recommended that the expected program output (acceptance

- criteria) and at least an initial set of input test data be generated
concurrently with the program's design. The requirements, design, and

* -' acceptance criteria play an indirect role in J73AVS's analysis of the
software.

The types of J73AVS analysis capabilities are:

* Static and data-flow analysis (symbol usage anomalies and
dangerous coding)

* Reporting of program structure and characteristics

0 Measuring execution coverage of statements, branches, and
program units

" Execution tracing of variables, branches, and program units
%.

" Execution timing

* Structural (branch) retesting assistance

* Test history reporting

" Figure 1 shows how the requirements, design specification,
* acceptance criteria, and test data interact with J73AVS-supported
S/testing. The acceptance criteria are used to judge the proper perform-
' ance of the program. J73AVS provides detailed source analysis reporting

which aids the analyst in determining that certain acceptance criteria
are being met. The bold path marked number one in Figure I indicates
the cycle of static code checking.

S

A-24

.V.

~ ~~ ~ \"~- .% %% %* %,-

%

k%" " - k

DESIGN ACCEPTANCE

SEIIAINCRITERIA

" [STATIC

• " ANALYSIS <

-. " . F aSOURCE '"--- , PROGRAM

" "." ' CODE AS DOCUMENTATION AN• .,

DATA EXECUTION RESULTS

T. 2

Figure 1. Using an AVS

Once the static errors are removed, the program can be analyzed
dynamically by driving it with the initial set of test data. Dynamic
analysis is indicated by bold path number two in Figure 1. J73AVS
outputs execution coverage, timing, and tracing information, along with
the normal program output, which aids the analyst in determining
acceptable performance. Unexercised statements and branches are
indicated by J73AVS so that additional test data can be generated to

" ensure that all parts of the code are tested. Dynamic analysis,
therefore, is usually an iterative activity that continues until the
desired level of exercise is achieved. J73AVS maintains the coverage
levels for each test in its database.

As shown in Figure 1, compilable source code generally is first
analyzed by J73AVS to detect semantic errors that are outside the scope
of the compiler's static analysis capabilities. As each module is
analyzed by J73AVS, a database is built that contains single and
multi-module detailed characteristics. This database is used and
augmented each time additional analysis (static or dynamic) is requested

.V by the user. Thus, J73AVS is a partner in the development, testing, and
documentation phases.

U., A-25

- " -
4. 4~.%

It should be pointed out that, because of the database feature,
J73AVS supports top-down code development in the following way.
High-level modules can be coded early with stubs (module skeletons) for
lower-level modules. Both fully coded modules and stubs can be input to
J73AVS for analysis and documentation. J73AVS includes the stubs in its
database. Module interaction and interfaces (COMPOOL usage and para-
meter passing) will be analyzed and reported to the extent that they
occur in the code. Then, as lower-level stubs are replaced with full
source code, J73AVS replaces the modules on the database.

" A typical sequence of J73AVS-supported verification of fully coded
source modules is:

1. JOVIAL J73 source text, perhaps with assertions (Boolean
expressions, recognized by J73AVS, that specify expected
behavior), is read by J73AVS as one or more compilable
modules.

2. J73AVS produces program analysis reports showing control
structure, symbol usage, calling hierarchy, etc., as well as

4.- a static analysis report showing errors and dangerous
. programming practices.

3. Using the reports as a guide, the source modules are changed
or new modules are added to the program.

4. J73AVS reports the interaction of the new or changed modules
with the rest of the program. This information, in turn,
may show the need to modify other modules.

5. For debugging, the program is instrumented by J73AVS and
executed with an initial test case supplied by the user.

6. Assertion messages, variable, branch, and module tracing,
and execution timing reports can be used for debugging.

7. Using the J73AVS reports, the user chooses to create more
test data or instrument other modules.

.,, 8. For testing, the same cycle of instrumentation and execution
is repeated, but for a different goal: rather than detecting
and locating errors, testing aims to demonstrate that the
entire program has been exercised to some degree. The
J73AVS execution analysis reports show the thoroughness of
execution coverage.

9. The user evaluates execution coverage reports, the program's
own execution results, and the program specification to
determine if testing is complete.

A-26

, . -. ._. " _ =- r .rj . • - % % r. " -' % % _'.% % .% .' .'_%. - - -.-. ' - . - -•.-

Z*i e . .".
. ..

10. J73AVS provides branch sequence information to retest
targets chosen by the user. A test history of execution
coverage assists the user in choosing targets for retesting.

As just noted, J73AVS can be used to assist with several phases of
software development. These phases can be grouped as:

- Program development and maintenance

" Debugging

" Testing

0 Retesting assistance

Program Development and Maintenance

Executable assertions provide a means for a programmer to specify
expected behavior. Assertions can be used for reporting execution-time
exceptions, stress testing, and manual or automated test data genera-
tion. When assertions are left as comments in the source code they can
be used as inline documentation of the program's specifications. An
example of an executable assertions is:

. ASSERT (STACK'POINTER >- 0)"

To assist with reliable system development and maintenance, J73AVS
provides substantial program analysis reporting on structural hierarchy,
symbol usage, invocations, certain J73 constructs, and system character-
istics. The user has control over obtaining high- or low-level infor-
mation through the tool's command language.

Debugging

Normal compilation using JOVIAL J73 compilers can detect many

syntax and semantic errors. Other errors, such as uninitialized
variables, possible infinite loops, unreachable code, certain improper

*l constructs, and dangerous coding practices (like transferring into CASE
or IF statements) will be reported by J73AVS. The user can specify the
degree of analysis to the error, warning, or message level.

Debugging is supported by assertion exceptions, variable and
module execution tracing, and execution timing reports. When the
program's execution behavior deviates from the acceptable logical
behavior as specified by the assertions, it is immediately reported in
the program's output. The user-embedded assertions have no effect on
program control flow until they are violated; at that time the violation
is reported with the source statement number of the assertions.

A-27

*~ ~ .~%!% .V
1

.- * . ,
% % %¢ ' 'I , ' -. '.' , %" "" ,' ','- . . .,, . '," '. . •.,,.1. . .- ,,''

'',-"- ". ", "/.. - "' ,I' ,''. ;&? '. ' ., '' . - '. "d "- " -". ""-'-V-,' ° "" ">- " -'

Testing

The primary purpose of program coverage analysis is to provide a

measure of the level of testing. One measuring technique uses the
program's control structure as a guide. Structure-based testing means
that the program's control structures are analyzed for execution
behavior; that is, whether che structures are exercised and in what
order. Structure-based testing can uncover errors due to untested
branches or improper sequences cf branches. J73AVS provides program
unit or branch tracing and analyzes execution coverage of program units,
branches, and statements. Further, J73AVS assembles the timing infor-
mation from program unit tracing and user-directed timing probes into an
execution timing report.

Retesting Assistance

Software is retested when analysis shows that prior testing is
inadequate (insufficient branch coverage, not all functions demon-

* strated, etc.) or when program changes have taken place. The proper
approach to take in retesting is highly dependent upon the character-
istics of the program being tested as well as the measures being used to
evaluate testing completeness.

To determine the sequence of branches which lead to an untested
branch or statement, the user can request that the "reaching set" be
computed between two specified statements (or from a procedure's entry).
After the flow of control is identified by J73AVS, the user can back-
track through the program to the actual test data. New test data can be
created by using J73AVS module interaction, invocation, and execution
coverage reports. Unfortunately, automatic test data generators which
use symbolic execution are not yet general enough, easy to use, or
reliable. Therefore, J73AVS has no test data generation capability at
this time.

U....

The testing history maintained by J73AVS is useful in attaining
testing coverage goals and for determining targets for retesting.

*" Procedure invocation and coverage information is saved in a concise way
for each test case. The results of subsequent execution runs can be
added, providing a cumulative report of all tests.

J73AVS OPERATION

J73AVS operates in either batch or interactive mode on a host
computer. If the JOVIAL J73 code being analyzed is destined for
execution on a target computer, the J73AVS dynamic analysis operation is
modified slightly, as shown in Figure 2.

A-28

%%

-.

- - -- 71 .- '-.-.- - 70

PROGRAM /
J73AVS DATA

SOURCEroisBS":'" LTEXT TOOLS / BASE
TEXT

?0

HST]
BATCH JOVIAL TEST
REPORTS CI J7 PROBE

COMPILER D DATA

S1750A

PROGRAM PROGRAM
SREPORTS EXECUTION

Figure 2. Using J73AVS in a Host-Target Environment

The user directs J73AVS analysis through a simple command lan-
guage. The basic commands are verbs that select the type of analysis,

followed by command parameters that specify the scope of the analysis or
level of error reporting. As much as a whole program or as little as a

-. single symbol can be analyzed.

J73AVS displays or prints reports during static analysis. For

dynamic analysis, the Lnstrumented source (augmented by expanded

assertions and by probes for execution coverage, tracing, or timing) is

• passed to the JOVIAL J73 compiler. In a host execution environment,
input data is read by the program and normal program output is accom-

panied by an execution data collection file required for the J73AVS
post-execution analysis reports. J73AVS uses that file, along with its
database, to provide readable, user-selected reports that describe
execution behavior.O

6. In a host-target environment, the target computer must have a

sequential output device such as a disk or tape to transfer the data

collected during execution back to the host. In the absence of any
sequential output device, the J73AVS data collection routines can be
modified to output test coverage information on the target in an
abbreviated manner.

A-29

.7e .9,p

%."
5%-% 4...

J73AS ws dvelpedfor operation on IBM 370 and DEC 20:co:pu-
ter. I iscurrently being rehosted to the VAX 11/780. J73AVS is

writen n JVIA J7, exeptfora fw sallinput/output ruie
* written in FORTRAN. The VAX version of J73AVS is written in a struc-

tured dialect of FORTRAN.

ACKNOWLEDGEMENT

The design, development, and current rehosting of J73AVS is being
~ .~ sponsored by Rome Air Development Center, Griffiss Air Force Base, New

York, under Contract F30602-79-C-0265. The project officer is Frank

4-.

.~ . LaMonica, RADC/COEE. The VAX rehasting effort is being funded by the

Air Force Wright Aeronautical Laboratory.

A03

.1.

% .. k1

s%
° "

-

_, ters *)~~-*:. Iti urnl biUrhse toteV* I/70 7AS

REFERENCES

1. L. Brownell and R. J. Gilinsky, JOVIAL (J73) Code Auditor User's
Manual, Proprietary Software Systems, Inc., 16 March 1982.

2. Maj. D. Burton, S. May, and T. Fujawa, "A JOVIAL Interactive

Debugger," NAECON 82, pp. 1121-1129.

3. JOVIAL J73 Programming Support Library User's Manual, SofTech,
Inc., Jan. 1982.

4. C. Gannon and R. F. Else, JOVIAL J73 Automated Verification System
User's Manual, General Research Corporation CR-4-947, November
1981.

5. RXVP8O' User's Manual, (Preliminary Draft) General Research
Corporation RM-2419.

6. P. Roberson, R. Melton, and C. Andrews, COBOL Automated Verifi-
cation System User's Manual, General Research Corporation

CR-4-970, May 1982.

-. A-31

.. % . .

APPENDIX B

TERMS AND ABBREVIATIONS

The following terms pertain to software verification and to the charac-

teristics of JOVIAL software.

Assertion -

Statement of a condition that must be true whenever control

reaches that point in the program.

AVS -

Automated Verification System. A computer program or collection

of programs which assists ir verifying the correspondence between

software and the set of functional specifications defining the

software.

Branch -

A continuously executable sequence of statements between two

decision statements. It may include unconditional transfers.

Branch testing -

A testing technique that measures the number of executions of each

branch in a module and computes a measure for testing thoroughness

in terms of the fraction of all branches executed at least once.

Data Flow Analysis -

A program analysis technique which tracks the usage of symbols

through a program. The technique is used to detect uninitialized

variables and other program anomalies based on symbol usage and

control flow. The program is not actually executed.

Dynamic Analysis -

A debugging or testing technique in which the program is executed

with data and the program output, together with any additional

execution-time reports, is analyzed for conformity to functional

or structural performance specification.

B-1ii%
~~~~~~~~~~~~~~~~....=o,. -.-. , ... .. . ......... ...... ," .°°,,.. . . ,.. .. •...- .'- .- ... ,

[ '.5'.'.... •'% . -=". ° . . . . -. -%o - . o .•° . J -% o -••, °o"° ', ° .,' -% ° -•" •



Instrumentation -

The technique of automatically inserting software probes (sub-

routine calls or counters) into code or of translating special

statements (like an assertion) into executable code for the

purpose of collecting information during program execution.

Interface Description -

Information in the AVS describing global data passed between

modules.

J73AVS -

An Automated Verification System for JOVIAL J73 Software.

JOVIAL J73 -

A JOVIAL programming language as defined in MIL-STD-1589B for

command and control, avionics, and defense systems applications.

Module -

The smallest entity in JOVIAL J73 that can be separately compiled.

(Note the difference between module and program unit.)

Path -

A continuous sequence of control flow (branches) between two

points in a program (usually between a program unit's entry and

exit).

Program Unit -

The smallest entity in JOVIAL J73 that can be invoked, or, in the

case of compools, referenced by name. In JOVIAL J73 program units

are compool-modules, main-programs, procedures, and functions.

Reaching Set -

A set of statements that incorporates all of the branches leading

to a specified statement.

Static Analysis -

A technique which analyzes program source but does not actually

execute the program. Program statements and symbols are analyzed

to detect inconsistencies in semantics or in asserted versus

actual conditions.

B-2

% .. .- - %. . .. .
%- % , % % <?. .. .. ,'. ,,'..-;,,.. V€ : .%'



Test Target Selection

The process of selecting a module, or a set of statements within a

module, to be executed with data for the purpose of improving the

- quality of testing. Goals for improving the quality of testing

-' may be exercising unexecuted branches, paths, or statements,

executing all boundary conditions, etc.

--

'-42

i B- 3

N N"

/ -4%



APPENDIX C

J73AVS Processing and Reporting Commands

Command (Defaults Underlined)

READ (,ECHO)

STATIC {,DATA} {,SUMMARY/FULLJ
4 ,LIST-ERRORS ,WARNINGS ,MESSAGES)

LI ST

LIST,DATABASE 4 ,UNITS}

INSTRUMENT ( ,ASSERTIONS) ( ,COVERAGE) { ,TRACE=BRANCH/ENTRY}
INSTRUMENT ,NEWTEST,(m-name> ,(stmt>
INSTRUMENT ,CLOCK ,ON=(m-name> ,<stmt> ,OFF-<m-name> ,(stmt>
INSTRUMENT,VARIABLE,<v-name> { ,<start-stmt>} ,{<stop-stmt>}
INSTRUMENT ,GO.

DOCUMENT,INVOCATIONS 4 ,SOURCE} 4 ,BANDS/BANDS=<n>l
{,TREE} (,GLOBAL)

DOCUMENT ,SYMBOLS { ,SOURCE/XREF) 4 ,NAMES=<s-name>,... }
DOCUMNT ,LABELS/TYPES/CNSTANTS/COMPOOLS/REFDEF (,SOURCE/XREFI

4 ,NAMES=<namel>,...}
DOCUMENT ,DEFINES 4 ,XREF/EXPANSIONS/FULL) 4 ,NAMES=<namel> *** I

EXECUTION (,SUMMARY) (SOURCE) {,NOTHIT) {,TIMING}
EXECUTION ,GO

ASSIST,BRANCHES{{ ,<first stint>) ,<last stmt>{ ,ITERATIVE}}
* ASSIST,HISTORY{ ,RESET)

note: 1) indicates optional parameter
0> indicates user-supplied name
/indicates selection of one parameter

All command keywords and parameters can be abbreviated to two or more letters.

C-1

S%

% %. . *? ~..*



-. * SA 1 .MISSION. b~

Of6

ROM Ar DftCtlw

5--pa6an xc"AwLh eeow~,ttd~

.6 eectd aqu~iiol #L 6W*%t j Cmman, Cnf-

etwU RTe Atir=a.,i Developen Cen te
RCpUWAn6 excte ,*Ad Kit dcpuui t tt 6"M.
CoiUuate ia a4ud- ano t
cod eetion an idng ,~O~ 0i4dowqs AQ4 46 Mnot#c*vPke4t

phyanc. &Rd gid fnd £0p4 bieAIiteUALW4aiAndat

4 aF



* FILMED

1-85

DTIC


