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PREFACE

This report was prepared by the Statewide Air Pollution Research
Center (SAPRC) of the University of -California, Riverside, California
92521, under Contract No. F08635-80-C-0359, with the Air Force Engineering
and Services Center, Air Force Engineering and Services Laboratory
(AFESL/RDS), Tyndall Air Force Base, Florida 32403.

This report describes the first phase of a two-phase program aimed at
developing experimentally tested models for the atmospheric reactions of
turbine engine fuels. This phase consists of the experimental studies
necessary for model development and testing. The second phase will
consist of the necessary model and software development.

This technical report 1s divided into two volumes. Volume 1 de-
scribes the experimental results and discusses their significance. Volume
11 tabulates environmental chamber data gathered during the experimental
studies phase of this program. For most purposes, Volume I is complete in
itself but a few people may find it necessary to use Volume II in conjunc-
tion with Volume 1. Initial distribution of Volume II was not made, but a
copy was submitted to the Defense Technical Information Center, Those who
need to use Volume II may obtain copies from the Defense Technical Infor-
mation Center or from the National Technical Information Service (addres-
ses are listed on inside of front cover).

This work was carried out between June 1983 and June 1984 under the
direction of Dr. William P, L. Carter and Dr, Arthur M, Winer, Co-
Principal Investigators, and Dr. Roger Atkinson, Program Manager. The
principal research staff on this program were Ms. Margaret C. Dodd, Mr.
William D, Long, and Ms. Sara M. Aschmann. . Assistance in processing the
data was provided by Ms. Lori A, Luisi{ and Ms. Minn P. Poe, and assistance
in preparation of this report was provided by Ms. I. M, Minnich and Ms.
Christy J. LaClaire,

Dr. Daniel A. Stone, AFESC/RDVS, was Project Officer for this con-
tract,

This report has been reviewed by the Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At

NTIS it will be available to the general public, including foreign
nationals,

This technical report has been reviewed and is approved for publication.

ROBERT F. OLFENBUTTig, Lt Col, USAF, BSC

Chief, Environics Division

{Tﬂ
Director, Engine ring and Services Laboratory
iii
(The reverse of this page is blank.)

QIS AV ST LY o T o N L A I I it 2 e L e o 4y T N e D A o Sy

------



« Ny » e " - - -oal ® r
AP AR R LW W Y, CaliC A B 9 o8 un-....,.gn.t.(‘.'\. o MRS Ny M N S T )

AY

X TABLE OF CONTENTS

Section Title Page

I INTRODUCTION.......'.........C...........‘................l

II ENVIRONMENTAL CHAMBER STUDIES: METHODS OF PROCEDURE.....l0

A. CHAHBER EWLOYED.....................C.......O..'....lo

B. EXPERIMENTAL PROCEDURES........C....O..'O.......'..l.12
,é"" c. ANALYTICAL TBCHNIQUES‘...............................ls

l. Gas Chromatographic Analyses.....................15

Lo\ 2. Fomldehydeo-............--......-o-.-..........Zl
,‘\5“ 3. Continuous Honitoting InstrumentSeescsescesccossoell
..":.
-!.'..\':'. 4, Light~Intensity.......o...........o..o-.-....-.-.Zﬁ
h"‘l

5 111 CHAMBER EXPERIMENTS: RESULTS AND DISCUSSIONcecescvosseccsse2b

.

, \"

:Jf“. A, LIGHT SOURCE AND CHAMBER CHARACTERIZATIONecceccoocccoese2?

‘* M 1. Light Intensity and Spectral Distribution.ececsesse27
) 2. Nox-Mt Itradiations-ooco.ooc0.0.000..00...-0000029

3. Ozone Dark Decay DeterminatfonS.cecececcesccscceelb

Py
25

3
i
‘-}‘

4. Acetaldehyde Itradiation.................-.......37

bt %

‘ . Se Propene-NOx Irtadiations......-.oo-000000000000-038

- {Accossion For
:1’:2 :T‘"J"’ f“?l'\_g:r]:u ‘B. SINGLE COWONENT RUNS..-....ao..ooooooaoo--ooooooo.ooal
,\5\' | Rl
:":“ N i T M 1. Comparison of Overall ReactivitieS8ececcsecccscosseld?
L. S Lo
._A‘_ - el o 2. NO Oxidation EffiCiGnCY.;..-oo.00.00000000000000060
o~
::::: o ’*?.“-'-3‘*.:‘1/ 3. Effectﬂ on Radical Levels........................63
':"-. : L .

"’i ' ‘1 A", CO(‘A{JS’ c. FUEL RuNs.......'...............‘.................."73
f:’;- Siu inifor
:"' o ' R "'J:'"‘l 1. COIBPOSitions of the Fuels Employed..-.-..........74
W |
S ALl

"y f

‘n'\ 4 — et
'u. v
@_

....

‘.\ Nt % e A NN T G ]

SCUAC XA AL 2N AT N NI WM



' WA S A S YA E R L SENLS A GO L4 At CR AP SLNCRNC LTINS AC AL Oy A ALANC RO AN 0 p L MM e LT
N\
-
o~
.
Ly TABLE OF CONTENTS (CONCLUDED)
N
fj Section Title Page
:::? 2. Comparison of Fuel ReactivitieS.secscsccscsccsees’8
:-' 3. Effects of Added Furan, Thiophene, or Pyrrole....85
el
:.:: IV KINETIC STUDIESCC...........CI......O....Q..Q....'.......go
o
S?; A. DETERMINATION OF OH RADICAL RATE CONSTANTS.sseseescse9l
\.. l. Experimental Procedures and Data AnalysiSe.eeeesse91
::‘; 2. Results of Pyrtole............................-..93
L
UE 3. Results for the Synthetic Fuel ConstituentsSe.....95
A B. DETERMINATION OF THE 05 + PYRROLE RATE CONSTANT......98
oo
"ﬁ C. DETERMINATION OF NO, RADICAL RATE CONSTANTS FOR
: FURAN, THIOPHENE’ AND PYRROLE.....'......0.......0...99

l. Experimental Technique and Data AnalysiSescsccees99

:::: 2' Results..".....'...‘....l....l.Il......'......lloz
1O
."J V CONCIJUSIONS.....'...OQ....C.'..l.....l..................los
l.’
-x' R-EFERENCES.......'....................'...Q......I.......l...‘.’..’..lls
-
A\
4.'- APPENDIX A, CHRONOLOGICAL SUMMARY OF ENVIRONMENTAL CHAMBER
‘ EXPERIMENTS..0..l.........0...0.............'....I'..'..lzl
A%
AN
Z;f-
[l

.~

s °. vi

A LTV ML AN NI M I AN, KR NN IV



-
Taledln?

Figure

10

11

12

lo Co¥ o
A VA A T

LIST OF FIGURES

Title Page

SAPRC All-Teflon Indoor Chamber with Associated
Analytical InstrumentSecececserccscosnsccccscscnssssssssscscsll

Plot of NO, Photolysis Rates Measured in the Indoor
Teflon Chamber Against Run Number....o-........-...-.-..28

Experimental and Calculated Concentration-
Time Plots for Species Monitored in Propene-NOx-Air
Run ITO-693....I.....'.........‘..l...’........l..l......40

Comparison of Ozone Concentration-Time Plots from
Benzene, Toluene, m—-Xylene, and Mesitylene-NOx-Ait

Runs.oo...ooc.00....0.00....‘.00...00.0.0000000000000'00043

Comparison of 03, NO, and N02 Concentration-Time
Profiles for Naphthalene-NOx-Air Run ITC~756 and
2,3-Dimethylnaphthalene-NOx-Ait Run ITC=77lceccccccsscesddb

Comparison of 03 Concentration-Time Profiles for
Furan, Thiophene, and Pyrrole~NO,~Air RunS.cesssecccccsssd?

Comparison of 0,, NO, and NO, Concentration-Time
Profiles for To uene-NOx-Air Run ITC-699 and
Hethylcyclohexane-NOx-Air Run ITC‘767...o-oo-oonoooccooo049

Comparison of 05, NO, and NO, Concentration-Time
Profiles for m-Xylene-NO,~Air Run ITC-702 and
Tettalin*NOx-Ait Run ITG‘747.too.uo-n.-o-oooao.ouooooo'otso

Comparison of 0,, NO, and NO, Concentration-Time
Profiles for m—%ylene-NOx-Air Run ITC-702 and
Naphthalene-NOX—Air Rﬂn ITC‘751.-.-.0..-..0.-.0oooooooooosl

Comparison of 0,5, NO, and NO, Concentration-Time
Profiles for Mesitylene-NO ~Air Run ITC-706 and
2,3-Dimethylnaphthalene-NOx—Air Run ITCP774000000.000000.52

Comparison of 0,, NO, and NO, Concentration-Time
Profiles for Toluene~NO_-Air Run ITC-699 and
Thiophene-NOx-Ait Run I%C—7a4........o-.-....-......-....54

Comparison of 04, NO, and NO, Concentration-Time

Profiles for m-Xylene-NO,~Air Run ITC-702 and
F“raﬂ-Nox-Ait Run ITC-711.o............-......--....-...-55

vii

LR SR O, A

F AN

PO R N SR Y0 TIPS P ) v
I}l:vkl:;:AA!L!L!hi;ﬂg{\’ Lo




J'xu, 4 n\- 1495 9 e 4 4 Maae s F oAt A/ ongh Re¥ e Sut Db St 00 gt at Dt At At A et M NE LA ¢ L L gt RS HARE AL
-

‘.~
g

4y
l"’.

PN NN
Py n"-“ b

Celelsy

LIST OF FIGURES (CONTINUED)

v~ -‘.
]

. g

NS Figure Title Page
“;

i: 13 Comparison of 03, NO, aad NO, Concentration-Time

9% Profiles for Mesitylene-NO,-Air Run ITC-703 and

~, Pyrtole—NOx-Air RuUn ITC=735¢ccececssscescscssscsoncssncssedbd

\_J

;“-‘r_\ 14 Comparison of 04, NO,and NO, Concentration-Time
o Profiles for Mesitylene—NOx-Air Run ITC-706 and

::‘: Pyrrole-NOx-Air Run ITC‘799---oooooo-o-o..oo-ooooo.ooo-o-57
T
v

;‘ N 15 Comparison of 03, NO, and NO, Concentration-Time
\ Profiles for Furan-NO -Air Runs ITC-711, 713, and

: “. 715.'..........'....'.............0.......‘...........'..Sq
e

s 16 Plots of Net Radical Input Rates from Organics

.-:. Calculated from Selected Benzene and Methylbenzene~

" Nox—Air Runs...........I.....'.l......ll............'...'69
- 17 Plots of Net Radical Input Rates from Organics

‘:j:v:: Calculated from Selected Tetralin, Naphthalene,

- n-Octane, and Thiophene—NOx—Ai L RUNSeeccnvessooscsssoocssll)
o ¢
L 18 Chromatogram of the Preproduction Batch of
\ Shale-Derived JP-4 After Injection into the Indoor

‘\‘ Teflon Chamber........-......................-....-.....74
)

N

oy 19 Concentration-Time Plots for 03, NO,, and PAN

oy Observed in Selected ~100 ppmC Fuel - 0.5 ppm NO, Runs

= Employing the Three Synthetic Fuels and Shale-Deirved

' JP—A‘.....I...'......‘......Ol........‘.........O...'....80
a

5 20 Concentration-Time Plots for 03, NO,, and PAN Observed

:..-'f: in the ~50 ppmC Fuel -0.5 ppm NO, Rums Employing

Rl the Three Synthetic Fuels and Shale-Derived JP~4..c0cce..81
.'2

.‘_ 21 Comparisons of 0,, NO, and NO, Concentration-Time

:;:.:: Profiles for Repgicate Standard Synthetic Fuel and

‘-:.:-‘ JP-A-NOX-M[' Irradiations...-oooooooooo0000000000000000.083
0

S 22 Comparison of Concentration-Time Plots for O3, NO,
s and NO, for Standard Synthetic Fuel Runs With

.. and Without ~2 PerCent Added Furan ceoa s .-000000000000000085
::::: 23 Comparison of Concentration-Time Plots for 03, NO,
W and NO, for Standard Synthetic Fuel Runs With and
'::o' Without ~2 Percent Added ThiOphen(’ seseee .........00000086
‘ |

2
XN

PO

o viii

o

.'.u..'

[

%

:'.. - -
A A e R

ST T S A S

LVRLATN

SRR N T T PR LG NSO AT e L e e -
- ,l".\ ITERFSVSI NS IS SOOI VRO A ."-'5'_:5!..\.'!' ‘\'.\‘.ﬁ’.\'_\':\':\\:\ﬂ



g ¥ . RN 08 o tp ot .. apt . .-_-.'!..\. --'.\. I DRSS A . IR LA A AR KAEESEA LR ER St S

Q@

N LIST OF FIGURES (CONCLUDED)
(s

?} Figure Title Page
“n

4& 24 Comparison of Concentration-Time Plots for 05, NO,

jb and NO, for Standard Synthetic Fuel Runs With and

l Without ~l Percent Added Pyrrole ..I..........0...........87
:: 25 Plot of Equation (XXII) for the Reaction of OH

=~ Radicals with Pyrrole and Propen@esscccscccccesssscsceceeesdé
’:.

ﬁ? 26 Plot of Equation (XXIV) for the Reaction of 04 with
’! . Pyrrole..‘.....l....0........0...0..'....).0’...‘..!....100
‘\ v

i_ 27 Plot of Equation (XXV) for Furan and Thiophene, with
t(} trans~2-Butene as the Reference OrganicCecsesscccccsceassl03
iy —_—

“; 28 Plot of Equation (XXV) for Pyrrole, with 2-Methyl-2-

] butene as the Reference Organic..ccesceersscsccccccecceasesl04
o 29 Plot of Equation (XXV) for Thiophene with Propene as

\‘:' the Reference Organic......-............................105
A

e

)
{

AN

3

=

S

)

° .

"4-:

I

'-4

.'.:w

.

Q.

l-"'.

\."

l\.

'\.’ )

ix




‘V { , ./ o

W e
o
7 ed ®

l‘ l_.l:
LA S

oy
l‘*

PRs
.
2

7
'hﬁﬁ;"'

0N
Y

2t AP
AR

X
%"I‘l

“‘
-
AT AR

—~
e "o = XA
{ﬂf ﬁ’ﬂ

-
‘s
‘

LI S
2 e
AR

TR I )

SO0 -

,,‘
.'Lﬂl
X0

L 4
LA

[
»
»
e

) l.' .
AL I

AL AR

N

o

o vy -
DY F R i QO R S A P I

Table

10

11

12

13

SO A A RLGEGAGL S N i T A AT e L TR

LIST OF TABLES

Title Page

REPRESENTATIVE COMPOSITION OF JP=4. cccesessscccooasaccscscd

SUMMARY OF EXPERIMENTS CARRIED OUT FOR TESTING MODELS
FOR ATMOSPHERIC REACTIONS OF TURBINE ENGINE FUELS AND
REPRESENTATIVE FUEL CONSTITUENTS.eecescescsccccsccssssoces/

RELATIVE SPECTRAL DISTRIBUTION FOR THE BLACKLIGHTS IN
THE SAPRC 6400-LITER INDOOR TEFLON CHAMBER.O.'..Q..Q..O.Zg

SUMMARY OF RESULTS OF NO,~AIR IRRADIATIONS...ceseeessesss35

INITIAL CONCENTRATIONS AND SELECTED RESULTS OF
PROPENE-NO,~AIR EXPERIMENTS AND MODEL CALCULATIONS.......39

INITIAL CONCENTRATIONS, RUN TYPES, AND SELECTED
RESULTS OF THE SINGLE COMPONENT-NO, ~AIR IRRADIATIONS.....44

RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS WITH
THE FUEL CONSTITUENTS AND MODEL COMPOUNDS STUDIED
IN THIS PROGRAM...........Q..............................48

AVERAGE NO, AND ORGANIC CONCENTRATIONS AND CALCULATED
AVERAGE OH RADICAL LEVELS AND VALUES OF THE

REACTIVITY PARAMETERS a AND B FOR THE INITIAL

PERIODS OF THE SINGLE COMPONENT-NO_ -AIR IRRADIATIONS.....64

COMPOSITION OF THE THREE SYNTHETIC FUELS EMPLOYED

IN THIS PROGRAM AND RELATIVE CONCENTRATIONS OF

SELECTED COMPOUNDS MEASURED IN THE PREPRODUCTION

BATCH OF SHALE-DERIVED JP-4.cccceseessccccsacscosacesscscslb

INITIAL CONCENTRATIONS AND SELECTED RESULTS OF THE
FUEL_NOX-AIR IRRADIATIONS.....ooooooocooooooooooooo..oooa78

OH RADICAL RATE CONSTANT RATIOS DERIVED FROM THE
RESULTS OF THE SYNTHETIC FUEL-NO,~AIR IRRADIATIONS.......96

SUMMARY OF OH RADICAL RATE CONSTANTS OBTAINED FROM
THE SYNTHETIC FUEL EXPERIMENTS....O.'I....'..l...........97

RELATIVE RATE CONSTANT RATIOS AND RATE CONSTANTS
FOR THE REACTION OF NO3 RADICALS WITH FURAN,
THIOPI{ENE’ AND PYRROLE........‘......'.."..'.....'.....107




" LIST OF TABLES (CONCLUDED)
>
X Table Title Page

14 RATE CONSTANTS AND ATMOSPHERIC LIFETIMES FOR FURAN,
THIOPHENE’ AND PYRROLE...............l."...............112

- A-1 CHRONOLOGICAL SUMMARY OF INDOOR TEFLON CHAMBER
-" EXPERIMENTS....'I.l.‘..........'...‘.0......‘...........123

0
1,0,

.
[} o H
NN W

Ul g
a
. - L

X

x1i
(The reverse of this page is blank.)

-.'_\‘:,:;.'_\:_\‘ L

¢
r
5
.
'

. & ..;-‘.;'.'- Nt ._:...-. R I .‘:-._' IR -.- SRR AR




Ry ‘e B sall " B ) g il Qg . R > vy
‘ SO At Bt o i e gy o «¥ e LS LA A0 B TN VD N B S A S Fd St P e L T T e TN

"y SECTION I

INTRODUCTION

Normal operations of military aircraft within the United States

i}} involve the use of large quantities of turbine engine fuels, and some
ﬁ:. . release of these fuels into the atmosphere is an inevitable consequence of
-“.
3t. their storage and handling. Further emissions of fuel vapor into the
S
&v . atmosphere occur through in-flight fuel jettisoning (Reference 1), where
" operational situations call for the aircraft’s gross weight to be reduced
..\_'
:; to facilitate safe landing, and through the emission of unburned fuel
}: components in jet exhaust - (Reference 2). 1In the presence of oxides of
Y
nitrogen, which are emitted from aircraft engines and a varlety of other
:;: anthropogenic sources, these vaporized fuel components can react in sun-
(o light to form ozone and other photochemical oxidants and secondary pollu-
;*S tants, as well as aerosols, To comply with federal, state, and local air
19
( quality regulations, it is necessary to know the impacts of direct
= emissions of current jet fuels on air quality, and to be able to predict
:? how future changes in fuel composition may affect alr quality.
:3 Significant changes in fuel composition may occur in the near future
':) since it has become increasingly apparent that continued dependence on
:; foreign oll as a source of these fuels 1is unacceptable from both a mili-
-~
L~ tary and economic standpoint, and alternate domestic sources such as coal
o N i
.i: oil or shale oil are currently under active investigation. Such a change
® in derivation will almost certainly involve significantly broadened speci- !
:; fications for future fuels (Reference 3), which, in turn, may affect their
ﬁf atmospheric reactivity. In addition, fuels derived from coal or shale oil }
&: may also include sulfur-, oxygen-, or nitrogen-containing impurities at |
-~ |
-@ levels significantly higher than in present fuels, and this may also
T
o affect the extent to which release of the fuel affects air quality.
="
- However, the nature and magnitude of these effects are highly uncertain,
N
!?ﬁ and no reliable means yet exists by which they can be predicted,
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Nt Previous studies concerning atmospheric impacts of vaporized aircraft
(t' fuels are few, and have been highly limited in scope. Bouble et al. (Ref-
) : erence 4) and Scott (Reference 5) discussed fuel emissions from aircraft
S,’:_: and Clewell (Reference 1) discussed fuel jettisoning, but none of these
_1,‘::. studies addressed the atmospheric reactions occurring after the fuel was
\_) emitted or released. More directly related to the problem of atmospheric
::: :’, reactions of vaporized fuels were two studies carried out in our labora-
}\., tories, one in which a series of multiday outdoor chamber experiments were
::\j conducted where nine different military aircraft or commercial motor
‘ vehicle fuels were vaporized and irradiated in the presence of NOx (Refer-
YA ence 6) and the other in which the effects of temperature and pressure on
.- the NOx—air irradiations of JP-4 and (to a 1lesser extent) JP-8 were
:’_:3 studied in an 1indoor environmental chamber (Reference 7). The latter
- study was carried out to elucidate the effects of altitude on the atmos-
-:-'TY: pheric reactivity of these fuels. The reactivity of these fuels in terms
'::". of rates of NO oxidation and 03 formation increased with altitude, with
.t;::) this effect apparently being primarily due to the effect of reduced pres-
‘ sure. In the former study, which concerned only ground-level effects,
.'_:‘_._ revealed that differences in fuel composition can significantly affect
-.:- atmospheric reactivity, and data were obtained concerning the relative
':'_'.EZ; reactivities of the nine fuels studied.
' However, in terms of being able to predict the effects of future
:::: changes in fuel composition on their atmospheric reactivities, it is
«.‘{:j:i apparent that the approach employed in our previous studies, i.e., to
’:_: carty out chamber experiments under a variety of representative conditions
[ ) for each of the many different present or potential future fuels or fuel
‘.7:' types, is neither practical nor cost-effective. For example, to compare
_E the reactivities of just nine different fuels, over 130 single-~ and multi-
:;'-::‘ day experiments were required, and experiments were carried out under a
:A variety of temperatures and lighting conditions for only two of the fuels
:;-f- studied. A much more effective approach would be to develop reliable
:i' computer models for the atmospheric reactions for each of the major
i& classes of fuel constituents and potential future impurities, and to use
L ) these models to predict the atmospheric reactivity of any present or
Py
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future fuel whose composition is known. This approach was employed in the
study described in this report.

Developing reliable computer models for the atmospheric reactions of
fuels involves a number of tasks, some of which have already been largely
completed, others which were carried out as described in this report,
and still others which remain to be completed. These tasks include the
following: (1) identifying the major constituents of the fuels of inter-
est and their potential future impurities which may be of significance;
(2) reviewing the available data and chemical theories concerning the
atmospheric reactions of members of the various major classes of fuel
constituents and impurities, and using this information to develop chemi-
cally valid models for these processes; (3) carrying out environmental
chamber experiments under carefully controlled conditions suitable for
testing and refining these models; (4) using the results of these experi-
ments to test the models and to allow values of uncertain mechanistic or
kinetic parameters to be refined to be consistent with the data; and (5)
incorporating this tested and refined model into computer software suit-
able for use by Air Force planners and others to predict effects of
changes 1in fuel composition on air quality under various 1idealized
scenarios. The status of these various tasks, as they relate to the
studies described in this report is briefly discussed below.

The major constituents of turbine engine fuels have already been
largely 1identified. As presently used, military jet fuels are multi-
component hydrocarbon mixtures, as exemplified by the petroleum- and
shale-derived JP-4 and JP-8 fuels (Reference 6). The major individual
components of these fuels are alkanes (straight chain, branched, and
cycloalkanes) with lesser amounts of aromatics and very small amounts of
alkenes (Reference 6). As an example, Table 1 shows a representative
composition of JP-4, based on an analysis by the Air Force Aeropropulsion
Laboratory (Reference 1). In addition, 1f future military aircraft fuels
are derived from coal or from shale oil, they may also contain small (< 2
percent) amounts of sulfur-, oxygen-, and, less likely (Reference 4),

nitrogen-containing organics. These heteroatom-containing organics are

anticipated to include such compounds as thiophenes, furans, and pyrroles
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L -~ TABLE 1. REPRESENTATIVE COMPOSITION OF JP-4 (FROM REFERENCE 1).
L1
o Component Mass percentage
T
“ﬁ Isopentane 3.2
3 Isohexane 7.1
L) Cyclohexane 2.2
s Benzene 0.3
\,ﬁ 3-Methylhexane 8.6
s Methylcyclohexane 7.3
'\'_'I: Toluene 0.8
\ 4-Methylheptane 9.4
\ _* cis-1,4~-Dimethylcyclohexane 7.7
ey m=-Xylene 1.8
i ,-z'.s 4-Methyloctane 8.7
Y Isopropylcyclohexane 4e6
Mo 1-Ethyl-2-methylbenzene 2.8
chey 2,7-Dimethyloctane 7.0
p-Menthane (cis) 3.9
YN p-Cymene 2.1
g Naphthalene 0.3
}\5 Undecane 4o7
*\j 3-Methylbutylcyclohexane 2.7
3-Methylenedecalin (trans) 4.0
\ 1-Butyl-3-methylbenzene 1.2
::} 1-Methylnaphthalene 0.3
5;;’ Dodecane 2.8
M 3-Ethylbutylcyclohexane 1.3
“‘J 1,3,5-Triethylbenzene (mesitylene) 0.6
2,3-Dimethylnaphthalene 0.3
‘»f% Tridecane 1.1
;x:\ j-Isopropylbutylcyclohexane 0.4
::u: 3,5-Diethyl-1-propylbenzene 0.1
LAY Tetradecane 0.2
'u}: Pentadecane 0.1
> Perhydrophenanthrene 2.2
;-2v Residual 0.2
b
aon
2r
v
.
:}3 (Reference 8), but further detailed analyses of these fuels are necessary
ijzj to identify these components.
:;:s In addition to a knowledge of the composition of a given fuel, an
'y adequate knowledge of the atmospheric chemistry of its major components is

required before reliable models for {its atmospheric reactions can be
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developed. At the present time, many aspects of the kinetics and reaction

mechanisms of 04 and OH radicals with the simple organics are known or are
becoming known from a combination of laboratory, environmental chamber,
and computer modeling studies (References 9-18). In particular, the
available kinetic data indicate that the major mode of initial reaction of
the alkane and aromatic fuel constituents is reaction with the hydroxyl
radical (Reference 18), and, based on our knowledge of the atmospheric
chemistry of the simpler organics, some inferences concerning that for
some of the major fuel constituents can be derived. However, significant
gaps still remain in our understanding of the atmospheric chemistry of the
aromatics and the larger alkanes (including the cycloalkanes), and even
less is known about the atmospheric chemistry of the heteroatom-containing
organics, the naphthalenes, and the other bicyclic aromatic hydrocar-
bons. These are precisely the classes of compounds whose atmospheric
chemistry must be characterized before reliable, predictive models for air
quality impacts of turbine engine fuels can be developed.

To improve its understanding of the atmospheric chemistry of these
classes of compounds, and to develop reliable predictive models for the
fuels, the Air Force Engineering and Services Laboratory contracted the
Statewide Air Pollution Research Center (SAPRC) of the University of Cali-
fornia at Riverside to carry out the remaining tasks required for model
development. This program consists of two phases. The first phase
involves conducting environmental chamber experiments to provide a data
base suitable for testing and refining models for representative fuel
components and representative surrogate and whole fuels (Task 3, above),
and also involves a more limited study aimed at obtaining certain kinetic
data required in developing these models. The second phase of this
program involves using these and other available data to develop and test
the models (Tasks 2 and 4) and to develop the necessary software so that
the final chemical model can be used by the Air Force for planning
purposes (Task 5). These two phases are being carried out sequentially,
with the first experimental, model development phase now complete, and the
second phase scheduled to begin (if funding 1is available) in October 1,
1984.
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This report gives the results of the experimental phase of this

L~
I

program. By far the major effort of this program consisted of the envi-

ronmental chamber experiments. In addition, experimental measurements of

'? the rate constants for the reactions of (a) OH radicals with several

W bicyclic aromatic and alkane fuel constituents, (b) OH radicals and 03

;; with pyrrole, and (c¢) NO4 radicals with furan, thiophene, and pyrrole were

:; carried out at no added cost to the Air Force. The methods employed and

l:% the results obtained are given in this report. These rate constants, ]
."'

which have not been previously determined, are required in any model for

po=
A

the atmospheric reactions of these potential fuel impurities.

i: The environmental chamber experiments were carried out, using the
:E: SAPRC ~6400-1iter indoor Teflon chamber, and 1included a total of 62
f{ NOx-air irradiations of representative fuel components, various synthetic
y.v fuel formulations, and a preproduction batch of shale-derived JP-4 fuel.
f:é In addition, a total of 69 control and charactertzation runs were carried
3; out. The number of experiments of the various types which were conducted

in this program are summarized in Table 2.

‘; NO,-air irradiations of single representative fuel constituents are
i generally the most useful for testing models for the reactions of these
§ individual compounds or classes of compounds. The single components
‘. studied consisted of benzene and the representative alkylbenzenes toluene,
'f m-xylene, and mesitylene (1,3,5-trimethylbenzene), tetralin, naphthalene,

.Eg and 2,3-dimethylnaphthalene, the representative alkanes n-octane, and
:; nmethylcyclohexane, and the representative potential future heteratom-
o containing fuel impurities furan, pyrrole, and thiophene. These compounds

& constitute a reasonably good representation of the various classes of ‘

't; compounds present in current turbine engine fuels, or which are antici-

L;ﬂ pated as possible impurities in future fuels. L

‘:% NO -air irradiations of synthetic "surrogate" fuels, whose exact
L, compositions are known, are useful for testing chemical models for the
:i complete fuels without concern for effects of uncertainties in the exact
Eﬁ fuel composition. The specific synthetic fuel mixtures studied in this
;E program consisted of the following: (1) a "standard" 15-component
w
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::* TABLE 2. SUMMARY OF EXPERIMENTS CARRIED OUT FOR TESTING MODELS
(t FOR ATMOSPHERIC REACTIONS OF TURBINE ENGINE FUELS AND
REPRESENTATIVE FUEL CONSTITUENTS.

::'_:: No. runs
- Type of experiment (total = 131)
v v

A Single Constituent

o

N
e Benzene 3
~, Toluene 2
i m-Xylene 2
‘ . Mesitylene (1,3,5-Trimethylbenzene) 5
-

n e Tetralin b
Y Naphthalene 5
- 2,3~Dimethylnaphthalene 4

: n-Butane 1
1S n-Octane 4
e Methylcyclohexane 4

ps
.f:: Furan 4
o Thiophene 4
{ Pyrrole 4
;‘;' Synthetic Fuel

2

I Standard fuel 4
> Standard fuel + furan 1
) Standard fuel + pyrrole 1

- Standard fuel + thiophene 1
M Fuel #2 (high aromatics) 2
N Fuel #3 (modified aromatics) 2
L
(-0 Whole Fuel
e —_—

\i Pre-production shale-derived JP-4 4
.

"
.\:.' Control and Characterization

*, "

e NO,-air irradiations 31?
d ] N02 actinometry runs 25
o5 Propene-NO, irradiations 10
o 04 dark decays 2
b~ Acetaldehyde Irradiations 1
o

é ,' 3Not counting the 13 NO,~air + alkane or aromatic experiments, which
T also give chamber characterization data.
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synthetic fuel whose composition was specified by the Air Force before the

beginning of this program, and was taken to represent military jet fuels
currently in use; (2) a "high aromatics" fuel which had the same compo-
nents as the "standard” fuel but in which the percentage of aromatics (on
a mole carbon basis) was increased from 27 percent to 38 percent; (3) a
"modified aromatics” fuel which had the same relative amounts of the
alkanes and aromatics as did the standard fuel, but in which the ratio of
the alkylbenzenes to the bicyclics tetralin, naphthalene, and 2,3-dimeth-
ylnaphthalene was increased by a factor of 2, relative to that in the
other fuels; and (4) the "standard" fuel with 1-2 percent (on a mole
carbon basis) of either furan, pyrrole, or thiophene added as an "impur-
ity." These different formulations are useful for testing the effects of
changing fuel composition on their atmospheric reactivity, and for testing
models designed to predict these effects.,

In addition to the above, 1t is also necessary to be able to test the
predictions of the model using the results of experiments employing real
fuels. Since environmental chamber data are already available concerning
NOx-air irradiations of various whole fuels from our previous USAF-funded
programs (References 6 and 7), obtaining such data was not a major effort
in this program. tHowever, in order to further expand the available data
base concerning whole fuels, a series of experiments employing a pre-
production batch of JP-4 fuel was carried out.

In addition to the runs discussed above, a number of control and
characterization runs were carried out in order that the conditions of the
various experimental runs be sufficiently well-characterized so that they
can be used for model testing, These include runs of the following
type: (1) NO, actinometry experiments to monitor the light intensity, (2)
organic tracer-NO,-air irradiations to monitor the magnitude of the
chamber radical source and contamination by reactive organics (Reference
19), (3) propene-NOx—air control runs to condition the chamber (when
required) and to test for overall chamber performance using a system whose
chemistry is reasonably well understood (References 11, 15, and 17), and
(4) 04 dark decay rate determinations. The purpose and utility of these

experiments are indicated in more detail when thelr results are discussed.
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{ This report consists of two volumes, of which this is Volume I. This
x y volume contains a full discussion of the experimental methods, results,
'S' and conclusions from this study, while Volume II contains the detailed
data tabulations of all the environmental chamber experiments carried
L out. In this volume, the experimental facility, methodology, and analyti-
" cal techniques of the environmental chamber studies are described in Sec-
N tion II, and the results of these chamber experiments are discussed in
S d Section III. The rate-constant measurements carried out in this program
i. . are discussed in Section IV, and a chronological listing of the chamber
experiments carried out is given in Appendix A. Although the major con-

clusions of this two—-part program must await the completion of the model

N0

‘Y‘h‘l 'l 'f"‘ =

development phase, interim conclusions based on the results obtained are

-

discussed in Section V.
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SECTION II

(:

::.\:: ENVIRONMENTAL CHAMBER STUDIES: METHODS OF PROCEDURE

%

l_ A. CHAMBER EMPLOYED

2

-)’-:- All experiments were carried out in the SAPRC ~6400-liter indoor
f:' Teflon chamber, shown schematically in Figure 1., The reaction chamber
.'\ consisted of a replaceable 2-mil thick FEP Teflon bag constructed of
; . Teflon sheets heat-sealed together using a double lap seam and externally
E- reinforced with Mylar tape. During this program, three different reaction
‘:?‘: bags were used; these are indicated in the chronological data sets in
e Appendix A and in the detailed data tabulations in Volume II. The reac-
rj tors were fitted inside an aluminum frame of dimensions of 6 feet by 8
-{: feet by 4 feet, One edge was hinged to allow the bag to collapse to
:,: approximately one-third of its maximum volume. At the base of the alumi-
\ -. nun frame was a motor attached to a Teflon-coated fan which was placed
~'_<, inside the reaction bag and used for mixing the contents of the chamber.
-.:.'_':f As shown 1in Figure 1, five Teflon ports were attached to each cham-
:‘J',. ber. These consisted of a pure air fill port, an exhaust port, a continu-
;, ous sampling port, a chromatographic sampling port, and an injection and
ﬁ formaldehyde sampling port, Pyrex tubes, of 0.5-inch outside diameter
."-‘. (o.d.), extended ~18 inches 1into the chamber at the various sampling
: * ports, and sampling valves or lines were attached to these probes. The
" continuous sampling instruments drew their samples through a 0.25 inch
l’-\' o.d. FEP Teflon tube. Gas chromatographic (GC) samples were withdrawn
"'E: through a 0.25-inch o.d. Pyrex tube with a Becton-Dickinson stainless
‘:' steel lever-lok stopcock mainfold attached to the end.

4 hf’ Data from the continuous sampling instruments were collected every 15
:?': minutes by an Apple I1I+ microcomputer data acquisition system. The
:'-s signals from each instrument were collected and averaged over 20-second
f:jz: time intervals, These data were then printed and stored on a diskette for
." subsequent transfer to a central campus computer for processing.
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Figure 1. SAPRC All-Teflon Indoor Chamber with Associated Analytical
Instruments.
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The 1light source for this indoor Teflon chamber consisted of two
diametrically opposed banks of 40 Sylvania 40-watt BL blacklamps backed by
arrays of Alzak-coated reflectors. Although the light intensity could be
controlled by switching sets of lights on or off, the light intensity was
held constant at 70 percent of its maximum for all of the indoor runs
reported here, The intensity and spectral characteristics of this light
source are discussed in Section IILI-A-1l.

Pure air for these experiments was provided by an air purification
system which has been previously described (Reference 20). In this
system, ambient air was drawn through Purafil beds (to remove NO,),
compressed by a liquid (water) ring compressor to 100 psig, and passed
successively through a heatless dryer, a Hopcalite tower (to remove CO),
and a second heatless dryer packed with activated coconut charcoal. The
latter acts as a pressure-swing adsorption unit and routinely reduces the
hydrocarbon levels (as measured in the chamber) to ~800 ppb methane, <5
ppb of Cy hydrocarbons and propane and <1 ppb of all higher hydrocar-
bons. Finally, the air was humidified by passing it through a spray of
distilled water and then into the chamber.

B. EXPERIMENTAL PROCEDURES

After the installation of a new reactiom bag, the chamber was thor-
oughly flushed with purified air and was conditioned by irradiating a
~0.5-1 ppm propene and ~0.5 ppm NO, mixture for at least 5 hours. Between
each subsequeant experiment, the chamber was flushed, using procedures
which varied somewhat as the program progressed. Initially, the chamber
was filled and emptied at least three times with purified air and with the
last fill being air-humidified to ~50 percent relative humidity (RH).
This procedure was subsequently modified so that the chamber was flushed
continuously with humidified air for at least 1-5 hours prior to the
experiments., After an experiment, the initial procedure was to empty and
refill the chamber twice with dry purified air, but this was modified such
that the chamber was flushed continuously with dry air for 2 hours, and

modified again such that the dry flush was carried out for 2 hours with



the lights on, followed with a 2-hour flush with the lights off. These
modifications to the flushing procedure were made as a result of rela-
tively high NO oxidation rates being observed in tracer-NO,-air irradia-
tions following runs with fuels containing less volatile fuel constitu-
ents, suggesting some contamination by reactive organics (see Section
[II-A-2 for details). The modified procedures appeared to substantially
reduce the magnitude of this problenm.

After the chamber was filled or flushed and before injection of the
reactants, samples were taken for analyses using all of the gas chromato-
graphic instruments to determine backg. und levels, The reactants were
injected into the chamber, using several methods, depending on the reac-
tant, In the case of NO, the calculated volume of gaseous NO was taken
from a cylinder of Matheson, C.P. grade nitric oxide with a 5 ml gas-
tight, all-glass syringe, This NO was then diluted to 100 ml with Liquid
Carbonic Hi-Pure nitrogen in a 100 ml, gas-tight, all-glass gas syringe.
The NO, injection was prepared in a similar manner, except that the NO was
diluted with Liquid Carbonic Industrial grade oxygen to yleld NO,. Other
gaseous compounds such as n-butane and propene were prepared by diluting
the pure gas in Hi-Pure nitrogen, All of these compounds were introduced
into the chamber through a Becton-Dickinson stainless steel lever-lok
stopcock manifold attached to a 0.25-inch o.d. Pyrex tube. This Pyrex
tube was connected to a 0.5-inch o.d. Pyrex tube that protruded ~18 inches
into the chamber. Hi-Pure nitrogen was flushed through the injection
system both before and after each gaseous injection, and at the same time
the Teflon-coated fan was turned on to mix the chamber contents. The fan
continued to run for ~5 minutes after the last injection.

Compounds or fuels that were liquid at room temperature and pressure
included benzene, furan, methylcyclohexane, n-octane, pyrrole, tetralin,
thiophene, toluene, 1,3,5-trimethylbenzene, m-xylene, JP-4, and the three
synthetic fuels. These were injected, using a second technique. (Each of
the synthetic fuels was previously prepared by mixing the desired volumes
or welights of 1its components, A single 10 ml batch for each fuel was

sufficient for all the chamber experiments employing then.
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The composition of these fuels is discussed in Section III-C-l.) The
injection method involved introducing, by microsyringe, the desired amount
of liquid into a ~l-liter glass bulb which had previously been flushed
with Hi-Pure nitrogen for ~5 minutes. The glass bulb had a port designed
for introduction of the liquid, and also had Teflon stopcocks at each end
that were kept closed while the bulb was being dosed. Once the bulb was
dosed, it was attached to the injection port of the chamber and also to a
nitrogzen source, The stopcocks were then opened, and the vaporized
contents of the bulb were flushed into the chamber with nitrogen for ~5-20
minutes, When injecting the fuels, the bulb was heated with a heat gun.
The chamber mixing fan was running throughout this procedure,

Naphthalene and 2,3-dimethylnaphthalene, which are solids at room
temperature, were injected, using a third procedure. For these organics,
the desired compound was packed into a 0.25-inch o.d. Pyrex tube and held
in place with glass wool, and naphthalene or 2,3-dimethylnaphthalene
vapors were Injected into the chamber by connecting the tube to the injec-
tion port and flushing N, through the tube and into the chamber at 2
liters min~}! for the required amount of time to achieve the desired con-
centration. The required time was calculated by assuming the vapor leav-
ing the tube and entering the chamber was saturated with the compound in
the tube; this assumption was verified by GC analyses of the chamber
contents before the irradiations. Using this procedure, it took 2 hours
to inject 2.7 ppm of naphthalene, and 15 hours to inject 0.5 ppm of 2,3-
dimethylnaphthalene, these being the highest concentrations of these com-
pounds which were employed. The 2,3-dimethylnaphthalene injections took
place on the night before the experiment, under the control of timers.
The chamber contents were mixed by the fan at the completion of this
flush.

For ozone-conditioning experiments, an Ultraviolet Products Pen-Ray
S0G~2 12-1inch lamp was inserted into the chamber through the injection
port and turned on until the desired concentration of ozone ~l.l ppm had
accumulated. The contents of the chanber were mixed by means of the fan

during this procedure,
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Gas chromatographic (GC) and formaldehyde samples were taken prior to
the beginning of the irradiations, and were generally taken hourly there-
after during standard 6-hour irradiations. The procedures for various
conditioning, characterization, and control runs were similar, except that
they were pgenerally carried out for shorter time periods and required

either more frequent or fewer GC samples.

C. ANALYTICAL TECHNIQUES

In this section, the analytical procedures employed for each set of
compounds or physical parameters monitored in this program are described
and their calibration techniques and estimated accuracy and precision are

discussed,

l. Gas Chromatographic Analyses

Organic reactants and products were monitored, using five differ-
ent gas chromatographic (GC) systems, each suitable for a particular set
of compounds. Except as otherwise noted, samples for chromatographic
analyses were withdrawn from the chamber using 100 ml gas-tight, all-glass
syringes, Each syringe was flushed at least three times with the sample
gas before the sample for analysis was taken. A syringe was attached to
the sample port of the chamber to withdraw a sample. Depending on the gas
chromatographic analysis system, the contents of the syringe were either
(1) flushed through ~2 ml stainless steel or ~10 ml heated glass loops and
subsequently injected onto the column by turning a gas sample valve, or
(2) condensed in a trap cooled with liquid argon, and then injected onto
the column by simultaneously turning the gas sample valve and heating the
loop with boiling water or ice water. The various gas chromatographic
systems used, and the compounds they monitored, are briefly described
below.,

Oxygenates such as acetaldehyde, acetone, and 2-butanone, and

aromatic hydrocarbons such as benzene toluene, and the xylenes were moni-

tored using the "C-600" gas chromatograph. This system consisted of a
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Varian 1400 GC with a flame ionization detector (FID) and a 10-foot by
0.125-inch stainless steel column packed with 10 percent Carbowax 600 on
C-22 Firebrick (30-/60-mesh). The flow through this column was set at 50
ml/min and, as was the case with all the GC’s, the carrier gas was nitro-
gen. The hydrogen flow was kept at 45 ml/min, and the oxygen flow, used
in the place of air to enhance sensitivity, was set at 250 ml/min. The
detector was heated to 200°C, and the column was maintained at 75°C.
Samples of 100 ml were withdrawn from the chamber and trapped by pushing :
the gas sample through a 10-inch by 0.125-inch stainless steel tube packed
with 80-mesh glass beads, immersed in liquid argon. The sample was car- 4
ried onto the column by immersing the trap in boiling water and simulta-
neously actuating the gas-sampling valve. The gas-sampling valve was
heated to 95°C to prevent any compounds from being adsorbed on the valve.

Cy-Cg alkanes and alkenes were monitored using the "DMS" GC, which
consisted of the electrometer and flame ionization detector from a Varian
1400 GC with a 34.5-foot by 0.125-inch stainless steel column packed with
10 percent 2,4-dimethylsulfolane on acid-washed 60-/80-mesh Firebrick. At
the end of this column, before the detector, was a 2-foot by 0.125-inch
stainless steel '"soaker" column packed with 10 percent Carbowax 600 on
Firebrick. The carrier nitrogen flow through these two columns was set at
50 ml/min, as was the hydrogen flow. The oxygen flow was 330 ml/min. The
columns were maintained at 0°C by keeping them packed 1in 1ice. The

detector was heated to 115°C. The 100 ml gas samples were trapped on a 10

inch by 0.125- inch stainless steel column packed with 10 percent
2,4=-dimethylsulfolane on Firebrick, 60-/80-mesh, 1immersed in 1liquid
argon. The sample was then 1introduced to the column by simultaneously
thawing the trap in ice water and turning the gas-sampling valve.

Methane, ethane, ethene, and acetylene were monitored using the
"PN" GC which consisted of a Varian 1400 GC with a flame fonization detec-
tor and a 5-foot by 0.125-inch stainless steel column packed with Porapak
N, 80-/100-mesh. The nitrogen carrier flow was set at 80 ml/min, the
hydrogen at 60 ml/min, and the oxygen at 400 ml/min. The column was
maintained at 60°C, while the detector was heated to 130°C. When a sample

was to be analyzed for methane, 100 ml of the sample was pushed through a
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2 ml stainless steel loop. The sample in the loop was then transferred

onto the column by actuating the gas sampling valve. Sampling for ethene,
ethane, and acetylene was accomplished by trapping the sample in an 11
inch by 0.125 inch stainless steel column packed with 10 percent Carbowax
400 on Firebrick, 30-/60-mesh, immersed in liquid argon. The sample was
thawed by immersing the trap in ice water and at the same time turniang the
valve so that the sample was transferred to the column,

C5+ alkanes and alkenes, and aromatic hydrocarbons were monitored
by the "DB-5C" system, which consists of a Hewlett-Packard 5711A gas chro-
matograph with a flame 1ionization detector and a 30 m by 0.322 mm fused
silica capillary column. This column, wmanufactured by J&W Scientific,
Inc., had a film thickness of 1 pm composed of the bonded, liquid phase
DB5. The nitrogen carrier flow was set at 0.6 ml/min and the makeup gas,
also nitrogen, was set to 30 ml/min. The hydrogen and oxygen flows were
maintained at 30 wml/min and 230 ml/min, respectively. Before a sample was
taken, the column oven was cooled to -90°C using 1liquid aitrogen.
Sampling was accomplished by flushing 100 ml of sample through a dichloro-
dimethylsilane-treated 10.2 ml glass loop. The GC gas-sampling valve,
which was maintained at 145°C, was then actuated, and the sample was
transferred onto the -90°C column over a period of 12 minutes. The column
was then heated from -90° to -50°C over a 1.3 minute duratfon. The tem—
perature program was then started with the column being heated from -50°
to 200°C at a rate of 8°C/min.

Peroxyacetyl nitrate (PAN) was monitored using a GC with an elec-
tron capture detector (ECD) which consisted of an Aerograph gas chromato-
graph with an ECD. The detector was equipped with a standing curreat
control, and since the response was directly influenced by the standing
current, it was maintained to within %2 percent of a constant value during
all experiments and calibrations. The column was a 12-inch by 0.125-inch
FEP Teflon column containing 5 percent Carbowax 400 on Chromosorb G
(80-/100-mesh) operating at room temperature with a nitrogen carrier flow
of 75 ml/min. Analyses were carried out by flushing a ~2 ml loop with the

sample, and injecting the contents of the loop onto the column.
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Furan, methylcyclohexane, n-octane, thiophene, and reference

alkenes used in the kinetic studies were monitored using the "C-20M" GC,
congisting of a Varian 1400 GC with a flame ionization detector and a 20 ;
foot by 0.125 inch stainless steel column packed with 2.5 percent Carbowax :
20M + 2.5 percent DC703 on acid washed dichlorodimethylsilane treated
Chromosorb G, 100-/120-mesh. The nitrogen carrier flow was set at 50
ml/min, the hydrogen flow at 45 ml/min, and the oxygen at 340 ml/min. The
column was maintained at 60°C, while the detector was kept at 220°c.
Analyses were performed by flushing the 3 ml stainless steel sample loop
with the contents of an 100 ml syringe. The sample in the loop was
transferred onto the column by actuating the six-port gas sampling valve.
Naphthalene, 2-methylnaphthalene, 2,3-dimethylnaphthalene, tetra-
lin, and n-tetradecane were monitored using the "SP C-II" GC, which
consisted of a Varian 1400 GC with a flame 1lonization detector heated to
225°C and a 6-foot by 0.25-1inch Pyrex column packed with Superpax II.
Directly attached to the column, through the 245°C heated injector was a 5-
inch by 0.25-inch Pyrex tube packed with Tenax GC (60-~/80-mesh) through
which the nitrogen carrier gas flowed at 30 ml/min. The hydrogen flow
rate was 30 ml/min, and the oxygen flow was 260 ml/min. For analysis
using this system, sampling via a syringe was not employed:. Instead, the
sample was obtained by attaching the Tenax-packed tube to a "T"-joint in
the continuous sampling instruments line, and drawing 100 ml of sample gas
through the Tenax tube with an 100 ml gas—-tight syringe. Then the Tenax
tube was reattached to the GC, and the carrier flow was restarted. Imme-

diately thereafter, a heated desorber was attached to the Tenax tube. The

Ny desorber consisted of two burner blocks electrically heated to 255°C and
?:;' cut-out to surround the 0.25-inch Tenax tube. The temperature program was
[-‘ -’

ﬁi?: started 2 minutes after the carrier flow was started. Two different tem-
A

;2:1 perature programs and two different columns were used during this
ooy program. The temperature program employed in this analysis consisted of
:::: keeping the column at 80°C for 2 minutes and then heating the column to
J- "-

;:j- 140°Cc at 8°C/min. After an analysls was completed, and before another
i".‘:)' analysis was begun, the column was cooled to the starting temperature, the
&
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carrier flow was stopped, the desorber was removed, and the Tenax tube was

removed from the GC and capped.

Pyrrole was monitored using the "SP C-20M" system, which employed
the same GC instrument and sample Injection procedure as described above
for the "SP C-II" system, except that a 6-foot by 0.25-inch Pyrex column,
packed with 4 percent Carbowax 20M + 0.8 percent KOH on Superpak II was
utilized, and the temperature program consisted of keeping the column at
100°C for 2 minutes after 1injection and then heating the column at
10°C/min to 160°C.

Calibrations of all GCs were performed at approximately 2- to
3-month intervals, and, except for the ECD and the Tenax system, were
accomplished in the same general manner. First, all gas flows were mea-
sured to verify that no changes had occurred that would indicate previous
measurements were erroneous. After measuring these flow rates, a calibra-
tion mixture was made up, using one of two methods. The calibration mix-
ture, composed of known quantities of various compounds, was then injected
into the correct GC. The elution time and height of each peak was record-
ed. The height of each peak was multiplied by the attenuation and the
response in millivolts was obtained.

For gaseous compounds, two 2000 ml flasks, whose exact volumes had
been determined by measuring with water, were flushed with nitrogen for 20
minutes, and then 2 ml of the pure gas was injected into the first flask
with a 5 ml syringe. This flask was allowed to mix 20 minutes, and then
2 ml1 from this flask was transferred into the second flask. The second
flask was allowed to mix 20 minutes. This resulted in ~1 ppm of the gas
in the second flask. Loop calibrations were performed by connecting this
second flask directly to the loop and flushing the loop with the contents
of the flask. Trap calibrations were accomplished by diluting a 5 ml
sample from the second flask with nitrogen in a 100 ml syringe, and pass-
ing the contents of the syringe through the trap. For a flask containing
1 ppm of the compound, this was equivalent to sampling 100 ml of gas con-
taining 50 ppb of the compound.

Calibration of compounds that were liquid at room temperature was

carried out using an all-glass carboy, of volume 46.6 liters, which was
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first cleaned by being heated from the inside with a heat gun, then
allowed to cool to room temperature and flushed with nitrogen for
1 hour. The carboy was then dosed with 1 ul of each pure liquid to be
calibrated using a 10 ul syringe. These were allowed to mix for 1 hour
before any samples were taken. Trap and loop calibrations were both
accomplished in the same way. A 1 ml sample was taken from the carboy
with a 5 ml syringe and diluted with 99 ml of nitrogen. The samples were
extracted in the manner described previously. The exact concentration of
each compound was calculated knowing the amount of liquid injected and its
density.

Calibration samples of PAN for the ECD were available in pressur-
ized cylinders as described previously (Reference 21) and the PAN concen-
tration was determined by infrared absorption of the 8.6 p band (absorp-
tion cross-section = 13.9 x 107% ppm"1 [Reference 22]). The contents of
the cylinder were diluted, using a flow manifold with calibrated rotometers
to yleld the appropriate PAN concentrations (5-50 ppb), and 100 ml samples
were taken directly from that manifold using gas-tight, all-glass
syringes.,

Calibrations of compounds that were monitored on the Tenax GC were
performed by diluting or dissolving a known amount of the desired compound
in 5 ml of n-hexane. A microsyringe was used to inject 1 pl of this solu-
tion onto the Tenax tube, and then the standard analysis procedure fol-
lowed. In the case of this GC, peak areas were used to determine concen-
trations 1instead of peak heights. The peak areas were determined by
multiplying the peak height by the width at half-height and multiplying by
the attenuation.

The expected accuracy and precision of concentration measurements
of most of the compounds determined by the above systems were, with the
exception of PAN and acetaldehyde, ~5 percent or better. Due to varying
peak widths, acetaldehyde concentrations were precise and accurate to ~20
percent. Peroxyacetyl nitrate measurements were estimated to have ~10

percent precision and ~25 percent accuracy.
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(;' 2. Formaldehyde |
\Eé Formaldehyde was monitored, using the chromatropic acid tech-
g:ﬁ nique. Samples for analysis by this technique were obtained by drawing 20
:'; liters of air at 1 liter min'l'from the chamber through a . (gle bubbler
L4 containing 10 ml of doubly distilled water. Samples were taken through
:%: ' the injection and formaldehyde sampling port. A metal bellows pump at the
N downstream end of the bubbler with a calibrated flow meter and needle
;J valve was used to pull the sample through the bubbler. The samples were
\b; ) developed by adding 0.10 ml of chromatropic acid (4,5~dihydroxy-2,7-naph-
;Sg thalenedisulfonic acid disodium salt) to a 4.0 ml aliquot of the sample.
%:é The solution was acidified by diluting it to 10.0 ml with concentrated
A sulfuric acid. The chromatropic acid solution was prepared by dissolving
§E 0.10 g of the salt in 10.0 ml of doubly distilled water. The developed
jk solutions had a purple color and the absorbances were measured at 580 nm
:Jﬁ: by a Beckman Model 35 spectrophotometer, after zeroing the Iinstrument
( . using a prepared blank. Instrumental drift was also periodically checked
NN during the measurements using the same blank.
:;: Periodic calibrations of the spectrophotometer and flowmeters were
z:g carried out. The spectrophotometer was calibrated by subjecting a known
i concentration of formaldehyde salt to the same procedure as outlined
[~ above.
:&;E The accuracy and precision of this formaldehyde analysis technique
,Eﬁ depended upon a number of factors, including the calibration of the spec-
7 trometer and the efficiency in the bubbler in collecting formaldehyde in
;%: ’ the air passing through it. In the past, the accuracy and precision of
ti: this technique had been quite variable, ranging from the optimum accuracy
;ﬂ; and precision of ~30 percent to periods of anomalously low readings appar-
;i:’ ently due to problems with the bubbler to periods of anomolously high and
'f; highly variable readings apparently due to contamination (see, for
i? example, Reference 23). Attempts to improve the reliability of this tech-
Es nique for routine use have met with limited success.
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'\ 3. Continuous Monitoring Instruments
X
'::::: Ozone, nitrogen oxides, and temperature were monitored continu-
.f'_:.i'. ously, using the ianstruments described below. Except as noted, samples
g
e for analysis by these systems were taken directly from a probe inserted
a,) ~18 inches into the chamber, using Teflon or glass sampling lines.
::..\' Ozone was monitored using a Dasibli Model 1003AH UV absorption
-: ozone monitor, or by a Monitor Labs 8410 chemiluminescence ozone moni-
;:j tor. The Dasibl was employed for most experiments, except for those car-
A ried out using tetralin or the naphthalenes. Since these organics were
:.‘:,: observed to yield positive interferences on the Dasibi 04 analyzer, pre-
':i: sumably due to UV absorption by those compounds, both instruments were
_:_' used for the synthetic fuel runs. Calibrations were carried out every 2
. months against a Dasibi Model 1003AH ozone monitor transfer standard,
:_.; which, in turn, was routinely calibrated by the California Alr Resources
;‘E: Board. The ozone source for calibrations was the Teflon reaction chamber,
E:'f; first filled with pure air, as a zero check, and then ozone was produced
{ at various concentrations, as for the ozone- conditioning experiments.
": Both instruments were allowed to equilibrate before readings were
b recorded. Several different ozone concentrations were used to check the
:.'_‘ linearity of the analyzer. If the response was not linear, corrective
v,) action was taken. Finally, the analyzer being calibrated was again zeroed
\,',:-;: with pure air. The precision and accuracy were both better than 5 per-
‘::;3 cent.
;:3 Nitric oxide and total oxides of nitrogen (NOx + organic nitrates)
[ were monitored using a Columbia Scientific Industries Series 1600 or a
::;x: Thermo Electron Corporation (Teco) Model 14-B chemiluminescence oxides of
$_: nitrogen analyzer. Calibrations were performed bimonthly by diluting the
?;, output of a NBS cylinder containing 92.8 ppm NO in N2 with Liquid Carbonic
.r. Company Zero Alr. The analyzer was first zeroed using Zero Air, then
.'.'::E:: calibrated for NO by diluting in Zero Air and measuring the flow of each
3‘ gas with a bubble meter. The analyzer was allowed to equilibrate at each
::::j. concentration for 30 minutes. The first concentration used was ~0.30
‘; ppm. The potentiometers in the analyzer were adjusted, if necessary, to 4
22 |
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match the NO output of the analyzer with the actual concentration. Two
lower concentrations of NO were used to verify linearity of the analy-
zer. The converter efficiency was checked by setting a NO concentration
of about 0.30 ppm, and then reacting this with a lesser concentration of
ozone. If the converter was operating properly, the N02 reading equaled
the difference in NO. The linearity of the converter was verified by
using three different concentrations of ozone. After this procedure was
completed, the analyzer was rezeroed with Zero Air. The accuracy and
precision of this instrument in the absence of interfering nitrates (see
below) was estimated to be better than 5 percent,

The analyses of NO, and NO, was complicated by the fact that for
such instruments the converters have been shown (Reference 24) to convert
PAN, organic nitrates, and HNO3 to NO, and thus such species yield a posi-
tive interference in the NO, analysis cycle. The NO data are unaf-
fected. Conversion of PAN and organic nitrates has been shown to be
essentially quantitative (Reference 24) for the molybdenum converter
employed in the Teco analyzer, but this has been shown to not be the case
for the converter employed in the Columbia Scientific Industries instru-
ment, and preliminary data from our laboratories have indicated that the
conversion of PAN was not quantitative. It should be noted that organic
nitrates are expected to be formed from larger alkanes, though the
nitrates expected to be formed from those compounds could not be monitored
due to lack of authentic samples for calibration purposes (they are not
available commercially). Therefore, no correction for this interference
with the NO, data was éttempted.

Temperature was monitored with an Analogic Model AN 2572 Digital
thermocouple indicator usihg an iron-constantan thermocouple. The thermo-
couple was installed in a probe inserted into the center of the chamber.
This instrument was calibrated periodically, using ice water as the source
for O°C,and boiling water as the source for 99.1°C (at 735 torr total
pressure). The accuracy was better than 5 percent, and the precision was
better than 1 percent.

Relative humidity was determined only at the beginning of a run by

exposing wet-bulb and dry=-bulb thermometers to the chamber exhaust at the

S AUASCINCANG 440, NUAC S S GO LA AU AC ST DA L g




v‘;.'f"'#"u“l'
R s & AL

h '-

completion of the final flush. Once the thermometers had equilibrated,

the indicated temperatures were recorded and, from these data, the rela-
tive humidity was calculated. These thermometers were calibrated peri-
odically using ice and boiling water as described above. The accuracy was

better than 5 percent, and the precision was better than 1 percent.
4. Light Intensity

Since the 1light source of the chamber was constant, the light
intensity was determined approximately once a month, using the quartz tube
NO, photolysis rate technique of Zafonte et al. (Reference 25). 1In this
technique, the reactor cell consisted of a 100 cm segment of 25 mm (nomi-
nal) quartz tubing with 0.25-inch o.d. extensions at each end. The i.d.
of this tube was measured at both ends using calipers and had an average
value of 21.44 mm. The nitrogen dioxide was obtained from a Scott-Marrin,
Inc., tank mixture of 2.1 ppm, and was not diluted. The NO2 flow entered
the reactor cell via 0.25 inch blackened FEP Teflon tubing, attached with
a 0.25 inch stainless steel Cajon ultra~torr union. The exhaust from the
cell was connected to the sampling line of the NO, analyzer, and the
excess was vented to the atmosphere via a "T." These sample lines were
also blackened. The sample lines were inserted 5 cm into the cell. This
allowed for secondary oxygen atom reactions to be completed before the gas
reached the sampling line. Under typical conditions, the gas flow was set

to 37 ml s~l. With an exposed cell volume of 262 cnl

» @ NOZ residence
time of 9.1 seconds was established within the cell. This allowed a suf-
ficient buildup of NO which could then be accurately measured.

During photolysis, NO concentrations generally ranged from 100-150
ppbs NO and N02 were measured using either the Columbia or the Teco chem-
iluminescence NO, detector described above. NO and NO, were alternately
measured on a 30 second cycle.

The precision of these NO, actinometry measurements was generally
~5-10 percent. The accuracy of the N02 actinometry measurements were

determined by a number of factors, 1including the accuracy of the NO,

analyzer, the extent to which plug flow conditions in the tube had been

24
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established, and whether the tube was placed in a location in which the
light intensity and spectral distribution accurately reflected that in the
chamber. The results of these measurements are discussed in more detail

in Section III-A-l.
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A SECTION III
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A% CHAMBER EXPERIMENTS: RESULTS AND DISCUSSION

x

'::;

D) As indicated 1in Section I, a total of 131 environmental chamber
:::::'. experiments were carried out in this program, including 47 single compo-
nent-NO -air experiments on 13 different representative fuel constituents
and model compounds, 15 fuel-NO, -air experiments on one whole fuel and six

‘ synthetic fuels, and 69 control or characterization runs. A chronological
:- listing of all these runs is given in Appendix A, together with a brief
;:..": summary of the description, purpose, experimental conditions, and major
\. results of each experiment.

> Detailed tabulations of the data from these runs are given in Volume
\‘ II of this report. In addition to giving results of the experimental
\‘ measurements made during each run, these co.mputer-generated tabulations
:;:‘ indicate which instrument was used for each set of measurements, and give
( overall averages for the major physical parameters measured during the
:'_::': runs. Comments taken from the laboratory notebooks describing the experi-
mental operations, general weather conditions, and any relevant observa-
.' tions, problems, or special situations which occurred during the run are
. also included on these tabulations.

:_-" In the following sections, the results obtained in these experiments
i? are summarized and discussed. The light inteansity and chamber characteri-
‘_: zation data are discussed in Section III-A, followed by a discussion of
‘-' the results of the single-component experiments in Section III-B. The
-_:.:: experiments employing the whole or synthetic fuels are discussed in Sec- 1
::- tion I[II-C. A detailed interpretation and modeling study of these experi- ‘
5._ ments 1s reserved for Phase 2 of this program, but the major experimental '
"._ observations Iin these experiments are summarized, and various reactivity
_'E'j characteristics of the individual fuel components, model compounds, and
:‘: fuels studied in this program are discussed.
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A. LIGHT SOURCE AND CHAMBER CHARACTERIZATION
1. Light Intensity and Spectral Distribution
If the results of these runs are to be useful for model testing
purposes, both the intensity and the spectral distribution of the photo-

lyzing light must be known. The absolute light intensity was determined

by periodically measuring the rate of photolysis of NO2

- NO, + hv + NO + O(3P)

) (0

using the quartz tube technique of Zafonte et al. (Reference 25) as dis-
cussed 1n Section II-C-4. The results of all measurements of the NO,
photolysis made at the light intensity employed in our experiments (i.e.,
70 percent of maximum), and with the set of lamps employed during these

experiments, are plotted against the ITC run number in Figure 2. This

figure includes runs conducted before and during this program, with the
arrow in the figure indicating the first experiment. The lines on the
figure indicate least squares regressions or averages of the data for the
periods indicated. Although the light intensity fell relatively rapidly

when the lamps were new, and had an unexpected ~10 percent increase

shortly after the beginning of this program, it appeared to be relatively
constant during the period most of the runs reported here., The data indi-
cated that an NO2 photolysis rate of 0.30 min-l is appropriate for runs
ITC-690 through 716, with a rate of 0.32-0.33 min~!

ITC-717 and those

being appropriate for

run foilowing, with an estimated uncertainty of ~10

percent in both cases.

:5j To calculate rates of the other photolysis reactions, the relative
;: spectral distribution wmust also he known. The spectral distribution of
2’ the blacklights in this indoor Teflon chamber was measured using a Spex
g%. Model 1667 spectrometer with a |P28 photomultiplier, calibrated against an
;;; NBS standard lamp, and the relative light intensities (in terms of photons
:} per unit area per unit time) at selected wavelengths are given in Table 3.
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Figure 2. Plot of NOjp Photolysis Rates Measured in the Indoor Teflon
Chamber Against Run Number. Lines Shown are Linear Least
Squares Regressions or Averages of the Data Over the Indicated

Ranges. Arrow Indicates the Start of the Series of Experiments
in this Program.
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TABLE 3.

LR Y

RELATIVE SPECTRAL DISTRIBUTION FOR THE BLACKLIGHTS IN THE
SAPRC 6400-LITER INDOOR TEFLON CHAMBER.2

Wavelength Intensityb Wavelength Intensityb Wavelength Intensityb
(nm) (nm) (nm)

295.7 0.0 347.8 0.952 405.0 0.258
296.7 0.0019 350.0 0,972 406.0 0.264
298.0 0.0024 351.7 0.990 406.7 0,251
300.7 0.0018 353.7 1.00 408.7 0.0596
302.1 0.0043 356.7 0.982 412.0 0.0387
304.3 0.0058 360.0 0.925 416.7 0.0348
306.3 0.0057 363.3 0.829 423.3 0.0298
310.0 0.0140 364.3 0.859 430.0 0.0227
313.0 0.0728 364.7 0.869 434.3 0.0217
313.7 0.0846 365.5 0.870 436.1 0.641
315.0 0.0879 366.9 0.835 436.7 0.709
315.3 0.0856 368.5 0.685 437.3 0.712
316.7 0.0581 370.0 0.639 438.1 0.651
317.3 0.0564 376.7 0.442 439.7 0.0169
318.7 0.0858 383.3 0.261 443.3 0.0140
323.3 0.1495 390.0 0.1423 450.0 0.0081
330.0 0.331 396.7 0.0885 460.0 0.0
336.7 0.563 393.0 0.0535
343.3 0.851 404.3 0.223

3As measured on June 30, 1983,

bIntensity in terms of photons per unit area per unit time, normalized

so the maximum intensity = 1.0 units.

The wavelengths in Table 3 were chosen such that the true light intensity
spectrum can be well approximated by a series of straight lines between

each of the tabulated points for the purpose of computing the photolysis

rates,

of this program, but a subsequent spectral measurement indicated that the

change of spectral distribution during these experiments was insignifi-

cant,

“* 3-.-
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The data in Table 3 were actually obtained prior to the beginning
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\ 2. NO,-Air Irradiations
_'_: A number of NO,-air irradiations wefe carried out periodically
::::: throughout this program to obtain a measurement of the chamber radical
:2 source and of offgassing of reactive contaminants during our experi-
\" ments. These runs, the purpose of which has been discussed in detail
' elsewhere (Reference 19), consisted of irradiations for at least 2 hours
ii‘: of NOy-air mixtures containing traces (~10 ppb) of propene and n~butane,
::" In the absence of chamber radical sources and reactive contaminants, this
e system is expected to be completely unreactive, and is thus highly sensi-
rf tive to these chamber effects. Because the chamber radical source has
_;\" been shown to be, at least 1in certain chambers, dependent on the NO,
::::: levels (References 19 and 26), the NO, levels employed in these runs were
:‘__ representative of those employed in the single---component-NOx or fuel-NOx
-‘:.f runs,
.:-:: Radical initiation rates were obtained by equating the initiation
:E rates to termination rates due to the OH + N02 reaction [the major termi~
4 nation mechanism in this system (Reference 19)), with the rate of the
__._~ latter being estimated from the known OH + NO, rate constant (Reference
\'.
~::3: 17) and the measured NO) and OH radical levels. The OH radical levels
W were monitored by measuring the relative rates of decay of the two organic
"':I tracers (propene and n-butane), which were consumed primarily by reaction
.,- with OH radicals:
2
;\, OH + n-butane » products (2)
; OH + propene + products 3
e
\.’ However, propene was also consumed to some extent in this system by reac-
.- K tion with 04 and O(3P) atoms (Reference 17),
. 03 + propene » products 4)
0(3P) + propene -+ products (5)
30

AN 0 NNV AR |



R A R A RO S 26

and a correction for this must be made in the data analysis.
For propene and n-butane as the tracers, the relevant kinetic

differential equations are:

dln[n-butane]/dt —kz[OH] (D

3
dln[propenel]/dt = —k3[0H] - k4[03] - k5[0( P)] (1I1)

where k2 and k3 are the rate constants for the reaction of n-butane and
propene with OH radicals, respectively, k,‘ and k5 are the rate constants
for the reaction of propene with 04 and O(3P) atoms, respectively, and the
03 and 0(3P) atom concentrations can be estimated, based on the following
assumptions. Since O(3P) is formed primarily from NO, photolysis and is
consumed primarily by its rapid reaction with 02, it can, to a very good
approximation, be considered to be in photostationary state governed by

these two reactions, and thus:

kl[NOZ]

3
[0CP)] = st
k [0,11H]

(I1I)

where k, and k6 are the rate constants for the photolysis of NO, and for
the third-order reaction of 0(3P) atoms with 0,, respectively:

_ NO, + hv > NO + 0(’P) (1)
AN .
M 3
S o(’P) +0, +M>»0, + M (6)
NN 2 3
\‘:\‘
a
?'-’ Similarly, 03 is also formed by NOZ photolysis and, under the conditions
f,:_'.j of our experiments, was consumed primarily by its rapid reaction with
s, :
ﬁ{':' NO. Thus it also can be assumed to be in photostationary state, and,
v
o
® k,[NO,]
o [0,] = =2 (1V)
..c 3 k7[N0]
e
Lol -,
L)
.,
Ny 3
@
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T
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where k7 is the rate constant for the reaction of 03 with NO,

NO + 03 + No2 + 02 (7)

Equations (I) through (IV) can be combined and rearranged to yield !

[OH] = (k3_k2)-1 d_,, In-butane]

B 1
dt [propene] - kl[N02]3 A+ [NO]‘ (v

where K, ‘
A= 2
(ky=k, )k, [0, 1TM]

and
S
(ky=kydk,

B =

Equation (V) shows that the correction for consumption of propene by reac-

tion with 03 and 0(3P) atoms increases with [NOZ] and [NOZ]/[NO], respec-

tively.

The radical flux, R,» required to fit the data for a given run can
be estimated from the fact that radical initiation and radical termination
rates must balance. Since the only significant radical termination pro-
cesses in this system are the reactions of OH radicals with NO and NO,,
and since HONO is in photoequilibrium after ~60 minutes of irradiation
(Reference 19) then

R, = k8[OH]avg[NO (vI)

2]avg

el
. s

LN

where k8 is the rate constant for the reaction of OH radicals with NOZ’

[SER

M
OH + NO2 > HNO3 (8)

and [OH] and [N02] (the average OH radical and NO, concentrations

avg avg
for t > 60 minutes) are experimentally determined. In general, in these

32
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irradiations the OH radical levels were approximately constant after the

first hour of irradiation,

In addition to measuring chamber radical sources, NO, -air irradia~
tions can also be used to obtain an estimate of the extent of contamina-
tion by reactive organics, since 1in general these will cause enhanced

rates of NO oxidation due to the following reactions,

organic1 + OH » Ri (9)
R, + 0, Y RO (10)

i 2 i72
Rio2 + NO » » products (11)

In the absence of such contamination, NO oxidation rates are expected to
be low, at least at the relatively low NO, concentrations employed in
these experiments., To estimate the extent of this contamination, reac-

tions (9)-(11) can be represented by the following,

kg

organic, + OH — -a, NO + products (12)

i i

where ky is the OH + organic rate constant, and aj is the number of mole-
cules of NO oxidized by the overall process (which in general may be
greater than 1, since usually the oxidation of organics involves sequen-
tial formation of several different peroxy radicals [see, for example
Reference 17]). Thus {f we assume that the above reactions are the major
processes affecting changes in concentration in NO (i.e., that the NO,, and

03 levels are sufficiently low that the reactions

NO + NO + 02 > 2 No2 (13)
3 M
o(’P) + NO, +» NO (14)
2 3
0, + N02 » NO, + o2 (15)
13
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NO3 + NO » 2 NO2 (16)

have an insignificant effect on the NO concentrations) then we can write:

d[NO]
It Zikiai[organici][OH]
or
-d[NO]
dt
" " o= & ————
Organic Reactivity Eikiailorganicil [OH] (VIiI)

Thus the ratio of the NO consumption rate to the observed OH radical
levels can be considered to be a measurement of the total "organic reacti-
vity" which 1s the sum of the concentration of the reactive organics
present (including the propene and n~butane tracers, and the CO preseat ian
the matrix air), weighted by their OH rate constant (k;) and their effi-
ciency in oxidizing NO (ai). Note that 10 ppb of each of the tracers and
1 ppm of CO in the matrix air (the typical levels in these experiments)
will contribute ~1 x 103 atn™! to this quantity, which means that any
excess over ~1 x 103 min~! 1s due to contaminants,

The results of the NO,-air irradiations carried out in this pro-
gram are summarized in Table 4. This table also includes data from the
NO,-air + alkane, or NO,-air + aromatic, runs (see following section)
obtained prior to the addition of the alkane or the aromatic. This table
shows that the radical ianput rates and total organic reactivities are
quite variable, though in general they are within the range observed pre-
viously for this chamber (Refereaces 19 and 26). In contrast to the
results of NO,-air irradiations carried out in the SAPRC 5800-liter evacu-
able chamber (Reference 19), no significant dependence of the radical
input rates on the NO, levels was observed in these experiments; though it
should be noted that the NO, levels were not varied over as wide a range
as our previous studies (References 19 and 26).

The data in Table 4 suggest the radical input rates and organic

reactivity depend to some extent on whether the reaction bag was new and
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Kol TABLE 4. SUMMARY OF RESULTS OF NOx-AIR TRRADIATIONS.
1o
t-.::, ITc Initizl comc. Average® Rates® (ppb min~l) Organic
) Bag tun NO NO, {OH) Radical NO reactivity®
U no. no. (ppm) (ppm) (106 cn's) lnpu:b Oxidation (103 nj.n"l)
N 101 692 0.39 0.11 1.82 0.15 0.12 1.6
- 695 0.40 0.10 1.79 0.13 0.23 3.1
L 700 0.39 0.14 2.81 0.26 0.39 3.4
S 704 0.39 0.13 2.61 0.22 0.29 2.7
IS 707 0.80 0.21 1.67 0.24 0.26 3.8
( . 712 0.41 0.10 3.00 0.22 0.43 3.5
e 714 0.81 0.20 1.37 0.18 0.43 7.6
o 717 0.40 0.12 2.10 0.18 0.30 3.5
- 723 0.41 0.10 2.99 0.29 0.62 5.0
Iy 724 0.26 0.06 1.51 0.06 0.36 5.8
3. 726 0.39 0.12 1.54 0.13 0.28 4.4
" 731 0.40 0.13 2.45 0.21 0.30 3.0
- 734 0.21 0.05 3.65 0.17 0.37 2.5
Lo 102 737 0.39 0.10 0.6 0.06 0.27 6.8
ht- 740 0.40 0.11 1.02 0.08 0.15 3.6
D 745 0.41 0.11 1.70 0.13 0.13 1.9
S 749 0.19 0.04 2.23 0.10 0.25 2.7
AL 752 0.44 0.11 2.20 0.20 0.28 3.1
<. 757 0.20 0.05 4.89 0.28 0.49 2.4
{ 760 0.42 0.13 1.93 0.17 0.29 3.7
g 761 0.42 0.11 1.68 0.14 0.27 4.9
. 762 0.22 0.06 2.25 0.12 0.24 2.6
o 763 0.22 0.04 2.38 0.11 0.20 2.0
> 765 0.36 0.15 1.83 0.16 0.37 4.9
o 766 0.21 0.05 2.22 0.10 0.18 2.0
o 767 0.43 0.13 1.07 0.09 0.12 2.7
2 770 0.41 0.14 1.09 0.10 0.20 4.4
2 772 0.34 0.12 2.87 0.30 0.58 4.0
.~ 776 0.44 0.12 2.55 0.22 0.39 3.7
SR 780 0.41 0.13 2.33 0.20 0.23 2.4
oo 782 0.39 0.13 2.41 0.21 0.23 2.3
e 187 0.21 0.05 3.57 0.19 0.48 3.3
A 789 0.44 0.11 2.51 0.21 0.38 3.9
® 103 793 0.36 0.12 1.68 0.13 -0.03 -0.4
o 797 0.44 0.11 1.49 0.13 -0.01 -0.2
S 800 0.40 0.14 1.66 0.16 0.13 1.9
T 803 0.22 0.07 3.25 0.19 0.2 1.9
e 808 0.33 0.13 1.70 0.15 0.22 3.1
o 814 0.43 0.10 1.42 0.10 0.12 2.0
— 824 0.33 0.07 1.51 0.08 0.06 1.0
{ 826 0.72 0.17 0.77 0.08 0.03 1.0
-® 827 0.88 0.17 0.86 0.11 0.09 2.5
N 828 0.83 0.18 0.55 0.07 0.07 3.2
S 829 0.21 0.0S 1.79 0.06 0.08 1.1
. 831 0.84 0.17 1.32 0.16 0.14 2.6
L 832 0.84 0.16 0.98 0.11 0.11 2.6
L.
> SValues given are for the second hour of the trradiatfon.
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bcalculated using equation (VI).
CCalculated using equation. (VIL).
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perhaps also on the chamber~flushing procedure employed between runs. 1In
particular, the lowest organic reactivities for Bags 101 and 103, and the
lowest radical input rates for Bag 102 were observed when the reaction bag
was new. On the other hand, the first NOx—air run for Bag 102 suggested
some initial contamination of that bag (which subsequently decreased after
several runs were carried out), and the 1initial radical input rates for
Bags 101 and 103 were not significantly lower than observed in most subse-
quent runs. Other than the first run employing Bag 102, the highest
organic reactivities were observed in Bag 101, which may be due to the
fact that a less complete flushing procedure was employed between runs in
that bag, compared to the standard procedure subsequently used (see Sec-
tion II-B and Appendix A). On the other hand, the radical input rates
tended to vary randomly between ~0O.l and 0.3 ppb/min, and did not appear
to be strongly influenced by the chamber-flushing procedure or other known

factors.
3., Ozone Dark Decay Determinations

Another chamber-dependent parameter which must be known when using
these chamber data for model testing purposes is the rate of 04 destruc-
tion on the walls of the chamber. Thus, two 04 dark decay rate determina-
tions were carried out in this program, one (Run ITC-692) near the begin-
ning, and the other (ITC-803) near the end. These two runs gave 04 dark
decay rates of 1.1 percent/hr and 0.5 percent/hr, respectively. These
values are within the range previously observed for this chamber, and
indicate that 05 is quite stable in this chamber, with a half-life of over
60 hours.

4. Acetaldehyde Irradiation
In order to measure the rate of off-gassing of NO, (NO or NOZ)
from the chamber walls upon irradiation, an acetaldehyde-air irradiation

(Run ITC-~825) was carried out around the end of this program. When irra-

diated in environmental chambe- systems, acetaldehyde is consumed either
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by direct photolysis or by reaction with OH radicals (which are always
present during irradiations in environmental chambers), with the latter

process giving rise to acetyl peroxy radicals.

O2 R
CH3CHO + OH » CH3CO-—+ CH3C—00. (17

If any NO, is present in the system, even at sub-ppb levels, the primary
fate of the acetyl peroxy radicals will be reaction with NO or NO,, with
the latter process giving rise to PAN, which is relatively stable in these

systems, and whose formation can be readily monitored.

; :
CH3C-OO° + NO » CH3C~0' + NOZ (18)
.? ;

CH3C-OO + N02 pe CH3C—OONO2 (PAN) (19)

If measurable ozone is present in the system (as was the case for most of
these runs, including the one carried out in this program) then NO reacts
rapidly with 04 forming N02, leading to an NOZ concentration greater than
that of NO. Thus PAN is the dominant product. Therefore, since PAN for-
mation can only occur if NO, is present in the system, and since formation
of PAN is expected to be the major fate of NO, under these high acetalde-
hyde, low NO, conditions, then the PAN formation rate in acetaldehyde-air
irradiations can be equated to the NO, off-gassing rate from the chamber
walls.,

The PAN yield observed in run ITC-825 after 180 minutes of irradi-
This

i{s entirely within the 0.02-0.04 ppb/min range observed in a series of

ation was 5 ppb, indicating a NOx off-gassing rate of 0.03 ppb/min.

four such experiments carried out for a previous program (Reference 27)
employing different bags in this chamber. This NO, off-gassing rate,

though relatively minor, should be taken 1into account when using these

data for model testing.
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‘222 5. Propene-NO, Irradiations
(|
To ensure that chamber effects not measured in the above discussed
é; characterization runs are not significantly affecting the results of the
i?: experiments to be used for model testing, propene—NOx—air irradiations
U were carried out at various times for control purposes. The chemistry of
propene in NOx-air irradiations is among the best characterized of the
. reactive organics, and models for its reactions have been shown to fit the
.Cf results of experiments carried out in a variety of chambers (References
\\' 9-11 and 13-15). Thus, if any propene-NO _-air irradiations carried out in
N this program give results not consistent with model predictions, the pos-
:E: sibility of anomalous effects would be indicated.
iﬁg Table 5 summarizes the initial concentrations and the observed and
] calculated final or maximum 03 ylelds for all of the propene-NO, irradia-
Li? tions carried out during this program, and Figure 3 shows the observed and
L{S calculated concentration-time plots for specles monitored in a representa-
::: tive run (run ITC-693). The model calculations were derived, using the
( ) mechanism of Atkinson and Lloyd (Reference 17), with the photolysis rates
i:: calculated based on the 1light intensity and spectral distribution data
?Ef given in Section III-A-1. An 04 dark decay rate of 0.5 percent/hour, no
-?uf initially present nitrous acid, and the radical input rates listed in
}. Table 5 (the latter being adjusted to within the nearest 0.05 ppb/min to
W:ﬁz give the best fit to the data) were used in these calculations.
:ﬁg The calculated 04 yields were generally ~10 percent lower than
5& observed, and the calculated acetaldehyde yields were high (as seen in
{jt Figure 3), but there were no systematic discrepancies between calculation
:¥; and experiment beyond those expected from uncertainties in the initial
;EE reactant concentrations, analytical techniques employed, and the chamber-
53: dependent parameters. The radical input rates required for the model
:!i calculations to fit the observed NO oxidation and 03 formation rates
:ﬁ (shown in Table 5) were similar in magnitude and variability to those
-

measured in the NOy-air irradiations (shown in Table 4). The discrepancy
between the observed and calculated acetaldehyde time-concentration

profiles is probably due to problems with calibration of this compound in
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TABLE 5. INITIAL CONCENTRATIONS AND SELECTED RESULTS OF PROPENE-NO,-AIR
EXPERIMENTS AND MODEL CALCULATIONS.

Model
Calculations

ITC Initial concentrations Experimental Radical
run NO NO,y propene Final or Max O, 03 Input )

no. (ppm) (ppm) (ppm) (hr) (ppm) (ppm) (ppb min®)
6902 0.24 0.23 0.76 5.0 0.60 0.61 0.20
693 0.38 0.11 1.10 6.0 0.78 0.65 0.15
716 0.38 0.11 1.04 6.0 0.71 0.65 0.15
728 0.37 0.10 1.05 6.0 0.63 0.67 0.05
7362 0.36 0.09 0.51 7.25 0.28 0.28 0.05
754 0.43 0.13 0.98 6.0 0.81 0.70 0.20
759 0.41 0.15 1.02 6.0 0.80 0.70 0.20
791 0.42 0.11 0.95 7.0 0.77 0.69 0.20
7928 0.34 0.13 0.98 6+25 0.75 0.F% 0.05
810 0.40 0.12 0.93 6.25 0.78 0.v8 0.20

8Conditioning run for a new reaction bag.

the GC analysis employed (Reference 23), and to the fact that calibration was
not current at the time of the experiments. (Acetaldehyde is not a signi-
ficant product from any of the fuel constituents studied in this program,
other than n-butane.) The reason for the ~10 percent discrepancy between
the observed and calculated 05 ylelds is unclear, but in general a ~10
percent fit between experiment and model calculation is considered accept-
able, given the current state of the art.

Propene-NO, irradiations were also used for conditioning new reac-
tion bags. These runs were not as well-characterized as the other propene
runs 1n that fewer chromatographic analyses were made, as shown by the
footnote to Table 5. However, despite the fact that those runs were car-
ried out in an unconditioned chamber and are somewhat less well-character-
ized, the results of these conditioning runs are not significantly differ-

ent from the other propene runs, other than the fact that most (though not
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all) of them required lower radical input rates to be assumed in the model

calculations in order to fit the data.
B. SINGLE COMPONENT RUNS

The majority of experiments carried out 1in this program, other than
control or characterization runs, consisted of Nox-air irradiations of
single representative fuel constituents or potential fuel impurities.
Four classes of compounds were studied: (1) benzene and the methylben-
zenes toluene, m—xylene, and mesitylene; (2) the bicyclic aromatics tetra-
1lin, naphthalene, and 2,3-dimethylnaphthalene; (3) the alkanes n-butane,
n-octane, and methylcyclohexane; and (4) the heterocatom—-containing poten-
tial fuel impurities furan, pyrrole, and thiophene. 1In many cases, traces
(~10 ppb) of propene and n-butane were included in the reaction mixture to
monitor OH radical levels from their relative rates of consumption, as
employed in NO -air irradiations (see Section III-A-2). For the more
reactive compounds such as the methylbenzenes or the heteratom-containing
organics, the use of these tracers was not necessary, since the OH radical
levels could be readily derived from the rate of consumption of the
organic itself and its known OH rate constant (Section IV and References
18, 28-30). In addition, for most alkane runs and some aromatic runs, the
experiments were carried out by irradiating the NO, and the tracers for 2
hours before injecting the organic (i.e., carryiang out a NO -air irradia-
tion) to obtain a measurement of the radical input rates under the exact

conditions of the experiment, and to directly measure the effect of the

. presence of the organic on radical levels.,
jf! A summary of the initial concentrations and procedures employed in
;j: all single component-NO, irradiations carried out in this program is given
t“ in Table 6, together with selected results of those experiments. The
:ﬂ% results of these experiments are discussed in more detail in the following
.N‘ .
ﬁ:, sections, In Section III-B-1, the overall reactivities of the wvarious
F:: compounds in NO,-air {irradiations are compared, and in Sections IILI-B-2
F'.' and [II-B-3, their efficiencles in converting NO to NO, and their effects
A
o
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on radical levels in NOx—air irradiations are discussed and compared.
These are among the factors which need to be considered when developing

models for the atmospheric reactions of these compounds.
l. Comparison of Overall Reactivities

The results shown in Table 6 indicate significant differences
among rhe compounds studied in their effectiveness in causing NO conver-
sion and 05 formation. Since the major 1initial reaction of these
compounds in NOx-air irradiations is reaction with the OH radical, these
differences can be attributed, at least in part, to differences in their
OH rate constants, which are summarized in Table 7 for all of the com-
pounds studied in this program. This table shows that there is indeed a
wide range in the OH radical rate constants for these compounds; aund, for
compounds within a given class, these differences can qualitatively
account for the observed differences in overall reactivity. For example,
Figure 4 shows plots of the concentratior-time O3 profiles for runs
employing benzene and the alkylbenzenes, carried out with similar initial
NO, levels. It can be seen that the reactivity of those compounds
increases monotonically with the degree of substitution on the aromatic
ring, as is the case with their OH rate constants. Similarly, Figure 5
compares the 03, NO, and NO2 (where the NOZ’ as noted in Section II-C-3,
is uncorrected for the presence of organic and inorganic nitrates and PAN)
concentration-time profiles for runs employing naphthalene and 2,3-dimeth-
ylnaphthalene at similar NO, levels. Again the more substituted compound,
which has the higher OH radical rate constant, is the more reactive, since
less of the compound is required to produce similar 03 and NOx concentra-
tion-time profiles. Finally, Figure 6 compares the 04 concentration-time
profiles for runs containing furan, thiophene, and pyrrole at similar NOx
levels, and the order of reactivity is pyrrole > furan > thiophene, which
is also the same as the ranking of their OH radical rate constants
(Table 7).

However, in comparing the reactivities of compounds of different

types, it 1s clear that the OH rate constant cannot be the only factor
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Figure 4. Concentration-Time Plots from the Following Aromatic-NO, -Air
Runs (Initial NO, = 0.5 ppm):

influencing an organic’s reactivity in NO, -air irradiations. For example,

Figure 7 compares the
and methylcyclohexane

despite the fact that

O3 and NOx concentration~-time profiles for toluene
at similar NO, levels. This figure shows that
methylcyclohexane reacts with OH radicals ~60 per-

cent faster than does toluene (Table 7) and is present at ~30 times higher
concentration, essentially no 03 formation had occurred in the methylcy-
clohexane run after 5 hours of irradiation, while the toluene run produced

a maximum yield of ~0.5 ppm 03 1n less than 3.5 hours. The results of the
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Figure 5. Comparison of 03, NO, and NO, Concentration-Time Profiles for
Naphthalene-NO,~Air Run ITC-756 and 2,3-Dimethylnaphthalene-
NO ~Air Run ITC-771.
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Figure 6. Comparison of 03 Concentration-Time Profiles for the Following
Heterocyclic Organic-Nox-Air Runs (Initial NO, = 0.5 ppm).

experiments with n-octane were similar to those for methylcyclohexane and
in general the alkanes are the least reactive of all the compounds studied
in this program.

The bicyclic aromatics tetralin, naphthalene, and 2,3-dimethyl-
naphthalene, while more reactive than the alkanes, were found to be signi-
ficantly less reactive than the alkylbenzenes. For example, tetralin,
which might be expected to be similar to a xylene in its reactivity [since
for the alkylbenzenes essentially all of the reaction with OH radicals

occurs at the aromatic ring (References 17 and 18)], is much less reactive
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TABLE 7. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS WITH THE FUEL
CONSTITUENTS AND MODEL COMPOUNDS STUDIED IN THIS PROGRAM.

Compound 1012 « Koy References
(cm3 molecule™! sec-l)

Benzene 1.2
Toluene 6.4 Reference 18
m-Xylene 24
1,3,5-Trimethylbenzene 62
Tetralin 39 This work (Section IV)
Naphthalene 24 Reference 28
2,3-Dimethylnaphthalene 115 This work (Section IV-3)
n~-Butane 2.6
n-0Octane 9.0 Reference 29
Methylcyclohexane 10.3
Furan 40 } Reference 30
Thiophene 9.6
Pyrrole 120 This work (Section 1V)

than m-xylene. This is shown in Figure 8, which compares results of a
m-xylene run, and a tetralin run which has similar initial NO, levels. 1In
addition, Figures 9 and 10 give comparable comparisons of a m—xylene and a
naphthalene run, and of a mesitylene and a 2,3-dimethylnaphthalene run,
respectively., These figures show that in all cases, despite the fact that
the bicyclic aromatics have comparable (in the case of napthalene versus
m-xylene) or higher (in the cases of tetralin versus m-xylene or
2,3-dimethylnaphthale¢ne versus mesitylene) OH radical rate constants, the
runs employine the bicyclic aromatics efther exhibit significantly less
reactivity than those with the alkylbenzenes, or else significantly higher
levels of the bicyclic aromatic are required to produce comparable 04 and

NO, time-concentration profiles. Clearly, the reaction mechanisms of the
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Figure 7. Comparison of 03, NO, and NO, Concentration-Time Profiles for

Toluene-NO,~Air 'Run ITC-699 and Methylcyclohexane~NO,~Air Run
ITC-767.
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Figure 8. Comparison of 03, NO, and NO, Concentration-Time Profiles for
m—Xylene~N0x~Atr Run ITC~702 and Tetralin-NO,-Air Run ITC-747.
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Figure 9. Comparison of 03, NO, and NO, Concentration~Time Profiles for

m-Xylene-NO,~Air Run ITC-702 and Naphthalene-NO,-Air Run
ITC-751.,

51

A A P "o €y [ -y ~ o "N AN AV Y RS AR, Y LS IR ) MY I T AT LY
b > e AT N FadNy ) It e L S s T T s

.ﬁ&i




.......

2.8 T 1vc-706 MESITYLENE (@.29 ppm)
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8.6 T 17c-774 2,3-DIMETHYLNAPHTHALENE (@.33 ppm)
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Figure 10, Comparison of 03, NO, and NO, Concentration-Time Profiles for
Mesitylene-lNO,~Alr Run ITC-706 and 2,3-Dimethylnaphthalene-
NO,-Afir Run ITC-774.

l..'
AT LA NI A T . P R S e S Ry W R R TR NaNat A ™ e U N L A ) YN
e A e e e e e Y e N Y N X A N YN L v i Yo




.
-
3
j:j bicyclic aromatics, including tetralin, are significantly different from
I3 those for the simple alkylbenzenes.
_: The heteroatom-containing organics furan, pyrrole, and thiophene
i%: appear to be approximately comparable to the alkylbenzenes in their reac-
:i: tivity. For example, Table 7 shows that the OH radical rate constant for
{) thiophene is similar (to within a factor of ~1.7) to that for toluene, and
iikj the rate coanstant for furan is similar to that for m-xylene, and Figures
::E: . 11 and 12 show that these sets of compounds have similar reactivities in
_ terms of the rates of 03 formation and NO oxidation, at least under the
] . conditions of the experiments shown in these figures. However, the reac-
’%f tivities of these heterocyclic organics have a very different dependence
i?i on the initial NO, and organic levels than do the alkylbenzenes. For
;ﬁg example, Figures 13 and 14 compare the results of experiments employing
pyrrole with those employing mesitylene (which reacts with OH radicals ~2
g times slower than pyrrole) at two different levels of the organic (the
initial NO, levels were ~0.5 ppm for all four runs), These figures show
that when the organics are irradiated at the ~0.5-0.6 ppm level with ~0,5
(: ppm NOy, pyrrole forms 03 more rapidly than does mesitylene (though less
.C% 05 is formed). However, when the concentratiomsof pyrrole and mesitylene
7§;f are each reduced by a factor of 2 at the same initial NO, level, the rela-
’i: tive rates of 03 formation change markedly, with mesitylene now forming 03
2 far more rapidly than does pyrrole. This 1s apparently due to the fact
-d that once all the pyrrole is reacted (which occurred between 60 and 90

o minutes in run ITC-779 shown in Figure 14), no further conversion of NO to

NO, or 04 formation occurred. Thus, in run ITC-735 (Figure 13), the pyr-

ORI

P AR o
' et e
. IR .
i P e
&
.

role concentration was high enough to consume all of the NO before the

.
:z- pyrrole was consumed, allowing 04 formation to occur, while in run ITC-779
l. -
Qf: (Figure 14), the lower pyrrole concentration was consumed before the NO
k:i: was all consumed, and thus essentially no 0y formation occurred. Note

also that even in the run with the higher pyrrole concentration (Figure

. Al
}}:‘ 13), no further 04 was formed after the pyrrole was consumed, despite the
:}: fact that NO, still remained in the system (as evidenced by the fact that
::: the total uncorrected NO, levels and 03 simultaneously declined, due
if

»

et

e
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"' Pigure ll. Comparison of O3, NO, and NO, Concentration-Time Profiles for
' Toluene=-NO~Alr Run [TC-699 and Thiophene-NO,~Air Run ITC-744.

54

Lo AT AN

ST




S S -

nd nd w o . ! T wUNTYY Lo Sl Sl il Al et Andidied ol et o B S ol s el et s A I e Al Jat R Biee St J
r*'*v“v‘,'""““*‘ AR LALLM, LA A A SRS AASACRC ENURLIL L Eidal AN, |

2.8 T 171C-702 M-XYLENE (.58 ppm)
O3
~ NO2
E
Qo
S
NO
z b ']
8 T -
r—
0.6 7
x B. ITC-711 FURAN (B.42 ppm)
3
) 03
po (&)
%
=
‘f.
ps NO2
i
s
tj—':l
2 NO

3 4 5 6
ELAPSED TIME (hours)

£ . &7

. Cartant]
e
. RN AR
Lt
TR N
A

O
:

Figure 12, Comparison of 03, NO, and NO, Concentration-Time Profiles for
n-Xylene-NO,~Air Run ITC-702 and Furan~NO,~Air Run ITC-711.
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Figure 13, Comparison of 04, NO, and N02 Concentration-Time Profiles for
Mesitylene-NO,~Alr  Run  [TC-703 and Pyrrole-NOy ~-Air Run
1TC-735.
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Figure 14. Comparison of 03, NO, and NO, Concentration-Time Profiles for

Mesitylene-NOx—Air Run  ITC-706 and Pyrrole-NO,-Air Run
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to the NOp, + 04 reaction). This is probably the primary reason that the

pyrrole run formed wmuch less 04 than was formed in the corresponding mesi-
tylene run (as shown in Figure 13).

Furan was observed to be similar to pyrrole in that after it was
completely reacted, no further oxidation or NO or 04 formation occured.
For example, Figure 15 chows the 03, NO,, and furan concentration-time
profiles for a run where the furan level was reduced by a factor of ~2,
and for a rua where the NO, level was increased by a factor of ~2, rela-
tive to those in run ITC-711. It can be seen that, despite the relatively
high reactivity of the furan-NO, system in run ITC-71l, essentially no 04
fuormation occurs in the runs ITC~715 and 713. Apparently there was elther
insufficient furan or too much NO for all the NO to be oxidized before the
furan was consumed., No such behavior was observed for thiophene, but this
may be due to the fact that because of its lower OH radical rate constant,
no runs were carried out in which the thiophene was completely consumed
prior to the end of the irradiations.

This characteristic of the pyrrole aad furan-NO,-air photooxida-
tion system is quite wunusual, since for most other organics which have
been studied to date, 03 formation continues until all of the NO, has been
consuned, Many compounds react too slowly to be completely consumed
within the time scale of the experiments. However, for organics such as
the more reactive alkenes, which are generally consumed relatively early
in the irradiations, continued formation of 03 will occur after the ini-
tially present organic is consumed, due to the reactions of the oxygenated
products formed (see, for example, the data in Reference 23). Apparently
the photooxidation products of furan and pyrrole are either totally unre-
active, or, more likely, they form products which react so rapidly that
they are removed from the system essentially ianstantaneously. Thus, once
the furan or pyrrole and their major products have reacted, the system
reverts to a NO,-air irradiation, where no peroxy radicals are generated

to cause NO consumption and thus 04 formation,
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Figure 15. Comparison of 053, NO, and NO, Concentration-Time Profiles for
Furan-NO,~Air Runs ITC-711, 713, and 715.

59

o
-

. = - ) J y ..
MDA ..x;xxg,f.xic;tis;ttete- e

4
7/
s,
"
2 L



[
i
S
-
2 2. NO Oxidation Efficiency
(+
_-}__. One aspect in which the reactivities of various organics can
:;.‘: differ 1s in their efficiency of converting NO to NO,, which causes 03
e
-:‘:-.' formation. Ozone is formed in NOy -air irradiations by the reactions of 0,
<
U with the O(3P) atoms formed from NO, photolyses, and 1its concentration is
_{, influenced by the following rapid reactions.
A
e 3
S NO, + hv > O(°P) + NO (1)
{ 3 M
N o(’p) + O2 > 03 + M (6)
._.::
x'}'\
A 0, + NO » NO, + O (7)
o 3 2 2
',. This results In the 03 concentration being essentially determined by the
o [NO?]/[NO] ratio. In the absence of a reactive organic, as 1in a NO_-air
CAE -
:,’, irradiation, the change in NO or NO, concentrations is relatively slow.
" Hence thelr ratio remains approximately constant, and essentially no 03 is
NG formed. However, in the presence of reactive organics, peroxy radicals
S ,
. x:' are produced which either consume NO or convert NO to NOZ’ causing the
o"‘-\
:\ [NOy]/[NO] ratio and thus O3 levels to increase.
,‘J N
:/:L;'-: 02
-:.'_H, organic + OH — ROZ' (20)
o
t*’ RO2 + NO » RO, + NO2 (21)
-;f_;i M
A > RONO, (22)
Fo
". In a typical experiment, this {s first manifested by the consump-
':" tion of the initially present NO [with 04 being present in only low
S
:«: levels, in a steady state determined by reactions (1), (6), and (7)],
:::- followed by the formation of measurable levels of 03 after the initially
o
o present NO 1is consumed. Since the alkoxy radicals formed in Reaction (21)
o
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will usually react further to generate additional peroxy radicals (or Hoz)
which can react with additional molecules of WO, several molecules of NO
may be consumed for each molecule of the organic reaction, and,in general,
the efficiency will depend on the organic’s NOx-air photooxidation mecha-
nism.

A semiquantitative estimate of the efficlency of the organics in
oxidizing NO (and thus in forming 04) can be obtained from our data if it
is assumed that reactions (1), (6), (7), and (20)-(22) are the major pro-
cesses influencing NO oxidation and 03 formation. [Other reactions are
known to influence the O3 and the NOx levels (Reference 17); but it can be
shown that, at least in the initial stages of the experiment when 03
levels are relatively low, these are second-order effects.] Thus 1f we
define a as the overall NO oxidation efficiency of the organic, for the
purposes of this discussion the reactions of the organic can be repre-
sented by

k

OH
organic + OH — -a NO + products (12)

(where kgyy 1s the organic + OH rate constant). Thus the kinetic differen-
tial equations for 04 and NO can be approximated by:

dfo,]
3 .
—c— = k,[NO,] - k. [NO] (VIID)
dlgi’] = k,[N0,] - k,[NO] -ak, [organic] [OH] (Ix)

(where the O(3P) atom concentration is assumed to be in steady state, as
defined by Equation (IV) in Section I1I-A-2.) 1In addition, since in these
experiments the organic 1s consumed primarily by reaction with OH radicals
and dilution due to sampling 1is negligible (due to the flexible design of

the chamber employed), the differential equation for the organic can be

represented by
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d[organic
- _i__%%?___L = -kOH[OH][organic]. (X)

The above equations can be combined, integrated, and rearranged to yield

)
3 AC10,]-[N0])

! a = -Aforganic] (XI)

which allows an estimate of the NO oxidation efficiency to be made

directly from the experimental data, provided, of course, that suffi-

O ciently accurate values of A[organic] are available.

:fs For experiments employing the less reactive organics, where the
;%ﬁ amounts consumed were relatively small, accurate values of a cannot be
:%; obhtained. For these compounds, providing that tracer organics were

present in the reaction mixture, Aforganic] can be estimated using (a) the

integrated form of equation (X),

A t
S = -A{organic] = f kOH[OH][organic]dt (XII)
ol o
s
2
RN
L. (b) the tracer decay rates to obtain the average hydroxyl radical concen-
)
5 trations, and (c) the following approximation,
-"-.-'
o
Yoy t
o ({ kOH[OH] [organic]dt = kOHIOH]avg' [organic]angt (XIID)
o
e which 1s reasonably valid for those runs where relatively little of the
o~
-, organic 1s consumed, and OH radical concentrations are relatively
i;i constant. Thus for experiments where -A[organic] cannot be obtained di-
a rectly, a can he estimated from the relation
_
g AC[O,]-I[NO
- o= (10,]-INol) (XIV)
®
~ kOH[OH]avg.[organtc]angt
__ 62
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is obtained from the tracer data as described in Section

where {[OH]
III-A-ZQ

avg

The NO oxidation efficiencies estimated using equations (XI) or
(XIV) from the data from the initial periods of the experiments are sum-
marized in Table 8, together with the average NO, and organic concentra-
tions during this time period. (The lengths of the initial period used to
derive these values depended on the reactivities of the organic and in
some cases on the availability of useable tracer data, as indicated in
Table 8.) The major result is that, despite the wide range of reactivi-
ties for the organics studied, the NO oxidation efficiencies, a, are not
greatly differeant from a value of 2 for all of the compounds studied.
This clearly indicates that differences in NO oxidation efficlency cannot
be the cause for the significant differences 1in reactivity which were

observed.
3. Effects on Radical Levels

Another aspect of the photooxidation mechanisms of the organics
which will effect their reactivity in NO, -air irradiations is their tend-
ency to remove or add radicals to the system. If the presence of the
compound tends to suppress radical levels, then less of the compound will
be consumed in a given period of time, and consequently less NO oxidation
and 03 formation will occur. Conversely, if the presence of the compound
leads to enhanced radical levels, either directly or (more likely) by
forming products which are radical initiators, then obviously the compound
will be much more reactive in NO -air irradiations. Since, as discussed
in the previous section, most of the organics studied here have very simi-
lar efficiencies in converting NO to NOZ’ this is the most probable expla-
nation for the wide variations 1in reactivities between the different
classes of compounds studied.

Table 8 1lists the average OH radical concentrations observed
during the first hour of each experiment. These OH radical levels were

obtalned by one of three techniques: (1) if tracer data are available,
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TABLE 8. AVERAGE NO; AND ORGANIC CONCENTRATIONS AND CALCULATED
AVERAGE OH RADICAL LEVELS AND VALUES OF THE REACTIVITY
PARAMETERS o AND 8 FOR THE INITIAL PERIODS OF THE
SINGLE COMPONENT-NO,-AIR TRRADIATIONS.

ITC Average
ren  Time  [NO,] [Organic] 10°x[oH) a B method®
Organic no. (hr) (ppm) (ppm) (em3)
Benzene 698 1 0.15 13.9 1.1 - -0.09 3
710 1 0.17 13.9 1.0 - -0.12 3
831 1 0.19 2.0 0.5 b b 1
Toluene 699 1 0.20 1.45 3.0 2.4 0.12 2A
828 1 0.19 0.43 0.7 b b 1
n-Xylene 702 1 0.25 0.41 5.4 2.5 0.20 2A
827 1 0.20 0.14 0.7 b b 1
Mesitylene 706 1 0.25 0.19 5.0 2.3 0.16 2A
742 1 0.28 0.34 4.9 2.2 0.13 2A
703 1 0.30 0.39 5.0 2.1 0.10 2A
826 1 0.19 0.08 1.1 b b 1
709 1 0.45 0.37 3.9 2.4 0.17 2A
Tetralin 748 1 0.08 8.3 0.1 - ~0.12 3
739 1 0.13 0.22 0.9 1.6 0.02 1A
750 1 0.17 4.4 0.3 0.7 ~-0.04 1B
747 1 0.15 10.0 0.1 - -0.08 3
832 1 0.23 ~6 0.3 0.7 -0.02 18
Naphthalene 755 1 0.08 1.4 0.4 1.4 -0.24 1B
756 1 0.10 2.6 0.3 2.1 -0.22 1B
751 1 6.13 0.72 ~1.0 ~0.9 -0.05 2A
802 1 0.14 0.81 0.4 2.7 =-0,32 1B
798 1 0.15 1.9 0.3 1.5 -0.13 iB
2,3~Dimethylnaphthalene 775 1 0.10 0.10 1.4 1.6 -0.12 1B
771 1 .11 0.38 ~0.3 ~3.8 -0.26 2A
806 1 0.14 0.45 0.5 1.9 -0.09 2A
774 1 0.17 0.29 0.7 1.5 -0.13 1B
n-Butane 770 2 0.23 9.4 0.5 1.8 -0.03 1B
n-Octane 763 2 0.11 0.95 0.5 2.1 -0.34 18
762 2 0.14 9.4 20.1 c c 1
797 2 0.17 0.90 0.4 2.8 -0.43 18
761 2 0.20 9.5 20.1 c ¢ 1
Methylcyclohexane 766 1.75 0.11 8.8 20.1 c c 1
765 1.75 0.17 0.91 0.5 3.2 -0.39 1B
800 1.75 0.19 0.96 0.6 2.2 -0.28 1B
767 1.75 0.20 8.8 20.2 c ¢ 1B
Furan 715 1 0.16 0.17 4.6 1.6 0.16 2A
743 1 0.23 [} 12.2 1.9 0.28 2A
711 1 0.2 0.23 12.8 1.8 0.26 2A
713 1 ~0,.3 0.30 4.3 d 0.21 2
Thiophene 733 1 0.07 0.41 3.7 1.6 -0.02 2A
729 I 0.13 0.42 1.9 2.5 -0.03 2A
730 1 0.19 1.68 3.7 1.4 0.08 2A
744 1 0.19 1.53 4.1 1.7 0.11 2A
Pyrrole 780 1 0.18 0.14 3.7 1.8 0.16 24
779 1 0.24 0.13 5.9 1.4 0.13 2A
735 1 0,22 0.19 12.1 1.3 0.10 2A
778 0.5 0.17 0.32 26.8 0.9 0.04 2A

2Codes for calculation methods:

| = OH radical concentrations calculated from the tracer dats using equation (V).
2 = OH radical concentrations calculated from the amount of organic consumed using

equation (XV).

3 = OH radical concentrations calculated assuming a = 2 using equatton (XVI).
A = g calculated from the amount of organic consumed using equation (XI).
B = g calculated using the calculated amount of organic consumed using equation (XIV).

ba{organic] too small to reliably calculate a and B.

€Could not be estimated due to uncertainties in average [OH].

dyoy analytical problems.
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the OH radical levels were estimated as described in Section III-A-2, (2)
if no tracer data are available, but values of -Alorganic] could be

obtained with reasonable accuracy from the GC measurements, then [OH]

avg
was estimated using a rearranged form of equations (XII) and (XIII):
[OH]avg . -Alorganic] . Aln[organic] (XV)
kOH[organic]angt kOH.At
. (3) 1if tracer data are not available and -Alorganic] cannot be obtained

directly with reasonable accuracy, than [OH]avg is estimated using a rear-

ranged form of equation (XIV),

A( [03]-[N0]) ; |
[OH] = XVI
ave a.koﬂ.[organic]avg.At

making the assumption that a = 2., As shown in Table 8, this assumption
that a = 2 is reasonable, but obviously the use of Equation (XVI) 1is a
more approximate way to estimate the OH radical levels than are the other

two methods.

The estimated OH radical levels given in Table 8 can be compared

"..".'...

with the wvalues observed in Nox-air irradiations listed in Table 5 of

NS

Section III-A-2, which generally ranged from (1-3) x 106 cm'3. It can be
- seen that the different classes of compounds are indeed significantly
S different with respect to their effects on OH radical levels. Thus the

~ alkanes significantly suppress OH radical levels, while the more reactive

-, alkylbenzenes and heteroatomcontaining organics significantly enhance

them. Benzene and the bicyclic aromatics have an intermediate effect.

. This is consistent with the observed differences in overall reactivity
n;f discussed above in Section III-B-1, and Indicates that the differing
:i effects of the organics on radical levels are largely responsible for
?: these differences.
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h‘_f_:'_ Since the OH radical levels in organiec-NO,-air irradiations are
'\-" influenced by other factors which are independent of the nature of the
T
- organics, especially the magnitude of the chamber radical source and the
AR
:.'.‘ NO, levels present, it is useful to derive a reactivity index relating to
’._ effects on radical levels which reflect primarily the nature of the
organic itself., This can be done by analyzing the results of the organic-
NO,-air irradiations in a manner analogous to our analysis of NOy -air irra-
s
-‘-.:-;. diations (discussed in Section III-A-2) except that all of the reactions
:,'\_ﬁ which affect radical levels involving the organic, its intermediates and
L%
"" its photooxidation products, are represented by the following, highly
simplified overall process:
- .
e oH
o organic + OH —> (1 + B) OH + products (23)
._::l:'- where f§, which can be positive or negative, reflects the tendency of the
::::: organic or its products to remove (B < 0) or contribute (B > 0) radicals
"':' to the system. As In our analyses of NOx—air irradiations, we assume that
the principal radical sink 1s the reaction of OH with NO,
l::_. M
3‘_:.;. OH + NO2 > HNO3 (8)
S
-J .
s and the principal radical source is the chamber radical source, other than
w,
":j radical sources and sinks associated with the reactions of the organic or
-.\
MY its products, which are all lumped together as reaction (23). Thus, since
~
2\'5 the rates of radical source and sink processes must balance, we can write
L.h:
e
-:".-'
":::': (nonorganic (Net radical input (Nonorganic
"o radical + =
o from organics) radical sinks)
_3— sources)
o or
o P =
- Ru + BkOH[OH]avg[organic]avg k8[OH]avg[N02]avg, (XVII)
“Is
A
LA
o
l-.’
.i:::-_
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where R, i1s the radical input rate from sources independent of the organic

and its products (assumed to be the chamber radical source measured in
NOy,-air irradiations), kg, is the OH + organic rate constaat, and kg is
the rate constant for the OH + NO, reaction. FEquation (XVII) can be rear-

ranged to yileld

kB[OH]aqg}Nozlavg ~ Ru

B:
kOH[OH]an[organic]av

g

The values of f estimated using equation (XVIII) from the data for
the first hour of the single component runs are summarized in Table 8.
The radical input rates, R,s used to calculate these values were obtained
in one of two ways. If the run was carried out by adding the organic
after irradiation of a tracer—NOx-air mixture for 2 hours, the radical
fnput rate derived from the data obtained prior to the addition of the
organic was used. For the remaining runs, the radical input rates were
obtained by averaging the rates from the NO -air irradiations carried out
before and after the organic-NO ~air irradiation. Since, as discussed in
Section III-A-2, the radical input rates appear to be independent of NO,
in these experiments, this averaging was carried out without regard to the
NO, levels employed. Uncertainties in the appropriate values of R, tended
to be relatively less important in deriving values of B for compounds
which tended to contribute radicals (B > 0), but were a major factor in
estimating values of B for compounds which tended to remove radicals (B
< 0).

The modest degree of variability in the estimated values of B
shown 1n Table 8 1{s expected based on the number of assumptions and
approximations involved and the uncertainties in the estimated values of
R, and [OH]avg. However, the values obtained are reasonably self-
consistent, with different runs employing the same compound giving similar
values, with no apparent dependence on initial organic and NOx values. As
expected based on their low reactivities, the alkanes methylcyclohexane
and n-octane have the greatest tendency to remove radicals, with values of

B ranging from -0.3 to -0.4. Naphthalene and 2,3-dimethylnaphthalene have

(XVIII)




are due primarily to reactions of the organic itself, while in many cases

Q\ *
.,
AN
o
e the next greatest tendency to remove radicals, with average values of § of
';f~ -0.19 and -0.15, respectively. On the other hand, the methylbenzenes
‘iti clearly have a tendency to contribute radicals to the system, with values
i“:f of 3 ranging from 0.1 to 0.2, though benzene and retralin apparently have
E:i. a slight tendency to remove radicals. Among the heteratom—containing
g
= organics, furan has the greatest tendency to contribure radicals, with
‘:{x pyrrole being somewhat less effective and thiophene apparently neither
::is removing nor contributing radicals to a significant extent, at least in
lfii the initial hour of the irradiation (but see below). This ordering is
'w{ gen-:rally consistent with the observed ordering of the overall reactivi-
i{}{ ties, as discussed in Section II[-B-1, if the additional effect of differ-
f;?f ences in OH radical rate constants is considered.
‘:gg However, the representation provided by reaction (23) is almost
.” certainly oversimplistic, especially since it assumes that of all the
:ii radical initiation or termination processes assoclated with the organic
o

e the secondary reactions of the products may be the major factor. This is

particularly likely to be the case for compounds which tend to contribute

z}ﬁ radicals (8 > 0), since the most probable organic radical sources in
gh} organic-NO_-air photooxidation are photolyses of oxygenated products [as,
{:;: for example, is believed to be the case for the alkylbenzenes (References
) 12 and 17)}. In such cases, the total radical input rates tend to
);j increase with time, due to the buildup of the photoreactive products, and
i}i the effective B values will also increase, To examine this possibility,
Eﬁé figures 16 and 17 show plots of the total radical input from all reactions
® involving organics, calculated in l-hour or 1/2~hour intervals by using a
{:~: rearranged form of equation (XVII) for selected runs involving benzene and
i;ﬂ' the alkylbenzenes (Figure 16) and tetralin, naphthalene, n-octane, and
o
~6 - Net radical (Nonorganic (Nonorganic
LA input from = radical - radical
,t}: orzanias) sinks) sources)
s
o
oa = kS[OH]avg[NOZ]avg - R, (XIX)
@
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thiophene (Figure 17). These figures clearly indicate significant

increases of radical levels with time for those runs involving the alkyl-
benzenes and thiophene, and suggest slight increases in radical levels
with time in the case of henzene and tetralin. No significant buildup of
radicals with time for the alkanes n-octane and methylcyclohexane is indi-
cated,

These results are not Inconsistent with our current understanding of
the atmospheric photo-oxidation mechanisms of the alkanes and the simple
alkylbenzenes. In the case of the alkanes, the data in Figure 17 indicate
that the suppression of radicals is immediate, and there is no evidence of
any significant builldup of photoreactive products. The immediate suppres-
sion of radicals indicates that the radical termination process is
involved in the initial reaction of the pareat alkane, and not 1in the
formation of products which are radical inhibitors. This 1s entirely
consistent with our assumed mechanism for the photo-oxidations of the
alkanes, which are characterized by following competition between radical

propagation:
RO2 + NO » RO, + NO2 (21)

and radical termination to form alkyl nitrates.

M
RO, + NO » RONO (22)

2 2

For n-octane, the rate constant ratio k22/(k21 + k22) has been measured to
be 0.33 (Reference 31), which is entirely consistent with the observed
values of 3 of 0.3-0.4 measured in this study (Table 8). This branching
ratio has not been measured for methylcyclohexane, but our observed values
of B of 0.3-0.4 for this compound are entirely consistent with k22/(k21 +
k22) ratios obtained for other branched and cyclo-alkanes (Reference 32).

In the case of the aromatics, current models for the atmospheric
reactions of toluene and the rylenes (References 12, 15, 16, 17, and 33)
attripute the high reactivities of these compounds to the observed forma-

tion of photoreactive a-dicarbonyls such as methylglyoxal and (from
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. o-xylene) biacetyl (References 34-37), though recent modeling studies
indicate that formation of additional, as yet uncharacterized, photoreac-
;i tive products may also be important (Reference 38)., Aromatics also form
;i. products such as phenols and 4romatic aldehydes in their atmospheric
E:: photo—oxidations (Reference 17) which are believed to act as radical inhi-
pitors (References 12, 19, 39), but apparently for the alkylbenzenes their
formation has a smaller impact on the radical levels than the formation of
photoinitiators. *
Figures 16 and 17 show that for ;romatics such as benzene, tetra-
(- lin, and naphthalene, the radical initiation rates tend to be suppressed »)
:i; initially, though at least for naphthalene and possibly for the other two
Etz counpounds, the apparent buildup of photoreactive products causes the radi-
jﬁ cal initiation rates to subsequently increase, Since this suppression of
[} radical input rates is immediate, rather than increasing with time as one
|;§ might expect if an inhibitor were formed as a product which builds up with
}i? time, the data suggest that these aromatics, like the alkanes, may also
?f; have a radical termination pathway in their initial photo-oxidation reac-
u tion. Indeed, it was originally proposed that a process analogous to the
-i- formation of the alkyl nictrates from alkanes was 1lnvolved in the photo-
.f: oxidation of toluene and the xylenes (References 12 and 15), though this
Et; process has not been assumed in more recent published models (References
J 16 and 33). However, at the present time, this and most other aspects of
jﬁ the arumatic photo-oxidation mechanisms remain largely speculative,
:;} For the heterocyclic organics furan, thiophene, and pyrrole, essen-
;} tially nothing 1is known concerning their NO,~alr photo-oxidation mecha-
!{ aisms. However, the data obtained in this study clearly indicate that .
?.' signiticant formation of photoreactive products is probable. For thio-
:i, phene, this is indicated by the buildup in radical initiation rates with
:?‘ time shown in Figure 17. For furan and pyrrole, it is probable that the
v, photoreactive products are consumed rapidly, as indicated by the extremely
%? hiigh radical levels observed in runs eamploying these compounds (Table 8),
tz: and also by the observation that once the initially present furan or
;{ pyrrole 1is consumed, no apparent persistent reactlion products remain to
L4

cause the oxidation of NO aad the formation of 05 to continue (Section

[y
K
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Iv-8-1). However, at the present time the identities and reactions of

these products are unknown,
C. FUEL RUNS

Environmental chamber experiments were carried out using one whole
fuel, from a preproduction. batch of shale-derived JP-4 which was supplied
by the USAF, and three different "surrogate" jet fuels synthesized by
mixing 15 representative fuel components. In addition, experiments were
carried out in which small amounts (}-2 percent on a mole carbon basis) of
furan, thiophene, or pyrrole were added to one of the synthetic fuels to
represent the effects of these potential fuel impurities on the fuel’s
atmospheric reactivity. The surrogate fuel experiments are needed to test
models for the atmospheric reactions of realistic fuel mixtures whose
compositions are known exactly (so that the chemical mechanism can be
tested without concern for the effects of any uncertainties in the fuel
analyses). (Obviously experiments with real fuels are needed to test the
wmodel’s ability to simulate their reactivity. The compositions of the
fuels employed in our experiments are discussed in Section III-C-l. Com-
parison of the reactivities of the fuels studied is discussed in Section
[II-C~2, and the effects of including the heteroatom—containing impurities

in the fuel mixtures are discussed in Section III-C-3.
l. Compositions of the Fuels Employed '
a., JpP-4

A gas chromatogram taken from the environmental chamber after
it was dosed with a sample from the preproduction batch of shale-derived
JP-4 employed in this program is shown in Figure 18, with selected fuel
components being identified. This chromatogram 1s qualitatively similar
with those obtained using other batches of JP-4 (both petroleum- and
shale-derived) employed in our previoug studies (reference Appendix -

Outdoor), and indicate that a larue number of different compounds are
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'2{ present, including n-alkanes, cycloalkanes, and aromatics. (The chromato-
(t graphic technique employed is not sultable for compounds heavier than C,,,

-\ and the absence of such compounds on this chromatogram does not necessar-
::::_: ily mean that they are not present.) Although a detailed quantitative
:::f analysis of this fuel was not carried out in this phase of this program,
_ quantitative analyses were routinely carried out for the CeCi13 n-alkanes,
_._\"_." methylcyclohexane, and several alkylbenzenes, and the averages of the
" relative amounts of these compounds measured after the fuel was injected
::::? into the chamber for the four JP-4/NO,/air runs are shown in Table 9.
&‘ v (The n-undecane, dodecane, and tridecane levels in run ITC-725 were low,
j{: relative to those measured in the other two runs, and are not counted in
',":::: the averages.) A more complete analysis of this fuel will be necessary
.:\E: before runs employing 1t can be used for model testing. Such analyses
_: should be carried out in the second phase of this program.

o

5‘: b. Synthetic Fuels

G

~. The synthetic fuels employed in this program consisted of
- three mixtures of 15 different alkanes, alkylbenzenes, and bicyclic aro-
‘-'.E:: matics which are representative of the types of compounds present in jet
.::::: fuels now in use. The composition of the first mixture, designated "Syn-
' thetic Fuel 1" or the "standard" synthetic fuel, was specified by the Air
:':S: Force. The second mixture was designated Synthetic Fuel 2, or the "high-
:i: aromatics" fuel, and consisted of the same 15 compounds with the same
_::«.; relative composition among the seven alkanes and among the eight
| ]

- aromatics, but the percentage of aromatics (on a mole carbon basis) was

\
A l.

increased (rom 27 to 38 percent., For the third formulation, designated

A

4
(]
P S S 'Y

Synthetic Fuel 3, or the "modified aromatics" fuel, the composition and

4
.

red s
CACNAL

levels of the alkane components were the same as in the "standard" syn-

thetic fuel, but the ratio of alkylbenzenes to bicyclic aromatics was

increased by a factor of ~2, relative to that in the other fuels. These

TARAN

e different formulations were useful for testing the effects of changing
AY

:" fuel composition on their atmospherlc reactivity, and for testing models
._ designed to predict these effects.
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TABLE 9. COMPOSITION OF THE THREE SYNTHETIC FUELS EMPLOYED IN
THIS PROGRAM AND RELATIVE CONCENTRATIONS OF SELECTED
COMPOUNDS MEASURED IN THE PRE-PRODUCTION BATCH OF
SHALE-DERIVED JP-4.

Mole % (as carbon)

High Modifled
Standard aromatics aromatics JP=4 )
Component calc® obs®| Calc® obs®| calc® obsP| obs®:C
Alkanes (total) 78.9 72.9 | 67.9 62.2 | 78.1 74.0 | 75.0
n-Hexane 14.4 11.4 12.4 9.9 14.2 11.7 5.2 1
n-Heptane 20.5 17.8 | 17.6 15.2 | 20.3 18.2 4.6
n~Octane 18.6 8.7 16.0 15.9 18.4 19.1 4,1
n~Nonane - - - - 7.6
n-Decane - - - - - 9.5
n~-Undecane - - - - - 12.1
n~-Dodecane - - - - - 12.0
n-Tridecane - - - - - 9,2
n-Tetradecane 2.1 3.6 1.8 2.9 2.0 3.3 d
Cyclohexane 8.3 6.5 7.1 5.6 8.2 6.6 d
Methylcyclohexane 12.9 12.5 11.2 10.7 12.8 12.8 10.7
Ethylcyclohexane 2.1 2.5 1.8 2.0 2.1 2.4 d
Alkylbenzenes 13.3 14.8 20.2 21.5 16.9 18.6 21.8
Toluene 8.1 7.9 12.3 11.8 10.3 10.2 8.7
p-Xylene 1.9 2.0 2.8 3.0 2.4 2.6 7.8
Cumeﬂﬁ 1.4 1.9 2.1 2'6 108 203 d
Mesitylene 2.0 3.0 2.9 4.1 2.5 3.5 5.3
Bicyclic Aromatics 7.8 12.3 11.° 16.3 5.0 7.4 d
Tetralin 2.5 4.4 3.9 5.9 1.6 2.7 d
Naphthalene 2.2 3.0 3.3 4.2 1.4 1.8 d
2-Methylnaphthalene 2.2 3.6 3.3 4.5 1.4 e d
® ‘ 2,3=-dimethylnaphthalene 0.9 13 1.4 1.7 N.6 0.8 d
—— ‘

3Calculated concentration based on measured weights or volumes of each
compound used when synthesizing the fuel.

bAverages of the relative gas-phage concentrations measured after the fuel [
was introduced into the chamber,

L. CArbitrarily normalized so total measured alkane = 75, for more direct
., comparison with the "standard" and "modified aromatic" synthetic fuels.
JON

ﬂ{f. dNot measured.

;%j ®Not measured. Assumed to have the same ratio to the total of the other
b bicyclic aromatics for the purpose of calculating total percentages.
o
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The three synthetic fuels were prepared by mixing the desired
weights (for solids) or volumes (for liquids) of the 15 components. Their
relative compositions, calculated based on the amounts of each component
added to the mixtures, are given in Table 9. Also shown in Table 9 are
the averages of the relative gas phase concentrations measured by gas
chromatography after the fuels were injected into the chamber for the
fuel—NOx-air experiments. Although reproducibilities to within 5 percent
or better in relative fuel composition were observed in analyses carried
out for separate runs, this table shows that some compounds had somewhat
greater discrepancies between the observed and expected relative levels,
with the observed gas phase levels of the lighter alkanes tending to be
somewhat less than expected, and the levels of the bicyclic aromatics
tending to be greater. Although this could have been due to evaporation,
the fuels were stored under refrigeration and there was no evidence that
fuel composition changed with time during this program. This discrepancy,
which was similar for all three fuels studied, was not considered to be
excessive and should not significantly affect the utility of the data
obtained in this program.

The data shown in Table 9 also allow some comparison to be
made between the synthetic fuels and the batch of JP-4 employed in this
study. The total alkylbenzene/total alkanes ratio for the compounds moni-
tored in JP-4 1s closer to those for the high or modified aromatics fuels
than that for the standard fuel, but it is not clear whether this would be
the case 1f a more complete analysis of JP-4 were carried out. It is
clear, however, that the synthetic fuels all have much higher levels of
lighter alkanes compared to heavy alkanes than the JP-4 fuel, and this may

have an effect on their relative reactivity.

»
2
¢«

[REATAPR

2. Comparisons of Fuel Reactivities

The initial concentrations and selected results of all fuel-NO,
runs carried out in this program are summarized in Table 10, and plots of
04, N7,, aad PAN concentration-time profiles for runs employing each of

the fuels with comparable initial total fuel and NO, concentrations are
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shown in Figures 19 and 20. In all experiments, substantial yields of 03
(at least 0.45 ppm) and non-negligible levels of PAN (generally 20-30 ppb)
were formed, but it should be noted that relatively high levels of fuels,
i.e., 50~100 ppmC, were employed. In terms of overall reactivity, the
fuels were much more reactive than the alkanes, where essentially no 04
and PAN formation resulted in experiments employing comparable hydrocar-
bons and NO, levels, but were much less reactive than the alkylbenzenes,
where substanial 04 and PAN formation could occur when these compounds
were present at much lower levels, Thus, as one might reasonably expect,
the reactivity of these fuels 1s intermediate between that of its most
reactive and its least reactive components,

Although the differences 1in reactivities between the four fuels
studied were less than the differences in reactivities of the different
classes of 1individual components, the results of these experiments indi-
cate that differences in fuel composition will indeed affect their atmos-
pheric reactivity. In particular, increasing the overall levels of the
aromatics in the fuels will, as expected, increase the rate at which 04 is
formed, but it will also decrease the final yield of 04 observed in the
higher fuel/NOx runs, where 04 maxima are obtained. (Compare the data for
the "standard" synthetic fuel and the "high aromatics" fuel in Figure 19
and Table 10.) This suppression of maximum 04 yields caused by increasing
levels of aromatics in multicomponent-mNox-air irradiation has been
observed previously (References 33 and 40). It is believed that this is

because the photooxidation of the aromatics involves a number of signifi-

cant NO, sinks, which means that less 05 can be formed before NO, is con-

" . sumed (References 17, 33, and 40).

EE; The ratio of alkylbenzenes to bicyclic aromatics within the aro-
:}:: matic fraction of the fuels appears to be almost as important as the total
?j”f level of aromatics in the fuel, particularly at the higher fuel/NO,
;?; ratios, In particular, the '"modified aromatics" synthetic fuel, with
Eig approximately the same total aromatics level as the standard fuel, with a
t;i higher ratio of alkylbenzenes to bicyclics, 1s considerably more reactive
}};' than the standard fuel in the ~100 ppmC fuel -0.5 ppm NO, experiments,
5
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Figure 19. Concentration-Time Plots for 05, NO,, and PAN Observed in
Selected ~100 ppmC fuel - 0.5 ppm NO, runs.
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Thus the "modified aromatics'" synthetic fuel exhibits both a shorter ini-

tiation time for 04 formation (comparable to that for the "high aromatics"

fuel), and also (unlike the "high aromatics" fuel) forms somewhat more 04

:}u than the standard fuel (see Figure 19). On the other hand, in the ~50

":l,

o ppmC fuel/0.5 ppm NOx experiments, the initiation time for 03 formation in
: the '"modified aromatics" fuel was comparable to that for the standard
fuel, indicating that the composition of the aromatics will also influence

{f how the reactivity changes with changing fuel/NOx ratios. The fact that

]
o

[ w2
W s PRI
v S

at higher fuel/NOx ratios the maximum 04 is suppressed when the levels of
‘,;. both alkylbenzenes and bicyclic aromatics are increased, but not when ]

bicyclics are reduced and alkylbenzenes are Increased, indicates that the

2.
Ca
s

larger extent by the increased levels of the bicyclics than by the

v,
28
Lo suppression of 03 observed when aromatics are increased 1is caused to a
A

Wil

increased levels of the alkylbenzenes. This suggests that NO, sinks may
be even more important in the NOg -air photooxidations of the bicyclic
o aromatics than is the case for the alkylbenzenes. This must be taken into
{; account when developing models for the atmospheric reactions of these fuel
constltuents.
R In order to determine the reproducibility of the results of these
:: fuel-NOx—air irradiations, two duplicate experiments were carried out.
employing both the standard synthetic fuel and the shale-derived JP-4, and

J the 04 and NO, concentration-time profiles obtained are plotted together

X
A in Figure 2l. The results indicate that experiments employing this fuel

are more difficult to carry out reproducibly than {s the case for the

synthetic fuels. 1In particular, Figure 20 shows that although JP-4 runs
[TC-721 and ITC~-768 had comparable initial NOX and fuel levels, the former
run had a shorter initiation time for 05 formation, and appeared to
approach a lower maximum 04 vield than is the case for run ITC-768. In
contrast, Figure 20 shows reasonably good reproducibility in 04 profiles
for the two replicate runs employing the standard synthetic fuel (runs

[TC~-784 and 1TC-805). The fact that JP-4 runs have more probiems with

reproducibility Is probably due to difficulties in reproducibly introdu-
cing the heavier fuel constituents into this chamber, as was observed in

our previous study with JP-8 (Reference 6). The problem with this JpP-4
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sample was not as great as that observed previously with JP-8 (Reference
6), but we did observe greater variability in levels of n-undecane and the
higher n-alkanes monitored after injection of JP-4 than was the case for
the lighter constituents, with run ITC-725 having anomalously low moni-
tored levels of these compounds compared with those measured in the other
runs., Thus the conditions of the runs employing JP-4 are somewhat less
well-characterized than is the case for the other runs carried out in this
program, and this must be taken into account when using the results of
these experiments for model testing.

Despite these variations in reproducibility, the results of these
experiments clearly indicate that the shale-derived JP-4 employed in this
study was less reactive in terms of rates of O3 formation than were any of
the synthetic fuels studied. This could be due te lower overall levels of
Aromatics, but more complete data concerning the composition of this fuel,
4s well as modeling studies, are required to determine if this 1s indeed
the cause. Tt is clear that the JP-4 fuel has a higher level of heavier
alkanes compared to light alkanes than do the synthetic fuels (see Table
9), and this is another possible cause for the observed differences in

reactivity between the different fuels studied.

3. Effects of Added Furan, Thiophene, or Pyrrole

To test the effects of potential heteroatom-containing fuel impur-
fties on the atmospheric reactivities of jet fuels, cie run each was car-
rled out in which furan, thiophene, or pyrrole was added to the standard
synthetic fuel. The amount of furan or thinphene added corresponded to ~2
purcent of the total fuel concentration on a mole carbon basis, while the
amnunt of pyrrole added corresponded to only ~1 percent of the fuel.,
Selected results of these experiments are given in Tabhle 10, and compari-
sons of the Oq,y NO, and NOZ concentration-time profiles with and without
these added "{mpurities' are givea in Flgures 22-24,

The data in Table 10 and Fignres 22-24 clearly iIndicate that the
In~lusion of 1-2 percent of furan or pyvrrole has larpe effects on atmos-

sherlc reactivities of the fuels, while the effect of a comparable amount
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of added thiophene is relatively minor. (Figure 24 shows that the initial

raan

- A

NOZ/NO ratio was not well replicated between the added pyrrole run and the

i
*-: corresponding standard fuel run, but the effect of this 1s expected to be
:: much smaller than the observed differences between the two runs. Good
i replication of the injections was obtained in the added furan and thio-
A
2 phene runs as shown in Figures 22 and 23.) Although the large magnitude
> of the effect with added furan or pyrrole is somewhat suprising, consider-
;'-.:'.'. ing the relatively small quantities of the compounds added, the fact that
:“;:'. the effect 1is positive is as expected, since, as discussed in Section
‘ ' [II-B, these compounds are among the most reactive studied in this pro-
o gram, both in terms of their relatively high OH radical rate constaats,
i: and in terms of their tendency to enhance radical levels. Their high OH
t: radical rate constants cause them to be rapidly consumed relatively early
: in the run (all the pyrrole had reacted by 1.5 hours in run ITC-807),
'g-f giving them a disproportionately high impact on the chemistry during that
::-': periode The radicals formed in the photooxidations of furan and pyrrole
-:E thus enhance the initial rates of consumption of all fuel constituents
present, causing more rapid rates of NO oxidation and thus 03 formation.
'.‘.: The much smaller effect in the case of thiophene can be attributed to the
‘:'.E'_' fact that it reacts more slowly with OH radicals, resulting in less of it
::: reacting and thus less of an effect on the overall chemistry of the systemat
;) any given time. In particular, of the 0.,37 ppm initial thiophene in run
-.j:. ITC-788, less than 49 ppb reacteds Thiophene also appears to contribute
G:-": radicals more slowly to Nox-air irradiations than did the other heterocy-
::_: clics (as discussed in Section III-B-3), but in this case its lower OH
[ 3 radical rate constant is probably the more lmportant factor.
'j\, It is interesting to note from Figures 22 and 24 that in addition
':\ to decreasing the initiation time for 05 formation, the presence of furan
}:: and pyrrole also appears to suppress the yield of 05 formed. This effect
Q seems to be the greatest with pyrrole, despite the fact that less pyrrole
';:;": was added than was the case for furan (and despite the fact that the
:'{' higher initial NOZ/NO ratio in the added pyrrole run would be expected to
.&: result in more 04 being formed). This could be due to a tendency of these
o
%
-
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.\j compounds to remove NO, from the system, but this effect seems to be sur-
. prisingly large, considering the small amounts of furan or pyrrole
w added. The model calculations to be carried out in the second phase of

. this program should be useful in elucidating this effect.
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SECTION IV

KINETIC STUDIES

In order to develop chemical models to treat the atmospheric chem—
istry of selected constituents of jet fuels, it 1s necessary to know
accurately the rate constants for the major loss processes of these fuel
constituents under atmospheric conditions. It is now well- recognized
(Reference 15) that the potential atmospheric loss processes for organics
can be photolysis, reaction with OH and N03 radicals, or reaction with
03. For the alkane and aromatic fuel constituents, reaction with OH radi-
cals 1is believed to be the only significant removal process (Reference
18), but for certain of these compounds the rate constants for this pro-
cess are unknown. For the three heterocyclics involved in this study
(furan, thiophene, and pyrrole), removal by direct photolysis is believed
to be negligible, but their rate constants for reaction with NO3 radicals
are not known, nor is it known how rapidly pyrrole reacts with 04 and with
OH radicals. This information must be obtained before data from chamber
experiments employing these compounds can be used for model testing.

Therefore, as an integral part of this program but at no additional
cost to the U. S. Air Force, we have carried out the necessary kinetic
studies to determine the rate constants for the reactions of NO5 radicals
with furan and thiophene, and for the reactions of 04 and OH and N03 radi-
cals with pyrrole. In addition, we have derived rate constants for the
reactions of OH radicals with tetralin, l-methylnaphthalene, 2,3-dimethyl-
naphthalene, ethylcyclohexane, and tetradecane from their rates of decay
observed in the synthetic fuel—NOx—air irradiations whose other results
are discussed in the previous section. The experimental procedures, data
analysis techniques, and results of the kinetic studies and analyses car-

ried out in this program are discussed in the following sections.
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L A. DETERMINATION OF OH RADICAL RATE CONSTANTS
R |
ﬁgq 1. Experimental Procedures and Data Analysis |
2 |
v Hydroxyl radical rate constants were determined by a reactive rate !
;{: technique in which the decay rates of the organic of interest (e.g., pyr—-

’at role, tetralin, n-tetradecane, etc.), and that of a reference organic

.Sg whose OH radical rate constant is known are monitored under conditions
Ead where the organics are consumed primarily by reaction with OH radicals.

\’\ ] In the case of the alkanes and the bicyclic aromatics, the data from the

~§E synthetic fuel—NOx runs were employed, with 1,3,5-trimethylbenzene being

{? used as the reference organic, and the chamber radical source and internal

N organlc radical sources being used as the source of OH radicals. 1In the

-— case of pyrrole, separate experiments were carried out in which OH radi-

_(; cals were generated by the photolysis of methylnitrite in air,

yoY
( CH,ONO + hv > CH,0 + NO (24)

R

;ﬁ CH30 + 02 + HCHO + HO2 (25)

2

B HO, + NO » OH + NO (26)

) 2 2

)

N

with propene being employed as the reference organic.

~a
‘e

The analysis of the data was the same, regardless

".l
>,

organic (designated "reference") was consumed primarily

OH radicals, and that dilution was negligible (as was

these experiments, since flexible Teflon reactors were employed). 1In this

case, we can write

d[organic] -
it korg[organic][OH]

and

91

mental technique was employed, provided that both the organic of interest

(designated "organic”™ in the following discussion) and the reference

. ':'\(‘-:"‘F"-i"f-"fq:f"' E.;.u,.’[:cl

of which experi-

by reaction with

the case for all

(XX)




'k‘“" W L A N A R R R PR N LA L) * \ RS RAC S . ~ <
R
'o)
.
EY Y
RS
s
LR
3ZN d{reference]
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' - It kref [reference] [OH] (XXI)
L
:{::: where korg and k..¢ are the rate constants for reactions of OH radicals
:::::: with the organic of interest and the reference organic, respectively. The
::;-:; above equations can be rearranged, integrated, and combined to yield
L)
P [organic], [reference],
~:-‘ o org o)
:: In [organic] k In [reference] (XXLT)
K t ref t
‘l
\
- where [organic]t and [reference]t are the initial concentrations of the
o o 0
Ry two organics, respectively, and [organic], and [reference], are thelr
o
o concentrations observed at time t. Hence plots of I1n([organic], /
o
~ [organic],) against 1n( [reference]t /[reference]t) should yield lines of
RN o
:::j slope korg/kref and zero intercept. Since kref is known, korg can thus be
4‘2; del‘ived.
A
""- The experimental conditions and procedures employed in the synthetic
\ fuel—NOX-air experiments used to derive the kinetic data for the alkanes
)R]
"“ and bicyclic aromatics have been discussed in Section II. In order to
:::: determine the OH + pyrrole rate constant, CH30No-pyrrole-propene-NO-air
.‘\
."\.‘ irradiations were carried out at 1l atmosphere pressure and 298 +# 1 K in an
.) ~75-1iter FEP Teflon cylindrical reaction bag surrounded by 24 GE F15T8-BL
f.:. 15-watt blacklights (Reference 41). NO was included in the reaction mix-
g
f-,':.r ture to minimize the formation of 04 and NO4 radicals, which otherwise
“'::'f, could cause a significant amount of consumption of propene and pyrrole.
’._; In this work, eight of these bhlacklights were used, corresponding to a
Y
_';.',-: photolytic half-life of CH30NO of ~30 minutes. Prior to irradiation, the
::::: reaction bag/lamp assembly was covered to avoid any photolysis of the
,:, reactants. Pyrrole and propene were monitored before and during the irra-
_.J- diations by gas chromatography, using the techniques described in Section
N 11-C-1).
=
N
92




2. Results for Pyrrole

The data obtailned from irradiations of CH30NO-pyrrole-propene—NO—
air irradiations are plotted in accordance with equation (XXII) in Figure
25. These data yield an excellent straight=line fit with, within one
least—squares standard deviation, a zero intercept. The rate-constant
ratlo obtained from the slope of this plot by a least-squares analysis is
korg/kref
deviations.

= 4,55 + 0.13, where the indicated error limit is two standard

From the OH radical concentrations estimated from the observed
propene decay rates, and the 03 concentrations calculated from the light
intensity and the [NOZ]/[NO] ratios using equation (IV) in Section
II11-A-2, it was calculated that under the experimental conditions employed
the 04 reactions contributed << 1 percent of the OH radical reaction for
both propene and pyrrole. Similarly, for the NO and NOx concentrations
and the observed light intensities employed in these irradiations, it was
calculated that O(3P) atom reaction contributed § 1 percent of the OH
radical reaction for propene and { 4 percent for pyrrole [assuming, in the

absence of experimental data, an upper limit rate constant of 1 x 10-10

3 1

cm” molecule” sec™! for the reaction of 0(3P) atoms with pyrrole]. Thus

the assumptions implicit in the derivation of Equation (XXII) appear to be
valid for this system.

The rate constant ratio korg/kref can be placed on an absolute

basis by using a rate constant for the reaction of OH radical with propene
of kpop = 2463 x 10711 cad nolecule™! sec”! (Reference 42) yielding

10 -1

k = (1.20 % 0.04) x 10 10 cn? molecule™! sec

org

at 295 £ 19K and 1 atmosphere total pressure, where the indicated error is
YOO two least squares standard deviations and does not take into account any

e errors in the value of k,.,¢ used.
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3. Results for the Synthetic Fuel Constituents

::::Z'

N The data obtained from the 10 synthetic fuel-NO,-air experiments
'::;::f were used to obtain estimates for the OH radical rate constants for ethyl-
cyclohexane, n-tetradecane, tetralin, and the naphthalenes present in
those fuels. However, the kinetic data were of much lower precision than
1.::? those from the CH3ONO-pyrtole-propene-NO—air experiments. This is attri-
‘:-: buted to the greater difficulty in precise monitoring of the higher mole-
S cular weight compounds present in these synthetic fuels, and to the fact
;.__'. ’ that the OH radical levels were lower in these experiments than is the
-4:: case with those employing CH40NO, which means that less of the organics
j::\' are consumed. However, the data were of sufficient quality to at least
o obtain a preliminary estimate of the rate-constant ratios.

E:j The data were analyzed by carrying out a least-squares regression
b o in accordance with equation (XXII) for each compound of interest, with
j\; 1,3,5-trimethylbenzene as the reference organic, and with a separate
"\' regression being calculated for each run and (in the case of tetralin,
where two GC analysis techniques were employed) for each analysis tech-
'( nique., The slopes and (1 o) standard deviations obtained are summarized
" in Table 11. In most cases the intercepts of these regressions were
'A within two standard deviations of zero. As indicated by equation (XXII),
6 the slopes are equated with the OH radical rate constant ratios for the
o conpounds of interest, relative to the 1,3,5-trimethylbenzene reference
:::' organic. The rate constant ratios, obtained by weighed least squares
.j" analysis of the ratios from the individual runs and (for tetralin)
g.:i ) analysis techniques, are also given in Table 1l1.

2 The rate constants can be placed on an absolute basis using the
~'{'\~ accepted (Reference 18) literature value of 6.2 x 10711 cn3 molecule™!
" sec:—1 for 1,3,5~trimethylbenzene. The resulting absolute rate constants
Sy (with Iindicated errors being two standard deviations of the weighed aver-
age, not reflecting uncertainties in the OH + 1,3,5-trimethylbenzene rate
constant) are summarized in Table 12. Also shown in Table 12 is the 1lit-
. erature value for the OH + naphthalene rate constant (the only one for
_-::::: which literature data are available) and the OH ethylcyclohexane and
: 95
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TABLE 12. SUMMARY OF OH RADICAL RATE CONSTANTS OBTAINED FROM THE
SYNTHETIC FUEL EXPERIMENTS.

Enrg x 1012 (cn3 molecule™! sec™!
Compound This work Literature? Calculatedb

Tetralin 38 £ 11
Naphthalene 19 £ 12 24 + 2
2-Methylnaphthalene 70 £ 29
3,3-Dimethylnaphthalene 115 + 25
Ethylcyclohexane 14 £ 14 11
n-Tetradecane 21 + 19 18

3From Reference 28.

YCalculated from group rate constants derived from existing data on OH +
alkanes derived by Atkinson et al. (Reference 29).

n-tetradecane rate constants calculated using the estimation technique
derived previously by Atkinson et al. (Reference 29), based on the exist-

ing large data base of OH + alkane rate constants. Considering the rela-

tively large uncertainties assoclated with our data, the agreement between

also be considered more precise and thus are preferred. However, for

R:ﬁ our value and the literature value for naphthalene and our values and the
;jff estimated values for the alkanes 1is surprisingly good, and suggest we may
fi be overestimating our error limits. 1In terms of which values of rate
@

i constants are appropriate to use for model calculations and data analysis,
0

:L}} 1t is clear that the literature value for naphthalene {s much more precise
E}:; than that obtained here, and the calculated values for the alkanes should

e o tetralin and the methylnaphthalenes, ours are the only values available,
::: and these can be used until more precise data are obtained.
-;"»- Y
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B. DETERMINATION OF THE O3 + PYRROLE RATE CONSTANT

*'.

A >
1
l.'

The rate constant for the reaction of 04 with pyrrole was obtained by
measuring the enhanced rate of decay of 05 in the presence of known excess
concentrations of pyrrole in one atmosphere of air. Under these condi-

tions, the reactions removing 05 are

O3 + wall » loss of O3 27)
03 + pyrrole » products (28)
and hence
-d[03]/dt = kw + koa[pyrrole][03] (XXIII)

where k_ and k, are the rate constants for reactions (1) and (2), respec-
tively, With the pyrrole concentration being in large excess over the
inittial 03 concentration ([pyrrole]/[03]1n1tia1 2 10), the reactant con-
centration remained essentially constant throughout the reaction, and

Equation (XXIII) may be rearranged to yield:

—dln[03]/dt = kw + kos[pyrrole] (Xx1v)
Thus, from the dependence of the ozone decay rate, -dln[03]/dt. on the
pyrrole concentration, and with a knowledge of k,» the background ozone
decay rate, the rate constant ky_ may be readily obtained.

As described previously (Reference 30), reactions were carried out in
an ~175-1liter volume Teflon bag, constructed out of a 2-mil thick (180 by
140 cm) FEP Teflon sheet, heat-sealed around the edges and fitted with
Teflon injection and sampling ports at each end of the bag. The reaction
bag was initially divided into two subchambers, with 03 being injected

- into one subchamber and pyrrole into the other. The reactions were initi-

':f. ated by removing the bag divider and rapidly mixing the conteants of the
-:i: bag by pushing down on alternate sides of the entire bag for ~1 minute.
;ﬁ: Initial 04 concentrations after mixing were typlcally ~1 ppm and, after
L

L J mixing of the reactants, the 04 concentrations were monitored as a
-y

LA

NN

oy

Xred 98

'-"-

&
@

T a®

.:\.

o e e e iAo A e A A A e A At A et A

TN AL, NI IR I TRV A VL 0 P (I SR Sty WA



S RN R -‘ .’J‘ J‘.-';f- Ll .i - At .ﬁ_-.'- \"- g 'q_ -. L% A \1.'- -‘-.'-_ [ _\t.'- Al IR ST Tk P A
Y
o
n',.’
@
=Y
N
e
O function of time by a Monitor Labs Model 8410 chemiluminescence ozone
. analyzer. Background ozone decay rates in the absence of the reactants
,.‘_: were determined during these rate-constant determinations, and were ~3 x
f::: 1076 sec-l. Pyrrole was quantitatively monitored in the reaction bag by
- gas chromatography as described in Section III-C-l.
\ In all cases, the 05 decays monitored in the presence of varying
-:':-: concentrations of pyrrole were exponential, within the experimental error
:::'f limits. As shown in Figure 26, these O, decay rates increased linearly
K with the pyrrole concentrations, in accordance with equation (XXIV). The
{
~._ : rate constant ko obtained from the slope of this plot by a least~squares
.'::: analysis is
';,
‘f.
~ - - -
i~ ko, = (1.57 £ 0.20) x 107" cn® molecule™ sec™!
(< 3
:,.; where the indicated error is two least-squares standard deviations of the
i‘ l.
I slope of Figure 26 combined with an estimated 10 percent overall uncer-
~ tainty in the pyrrole concentrations.
k -
;’_:: C. DETERMINATION OF NO; RADICAL RATE CONSTANTS FOR FURAN, THIOPHENE,
:: AND PYRROLE
re
) l. Experimental Technique and Data Analysis
"- The experimental technique used for the determination of NO; radi-
:i: cal reaction rate constants was a relative rate method which has been
..’ described 1in detail previously (References 43-45). This technique is
:-f;: analogous to that described above for OH radicals, and {s based upoan moni-
ff-:f toring the relative decay rates of a series of organics, including at
:'f:f_ least one organic whose NO; radical reaction rate constant 1is reliably
"_ known, in the presence of NO3 radicals. N03 radicals were generated by
:": the thermal decomposition of NyOg in air:
LhU
\- L]
(RN
"".' M
N +
:f. NZOS > 02 NO3 (29)
%) 99
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NO2 + N03 > NZOS (30)

Providing that furan, thiophene, and pyrrole and the reference

organics reacted only with N03 radicals (see below),
NO3 + heterocycle + products 31

NO3 + reference organic > products (32)

then (References 43-45)

[heterocycle]t
o
[hetetocycle]t T %k

[reference organic]t

2 _p (XXV)

1n [reference organic], t

In

where [heterocycle]to and [reference organic]to are the concentrations of
the heterocycle and the reference organic, respectively, at time ¢,
[heterocycle], and [reference organic], are the corresponding concentra-
tions at time t, k31 and k32 are the N03 radical rate constants for reac-
tions (31) and (32), respectively, and D, is the dilution factor at time
t, due to the small amounts of dilution occurring from the incremental
additions of NZOS to the reactant mixtures. [During these experiments,
the dilution factor D, was typically 0.0015 (L.e., ~0.15 percent) per N,0q
addition.] Hence plots of [ln([heterocycle]tO/[heterocycle]t)-Dt] against
[la([reference organic]to/[reference organic]t)-Dt] should yfeld straight
lines of slope k31/k32 and zero intercepts.

With this experimental technique, the initial concentrations of
the heterocycles and the reference organics were ~1-4 ppm, and up to five
incremental amounts of N,0g [~(0.1-3) ppm per addition] were added to the
chamber during an experiment. In order to extend the reaction times
beyond the mixing time, 2-10 ppm of NO, were also included in the reaction
mixtures to drive the equilibrium between N03 radicals, NOZ’ and NZOS

towards NpOs5e
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These rate-constant determinations were carried out at 295 % 1°K
and atmospheric pressure (~735 torr) fin a ~4000-liter all-Teflon chamber,
with dry purified matrix air as the diluent gas. As described previously
(References 43-45), N205 was prepared by the method of Schott and Davidson
(Reference 46). Known pressures of N205 (as measured by an MKS Baratron
capacitance manometer) in !-liter Pyrex bulbs were flushed into the cham-
ber for 3 minutes by a 2-liter min~! flow of N,y (2 99.995 percent purity
level), with simultaneous rapid stirring by a fan rated at 300 liters
sec”l,

The heterocyclics and the reference organics were quantitatively
monitored during the experiments by GC-FID. Propene and the heterocyclics

were monitored as discussed in Section II-C-], with the analysis for

trans-2-butene and 2-methyl-2-butene being carried out using the same

system as employed for furan and thiophene (Section II-C-1).
Furan, thiophene, and pyrrole were obtained from the Aldrich Chem-
ical Company, with stated purity levels of 2 99 percent, 2 99 percent, and

98 percent, respectively. No impurities were observed by GC-FID analyses.
2. Results

The technique described above was employed using trans-2-butene as
the reference organic for furan, using 2-methyl-2-butene for pyrrole, and
using both trans-2-butene and propene for thiophene. 1In all cases, dupli-~
cate experiments were carried out with differing initial NO, concentra-
tions, to assure that the reaction was indeed with NO, aand not NO2 or NZOS
(see below). The data obtained for furan and thiophene using trans-2-
butene as the reference organic and plotted in accordance with equation
(XXV) in Figures 27, and the data obtained for pyrrole with 2-methyl-2-
butene as the reference organic are plotted in Figure 28. Because of the
small amounts of thiophene consumed (< 7 percent) during the {n{tial
experiments using trans-2-butene as the reference organic, a further set
of experiments for thiophene were carried out using propene as the refer-

ence organic, and the data from these experiments are plotted in Figure

29.
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Figure 28. Plot of Equation (XXV) for Pyrrole, with 2-Methyl-2-butene as
the Reference Organic (Initial NO; Concentrations: () - 5
ppm; A\ - 10 ppm).
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}:3 The rate constant ratios k3l/k32 obtained by the least squares
(' analyses according to equation (XXV) are summarized in Table 13, 1In all
::i cases the least squares intercepts of these plots were within three
}: standard deviations of zero. These rate constants can be placed on a more .
> " |
;ﬁf absolute basis using the published rate constants, k32, for propene, j
’ trans~-2-butene, and 2-methyl-2-butene (References 43 and 44), but it
X should be noted that these values are still linearly dependent on the
x*k value used for the equilibrium constant for the reactions NO, + NO5 2
[ -
o NyOge In this work we use our recently determined equilibrium constant of
&x 1 3.4 x 1071 cm3 molecule™! at 298% (Reference 47), which is a factor of
:ﬁ{ 1.8 higher than that given by Malko and Troe (Reference 48). The rate
SN
r constants kq, so obtained are also given in Table 13.
~
S In previous studies the reference organics propene, trans-2-
e butene, and 2-methyl-2-butene have been shown to react with N03 radicals,
o
j? and not with N,0g (References 44 and 49). Since the [N205]/
\d
g [NO,]1, and hence the [N,05]/[NO4], ratios were varied by factors of 2-4 in
jﬂ the present study, the excellent straight line plots in Figures 27-29 show
& that furan, thiophene, and pyrrole also react with NO3 radicals, and not
Hﬁj with NyOc. Furthermore, no observable decays of these heterocycles (< 5 x
f{- 1!)-A min—l) were observed in the presence of 2-10 ppm of NOZ’ showing that
] \h
" no significant dark reaction of NO, with these organics occurs. This was
also confirmed by the excellent agreement of the sets of data obtained at
N
\;: differing initial NO, concentrations (Figures 27-29).
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(
-.ﬁ_:.
o CONCLUSIONS
.:C_:
As 1indicated in Section I, the major purpose of the research discus-
:};: sed in this report was to obtain data required to develop and test com-
-: puter kinetic models for atmospheric reactions of jet fuels of varying 1
j:“ composition. Thus the final conclusions of this two-phase study will not
L be known until the second phase, model development and testing, is ]
::_": completed. However, the experimental data obtained thus far allow us to
¢:: draw some conclusions concerning the relative reactivities of the various
:;: representative fuel constituents studied and the general classes of com-~
S pounds they are taken to represent. In addition, preliminary conclusions
;E.E can be drawm concerning the atmospheric reactions of furan, thiophene, and
:ﬁ pyrrole. Finally, the synthetic fuel experiments, while carried out pri-
“_ marily for model testing purposes, also allow us to draw some qualitative
( conclusions concerning the effects of composition on reactivity in NO -air
\ photo oxidations., These conclusions are briefly summarized below.
o The results of the single compound-NO,-air irradiations indicate that
:',,:? there is a wide range of reactivity among the various alkane and aromatic
»}) fuel constituents, not all of which can be attributed to differences in
‘\ their OH radical rate constants. In particular, relatively little 05 1s
": formed in alkane—-NOx-air experiments, and in no case was O.3 maxima
:-" ohtained despite the relatively high OH radical rate constants for these
.J compounds and the high hydroc:-u-bon/NOx ratios employed. On the other
hand, experiments employing the alkylbenzenes exhibit high reactivity,
‘,::: achieving 05 maxima in relatively short periods despite much lower hydro- ‘
_f_:' carbon/NOx ratios employed. These differences are not due to differences
., in efficiencies in converting NO to NO,, since the data from our experi-
| ments show that all of the compounds studied are not greatly different in
this regard. Rather, the differences are due primarily to differences
among the organics in thelr effects on radical levels, with the alkanes
tending to remove radicals in their initial photo oxidation reactions, and
108




the alkylbenzenes tending to form products which act as photoinitiators in
enhancing radical levels., Higher radical levels cause the organic to be
consumed more rapidly, which in turn causes more rapid conversion of NO to
NO,, and thus more rapid formation of O3

While more reactive than the alkanes, benzene has been shown to be
considerably less reactive than the methylbenzenes, even after its rela-
tively low OH radical rate constant is taken into account. In particular,
the results of the benzene—NOx-air experiments indicate that the presence
of benzene tends to suppress, rather than enhance, radical levels in these
systems, though not to as large an extent ac 1is the case for the
alkanes. In addition, there 1is some indication that the suppression of
radical levels decreases with time, suggesting the formation of a photore-
active product. The lower reactivitv of benzene can be attributed to the
fact that it cannot form methylglyoxal, which is believed to be the major
radical source in NO -air photooxidations of toluene and the xylenes (Ref-
erences 12, 15-17), but 1t is necessary to assume that benzene forms other
photoreactive products in order for model calculations to fit results of
benzene-NOx-air experiments (Reference 38).

Before this study, no data were availlable concerning the reactivities
of compounds such as tetralin and naphthalenes in NOx-air irradiations.
Despite its similarity to o-xylene in its substitution around the aromatic
ring, tetralin more closely resembles benzene in its reactivity, since it
has a greater tendency to remove radicals from the system than to form
photoreactive products. The naphthalenes are also much less reactive than
the alkylbenzenes, and their photooxidations involves both radical removal
and radical initiation processes, the former being more important early in
the experiment, and the latter being more important later, presumably
after the concentrations of their photoreactive product(s) have bullt
up. Since little else is known concerning the details of the NO, -air
photo oxidation of these compounds, or coancerning the identities and reac-
tions of the products formed, any model developed to represent their
photo oxidations will have to be primarily empirical in nature, but, at a

minimum, the model will have to take these observations into account,
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o The results of the experiments with the three synthetic fuels are

qualitatively consistent with the relative reactivities of the individual

.:::'.S fuel components derived from the single component runs. As expected,
:"‘." increasing the total aromatic/alkane ratio increases the rate at which 04
::j'-: is formed in the fuel—NOx—air irradiations, and this can be attributed
_ both to the increased formation of radical initiators from the higher
l:-:_: level of alkylbenzenes and to the reduced rates of removal of radicals
\ from the photo oxidation of the lower level of alkanes. On the other
';::' hand, increasing the aromatics also tends to reduce the maximum O yields
~. formed in the fuel—NOX—air irradiations. This simultaneous enhancement of ‘
:::::‘ reaction rates and suppression of 04 yields caused by increased levels of
::'vr:." aromatics has been observed previously in both experiments and computer
\;;.3 model calculations (References 33 and 40), and is attributed to enhanced
N NO sinks in the photo oxidation of the aromatics, since the ultimate yield
::-.: of 04 formed in these systems is limited by the availability of NO,, which
:_E- is required for O3 formation.

:';'- Increasing the alkylbenzene/bicyclic aromatic ratio 1in the fuel,
«._ while holding the total aromatics/alkanes ratio constant, increases both
'_.“ the rate of 04 formation and the maximum 03 yield. The increased rate of
':. 04 formation 1is expected, since the single component runs indicated that
2 the bicyclic aromatics, whose levels are reduced, have much less of a
\, tendency to form radical initiators in the system than do the alkylben-
..::'. zenes, whose levels are increased. In view of the fact that previous
‘:i‘ experiments (References 133 and 40) indicated that increasing levels of
‘\": alkylbenzenes in multicomponent-NO -air irradiations suppress maximum 04
._ vields, the increase in 03 yields when they are increased in this fuel is
::_ somewhat unexpected, and suggest that this increase in 04 is due primarily
,.-.‘.::T to the fact that the levels of bicyclic aromatics were reduced. Thus, it
. , can be concluded that the presence of bicyclic aromatics in these fuels

tend to reduce the maximum yields of O3 that can be formed to an even

v

Ay

::_'._ preater extent than do the alkylbenzenes, indicating that NOx sinks 1in
7

LS

'l‘- atmospheric phnto-oxidations of the bicyclic aromatics are even more
. N,

;- important than is the case for the alkylbenzenes.
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‘ This study has obtained, for the first time, data concerning the
. atmospheric reactions of the heterocyclic compounds furan, thiophene, and
'\ pyrrole. The 05 and OH and NOy radical rate constants measured in this
","_:' program, when taken with those determined previously from these labora-
= tories for furan and thiophene (Reference 30) show that the heterocyclics,
-:-:_ especially furan and thiophene, react relatively rapidly with these reac-
;\*-\ tive atmospheric species. The rate constants for these compounds are

L

summarized in Table 14, together with their corresponding atmospheric

’
L)

lifetimes under clean tropospheric conditions. [Ozone, daytime OH radi-

=

47}

cal, and nighttime NO3 radical concentrations were taken from References

‘

}E 50-52, and the daytime NO3 concentrations were calculated, assuming an
:.j.':: upper limit, moderately "clean" tropospheric NO, concentration of 500 ppt
"*’ (Reference 53).] Table 14 shows that, as is the case with the other fuel
w.:f:ﬁ constituents studied in this program, reaction with OH radicals is the
:"_ major daytime removal process for these compounds (and is thus their major
:f:i':,' removal process in our environmental chamber experiments), but at night
‘::‘ reaction with N03 can be an important, if not dominant, removal process
R for these heterocyclic organics.

:f:_ Even after taking their relatively high OH radical rate constants
:-_.'t into account, furan and pyrrole were found to be extremely reactive in
L NO,-air irradiations, and addition of only small amounts (less than 2

2y

AL
" “ilf.—'nl ‘s

percent on a mole carbon basis) to the fuels markedly enhanced the rate at

which 03 was formed in fuel—NOx-air irradiations. This 1is because the

-‘.:
A8 “-' ‘..' )

presence of these compounds dramatically increases OH radical levels, even

1

v

® more so than do the alkylbenzenes, probably due to the formation of highly
-‘C':' photoreactive products. If such products are formed, they must react and
:::::: be removed from the system extremely rapidly, since in furan-NOy~air and
\A\- Ky

pyrrole-NOx-air experiments, the system is essentially '"dead" after the

}l.
o

@ initially present heterocycle has reacted, behaving like a NOy-air irra-

:— diation. Most other relatively reactive organics, such as aromatics or

-

:'_'4:.: alkenes, form products which are sufficiently long-lived that their reac-

::4;:', tions will cause NO oxidation and 03 formation to continue after the

N .

."' parent organic is consumed.
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TABLE 14. RATE CONSTANTS AND ATMOSPHERIC LIFETIMES FOR FURAN,
THIOPHENE, AND PYRROLE.

Furan Thiophene Pyrrole

Rate Constant?®
(cm3 molecule” sec-l)

0y 2.4 x 10718 <6 x 10720 1.6 x 10717

oH 4.0 x 10711 9.6 x 10712 1.2 x 10710

NO, 1.4 x 10712 3.2 x 1074 4.9 x 10711
Daytime Lifetime (l/e)

05 (30 ppb)® 6.7 days >0.7 yr 24 hr

OH (1 x 109 ca™3)© 6.9 hr 29 hr 2.3 hr

NO5 (0.037 ppt)d 9.3 days 1.1 yr 6.4 hr
Nighttime Lifetime

NOj (10 ppt)© 50 min 36 hr 1.4 min

a03 and OH radical rate constants for furan and thiophene from Refer-
ence 30; other values from this study (Section IV).

bValue appropriate for clean troposphere (Reference 50).

Cvalue appropriate for clean troposphere (Reference 51).

dyalue calculated assuning an upper limit value of 0.5 ppb of NO, for
the moderately clean troposphere (e.g., Reference 53), using the rate

constants given in Reference 14,
solar zenith angle of 40°.

NO4 photolysis rates calculated for a

©Representative level observed in the moderately clean troposphere

(Reference 52).
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:s The presence of furan or pyrrole in the fuels, while increasing the

( rate of 03 formation, also tends to suppress the maximum amount of 05

}\ which can be formed. This result is analogous to the effect of increasing ‘
".'r-: aromatic levels in the fuels, and indicates that, in addition to enhancing ‘
:’: radical levels, the presence of these compounds may also enhance NO, ‘
removal rates.

:Et: Thiophene, which 1s comparable in reactivity to toluene in NOx-—air

:::: irradiations, also appears to involve the formation of photoreactive pro-

::'t duct(s) in 1its photooxidation mechanism, as indicated by radical levels

&' N - observed in thiophene-NOx-air irradiations. It is much less reactive than

::::: furan and pyrrole, and has a much smaller effect on fuel-NO;~air irradia- |‘
:‘. tions when included as 2 percent of the fuel, and this can be attributed

:-_ primarily to its lower OH radical rate constant., However, it 1s also

?‘. possible that the photoreactive product(s) formed from thiophene react

;i more slowly than those formed from furan and pyrrole, since total radical

':E:: initiation rates in thiophene-NO _-air irradiations rise relatively slowly

o but continuously with time (as shown by Figure 17 in Section III-B-3). If

. the photoreactive product(s) reacted rapidly, one would expect a rapid

-_.3;' initial increase in radical initiation rates, followed by a leveling off

.' at a relatively constant level as the intermediate(s) achieve steady

::. state. Model calculations will be useful in exploring this possibility.

,~ The foregoing observations provide insights concerning the atmos-

:' pheric chemistry of representatives of the major classes of compounds

'::.:'_: present, or anticipated to be present, in current or future turbine engine

‘:_ fuels and allow us to make qualitative statements concerning effects of

*:._-, composition on the atmospheric reactivity of these fuels. However, in

: order to make quantitative predictions concerning the effects of changes

" in composition on fuel reactivity, or to make predictions of atmospheric

;_:—; impacts of fuel releases under conditions more represeantative of the "real

.‘.7 world" than those found in environmental chamber experiments, model

E calculations are required, and development of such models is the ultimate

:‘, goal of this program.

v;j',‘; We believe that the experiments carried out in this first phase of

':_' this program, when combined with results of previous laboratory and

N
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environmental chamber studies, provide a sufficient data base to allow

initiation of the development of a predictive model for the atmospheric

—
LRI - o
* .-'.‘. ~'.

JC X

reactivities of present and future turbine engine fuels, In particular,

this program has given us data, which have not been available previously,

LS |

concerning the atmospheric reactivities of representative bicyclic aro-

matics and heterocyclic organics. In many respects the chemistry of these !
:ﬁf compounds was found to be quite different than was expected based on
O

results for previously studied compounds. In the case of the alkanes,

-
P
.
f,

.
. s, .,
e’

where the chamber radical source has been shown to have a dominant impact

’

on the results of the experiments, we have carried out experiments under
conditions such that the radical source was directly measured for each

experiment, This has not been the case in previous studies with these

compounds. This will allow more comprehensive testing of models for these
compounds. In the case of the alkylbenzenes, while there have been a
number of studies on the atmospheric reactions of toluene and more limited

studies on some of the xylenes, our experiments on the homologous series

benzene, toluene, m-xylene, and mesitylene constitute the first systematic
study of the effect of substitution around the aromatic ring on the atmos-
pheric reactivity of this iwportant class of compounds, whose photo~oxida-
tion mechanisms are highly uncertain,

In short, although significant uncertainties remain, we now have a
much broader data base concerning the atmospheric reactions of representa-
tive constituents and potential impurities of turbine engine fuels than

has been the case previously. Without these data, meaningful development

of predictive models for the atmospheric impacts of releases of these

%.
N,
P

- fuels would anot be possible.
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APPENDIX A

CHRONOLOGICAL SUMMARY OF ENVIRONMENTAL CHAMBER EXPERIMENTS

A summary of the purpose, experimental conditions, and major results
of all environmental chamber experiments in this program, listed in the
order in which they were executed, is given in Table A-1. This table also
indicates which chamber-flushing procedures were employed between experi-
ments, since this was changed several times during the program. Unless
indicated otherwise, all other procedures were as discussed in Section
[I-B. In some cases, runs for other SAPRC programs were carried out in
conjunction with the runs for this program; these are also indicated in
Table A-1, since they constitute part of the history of the reaction bag
employed. (However, there is no evidence for any interferences or conta-
mination as a result of those experiments.) Further details concerning
the specific experimental operations, analytical instrumentation employed,
and data obtained in the individual environmental chamber experiments are

given in the detailed data tabulations in Volume II of this report.
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