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ABSTRACT

An algebraic reconstruction technique (ART) is described for the

seismic tomography of velocities from the travel times of a multiple

* - offset vertical seismic profile. ART concentrates on the production of

areconstructed field whose projected data (travel times) agree with the

observed data. This reconstructed field is modified by altering the data

for each ray such that when this data is back-projected, the new image

agrees with the original data. Because the paths of the rays must be

known to calculate the expected travel times, the problem is linearized

by using raypath approximations as determined from either a constant or

a linear c(z) velocity medium.

.

Imaging of synthetic data revealed that the orientation of the ano-

maly affects both the rate of convergence and the resolution of the

reconstructed field. Some smoothing of the velocity anomalies occurred

along the direction of the rays.

I Noisy data sets developed problems in the reconstructed velocity

field. Huge single point anomalies appeared along the model's edge in

the reconstructed image.!', Elimination of these errant anomalies was

-9 necessary to obtain a reasonable velocity reconstruction. Because iso-

tropy was assumed# the algorithm poorly reconstructed data which was

collected over the strongly anisotropic Pierre Shale.

*% ABTRCS:.,
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NOTATION

s Angle formed by the length of the raypath.

c 0 Velocity at the surface.

c(z) Velocity.

Sum of chord lengths.

*3Ion Residual error time for chord length.
1J

E..j Residual error time for entire ray.

I Angle of incidence.

ij Subscript - from the i'th source to the J'th receiver.

I mn Chord length.

L ijTotal length of the ray.

mn Superscript for parameter circle around point u.n.

m Slope of the linear c(z) velocity.

p Ray parameter.

r Radius of any parameter circle.

R Radius of curvature for the ray.

sm Slowness matrix.

.n5 Slowness correction matrix.

tun Residence tine.

T Calculated travel time for the ray ij.* ii

T Observed travel time for the ray ij.
V. ij

wan Weighting factor.

Ritzj Offset to source. depth to receiver.



zXz Offset and depth to parameter point su.

.OZ.Z0  Origin of the radius of curvature for the ray.
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1.INTRODUCTION

.0"

,-J..

One of the many goals of vertical seismic profiling (VSP) is to

determine the lateral variations which occur away from the borehole.

These lateral changes may reflect porosity, permeability, or facies

changes within the rock unit. Such occurrences greatly influence the

* migration and accumulation of petroleum. Therefore, methods are needed

to delineate these discrepancies between the borehole wall and the sur-

rounding medium.

This investigation was geared at determining velocity inhomo-

geneities using only the first arrival times from a multiple offset VSP.

The travel time through any medium is the integral of the slowness

(reciprocal of the velocity) along the raypath. Unfortunately, this ray-

path itself is dependent upon the velocities within the medium. Thus,

as posed, the problem is non-linear.

Linearizing this problem requires that the raypaths are known,

which, in turn, necessitates a prior knowledge of the velocity struc-

ture. However, if we assume some general velocity trend for the medium.

we can approximate the paths which the rays take. Then, the problem

becomes one of finding the velocity perturbation from the assumed back-

ground velocity. Furthermore, we assume that all raypaths are not

,S.
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influenced by this perturbation velocity; this assumption holds true for

small perturbations. Since the rays are independent of the velocity

'O.-

,%. perturbation, the problem becomes linear.

This research utilized two background models:

1) Constant velocity medium in which the rays form straight lines from

the source to the receiver.

2) Linear c(z) velocity medium where the raypaths follow arcs along a

circle.

The residual time is defined as the observed time minus the

expected time as calculated from the velocity model. Fawcett (1983)

utilized a Radon transform method for his seismic tomography of the

slowness field from reflected residual travel times. Neumann (1931)

used a least-squares inversion of residual travel times in his study on

reflection seismics. Christofferson and Husebye (1979) applied a least-

squares approach on P-wave residual times in a three-dimensional case.

In contrast, IcNechan (1983) and Mason (1981) opted for an algebraic

* reconstruction technique (ART). I have opted for the last approach, as

well.

In comparision to a least-squares inversion, ART possesses several

advantages:

• 2 2



I) ART programs are computationally faster and they are easier to pro-

&ram.

2) Constraints are easily incorporated into the program to accommodate

. any prior knowledge of the medium.

' 3) ART can be easily applied to any source/receiver geometry without

difficulties.

ART has its origins within the medical field. Gordon, Bender, and

Herman (1970) first introduced ART for the reconstruction of images from

" i-ray pictures. Later, Herman, Lent, and Rowland (1973) improved the

Searly ART algorithms and Gordon (1974) summarized the various ART

developments within the medical profession.

Several authors worked on reconstruction techniques which are

applicable to the more general reconstruction problem rather than the

specific z-ray case. Mersereau and Oppenheim (1974) and Mueller, [aveh,

and Wade (1979) applied ART to density reconstruction problems using the

Fourier domain. Horn (1978) developed a density reconstruction also-

rith- for any arbitrary ray sampling scheme.

" .. Geophysical tomography is relatively new. Dines and Lytle (1979)

reconstructed pictures of electromagnetic properties in the region

between a pair of boreholes. By assuming only straight raypaths,

seismic velocity structures were obtained by both Mason (1981) and

• Mc~echan (1983). Mason concerned himself with inverting seismic data

3
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shot between two boreholes, while McMechan imaged data shot from a

borehole to a second borehole as well as to the surface.

The VSP model used in this paper consisted of ten point sources,

which were equally spaced at 100 foot intervals along the surface.

Similarly, a 100 foot spacing was used for the ten receivers placed down

the borehole. No source or receiver resided at the top of the borehole

(see Fig. 1). For a coordinate system, whose origin rested at the sur-

face expression of the borehole, the z variable coincided with the sur-

"S." face offset distance and the z variable reflected the depth below the

surface.

.. ALGEBRAIC RECONSTRUCTION TECHNIQUE - ART

The ART algorithm used here was adapted from Mason (1981). It
4o%.

involves a nine step process:

1) The medium is modeled by casting a set of overlapping circles on a

uniform grid.

. 2) The total length of ray segments about a parameter is the sum of

-,. all the chord lengths formed by rays which pass through any given

parameter circle.
"S.-
0

S. 3) The travel times associated with each of these chord lengths are

determined by the velocity background model and sumed.

* 4
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4) The average slowness at the center of a parameter circle is the

difference of 2) and 3). These outputs form a matrix indexed by

an.

5) Using the generated slowness matrix from 4), the expected travel

times are calculated.

6) The residual time is the observed minus the calculated travel time.

7) This residual error time is equally distributed along the entire

length of the ray.

8) A slowness correction matriz is computed in the manner of steps 2).

3), and 4).

9) Steps 5) through 8) are iterated.

2.1 Constant background

As stated earlier, this investigation used two different velocity

backgrounds for the medium. First the constant velocity case will be

discussed before going into the more complicated linear c(z) medium.

Using a constant velocity reference, the raypaths become straight

lines from the i'th source to the J'th receiver. Denote the length of

this ray as L Because the ray follows a straight course from (xiO)

to (Oz) the raypath is represented by the equation:

5
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. .z - + z j . ( 1 )

Over the two-dimensional medium, a set of overlapping circles is

drawn, whose centers form an uniform square grid (Fig. 2). These cir-

cles must completely cover the medium such that every point within the

medium is contained in at least one of these parameter circles. The

average slowness within any circle is assumed to be the slowness at the

origin of the circle. These circles serve as a truncated least-distance

averaging method which lies at the basis of Horn's algorithm (1978).

Also, circles prove to be more convenient than a grid of squares.

Sources are positioned at the center of some, or all, of the cir-

cles along the surface and receivers are located at the origin of some,

or all, of the circles at the borehole edge of the model. Clearly, the

source or receiver spacing defines the largest possible grid size, or

equivalently, the density of the parameter circles. Resolution is lost

' with too small of a density of parameter circles. Conversely, a greater

* grid density will increase the resolution only to the limit of the data.

* Let the known value r denote the radius of any parameter circle.

Then the circle, around the point (x,Z), is mathematically expressed

as:

s a

(x -) M)z rn (2)

0- 6
.- - . .'. -.



If the ray in question intersects the parameter circle, then equa-

tion (1) and equation (2) will have two points in common. A quadratic

equation is formed by substituting (1) into (2). The quadratic is

solved using the quadratic formula. Should both points prove to be ima-

ginary, then the ray fails to intersect the circle.

The chord length In is calculated using the distance formula.

ij

These chord lengths are formed by all rays ij which intersect a given

parameter circle around the point an. The total length of ray segments

i dmn , around the parameter an, is the sum of all these chord lengths.

n = an(3

Every ray ij, which passes through a parameter circle an. will have

a residence time t n within that circle as calculated from the observed
iiI an

travel time i and a weighting factor w! .
ij

~rnn~ an(4)

This weighting factor depends on the background velocity and can be

viewed as the ratio of the expected time spent inside the circle to the

- total expected time of the ray. For a constant c0 velocity background:

. .

0.°
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The total tine spent about a parameter point an is the sun of all

the residence times. The average slowness at the point an is given by:

an ii(6)

2.2 Constant backayound - lItrtxs ali.tLthm

I An iterative technique is applied to improve upon this first guess

model. First, a forward model is needed to compute an estimated travel

-time. Using straight raypaths. the ray is divided into equal segments

*Al. The slowness along the entire segment length is assumed to equal

the slowness at the midpoint of the segment, which is estimated by fit-

ting a two-dimensional parabola to the surrounding four points of the

slowness matrix. The estimated travel tine T i is the sun of the &loI

ness along the raypath.

-
O 

-
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m'(0.

T "j s(x,z) Al. (7)
(x ,O)

The total residual travel time E.. along ray ij is liven by:

E = TIj TIj( (8)

This residual error time is equally distributed along the length of

the ray. The slowness correction matrix is the ratio of the total error

times about a parameter to the total length of the ray segments.

C. m
. i....., where emn E 1L9)

Jmn Ei LiIj ij ij

This slowness correction matrix is added to the previous slowness

matrix to obtain an updated model. Iteration is performed by computing

a new correction matrix, based on the current slowness model, until the

mean square of the residual times reaches a steady state.

* (El)z - (E )2 (10)

old new
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2ALinear S(Z) sdiu
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For a linear c(z) medium, the raypaths are no longer straight, but

instead are curved. The local radius of curvature is derived using

- Snell's Law.

$in) = p constant. 11)
c(z)

Taking the derivative of the ray parameter, and noting that the

derivative of any constant is zero, we find that

dp = di + - dz, (12)
9i Oz

or

0 = cosi di - Jin d dz. (13)
c(z) c2(z) dz

From the geometry shown in Fig. 3:

dS Rd, and cos i (14)
dS*

* By combining the two equations (14), we conclude that
'Nd

R cos i

%4

%"

di' - - ... .. (15)



Substituting (15) into (13):

dz si i~ dc(z) dz. 16
0 R c(z) c2(z) dz (6

or

Lia = SILp dc(z) (17)I
R c(z) dz dz (7

So for a linear velocity c(z) -c 0 + a~ z, the radius of curvature

becomes a constant, which implies that the raypath is simply the arc

along some circle; that is.

I pm0  (8

Using the Wiechert-Herglotz integral (Aki and Richards, 1980). the

ray parameter can be determined (See appendix A). The result is

pmz (19)

VI[M 22.+ c0'4c2(Z )JS2 4c ac2(z)

From the ray parameter, the radius of curvature becomes known using

5 equation (18). With two points on this circular path known, namely the

- *~*shot and receiver locations, the ray follows a path on the circle:



-7 -7 -7 - . YJ

(11x )z + (g-zo 2 -R2. (20)

Using the geometry in Fig. 4, the center of the circle can be

determined:

1101 R cos (i~a); (21)

Izoj R sini1. (22)

Both angles are calculated from the geometry. The results are

sin1  L (23)

tan(i+11) (24)
2

Thus for a linear c(z) mediums the rays are arcs of a circle. The

overall length of the ray is:

Li Ra. (25)

Over the two-dimensional medium, a grid of overlapping circles is _

12



superimposed. Any ray will intersect a circle provided that:

Sd-Rj < r, where d s  ( x-Ro)  + (zn-Z 0S. (26)

n0

Ile arc length Is formed by the ray iJ. within the circle an. is
.lii

computed using the law of cosines (Fig. S).

cosp = R3 .27

22Rd (7
0

i n = R. (28)
°

The total ray distance da n , about a given parameter, is the sum of

all the arc lengths.

doJ (29)

* Every ray ij, which passes through a parameter circle an, will have

aresidence time t in within that circle as calculated from the observed

p ma

travel time and a weighting factor vi n

t- an w an (30)

ii ii ii-..- 8 residnce time ttjwithin that ie8salutdfrmheoevd
Ti j  Jn

The weighting factor is the ratio of the ezpected time spent inside

13



the parameter circle to the overall travel time for the entire ray.

an[ ij1
on =c(z (31)

. ii T

i.

Here c(z,) is the velocity at the origin of the parameter circle

and Tij is the theoretical travel time of the ray in the assumed linear

background (see appendix B).

Tcl ) + V1 - p3co 1)

T I n. (32)L'' ij 0 c o (1 + 1 p2c2(sj

The average slowness at the point mn is given by:

-.-.-
an U (33)

1-A Linear. ned)~tin Iterative naz.ogjtha

The slowness matrix can be improved by an iteration technique. The

curved ray is divided into equal segments Al. The slowness along the

entire segment length is assumed to equal the slowness at the midpoint

of the segment, which is estimated by fitting a two-dimensional para-

0, o14



bolold to the surrounding four points of the slowness matrix. An

estimated travel time is computed by summing the slownesses at the mid-

S-points of the segments.

(0,zj)

T = s(xz) Al. (34)

(x 0)

The total residual time Eij along the ray ij is given by:

E ij ij - Tij" (35)

This residual error time is distributed equally along the raypath.

The slowness correction matrix is the ratio of the sum of the local

residual times to the sum of the arc lengths around each parameter:

,an
eij mn

where e an E -LiJ
on-i. ij I3

This slowness correction matrix is added to the slowness matrix to

obtain a revised slowness model. Iteration is performed, by computing a

new correction matrix based on the updated slowness model, until the

mean square of the residual times reaches a steady state:

% .-
.-.
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" TESTING THE ALGORITHMS

Both the constant and linear velocity background ART algorithms

were tested using synthetic data sets. For a given slowness model, the

travel times were generated using the forward modeling scheme in either

the constant or linear velocity case. The slowness was integrated along

either straight or circular paths as dictated by the general velocity

trend of the input velocity model. Where the velocity increased

linearly with x instead of z, the reciprocity principle of interchanging

the shot and receiver locations was applied. Such data was calculated

by interchanging the x and z variables and using the technique of sec-

tion 2.4 to compute the synthetic data.

Clearly, the synthetic data does not correspond exactly to the per-

turbations which would be measured in the real case, but instead, the

travel times represent a first order approximation for relatively small

amplitude velocity anomalies. Therefore, my results test the accuracy

of the reconstruction method and not the validity of linearizing the

K 16
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problem.

4. RESULTS

ART produces the best tomographical results when the velocity func-

tion is smoothly varying. Using synthetic data sets, accurately

inverted velocity values occurred within the model, but the velocity

values varied from the synthetic input near the edges of the model (Fig.

6, 7, 8, 9, 10, 11).

The greatest deviation occurred near the origin (Fig 6b. 7b. Sb.

S lib. lc). The first velocity down the well is erroneously high while

the first velocity along the surface is erroneously low. The apparent

cause of this phenomenon rests within the raypaths themselves and the

way in which the ART algorithm handles these raypaths.

The first parameter down the well reflects the slownesses along the

rays from all ten shot locations. However, the shortest raypath length

most accurately reflects the true velocity at this point, while the

* longer rays reflect less of the velocity in question and more of the

velocities further away. Because the ART algorithm equally weights all

rays, regardless of their relative lengths, the slowness down the hole

reflects the velocity change across the surface of the model. Appropri-

ate constraints down the well will eliminate this problem. since the

slowness in a borehole are usually known from the sonic log (Fig lld).

9..
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Along the edges. the velocity values fluctuated from the synthetic

model. These deviations resulted from two factors. First, the errone-

.4

ous origin velocities greatly influence the surface and borehole edges.

Second, the diagonal edge parameters are poorly constrained.

Unconstrained parameters are defined by only one ray. All parame-

ters within my model had at least three rays defining each parameter.

However, along the diagonal edge, these three rays are nearly identical

and as such, they are defined by nearly the same parameters. Therefore.

- these rays fail to be completely independent of each other. Thus, the

parameters along the diagonal edge are poorly constrained. In uncon-

strained cases. ART tends to average the velocities equally along the

raypath resulting in resolution problems.

terBy using a delta function as the input velocity structure (Fig 9),

we can better illustrate this resolution problem. Resolution along the

raypaths is poor, but between the rays, the resolution increases. This

accounts for the skewness of the inverted delta function into an ellipt-

ical form elongated along the dominant raypath direction. Still, the

Slocation of the slowness delta point is accurately defined, though not

its true velocity value.

This poor resolution along the raypaths contributes to uniqueness

problems (Fig 10). In general, an Infinite number of models can produce

the same travel time data. ART converges to the model which is the

closest to the assumed background velocity and not necessarily a

.71
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representative of the true medium.

Uniqueness requires that all the slowness parameters are over con-

strained; that is more than one ray intersects each parameter circle.

Furthermore, these rays must be independent. A close examination of my

model reveals that at least three rays intersect each parameter. how-

ever, these rays travel approximately along the same direction and thus,

these rays reflect many of the same slowness parameters. Clearly, these

rays are not independent of each other.

The back-projected algorithm along curved rays was tested using

synthetic data generated on linear trending, velocity models. In each

case, the curved ART algorithm accurately reconstructed the synthetic

models (Fig. 12, 13, 14).

S. PIERRE SHALE EXPERIMENT

The multiple offset VSP, which was taken by the CSM Exploration

-" Research Laboratory of the Geophysics Department, provided a real data

* test of the algorithms. Field work was done, in November 1980. at the

CSM test site in northeastern Colorado, about five miles south of Brush

Colorado (Southwest 1/4, Section 28, Township 3N, Range SSW). Sixta

(1982) describes the data aquisition and data processing of this VSP

experiment.

* This site was chosen for its simple geologic setting. A 40 foot

"i= .. .'...19



thick layer of colian sand rests on the surface. Beneath this sand

layer, a 40 foot thick layer of clay grades into the Pierre Shale below.

. These thicknesses vary laterally away from the borehole. Because the

upper 1000 feet of the Pierre Shale is well noted for its homogeneous

- -nature, refracted events should not appear on the records and therefore,

-, the direct ray will be the first arrival.

The field layout is sketched in Fig. 15. Geophones were spaced

down the cemented well every 100 feet within the interval between 400

and 1000 feet. Dynamite, placed in shot holes at a depth of 100 feet

deep, were shot at 200 foot intervals across the surface to a distance

of 1400 feet from the borehole. The travel times were picked at the

first trough on the records (Fig. 16) and are tabulated in the table

below.

Table 1: Travel times in msec.

Horizontal offset in ft.
Depth 200 400 600 800 1000 1200 1400
in ft.
400 50.25 62.00 82.75 106.25 133.50 160.00 187.00
o 500 64.50 74.00 91.75 113.00 138.50 163.50 189.75

600 78.75 86.50 101.75 121.00 144.50 168.00 193.50
* 700 92.25 99.00 112.25 129.75 151.50 174.00 198.25

800 106.00 111.75 123.50 139.25 159.50 180.75 203.50
-- 900 119.25 124.50 135.00 149.00 168.00 188.00 210.00

1000 133.50 138.00 147.00 160.00 177.75 196.50 217.00

- Picking the arrival times at the first trough results in a lag time

of about 3 msec. from the true onset of the waveform. This error in theI. travel time corresponds to a similar error in the velocity value. The

0 20
['.
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travel time is the integral of the slowness along the raypath.

t f dL. or (38)

c c

Differentiating (38), we obtain

dt * -L A-. (39)

dci

Dividing (38) into (39), yields the result

. (t d c . (40)
t c

By setting dt=3 msec. and noting that t ranges from 50.25 to 217.0

"sec., the true velocity values range from 6.0 to 1.3% faster than those

which are shown in the reconstructed fields.

The Pierre Shale is well noted for its homogeneous nature; however,

our reconstructions fail to support this characteristic. Imaging was

*performed both without parameter constraints and with constraining the

slowness parameters down the borehole to within five percent of the

measured slowness values off the sonic log.

Both the constrained (Fig. 18a, l8b) and the unconstrained (Fig.

17a, 17b) reconstructions reveal a questionable high velocity cell near

the surface. Although the sonic log for the well records a velocity of

2

%21
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6250 ft/sec at a depth of 100 feet, the reconstructed high, only 600

feet away, reaches 11,900 ft/sec for the unconstrained case and 12,000

ft/sec for the constrained case. However, these velocity highs con-

sisted of a single, poorly-constrained parameter along the surface,

which clearly introduces uncertainty into this velocity value.

By eliminating any poorly constrained parameters along the surface,

the imaging process is improved (Fig. 19, 20). These errant velocity

- values were ignored only when the reconstructed velocity field was con-

toured, and thus, they were used throughout the reconstruction also-

rithm. A similar step was applied to the reconstructions using circular

rays based on the linear velocity trend exhibited by the sonic log (Fig.

21, 22). Each reconstruction shows a high velocity ridge of 8,000

ft/sec. hovering between a horizontal offset of 200 to 900 feet at a

depth around 200 to 300 feet. Additionally, a low velocity cell exists

at 100 foot offset and a depth of 500 to 800 feet. This low cell fluc-

tuates between velocities of 7,000 to 7,200 ft/sec. depending upon the

reconstruction conditions.

To test the validity of these reconstructions, the observed travel

times were compared to theoretical data from a linearly increasing

medium. This synthetic model, based on sonic log information, initially

*O started at a velocity of 7,000 ft/sec. and increased to 8,000 ft/sec. at

the total depth of the well. For comparision, both the synthetic and

the Pierre Shale VSP travel times were plotted for each geophone posi-

* -22
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tion (Fig. 23). Where the synthetic curve arrives after the observed

times. a velocity increase is required. Where the observed times lag

behind the synthetic, lower velocities are expected. Relative to the

synthetic model, we should expect higher velocities at the large offset

distances, but lower velocities at small offsets and large depth.

Because surface velocities are typically very slow, the high sur-

face velocity is contrary to expectations. Three feasible explanations

arise for this velocity anomaly. Either the velocity structure exists,

or the data or the collection of the data is questionable, or the basic

theory is inadequate for the earth conditions exhibited by the Pierre

Shale. Poorly placed shot locations could result in an artificial high

at the surface, if the errant shot locations resulted in a shorter ray-

path.

A more feasible explanation arises from the strong anisotropy exhi-

* bited by the Pierre Shale. After using the same data collected near

Brush, Colorado, White, Martineau-Nicoletis, and Honash (1983) concluded

that the horizontal velocity component was 10 to 20% faster than the
0°

vertical velocity component. Qualitatively, the rays from the large

offset sources possess mostly a horizontal component and thus, should

exhibit a greater than expected velocity. Similarly. the deeper travel-

ing rays are mostly vertical and would travel at the slower velocity.

Therefore, the anisotropy of the Pierre Shale explains the high surface

velocity and the low velocity cell at depth of the reconstructed velo-

. 23



city fields.

6.. CONCLUS IONS

4.)o

Algebraic reconstruction technique (ART) concentrates on the pro-

duction of a reconstructed field whose projected data (travel times)

agree with the observed data. This reconstructed field is modified by

altering the data for each ray such that when this data is back-

projected, the new image agrees with the original data.

* ART possesses many inherent advantages. The flexibility of the

algorithm easily allows for the incorporation of constraints. For exam-

pie, sonic log information predetermines the velocity parameters down

the borehole. This flexibility also permits the application of ART to

- any field setup of sources and receivers.

With noiseless data, ART picks a projection which agrees with the

observed data. It is not in ART's nature to introduce spurious images

on good data sets. However, the resolution of the image is affected by

the orientation of the anomaly relative to the direction of the rays.

While good resolving power occurs perpendicular to the rays, ART tends

to smooth the image along the direction of the rays.

With noisy data, ART can produce single point anomalies of highly

" unrealistic velocities smong the poorly-constrained parameters along the

edges of the model. ART will produce a reasonable reconstructed velo-

*- 24
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city field when constraints are incorporated from the well log informa-

tion or by simply ignoring any poorly-constrained parameters within the

Image. Lastly, data, which was collected over a strongly anisotropic

medium, will result in poor velocity reconstructions, because such data

-. 25
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APPENDI A: RLAYPARAMETER DERIVATION

The ray parameter within a linear c(z) medium is determined from

the Wiechert-Hergiotz integral (Aki and Richards, 1980).

Ii= J a--- (A-1)

where i~- is the slowness,
7( z)

I. is the source offset,

0 ZjIs the receiver depth.

The medium is assumed to possess a lintear velocity structure.

c(z) =c 0 + a~ z; co c(0), the surface velocity. (A-2)

Substituting (A-2) into (A-1), we obtain

(j co +mso z) dz

p xi W m i (A-3)

The integration may be carried out explicitly. The result is

zwzJ

z V.PC(~ (A-4)

mp Z'=0

r2



=..L -p'c'z) -s ( ~ 0 SA-5)

Squaring both sides, we find

(Zipa 0 )2 =(l-p
2 C 0

2) + (l-p2C2(Z~) 2Y'T (1pC02 ( *2(j (A-6)

or

(p.)2 -2 + p3C2+ =3z) 2 ) 1 pC(j (A-7)

Again squaring both sides. we find

21

P4[M0 2z,2+C 0S+C2(Z )] 
4 c2pS'[.4 ,zj+C 0 2+C2(Z~) + 4(A8

or

00

Solving for p, we obtain

4. 0 2

p2 0, P2=*[ 0,, . (A-,)
02, 0 + CZ fl5 2 4 co2c2(zj

41
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However. the ray parameter must be positive for a linearly increas-

* * ing medium. Thus, we conclude that

2m x j
. (A-l1)

VIM[xs +2 +aCa(Zj)] 12 4 C0C2(Zj)

00

.dso
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APPENDIX!B: TRAVEL TINE CALCULATION

The travel time in a linear c(z) medim is calculated by the

Viechert-Hergiotz inversion method (Aki and Richard&, 1980).

T ij. 'i dz (B-1)
foC(Z) Vi-pSC2(z)

We introduce the new variable of integration 0:

pc(z) =sino. (B-2)

Vl pC() COSO. (B-3)

Differentiating (B-3). we obtain

pm 0 dz cos 0 dO. (B-4)

Substituting (B-2) and (B-4) into (B-I) yields:

* Ti I~ f-fdoj (B-5)
0

31



j In l(cacB + cotG9. (B-6)
0

* * In terms of z, this yields the result

1.1 m 0 pc(z)ZZ(B7

T .. In 0~j 1 +~( l
i 0 c (1 + vI-p&cS(z)J

00
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SECURITY CLASSIFICATION OF THIS PAGE (Whefl Dta Enterea)

ABSTRACT

. An algebraic reconstruction technique (ART) is described for the

seismic tomography of velocities from the travel times of a multiple

offset vertical seismic profile. ART concentrates on the production of

a reconstructed field whose projected data (travel tines) agree with the

observed data. This reconstructed field is modified by altering the data

for each ray such that when this data is back-projected. the new image

agrees with the original data. Because the paths of the rays must be

known to calculate the expected travel times, the problem is linearized

by using raypath approximations as determined from either a constant or

a linear c(z) velocity medium.

Imaging of synthetic data revealed that the orientation of the ano-

maly affects both the rate of convergence and the resolution of the

reconstructed field. Some smoothing of the velocity anomalies occurred

along the direction of the rays.

Noisy data sets developed problems in the reconstructed velocity

field. Huge single point anomalies appeared along the model's edge in

the reconstructed image. Elimination of these errant anomalies was

necessary to obtain a reasonable velocity reconstruction. Because iso-

V.: tropy was assumed, the algorithm poorly reconstructed data which was

collected over the strongly anisotropic Pierre Shale.
0
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