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FOREWORD

This report explores some of the important physical parameters of the fiber
composite nickel plaque under development at NSWC. Results from electrical
resistivity, tensile strength, porosity by standard measurement techniques and
plaque structure provided by scanning electron micrography have shown that
lightweight, durable, and energy efficient electrodes can be fabricated.

Comparison with a high quality commercial nickel sintered plaque shows
acceptable performance of the composite in every area. Moreover, a considerable
: range of overlap with parameter values common in powder sinters exists for the
. composite. This allows an excellent opportunity to optimize the latter for

specific requirements. In addition to being lightweight, the composite plaques
possess the desirable feature of a highly open, interconnected structure which
. is easily impregnated with active material.
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( INTRODUCTION
A new concept in sintered plaque fabrication for use in electrode production
for nickel alkaline battery systems is the nickel composite plaque.1 This
plaque is made from highly graphitized carbon pitch mat fibers, coated with
9 electroless nickel, compressed around a grid and sintered in a reducing (Hj)
o atmosphere. The result is a strong lightweight sintered composite structure of
- open porosity suitable for use in various battery electrodes.
; This report discusses the physical properties of this composite plaque

material. These results have been derived from tests on only two sets of
plaques and, therefore, must not be considered exhaustive. The reported data
2 establishes an acceptable baseline for the composite plaque which can be
X compared to that of powder sintered plaques. The four test areas include

': tensile strength, porosity, resistivity and SEM micrography of the plaque
A: structure.
- EXPERIMENTAL PROCEDURE
£
Sintered nickel plaques have been the substrate of choice for many years as
- a medium for incorporation of electrochemically active material in secondary
N alkaline battery systems, where high rate capability and durability are
-~ important. Such plaques have been made conventionally by sintering a fine
: nickel powder.2 They have the advantage of providing a highly conductive and
i porous substrate for containing the active species. Their disadvantages include
: weight and material/fabrication costs. The nickel composite plaque addresses
- these factors. The composite plaque is made by coating a graphite fiber mat
L (Thornel Type "P'" VMA Grade, Union Carbide Corp.) using an electroless nickel
. solution (Allied-Kelite, Richardson Chemical Company). The nickel coated fiber
- is placed under compaction pressure around a current collection grid and
:i sintered in a reducing (Hj) atmosphere.
- All composite plaques used in this study were made from avallable graphite
7 mat containing fibers approximately 7-17u in diameter (lu = 10~ 6 meter).
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The electroless nickel coating, containing 2 to 10 percent phosphorous, has
a eutectic point near 840°C. Sintering, therefore, must be carried out below
this temperature to prevent the eutectic liquid from forming and running off the
fibers during the process. A 2 hour sintering time is used, although based upon
experience with powder sinters,2 a period of 15 to 20 minutes is probably
sufficient.

An 1initial set of plaques was sintered at 762°C and 812°C as a function of
compaction pressure to assess the integrity of the fiber sinter bonds. A second
set of plaques, containing the same amount of graphite fiber, was sintered as a
function of nickel coating thickness to determine the effect of the nickel
coating on the physical properties of the plaque. Typical data on the second
plaque set is given in Table 1. This consisted of plaques produced with
(nominal) nickel coating thicknesses of 0.3 to l.5p and plaque thicknesses of
.75, 1.0, and 2.5mm, containing pure nickel expanded mesh current collectors.
For comparison, a series of 1.0mm thick plaques, made without the current
collector grid, is included. Finally, a 0.70mm thick commercial sinter was
measured for reference.

POROSITY

Porosity measurements were made by water imbibition. Figure 1 shows the
dependence of porosity on nickel coating thickness for the 0.75 and 1.0mm
plaques at constant fiber content of 2.1 and 2.6 grams respectively. A
variation of about 15 percent is observed in porosity as a function of nickel
coating thickness.

Porosities of 55 percent to 95 percent have been produced in the composite
plaques by varying the degree of compaction pressure (plaque thickness) for a
given fiber content prior to sintering. Plaques fabricated with nickel coating:
less than 0.5k thick tend toward structural weakness, blistering and fiber
separation. These problems, however, are caused by inadequately coated portion:
of fiber resulting from non-uniformity due to hand processing. Composite
plaques of good quality were obtained with nickel coating thicknesses in the
range of 0.6 to 0.9y.

PLAQUF PORE SPECTRUM BY MERCURY INTRUSION POROSIMETRY

The mercury intrusion porosimeter method produces data on the volume of
mercury forced into a porous sample as a function of applied pressure. By
computing the appropriate derivative AVHg/AP, the fractional porosity versus
effective pore diameter is obtained. Figures 2(a) and 2(b) show the results of
such measurements on a powder sinter and composite plaque, respectively.
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oyl TABLE 1. COMPOSITE PLAQUE PARAMETERS

<
VO
1
-\.-

}; Plaque Coating Resist-  Tensile Dry Mean Pore
i Thickness Thickness Porosity ivity Strength Weight Diameter
&f mm (nom. ) p (nom.) 7% ufcm kg/cm grams u
“
NeY
AN 0.75 0.3 88 673 36% 5.9 -
‘-‘n
E -
[ ] -
S 0.75 0.6 81 545 62% 7.8 -
-
- 0.75 0.9 75 434 72% 10.9 -
- _

) 0.75 1.5 73 348 69% 13.9 -
s 1.0 0.3 95 869 3.5 6.4 -
o
R 1.0 0.6 86 650 48% 8.1 -
: :;:3
vy 1.0 0.9 79 517 50% 11.0 -
o .

- 1.0 1.5 79 430 69% 13.7 -
o
}}: 1.0 0.3 94 4228 12 3.6 66.0
o w/o grid
- @

T%f * Average of two runs

e *x Manufacturer spec

. t Crack observed in sinter
® v Grid break
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TABLE 1. (Cont.)
Plaque Coating Resist-  Tensile Dry Mean Pore
Thickness  Thickness Porosity ivity Strenéth Weight Diameter
mm(nom. ) p (nom.) % uficm kg/cm grams n 4
1.0 0.6 83 1325 42 7.5 59.5 d
w/o grid
1.0 0.9 80 976 59 9.2 60.0
w/o grid
1.0 1.5 77 586 77 12.9 56.5
w/o grid
2.5 0.3 73 1578 19 13.7 ~
2.5 0.6 80 1008 78 18.1 -
2.5 0.9 T4 807 72 23.4 -
0.70 - 84x 140 44t 14.1 15.0
powder 121V
* Average of two runs
*% Manufacturer spec
t+ Crack observed in sinter

v Grid break
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The number of pores of effective diameter indicated along the log axis is
proportional to the curve height. The figures have a roughly similar shape with
the maximum void volume occurring at about 15u for the powder sinter and 60u
for the composite plaque. The porosity distribution is about 50 percent broader
in the latter. As the nickel coating thickness is varied from 0.3 to 1.5y,
the pore size distribution maximum shifts from 66u to 56u. These data
quantify the pore size difference between the composite and typical powder
plaque. For practical purposes the pores are considered spherical cavities.
While this is far from the true topography of composite sinters, it is a
convenient construct for cavity size comparisons.

The pore size versus nickel coating thickness dependence is not strong, as
noted above. The 20 percent or so difference in pore size between plaques of
thin and thick nickel coating is not likely to affect impregnation/formation
conditions significantly. Of primary importance, however, is the 4X larger
average pore size of the composite compared with powder sinters. The larger
pores of the former may produce an electrode with some characteristics of the
poci.et plate. This implies some reduction in efficiency at bigh rate discharge
com,ared with that of a powder sinter of equal thickness. Preliminary tests
indicate that the composite plaque suffers a 5-10 percent penalty in active
material utilization level compared with that typical of powder sinters. At
this stage, the reduced utilization cannot be attributed reliably either to the
larger pore size or marked differences in morphology between the composite and
powder sinters. New, uniformly coated fibers of constant smaller diameter are
becoming available. These will produce plaques of smaller, more uniform pore
size, which will more closely match the pore size and surface area of the powder
sinters.

SCANNING ELECTRON MICROSCOPIC STUDY

SINTER BOND STRENGTH

SEM photography is a powerful tool in examining sinter bonding, active
material deposition, changes in morphology, etc. Figure 3 shows a portion of an
impregnated plaque which has been cut and examined on edge. The stress of
cutting bhas pulled apart two fibers at a sinter point, revealing the integrity
of the sinter bond. This indicates the potential durability of the composite
plaque under the physical and chemical stresses of cycling. The long-term
plaque cycling test discussed below revealed that, although the nickel coating
had considerably degraded, there was no evidence of disproportionate failure of
the sinter bonds.

PLAQUE DURABILITY

Two tests of plaque durability were made. In the first, a portion of
composite plaque was immersed in 31 percent KOH electrolyte at 75°C for 2 months
with no applied potential. Figures 4(a) and 4(b) show this sample before and
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after immersion. No major corrosive attack is evident. Therefore, plaque
deterioration does not occur under open circuit conditons in the electrolyte.
This result implies a potentially long "shelf" life of the composite electrode.

The second test involved long term alternating anodization (charge) and
cathodization (discharge) periods at moderate current density, equivalent to
1000 cycles. Figure 5 shows the plaque after this test. It remains intact
although the surface has assumed an eroded appearance. Oxidation of the nickel
coating produced the equivalent of about 7 percent the utilization of a fully
impregnated electrode of similar dimensions. Some exposed and split fibers are
evident, probably due to gradual electrolyte penetration. These oxidation and
penetration processes will set the limit on composite plaque lifetime.

PLAQUE MORPHOLOGY

An estimate of pore size can be obtained from SEM photographs by measurement
and comparison. Figures 6(a) and 6(b) show portions of composite plaque at 200X
and powder sinter plaque at 1000X respectively. The contrast in morphology and
pore size is evident. The composite is composed largely of wedge-shaped cavities
arranged in an interconnected open structure. Sintering takes place at contact
points of the randomly directed mat fibers. The powder sinter has generally
smaller pore cavities. Sintering takes place along entire particle chains which
aggregate to form cavities. A far greater number of sinter bonds are involved
in forming the powder sinter plaque.

These SEM photographs do not give information on closed porosity. No
systematic study in this area was attempted. Such an investigation will require
several cross section photographs of an impregnated plaque to determine the
presence of unimpregnated regions.

The mat fiber material used in the composite plaques has a specific surface
area of 0.4n3/gram, compared with an area of 0.25 to 0.5 mz/gram for nickel
powders after sintering. Therefore, due to a 2 to 2.5X greater mass/volume,
powder sintered plaques have this factor advantage in pore surface area. Smaller
surface area for a given porosity in the composite plaque implies larger average
pore size.

Figures 7(a) and 7(b) show portions of the composite plaque after
impregnation and after charge-discharge cycling, respectively. 1n Figure 7(a),
the nickel composite electrode (Ni.C.E.) has been formed but not cycled. The
active material (nickel hydroxide) is present as isolated lumps loosely bound
within the pore cavities. After heavy cycling (>200) in a test cell, the
active material has redistributed to conform to the cavity walls (Figure 7(b)).
It has assumed a smooth, layered appearance with visible electrolyte flow
channels. The active material apparently has optimized its electrical contact
with the plaque. This is reflected in a marked increase (30 to 40 percent) in
utilization between the initial and final states pictured in Figure 7. The
sensitivity of electrode performance to plaque and active material morphology is
aptly illustrated. Not only must the plaque have a large accessible pore
surface area, but also the active material must be distributed to contact it
intimately.
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ELECTRICAL RESISTIVITY

For maximum utilization of the active material and electrical efficiency of
a cell to be achieved, the electrode resistivity should be a minimum. Of
concern in sintered plate battery systems is the plaque resistivity, which is an
important contributor to the cell's internal resistance.

Electrical resistivities of the composite test plaques were measured using
a four point probe method. A known current is passed through the plaque. A
potential probe of fixed width is used to measure the voltage drop across a
plaque segment. Using the thickness and other information, the local
resistivity is computed. Such measurements were made on the series of composite
plaques sintered at 762°C and 812°C. Figure 8 shows the electrical resistivity
versus compaction pressure for this series. The cross-hatched region indicates
the resistivity range common in nickel powder sinters. The best results were
obtained at 812°C, 0.63p nickel coating.

Using this result as a baseline, a second set of plaques (Table 1) was
fabricated and measured. Figure 9 displays the results of these measurements.
Average plaque resistivity is plotted as a function of nickel coating
thickness. Figure 9 shows that thin plaques have significantly lower
resistivity than thick ones. For the same nickel coating thickness, a composite
plaque 2.5mm thick has about twice the resistivity of one 0.75mm .hick. The
resistivity at each plaque thickness shows little decrease for coating
thicknesses greater than about 0.6u. The relatively lower resistivity of the
thin plaques can be accounted for by the increased volume fraction occupied by
the current collector (a pure nickel 0.15mm thick expanded metal grid) in the
thin plates. A series of 1.0mm thick plaques was produced without the current
collector grid in order to assess its contribution. The results are plotted as
the upper curve of Figure 9. In the absence of the current collector, for a
given nickel coating thickness, 1.0mm thick plaque has about twice the
resistivity.

For comparison, the isolated point at lower right in Figure 9 indicates the
measured resistivity of a recently manufactured 0.70mm thick powder sintered
plaque. 1Its resistivity of 140u*Q°cm is about one-third that of a typical
0.75 to 1.0mm composite plaque of this series. Intersection with the practical
resistivity range (~200 to 750u°Q°cm) determines the combinations of nickel
coating and plaque thicknesses required for acceptable sinters. The data show
that plaques thicker than 1.0mm will probably require heavier current collection
grids to bring their resistivities within this range. If relatively thick
nickel coatings are used, it might be possible to eliminate the current
collector grid for some electrode applications.
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TENSILE STRENGTH

A simple test was used to determine the ultimate tensile strength of the
composite plaques. The results were compared with those for powder sinters.
The experimental arrangement used a hanging pedestal and weights to place the
sample under static tension. The plaques were cut into strips of measured
width. The only difficulty encountered was in devising a satisfactory holding
method. Clamping the strip ends caused fiber damage and premature failure. The
problem was solved by carefully epoxying small pieces of aluminum at each end of
the strips. The test sample could then be placed conveniently under tension.

The load to failure (breakage) was recorded for each composite plaque
sample of the first series. Figure 10 shows the failure load as a function of
compaction pressure during sinter for various nickel coating thickness/
temperature combinations. The cross—hatch area indicates the range of tensile
strengths obtained in powder sinters under normal processing conditions. The
composite sinters processed at 800°C with 0.6u nickel coating produced the
best results.

A second set of composite sinters was tested. Failure strength as a
function of nickel coating thickness is shown in Figure 11. Vertical bars
indicate two measurements on the same plaque. The data show increasing strength
up to a nickel coating thickness of about 0.9u. Above this coating thickness,
the ultimate tensile appears to become constant at 75 kg/cmz. By constrast,
from the data of Figure 10, increasing fiber content with compaction pressure
translates into linear increase in tensile strength over the measured range.
These data also show that tensile strengths greater than 75kg/cm2 are possible
in the composite plaques by increasing their fiber content. However, a penalty
will be paid in decreased porosity. The 0.70mm thick, recently manufactured,
powder sinter plaque exhibited a crack in the sinter at about 45kg/cm2 as
indicated in Figure 11. The ultimate tensile strength of 110kg/cm2 was due

principally to its current collector grid strength rather than to the sinter
body.

CONCLUSIONS

Porosity of the composite plaque may be varied over a wide range of 55 to
>90 percent by altering its fiber content. The mean pore size of plaques
subjected to testing was about 4X and width of distribution about 1.5X those of
powder sinter plaques. The achievement of smaller pore size while maintaining
high porosity in the composite plaques necessitates that a graphite material of
somewhat smaller, more uniform fiber diameter be used.
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SEM micrography confirms a composite plaque morphology of virtually 100
percent open interconnected porosity which readily accepts high active material
impregnation levels. Micrographic observation of a cycled composite electrode
indicates good intra-electrode electrolyte circulation.

The composite plaque electrical resistivity can be made comparable, by
suitable nickel coating thickness, sinter temperature and fiber content, to that
of typical powder sinters.

The ultimate tensile strength of the composite plaques increases with
increasing nickel coating thickness, saturating at 75 to 85kg/cm2 for nicke!l
coating thicknesses around 0.9u. The tensile load is carried by the composite
fiber structure rather than by the nickel conductor grid.

Good durability was noted for the composite plaque against corrosion under
long term immersion in hot KOH electrolyte. Stability against dissolution was
demonstrated by the unimpregnated composite plaque under anodization (charge)
with gas evolution and cathodization (discharge) conditions equivalent to 1000
cycles.

A sintering temperature of 800°C and nickel coating thickness of 0.6 to

0.9u produce a composite plaque of suitable physical characteristics for cell
use.

20
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