AD-A148 637

UNCLASSIFIED

ON THE VHLIDRTION OF COHPUTER SCIENCE THEORIES(U) NHVRL
POSTGRADUATE SCHOOL MONTEREY CA B J MACLENNAN NOY 8
NPS52-84-0821

F/G 972

END
Funen
one

1/1

NL




. B LV il N NS
- RN RAESACIAL Wt . V. o e

B
FEEER
FEEE
EEE

rCEEF

-——
.
—
[ 4
[
Fr

ke

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A




ey . - .
ARSI AN

0Py

o

rrersoN
L v

b
-]

NPS52-84-021

NAVAL

AD-A148 637

POSTERADUATE SCHOOL

Monterey, California

ON THE VALIDATION OF COMPUTER
SCIENCE THEORIES

Bruce J. MacLennan '

November 1984

Approved for
Prepared for:

Chief of Nava
Arlington, VA

........
LR .

public release; distribution unlimited T

1 Research
22217




T
Rt
| , °
| . .
NAVAL POSTGRADUATE SCHOOL R
Monterey, California 1;45Ju
» oL )
Commodore R. H. Shumaker 0. A. Scrady
Superintendent Provost L4

The work reported herein was supported by Contract N00014-84-WR-24087
from the Office of Naval Research.

Reproduction of all or part of this report is authorized. e ;

This report was prepared by:

CE J. MACLEN A »

Associate Professor and Acting Chairman of .

Computer Science ‘

Reviewed by: Released by: R

.’V"/.vll ;j e P
—_— L Fo
, J. MACLEN KNEALE T. MARSHALL S
/ Acting Chairman Dean of Information and LSRN
Department of Computer Science Policy Science e
.
..

2y e Syt Syl A L S S

I AT AT I AT I IR NN IENNE




R -‘ '*]
RS

UNCLASSIFI_ED - —-‘i‘—*
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 4
.
REPORT DOCUMENTATION PAGE BEFORE. COMPLETING FORM ]

T, REPORT NUMBER 2. GOVT ACCESSION noj 3. RECIPIENT'S CATALOG NUMBER -
NPS52-84-021 VA 6 ]

4. TITLE (and Subtitle) v S. TYPE OF REPORT 8 PEMOD COVERED T e '—j
On the Validation of Computer Science Theories | p - ,_;_}{

S. PERFORMING ORG. REPORT NUNBER T _~_‘:ij

T AUTRORS) ®. CONTRACT OR GRANT NUMBER(e) - . AJ
Bruce J. MacLennan Nooorv?éw-zmm o

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gg‘A:ot".‘!ssrff.&l:‘o.agg:. TASK .
Naval Postgraduate School R
Monterey, CA 93943 ’

11. CONTROLLING GFFICE NAME AND ADDRESS 12. REPORT DATE ‘ L 4
Office of Naval Research November 1984 SRR
Arlington, VA 22217 3. NUMBER OF PAGES S

T4, MONITORING AGENCY NAME & ADORESS(It different from Controliing Otfice) 1S. SECURITY CLASS. (of this report)

I
. ® 4
15a. DECL ASSIFICATION DOWNGRADING i
SCWEOULE 5 o]
16, DISTRIBUTION STATEMENT (of this Report) :'f.':.':‘:'.‘:‘-f:'::" u
ST T4
oL R L
o

17. OISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEZY WORDS (Continue on reverse side {1 necessary and identily by dlock number)

foundations of computer science, empirical methods, validation of theories,
demarcation probiem, turing machines, decision procedures, hypothetico-
deductive method, confirmation, refutation,halting problem, undecidability,
conceptual validation, idealizations, explications, formalizations

v
.

20. ABSTRACT (Continue on reveree side If necesssry and Identity by block number)

7 We address normatively the demarcation problem for Computer Science: How can
Computer Science research be conducted scientifically? First we attempt to
delimit the subject matter of Computer Science, and conclude that it is not
computers but programs. Since programs are not physical objects, it is diffi-
cult to see how they can be studied empirically. The rest of the paper is
devoted to an explanation of how this can be done. This method is first
illustrated by a hypothesis of narrow scope, analogous to a physical law.

EOITION OF | HNOV 68 (S OBSOLETE
$ N 0102-LF-014-660!

Vi 1473

UNCLASSIFIED

et ——— s
SECURITY CLASSIFICATION OF THIS PAGR (When Dete Bntered)




UNCLASSIFIED

SECUNTY
CLASSIFICATION OF THIS PAGE (When Date Batereqd)

7Y Next it i
LA s illustra
<] of computers. “The approsch 15 simerised in the cormurirt
rized in the co ng Machine
nclusions. .« mode1

\
~

’

e e =

Accession For

NTIS GRAXI
DIIC TAB 0
Unaanocunced —

Justifieat 1OTL e e

!
e i
!
BY e T T \
_pistributton/
Avaikabilifv Codes _%
Avail and/oT
Dist special

$/N 0102- LK 014- 6601
UNCLASSIFIED

SECURITY CLASHI P
ICATION OF THI
S PAGK(When Date Bn
tored)

- ..
LIRS
......

.

-----------------
-------------------
..............



- ’ < a - - L L g L ekt ".‘ 't':‘ " L .‘V"
S AN O N T SR AL A A A JRCU s At e S A e e At A AL~ LR s gt e S

B
A
N

;

Ty

W R ERAAY

Baliindond . Sl .2

e ol g, et b P LA BB LE T PR

L) eyl
AN A TR YN

PACNE S

N
EANCAANCIEREAS ¢

‘A

(1

B Y

K h O |
B.8,0,0.2.0 0

~

]

e

.verified. As an example we consider Turing Machine Theory [1].

On The Validation of Computer Science Theories
B. J. MacLennan
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

Abatraet:

We address normatively the demarcation problem for Computer Science: How can Computer Science
research be conducted scientifically? First we attempt to delimit the subject matter of Computer Science,
and conclude that it is not computers but programs. Since programs are not physical objects, it is diffi-
cult to see how they can be studied empirically. The rest of the paper is devoted to an explanation of
how this can be done. This method is first illustrated by a hypothesis of narrow scope, analogous to a
physical law. Next it is illustrated by a theory of wide scope — the Turing Machine model of computers.
The approach is summarised in the conclusions.

1. Summary

We claim that the most important theories underlying Computer Science have never been empirically

It is well known that Turing Machines are used as models of real computers, and that theoretical
results about Turing Machines, such as the impossibility of a decision procedure for the Halting Problem
[1,2], are considered valid as assertions about real computers. However, we know that Turing Machines
differ from real computers in several significant ways. For example, Turing Machines have a potentially
infinite (i.e., finite but unbounded) memory, whereas real computers have a finite, bounded memory.
These differences do not, per sc, mean that the Turing Machine is an inadequate model of real computers.
For example, the potentially infinite memory of the Turing Machine could be considered an idealization or
approximation of the large but finite memory of real computers. This leads us to ask a crucial question:

ls the Turing Machine an adequate model of real computersf

Since this question asks about the correspondence between an abstract macthematical model, the Tur-
ing Machine, and a real-world phenomenon, computers, it can be answered only by an empirical pro-
cedure. Our goal is to show how empirical techniques can be used to confirm or refute the Turing
Machine model of computers. In the process we demonstrate the application of empirical techniques to

the validation of Computer Science theories in general.

The basic spproach is an adaptation of the Aypothetico-deductive method |3,4,5,6] commonly used in

T AT A T A A e LT ALt e et ettt .
RS Ea P S e o RS




N

LA y3 A A

>,

WX XAR: 77

TRl L R XL

PRI

efofalals & %

2,770

AP
'-"'- Nt .‘;‘,':~ “.’ ) Cd P A A s

the sciences. That is, we deduce predictions from the hypothesis in question, and then investigate
whether these predictions hold in fact. For example, a prediction made by Turing Machine Theory is the
impoesibility of a decision procedure for the Halting Problem. Does this prediction hold in fact, that is,

for real computers?

There are several ways we can test this prediction. We might try to refute it by trying to find a deci-
sion procedure for the Halting Problem for real computers. Alternately, we might try to confirm it by
showing that the existence of such a decision procedure would contradict other empirically validated laws,
such as the conservation of mass-energy. In both cases the results of empirical investigation contribute to
the confirmation or refutation of the Turing Machine model of computers. In the paper we explore both
possibilities.

It is hoped that the systematic application of empirical techniques such s these will eliminate some of

>

't.he sterility characteristic of much of the theory of Computer Science.

3. Introduction

It has been observed that disciplines with the word ‘science’ in their names usually aren’t. This leads us
to pose the demarcation problem [7,8] for Computer Science: Is Computer Science a science? Or is it
something else, such as an art, engineering discipline, or pseudoscience? And further, if Computer Science
is a science, then what sort of science is it? Is it more like the natural sciences or the mathematical sci-

ences? Or perhaps the engineering sciences or the social sciences are & better model.

When we have answered these descriptive questions, what Computer Science ss, we can turn to the
normative questions, what Computer Science should be. In particular, should Computer Science be a sci-
ence? Or should it be an art or engineering discipline? And if it should be a science, then should it be

patterned after physics, or mathematics, or linguistics; or should it follow a pattern all its own?

In this paper we attempt to answer some of these questions. In particular, we aim to show the role of
empirical methods in Computer Science. We do not claim any originality for the specific results presented
herein; they are used solely to illustrate the methodology. However, we do claim that this methodology is

distinctly different from that which is usual in Computer Science.

... Ctaran e e A R e e T
., NN IICAC AL A I ‘

AT A SN S e et et e e T e e e e e T

PRGOS T T T Py e N T T e e e e s T T N e e




3. Subject Matter of Computer Science

Contrary to its name, the subject matter of Computer Science is not computers, per se; that is more the

subject of Computer Engineering, a branch of Electrical Engineering. Computer Science is generally more

]
concerned with software (i.e., programs) than with hardware [9]. That is, it is concerned with the logical
rather than the physical properties of computers.
It might be (and has been) contended that Computer Science is an engineering discipline [9]. Cer-

tainly many computer scientists, especially in industry, are engaged in the production of

hardware/software systems that are intended to satisfy a need. To answer this objection it is useful to

distinguish an engineering discipline from a craft or art (in the re xvn sense). Crafts and arts tend to be

based on informal, often intuitive, knowledge and experience, whereas engineering disciplines are based on
'2 an underlying science. Thu is, an engineering discipline’s knoyledge' is systematised, formalized, and
; : often quantified. Its hypoth;us have been more systematically vnlidneé. Of course, we rarely find s dis-
‘ cipline that is purely craft or purely engineering — these are the extrems of s continuum, with most dis-
E" ciplines falling in between. Progress in a field is often measured by the distance moved from the craft
Eé; extremum towards the engineering extremum.
v
‘ Thus, even if Computer Science were an engineering discipline (or even a craft), we would want to
;g:' seek for an underlying scientific discipline. What we address in this paper is an empirical approach to this
g: underlying science, that is, to the scientific study of software and of the the logical properties of hardware.
! 4. Demarestion Sl
< e
E: Is Computer Science a science? Our interest in the demarcation problem [7,8] for Computer Science is not ;
A . “name calling;” rather, it is constructive. If Computer Science is not s science, we want to determine _ ]
';,; how to make it one; if it is a science, we want to reinforce and extend its use of scientific method. —j
5o o
::: How can we determine if Computer Science is a science? First, we can ask whether its theories and ::f:':?:
ﬁ laws are scientific in form, that is empirically volidatable. There are many criteria for deciding this, such -
? as empirical content, operational definability [10,11,12], verifisbility [13] and falsifiability |7,8,14]. C]
3 Second, we can ask whether the theories and laws of Computer Science have in fact been empirically vali- \'1

-3-
e e e NN e e et S e S ettt et et N e e e e e
S R T O S O R ORI ORI C SO O A




dated. We will attempt to answer these questions by investigating several theories and laws of Computer

Science.

What would constitute a theory of Computer Science? When people talk about Computer Science
theories they usually mean computability theory, formal language theory, automata theory, complexity
theory, formal logic and proof theory, parsing theory, programming language semantics, numerical
analysis, etc. Since these can all be considered mathematical theories, we are led to a common view: that
Computer Science is a branch of mathematics [9]. The result of this view has been that the standard of
validation for these theories has generally been that of mathematics, viz. deductive consistency. How-
ever, if we wish to use computer science as a foundation for software engineering, then this standard will
not do. For this purpose we need to know that these theories apply to real computers and real software,

that their assertions correspond to reality. Thus, the mathematical validity of these theories is not suffi-

cient; we must also consider their empirical validity.

Have any Computer Science theories been validated empirically? Unfortunately, we have to answer in
the negative. Of course, many of them have been validated informally, in the sense that practical systems
based on them work. However, to the best of our knowledge, no one has actually attempted s systematic
empirical validation of any of these theories'. In many cases this validation would not be too difficult,
since the empirical data are already available. What is required is s demonstration of how these data

confirm or refute the theories. In the following sections we outline two of these demonstrations.

§. Empirical Validation of Computer Science Hypotheses

As an introduction to the empirical approach we consider the validation of a very specific hypothesis, a
hypothesis that corresponds in scope to a physical law. Suppose our hypothesis is that a particular kind
of sorting algorithm takes nlogn time (where n is the number of items to be sorted). How can we vali-

date this hypothesis?

’ A hypothesis of this sort is based on many approximations and idealisations which are conventionally

sssumed to be true. This hypothesis, and the assumptions on which it is based, can be tested by an

1. Some of these theories bave come closer to empirical validation than others. For example. when s particular aumerical
sigorithm behaves as predicted, it indirectly validates the sumerical analysis upon which it is based.

PSR S, DAL Nl it R Tl S o0 et Ll sq (R4 PRI o \~;\-“‘.-'\.;. ,-'..:. ..... --.. _-‘...:...':..-.-.:_..:\.._‘.“‘:-..:-_'-...: ..... W e . . _..._...- “ ‘.._‘.'.': L
h"";bi-:.:—vhtltl-:‘-f:{:{ N PN AP 2 SN X



e

R~ KISy [P

ST RO ¥ TR

experiment analogous to those performed by physical scientists. We will implement the algorithm and
measure the time it takes to execute, while varying the conditions we believe to be relevant (essentially
applying Mill’s Method of Concomitant Variations [15]). In this case some of the potentially relevant con-
ditions are:

¢ The number of items to be sorted (to determine the fixed overhead of the algorithm);

o The initial ordering of the items (to determine the sensitivity to the initial order, and form a basis for

statistical analysis);

e The computer and/or programming language used for implementing the algorithm (to ensure that
these aren’t relevant factors as a result of, e.g., fixed overhead, special optimisations, memory colli-
sions).

7 ¢ . approach has several benefits. First, it serves to validate the hypothesis. Second,:it simultaneously

helps to validate the assumptions upon which the analysis was based. Third, it gives us guidance in the

practical application of these analytical techniques.

Computer Science hypotheses of this kind are sometimes validated in precisely this manner. However,
more commonly computer scientists fall into one of two categories: practitioners, who make measurements
without any underlying theory, and theoreticians, who don’t test their theoretical analyses, because they
have proved them mathematically. On one hand, the practitioners fail to develop useful laws and theories
that would help them to predict the performance of future software. On the other hand, the theoreticians
ignore at least two ways in which they could be wrong: (1) they might have made a mistake in their
mathematical analysis; (2) their analysis might not be applicable, that is, they might have ignored what
was not negligible. As in the other sciences, experimentation guided by theory seems the more reliable

method.

6. Empirical Validation of Turing Machine Theory

The performance of a particular algorithm, such as a sorting algorithm, is a very narrow kind of
hypothesis. Are there Computer Science hypotheses of wider scope, comparable to the laws and theories

of physics and chemistry? Many of the important theoretical results of Computer Science, such as the

5.

----- -« CRP R ‘e "y,
» o .

N

. o .
LSRR

et a LR Tt ]
et 4, et e e

NN e e,

Pt te tat At et et ittt e ety e N ey
D DL R A A A o
X RS . a0 .

v ———
I O S e St st S e

------




L P AN O At el e

~

computability and uncomputability results, are based on idealised models of computation such as the Tur-
ing machine [1] and the lambda calculus [16]. The applicability of these theoretical results to real com-
puters depends on the extent to which these idealised models are accurate descriptions of real computers.

We can state this hypothesis’ more formally:

The Computer = Turing Machine Hypothesss

The Turing machine is a good model of real computers.

The statement of this hypothesis is intentionally vague, since research is required to determine its limita-
tions and the extent of its applicability. That is, we want to know to what degree and in what ways the
Turing machine is & good model of real computers. Since many of the theoretical results of Computer Sci-
ence are based on the Turing machine model, much of the applicability of ‘thi: theory to practical prob-
lems depends on the truth and limitations of the sbove hypothesis. Thus. the investigation and validation

of this hypothesis should be an important problem for the computer scientist.

How can we confirm or refute this hypothesis? At first inspection it would seem that this hypothesis
could not possibly be true. The Turing machine is defined to have a finite but unbounded (i.e., poten-
tially infinite)} memory — something possessed by no real computer. However, we can consider the
unboundedness of the Turing machine’s memory to be an idealisation (i.e., approximation) of the large
memory capacity of real computers. It is analogous to the physicist’s use in analysis of an infinitely long,
infinitely thin wire, or the chemist’s use of an infinitely divisible gas. The question is, Is this a good
approximation? One way to answer this question (proceeding hypothetico-deductively {3,4,5,8]) is to con-
s.ider various predictions made by the Turing machine model, and to ask whether they are true of real

computers.

One of the most important predictions of the Turing machine model is the Halting Theorem (1], which
we now explain. The Halting Problem for a particular Turing machine and a particular input tape is the
problem of deciding whether that Turing machine halts (i.e., produces an answer) when given that tape as

input. A decision procedure for the Halting Problem is a Turing machine that will decide the Halting

2. Thie bypothesis is related to Church's Thesis (really, Hypothesis) (18], which etates that Turing computabllity is & good model
of effective computability

LN e T e LI




..................

Problem for any given Turing machine/input tape pair. The Halting Theorem states that there is no deci-
. sion procedure for the Halting Problem. That is, there is no Turing machine that will decide, for an arbi-
trarily given Turing machine and input tape, whether the given Turing machine will halt when run on the
given input tape. This result has considerable practical importance when applied to real computers, for it
says that we can never write a program that will decide whether another given program will produce an
output when run on a given input. An extension of the theorem says that most interesting properties of

programs are algorithmically undecidable.

The proof of the Halting Theorem proceeds in much the same way as Godel’s proof [17] of his famous
incompleteness theorem: we assume the decision procedure exists and use it to construct a paradoxical
self-referential Turing machine, which leads to a contradiction {2]. The contradiction forces us to reject
our assumption of the existence of a decision procedure for the Halting Problem. Indeed, the same tech-
‘nique works to show the nonexistence of a decision proce'dure for most any .property. of ‘c'v.mrut. of Turing
machines. Thus, the applicability of the Turing machine model is a crucial question. The nonexistence of

these decision procedures are analogous in importance to the physical results that assert the nonexistence

of perpetual motion machines.

There are several methods for validating empirically a hypothesis that asserts nonexistence. One
method is to conduct a scientific search {18] for the thing in question, in this case, a decision procedure for
the Halting Problem. Such searches, which are common in scientific investigation, are effective to the
extent that we can enumerate the possible ‘‘places’” where the sought object could be found, and then

explore those ‘“‘places.” Since every computer scientist ‘“knows’ that a decision procedure for the Halting

.

P L

LI R
Vs

LA [ o
IO WP VCPLLN

Problem is impossible, few have ever looked for one. Thus this approach to validation of the Turing

machine model has not been seriously pursued. It would probably not be very fruitful, anyway, due to

the large, irregular, multidimensional space that would have to be searched.

Another method for validating a nonexistence hypothesis is to show that the existence of the thing in

e

question would contradict other empirically validated hypotheses. That is, we can show that either we

must accept the nonexistence of the thing in question, or we must give up other (presumably more

strongly held) beliefs. That is, we accept the nonexistence result because to deny it would require us to

.';‘.'_w
-7- Sy
...................................

................
---------------
P

-----------




@ 8.

Vo oeeanle

‘s "0t %o’ %

DL AN AR
(R I LA

0

AR

“NONCN AR

L
L4
4
»

-":

.-
-.'

reject other hypotheses, and in turn find new explanations for the evidence by which those other
hypotheses had been validated. This, of course, is a common process in science. It seems a more promis-
ing approach to validating the Halting Theorem. Our problem is to show that the existence of a decision

procedure would contradict other known laws.

One of the most obvious respects in which the Turing machine model differs from real computers is
that the Turing machine has & potentially infinite memory, whereas real computers don’t. Is this a signi-
ficant difference? We can find out in exactly the same way a natural scientist would: alter the property
in question, i.e., apply Mill's Method of Differences [15]. In this case the property we are altering is the
finiteness of the Turing machine’s memory. We can then ask whether properties of interest, such as the
Halting Theorem, still hold under the conditions of a very large but finite memory. If they do, then we
have justified our use of the Turing machine approximation of real computers. However, if these proper-
ties are semsitive to this alteration of the property, then we must ;:onlider t.he. possibility that the Tur;ng

machine model neglects significant characteristics of real computers.

Hence we will formulate & bounded memory version of the Halting Problem. Consider the class of all
program-input pairs for some particular computer with a finite, bounded memory. Since both the pro-
gram and its input must fit in this bounded computer, the sise of these program-input pairs is bounded.
Hence, since the program-input pairs are expressed in a finite, bounded alphabet (usually ‘0’ and ‘1’), the
number of program-input pairs is a fixed, finite number; call it N. We are seeking a program H for a
bounded computer that will decide the Halting Problem for each of these program-input pairs. That is,
for each such program-input pair, H will decide whether that program will halt when given that input.
Since H runs on a finite, bounded computer, it has a finite, bounded amount of memory available for its

computations. Does such an H exist?

The answer is clearly “yes”: an N-entry table can be used to decide the Halting Problem by looking
up a given program-input pair. For each program-input pair we have a one-bit entry in the table, the bit
indicating that that pair does or doesn’t halt. In addition we have a small fixed number P of bits con-

taining the program to do the lookup. Hence the sise of H is N + P bits.

This solution to the Halting Problem for finite, bounded computers is not practical, as we can see by

........

AT e o e T e T T e e

A

.....
Mt

.......



LA AT AT TRT T e T TR TR T TS T e T T,

considering the sise of H. Suppose our program-input psirs are all bounded by L (i.c., are at most L

. bits long). Then the number of these pairs is:
) N = 2t +2l=142b-0, oo 42 s 2d = gbvig
S
" The program H requires N bits in its table. Hence, the sise of H is an exponential function of the max-
'i imum sise of the program-input pairs that it decides. For example, to decide the program-input pairs
il
& that would fit in a 16 kilobyte = 10® bit personal computer would take a table of sise
‘ 200 = joichers x5 yq8 by
: This is more than the estimated number of particles in the universe. Hence, the solution of the Halting
X3
-. Problem by this method is impossible for even relatively small programs.
N This leads to an obvious question: Is there a more efficient decision procedure for the finite, bounded
) . _ . o
:.;: Halting Problem? Thus we must seek lower bounds on the size of the decision procedure. It is easy to see
::' that a lower bound on the length of the decision procedure must be close to L. For, if the length of H is
: even & little less that L, then we can write a program Q shorter than L that “‘halts if and only if it
<
o doesn’t halt” (in the same way that this is done in Godel’s and Turing’s proofs) {2|. Since this is & con-
'~
= tradiction, we must conclude either:
:;: 1. The computer Iacks the necessary instructions to build @ from H; or
: 2. The program Q is longer than L, and hence won’t fit in the computer for which we have a decision
2 procedure.
: Now we appeal to observation: all real computers® have the instructions necessary to build Q from H
E:: (they are very simple). Hence, (1) is empirically refuted. Therefore we must conclude (2): the length of
7 : Q is greater than L. But, it can also be shown empirically that Q is just a little longer that H, so we
: . can conclude that a lower bound on the length of H is a number nearly as big as L. That is, H is almost
M too big to fit on the computer in question. Thus we have two (very loose) bounds on the sise of the deci-
MY
e sion procedure. They can probably be tightened, but we do not know if this has been done.
": 3. As is often the case when we formalise previously informal concepts, there is an apparent circularity is the defisition of the
:{' concept. In this case, we would not call a device a computer If it did not contain the requisite instructions.

.

AW




p—p— . RS S Ay

- Boyle's Laws do sot apply to “very small” volumes of gases; statistical mechanics does not apply to “small” aumbers of
., pearticles.

.
1]
N
%
B What do these resuits say about the empirical validity of the Halting Theorem? We have found the
following results by combining theoretical analysis with observation:
y
:; e Certain finite, bounded computers can decide the Halting Problem for other finite, bounded computers.
<
5 :
! e If the decision procedure can fit in the object computer at all, then it occupies most of the object
computer’s memory.
I Tighter bounds on the sise of the decision procedure probably exist, but we are not aware of them. In
. any case, they are not relevant to our purposes here, since we are concerned with the method, not the par-
-' ticular results. Thus we consider the conclusions we would draw in each of two circumstances:
<
.« 1. Suppose it were found that the lower bound on the size of H is close to an exponential function of L .
- That is, it takes a very large computer to decide the Halting Problem for a much smaller computer.
. In this case we. would be justified in saying that the Turing machine model is a good approxima-
o tion to real computers (at least with regard to the Halting Theorem). This is because, although the
< Halting Problem is decidable in a nonempirical sense, it is not decidable in fact, that is, in the real
- world. More precisely, it is not decidable for any but the smallest computers*.
,,
o 2. Suppose it were found that to solve the Halting Problem for a given object computer it takes a com-
- puter of comparable sise to the object computer. For example, & sise 2L computer might be ade- 1
s -3
quate to solve the Halting Problem for a sise L computer. :
= RO
] In this case, since the Halting Problem can be solved with an only moderately larger computer, ——
the Turing machine model will have been called into question. This reason is that the Turing e
-' machine model ignores the very characteristic of real computers that is relevant — their finite
. ]
memory. —_—
s el
:: In either case ousr empirical investigation has had two important benefits: (1) It has given us more confi- :
_: dence in the applicability of our theory to the real world. (2) It has given us greater insights into the rea-
sons that an important result (i.e., the Halting Theorem) holds. AR
o) 4. The reader might question the usefulness and precision of & model of computers that doesn’t apply to “small” computers. How i
% big does & computer have to be for the model to apply? This situation is not ususual in science. For example, Charles's and

) -10-
CteLe e e T e et
e "#\f"‘ ‘.l .'.-’-.’.'.A‘.I

B T S P T VL A S I U )
..d‘_.-_'..f.‘f,.-'_. _.u’..-'\ PR




AU T ATHEVIER. T . S O PN v R I N AL o SO RE iy Sariirs e s A A _._._.,‘z_-?,-r_'.-_::,:;r:j

N
4 S
X DR
bt ‘.. ‘ . ‘e
. 7. Cenclusions

————ey

: Although Computer Science has a rich and well developed theory, there have been few attempts to show AT

¢
RN

empirically that this theory applies to real computers and real programs. To this lack can perhaps be

Tt

ALUPAPALEE Aot
-

attributed the gap that separates Computer Science Theory from Computer Science practice.

) We have attempted to show how empirical methods can be used to validate both specific laws {e.g., ,.‘i‘:.

4 the performance of a particular algorithm) and general theories (e.g., Turing machine theory). As in the ‘_::;j
] other sciences, s primary method is the testing of predictions by actual measurements. A more important X
', method, at least at this stage of the development of Computer Science, is conceptual validation, that is, 3
;: the validation of scientific formalisations (explications) of informal ideas [19,20]. To illustrate this we ‘

N have investigated the validation of Turing machines as formal models of real computers. We have shown

-. that observations can be used to confirm or refute this model.

) . '. . '

.‘: We hope that wider practice of this approach will make moot the question of whether Computer Sci-

i ence is a science.

::: 8. Acknowledgements

: The work reported herein was supported by the Office of Naval Research under contract number N0OOO14-

& 84-WR-24087.

9. References ..'

{1] Turing, Alan M., On computable numbers, with an application to the Entscheidungsproblem. ST
% .

- Proc. London Math. Soc. 1936-7, Ser. 2, Vol. 42, pp. 280-265; 1987, Ser. 2, Vol. 43, pp. 544-546.

0

g)

4 {2] MacLennan, Bruce J., A Computer Science Version of Godel's Theorem. Naval Postgraduate

i: School Computer Science Department Technical Report NPS52-83-010 (1983). :'i'.-‘:‘_'
d s :
) '8| Braithwaite, R. B., Seientific Explanation. Cambridge Univ. Press, Cambridge (1953). =
3 4] Duhem, Pierre, The Aim and Structure of Physical Theory. trans. P. P. Wiener, Princeton (1954). ——
i8] Hempel, Carl G. and Oppenheim, Psaul, Studies in the logic of explanation. PAsl. of Seience. 1948,

o Vol. 18, pp. 185-178; also in [18].

1 -1 e
N I N N N A A I N AN A N I RN N e NN e SN RN




PR AN A,

W RN AN 5

e 8 d s 2 A a®

Yo aas sl

LA

i8]

(9}

(10]

(1]

(12}

(18]

(14]

(18]

[16]

(17]

(18]

19]

AT Al te i et e tetea e Yt

Hempel, Carl G. Aspects of Scientific Ezplanation. The Free Press, New York (1965).
Popper, Karl R., Conjectures and Refutations. Harper & Row, New York (1963).
Popper, Karl R., The Logic of Scientifie Discovery. Harper & Row, New York (1968).

Amarel, S., Computer science. Encye. Computer Science (1** ed.). ed. by A. Ralston and C. L.

Meek, Petrocelli/Charter, New York (1976}, p. 316.

Hempel, Carl G., A logical appraisal of operationism. The Validation of Scientific Theories. ed. by

Philipp G. Frank, Beacon Press, Boston (1956).

Margensu, Henry, Interpretations and misinterpretations in operationalism. The Validation of

Scientific Theories. ed. by Philipp G. Frank, Beacon Press, Boston (1956).
Bridgman, Percy W., The Logic of Modern Physics (2™ ed.). New York (1948).

Pearson, Karl, The Grammar of Seience. Walter Scott, London; and Charles Scribner’s Sons, New

York (1892).

Lakatos, Imre, The problem of appraising scientific theories: three approaches. in Imre Lakatos:
Methematics, Seience and Epistemology. ed. by J. Worrall and G. Currie, Cambridge Univ. Press,

Cambridge (1978).

Mill, John S., A System of Logic, Ratiocinative end Inductive, being a connected view of the prines-
ples of evidence and the methods of seientific investigation (8" ed.). Longmans, Green, and Co.,

London (1848).

Church, Alonso, An unsolvable problem of elementary number theory. Amer. J. Math. 1938, Vol

$8, pp. 345-368.

Godel, Kurt, On formally undecidable propositions of Principia Mathematica and related systems L.

trans. E. Mendelson, in Martin Davis: The Undecidable. Raven Press, Hewlett, New York (1965).
Wilson, E. Bright, Jr., An Introduction to Seientific Research. McGraw-Hill, New York (1957).

MacLennan, Bruce J., A Commentary on Mill's Logic Book I: Of Names and Propositions. Naval

Postgraduate School Computer Science Department Technical Report NPS52-83-013 (1988).

.................................

e
e
e




‘.

{20] Carnap, Rudolf, Logica! Foundations of Probability (2nd ed.}. Univ. of Chicago Press, Chicago
(1962), pp. 1-18.

...... 4 . I ! . u-u --I W.. .- .v. h‘~ ,

v 8e e ang.BO g




3 14

3

:

3 INITIAL DISTRIBUTION LIST
&

2

Defense Technical Information Center

3 Cameron Station
o Alexandria, VA 22314
Dudley Knox Library
5 Code 0142
A Naval Postgraduate School
- Honterey, CA 93943
"
Office of Research Administration
5 Code 012A
3 Naval Postgraduate School
Monterey, CA 93943
Chairman, Code 52M1
- Department of Computer Science
= . T Naval Postgraduate School -
% Monterey, CA 93943
N
b Dr. Robert Grafton ERARS
Code 433 S
3 Office of Naval Research R
X 800 N. Quincy et
X Arlington, VA 22217 T
. L
Mr. Randolph Simpson 1 )
Office of Naval Research '{Hﬂj
800 N. Quincy Sy
Arlington, VA 22217 e
Y. Or. Ed. Wegman 1 e
N Office of Naval Research T
s 800 N. Quincy "‘}1
N Arlington, VA 22217 ﬁ:
‘ N
A
: R
o AN '1
1 R
33::
M .:’:‘..::
: RN
Y] RN
§ L
¥ e e e e e - \.
e e N N N N NN S T e N L N e o




VAR WP RN

A AR

a Q
; | o0 —
Z = 1 =
wi ™

)

-

e

e ety .

Nag e Pae Y all .

cds NRIRNIN  SARAAS NOWOSD ATOGOEN ) GoNvEds DORRK 000N - DN AITR - NNAXNID - | RDRBICR ~ B

£



