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On The Validation of Computer Science Theories

B. I. MacLennan
Computer Science Dlepartment

Naval Postgraduate School
Monterey, CA 93943

Abstract:

We address normatively the demarcation problem for Computer Science: How can Computer Science
research be conducted scientifically? First we attempt to delimit the subject matter of Computer Science,
and conclude that it is not computers but programs. Since programs are not physical objects, it is diffi-
cult to see how they can be studied empirically. The rest of the paper is devoted to an explanation of
how this can be done. This method is first illustrated by a hypothesis of narrow scope, analogous to a
physical law. Next it is illustrated by a theory of wide scope -the Turing Machine model of computers.
The approach is summarised in the conclusions.

I. Summary

We claim that the most important theories underlying Computer Science have never been empirically

verified. As an example we consider Turing Machine Theory 11].

It is well known that Turing Machines are used as models of real computers, and that theoretical

results about Turing Machines, such as the impossibility of a decision procedure for the Halting Problem

*11,21, are considered valid as assertions about real computers. However, we know that Turing Machines

*differ from real computers in several significant ways. For example, Turing Machines have a potentially

infinite (i.e., finite but unbounded) memory, whereas real computers have a finite, bounded memory.

*These differences do not, per se, mean that the Turing Machine is an inadequate model of real computers.

For example, the potentially infinite memory of the Turing Machine could be considered an idealization or

approximation of the large but finite memory of real computers. This leads us to ask a crucial question:

Is the Turing Machine an adequate model of real computers?

Since this question asks about the correspondence between an abstract mathematical model, the Tar-

ing Machine, and a real-world phenomenon, computers, it can be answered only by an empirical pro-

cedure. Our goal is to show how empirical techniques can be used to confirm or refute the Turing

* Machine model of computers. In the process we demonstrate the application of empirical techniques to

the validation of Computer Science theories in general.

The basic approach is an adaptation of the hypothetico- deductive method i3,4,5,61 commonly used in



the sciences. That is, we deduce predictions from the hypothesis in question, and then investigate

whether these predictions hold in fact. For example, a prediction made by Turing Machine Theory is the

impossibility of a decision procedure for the Halting Problem. Does this prediction hold in fact, that is,

for real computers?

There are several ways we can test this prediction. We might try to refute it by trying to find a deci-

sion procedure for the Halting Problem for real computers. Alternately, we might try to confirm it by

showing that the existence of such a decision procedure would contradict other empirically validated laws,

such as the conservation of mass-energy. In both caes the results of empirical investigation contribute to

the confirmation or refutation of the Turing Machine model of computers. In the paper we explore both

possibilities.

It is hoped that the systematic application of empirical techniques such as these will eliminate some of

the sterility characteristic of much of the theory of Computer Science.

2. Introduetion

It has been observed that disciplines with the word 'science' in their names usualy aren't. This leads us

to pose the demarcation problem [7,81 for Computer Science: Is Computer Science a science? Or is it

something else, such as an art, engineering discipline, or pseudoscience? And further, if Computer Science

is a science, then what sort of science is it? Is it more like the natural sciences or the mathematical sci-

ences? Or perhaps the engineering sciences or the social sciences are a better model.

When we have answered these descriptive questions, what Computer Science is, we can turn to the

normative questions, what Computer Science should be. In particular, should Computer Science be a sci-

ence? Or should it be an art or engineering discipline? And if it should be a science, then should it be

patterned after physics, or mathematics, or linguistics; or should it follow a pattern all its own? . .

In this paper we attempt to answer some of these questions. In particular, we aim to show the role of

empirical methods in Computer Science. We do not claim any originality for the specific results presented

herein; they are used solely to illustrate the methodology. However, we do claim that this methodology is

distinctly different from that which is usual in Computer Science.

-2.
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S. Susbjet Matter at Computer Memo.

Contrary to its name, the subject matter of Computer Science is not computers, per se; that is more the

subject of Computer Engineering, a branch of Electrical Engineering. Computer Science is generally more

concerned with software (i.e., programs) than with hardware [91. That is, it is concerned with the logical

rather than the physical properties of computers.

It might be (and has been) contended that Computer Science is an engineering discipline [91. Cer-

tainly many computer scientists, especially in industry, are engaged in the production of

hardware/software systems that are intended to satisfy a need. To answer this objection it is useful to

distinguish an engineering discipline from a craft or art (in the r e Xvi, sense). Crafts and arts tend to be

based on informal, often intuitive, knowledge and experience, whereas engineering disciplines are based on

an underlying science. That is, an engineering discipline's knowledge is systematised, formalized, and

- often quantified. Its hypotheses have been more systematically validated. Of course, we rarely find a dis-

cipline that is purely craft or purely engineering - these are the extreme of a continuum, with most dis-

ciplines falling in between. Progress in a field is often measured by the distance moved from the craft

extremum towards the engineering extremum.

Thus, even if Computer Science were an engineering discipline (or even a craft), we would want to

seek for an underlying scientific discipline. What we address in this paper is an empirical approach to this

underlying science, that is, to the scientific study of software and of the the logical properties of hardware.

4. Demarcation

Is Computer Science a science? Our interest in the demarcation problem [7,81 for Computer Science is not
'..,

e"name calling;" rather, it is constructive. If Computer Science is not a science, we want to determine

how to make it one; if it is a science, we want to reinforce and extend its use of scientific method.

How can we determine if Computer Science is a science? First, we can ask whether its theories and

laws are scientific in form, that is empmre Ugse/ dsteble. There are many criteria for deciding this, such

S as empirical content, operational definability 110,11,121, verifiability 1131 and falsifiability 17,8,141.

Second, we can ask whether the theories and laws of Computer Science have in fact been empirically vali-

.S "



dated. We will attempt to answer these questions by investigating several theories and laws of Computer

Science.

What would constitute a theory of Computer Science? When people talk about Computer Science

theories they usually mean computability theory, formal language theory, automata theory, complexity

theory, formal logic and proof theory, parsing theory, programming language semantics, numerical

analysis, etc. Since these can all be considered methematical theories, we are led to a common view: that

Computer Science is a branch of mathematics [9]. The result of this view has been that the standard of -

validation for these theories hu generally been that of mathematics, vit. deductive consistency. How.

ever, if we wish to use computer science as a foundation for software engineering, then this standard will

not do. For this purpose we need to know that these theories apply to real computers and real software,

that their assertions correspond to reality. Thus, the mathematical validity of these theories is not suffi-

cient; we must also consider their empirical validity.

Have any Computer Science theories been validated empirically? Unfortunately, we have to answer in

the negative. Of course, many of them have been validated informally, in the sense that practical systems

based on them work. However, to the best of our knowledge, no one has actually attempted a systematic

empirical validation of any of these theories'. In many cases this validation would not be too difficult,

since the empirical data are already available. What is required is a demonstration of how these data

confirm or refute the theories. In the following sections we outline two of these demonstrations.

6. Impieal Validatlem of Computer Selmee Hypotheses"

As an introduction to the empirical approach we consider the validation of a very specific hypothesis, a

hypothesis that corresponds in scope to a physical law. Suppose our hypothesis is that a particular kind

of sorting algorithm takes n logs time (where a is the number of items to be sorted). How can we vali-

data this hypothesis?

A hypothesis of this sort is based on many approximations and idealisations which are conventionally 0

assumed to be true. This hypothesis, and the assumptions on which it is based, can be tested by an

i. soe of these theois have come cheer to empirical vadldation tham otbets. Fore exampe, who a pa nicular aumenrical
aelgrths behmves p pdited, It idirctly vaidlate the sumerical analysi upon which Its based.

.4-
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experiment analogous to those performed by physical scientists. We will implement the algorithm and

measure the time it takes to execute, white varying the conditions we believe to be relevant (essentially

applying Mill's Method of Concomitant Variations [151). In this cue some of the potentially relevant con-

ditions are:

*The number of items to be sorted (to determine the fixed overhead of the algorithm);

*The initial ordering of the items (to determine the sensitivity to the initial order, and form a basis for

statistical analysis);

*The computer and/or programming language used for implementing the algorithm (to ensure that

these aren't relevant factors as a result of, e.g., fixed overhead, special optimisations, memory colli-

sions).

*.approach has sevtraj benefits.. First, it serves to validate the hypothesis. Second, :it simultaneously

helps to validate the assumptions upon which the analysis was based. Third, it gives us guidance in the

practical application of these analytical techniques.

Computer Science hypotheses of this kind are sometimes validated in precisely this manner. However,

more commonly computer scientists fall into one of two categories: practitioners, who make measurements

without any underlying theory, and theoreticians, who don't test their theoretical analyses, because they

have proved them mathematically. On one hand, the practitioners fail to develop useful laws and theories

that would help them to predict the performance of future software. On the other hand, the theoreticians

ignore at least two ways in which they could be wrong: (1) they might have made a mistake in their

* mathematical analysis; (2) their analysis might not be applicable, that is, they might have ignored what

was not negligible. As in the other sciences, experimentation guided by theory seems the more reliable

method.

6. Zuspirical Valkdatieu of Turing Macbine Theory

The performance of a particular algorithm, such as a sorting algorithm, is a very narrow kind of

hypothesis. Are there Computer Science hypotheses of wider scope, comparable to the laws and theories

of physics and chemistry? Many of the important theoretical results of Computer Science, such asthe
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computability and uncomputability results, are bsed on idealised models of computation such as the Tur-

in@ machine [11 and the lambda calculus 1161. The applicability of these theoretical results to real com.

puters depends on the extent to which these idealised models are accurate descriptions of real computers.

We can state this hypothesis' more formally:

The Computer - Turing Machine Hypothesis

The Turing machine is a good model of real computers.

The statement of this hypothesis is intentionally vague, since research is required to determine its limita-

tions and the extent of its applicability. That is, we want to know to what degree and in what ways the

Turing machine is a good model of real computers. Since many of the theoretical results of Computer Sci-

ence are based on the Turing machine model, much of the applicability of this theory to practical prob-

lems depends on the truth and limitations of the above hypothesis. Thus. the'investigation and validation

of this hypothesis should be an important problem for the computer scientist.

How can we confirm or refute this hypothesis? At first inspection it would seem that this hypothesis

could not possibly be true. The Turing machine is defined to have a finite but unbounded (i.e., poten-

tially infinite) memory - something possessed by no real computer. However, we can consider the

unboundedness of the Turing machine's memory to be an idealization (i.e., approximation) of the large

memory capacity of real computers. It is analogous to the physicist's use in analysis of an infinitely long,

infinitely thin wire, or the chemist's use of an infinitely divisible gas. The question is, Is this a good

approximation? One way to answer this question (proceeding hypothetico-deductively 13,4,5,61) is to con-

sider various predictions made by the Turing machine model, and to ask whether they are true of real

computers.

One of the most important predictions of the Turing machine model is the Halting Theorem III, which

we now explain. The Halting Problem for a particular Turing machine and a particular input tape is the

problem of deciding whether that Turing machine halts (i.e., produces an answer) when given that tape as

input. A decision procedure for the Halting Problem is a Turing machine that will decide the Halting

2. This bypothesis Is related to Church's Thesis (raly, Hypothees) 116l, which states that Tuaring computability is a good model
of efsive cumposibity

__-___ -__ .___-'-
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Problem for any given Turing machine/input tape pair. The Hulting Theorem states that there is no deci-

sion procedure for the Halting Problem. That is, there is no Turing machine that will decide, for an arbi-

trarily given Turing machine and input tape, whether the given Turing machine will halt when run on the

given input tape. This result has considerable practical importance when applied to real computers, for it

says that we can never write a program that will decide whether another given program will produce an

output when run on a given input. An extension of the theorem says that most interesting properties of

programs we algorithmically undecidable.

The proof of the Halting Theorem proceeds in much the same way as G~del's proof [171 of his famous

incompleteness theorem: we anume the decision procedure exists and use it to construct a paradoxical

self-referential Turing machine, which leads to a contradiction J21. The contradiction forces us to reject

our assumption of the existence of a decision procedure for the Halting Problem. Indeed, the same tech-

nique works to show the nonexistence of a decision procedure for most any property of interest of Turing

*_ machines. Thus, the applicability of the Turing machine model is a crucial question. The nonexistence of

these decision procedures are analogous in importance to the physical results that assert the nonexistence

of perpetual motion machines.

There are several methods for validating empirically a hypothesis that asserts nonexistence. One

method is to conduct a scientific search 1181 for the thing in question, in this case, a decision procedure for

the Halting Problem. Such searches, which are common in scientific investigation, are effective to the

extent that we can enumerate the possible "places" where the sought object could be found, and then

explore those "places." Since every computer scientist "knows" that a decision procedure for the Halting

Problem is imposible, few have ever looked for one. Thus this approach to validation of the Turing

machine model has not been seriously pursued. It would probably not be very fruitful, anyway, due to

the large, irregular, multidimensional space that would have to be searched.

Another method for validating a nonexistence hypothesis is to show that the existence of the thing in

question would contradict other empirically validated hypotheses. That is, we can show that either we

must accept the nonexistence of the thing in question, or we must give up other (presumably more .'.-

strongly held) beliefs. That is, we accept the nonexistence result because to deny it would require us to

.7-..



reject other hypotheses, and in turn find new explanations for the evidence by which those other

hypotheses had been validated. This, of course, is a common process in science. It seems a more promis-

ing approach to validating the Halting Theorem. Our problem is to show that the existence of a decision

procedure would contradict other known laws.

One of the most obvious respects in which the Turing machine model differs from real computers is

that the Turing machine has a potentially infinite memory, whereas real computers don't. Is this a signi-

ficant difference? We can find out in exactly the same way a natural scientist would: alter the property

in question, i.e., apply Mill's Method of Differences 1151. In this case the property we are altering is the

* finiteness of the Turing machine's memory. We can then ask whether properties of interest, such as the

* Halting Theorem, still hold under the conditions of a very large but finite memory. If they do, then we

have justified our use of the Turing machine approximation of real computers. However, if these proper-

* ties are sensitive to this alteration of the property, then we must consider the possibility that the Turing

* machine model neglects significant characteristics of real computers.

* Hence we will formulate a bounded memory version of the Halting Problem. Consider the class of all

program-input pairs for some particular computer with a finite, bounded memory. Since both the pro-

gram and its input must fit in this bounded computer, the sise of these program-input pairs is bounded.

- Hence, since the program-input pairs are expressed in a finite, bounded alphabet (usually V0 and '1'), the

number of program-input pairs is a fixed, finite number; call it N. We are seeking a program H for a

bounded computer that will decide the Halting Problem for each of these program-input pairs. That is,

for each such program-input pair, H wil decide whether that program will halt when given that input.

Since H runs on a finite, bounded computer, it has a finite, bounded amount of memory available for its

* computations. Does such an H exist?

- The answer is clearly "yes": an N-entry table can be used to decide the Halting Problem by looking

up a given program-input pair. For each program-input pair we have a one-bit entry in the table, the bit

indicating that that pair does or doesn't halt. In addition we have a small fixed number P of bits con-

taining the program to do the lookup. Hence the sise of H is N + P bits.

This solution to the Halting Problem for finite, bounded computers is not practical, as we can see by
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considering the site of H. Suppose our program-input pairs are all bounded by L (i.e., are at most L

bits long). Then the number of these pairs is:

.3 N 2L + 2L-+ 2 L-+ ... +21+2 0  2 *1- t

The program H requires N bits in its table. Hence, the sise of H is an exponential function of the max-

imum size of the program-input pairs that it decides. For example, to decide the program-input pairs

that would fit in a 16 kilobyte s 10 bit personal computer would take a table of sise

20o) : 1010'ons 3 10Oam bits

* This is more than the estimated number of particles in the universe. Hence, the solution of the Halting

Problem bi tis method is impossible for even relatively small programs.

This leads to an obvious question: Is there a more efficient decision procedure for the finite, bounded

Halting Problem? Thus we must seek lower bounds on the size of the decision procedure. It is easy to see

that a lower bound on the length of the decision procedure must be clnse to L. For, if the length of H is

even a little less that L, then we can write a program Q shorter than L that "halts if and only if it

doesn't halt" (in the same way that this is done in Gidel's and Turing's proofs) 121. Since this is a con-

tradiction, we must conclude either:

1. The computer lacks the necessary instructions to build Q from H; or

2. The program Q is longer than L, and hence won't fit in the computer for which we have a decision

procedure.

Now we appeal to observation: all real computers' have the instructions necessary to build Q from H

(they are very simple). Hence, (1) is empirically refuted. Therefore we must conclude (2): the length of

Q is greater than L. But, it can also be shown empirically that Q is just a little longer that H, so we

can conclude that a lower bound on the length of H is a number nearly as big as L. That is, H is almost

too big to fit on the computer in question. Thus we have two (very loose) bounds on the size of the deci-

sion procedure. They can probably be tightened, but we do not know if this has been done.

3. As is often the cas when we formalls previously Informal concepts, there Is an apparent circularity in the definition of the
concept. in this cae,. we would not call a device a computer If It did not contain the requisite instruction.

%'.9.



What do these eults say about the empirical validity of the Halting Theorem? We have found the

following results by combining theoretical analysis with observation:

* Certain finite, bounded computers can decide the Halting Problem for other finite, bounded computers.

* If the decision procedure can fit in the object computer at all, then it occupies most of the object

computer's memory.

Tighter bounds on the size of the decision procedure probably exist, but we are not aware of them. In

any case, they are not relevant to our purposes here, since we are concerned with the method, not the par.

ticular results. Thus we consider the conclusions we would draw in each of two circumstances:

1. Suppose it were found that the lower bound on the sise of H is close to an exponential function of L.

That is, it takes a very large computer to decide the Halting Problem for a much smaller computer.

In this case we would be justified in saying that the Turing machine model is a good approxima-

tion to real computers (at least with regard to the Halting Theorem). This is because, although the

Halting Problem is decidable in a nonempirical sense, it is not decidable in fact, that is, in the real

world. More precisely, it is not decidable for any but the smallest computers4 .

2. Suppose it were found that to solve the Halting Problem for a given object computer it takes a com-

puter of comparable sise to the object computer. For example, a size 2L computer might be ade-

quate to solve the Halting Problem for a mse L computer.

In this cme, since the Halting Problem can be solved with an only moderately larger computer.

the Turing machine model will have been called into question. This reason is that the Turing

machine model ignores the very characteristic of real computers that is relevant - their finite

memory.

In either cae ouw empirical investigation has had two important benefits: (1) It has given us more confi-

dence in the applicability of our theory to the real world. (2) It has given us greater insights into the rea-

sons that an important result (i.e., the Halting Theorem) holds.

4. The rader might questios the useefutlases ad precision of a model of computers that doesn't apply to "small" computers. How
big doe a computer have to be for the model to apply? This situation is not unuOual in science. For example, Charles's and
Sise' Laws do am asly to "very email" volumes of gasm; statistical mechanics does not apply to "small" numbers of

*-pa---les
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' Although Computer Science has a rich and well developed theory, there have been few attempts to show

empirically that this theory applies to real computers and real programs. To this lack can perhaps be

attributed the gap that separates Computer Science Theory from Computer Science practice.

We have attempted to show how empirical methods can be used to validate both specific laws (e.g.,

the performance of a particular algorithm) and general theories (e.g., Turing machine theory). As in the

other sciences, a primary method is the testing of predictions by actual measurements. A more important

method, at least at this stage of the development of Computer Science, is conceptual validation, that is,

the validation of scientific formalisations (explications) of informal ideas [19,201. To illustrate this we

have investigated the validation of Turing machines as formal models of real computers. We have shown

that observations can be used to confirm or refute this model.

We hope that wider practice of this approach will make moot the question of whether Computer Sci-

ence is a science.
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