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A LINEARIZED PARTICLE CODE

I. INTRODUCTION

Self-pinched relativistic electron beams propagating in resistive plasma

are subject to the resistive hose instability, essentially a growing snakelike

oscillation which is often observed to destroy the integrity of the beam.1

For this instability, the linear regime (small instability amplitude) is of

particular interest, because the mode grows convectively backward in the beam,

and therefore it is possible within the linear regime for the instability

amplitude at any given location in the beam to reach a maximum level and then

decay.

A variety of analytic techniques have been used to study the linearized

hose instability, 2-7 but these approaches have not been able to treat an

essential feature of the problem, namely that self-pinched beams generally are

not in time-independent equilibrium. The very front of the beam head is

always unpinched and therefore continuously erodes away; also the beam radius

increases steadily due to scattering off gas molecules, and the particle4

energy decreases and spreads due to various loss mechanisms. Even the radial

profile of the beam density may change with time and from place to place in

the beam.

Two approximate numerical models have also been developed previously to

simulate the space-time evolution of the linearized resistive hose

instability.8'7 In these treatments, the actual particle dynamics is replaced

by simplified macroscopic models, which are carefully chosen to preserve a key

feature of the dynamics, the spread in betatron oscillation frequency among

the electrons following various oscillation orbits in the pinched beam. (If

this feature wre absent from the model, the hose instability would

Manuscript approved September 21, 1984.
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erroneously become absolute rather than convective. 4] The macroscopic models

are capable of treating time-dependent equilibria, but they are limited to

cases where the equilibrium beam density profile nb(r,z,t) has the self-

similar form nb[r/a(z,t)], and furthermore the accuracy of the models has been

demonstrated only for cases where this profile has the Bennett form, nh b

[l+r 2/a2(z,t)] -2 . However, the actual radial density profile of a self-

pinched beam may be hollow, or may have wings of significant amplitude at

large radius, or may (on the other hand) be cut-off sharply at some radius, or

may vary greatly in shape from place to place in the beam. These types of

details of the equilibrium, which cannot be represented in any of the existing

models, can strongly affect the growth of the hose mode.

The technique generally used to study instabilities in temporally and

spatially varying situations is particle simulation, but in practice a

A' standard unlinearized simulation using any reasonable number of simulation

particles (e.g. 106 or even more) would have a noise level large enough to

•' mask or misrepresent the instability in the linear regime. To overcome these

problems and to provide a very general treatment of the resistive hose, we

have developed a linearized particle simulation code, which successfully

determines both growth rates and saturation amplitudes during the small-

amplitude stage of the instability.9  The techniques used, which build upon

* the earlier work of Friedman, Denavit and Sudan, I0 may also be applicable to

other instabilities which grow out of complicated or time-varying equilibria.

The code, SITMM1, treats the zero-order axisymmetric beam dynamics (m - 0,

" ime• where the azimuthal dependence is Fourier analyzed into e dependence) as a

group of axisymmetric macroparticle rings. This portion of the code is named

SLM and has been discussed in a previous publication. 12  The m - I particle

*. dynamics associated with the hose perturbations is represented by linearized

. . %
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displacements of these rings from the beam axis and by m - 1 bunching of the

",'4 charge density around the ring.

A large number of these rings are followed in time as they interact with

. each other and with the background gas. The beam is assumed to be highly

relativistic so that quantities of the order of y 2 1-v 2/c 2 are neglected.

The paraxial approximation is also made, i.e., the axial velocities of the

particles are taken to be c, and the perpendicular velocities are assumed to

.%* be small. The dynamics of the particles' motions are determined from

solutions of Maxwell's equations. A simplified form of Maxwell's equations is

appropriate to highly relativistic, paraxial beams.11 The equations are

5. presented in Appendix A. The beam travels through a gas which is assumed to

be highly collisional and so dense that its mass motions can be neglected on

the beam time scale. The beam partially ionizes the gas which, in turn,

provides charge neutralization and allows the beam to self-pinch in its own

magnetic field. The gas is modeled as a stationary conducting medium with a

local scalar conductivity which is determined by the processes of beam-impact

ionization, avalanche ionization (when there are large beam-generated electric

fields), and recombination. Conductivity physics can be modeled at various

levels of sophistication. The model used in SIMMI is discussed in Appendix

A. The code, then, consists of axisymmetric dynamics, linearized m = 1,

. dynamics, electromagnetic field generation, and interactions with the

background gas.

The linearization procedure presents difficulties which must be dealt

with to determine the long-time behavior of the system. The zero-order

axisymmetric motion of the rings occurs under the influence of an anharmonic

central potential, so the period of their motion depends on the oscillation

amplitude. Within a linearized model, this effect leads to secular behavior

3
.
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of the m - I perturbations to the orbits. With a large enough number of

particles, the individual orbit secularities would average out to yield non-

secular macroscopic quantities, but to run a practical simulation some method

of suppresssing the long-time orbit secularities must be employed. We have

developed a method of coarse graining to deal with this problem.

" We will discuss the linearization process in section II; the problem of

secular behavior and its resolution by coarse graining in section III.

Details are given in Appendices A and B.
-.4

II. CODE STRUCTURE

SIM1 is greatly simplified by our approximation that all particles have

axial velocity c, so that no particle overtaking is permitted along the beam

axis. As a result, we can consider the beam to be made up of a series of

slices of particles stacked along the beam axis from its head to its tail.

The simulation can be thought of as a number of two-dimensional (r,0)

simulations, with information carried along the axis by the fields and

conductivity.

We use as our independent variables r,B,C - ct-z, and z where t is the

, time and ct is the position of the beam head in space. The coordinate C is a

measure of the distance along the axis from the beam head. In this set of

coordinates, z acts as a time-like variable with regard to beam dynamics,

while C is a constant of the motion for any particle.

A. Particle Dynamics

The beam particle dynamics is represented in terms of the motion of

particle rings under the m 0 and m - 1 forces. Each ring represents the set

of all particles with the same initial value of r,C, radial velocity, and

i 4



angular momentum. It is obvious that under the influence of an axisymmetric

force the m - 0 motion of this set of particles is such that it remains a

ring, with radius increasing or decreasing in time. To calculate the m - 0

dynamics of the ring, it is thus sufficient to follow the dynamics of any one

particle on the ring. It is more convenient to do this in Cartesian

coordinates in the r-6 plane; our method is described elsewhere.
1 1

To first order in treating the m - 1 perturbations, each particle can be

assigned a small time-dependent displacement from its equilibri, orbit in

the r-6 plane. Friedman, et al. 1 0 have shown that to first order the set of

particles forming any given ring still lie on a circular ring, but that the

center of the ring is displaced from the origin by a small vector quantity,

and that in addition the charge density around the ring is no longer uniform,i(e-e o)
but rather is (slightly) bunched as e . The linearized m - 1 dynamics

of all the particles in the ring is thus characterized by four time-dependent

quantities: the tw components of the displacement of the ring center, the

bunching axis 6, and the amplitude of the bunching. These four quantities

can be represented in various ways; the following scheme is one way of doing

this and of tying the dynamics of the whole ring to that of one reference

particle on it.

Figure 1 shows the equilibrium and perturbed positions of some ring. R

and P are two particles on the unperturbed ring, and R' and P' are the

perturbed positions of these particles. We represent the line segment

U' - Re(E(R)). The quantity +(R) is the perturbation of the ring at the

point R. In the same manner the line segment P (=(P)). Note that the

arc RP may not be the same length as the arc R'P', since the ring of charge is

bunched as well as displaced.

* 5%*%% WP4
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It can be shown that if we choose the relationship between C(R) and *(P)

-to be given by

C r (P) = C r(R)e

and
,"(P -CO(R)ei

where $ i the azimuthal separation of P and R, the motions of the

perturbations are consistent with the dynamics of the m 1 1 fields and that we

only need to follow the dynamics of the perturbation at a single reference

point R. The two complex quantities C r and c thus contain all the

information about the bunching and displacement of the ring.

Although we have chosen a complex representation of the perturbations,

physical quantities must be real. If we let

r + i i

_S. we can write

P' - Re(C(R)eI j

=(r cosO - r sino, e r cos - C i sino).

r r II i I r R )

We choose to identify Ir - r R e I er(R) and e () C (R).R)C-r r r r

Thus

T - (C IcosO + C Iisi no, c 6 ICO5o + C6I sin4b).
r r

7
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The particle dynamics are computed in Cartesian coordinates. In that

* .I I II I
coordinate system, we need to follow the four quantities Cx E I e£X' y, Ex iy

defined by

EIII . EIII cosa + EIII sina,
r x y

III .- ,II sina + III sine,2"" 8 x y

where a is the azimuthal coordinate of the reference particle R.

The electromagnetic field equations for the conditions of an ultra-

relativistic electron beam in a collisional gas were derived by Lee 12 and are

given in Appendix A along with a simplified conductivity equation which models

. direct ionization, avalanche ionization and recombination of the background

gas.

We consider only beam perturbations linearly polarized along the y

axis. For this case the linearized current density and conductivity are

J -Jo + j3 sine,
bz bz bz

!1
and a = a° + al sine.

The only nonzero electric and magnetic fields are

0 1
7 B 8  B +B 8 sine,

B B1 cos6,
r r

% .- - .*.. e .. .. 4, ..... _ .,,,,% .. .,.. %.. ... _ , . ..,, .. .,. ,, ,, . , X.
. .. .. . .. .. . .. . .. A i' A I , f



E = E0+ E Isin 6,z z z

E E0+ E 1sin6 ,r r r

E, = Elcose.6 a

4 * We use the notation introduced for the e's to write

3 JO +0 +Ji sine,
bz bz bz

a -ao + a Isine,

B6  B B0 + B61 sin6,

B = B cose 3r r

E =E0 + E sine,z z z

E = E0 + E1  sine,
r r r

E =6  El cose.

The equations of motion of the perturbations are then

* 9



qc dZ X) m E Er sina cosa - Ee cosa sina

-c BI sinci cosci - c B"l cosci sincir

+ (Ct Cos 2 a+ L'I cosm sinci) ( rE

x y 3

1cB 2 1I 2

+ (C1 sin a - e 1 cosci sina) (E /r c cor
x y r r

m0c d I i 2 1 2- - (y co E csa +E csna

" c BI si 2 B"I csi 2
r

1 2 rE
" (cx Co + cy c s sin a) ( r,

" (CH csi 2 a - CHcos sin) (E/r -c B/r
x yr

a.2

m c d.
-. (Y E10i E oq4.y
+ Ics2 cB"sia..r .0 *.a*~. a~a~.g4.y: .'.. . ~ a



and

2
o d *II) .Ei I '- - I) - E cosa sina- E cosa sina
qdz y r8

- c B sina cosa - c B. cos1 sina

0 B '
(C sinc- cosa + Csn sin a) 3B8

+ kC 1 Cosn 2 a - C cosa sina) (E0/r c 0-)y x B e/,

where C - -.

These four complicated equations form the basis of the perturbation

dynamics. Although the total beam perturbation is along the y axis, the

motion of any single ring is such that its center can lie at any point off the

axis. Only in adding all the ring positions together do we get the effects of

the simplified perturbation. Otherwise stated, a single ring has angular

momentum, so its motion does not in general have the same symmetry as the

driving fields; however (it is tacitly assumed) the distribution over angular

momentum is even, which restores the symmetry of the beam as a whole.

B. Current Density

In the paraxial approximation, the beam current density component J.

along the axis is proportional to the charge density and the components of

perpendicular to the axis are neglected. The charge density for a beam made

up of paint particles formed into rings can be written as

11
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(r,8 ) - qc 2z ~ F2w J rT$z0

where the sum is over the rings and the angle is the azimuthal angle of Fig.

1. The rk(0) represents the displacement of the ring from the axis and

0 k(,) represents charge bunching.

For a system of finite sized particles, the 6-function 6(r-rk(0)) is

replaced by a particle shape function Sr r-rk()J. Within the framework of

the linearization procedure, we can write

%0

rk( )rk +rk

-k + C e I/rk,

as
Srrrk(O) S(r - er e r (r-r0),

-ek "r

S(eOe(,) 6 (e-eo) - ek e /r 0 s-(e-8O).

The zeroth and first order current densities can be written

0 r) q kc S r-r )

I j el  i e Y _S.k r(r-rk)) eo ie '(0-ak)

J 2Irr r rk o
z. rk

qkc ar (r-r) e-

rk

Finally, we can write the current density as a real function consistent

with beam displacements in the y direction as

12



qJ Sr (r-r ) 0 [ sin,,k 4 C c+sek)COS,k

rk

+( xk siaK+yk co sn,)sinak]

q as CS
, I sink)sink

,.r 3r (- Ax cyk + k

rk
A +ek yosk]

,..::+ < cos"I + yk sin°ok)C°sck"

Since the perturbation current density contains derivatives of the

particle shape, a shape function with continuous derivatives is necessary. We

have chosen a quadratic particle interpolation scheme as suggested by

Friedman, et al.

III. COARSE GRAINING

Although formally we have derived a set of equations to describe the

motions of the perturbation quantities, the nature of the beam particle motion

results in the breakdown of the linearization procedure under some

circumstances. The perturbation of each individual particle ring grows

without bound even in the absence of m - 1 forces. To visualize this

behavior, we consider the simpler problem of motion of particles in a fixed

axisymmetric potential. (Since information only propagates backwards in a

beam moving at vz = c, this is equivalent to the problem of the motion of the

first perturbed slice of the beam, which is subject to axisymmetric fields

determined by the previous unperturbed beam slices.)

The motion of a beam particle in the plane perpendicular to the beam

axis, subject to an anharmonic potential well, is quite complicated. In

13
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4general, the particle will trace out an unclosed rosette orbit. The essential

feature, however, is that the radial oscillation period and the azimuthal

drift rate depend on the particle's angular momentum and the amplitude of the

orbit. Because of this dependence, two particles whose amplitudes are

p. initially infinitesimally different will separate in time until their

separation becomes comparable to the particles' amplitudes themselves. If we

think of the difference in the amplitudes as the perturbation quantity, we see

- that there is secular growth of the perturbation, which is proportional to

-. time as long as the perturbation remains small compared to the orbit

amplitude. We expect that for a bea slice subject only to an axisymmetric

"-S force, but initially displaced from the axis, phase mixing among particles of

different oscillation frequency will eventually return the slice to

axisymmetry. In an idealized simulation with an infinite number of particles,

this process could be well modeled for an indefinite time; the growing

- individual particle perturbations would average out when macroscopic

* quantities were calculated. However, in an actual simulation with N particles

*per slice, the noise level (for quantities like the mean displacement of a

slice) is of the order of LN / , where c is a typical perturbation amplitude

for an individual particle. Since e * t, the noise eventually comes to

dominate at a time t which scales as N1/2 Thus increasing N delays the

breakdown of the linearized model, but eventually the phase mixing process is

K overwhelmed by a growing noise signal. We illustrate this behavior by running

a simulation of a single slice in which the magnetic pinch force is calculated

1 from Amperes law for a fixed Bennett distribution of current, i.e.,

J 0(r)- Jo0(l+r2/a2) ,giving a force F(r) - - e2Jor(l+r2/a2)-1. The beam

profile initially is taken to be a similar Bennett profile displaced from the

axis. Figure 2 shows the time behavior of the beam centroid y, for two cases

14
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Fig. 2 Mean displacement of a beam slice in a fixed Bennett potential

as a function of propagation distance. The coarse graining

algorithm was not employed. Fig. 2a is a slice containing

1000 rings. Fig. 2b is a slice containing 10,000 rings.
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which differ only in the number N of simulation particles. As N increases,

the time that the simulation matches the correct physics (steadily decaying

oscillations of y) increases, but in all cases, the noise dominates the

simulation at late enough times.

Not all particle orbits exhibit secular behavior at the same rate. A

Bennett-like potential is nearly harmonic close to the beam axis. Particles

whose orbits lie in this region show very slow secular behavior while

particles which make large excursions in radius, i.e. those with high

perpendicular energy but small angular momentum, show the fastest secular

growth in a state potential.

For the hose instability, which is convective, the macroscopic beam

perturbations at any given location C in the beam; grow, saturate and then

decay. The growth phase is well modeled in a linearized simulation of the

type we are discussing, since the exponential growth of the ordered motion

easily overwhelms the secular growth of the noise. However the saturation and

decay cannot be modeled by our straightforward linearized simulation unless an

extremely large number of particles are employed. If the simulation is to be

useful, some method of eliminating the effect of the secularities must be

used.

In order to eliminate the secular growth of the noise, it suffices to

break up the ordered secular growth of the individual particle

perturbations. In general, we have no interest in individual particle

dynamics, but only in the various macroscopic moments. Furthermore, every

particle ring carries with it both axisymmetric attributes - xqyvxvy Y-

that determine the position and motion of the ring and the transport of

information from one radial region to another by means of large scale particle
'.S €I II I II .1 .II .1 .11
• orbits, and linearized attributes -- x9 C x y CC 'y C Cy--

y y y

16



that carry the perturbation information. The problem of secularities affects

only the linearized quantities. Our task is thus to find some technique that

preserves the unperturbed orbits and the present value of the macroscopic

quantities, but somehow averages out the perturbed quantities pertaining to

the individual particles before they have the opportunity to grow intolerably

large. In particular, the beam property that acts as the source for the

electromagnetic field equations is the axial component J (r,C,z) of current

density, which is equal to cp(r,C,z), where p is the charge density, since all

particles have vz = c.

We have developed a technique that we call "coarse graining" that

accomplishes these objectives. Basically, this consists of periodically

performing averages of all the perturbed quantities e and ; over all the

particles in a given cell in configuration space. The e's and 's for all of

these particles are then reset to the average value at that cell. The

averages are weighted in such a way that the perturbed current density

J (rs,z) is left unchanged. The unperturbed orbits are not altered in any
Z

way. The process is similar in spirit to the coarse graining technique widely

used in numerical solutions of the Vlasov equation, 1 3 in that numerically

troublesome fine structure is periodically smoothed out, by periodically re-

assigning locally-smoothed values to the distribution function while

preserving physically meaningful large-scale quantities. The algorithm for

performing the coarse graining is presented in detail in Appendix B.

The coarse graining should be performed at intervals which are long

compared to the individual simulation time steps, but short compared to the

times for secular growth. Since the oscillation period of typical particles

in the axisymmetric potential well (the "betatron period") is the

characteristic time for doubling of the initial individual particle e's, it is

17
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suggested that the coarse graining interval be of the order of the betatron

period. Of course the macroscopic time evolution must be insensitive to the

exact choice of coarse graining interval, if the results are to be meaningful.

To illustrate the technique, the problem of a single displaced beam slice

subject to a fixed Bennett potential - Fig. 2 - was rerun on the code with

coarse graining. The averaging process was carried out at various

intervals. For intervals between about 0.5 to 1.5 betatron periods, the

results were insensitive to the averaging frequency, as shown in Fig. 3. The

displacement dies out in a manner similar to that without coarse graining, but

the late-time noise which was seen in the previous figure does not reappear.

For static potentials, the coarse graining algorithm we have described

works quite well. When the potential varies in time, as it does in the

problems of interest, where beam perturbations self-consistently drive the

fields for instability modes like the resistive hose, another effect can prove

troublesome numerically. Chambers14 and Friedman, et al. 15 have shown that a

few particles experience almost exponential growth of their perturbed

. quantities 6, in a stochastic way that is nearly impossible to resolve in

simulations. Furthermore, this effect can be spread to a large number of

particles by the coarse graining algorithm. We deal with this problem in an

ad hoc way which seems to have only a minimal effect on the system as a

.* whole. At each time step we determine which ring in the slice has the largest

value of We replace the C and C of this ring with values averaged over all

the particles in the slice. This replacement tends to make the slice behave

0. slightly more like a rigid beam, but at each time step affects only one

particle in about 2000.

The effect of applying both algorithms is a linearized particle code

which can treat the hose instability in a way which accurately reproduces the

18
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Fig. 3 Mean displacement of a beam slice in a fixed Bennett potential
as a function of propagation distance. The coarse graining
algorithm was employed. Each slice contained 1000 rings.
Fig. 3a: The coarse graining was applied every 10 time steps.
Fig. 3b: The coarse graining was applied every 20 time steps.
Fig. 3c: The coarse graining was applied every 30 time steps.
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" growth, saturation and decay. Figure 4 shows the results of a hose simulation

with SIMMI, including coarse graining. We note that at any given location

- in the beam, the mode grows (in good agreement with linear theory 7)

saturates and then decays; as a function of z, the mode continues to grow

convectively backward in C. Figure 5 shows the displacement of a single slice

of the case of Fig. 4. Figure 6 shows the results of a similar run without

coarse graining. For this case, the mode grows as before but after it

saturates, the secular behavior becomes dominant and the displacements

.' continue to grow without bound.
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Fig. 5 Hose displacement, y, as a function of propagation distance, z, for
* a slice of the beam of the simulation of Fig. 4. The slice was

located 50 cm from the beam head. The hose amplitude grows,
, ".saturates, and eventually decays.
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Fig. 6 Hose displacement, y, as a function of propagation distance, z,
for a beam slice of a simulation similar to that of Fig. 4, but
without coarse graining algorithm. The slice was located 50 cm
from the beam head. The hose amplitude grows, saturates, and

* then regrows due to secular growth effects.
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Appendix A

The field equations used in SIMMi are the reduced set of Maxwell's

equations derived by Lee. 12  Using the paraxial approximation and Doppler

shifted variables, we can write

V2 A - - (4-I/c)J

V2 A i- - 4wJ
Az c Z'

" 72 4 7r0 ,

V A z ac
71. A -• < -F -+ 0T- 0

where A is the vector potential, * is the scaler potential, the subscript z is

associated with the axial direction and the subscript I is associated with the

radial variables r and 6.

The electromagnetic fields can be obtained from

aA

'p..

B-'.1. e z (1',A + 3--C
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B- (7V x

J -J + E.
z bz z

The field equations simplify further if we drop the transverse displacement

current and write

E4

Then the field equations can be written as

Ic bz

and

where

A 
-

We introduce cylindrical coordinates, and make a linearized multiple

decomposition of the aximuthal dependence. Then

j -J 0 J11  sinO.
bz b bo
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a c. o+ al sine,

,= *o + sine,

if we consider only displacements along the y axis.

The field equations are

0 0 0

i a aa..° _ a 41ta aeS- I- r W - r  c r
r--r rac wr r c ar

and

1 0
a ra 1 1 -4r 1 0 a(L a

0 1 o ol1
".4,

a' I a - rad I a r(4woo - + 4woI a o I  4woo

The code determines the conductivity from the linearized version of

""0 . Jb + Yi -- 2,
TZ.' b c r

' - where, if the propagation medium is air, we use the rough model
16

" 8.5x10 4 cm/statcoulomb,
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8 - 7.0xlO- 1 5 sec/cm,

and

-i " [APS 3( + BS + CS2 + DS3)Jsec - 1

where

S = E2/P
2

E is the electric field in statvolts/cm, p is the air density in atmospheres,

and

A - 1.42x10
- 4

B = 9.18xiO- 6

C = 2.66x10 - 10

D - 2.82x107.

One could envision improving this model in a variety of ways, such as making

K and 0 r temperature-dependent, including attachment, including the effects of

various minority species and chemical changes in complex gases such as air,

and modeling nonlocal or magnetic field dependent conductivity if the electron

mean free path is long compared to macroscopic lengths or Larmor radii.
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Appendix B

Consider the equation for J (r,rg) rewritten in the following way
z

SI(r,4) c q S (r; r-)
z 2wr N N r k r k

-ss

* (cL sinak - sycsk oa Ex in e cosa)

[ Ib oa + ek iak) snk+ NxCosa k+ ek sinak oak

where the first summation is over all particles in cell N.and the second

summation is over cells.

The two quantities which must be preserved by the averaging process are

F (C + 1I)snkcosl I Cos 2c - 1 sin-2 ,
ki (cx Ck sin -ky 'k- kx k

F ' I+ II )1ia oa i 2 1
k2(Cky ky sn kc k kysi ak Ekx o k'

Recall that, in the average, only the e's are changed. The quantities a k and

Srr, -k dpndo xiymerc variables and are the same before and

after the averages. If FkI and Fk2 are preserved in the average so are linear

combinations of them. In particular

II Fk2 - Fk1 - ky + 'kx'
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and

kI kI+) cos2ak

. will be unchanged. If we choose to average in such a way that eI + C kx, ky + kx

(CII e I sin2ak, and £1 sin2ak are preserved then Fkl and Fk2(kx- ky) c ~ kx si~k n ky k

will be unchanged.

II I
Let -k1 ekx +  ky

adI II
'kz ' ky kx

then the averages can be written as

kfN kEN

6 2 Skz cos2%/I cos 2ak,
k(Ns  kEN5 s

and

,,, W?= 1/2(6 1 + a 2),*i c-

, ~1/2(9 -
y 1 2

. while sin 2 k/ sin2a,

I 'I sin2ri-/I sin2c
Y kENs kEN5 5
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M-c -. -1. .

Finally, we associate the averages with the e's of individual rings by

using the particle shape functions.

In addition to averaging over the e's, some method must be employed to

average the £0s. The method which suggests itself is to form averages which

preserve J • These averages depend not only on the particle shapes and

positions but also on the rotation velocity of the rings. In practice, these

averages, especially at small radii, tend to be dominated by a few rapidly

spinning rings. As a compromise, we have chosen to perform unweighted

averages of , J, ;£I and ;y* We have performed a number of tests on the
x y x y

averages and the method appears to be satisfactory.
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