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2 : SIMMI
:';‘. A LINEARIZED PARTICLE CODE
I. INTRODUCTION
\ Self-pinched relativistic electron beams propagating in resistive plasma
:*Z are subject to the resistive hose instability, essentially a growing snakelike
: oscillation which 1is often observed to destroy the integrity of the beam.1
‘ For this instability, the linear regime (small instability amplitude) 1is of
'ES particular interest, because the mode grows convectively backward in the beam,
2 and therefore it is possible within the linear regime for the instability
F y_, amplitude at any given location in the beam to reach a maximum level and then
‘E decay.
‘:J A variety of analytic techniques have been used to study the linearized
:::f hose instability,2'7 but these approaches have not been able to treat an
:3' essential feature of the problem, namely that self-pinched beams generally are
:- not in time-independent equilibrium. The very front of the beam head is
::E- always unpinched and therefore continuously erodes away; also the beam radius
:?s increases steadily due to scattering off gas molecules, and the particle
" energy decreases and spreads due to various loss mechanisms. Even the radial
v

profile of the beam density may change with time and from place to place in

gAy
A,

R

Y ¥

the beam,

» Two approximate numerical models have also been developed previously to
\E: simulate the space-time evolution of the 1linearized resistive hose
%En instabilicy.8’7 In these treatments, the actual particle dynamics is replaced
;‘i by simplified macroscopic models, which are carefully chosen to preserve a key
'5:3 feature of the dynamics, the spread in betatron oscillation frequency among
i: the electrons following various oscillation orbits in the pinched beam. (If
”

gx

this feature were absent from the model, the hose {instability would
Manuscript approved September 21, 1984,
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x:‘ erroneously become absolute rather than convective."] The macroscopic models

Eg are capable of treating time—-dependent equilibria, but they are limited to
‘ - cases where the equilibrium beam density profile ny(r,z,t) has the self-
::\: similar form ny[r/a(z,t)], and furthermore the accuracy of the models has been
.'i demonstrated only for cases where this profile has the Bennett form, Ny = 0y,
::: [1+r2/az(z,t)]-2. However, the actual radial density profile of a self- \
‘; pinched beam may be hollow, or may have wings of significant amplitude at -
j large radius, or may (on the other hand) be cut-off sharply at some radius, or

-

-3 may vary greatly in shape from place to place in the beam. These types of
t: details of the equilibrium, which cannot be represented in any of the existing
:"_EE models, can strongly affect the growth of the hose mode.

o The technique generally used to study instabilities in temporally and
E*\ spatially varying situations 1s particle simulation, but in practice a
\S standard unlinearized simulation using any reasonable number of simulation
" : particles (e.g. 10% or even more) would have a noise level large enough to
*.” mask or misrepresent the instability in the linear regime. To overcome these
“'{:. problems and to provide a very general treatment of the resistive hose, we
: have developed a linearized particle simulation code, which successfully
i:. determines both growth rates and saturation amplitudes during the small-
E‘ amplitude stage of the instability.9 The techniques used, which build upon
;"T the earlier work of Friedman, Denavit and Sudan,lo may also be applicable to
"\ other instabilities which grow out of complicated or time-varying equilibria.
‘_ The code, SIMMl, treats the zero—order axisymmetric beam dynamics (m = 0O,
.3.: where the azimuthal dependence is Fourier analyzed into eime dependence) as a
j‘:g group of axisymmetric macroparticle rings. This portion of the code is named )
::.E-E SIMM0 and has been discussed in a previous publicat:ion.12 The m = 1 particle
.s:‘ dynamics associated with the hose perturbations is represented by linearized
N
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displacements of these rings from the beam axis and by m = 1 bunching of the
charge density around the ring.

A large number of these rings are followed in time as they interact with
each other and with the background gas. The beam 1s assumed to be highly
relativistic so that quantities of the order of 7-2 s 1--v2/c2 are neglected.
The paraxial approximation is also made, i.e., the axial velocities of the
particles are taken to be c, and the perpendicular velocities are assumed to
be small. The dynamics of the particles” motions are determined from
solutions of Maxwell”s equations. A simplified form of Maxwell”s equations is

11 The equations are

appropriate to highly relativistic, paraxial beams,
presented in Appendix A. The beam travels through a gas which is assumed to
be highly collisional and so dense that its mass motions can be neglected on
the beam time scale. The beam partially ionizes the gas which, in turn,
provides charge neutralization and allows the beam to self-pinch in its own
magnetic field. The gas is modeled as a stationary conducting medium with a
local scalar conductivity which is determined by the processes of beam—impact
ionization, avalanche ionization (when there are large beam—generated electric
fields), and recombination. Conductivity physics can be modeled at various
levels of sophistication. The model used in SIMM1 is discussed in Appendix
A, The code, then, consists of axisymmetric dynamics, linearized m = 1,
dynamics, electromagnetic field generation, and 1interactions with the
background gas.

The 1linearization procedure presents difficulties which must be dealt
with to determine the long-time behavior of the system. The zero~order
axisymmetric motion of the rings occurs under the influence of an anharmonic
central potential, so the period of their motion depends on the oscillation

amplitude. Within a linearized model, this effect leads to secular behavior




- of the m = 1 perturbations to the orbits. With a large enough number of

&E particles, the individual orbit secularities would average out to yield non-
:‘- secular macroscopic quantities, but to run a practical simulation some method
.‘._ of suppresssing the long-time orbit secularities must be employed. We have
:; developed a method of coarse graining to deal with this problem.

>

We will discuss the linearization process in section II; the problem of

"_:_, secular behavior and its resolution by coarse graining in section III.
":E Details are given in Appendices A and B.

=

b II. CODE STRUCTURE

Ei SIMM]1 is greatly simplified by our approximation that all particles have

k- axial velocity ¢, so that no particle overtaking is permitted along the beam
,r axis. As a result, we can consider the beam to be made up of a series of

;é:‘, slices of particles stacked along the beam axis from its head to its tail.
- The simulation can be thought of as a number of two-dimensional (r,9)

:\_: simulations, with information carried along the axis by the fields and

..‘:‘ conductivity.

.I We use as our independent variables r,8,z = ct~z, and z where t 1s the

:" time and ct is the position of the beam head in space. The coordinate r is a

.;‘:}: measure of the distance along the axis from the beam head. 1In this set of

.V coordinates, z acts as a time-like variable with regard to beam dynamics,
.f while Z is a constant of the motion for any particle.

o

%

2

; A, Particle Dynamics

.‘;: The beam particle dynamics is represented in terms of the motion of
:E: particle rings under the m = 0 and m = 1 forces, Each ring represents the set
:“' of all particles with the same initial value of r,z, radial velocity, and
-,
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angular momentum. It is obvious that under the influence of an axisymmetric
force the m = 0 motion of this set of particles {s such that it remains a
ring, with radius increasing or decreasing in time. To calculate the m = 0
dynamics of the ring, it is thus sufficient to follow the dynamics of any one
particle on the ring. It 1is more convenient to do this in Cartesian
coordinates in the r-6 plane; our method is described elsewhere.11

To first order in treating the m = 1 perturbations, each particle can be
assigned a small time-dependent displacement from its equilibrium orbit in
the r-6 plane. Friedman, et al.10 have shown that to first order the set of
particles forming any given ring still lie on a circular ring, but that the
center of the ring is displaced from the origin by a small vector quantity,
and that in addition the charge density around the ring is no longer uniform,
but rather is (slightly) bunched as ei(e-eo). The linearized m = 1 dynamics
of all the particles in the ring is thus characterized by four time-dependent
quantities: the two components of the displacement of the ring center, the
bunching axis 60, and the amplitude of the bunching. These four quantities
can be represented in various ways; the following scheme is one way of doing
this and of tying the dynamics of the whole ring to that of one reference
particle on it.

Figure 1 shows the equilibrium and perturbed positions of some ring. R
and P are two particles on the unperturbed ring, and R and P” are the
perturbed positions of these particles. We represent the line gsegment
RR” = Re(E(R)). The quantity E(R) 1s the perturbation of the ring at the
point R. In the same manner the line segment PP~ = (E(P)). Note that the

arc RP may not be the same length as the arc R“P“, since the ring of charge is

bunched as well as displaced.
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It can be shown that if we choose the relationship between £(R) and &(P)

v, L4
Lol LIS

to be given by

'o."

€.(2) = = (R)e'?,

and

ey
T

ee(P) = ee(R)eM,

)
A ¢\ S
L
K where ¢ is the azimuthal separation of P and R, the motions of the
N .
*w
3 perturbations are consistent with the dynamics of the m = 1 fields and that we
L)
Lo
’ only need to follow the dynamics of the perturbation at a single reference
e point R, The two complex quantities €, and €q thus contain all the
\ -
b
:" . information about the bunching and displacement of the ring.
7
-.'.-
2 Although we have chosen a complex representation of the perturbations,
¥ ’ physical quantities must be real. If we let
fL
A
P + +
U P - ei,
.*.
)
N we can write
\!h.
I v
J
-f:- PP” = Re(E(R)e“’)

A

R

) r i r i
[] = (er cos¢ - €_ sing, £, cosd - €, sing).
3
R
N I_.r I, _ 1 I_ r IT _ _ i
33 We choose to identify € er(R), €. Er(R), €g ee(R) and €q ee(R).
' Thus
PP” = (EI cos¢ + ell siné, el cos¢ + ell sing).
r r G 0
7
A P S PRI ANy ,,-:.-_"./"J'_;q: '.'\(';.':"':‘-.-I"(",‘-""‘."("";"".\:.'-' .':"":' :_\"\.‘\:.-v y’-\;\*\ ’ \Q ‘\\
D I S S R




. . . . . B 2l Bat +
ANEY e IR LOASAASOLNE IR M T SN RN AS a  RY e B te® e gt oV A SN N VL Pl O R

o) [ N A

The particle dynamics are computed in Cartesian coordinates. In that

\ﬁj coordinate system, we need to follow the four quantities ei, E;, E;I, S;I,

;“; defined by

Pt}
-~

-
-t
-
-t
-
-~

I,II
osa + €?
¢ y

‘. '

sina,

¥

2

-
-
-
~
-~

oo LIl
X

A
o
D

sina + e;’II sina,

g
e,

S
e

where a is the azimuthal coordinate of the reference particle R.

-

The electromagnetic field equations for the conditions of an ultra-

'Et relativistic electron beam in a collisional gas were derived by Lee!2 and are
R "._:
by s given in Appendix A along with a simplified conductivity equation which models
_{f direct ionization, avalanche ionization and recombination of the background
Mo
. gas.
o We consider only beam perturbations 1linearly polarized along the y
\
I axis. For this case the linearized current density and conductivity are
Y
";' 1
o o
W = + 6
) Jbz Jbz Jbz sin®,
‘--_‘
A5
A and g=d°+ 01 sinf,
L} N
3
(N
\fﬂ' The only nonzero electric and magnetic fields are
3
R B, = BS + B! sine®
[ ] ;] 8 8 ’
i B = B! cost
"|~" r r ’
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E =E° +E! sind,
¥4 z Z

E =E° + E! sind,
r r r

Ee = Eé cosf.

We use the notation introduced for the €“s to write

(LR

-"S)

J o= J° 4+l

bz = Jbz ¥ Jpz Sinds

o = o + otl sine,

11
By = Bg + By sind,

B = gl cosf,
T r

E =E° + EII sin®,
z z z

E =£E° + EL sino,
) of r

Eg g cosf.

The equations of motion of the perturbations are then
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5
Y
2 I 2 .1 >
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- I 2 I o o -
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"y
5
+ ¢ BI sinza - ¢ BH cosza
] r 2]
%
o4 3E®  38°
- I1 2 II T )
" + (g, cos®a+ €, cosa sina) (3=~ - 35
\
"
-~ II 2 II o o
1{_4 + [ex sin‘“a - €, cosa sina) (Er/r - ¢ By/r)s
)
2
% mc
o) d °I II 2 I 2
—— = 4
3 < daz (y Sy) E” sina Eg cos’a
%
N
@
“ + c BI cosza -c BII sinza
Wy r ]
N
‘. . I 1 2 aE: 333
‘ -
‘ + (e sina cosa + e, sin a) (3z—- ¢ 37
-.' a
1o + (el 2 _ I o, _ o
ks { y co8"a - € cosa sina) (Er/r c By/r),
S
sl
-
¢,
~ 10
-
.
[ ]
'::f.:f L4 o (\-'.:’ W e A e '-.::' : ‘_ ‘. { T ‘,\ ‘. el l':'-‘:i 'I_:.:\',-\‘.’_:J:\( ..:.--'.-f_‘f\-‘_‘:r-\r~n \:5\3. ..:...},':.\ ".\"_.*\-.."
';s" z"gr;-"a. o ;.-‘ Lo ::._«'.J' < RN \q. ,:- s ::;\:-ﬁ}:.r A e L o T T ~ s ~ LS




RNL IS0 U W

OIS
Y s."'.’
W

- B b Sab L0 B PP KT ANEr oL PR R LE PO IRV ’ Rl Y Bk

and

2
mc
d I1 II I
T (Y Ey ) Er cosa sina Ee cosa sina
-c Bf_ sina cosa - ¢ B]e:I cosa sina
aE° 3B°
II IT 2 T )
+ -
+ (sx sina cosa € sin“a) (—ar c 5= )

+ (eIl cos®a - eil cosa sina) (Eg/r -c Bg/r),

Me
[[1]

where % .

These four complicated equations form the basis of the perturbation
dynamics. Although the total beam perturbation is along the y axis, the
motion of any single ring is such that its center can lie at any point off the
axis. Only in adding all the ring positions together do we get the effects of
the simplified perturbation. Otherwise stated, a single ring has angular
momentum, so its motion does not in general have the same symmetry as the

driving fields; however (it is tacitly assumed) the distribution over angular

momentum is even, which restores the symmetry of the beam as a whole.

B. Current Density

In the paraxial approximation, the beam current density component Jz
along the axis is proportional to the charge density and the components of ¥
perpendicular to the axis are neglected. The charge density for a beam made

up of paint particles formed into rings can be written as
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where the sum is over the rings and the angle ¢ is the azimuthal angle of Fig.
23 1. The rk(¢) represents the displacement of the ring from the axis and
ek(¢) represents charge bunching. -

For a system of finite sized particles, the é-function G(r-rk(¢)) is

replaced by a particle shape function Sr(r-rk(¢)). Within the framework of

o e

the linearization procedure, we can write

]
1

X - 0 14
2N () = e e,

il

v)
L4

i¢, o
ek(¢) = ek + €g € /rk,

-
PR X
2l

220

as

St(r-rk(¢)) = sr(r-rg) - € el? ;:E (r-rz),

k
(o]
5(8-6,(9)) = 6(8-62) - ¢

16,0 r.ra_n0
ok & /T 8°C8 8,0

4 The zeroth and first order current densities can be written

-)'n q..¢

> o - k _.0
Jz(r) é 27r Sr(t rk)'

» L 16 ch eek i(e—ak)
A Jz e - f Trr Sr(r-r ) — ie
2 T )

L )

5% - :x_k_c..afl
7 % 2nr 3 o
el Tk

i(e-uk)

o
(r rk) €1 © . .

5 Finally, we can write the current density as a real function consistent

S: with beam displacements in the y direction as
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J | - - e S (r .2 ) L [- (- eI sina, + eI cosa, )cosa
£ T > % * Ey COSHIcosay
k

+ (- 8 sirmk + e: cosuk)sinakj

+ gl‘_c _as_r [(eI cosa, + e, sina )sin
l% 27%r 320 xk % vk % %
k

II II
+ (e cosa + e sina, )cosa, |.

Since the perturbation current density contains derivatives of the
particle shape, a shape function with continuous derivatives is necessary. We
have chosen a quadratic particle interpolation scheme as suggested by

Friedman, et al.

III. COARSE GRAINING

Although formally we have derived a set of equations to describe the
motions of the perturbation quantities, the nature of the beam particle motion
results in the breakdown of the linearization procedure under some
circumstances. The perturbation of each individual particle ring grows
without bound even in the absence of m = 1 forces. To visualize this
behavior, we consider the simpler problem of motion of particles in a fixed
axisymmetric potential. (Since information only propagates backwards in a
beam moving at v, = ¢, this is equivalent to the problem of the motion of the
first perturbed slice of the beam, which 1is subject to axisymmetric fields
determined by the previous unperturbed beam slices.)

The motion of a beam particle in the plane perpendicular to the beam

'axis, subject to an anharmonic potential well, i3 quite complicated. In

13

)

‘ ;'V J"“‘t‘ * -‘ "Hn’#-'*‘ '¢»‘ - I y X .’ .: () X { A ‘ .' () ‘..).
‘ ) n‘ ‘.' "‘ .“? : h :'c : L B .t a" ' » o o" "%:‘5?}‘0.'«;:5:::\" .t“:ﬁ\.:‘.:'\:\tﬂ' ) u:;:ﬂ“n' '::' : ‘ .¢. ~<(: . ARG RN




LA

P\
;l/:'{.(‘t R

-t .f, N

Ir ‘A
i

.,
P

»

-

v,

.

A ey

SRR

RAAAS

A
N 2 e

A
Pd

&

o222 O

-
Ca™ I

@I

¢
\‘.\\‘\- |"

K . S L M y ()

general, the particle will trace out an unclosed rosette orbit. The essential
feature, however, 1is that the radial oscillation period and the azimuthal
drift rate depend on the particle”s angular momentum and the amplitude of the
orbit, Because of this dependence, two particles whose amplitudes are
initially infinitesimally different will separate in time until their
separation becomes comparable to the particles” amplitudes themselves. If we
think of the difference in the amplitudes as the perturbation quantity, we see
that there 1s secular growth of the perturbation, which is proportional to
time as long as the perturbation remains small compared to the orbit
amplitude. We expect that for a beam slice subject only to an axisymmetric
force, but initially displaced from the axis, phase mixing among particles of
different oscillation frequency will eventually return the slice to
axisymmetry. In an idealized simulation with an infinite number of particles,
this process could be well modeled for an 1indefinite time; the growing
individual particle perturbations would average out when macroscopic
quantities were calculated. However, in an actual simulation with N particles
per slice, the noise level (for quantities like the mean displacement of a
slice) is of the order of ENI/Z, where ¢ 1s a typlcal perturbation amplitude
for an 1individual particle. Since € « t, the noise eventually comes to
dominate at a time t which scales as Nl/z. Thus increasing N delays the
breakdown of the linearized model, but eventually the phase mixing process is
overwhelmed by a growing noise signal. We illustrate this behavior by running
a simulation of a single slice in which the magnetic pinch force is calculated
from Amperes law for a fixed Bennett distribution of current, i.e.,

Jo(r) = J°(1+r2/az)-2, giving a force F(r) = - ezJor(1+r2/82)-l. The beam
profile initially is taken to be a similar Bennett profile displaced from the

axis. Figure 2 shows the time behavior of the beam centroid y, for two cases
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:\5 which differ only in the number N of simulation particles. As N increases,
;.E"' the time that the simulation matches the correct physics (steadily decaying
3’ oscillations of y) increases, but 1in all cases, the noise dominates the
:?{ simulation at late enough times.

:g: Not all particle orbits exhibit secular behavior at the same rate. A
E'.‘S Bennett-like potential is nearly harmonic close to the beam axis. Particles )
__._ whose orbits 1lie in this region show very slow secular behavior while )
j_«.g particles which make large excursions in radius, 1i.e. those with high

:' perpendicular energy but small angular momentum, show the fastest secular

.(-"' growth in a state potential.

%‘\%’ For the hose 1instability, which 1is convective, the macroscopic beam

-:" perturbations at any given location Z in the beam; grow, saturate and then

'._:". decay. The growth phase 1s well modeled in a linearized simulation of the

S

_. type we are discussing, since the exponential growth of the ordered motion

3 easily overwhelms the secular growth of the noise. However the saturation and
_ X decay cannot be modeled by our straightforward linearized simulation unless an

o

:‘S extremely large number of particles are employed. If the simulation 1is to be

)a useful, some method of eliminating the effect of the secularities must be

i::. used.

1.:_": In order to eliminate the secular growth of the noise, it suffices to

.A: break up the ordered secular growth of the 1individual ©particle

:( perturbations. In general, we have no interest in individual particle

J;:‘,E dynamics, but only in the various macroscopic moments. Furthermore, every

::";: particle ring carries with it both axisymmetric attributes — x,y,vx,vy,y -

::_ that determine the position and motion of the ring and the transport of .
\; information from one radial region to another by means of large scale particle

'5- orbits, and linearized attributes —- ei, e,I(I, e;, e;I, ::i, Eil. é;, '}I,I--
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that carry the perturbation information., The problem of secularities affects

only the linearized quantities. Our task is thus to find some technique that

preserves the unperturbed orbits and the present value of the macroscopic

quantities, but somehow averages out the perturbed quantities pertaining to

the individual particles before they have the opportunity to grow intolerably

large. In particular, the beam property that acts as the source for the

electromagnetic fileld equations is the axial component Jz(r,;,z) of current

density, which is equal to cp(r,Z,z), where p is the charge density, since all

z Ce

particles have v

We have developed a technique that we call "coarse graining”" that

accomplishes these objectives. Bagically, this consists of periodically

performing averages of all the perturbed quantities e and ¢ over all the

particles in a given cell in configuration space. The €”s and €°s for all of

these particles are then reset to the average value at that cell. The

averages are weighted in such a way that the perturbed current density

JiI(r,C,z) is left unchanged. The unperturbed orbits are not altered in any

way. The process is similar in spirit to the coarse graining technique widely

used in numerical solutions of the Vlasov equation,13 in that numerically

troublesome fine structure is periodically smoothed out, by periodically re-

assigning

locally-smoothed values to the distribution

function while

preserving physically meaningful large-scale quantities. The algorithm for

performing the coarse graining is presented in detail in Appendix B.
The coarse graining should be performed at intervals which are long
compared to the individual simulation time steps, but short compared to the

times for secular growth. Since the oscillation period of typical particles

in the axigymmetric potential well (the '"betatron period") 1s the

characteristic time for doubling of the initial individual particle e¢“s, it is
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_:i suggested that the coarse graining interval be of the order of the betatron
e
é:i period. Of course the macroscopic time evolution must be insensitive to the
'» exact choice of coarse graining interval, if the results are to be meaningful.
:::E; To illustrate the technique, the problem of a single displaced beam slice
-.. subject to a fixed Bennett potential -— Fig. 2 — was rerun on the code with
.‘ coarse graining, The averaging process was carried out at various
:’ intervals., For intervals between about 0.5 to 1.5 betatron periods, the .
is results were insensitive to the averaging frequency, as shown in Fig. 3. The
. . displacement dies out in a manner similar to that without coarse graining, but
'%,, the late-time noise which was seen in the previous figure does not reappear.
iv For static potentials, the coarse graining algorithm we have described
S works quite well, When the potential varies in time, as it does 1in the
§3 problems of interest, where beam perturbations self-consistently drive the
i‘ ‘ fields for instability modes like the resistive hose, another effect can prove
: Y troublesome numerically. Chamber314 and Friedman, et 31.15 have shown that a
: few particles experience almost exponential growth of their perturbed
o)

- quantities €, in a stochastic way that is nearly impossible to resolve in
.. simulations. Furthermore, this effect can be spread to a large number of
§ particles by the coarse graining algorithm. We deal with this problem in an
J.: ad hoc way which seems to have only a minimal effect on the system as a
‘. whole. At each time step we determine which ring in the slice has the largest
},;' value of £. We replace the ¢ and € of this ring with values averaged over all
-‘:3 the particles in the slice. This replacement tends to make the slice behave
‘ slightly more like a rigid beam, but at each time step affects only one
,ﬁ particle in about 2000. ‘
;;. The effect of applying both algorithms 1is a linearized particle code
which can treat the hose instability in a way which accurately reproduces the
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Fig. 3 Mean displacement of a beam slice in a fixed Bennett potential
as a function of propagation distance. The coarse graining
. algorithm was employed. Each slice contained 1000 rings.

AN Fig. 3a: The coarse graining was applied every 10 time steps.

v, Fig. 3b: The coarse graining was applied every 20 time steps.

-~ Fig. 3c: The coarse graining was applied every 30 time steps.
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growth, saturation and decay. Figure 4 shows the results of a hose simulation
with SIMM1, including coarse graining. We note that at any given location

3 in the beam, the mode grows (in good agreement with linear theory7)
saturates and then decays; as a function of z, the mode continues to grow
convectively backward in Z. Figure 5 shows the displacement of a single slice

of the case of Fig. 4. Figure 6 shows the results of a similar run without -
coarse graining. For this case, the mode grows as bhefore but after it

saturates, the secular behavior becomes dominant and the displacements

continue to grow without bound.
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honte The field equations used in SIMM1 are the reduced set of Maxwell“s
v
\ ';_ equations derived by Lee. 12 Using the paraxial approximation and Doppler
"_' shifted variables, we can write
t‘_)
'\-’ ® -
%
“
, S V2 A = - 4—“ J ,
\ 17z c z
.
= Vi ¢ = - 4w,
f‘
S, v an + dep 0
vt 1 B T T
CaNe
r
o
‘;‘.J aAz 3¢
- AP Vil i I
.o
i
n where A is the vector potential, ¢ 1s the scaler potential, the subscript z is
L
' associated with the axial direction and the subscript L is associated with the
\‘_"_: radial variables r and 6.
par
N The electromagnetic fields can be obtained from
o
":f; ‘l 5; l¢’
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B, = (Vl x Q)z’
Jla GEL’
J =7 + 0 Ez.

The field equations simplify further 1if we drop the

current and write
g = -y
Then the field equations can be written as

2 I T
a0 ==L, -0,

and

28(]__ , 4mg
V.L'Sf Ve—e—7V

where

Q_-Az-¢.

decomposition of the aximuthal dependence. Then

o 1
Jbz Jb + Jbo siné,
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o= d® + 01 ginf,

Q=a° + Cl! sin®,

o= ¢° + ¢! sine,

if we consider only displacements along the y axis.

The field equations are

c ar c

139 3 o o __lm o_oac'tc,>
;-5;:-5(0.,+¢) c—(Jb 032")»
La 3@’ 13 4no® 3¢°
r 3r T drac r3c T ¢ 3 !
and

313 L alsglya-dr 1 _ oaal _ 1308
i = Uy 5~ 9 )

1 o 1
_E_)_Lg_raa_.la_r(lmo ¢ +lnra a¢) lma tb
or r or = of r or *

The code determines the conductivity from the linearized version of
-g-g KJ + Yi - B 02

where, if the propagation medium 1is air, we use the rough mode1 10

k = 8,5x10™% cm/statcoulomb,
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Br = 7.0x10 sec/cm,

and

2 1

Yy - [Aps3/(1 + BS + CS° + Ds3)]sec- ,

where
= Ez/oz,

E is the electric field in statvolts/cm, p is the air density in atmospheres,

and

1.42x10™%

[
[}

9.18x10~%

w
[}

2.66x10~10

(@]
[}

D = 2.82x10717,

One could envision improving this model in a variety of ways, such as making

k and Br temperature-dependent, including attachment, including the effects of
various minority species and chemical changes in complex gases such as air,
and modeling nonlocal or magnetic field dependent conductivity 1if the electron

mean free path is long compared to macroscopic lengths or Larmor radii.
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Consider the equation for Jil(r,c) rewritten in the following way

II o o
I (e,g) = =2 ) ) S (r,; r=-r.)
z 21rr Ns kGNs r 'k k

[(E§x sina - eéy cosq ) cosa (eii sina, - eii cosak)] ’

-23—3—2 S(r’rr)
2nr or kéNs k k

I I 11 I1
[(ekx cosaq + Sy sinak) sing + (ekx cosa, + €ky sinak) cosakJ

where the first summation is over all particles in cell Ng and the second
summation is over cells.

The two quantities which must be preserved by the averaging process are
I 11 I 2 II -2
Fkl = (ekx + eky) siru::k cosa - eky cos @, eb( sin @

I 11 I 2 _ Il 2
F 2 ™ (tky + aky) sino.k cosey = eky sin @ = €y O8O

Recall that, in the average, only the €”s are changed. The quantities % and
Sr(rﬁ, t-rﬁ) depend on axisymmetric variables and are the same before and
after the averages. If F,; and Fy, are preserved in the average so are linear

combinations of them. In particular

-
at

I :
Tuy

Ao 1 R

3 Fra “ Frp ™ 8y * Six
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and

I1

II II
Foy * Py = (ekx + eky) sin2ay + (ex

will be unchanged.

" Ir _ I I 11
(ekx eky) cos2a , €  sin2q, and €y
2 will be unchanged.
3 I, 1
2. =
i Let ckl Skx + eky
‘ and § = I _ en
i kz eky kx
Y
I'.
) then the averages can be written as
o
X - .
S 6, = ). 6k /2. ’
. 1 1
2 keN, keN_
3 S, =) cos2a /) cos2
2 2 Ken ke % keN_ %
&3 )
¥
' and
\-'
2
s 1 —_ -
:{ ey = 1/2(61 + 62),
-
‘$: ei, = 1/2(3, - 3,
¥
;. . while -e’I‘ ) ekx sin20.k/2 sin2ay,
< keN_ keN
:
o —_—
Y 11 : 11
*e € =) sin2q /) sin2a, .
> T keN Ek" % keN K
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.- Finally, we assoclate the averages with the ¢“s of individual rings by
using the particle shape functions.

In addition to averaging over the €”s, some method must be employed to

Y Xy average the €°s. The method which suggests itself 1is to form averages which
g. preserve jz. These averages depend not only on the particle shapes and
: positions but also on the rotation velocity of the rings. In practice, these
J averages, especially at small radii, tend to be dominated by a few rapidly
il spinning rings. As a compromise, we have chosen to perform unweighted
’ averages of é}(, E;, Eil, and E;I. We have performed a number of tests on the
: € averages and the method appears to be satisfactory.
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