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ACCELERATION OF AN ELECTRON RING IN A MODIFIED
BETATRON WITH TRANSVERSE PRESSURE

I. Introduction

» Interest in the modified betatron derives in part from its promise as a
high current accelerator.1'4 It is designed to overcome the current
limitations in a conventional betatron, where the defocusing self-field forces
(which scale like E/YZ, where E 1s the self-electric field, and, vy is the
relativistic factor) must be less than the focusing forces from the external
magnetic field index n (0 < n < 1). The conventional betatron then has two
viable injection regimes -~ one where the iniected energy is low and the

current (or density) Is low, and the other, where the current (or density) is

high and the injected energy is high. The inclusion of an external toroidal

field, B in the modified betatron allows injection and trapping at lower

e’
energy and high current (1-10 kA). Other theoretical studies of the behavior

of this accelerator have either used particle simulations to determine the

5,6

self-consistent motion, or have assumed a given density and current profile

and calculated the motion of test particles in fixed fields.2'3’5'7 The
drawback of particle simulations is the large computational cost, particularly
because the time scales of acceleration and self-flux diffusfon are on the
order of 10'4 - 10"3 sec while the time scale of one particle cyclotron orbit : '_‘_3

is on the order of ].0"10 sec. The analytic technique is limited because of

the assumed charge and current profile.

In our previous work,g'lo a theoretical technique is developed to extend
the methods mentioned above and to analyze both the self-~consistent X
equilibriup in the modified betatron and the evolution of this equilibrium as

external parameters are varied slowly compared to a drift period. These ﬁ;;g;ﬁ}
Manuscript approved August 2, 1984, RO
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calculations assume a cold (zero pressure) beam. 1In this paper, we expand our
~ theoretical technique and analyze the evolution of equilibria in the modified
i betatron with transverse pressure.

) An investigation is also made to determine if the presence of pressure
causes any qualitative changes in behavior which can be measured easily in the
experiment; such effects may indicate a useful diagnostic measurement of beam

pressure. The effect of random transverse motion appears as a pressure

gradient temm in the force balance equation in our formalism in a 1limit that
is applicable to current designs for modified betatrons.

As will be shown in the section on our new formalism, we find that many
of our earlier results still hold to first order, namely that the fluid
canonical angular momentum, Pe, characterizes the equilibria (because many
important fluid quantities are functions of Pe, and because surfaces of
constant Pe are drift surfaces of single electrons). The pressure ]l manifests

itself as an additional defocusing force on the beam (with force density

~ 2[l/a), tending to increase its minor radifus a. The pressure also produces

an outward "hoop force" (with force density ~I/R), tending to increase the
major radius R of the beam. These two effects can be seen in our results
by: a) an increase in the poloidal Fp x Bt drift on the beam (where Fp
represents the total poloidal defocusing force, and B, the toroidal magnetic
field), and b) a slight increase in the vertical field B, necessary to hold

the beam at its equilibrium major radius R.

We have performed two different classes of calculations. The first class
involves a series of separate equilibria with similar beam energies but
various levels of pressure. The other class involves the calculation of a

series of adiabatically coupled equilibria during acceleration. These will be

discussed in Section 1IV.
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In Section IT our new fluid model, including pressure, is presented.
This is followed in Section III with a description of how the new model is
incorporated into the numerical code, as well as a qualitative discussion of
- the effects of pressure on the system. Next, we discuss our results in

N ’ Section IV and summarize in Section V.

II. Fluid Equations and Betatron Ordering

In this section we derive fluid equations for a warm relativistic
electron beam in a modified betatron. We derive an ordering scheme for
diamagnetic equilibdria which indicates the conditions under which the

transverse thermal spread of the beam can be described by a scalar pressure,

L 7 RPN

and the conditions under which this pressure can be assumed to be constant on

the fluid Pe surfaces.

The first moment of the relativistic Vlasov equation for f(x,p,t) is

E 3% (n<p>) + Vo]f!2d3p = nq (E + %-<!> x B), (1) f
- <
| -
- vhich can, with the aid of the continuity equation 3n/3t + Ven <y> = 0, be RS
ﬁi written in the form o
4
> - 1 "
. n <g>+Vp = nq (E +-E <y> x B) = V-1, (2) -
BRSNS
- for equilibria (3/3t = 0), where p = ymay, n = ]fd3p, n<y> = jf!d3p, ;2 )

n <p> = JEpd’p,

; &ty - o
2 - (2 "
« T .
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A manifestly covariant formulation of the fluid equations has recently been

described by Newcomb.ll

l The class of equilibria we wish to describe have distribution functions
of the form

h £(H,Pg,u) = W(Po,u) 8|0 - E(PQ)], (5)

where H is the particle energy Ymc2 + q4¢, Pe = Ymrv, + qy/c is the canonical

l angular aomentum (¢ = rAe), and
iy - 2
> (e, = p))
- LN TE
i u(x,p) (7, 2) (6)
is the first adfabatic {invariant. Here, (r,0,z) i{s a cylindrical coordinate 12Afjﬁ

system with z the vertical direction and § referring to the toroidal symmetry

direction. Also, 1 refers to components perpendicular to the toroidal o _1
ﬁﬁ magnetic field 366. The conditions under which u is invarfant are discussed
é in Appendix A. This distribution function has a distribution of magnetic ‘
; moment u and contains the cold beam case of Refs. 8 and 9 as a special case ’

W(Pg,u) = W (Pg)8(u).
In general, a distribution such as (5) cannot be required to have only

transverse thermal spread, in spite of the delta function in energy, because

..........
........
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the distribution of y. That i{s, no element of the stress tensor I given in
BEq. (4) is exactly zero unless the distribution is cold. Nevertheless, there
i1s an ordering scheme appropriate to the modified betatron in which [ is
isotropic in the poloidal plane (r,z). Defining mp to be the plasma frequency
. and w, to be the (nonrelativistic) cyclotron frequency in the toroidal field,

Bv the externally imposed vertical field, and Wy = er/mc, we take

2

[1)

£ = o, (7a)
wc

a 0( 2

E - € )’ (7b)
y = 0¢e" 7%y, (7e)
B

B—v = 0(51-6)’ (7d)
-]

oo = 0(1), (7e)
cv

L. 0ce2/3y. (7%)

Here, p is the electron gyroradius in the toroidal field, a is the minor
radius of the beam and R the major radius. Since this ordering must describe
the beam from injection (Y ~ 4) up to the diamagnetic-paramagnetic
transitfon (Y > 15), and since the ratio of e§/Y2 to focusing forces scales
as 1/73, the extra parameter § i3 required for the ordering to be valid
throughout the acceleration. For parameters relevant to the NRL modified
betatron, ¢ ~ 1/10; also, 8§ ~ -1/3 corresponds to injection and § ~ 1/3

corregsponds to transition.




Note that the scalings with § in Eq. (7) reflect the invariants of motion
during acceleration or any adiabatic evolution of the beam. In particular,
wi/wz is independent of time (i.e. of §) because conservation of the total
toroidal flux ¢ through the beams'9 implies that the density remains
approximately constant, and the acceleration scheme we are concerned with does
not involve changing the external toroidal magnetic field. (The self magnetic
field is smaller in this ordering.) Similarly, relation Eq. (7e) represents
the fact that y is proportional to B, during acceleration, due to Pe
conservation. Finally, since u i{s the flux through the gyro-orbit, relation
Eq. (7f) follows from p/a ~ (u/O)llz. Also, Bq. (7f) guarantees that the
electron velocity about the guiding center pwc/Y is of the same order as the
drift velocity cE/yzB at Injection, a plausible assumption for most injection
schemes. 1In fact, for this ordering we find that the drift and gyration

velocities obey vd/c ~ 228 Lna vg/c ~ e&+5/3'

With this ordering, we find
that the forces eElyz, elee/c, the external focusing forces, and the

pressure gradient are in relation

€1+36: 81+36= 2 e2&+4/3.

e )
We see that the first two forces dominate at injection (§ = - 1/3), whereas
all four are of the same order at transition (8§ = 1/3). Note that for
intermediate times, -1/3 <§<1/3, the pressure gradient dominates focusing
forces. Also note that q¢/Ymc2 ~v/y ~1/y ~ e}+6.

Using this ordering we first estimate the distribution of y which is
due to the distribution of u shown in Eq. (5). Assuming the energy
E(Pe) - Eo + Q(Pe - Peo) as in Ref. 8, H = E (Pe) from Eq. (5) and the

definition of vy give

T
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Y

2 = - -
yme® - Ymrﬂva = Ho(r,z) = Eo npeo + qQ¥/c - q¢, (9a)

2 2,22 2,22
Y" =14+ peﬁm ¢+ (Eld + Elg) /m“e”, (9b)

where Py = Yavg, B4 is the momentum associated with the guiding center drife,

and 218 is the momentum associated with gyration about the guiding center.

From Eq. (7) we find pid ~ ez+26, pig ~ 54/3, the latter constant since it is

essentially magnetic moment. Putting Eqs. (9) in dimensionless form by

defining 9 = pe/mc. q = gl/mc, K= Ho(r,z)/mcz, and w = rQ/c and combining,
we find

2 2
1+qe+qi-(K+wqe). (10)

Expanding for qi((l, B>1 [from Eq. (7), these quantities scale as

e4/3 and e-l- s respectively], i.e. treating 1 + qi as a perturbation in Eq.

(10), we find

K
990 " T - o’ (11a)
2
s 1+ ql
Qg = = =3 (11b)
Y, " T (1lc)
o - w
w1 + q2) S
Sy = - T3 . (114) '%:;i;
f_'”q
LI
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6Yt = - wqig/2K, satisfy

qut Sy

T, Y

t

(o]

. l0/3 + 28

(12)
Also 2 2
Sv 8q q, 8y (1 =0)7(1 + q])
8 ] 8o 1
. Y 2 = 2 ’ (13)
o Y 2K
)
the thermal contribution to which has
2
svet - qig
¢ K
10/3 + 2§ (14)
Using qid ~ ez + 26, qig ~ eA/S, we find that the drift contributions to

qu, 8y and 6ve are smaller than the thermal contributions for 6> -1/3. The

issue of congervation of u in this ordering is addressed in Appendix A.
We now use the relations Eqs. (11)~(14) to evaluate the stress tensor I
of Eq. (4) for equilibrium distribution functions of the form Eq. (5). First,
3 -1 - - - -4
noting d°p = (Be/r) du dy dP,, where x = tan [(pz - pz)/(pr - pr)J 1s the ]

gyrophase, we find that the density is given by %1:,:;

~ 2 o

B P _W(P,,u) & |P, ~ B (r,2z,p°)] *
8 9" " 8 o ‘o L R
n=- _!'_ jdudx j v6/r — Q(Pe) ’ (15)

vhere P, = Fe(r,z,pf) 1s the solution of H = E(P,), found in Eqs. (9) = (11)

for the special case Q = dE/dPe = const. For this case, we find




-----

.................

3 2, _ p(0)
Pe(r,z,pl) Pe (r,z) + mcr&qe, (16)

where Pgo) neglects the drift and thermal corrections in Eq. (9). From the

above ordering, the thermal and drift contributions to 59 and v, are

negligible and we find

278 L
0
n = — i dquBf )(r,z), uj. (1n

Algo, using this ordering we find that E = p) = Y°m<g> in Eq. (12) and that

the two diagonal poloidal components of the stress tensor are

Y zz

27 B

Yom(veo

2
9

" (0)

) 1 udquPe (r’z)aujs (18)
o

while the off diagonal terms are

nrz - nzr

282 dp

) )
- Jdudyx sin x cos x jY v — W(Pe,u)
x 8P, - B,(r,z,p°)] (19)
] 8t ™y

If we neglect the thermal and drift corrections to 39, Yy, and Vgs these terms
vanish by the integration over the gyrophase x. By similar considerations we

find Her =0, =0 ,=1I =1 =0, Thus, Vo] = VIi(r,2), with I = nrr

0z r0 z0 80

- sz.




Using these conclusions, we find that the toroidal component of the

equation of motion, Eq. (2)

v

n!one + r p1' ?c-!' Ve ar Hre 9z IIze 1 rd’ (20)
gives
iy V(Yomrveo + qi/c) = 0. (21)

Since the poloidal velocity !p is 1p/ne = (¢c/4nme)Vg x VO
(B = Yy x VO + gV0), and since the quantity in parentheses in Eq. (21) is

pgo). we find, as in the cold fluid case, Ref. 9
0
g =g (2. (22)

The poloidal components of the equation of motion, neglecting poloidal

centrifugal force, are

2 -¢p(0)
Y mv qv gg“ (P ")
0=-2_2% gr_ qup+ —2 vy - 8 ‘pp® 1
re 4 9 n e e
™mr e ]
(23) _‘?’: "n'*
v I
- 80 o5(0) _ - - 88" 4,(0) _ VI
- VPe mveoV(veoyo) qv¢ ———fl.-mr 711'e = »

odch

To lowest order in ¢, N, given by Eq. (18) is a function of Pgo).

Specifically, the relative variation of Bg = g(Pe)2/r2 scales as 5r/r° ~ ez,

and the relative variation of Yo is eA¢lymc2, vwhere A¢ i3 the variation

of ¢ along a Pe surface. For highly elongated drift surfaces, as can occur -

8,9 the quantity scales as Y-l ~ el+6 [See Appendix Al. For

et PR 4
RIS e Y taaty -
el maS Al b abtad dnetod ot dod

near transition,

circular flux surfaces, the relative variation of ¢ along a P, surface (due to

|
Jelel A

3]
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the toroidally generated displacement between these surfaces) is of order ;
1
a/R ~ ez, so 8y/y scales as e3+6. Finally, the denominator v,o-rﬁ scales «; -4
- g
as Gr/r° ~ ez as long as the two terms which make up the denominator do not ‘
nearly cancel. Thus the relative change in pressure along a Pe surface is at .ij
worst eL+5. In fact, away from transition, the flux surfaces are nearly ; =
always circular so the relative pressure variatfon is actually much less.
Since the pressure itself i{s not a dominant effect except near transition
(see Eq. (8)), the variation of Il along a Pe surface 18 negligible. Thus e
2
(r,z) = H(Pe). Using these relations, which imply vBOV(veoyo) ~c” Wy o and
M = H‘(Pgo))VPgo), we find (dropping the o superscripts)
. @
A\ dE 88°(Pg) M7(Py)
{=— - ) VP = ( + j VP . (24)
r 2
4nnr
We can use this equation to solve for the density, obtaining ®

sg‘(Pe)

r -
s+ I°(P)|. (25)

n = - rQ(P

v

0 9) 4nr

Note that this reduces to the non-relativistic MHD result
je - cr[gg‘(W)/énrz + H‘(w)J, obtained from { x B = cVI, when inertia and
electric field vanish (P.+ qy/c, Q + 0).

It i{s worth noting that I can be specified to be an arbitrary function of
Pe. Indeed, using the approximations under which 1 is a function of P_ alone

e % .
we can write ® '

H(Pe) - Y(Pe) i uduw(Pe,u Y, (26)

where Y(P,) 1s a drift surface average of ZntllYom(veo— rQ)|. We can find a

11




large class of functions W(Pe, u) that produce H(Pe), for example
W(Pg,u) = W _(P)8[u = WP |, (27)
with the condition Wo(Pe)u(Pe) = H(Pe)/Y(Pe).

III. Incorporation of Formalism into Numerical Code

In this section we will discuss the incorporation of our new pressure
formalism into the original computer code. The calculation of a single
equilibrium (or the first in a series of equilibria adiabatically connected)
proceeds as in our previous work,8°10 except that the density is calculated
using Eq. (25). For convenience we model the initial density, pressure

gradient, and K(Pe) = gg‘(Pe) as linear functions of Pe;

R(Pg) = K (Po = Bo)/(Py. = Py ), (28)
and
. 2
)it (Pe) 2H°(Pec Pe)/(Pec Peo) s (29)
vhere Pec is the value of Pe at the edge of the beam, and Peo is the
(conserved) minimun value of Pe at the center of the beam. Equation (29)
gives a quadratic pressure profile in Pe,
(Pec B Pe)z
nme,) =1 . (30)
8 (p. -P )2
fc 8o

4
.9
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K IR

the input parameters (of injected current and peak pressure), the constant K,
can be determined from Eqs. (25), (28)-(29). (Note that as in our previous
work, we choose Q(Pb) = constant.)

By integrating Eq. (25) over drift surfaces, we obtain

aN 1 a1 1 a gl
S w, "1 e, TN I -y O
Eii where the quantity (dN/dPe)GPe is the (conserved) number of particles between

;;; drift surfaces labeled dy Pe and Pe + GPe. In our {iterative solution of the

equilibrium equations defining the system we conserve the initial values of

dN/dPe, the beam“s equilibrium major radius R (location of VP, = 0), the C e

]
nininum Peo’ and the toroidal flux in the beam Ot. During the adiabatic
evolution of these equilibria, the change in pressure must be determined as

external parameters change adiabatically. __;;.

We begin with Eq. (18), defining the pressure in our ordering scheme

2132
I=1 - 8
Tr Yo(t)n(veo(t) = a(t))

juduW[Pgo)(r,z), ul. %;__.
° — .

To lowest order, I = H(Pe), but since Be, and (v,o - rQ) vary along a Pe

surface, let us redefine the pressure as

Znt ® .
I(P,) = < - > «f W(P_,u)udy, (32) .
e Y6m(ve° ) Pe ° 8 :
where < >P is an average over a Pa surface. e
8 R
The integral in Eq. (32) does not change in time (u, and P, are constants

]
of the motion), while the term inside the brackets changes as Yoo g, , and

the shape of PG surfaces change in time. Using Eq. (32) we can determine the

13
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evolution of 1(Pe,t) in time from

< 1 >

I(Pgrt) 822G, ¥ (E)F (Bgy(E) = w(®) Py(e)
1(Pg>0) 82(Pe,0) < 5 - >
Y, (02(8,,(0) = w(0)) P,(0)

(33)

vhere g = rBe, and w = rQ/c. During accelerationm, gg‘(Pe) {s determined from
Eq. (31), g is found by integration of gg”, and Eq. (33) gives‘I(Pe,t).
Since gg“ itself depends on'I(Pe) in Eq. (31), the cycle nmust be iterated
until it converges.

An interesting consequence of Eq. (33) is that pressure actually

increases during acceleration. A simple theory for an infinitely long

cylindrical beam would specify P, as a constant of motion during acceleration
by a longitudinal electric field. Therefore it would predict II ~ PV,
~pi/7 ~u/Y, or I ~ 1/y. It can be seen from Eq. (33) however, that p actually

scales as

n

(34)

1
T SO B W) ry

During acceleration vy increases, but (Be(t) - w(t)) decreases faster, with the
net effect that the pressure increases. This increase in pressure arises from '..J'

the fact that the parallel and perpendicular parts of the momentum are coupled 4{255:;

by the poloidal field and toroidal geometry. The tendency of Be - w to

decrease, {.e. for Q = dE/dPe to increase, is due to toroidal flux invariance ‘ -
as discussed in Ref. 9. It will be seen in our acceleration results that the },;gﬁf
increasing pressure drives the poloidal drift of the beam toward the Brillouin E}E:S&
limit as the beam accelerates. A brief explanation of how the pressure ‘<.- J

affects this drift may be useful.
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Let p denote distance from beam center. Then assuming a quadratic

dependence of Pe on p near the reference orbit we can write

P, =P, + (P

2,2
o ™ oo = Py )e/a%, (35)

8c

where a is the beam radius.

Substituting Eq. (35) into EBq. (30) gives

OgE. ___aumeany

T (o) = M (1 - p?/a%)? . (36)

The pressure gradient plays a defocusing role in poloidal force balance as can
be seen by writing the poloidal fluid equation of motion near the reference

orbit

4n
nyl—ﬁ-qg +_:I'B + opIO (37)
p Z ¢ 8 2 ’
Y na

vhere qE/Y2 represents the sum of the self electric and self magnetic

8,9

(ve x Bself) forces and v 1s the poloidal velocity. Equation (37) can be

rewritten in terms of the poloidal rotational frequency QD = v/p as

SYZH
2-13:% + mi + 2 2yzman -0, (38)
na m

where wp 1s the plasma frequency, and w, is the (non-relativistic) cyclotron

frequency in the toroidal field. From the solution of Eq. (38) . _::f
ST

W 1 U]

9y = Y pA 2y /wi - %(wi + SﬂoYz/nazm)’ (39) *

P P
P P L
. ' S
. LN P
A .

L
PP
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it can be seen that the maximum (real) value of QD is still QD = mc/ZY, the
Larmor frequency at Brillouin flow, but that the pressure serves to increase

QD in the slow mode, effectively adding diamagnetic drift to the E x B/y2

drift.

IV. Results

A. Decoupled Pressure Equilibria

In this first set of calculations, we hold certain macroscopic
quantities fixed and find beam equilibria for Adifferent values of pressure.

At each level of pressure, the beam energy at its center, the total number of
particles, the peak density, external toroidal field, and the toroidal flux in
the beam are the same, but the calculations are not adiabatically coupled.

Two sets of calculations are discussed here. In one case a 1 kA beam
with vy = 4, minor radius a = 2 em, and major radius R = 100 cm is injected
into a toroidal conducting chamber with circular cross section of minor radius
12.5 em, and major radius 100 cm (see Fig. 1). The applied vertical field B,
is initially set equal to 71.46 gauss but adjusts itself slightly to maintain ;:;:;J
the beam at its major radius. We set the field index n = 0.5 at beam .
center. The applied toroidal field Be is held at 2000 gauss. We varied the
pressure from 80 to 320 dynes/cmz. As a point of reference we estimate a R

= 0.3/T (kA) o .'1

pressure which corresponds to the Lawson-Penner emittance €1-p

rad-cm. Writing pressure in terms of the transverse velocity, N = Ymnvf, and

relating it to the normalized "emittance” €, = YBa vl/vo, (vo = beam velocity,

2

a = beam radius) we get N = mmv

2,..2.2
€ /yB“a®. Setting €, = €p-p gives Ty _p =
187 dynes/cm2 for the 1 kA beam. In an ummagnetized system, this emittance i

corresponds roughly to random transverse energy. In a magnetized system with

1
16 S
55

..........




TR P T emrp— Ty PRI T A S A A A A B

an immersed cathode, this random transverse energy 1is manifested as finite
Larmor radius (non-zero u) for the electrons.

The only quantity which responded significantly to this pressure
variation is the poloidal drift ﬁD averaged across the beam. This term is
plotted in Fig. 2(a) as a function of pressure. 1In Fig. 2(b) we show the
average Larmor radius associated with the pressure (this quantity is derived
- from the simple relations M = yanv
poloidal drift of the beam is calculated from V x B = 4n£/c, giving a drift

2 and L ymcvl/eBe). Note that the

velocity ;d = ¢(Vg x 8)/(4wnqr) in our notation. The drift frequency

associated with ;d is averaged across the beam and normalized to the Larmor

rotational frequency at the Brillouin limit QB = 4,41 x 109 sec'l.

Other quantities such as the vertical magnetic field B, necessary to
maintain R, the toroidal field % at beam center the poloidal flux at beam
center, and the profiles of the electrostatic potential ¢ and poloidal

flux ¢y, changed less than 0.2% over this range of emittances. The vertical

Jﬁ field increased to compensate for the Iincreased hoop forces, and the Be field

decreased because of the faster diamagnetic drift.

ol In our second case, we use a2 10 kA beam with the same geometrical

4 features (a, R, etc.). The vertical field is initially 120.1 gauss and the

applied toroidal field is set again at 2000 gauss. This time we varied the

pressure from 1. x 103 to 9. x 103 dynes/cmz, vhere ; p = 21.5 x 103

dynes/cmz. The Lammor frequency in this 10 kA case is 4.5 x 10?9 sec”l; 1t 1s

slightly larger than the 1 kA case because of a space charge depression of Y.
As in the previous case, the poloidal drift §D increases with the

pressure. The drift frequency is plotted in Fig. 3(a), with the Larmor radius

in Fig 3(b). All of the other diagnostic quantities mentioned above vary less

than 0.8%.

17
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The quantity which depends most sensitively on transverse pressure is
the poloidal rotation frequency of the electron cloud. This indicates that
! measuring this rotation frequency could be a very useful diagnostic of

transverse pressure. In HIPAC12 the rotation frequency was measured and used

as a diagnostic for total charge. In the modified betatron, because of the
. cancellation of self electric y magnetic field, the rotation frequency 1s much
E less sensitive to charge and much more sensitive to pressure. Thus if the

total charge could be measured in a different way (say by laser scattering),

then the rotation frequency could be used as a diagnostic for pressure.

B. Adiabatic Acceleration with Pressure

In this next series of calculations, we examine the effect of
pressure on beam acceleration in a modified betatron. The evolution of the
pressure during acceleration is calculated self-consistently according to the

formalism described in Section II. 1In other respects, however, the techniques

CaZ0, o G St

used here follow those of Refs. 8-10.
We compare several sets of calculations emcompassing a wide range of

injection currents (1-10 kA) and pressures (0 - "Lawson-Penner”). As before,

PRPRE ST SRR

- we inject a Y = 4 beam with minor radius a = 2 cm and major radius R = 100 cm

into a toroidal conducting chamber with minor radius 12.5 cm and major radius T

100 ecm. A variable external vertical Bz field is used to accelerate the beam

and hold it at its equilibrium radius, while an external toroidal B, field (of

]
2000 gauss) is used to provide beam equilibrium during the early, diamagnetic

stage of acceleration. Our calculations follow the acceleration until the

(A ARSI S FAFLIRVRCRRNG BRI

edge of beam comes close to reversing its diamagnetic rotatfon.

In each case, we choogse the initial pressure so that the beam”s

rotational frequency remains below the Brillouin limit (the Larmor frequency)

WAEY AN
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throughout the acceleration cycle. This is to ensure that our underlying
assumption of small poloidal centrifugal forces remains valid.

' In Fig. 4, we plot the rotational frequency §D of the beam

(calculated by averaging QD across the beam) during acceleration for various

0

injection currents. The beams were injected with I, = 1 kA, 3 kA and 10 ki,

|

and with initial pressures of 100, 800 and 8000 dynes/cm2 respectively. For
reference, the "Lawson-Penner pressure” for each case is 187, 1.R0 x 103, and
21.5 x 103 dynes/cm2 respectively. (These do not scale exactly as 12 because
the peak density obtained from the code does not scale exactly as I.) 1In

addition, the peak pressure as a function of beam energy is plotted in Fig. 5

for these injection currents. The rotational frequencies of Fig. 4 are

e e

plotted as ratios of the Brillouin limit frequency QL

decreases as the beam accelerates, but the trend towards the Brillouin limit

- eBe/(Zmyc) which

is a characteristic of beams with pressure. Zero pressure beams rotate with
frequencies that tend away from the Larmor frequency as the beam accelerates
(see Pig. 6). The increase in peak pressure with acceleration is responsible
for these effects. Higher pressure gradients (near the center of the beam)

produce larger defocusing forces and hence a faster drift (fp x ﬁe)

%: in the Bo field. As discussed in Section III, the increase of pressure with

:; acceleration i{s an unexpected result with a rather subtle cause (see

L

O Eq. (34)).

?Q The Larmor radius of the beam is not calculated independently in our

ii formalism, but from the conservation of magnetic moment u = nrine we conclude ;'c“;
:% that Ty changes very little during acceleration because the relative change ;; Ei
E§ in B, due to poloidal beam current is small. ' ;5;55
;: One interesting result we have observed i{s that the diamagnetic h

transition appears to occur at about the same energy for beams with pressure
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as those without, despite the larger average poloidal drift for "warm”
beams. For a 10 kA beam injected at y = 4, for instance, we find by
extrapolation that the edge of the beam undergoes the transition at about

Y = 13.0 for both the warm [no(: = 0) =8 x 103dynes/cmzj and the cold beam.

There are several reasons for this apparent anomaly. First of all, we note

l that the transition from diamagnetic to paramagnetic rotation is determined in
- our calculations by following the separatrix of the Pe surfaces as it

approaches the beam from the region outside the beam. In this region, the Pe B
I surfaces are also outside the direct influence of the pressure since pressure ._'_'

vanishes outside the beam. Indirectly, the presence of pressure influences
the region outside the beam because pressure produces an outward hoop force

o which increases the vertical field necessary to hold the beam at R, which in
turn increases the index focusing forces throughout the system. This effect
is very small as noted in our decoupled pressure section. Secondly, note that
the effect of pressure within the beam depends on distance p from beam

center. As seen in Eq. (36), our pressure has a quartic profile

M= no (1 - pzlaz)z. With this profile the pressure gradient is largest

- .

inside the beam and drops off to zero near the edge, producing larger

diamagnetic drift frequencies at the center of the beam than near the edge.
According to these arguments, and because the defocusing effect of

self-electric and self-magnetic fields (-~ E/Yz) is essentially the same for

I N
’

beams with and without pressure, we see that the diamagnetic-—paramagnetic

transition can occur at the beam”s edge at roughly the same beam energy.

S vl ST
L R

However, the pressure will undoubtably affect the actual drift reversal of the : }Q;ﬁf

particles inside the beam, which occurs after transition.
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v. Conclusions

In our analysis of pressure effects on the modified betatron we have
assumed that: a) the poloidal drift in the toroidal field is below the
Brillouin limit, b) that the parameters affecting the beam change
adiabatically, and c¢) that the parameters of the experiment obey the ordering
in Eq. (7). We find that, as expected, the pressure Iincreases the polofdal
drift frequency of the beam because of the larger defocusing force. In spite
of this increase, however, the diamagnetic to paramagnetic transition begins
at about the same energy as a cold beam during acceleration because of the
limited scope of the pressure outside the beam. Although our calculations
cannot treat the diamagnetic to paramagnetic transition, we speculate that the
actual transition process will be much different in the warm beam case. We
also find, contrary to simple estimates, that the pressure increases rather
than decreases during acceleration.

Finally, we remark that the sensitive dependence of the poloidal drift
frequency on the pressure could be used as a diagnostic of transverse pressure

by employing the same techniques to measure beam rotation as used in HIPAC.
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Fig. 4 Poloidal drift during beam acceleration for various injection
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respectively.
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Appendix A: Conservation of Magnetic Moment
To investigate the conservation of the magnetic moment u in the ordering
given in EBqs. (7)-(14), we consider the two possible effects that might hreak
the invariance of u. The first is the variation of the relativistic cyclotron
frequency uc/Y due to drift motion. That {8, we nmust estimate swct/mct’
where § represents the variation because of guiding center drift into a field

imhomogeneity within one relativistic cyclotron period and W wcly.

We first write Gwcr/mcr = Gwc/mc - 8y/Y. Since B, = g(Pe)/r, we find

8
Sw Y
c s V4
@ T® T ar (A-1)
c
which 1s of order 53-6. (8r 13 the change in radius r during one cyclotron
period.) Next, using Ymi +q¢ = E(Pe), we find ;ﬁif .
°
v,Y LA
Q¢ _ (a _a¢ d _ 3
9y ~ S A (A=) e
yme yrc c - ]
-
vhere the first of the two factors on the right in (A-2) 1is due to the e

relative variation of ¢ along a drift surface due to toroidal effects and the
second factor is the angle swept out along the drift surface in one cyclotron

period. From q¢/ymc2 ~1l/y ~ el+6 we see that (GY/Y)d is of order 54. S
The other factor which might influence invariance of the magnetic moment

is variation of the relativistic cyclotron frequency mc/Y over one gyroradius

across the drift surfaces. Again we have two contributing factors, the first ;& .
of which is :_
(Efg) ~ EEQ - S[S(Pe)] =& (A-3) le{;}
w, '8 Be gZPeS R ® ‘

2 :
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The first term is due to the diamagnetic depression from the poloidal beam

currents, and the second term is due to the overall 1/r dependence of B

e 1]
= f.e. By = g/r. We find 8g/g ~ (Ag/g)(p/a), where Ag/g is the relative
%} depression in self By across the whole beam, and is of order 52+26.
=
o Therefore, we find 8g/g ~ 28/3+25. Also, 8r/R ~ (p/a)(a/R) ~ e8/3. Finally,
we obtain
Yy e _p (A~4)
Y s 2 a
Yme

where the first factor is the drop in electrostatic potential from the center

to the edge of the beam, of order 1/y ~ el+6. Therefore, we find

5/3+
(8v/Y), ~ ¢ /348

g

Sumarizing, we find that the total variation smcr/mcr over one cyclotron
period is dominated by the variation in y across the drift surface because of
the finite Larmor radius of the electrons, and is order e5/3 + 6; this 1s
- small for § in the range of interest (-1/3 < § < 1/3) so that the magnetic

moment is a good invariant.
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