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ACCELERATION OF AN ELECTRON RING IN A MODIFIED

BETATRON WITH TRANSVERSE PRESSURE

I. Introduction

Interest in the modified betatron derives in part from its promise as a

1-4high current accelerator. It is designed to overcome the current

limitations in a conventional betatron, where the defocusing self-field forces

(which scale like Ely 2, where E is the self-electric field, and, y is the

relativistic factor) must be less than the focusing forces from the external

magnetic field index n1 (0 < n < 1). The conventional betatron then has two

viable injection regimes - one where the injected energy is low and the

current (or density) is low, and the other, where the current (or density) is

high and the injected energy is high. The inclusion of an external toroidal

field, B8e, in the modified betatron allows injection and trapping at lover

energy and high current (1-10 kA). Other theoretical studies of the behavior

of this accelerator have either used particle simulations to determine the

self-consistent motion,5' or have assumed a given density and current profile

2,3,5,
and calculated the motion of test particles in fixed fields.2''' The

drawback of particle simulations is the large computational cost, particularly

because the time scales of acceleration and self-flux diffusion are on the

order of 104_ -3O sec while the time scale of one particle cyclotron orbit

is on the order of 10 10sec. The analytic technique is limited because of .

the assumed charge and current profile.

In our previous work,8 1 a theoretical technique is developed to extend

the methods mentioned above and to analyze both the self-consistent

equilibriump in the modified betatron and the evolution of this equilibrium as

external parameters are varied slowly compared to a drift period. These
Manuscript approved August 2, 1984.



calculations assume a cold (zero pressure) beam. In this paper, we expand our

theoretical technique and analyze the evolution of equilibria in the modified

betatron with transverse pressure.

An investigation is also made to determine if the presence of pressure

causes any qualitative changes in behavior which can be measured easily in the

experiment; such effects may indicate a useful diagnostic measurement of beam

pressure. The effect of random transverse motion appears as a pressure

gradient term in the force balance equation in our formalism in a limit that

is applicable to current designs for modified betatrons.

As will be shown in the section on our new formalism, we find that many

of our earlier results still hold to first order, namely that the fluid

canonical angular momentum, Pe' characterizes the equilibria (because many

important fluid quantities are functions of Pe' and because surfaces of

constant P8 are drift surfaces of single electrons). The pressure n manifests

itself as an additional defocusing force on the beam (with force density

211/a), tending to increase its minor radius a. The pressure also produces

an outward "hoop force" (with force density -H/R), tending to increase the

major radius R of the beam. These two effects can be seen in our results

by: a) an increase in the poloidal F x Bt drift on the beam (where Fp
p

represents the total poloidal defocusing force, and Bt the toroidal magnetic

field), and b) a slight increase in the vertical field Bz necessary to hold

the beam at its equilibrium major radius R.

We have performed two different classes of calculations. The first class

involves a series of separate equilibria with similar beam energies but

various levels of pressure. The other class involves the calculation of a

series of adiabatically coupled equilibria during acceleration. These will be

discussed in Section IV.

2
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In Section 1I our new fluid model, including pressure, is presented.

This is followed in Section III with a description of how the new model is

incorporated into the numerical code, as well as a qualitative discussion of

the effects of pressure on the system. Next, we discuss our results in

Section IV and summarize in Section V.

II. Fluid Equations and Betatron Ordering

In this section we derive fluid equations for a warm relativistic

electron beam in a modified betatron. We derive an ordering scheme for

diamagnetic equilibria which indicates the conditions under which the

transverse thermal spread of the beam can be described by a scalar pressure,

and the conditions under which this pressure can be assumed to be constant on

the fluid P surfaces.

The first moment of the relativistic Vlasov equation for f(x,p,t) is
1 ......

" (n<p>) + V*jfv. d p - nq (E + <v> x B), (1)

which can, with the aid of the continuity equation an/at + Von <v> 0 0, be

written in the form

I

n <v>. - nq (E + <v> X) - .T, (2)

33for equilibria (a/at 0), where y =mv, n -Jfd p, n<v> - Jfvd p,

n <> - Jfed3 p,

Jd3 pf / '..... .....

3
Jd pf/Y 3(3a)
Id . dpf/* .
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m <v>

Zf77 (3b)

and

i.. -i

A manifestly covariant formulation of the fluid equations has recently been

described by Newcomb.
11

The class of equilibria we wish to describe have distribution functions

of the form

f(H,Pe,u) - W(Pe,P) 6[H - E(Po)J, (5)

2where H is the particle energy ymc + q , P6 - ymrv0 + q*/c is the canonical

angular momentum (4 - rA6), and

- .2

1.a(,V -(6)

2B .(r. Z)

• .is the first adiabatic invariant. Here, (r,e,z) is a cylindrical coordinate

system with z the vertical direction and 9 referring to the toroidal symmetry
S

direction. Also, I refers to components perpendicular to the toroidal

magnetic field B90. The conditions under which U is invariant are discussed ..-.

in Appendix A. This distribution function has a distribution of magnetic

moment P and contains the cold beam case of Refs. 8 and 9 as a special case

W(P9,) - Wo(P) (1)

In general, a distribution such as (5) cannot be required to have only
p. 5

transverse thermal spread, in spite of the delta function in energy, because

4 I. ' "-

* . . . . . .... . . . . . . . . . . . ... .- . . . . . . . . . . . . . . . . . . . . . . . .. - . .
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the distribution of U. That is, no element of the stress tensor g given in

Eq. (4) is exactly zero unless the distribution is cold. Nevertheless, there

is an ordering scheme appropriate to the modified betatron in which 3 is

isotropic in the poloidal plane (r,z). Defining w to be the plasma frequencyp

and w to be the (nonrelativistic) cyclotron frequency in the toroidal field,
c0

Bv the externally imposed vertical field, and wcv- eB v/nc, we take

2

. 00(), (7a)2

a OC211(7b)

So(C-), (7c)

Bv O1-6 (7d)
jiO(C (7dB _

Yc - 0(1), (7e)

cv

a 0(C2/3). (7f)a

Here, p is the electron gyroradius in the toroidal field, a is the minor

radius of the beam and R the major radius. Since this ordering must describe -:

the beam from injection (y - 4) up to the diamagnetic-paramagnetic

transition (y > 15), and since the ratio of eE/y to focusing forces scales

as 1/y , the extra parameter 6 is required for the ordering to be valid

throughout the acceleration. For parameters relevant to the NRL modified

betatron, c - 1/10; also, 6 -1/3 corresponds to injection and 6 - 1/3

corresponds to transition.

5 O9". "~ .
....................................... ......--. -
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Note that the scalings with 6 in Eq. (7) reflect the invariants of motion

during acceleration or any adiabatic evolution of the beam. In particular,
2 2
(/W is independent of time (i.e. of 6) because conservation of the total

toroidal flux 0 through the beamS ,9 implies that the density remains

approximately constant, and the acceleration scheme we are concerned with does

not involve changing the external toroidal magnetic field. (The self magnetic

field is maller in this ordering.) Similarly, relation Eq. (7e) represents

the fact that y is proportional to Bv during acceleration, due to P

conservation. Finally, since u is the flux through the gyro-orbit, relation

Eq. (7f) follows from p/a - (/0) 1 /2. Also, Eq. (7f) guarantees that the

electron velocity about the guiding center pwc /y is of the same order as the

2
drift velocity cE/y B at injection, a plausible assumption for most injection

schemes. In fact, for this ordering we find that the drift and gyration

velocities obey vd/C C 2+ 26 and v /c - 6+5/3. With this ordering, we find

that the forces eE/y ev Be/c, the external focusing forces, and the

pressure gradient are in relation

i1+36. 1+36e 2 C28+4/3 () 

We see that the first two forces dominate at injection (S = - 1/3), whereas

all four are of the same order at transition (6 - 1/3). Note that for

intermediate times, -1/3 <6<1/3, the pressure gradient dominates focusing

forces. Also note that qo/ymc2 _ % 1 £ 1/y -+6

Using this ordering we first estimate the distribution of y which is

due to the distribution of U shown in Eq. (5). Assuming the energy

E(Pe) E o + S(P - Peo8 as in Ref. 8, R - E (P from Eq. (5) and the

definition of y give

6
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0
2-mrl - (rz E - Po+ qlVY/c - q , (9 a) g

2 2 2 2 )2 / 2 c2
y =1+ p8 /m c + (Rid +  (9b c 9b

o. o

0
where p8 = YMvi ' 1d is the momentum associated with the guiding center drift,

and 2,g is the momentum associated with gyration about the guiding center.

2 2+26 2 4/3From Eq. (7) we find pId - g the latter constant since it is
essentially magnetic moment. Putting Eqs. (9) in dimensionless form by

2defining qe = P/ Imc, , = 21/mc, K H(rz)/mc , and w = rn/c and combining,

we find

1 + q + q2 = (K + Lqe) 2 . (10)

2Expanding for q <C, K>>l [from Eq. (7), these quantities scale as

and e , respectivelyl, i.e. treating 1 + q as a perturbation in Eq.

(10), we find

q o =  - (11a)

2 p

qK2 (11b)

K

Y T-- (11c)

w(l + q2 )

2K

Therefore, the thermal contribution to 6q8 and 
6y, Sq - /2K and

7

6':3
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t  - (lAg/ 2K, satisfy

q t yt

q 60  YOe

10/3 + 26 (12)

6q8 q~y (1 .~2 2Ao6V e  Sq q oSY (I -W)2(1 + q~t0 (1 1  (13)
0 Yo 2K2

the thermal contribution to which has

2Iv et qJ..g

c K2.

13 + 26. (14)

2 2 + 26 2 4/3

* Using qId e q~ lg e we find that the drift contributions to

6qe, 6y and Sve are smaller than the thermal contributions for 6> -1/3. The

. issue of conservation of u in this ordering is addressed in Appendix A.

We now use the relations Eqs. (11)-(14) to evaluate the stress tensor n-

of Eq. (4) for equilibrium distribution functions of the form Eq. (5). First,

noting d3 p - (B/r) didx dP, where X - tan-l[(p - P -p is the
-." r r :

* gyrophase, we find that the density is given by

B dP W(Pi) 6[ 8  P(r,z,p~)n 0 jdud X e eu) 6 [Pe Pe8  
)  (15)

where P. - 2 is the solution of = E(P found in Eqs. (9) -(11)

. for the special case 0 = dE/dP - const. For this case, we find

• . ~. -. .:

.*, _.*..,*,-_, -. _*.*_..-..._..*. .- .... . ,- , . .



2 -(0)

Pe(r,z,p) P8  (r,z) + mcr~q8 , (16)

where P(O) neglects the drift and thermal corrections in Eq. (9). From the

above ordering, the thermal and drift contributions to P and v eare

negligible and we find

- J diuW[P 0 (r,z), 1j]. (17)
eo 0

Also, using this ordering we find that < p> -yommv> in Eq. (12) and that

the two diagonal poloidal components of the stress tensor are

rr zz

2rB

YIIve -IOT0

rz ir

22B~ dP8

M jdd in XcooX jY ?v8 -ril) (eu

x Pe - 6 (r, z, p.)j (19)

If we neglect the thermal and drift corrections to pgy, and veg these terms

vanish by the integration over the gyrophase x. By siilar considerations we

f ind IT r z 11r n1: 11 0. Thus, V- !U(r,z), wi~th H -'Rr

zz

9
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Using these conclusions, we find that the toroidal component of the

equation of motion, Eq. (2)

_;- n = _ nq _ r_ 2nv e r -- Vp +ze . V41 reT (20)

gives

v (?veo + q/c)-0. (21)

Since the poloidal velocity v is Ip/ne = (c/4wne)Vg x VO
-p

(B = V* x VO + gVG), and since the quantity in parentheses in Eq. (21) is

, we find, as in the cold fluid case, Ref. 9

g g (p O)), (22)

The poloidal components of the equation of motion, neglecting poloidal

centrifugal force, are

0 - eo Vr -qV +r O) _ VI-

r r4im2 e n
(23)

-myo - mVoV(Voyo) - qV - g 7 p(O) i-.
r e eo eco 42 e n-41nr

To lowest order in e, H, given by Eq. (18) is a function of P9
2  2/ 2

Specifically, the relative variation of B- =

and the relative variation of y is eA*/ymc , where Af is the variation

of * along a P surface. For highly elongated drift surfaces, as can occure
near transition,8 '9 the quantity scales as y-1 ~ 1+ ISee Appendix Al. For

circular flux surfaces, the relative variation of * along a P8 surface (due to

10 I0 "":-S

..........................................................................
°.. . . . . . . . . . . .



the toroidally generated displacement between these surfaces) is of order
a/ 2 3+6 r cls-aR so S/ scales as . Finally, the denominator v -rQ scales

2as 6r/r c as long as the two terms which make up the denominator do not0

nearly cancel. Thus the relative change in pressure along a P surface is at1+6
worst e • In fact, away from transition, the flux surfaces are nearly

always circular so the relative pressure variation is actually much less.

Since the pressure itself is not a dominant effect except near transition

(see Eq. (8)), the variation of H along a P0 surface is negligible. Thus

I(r,z) - 11(P 9). Using these relations, which imply v 0oV(V 0 yoo) c Vy and

VII 111(P O )V~e) we find (dropping the o superscripts)

v dE gg'(PO) 1'(P0)e Ve 1"-2- - n V!'e. (24)
r 9P 41rnr2n

We can use this equation to solve for the density, obtaining

rgg'(P 6 ) .-.
n - 12 + 111(p)J. (25)

Note that this reduces to the non-relativistic MHD result

* =cr[gg(*i)/4wr 2 +IV(i)J, obtained from x B = cVll, when inertia and

electric field vanish (P + q*/c, S1 + 0).

It is worth noting that I can be specified to be an arbitrary function of

P Indeed, using the approximations under which I is a function of P alone

we can write

11(p dW(, U ), (26)
0

2S
where Y(P is a drift surface average of 2wB /[Yom(vo- r . We can find a

. °

• . _" 2~~. .'... .-.....-.. ,... .. ............ . ............

0 o . ..

-. ... - . -. -. .--. ~ --A- 7-- ~ . ~ * ~ -



large class of functions W(P 8 , V*) that produce 1E(Pe5 for example

W(P98 u) Wo (P)sd[u - u(Pe)1, (27)

with the condition W (P );(Pe )/Y(
0S

1II. Incorporation of Formalism into Numerical Code

In this section we will discuss the incorporation of our new pressure

formalism into the original computer code. The calculation of a single

equilibrium (or the first in a series of equilibria adiabatically connected)

proceeds as in our previous work,8 - 10 except that the density is calculated

using Eq. (25). For convenience we model the initial density, pressure

gradient, and K(Pe) - gg'(P8 ) as linear functions of P9 ;
ef -

K(Pe) Ko(Pe - P - Peo, (28)

and

'Pe =-2no(Pec P MlPec Peo (29)

where P ec is the value of P8 at the edge of the beam, and P 0o is the

(conserved) minimum value of P8 at the center of the beam. Equation (29)

gives a quadratic pressure profile in PV,

( P e P )5 2 "

O~c a11(p) = 0° * (30)(Pec Po 5 " :

~c -o

Since the maximum density n(Peo) and maximum pressure 11 are determined from

12
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the input parameters (of injected current and peak pressure), the constant Ko

can be determined from Eqs. (25), (28)-(29). (Note that as in our previous

work, we choose Q(P8) 8 constant.)

By integrating Eq. (25) over drift surfaces, we obtain

dN 1 dl 1 dl 2 (
g go T T (v - rn) 2 (PV) ( - r S1

where the quantity (dN/dPo)SP0 is the (conserved) number of particles between p

drift surfaces labeled by P8 and P + SP.. In our iterative solution of the

equilibrium equations defining the system we conserve the initial values of

dN/dP8 , the beam s equilibrium major radius R (location of VP, - 0), the

minimum P 0o and the toroidal flux in the beam *0t During the adiabatic

evolution of these equilibria, the change in pressure must be determined as

external parameters change adiabatically.

We begin with Eq. (18), defining the pressure in our ordering scheme

2nB
2wB 2 6. (0)

fl - 8 Id WIP(°)r,-) ul.-
rr Y (t)m(Vo(t) - rg(t)) oudpP u

0 8o

To lowest order, H = 1(P8), but since B8 , and (v3  - ra) vary along a P8

surface, let us redefine the pressure as

2
- 27rB O

-(P 8) (.> .r J W(Peid Wdt, (32)
Ye( 0 - QP 0

where < >P is an average over a P8 surface.

The integral in Eq. (32) does not change In time (pi, and P8 are constants

-of the motion), while the term inside the brackets changes as y0  , f' and

the shape of P0 surfaces change in time. Using Eq. (32) we can determine the

13



* evolution of I (Pet) in time from

1

2 < 2>
I(Pet) g (pt) YO(t)r (Beo(t) - W(t)) PO(t) .

-(33)
T(po) g2(POo) < > , (33)

YO (O)r2 ($8(O) - W(O)) 1(0)

where g - rB0, and w - rn/c. During acceleration, gg'(P) is determined from

Eq. (31), g is found by integration of gg', and Eq. (33) gives (P,,t).

Since gg' itself depends on'T (PO) in Eq. (31), the cycle must be iterated

until it converges.

An interesting consequence of Eq. (33) is that pressure actually

increases during acceleration. A simple theory for an infinitely long

cylindrical beam would specify p1 as a constant of motion during acceleration

by a longitudinal electric field. Therefore it would predict H ' Plv"

2-p1/y IY /y, or H 1/y. It can be seen from Eq. (33) however, that p actually

scales as

Y(t) (%(t) - W(t)) P9  (34)

During acceleration y increases, but (s (t) - w(t)) decreases faster, with the

net effect that the pressure increases. This increase in pressure arises from

the fact that the parallel and perpendicular parts of the momentum are coupled

by the poloidal field and toroidal geometry. The tendency of - W to ... '

decrease, i.e. for Q = dE/dP to increase, is due to toroidal flux invariancee8
as discussed in Ref. 9. It will be seen in our acceleration results that the

increasing pressure drives the poloidal drift of the beam toward the Brillouin

limit as the beam accelerates. A brief explanation of how the pressure

affects this drift may be useful.

14
.S .. .
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0

Let P denote distance from beam center. Then assuming a quadratic

dependence of P on p near the reference orbit we can write

e P + (P Peo)p2 /a2  (35)".
o O° 00 ,

where a is the beam radius.

Substituting Eq. (35) into Eq. (30) gives

H() ll(1 =p 2 /a 2 ) 2 • (36)

The pressure gradient plays a defocusing role in poloidal force balance as can
S

be seen by writing the poloidal fluid equation of motion near the reference

orbit

2 411 .v qE 0vo...my+! + --B8 + 0, (37)
y na

where qE/y2 represents the sum of the self electric and self magnetic

(v 8 x Bself forces8 ,9 and v is the poloidal velocity. Equation (37) can be

rewritten in terms of the poloidal rotational frequency n - v/p as

2E

32 2~ 811 -
2ya; + 2 + c D (38)

na m

where wp is the plasma frequency, and wc is the (non-relativistic) cyclotron

frequency in the toroidal field. From the solution of Eq. (38)

°ac Ty /W7 2 2 2 8E 2/n2) (39) ""'" '

-Y -( + 1Y /na m)' (9c Y p 0
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it can be seen that the maximum (real) value of 9 is still W 
=  /2y, the

Larmor frequency at Brillouin flow, but that the pressure serves to increase

in the slow mode, effectively adding diamagnetic drift to the E x B/y 2

drift.

S

IV. Results

A. Decoupled Pressure Equilibria

In this first set of calculations, we hold certain macroscopic

quantities fixed and find beam equilibria for different values of pressure.

At each level of pressure, the beam energy at its center, the total number of

particles, the peak density, external toroidal field, and the toroidal flux in

the beam are the same, but the calculations are not adiabatically coupled.

Two sets of calculations are discussed here. In one case a 1 kA beam

with y = 4, minor radius a - 2 cm, and major radius R - 100 cm is injected

into a toroidal conducting chamber with circular cross section of minor radius

12.5 cm, and major radius 100 cm (see Fig. 1). The applied vertical field B

is initially set equal to 71.46 gauss but adjusts itself slightly to maintain

the beam at its major radius. We set the field index n = 0.5 at beam

center. The applied toroidal field B is held at 2000 gauss. We varied the

pressure from 80 to 320 dynes/cm2 . As a point of reference we estimate a

- pressure which corresponds to the Lawson-Penner emittance eLP = 0.31 (kA)

. rad-cm. Writing pressure in terms of the transverse velocity, I - ymnv1 , and

relating it to the normalized "emittance" £n = yBa vI/vo, (vo - beam velocity,

a - beam radius) we get - nmv2 n2 /y 2a2 . Setting n C gives EL-P

- 187 dynes/cm2 for the I kA beam. In an unsagnetized system, this emittance

corresponds roughly to random transverse energy. In a magnetized system with •

,16.- .
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an immersed cathode, this random transverse energy is manifested as finite

Larmor radius (non-zero j) for the electrons.
pP

The only quantity which responded significantly to this pressure

variation is the poloidal drift ~Daveraged across the beam. This term is

plotted in Fig. 2(a) as a function of pressure. In Fig. 2(b) we show the

average Larmor radius associated with the pressure (this quantity is derived

2
from the simple relations H = ymnv1  and rb " ymcv/eB8). Note that the

I b

poloidal drift of the beam is calculated from V x B - 4wr/c, giving a drift -

velocity vd - c(Vg x e)/(4wnqr) in our notation. The drift frequency

associated with v is averaged across the beam and normalized to the Larmor
d

rotational frequency at the Brillouin limit 91B = 4.41 x 109 sec -1.

L
Other quantities such as the vertical magnetic field B necessary to

maintain R, the toroidal field at beam center the poloidal flux at beam

center, and the profiles of the electrostatic potential * and poloidal
flux *, changed less than 0.2% over this range of emittances. The vertical

field increased to compensate for the increased hoop forces, and the 3 field

decreased because of the faster diamagnetic drift.

In our second case, we use a 10 kA beam with the same geometrical

features (a, R, etc.). The vertical field is initially 120.1 gauss and the

applied toroidal field is set again at 2000 gauss. This time we varied the

pressure from 1. x 103 to 9. x 103 dynes/cm2, where I L-p 21.5 x 10

dynes/cm2 . The Larmor frequency in this 10 kA case is 4.5 x 109 sec 1; it is

slightly larger than the 1 kA case because of a space charge depression of y.

As in the previous case, the poloidal drift D increases with the
D

pressure. The drift frequency is plotted in Fig. 3(a), with the Larmor radius

in Fig 3(b). All of the other diagnostic quantities mentioned above vary less

than 0.8%.
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The quantity which depends most sensitively on transverse pressure is

* the poloidal rotation frequency of the electron cloud. This indicates that

measuring this rotation frequency could be a very useful diagnostic of

* transverse pressure. In HIPAC1  the rotation frequency was measured and used

* as a diagnostic for total charge. In the modified betatron, because of the

cancellation of self electric y magnetic field, the rotation frequency is much

* less sensitive to charge and much more sensitive to pressure. Thus if the

total charge could be measured in a different way (say by laser scattering),

then the rotation frequency could be used as a diagnostic for pressure.

P B. Adiabatic Acceleration with Pressure

In this next series of calculations, we examine the effect of

pressure on beam acceleration in a modified betatron. The evolution of the

-pressure during acceleration is calculated self-consistently according to the

formalism described in Section II. In other respects, however, the techniques

used here follow those of Refsa. 8-10.

We compare several sets of calculations encompassing a wide range of

* injection currents (1-10 kA) and pressures (0 - "Lawson-Penner"). As before,

*we inject a y -4 beam with minor radius a -2 cm and major radius R -100 cm

into a toroidal conducting chamber with minor radius 12.5 cm and major radius

100 cm. A variable external vertical B field is used to accelerate the beam

* and hold it at its equilibrium radius, while an external toroidal Be field (of

2000 gauss) Is used to provide beam equilibrium during the early, diamagnetic

stage of acceleration. Our calculations follow the acceleration until the

edge of beam comes close to reversing its diamagnetic rotation. .:.

In each case, we choose the initial pressure so that the beam's

rotational frequency remains below the Brillouin limit (the Larmor frequency)

18*
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I

throughout the acceleration cycle. This is to ensure that our underlying

assumption of small poloidal centrifugal forces remains valid.
I

In Fig. 4, we plot the rotational frequency Q of the beam

(calculated by averaging %across the beam) during acceleration for various

injection currents. The beams were injected with 10 - 1 kA, 3 kA and 10 kA,

and with initial pressures of 100, 800 and 8000 dynes/cm2 respectively. For

reference, the "Lawson-Penner pressure" for each case is 187, 1.RO x 1O3, and

21.5 x 103 dynes/cm2 respectively. (These do not scale exactly as 12 because

the peak density obtained from the code does not scale exactly as I.) In

addition, the peak pressure as a function of beam energy is plotted in Fig. 5

for these injection currents. The rotational frequencies of Fig. 4 are

plotted as ratios of the Brillouin limit frequency nL . eB0/(2myc) which

decreases as the beam accelerates, but the trend towards the Brillouin limit

is a characteristic of beams with pressure. Zero pressure beams rotate with

frequencies that tend away from the Larmor frequency as the beam accelerates

(see Fig. 6). The increase in peak pressure with acceleration is responsible .'-

for these effects. Higher pressure gradients (near the center of the beam)

- produce larger defocusing forces and hence a faster drift x
p

in the B8 field. As discussed in Section III, the increase of pressure with

acceleration is an unexpected result with a rather subtle cause (see

Eq. (34)).

The Larmor radius of the beam is not calculated independently in our

* 2
formalism, but from the conservation of magnetic moment 4 - 1TrLBO we conclude

that rL changes very little during acceleration because the relative change

in B du' to poloidal beam current is small.
e

One interesting result we have observed is that the diamagnetic

transition appears to occur at about the same energy for beams with pressure

19
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as those without, despite the larger avyerage poloidal drift for "warm"

beams. For a 10 kA beam injected at y - 4, for instance, we find by

extrapolation that the edge of the beam undergoes the transition at about

3 2
y 13.0 for both the warm In(t -0) -8 x 10 dynes/cm J and the cold beam.

There are several reasons for this apparent anomaly. First of all, we note

Ithat the transition from diamagnetic to paramagnetic rotation is determined in
our calculations by following the separatrix of the P8 surfaces as it

approaches the beam from the region outside the beam. In this region, the

surfaces are also outside the direct influence of the pressure since pressure

vanishes outside the beam. Indirectly, the presence of pressure influences

the region outside the beam because pressure produces an outward hoop force

which Increases the vertical field necessary to hold the beam at R, which in

turn increases the index focusing forces throughout the system. This effect

is very small as noted in our decoupled pressure section. Secondly, note that

Ithe effect of pressure within the beam depends on distance p from beam
center. As seen in Eq. (36), our pressure has a quartic profile

aI - R 0 (1 - 0 /a)2  With this profile the pressure gradient is largest

I inside the beam and drops off to zero near the edge, producing larger

*diamagnetic drift frequencies at the center of the beam than near the edge.

According to these arguments, and because the defocusing effect of

2
- self-electric and self-magnetic fields (-Ely )is essentially the same for

beams with and without pressure, we see that the diamagnetic-paramagnetic

* transition can occur at the beam's edge at roughly the same beam energy.

However, the pressure will undoubtably affect the actual drift reversal of the

particles inside the beam, which occurs after transition.

* 20
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V. Conclusions

In our analysis of pressure effects on the modified betatron we have

assumed that: a) the poloidal drift in the toroidal field is below the

Brillouin limit, b) that the parameters affecting the beam change

adiabatically, and c) that the parameters of the experiment obey the ordering

in Eq. (7). We find that, as expected, the pressure increases the polo4.,ial

drift frequency of the beam because of the larger defocusing force. In spite

of this increase, however, the diamagnetic to paramagnetic transition begins

at about the same energy as a cold beam during acceleration because of the

limited scope of the pressure outside the beam. Although our calculations

cannot treat the diamagnetic to paramagnetic transition, we speculate that the

actual transition process will be much different in the warm beam case. We

also find, contrary to simple estimates, that the pressure increases rather

than decreases during acceleration. S

Finally, we remark that the sensitive dependence of the poloidal drift

frequency on the pressure could be used as a diagnostic of transverse pressure

by employing the same techniques to measure beam rotation as used in HIPAC.
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Appendix A: Conservation of Magnetic Moment

To investigate the conservation of the magnetic moment u in the ordering

given in Eqs. (7)-(14), we consider the two possible effects that might break

the invariance of u. The first is the variation of the relativistic cyclotron

frequency w /y due to drift motion. That is, we must estimate Sw /Wc cr cr'

where 8 represents the variation because of guiding center drift into a field

iuhamogeneity within one relativistic cyclotron period and wcr - W C/"

We first write Sw /w 8 SW 1w - 8y/y. Since B = g(P )/r, we find
cr cr c c 0

aw c 8r VdY
(-) S r- -7' (A-1)
Wc d R
c c

3-8which is of order e - . (Sr is the change in radius r during one cyclotron

period.) Next, using 'ym + qO - E(P8 ), we find

cS

S qSO
G -) -1T a V-7) (A-2).

d 2 R A2Yy dmc c

where the first of the two factors on the right in (A-2) is due to the S

relative variation of * along a drift surface due to toroidal effects and the

second factor is the angle swept out along the drift surface in one cyclotron

2 4
period. From qo/mc2  1/y. e1 we see that OY/Y)d is of order €4

The other factor which might influence invariance of the magnetic moment

Is variation of the relativistic cyclotron frequency w /y over one gyroradius
c

across the drift surfaces. Again we have two contributing factors, the first

of which is

Swc _e = ag(Pe)1 Sr
-~ o ( e )] S -. (A-3)
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The first term is due to the diamagnetic depression from the poloidal beam

currents, and the second term is due to the overall 1/r dependence of B,

i.e. B. - g/r. We find 6g/g - (Ag/g)(w/a), where Ag/g is the relative

2+26
depression in self B across the whole beam, and is of order e

~8/3+265 6rR-(/)aR 8/3Therefore, we find 6g/g - Also, Sr/R (0/a)(a/R) e Finally,

we obtain

(&W') eA as (A-4)y"g 25
Y 9 fmc

where the first factor is the drop in electrostatic potential from the center

to the edge of the beam, of order l/y . Therefore, we find

(6y/y)g 5/3+6

Summarizing, we find that the total variation 6w W over one cyclotroncr cr

period is dominated by the variation in y across the drift surface because of

5/3 + 6
the finite Larmor radius of the electrons, and is order e ; this is

small for 8 in the range of interest (-1/3 < 8 < 1/3) so that the magnetic

moment is a good invariant.
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