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ABSTRACT

A continuum structure function y is a nondecreasing mapping from

the unit hypercube to the unit interval. Minimal path (cut) sets

of upper (lower) simple continuum structure functions are introduced

and are used to determine bounds on the distribution of y(X) when X

is a vector of associated random variables and when y is right (left)-

continuous. It is shown that, if y admits of a modular decomposition,

improved bounds may be obtained.

KEYWORDS: Continuum structure function; weak coherency; minimal path set;

minimal cut set; upper simple; lower simple; module;

modular decomposition; associated random variable.

..

.O

1'
, .,.%ou

*~~~~~~- or -r.9* - * '4 ~ ~ . '~ d



1. IN'ROII'CTION

Let C = {l,2,...,nl denote a set (of components) of finite cardinality

n. A continuum structure function (CSF) is a nondecreasing mapping

y: [0, 1]n [0,1]; we assume, without loss of generality, that y(O) = 0

and y(l) = I where a denotes (c,...,a) E A = [0 ,i]
n . Such a function.

is said to be weakly coherent if sup[y(li,X) - Y(OiX)] > 0 for each
XEA

i E C where (6iX) denotes (X ,...,X i-,6,X i+l,..,X ). See Baxter

(1984a,b) and Block and Savits (1984) for further details of CSFs.

In this paper, we show how minimal path (cut) sets of CSFs, subsets

of C which are necessary and sufficient for a CSF to attain any value

in its image when the state of every other component is zero (one), can be

used to determine bounds on the distribution of y(X) when the X.'s are

associated random variables. We also continue our study of modules of

CSFs (Baxter and Kim, 1984) by showing how the assumption of a modular

decomposition yields uniformly improved bounds, thereby extending the

well-known results for binary structure functions (Barlow and Proschan

(1975), Chapter 2) to the continuum case.

We shall make use of the following notation:

SY < X means that Y < X for i=1,2,. .. ,n, but Y # X

IAI denotes the cardinality of A

Im y denotes the image of y

SX P  denotes {XiEXIiEPcC}
1 I

P denotes {XEAiy(X) = 1 but y(Y) < I for all Y < XI

K0  denotes {X EAIy(X) = 0 but y(Y) > 0 for all Y > X}

n n

.-,. J Xi denotes 1 - (l-Xi.
i=l i=l

..
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2. BOUNDS USING MINIMAL PATH AND CUT SETS

A minimal vector to level a C Im y - {0 is a vector X E A such that

. T(X) = a whereas y(Y) < a for all Y < X. The corresponding path set

.- to level a is T = T (X) {iE CX i #0}.a a

Definition (Baxter and Kim, 1984)

Let T be a nonempty subset of C. If T is a path set to level a for

all a E Im y - {0}, then T is a minimal path set of y.

A Minimal path sets do not necessarily exist for an arbitrary CSF

nor, if they do exist, do they pecessarily exhibit the desirable properties

of minimal path sets of binary structure functions. The following definition

yields a large class of CSFs for which minimal path sets exist and are

"well-behaved".

"' %Definition (Baxter and Kim, 1984)

A CSF y is upper simple if it satisfies the following four conditions:

Cl P 1 #J0 and P 1 a {0,lln _ { O}
K 4% r

C2 UTi C where TI,...,Tr are the r path sets of Y to level 1.

i=l

C3 If T is a path set to level a E Im y - {0},then T is also a path

set to level 1 E Im y - {01 for all D < a.

C4 If T is a path set to level a < 1, then T C T for some path

set Ti to level 1.

*.4.
44.,
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Proposition 2.1

Let y be an upper simple CSF. Then

(i) y has at least one minimal path set

(ii) y is weakly coherent

(iii) No proper subset of a minimal path set is itself a minimal path set

*X.. r
(iv) UT. = C where T I ,.. . ,T r denote the r minimal path sets of y... i=l1

Proof. See Baxter and Kim (1984).

Similarly, we can define minimal cut sets and lower simple CSFs.

A maximal vector to level a E Im y - {1} is a vector X E A such that

y(X) = a whereas y(Y) > a for all Y > X. The corresponding cut set to

level a is S = S(XM = {i.E Cx l1

Definition

Suppose that S is a nonempty subset of C. If S is a cut set to

level a for all a E Im y - {1, then S is a minimal cut set of y.

Definition

A CSF y is lower simple if it satisfies the following four conditions:

00i''Dl K0 # 0 and K0 C {0,i1~n  {I}.

t
D2 S0  = C where 0l,... ,Sot are the t cut sets of y to level 0.

" D3 If S is a cut set to level a E Im y - {i}, then S is also a cut set

to level 0 E Im y - (1} for all 0 > a.

D4 If Sa is a cut set to level a > 0, S c S0j for some cut

set SOj to level 0.

.
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An argument similar to the proof of Proposition 2.1 yields the

following results.

* Proposition 2.2

Let y be a lower simple CSF. Then

". (i) y has at least one minimal cut set

(ii) y is weakly coherent

(iii) No proper subset of a minimal cut set is itself a minimal cut set

$-. t

". (iv) U S. = C where SI,... 'St are the t minimal cut sets of Y.
j=l

.3, Definition

If y is both upper simple and lower simple, it is simple.

Examples of uplper simple CSFs include the CSFs e and n studied by

Baxter (1984a) and the CSF p(X) X examples of lower simple?' n

n
CSFs include (,'p and y(X) = 1IXi .

Theorem 2.3 (Decomposition Theorem)

* (i) Let y be a right-continuous, upper simple CSF with minimal path

... sets T,... ITr . Then

Tc
y y(X) = max y(X , ).

l<i<r
4:-:

% (ii) Let y be a left-continuous, lower simple CSF with minimal cut

~ sets Sl, . . . ,s t. Then
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y(x) = 'min Y(X 3,
15j~t

- (iii) Let y be a continuous, simple CSF with minimal path (cut) sets

Ti ,... ,T (SI,...,S Then
1 r i ' The

...iT. T? S. S.
y() = max Y( il) = min y(X 3, 3).

l<i<r l<j<t

Proof: See Baxter and Kim (1984) for the proof of (i). The proof of (ii)

is similar, and (iii) follows immediately from (i) and (ii).

This theorem extends formulae (3.2) and (3.4) of Barlow and Proschan

(1975, p. 10) to the continuum case.

-Suppose that the CSF y is right-continuous. Then {XCAT(X) > a}

is closed (Block and Savits, 1984) and is therefore a Borel set for all

c. Thus y is Borel-measurable and hence, if Xl,...,X n are random

variables defined on the same probability space (Q,F,P),y(X) is also a

random variable on (Q,F,P). The same is true if y is left-continuous.

% It is henceforth assumed that X1 ,...,X n are associated (Barlow and

Proschan (1975), p. 29). The following property of associated random

variables will subsequently prove useful.

Proposition 2.4

t If X1 ,... 9Xn are associated random variables, then

nn

( (i) PiX1 > xl,...,X n > Xnl > TP{Xi > xi}
*i=l
.Jm.
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In
(ii) P{X1I < x11,... Ixn < xn > lTf{X. < x.i

~~ i=l 1 1

for any choice of xl..V

Proof: Barlow and Proschan (1975), p. 33, prove a similar result.

We now derive bounds on the distribution of y(X) using the minimal

path and cut sets of y. These bounds generalise Theorems 3.4 and 3.9

of Barlow and Proschan (1975, Chapter 2).

Theorem 2.5

(i) Let y be a right-continuous, upper simple CSF with minimal path sets

T1,...,T.- Then, if Xl$***,Xn are associated random variables,

max Py(X 0 > X} < Ply(X) > xj <~ T.T(X ' >X

for allx CIR.

(ii) Let Y be a left-continuous, lower simple CSF with minimal cut sets

Si..st . hn fX1..Xn are associated random variables,

1TPly(A 3,1 J) > x} < P{y(X) > x} < min Ply(X '1 3) > X}
*j=l l,<j<t

for all x E IR.

T. T1 _ xProof: (i) By the Decomposition Theorem, P{Y(X) > xJ P{ max Y(X 1',0 1) > x

l<i<r

and so

IS
EVI

LOI&I
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T T C T TC
(2.1) Pty(X) > x1 = 1 -P{y(X 1 14 r,9.O r0 < x}.

Since y is nondecreasing, and nondecreasing functions of associated

random variables are themselves associated random variables, it follows

T T C T T C
1 1 r r

that y(X 0 ),...,Y( , 0 ) are associated random variables. Thus,

from (2.1) and Proposition 2.4,

r T TC

P{Y(X) > x} < H P{Y(X , ) > x}.
". 'N -- i=l

To establish the lower bound, observe that

T Tc T TC T. T.
P{Y (X 1,0 2 < x,...,(X ro r) < xi < min P{y(X 1,0 1) < x}

*.l<i<r

and hence, from (2.1),

'Sc cT. T. T. T.P{y(X) > x} > 1 - min Pty(X 1,0 1) < x} = max P{y(X ,O 1) > x}.

1<i<r l<i<r

(ii) The proof is similar and is omitted.

Remark 2.6

If y is continuous and simple, both sets of bounds hold. Neither

* lower bound dominates the other. Consider, for example, the binary

4structure function y(x) = x v(X2AX3AX4) , x E {0,1} , which is clearly

#. simple. Suppose that xl,x 2 ,x3 and x4 are independent Bernoulli random

variables with parameter p E (0,I). Then max P{y{(x Ti) = 1i = p
i=1,2

'2,

~.I
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whereas 1TP{Y(x J,I ) i}= p (2-p)3. Thus, if p = 0.1, the lower

j=1

bound based on minimal cut sets is majorised by the lower bound based on

minimal path sets whereas, if p = 0.9, the order of majorisation is

reversed.

Similarly, neither upper bound majorises the other.

3. IMPROVED BOUNDS USING A MODULAR DECOMPOSITION

Let A be a nonempty subset of C and suppose that y is weakly coherent.
IAI

Suppose, further, that there exists a weakly coherent CSF yI: [0,1 f4 [0,1]n..- .A AC

and a CSF X: [0,1] -iA!+l, -, [0,1] such that y(X) = X[y,(X),X I for all

X E A. Then (A,yI) is a module of (C,y).

This definition is due to Baxter and Kim (1984).

Definition

Let y be a weakly coherent CSF. Suppose that (Aiyl),...,(AYN)

are modules of (C,y) where [ ..., is a partition of C, i.e. there

exists a CSF X: [0j] nIAI+l [0,1], the organising structufe, such that
• (A 1 ) AN

ST(X = X[r 1(X Al... ,YN(X )] for all X E A. Then {X,(A I,' , ' ', ( , N)}

is a modular decomposition of (C,y).

In this section, we show that, if y admits of a modular decomposition,

improved bounds on the distribution of y(X) may be obtained. It is first

necessary to introduce some further notation.

r:%W'.
0-'.
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Suppose that y is upper (lower) simple with minimal path (cut)

sets Ti,...,T r (si,.. ,S t ) and that the organising structure X is also

upper (lower) simple with minimal path (cut) sets i ,...,1p (vl,... ,Vk).

We write pi = {Ail'...'AiM3} for i=l,2,...,p (v A ...,A ijj for

j=l,2,...,k) where each A kh E {AI,...,AN}. Further, we write

M. M.

B. U A (D= A.); these are those elements of C which are
1 jz-l' it k1i

contained in the elements of pi(V.).
.-1

Proposition 3.1

(i) Suppose that y admits of a modular decomposition {x,(AYT... ,(AN,yN)}

and that y and X are both upper simple and right-continuous. Then each

Bi contains at least one of the minimal path sets of Y, and each of these

minimal path sets is a subset of precisely one of B1 ,...,B p .

(ii) Suppose that y admits of a modular decomposition {X,(AIYI),...,

(AN,yN)} and that y and X are both lower simple and left-continuous.

Then each D. contains at least one of the minimal cut sets of y, and

each of these minimal cut sets is a subset of precisely one of Di,... ,Dk.

Proof: (i) Suppose, firstly, that there exists a minimal path set of y,

T say, such that T Q Bi for each i=l,2,...,p. Since T is a path set to

level a EIm y - {0, there exists a minimal vector XT to level a.
AhnT AhNTc

Let Yh = Yh ( ( 0 ) for h=1,2,...,N.

Since Pl,...,s'p P are the minimal path sets of X, it follows from the

Decomposition Theorem that
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C

- -- x(Z) = max x(! Y )

A a ' OT AOT c  AiM.rTA

-_ (X iM

where yi. is the CSF associated with A..

B.flT BcUTC

= maxT(X ,O )

T TC
< Y(x, )

.' since, by hypothesis, B.flT is a proper subset of T for each i. This is

a contradiction, and hence there exists a Bi containing T. Since T is

arbitrary, it follows that each minimal path set of y is a subset of some B1 .

*'_ Since, clearly, no B. is empty, and thus contains at least one minimal

path set of T, it remains to show that no T can lie in more than one of

the B.'s. Suppose, conversely, that T c B, and T c Bj (ijj). Suppose,
1 i 

-." further, that, for some Y = (y(X )(...,N(X )), (Y ,0 ) is a minimal

vector to level a, i.e.

c c c
""' 9, X( i Pi (yh o11

max X(Y ' 1x(Y ,o )>x(~ ,0.
°. •.p

for all h i. Now

'a'L

.1
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C A.AC AM A A A CA' v AnT Ail nTC A^., nT AL nT P
x(?Y o )=X[rilQ ,0 )'..-ry (x 0  h ),0

,B BCUTc
Y(x iso

y=(x T o ) since T c Bi

B.AT BcUTC

Y(X '20 ) since T c B.
J

A ny A1 
0 B A 1 AA T A M nTc ." (X ,i o ji )..y ( im i ' i )0j

since p. is a minimal path set of X

C
1JU 1.

thereby contradicting the assumption that X(Y ,2 ) > X(y jO ). It

follows that T is a subset of precisely one of B,...,B p

This completes the proof of part (i). The proof of part (ii) is

similar, and is omitted.

Theorem 3.2

Suppose that y is a CSF with modular decomposition {X,(AIr I),. •-,(ATN)
A.

* and that X is a vector of associated random variables. Let Y. r.(X )

for j=l,2,... ,N.

(i) If y and X are both right-continuous and upper simple with minimal

path sets T,...,T and I'" 'lip respectively,
..



12

r. C
T. TI e

max P{y(X , 1) > x) < max P{X(Y ,o 1) > x} < Pty(X) > x} <
l<i<r "<i<p

"P r T Tc

-. P{x(Y ,o ) > x1 < P ,Y(x i) > x}.
i=l i=l

(ii) If y and X are both left-continuous and lower simple with minimal

cut sets SI,...,S and vl"'' Vk respectively,

ITP[Y(x Jj J) > x} < TP(x(Y JL J) > x} < Py(x) >} <
j=l j=l

' - V. VC. S. S

min P{x(Y ,l J > x} < min P{y(X J ,l 3) > x}.
1.:j <k

V 11 c.4'.4. Ci

Proof: (i) That P{y(X) > x} > max P{X(Y ,o )<x} follows immediately' l<i<p

from the modular decomposition of y and from Theorem 2.5, so it is

sufficient to verify that the assumption of a modular decomposition yields

an improved bound. C c

i i B. B
Since x(Y , 0) = y(X 1,O ) on Q and, by Proposition 3.1, there

exists at least one minimal path set of y which is contained in Bi,

it follows from the Decomposition Theorem that

c
B B TC

" (3.1) y(X O0 max y(XTo )on Q.
{T I Tc-Bi }

4?B B C C

i i T TC
* Thus y(X , i > y(X ,0 ) on Sj for each T c B. and so P{x(Y ,O ) > x} >

P{'.XTTP) c> x} for each T c B. Hence,

: P~xY ,O )>yx}_>T0 :Bi

4,. PX.. V '0)i> x} > max ) - XT' > X
{T I TBil



13

for i=l,2, ...,p, from which it follows that

C T T C

max P{x(Y ,i) > x) > max P{y(X ,0 ) > xI
l<i<p l<i<r

as claimed.

It follows from the modular decomposition of y and from Theorem 2.5
p P 11

that Pjy(X) > x} > HlP{X(Y 0 i ) > x} and so it is again sufficient to
i=l

show that the assumption of a modular decomposition leads to a uniformly

improved bound.

From (3.1), we see that

% c
" i Ji -T T

x(Y ,0 )= max y(X ,0 )on 0
{T Tc-Bi

for i=l,2,...,p, and so

P pi i P T  Tc
llP{x(. ,o )>x} = P{ max Y(X, > x}
i=l i=1 {TITcB}

p T T c

ll< II P{y.X T,0 )> X}

on appealing to Proposition 2.4 and

performing some manipulations

r T. T.

1,0 1)> x}

from Proposition 3.1.

(ii) This is proved by similar arguments.

9_



14

Remark 3.3

If y is simple and continuous, both sets of bounds hold. Except

for the fact that the assumption of a modular decomposition leads to an

improved bound, none of the upper (lower) bounds majorises any of the others;

counterexamples are easily constructed.
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