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ABSTRACT

A continuum structure function Yy is a nondecreasing mapping from
the unit hypercube to the unit interval. Minimal path (cut) sets .
of upper (lower) simple continuum structure functions are introduced
and are used to determine bounds on the distribution of {(5) when X
is a vector of associated random varisbles and when vy is right (left)-

continuous. It is shown that, if y admits of a modular decomposition,

impro&ed bounds may be obtained.
[}

KEYWORDS: Continuum structure function; weak cohcrency; minimal path set;

minimal cut set; upper simple; lower simple; module;

e a

modular decomposition; associated random variable.
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e 1. INTRODUCTION

19

i% C Let C = {1,2,...,n} denote a set (of components) of finite cardinality
il

-::- n. A continuum structure function (CSF) is a nondecreasing mapping
o

v

": Y: [0,1]n = [0,1]; we assume, without loss of generality, that Y(Q) =0
‘\ and T(l') = 1 where a denotes (@,...,a) € A = (O,l]n. Such a functicn,
f‘l_:"_: ) is said to be weakly coherent if SUP[Y(li’}Q - Y(Oi’z{')] > 0 for each
- X€A . i
< ,

i € C where (61’39 denotes (Xl""’Xi-l’é’xi+1""’xn)' See Baxter

\

(1984a,b) and Block and Savits (1984) for further details of CSFs.

i) \l

_f‘; In this paper, we show how minimal path (cut) sets of CSFs, subsets
AN .

a5

w“:- of C which are necessary and sufficient for a CSF to attain any value
oy in its image when the state of every other component is zero (one), can be
f-: used to determine bounds on the distribution of YQ() when the Xi's are
AT associated random variables. We also continue our study of modules of
\

s CSFs (Baxter and Kim, 1984) by showing how the assumption of a modular
::::: decomposition yields uniformly improved bounds, thereby extending the
<o

- well-known results for binary structure functions (Barlow and Proschan
2 '

7 (1975), Chapter 2) to the continuum case.

i

}‘. We shall make use of the following notation:

" Z" < X means that Yi < Xi for i=1,2,...,n, but Y # X

s

<

:;: 1Al denotes the cardinality of A

I."l

\" Im vy denotes the image of y
'2' XP denotes {Xi€§li€PcC}

:: Pl denotes {ﬁGAIY(;S) = 1 but Y(X,) < 1 for all I < .§}

C AN

b

%3 Ky, denotes {X€AIY(X) = 0 but v(§) > O for all ¥ > X}

® n n

:-j _U_ Xi denotes 1 - TT(I—Xi),

2 i=1 i=1

LY

o

N
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2. BOUNDS USING MINTMAL PATH AND CUT SETS

A minimal vector to level a € Im vy - {0} is a vector X € A such that

YQ§) = a whereas YQX) < a for all Y < X. The corresponding path set

to level « is Ta T (X) = {i€ ClXi # 0}.

«

Definition (Baxter and Kim, 1984)

Let T be a nonempty subset of C. If T is a path set to level o for

all o« € Imy - {0}, then T is a minimal path set of Y.

Minimal path sets do not necessarily exist for an arbitrary CSF
nor, if they do exist, do they npecessarily exhibit the desirable properties
of minimal path sets of binary structure functions. The following definition

yields a large class of CSFs for which minimal path sets exist and are

"well-behaved".

Definition (Baxter and Kim, 1984)

A CSF v is upper simple if it satisfies the following fcur conditions:

€L P, # @ and P = {0,1}" - {0},

1

r
C2 L)‘T . = C where T,.,...,T,  are the r path sets of Y to level 1.
421 11 11 1r

€3 If T is a path set to level o € Im ¥ - {0}, then T is also a path
set to level B € Im Y - {0} for all B < a.

¢4 If Ta is a path set to level a < 1, then Ta c Tli for some path

set Tli to level 1.
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¥ .
XK Proposition 2.1
{t Let Y be an upper simple CSF. Then

:.t\'. : (i) y has at least one minimal path set
' .
-1‘:-". (ii) vy is weakly coherent
g ,
') ) (iii) No proper subset of a minimal path set is itself a minimal path set
.{::: . r

r.‘_.- (iv) U T, = C where Tl""’T denote the r minimal path sets of Y.
o i=1 i r

>
l\ g

N Proof. Sce Baxter and Kim (1984).
(s

o
:(: Similarly, we can define minimal cut sets and lower simple CSFs.
.\-"*

o A maximal vector to level o € Im vy - {1} is a vector X € A such that
i}. Y(X) = o whereas Y(Y) > « for all Y > X. The corresponding cut sct to
oo s 5 = - ]
R level a is S Sa(‘;(‘) {J.€CIXi # 1}.
{
ASK) P
PON Definition

u"::'

:-‘_: Suppose that S is a nonempty subset of C. If § is a cut set to

N
) level o for all &« € Imy - {1}, then S is a minimal cut set of Y.
v,

s
f‘-q' . .
[ Definition
N
v A CSF vy is lower simple if it satisfies the following four conditions:
9
e DI Ky # @ and Ky < {0,1}" - {1}.

g
A t .

- D2 US . = C where S..,...,8 are the t cut sets of Y to level 0.

0j o1 ot

e j=1
'\-;:::: D3 If S is a cut set to level a € Im vy - {1}, then S is also a cut set
AR
\f;:- to level B € Im vy - {1} for all g > a.
Y-,

@ D4 If §, 1s a cut set to level o > 0, Sy © SOj for some cut
~)

\
s;\ set S.. to level 0.
1 f‘ Oj
) '.'
\:::

.

s
J\‘.‘ ¥ - - - - ; et T o - L
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:'_’_ An argument similar to the proof of Proposition 2.1 vields the
v-:'..( :
(+ following results.
N,
SRS Proposition 2.2
'::::'. Let Y be a lower simple CSF. Then
v ’
v
\;‘ (i) ¥y has at least one minimal cut set
\ -
)
‘.\i (ii) vy is weakly coherent
)
o
o
. (iii) No proper subset of a minimal cut set is itself a minimal cut set
‘{::- t
5 (iv) U S. = C where Sl""’st are the t minimal cut sets of Y.
P 3=1 7
o

Definition

i
A

LI ’
o, a_8@
1 s
P g

‘,';: If y is both upper simple and lower simple, it is simple.
N
A _
\ Examples of upper simple CSFs include the CSFs I and n studied by
-'.._: 1 ®
_:‘_-'_ Baxter (1984a) and the CSF UQ(.) == z Xi; examples of lower simple
‘;::_: n i=1
) CSFs include f,u and Y(X) = i_[;lei.
o5
L.
350
?' Theorem 2.3 (Decomposition Theorem)
)
"
~ (i) Let ¥ be a right-continuous, upper simple CSF with minimal path
L .
j:jfj sets Tl""’Tr' Then
.::
o, T T
A’ i i
o Y® = max y(x 50 %),
‘-" lsisr
&
O
;_: (i) Let Y be a left-continuous, lower simple CSF with minimal cut
-~
’,
." sets Sl""’st' Then
V)
1

p{;'l'l.

‘..

ﬂ
25
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Y@ = min yx 71,1 9.
1<j<t

A
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Iy ~t

o (iii) Let Y be a continuous, simple CSF with minimal path (cut) sets

N | Tyseees T (Sy40.04S ). Then

T, TS S. S

Y(X) = max v(X 5,0 ) = min y(x7,17).
A 1<i<r 1<i<t

(o

- Proof: See Baxter and Kim (1984) for the proof of (i). The proof of (ii)

o is similar, and (iii) follows immediately from (i) and (ii). []

%

'-‘;l

'a

This theorem extends formulae (3.2) and (3.4) of Barlow and Proschan

')
RAN

K (1975, p. 10) to the continuum case.

K-7= Suppose that the CSF y is right-continuous. Then {X€AlY(X) > o}
Ty is closed (Block and Savits, 1984) and is thercfore a Borel set for all
B . Thus Y is Borel-measurable and hence, if X ,...,Xn are random

o variables defined on the same probability space (Q,F,P),Y(z) is also a
(- * ‘ random variable on (Q,F,P). The same is true if v is left-continuous.

4’ It is henceforth assumed that Xl,...,Xn are associated (Barlow and
2L Proschan (1975), p. 29). The following property of associated random

. variables will subsequently prove useful.

P25

[
o
.

)
.

'Y

Proposition 2.4

Yo

5

G4
4

If Xl,...,Xn are associated random variables, then

YOG
LS Y
LA A

n
(1) PLX) 2 x5..00,X > x } > ;[;I'lp{xi > %}

CAGCALK /
) A"J.'J.'Ji.

4
O

T T e |



. n
(i) PIX) < x,000,X < x ) > i"l;];P{,\i < x,}

for any choice of XpseeesX o
Proof: Barlow and Proschan (1975), p. 33, prove a similar result.

We now derive bounds on the distribution of YQ%) using the minimal
path and cut sets of y. These bounds generalise Theorems 3.4 and 3.9

of Barlow and Proschan (1975, Chapter 2).

Theorem 2.5
(i) Let v be a right-continuous, upper simple CSF with minimal path sets

Tl""’Tr' Then, if Xl,...,Xn are associated random variables,

T. T¢ T, TS

. r _
max P{y(X 1,2 1y > x} <Py > x} < || Plv(x 1,,9, 1y > x}
1<i<r - i=1

for all x € RR.
(ii) Let Y be a left-continuous, lower simple CSF with minimal cut sets

Sl,...,St. Then, if X ,...,Xn are associated random variables,
t s, s s, s
ety 3,0 ) > x} < Py(® > x}< min P{yx 3,1 3) > x}
j=1 1<j<t

for all x € R.

T, T°

Proof: (i) By the Decomposition Theorcm, P{Y(z) > x} = P{ max YQK 1,2 1) > x}
l<i<r

and so

DA A A S S L L A L R L AL S LY
.‘.:.;.A.\-\.,L‘{L‘h."rh_.;L{L(‘_’:L{( e, o ..!'-

4
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-, (201) P{Y(')\(‘) 2 X} =1 - P{Y(i(' 92 ) < X,...,Y(‘)\(‘ ,2 ) < X}.
{«
"
13
":3_' Since vy is nondecreasing, and nondecreasing functions of associated
YA S
(.~‘.
-::-.:: random variables are thgmselves associated random variables, it follows
_\ T, 1] T T8 -
8 that Y(X 7,0 ),...,v(X r,O r) are associated random variables. Thus,
\..' ~ ~ ~ ~

.’ ) -
NS from (2.1) and Proposition 2.4,

A

\l
Yo r T, T;

Piy(X) > x} < |[P{¥(X 7,0 ) > x}

N =1
0 ‘

To establish the lower bound, observe that

oy
NN T, 1) T TS T, TS
o P{Y(X ©,0 ) < x,...,y(;s ,0 ) < x} < min P{Y(X ,0 1) < x}
-3 " 1l<icr
\
\\O

_.:;:. and hence, from (2.1),
i -

-

1 : T, T¢ T, TS

$~ . Py .

) POY(X) > x} > 1 - min P{y(X 5,0 ) < x}k = max P{y(x *,0 ") > x}.
it l<i<r ) l<i<r

o

._.'. (ii) The proof is similar and is omitted. D

e
L
a7
3’\‘? Remark 2.6

L AR,

J'\

-:3 If vy is continuous and simple, both sets of bounds hold. Neither
o,

~
(.J

® lower bound dominates the other. Consider, for example, the binary
:\f structure function Y(.’f,) = xlv(szx3Ax4). X € {0,1}4, which is clearly
&

';:"j simple. Suppose that X]s%9sXg and x, are independent Bernou111 random
(S

A T, T

variables with parameter p € (0,1). Then max P{y{(x i i) =1} =

., i=1,2

3

N
:w:
Kree

e

2.

":.
Lo
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whereas -rrP{Y(ﬁ Jg& J).= 1} = p3(2—p)3. Thus, if p = 0.1, the lower
j=1

bound based on minimal cut sets is majorised by the lower bound based on

minimal path sets whereas, if p = 0.9, the order of majorisation is

reversed.

Similarly, neither upper bound majorises the other.

3. IMPROVED BOUNDS USING A MODULAR DECOMPOSITION

Let A be a nonempty subset of .C and suppose that Y is weakly coTerent.
A
Suppose, further, that there exists a weakly coherent CSF Yy [0,] ~[0,1]

-laj+1

. c
and a CSF X: [0,1]n + [0,1] such that Y(é) = x[Yl(Eé),Eé ] for all

X € A. Then (A,Yl) is a module of (C,y).

This definition is due to Baxter and Kim (1984).

Definition

Let y be a weakly coherent CSF. Suppose that (Al,Yl),...,(AN,YN)
are modules of (C,Y) where {A ,...,AN} is a partition of C, i.e. there

exists a CSF x: [O,I]n-'Al+1

A Ay

YX) = Xrp K D),eeesvg(X D) for all X € A, Then {X,(A ¥, (ApY}

~ [0,1], the organising structure, such that .

is a modular decomposition of (C,v).

In this section, we show that, if vy admits of a modular decomposition,
improved bounds on the distribution of y(X) may be obtained. It is first

necessary to introduce some further notation.

PR AL SR .. "N '-"'b \"\‘-s .-.-\(\I . :,‘ -(-. ‘ ATCIM .1. Iy .-‘; Fd 3 ' '\\'f~ '. t~ 'l~ ..'.. - '
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Proof: (i) Suppose, firstly, that there exists a minimal path set of v,

Suppose that Y is upper (lower) simple with minimal path (cut)
sets Tl,...,Tr (Sl""’st) and that the organising structure X is also
upper (lower) simple with minimal path (cut) sets ul,...,up (vl,...,vk).
We write p; = {Ail’°"’AiMi} for i=1,2,...,p (vj = {Ajl""’AjM.} for
j=1,2,...,k) where each Ay € {Al""?AN}' Further, we write

Mi .
B, = ‘} A, (D. = \j A, ); these are those elements of C which are
Lo 3 30

contained in the elements of ui(vj).

Proposition 3.1

(i) Suppose that y admits of a modular decomposition {x,(Al,Yl)...,(AN,YN)}
and that Yy and X are both upper simple and right-continuous. Then each
Bi contains at least one of the minimal path sets of Y, and each of these

minimal path sets is a subset of precisely one of Bl,...,

B .

p

(ii) Suppose that y admits of a modular decomposition {X’(Al’Yl)""’
(AN,YN)} and that y and Y are both lower simple and left-continuous.

Then each Dj contains at least one of the minimal cut sets of ¥, and

each of these minimal cut sets is a subset of precisely one of D D

1oee oDy

T say, such that T & Bi for each i=1,2,...,p. Since T is a path set to

level a € Im v - {0}, there exists a minimal vector z? to level «.

AhnT AhnTC
Let Yh = Th(i ,0 ) for h=1,2,...,N.

Since ul,...;up are the minimal path sets of ¥, it follows from the

Decomposition Theorem that
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c
U, W,
X(Y) = max x(¥ ,0 )
1<i<p
c c c
A, NT A, _.NT A._NT A, NT u
1 1 iM. iM. i
= max X[y; X 58T Deeenyyy €T 0T )0
1<i<p ‘ i
where Y,. is the CSF associated with A, .
ij - ij .
B.nT BSUTS
= max Y(X 1 9 . )
1<i<p
c
T .T
<v(X,0 )

since, by hypothesis, BiﬂT is a proper subset of T for each i. This is

a contradiction, and hence there exists a Bi containing T. Since T is

arbitrary, it follows that each minimal path set of Y is a subset of some Bi'

Since, clearly, no Bi is empty, and thus contains at least one minimal

path set of Y, it remains to show that no T can lie in more than one of

the Bi's. Suppose, conversely, that T B, and T Bj (i#j). Suppose,
A ne u$
further, that, for some Y = (Yl(z(' 1),... ’YNQ(' ), (X 1,2 i) is a minimal

vector to level a, i.e.

p, us p, wus Iy

1 t

max x(x 0 % = x(z g H>x "ot
1<<p

)

for all h # i. Now

A AN
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o ¢ nt A, NTC A, 0T A, 0TS S
2 He W A, . . ' U,
Y . i i . 1 M. A,

x( 500 = xlv, s 0t iy, M 0 By oY)
o~ ~ il*~ ~ 1]«[1 ~ ~ ~
{

.. BT B{UT
::-". . = Y(')\(‘ :2 )

‘:;:: c

= Y(XT,OT ) since Tc B

l‘__) ~ v i

- B.nT BSUTS

N =Y(X:1 ,0J ) since T < B,

“: ~ ~ J
o A_NT A, .NTS A, 0T A, 0TS S

! 1 M. M. )|

:»‘;' j

o since 1, is a minimal path set of X

Ay
- TRV

b = x@ 707,

.‘;. . c
WMy u,ou§
::.j thereby contradicting the assumption that x(x Y ) > x (Y J,g J). It
\-.'
s::- follows that T is a subset of precisely one of Bl""’Bp' U
{

\."'l

'j;: This completes the proof of part (i). The proof of part (ii) is
"_;_::: similar, and is omitted.
)
':'.:4

-:_u_-‘ Theorem 3.2

::E'_ Suppose that y is a CSF with modular decomposition {X,(Al,Yl),...,(AN,YN)}
A% A,
.__ and that X is a vector of associated random variables. Let Yj = Yj x J)
-\.l ~ o
‘ ;C;’ for j=1,2,...,N.

>
.."-
.‘\J .
"’ (i) If vy and y are both right-continuous and upper simple with minimal
A

:;:: path sets Tl"" ’Tr and ul,...,up respectively,
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T, TS T
s max P{y(X 7,0 7) > x} < max R{x(Y 7,0 ") > x} < P{y(X) > x} <
(¢ 1<i<r ' 1<i<p
-':fj:: . P My u‘i: r T 1 T;
e Helx 0™ > xb < ] Plv(x "0 ) > x}.
A i=1 i=1
:‘ (ii) If Y and X are both left-continuous and lower simple with minimal
cut sets S;,...,S, and v;,...,V, respectively,
\ j t . ST k v, &
: TTeivx 4,1 > x) < TTelxx 1,1 %) > x} < Py > x} <
o j=1 =1
5'..-
2 . VS s, s
min P{x(¥ 7,1 7) > x} < min P{y(x 4,1 9) > x}.
1<i<k 1<i<t
\’::\
L
N
5 by S
<R Proof: (i) That P{y(X) > x} > max P{x(¥ *,0 ")<x} follows immediately
o : 1<i<p
{ A
Ly from the modular decomposition of y and from Theorem 2.5, so it is
"{::'. sufficient to verify that the assumption of a modular decomposition yields
o
o, an improved bound.
c c
2 Hi My By By
A Since x(l(‘ N )y = y(')‘(‘ 0 ) on Q and, by Proposition 3.1, there
::" exists at least one minimal path set of y which is contained in B,
‘,,, it follows from the Decomposition Theorem that
®
e c
- . B; By T 1¢
(3.1) Y(l(' 0 7) =  max Y(.}.S 07 ) on Q.
{T|TeB.}
vl *
b B, B T T MW
.:, Thus y(')‘(' 0 ) > YQ(, 0 ) on Q for each T < Bi and so P{X(Z. 0 ) > x} >
]
:::.: T 7€
o P{y(X ,0" ) > x} for each T < Bi' Hence,
Il ~o -
\
A c
o My Wy T T¢
N P{x(z‘ 0 7) > x}> max P{YQ{, 07 ) > x}
7o {r| 7B }
f:n :
1
v
Mg
Y,
Q_
)
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for i=1,2,...,p, from which it follows that

[ [
Uy M T, T

max P{x(z ,2 i)_z x} > max P{y(X i,g i)‘z x}
1<i<p 1<i<r ~

as claimed.
It follows from the modular decomposition of y and from Theorem 2.5
c

p H H

that P{y(X) > x} > J_LP{x(Z‘ 1’2 *) > x} and so it is again sufficient to
i=1

show that the assumption of a modular decomposition leads to a uniformly

improved bound.

From (3.1), we see that

[} .
H u c
x(¥ i,g i) =  max Y(,{(,T,QT ) on
{T| T8, }

for i=1,2,...,p, and so

C
P H H ' p c
1ptx Yo > xb = [P0 max v(XL,0T ) > x)
i=1 i=1 (7|18}

T T

p
11 v te® 2x
i=1{2.|Tchi}

on appealing to Proposition 2.4 and

A

performing some manipulations

TC

T T, T,
ey 5,05 > x
i=1

"

from Proposition 3.1.

(ii) This is proved by similar arguments. [J
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7. ‘ Remark 3.3

L‘, If v is simple and continuous, both sets of bounds hold. Except

Q& ., for the fact that the assumption of a modular decomposition leads to an

- improved bound, none of the upper (lower) bounds majorises any of the others;

- counterexamples are easily constructed.
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