

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

	OF THIS PAGE				•	
	ی بالوسونی موسفونی	REPORT DOCUM	ENTATION PAGE			
1. REPORT SECURITY CLAS	SSIFICATION		16. RESTRICTIVE M	ARKINGS		
UNCLASSIFIED						
28 SECURITY CLASSIFICATION AUTHORITY			Approved for public release: distribution			
20 DECLASSIFICATION/DOWNGRADING SCHEDULE			unlimited.			
PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING ORGANIZATION REPORT NUMBER(S)			
			AFOSR-	TR. 84	1.1084	1
A NAME OF PERFORMING	ORGANIZATION	66. OFFICE SYMBOL	78. NAME OF MONIT	ORING ORGAN	ZATION	
State University	of New York	(If applicable)	Aim Forma Of	fice of Se	iontific Re	ceanch
at Stony Brook			AIP FORCE UI	Field and ZIP Con		
bc. ADDRESS (City, State and ZIP Code)			Directorate	of Mathemat	tical & Info	ormation
Statistics, Ston	y Brook NY 1	1794	Sciences, Bolling AFB DC 20332-6448			
a. NAME OF FUNDING SPONSORING 8b. OFFICE SYN ORGANIZATION (1/ applicable		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
AFOSR NM		NM	AF05R-84-0243			
APOSR NIN Be ADDRESS (City, State and ZIP Code)			10. SOURCE OF FUNDING NOS			
			PROGRAM	PROJECT	TASK	WORK UNIT
Palling AFR DC 20222 6448			ELEMENT NO.	NO. 2304	NO.	NO.
DETITING AFB DC 20002-0440					A5	
BOUNDING THE STO	CHASTIC PERFO	RMANCE OF CONTIN	NUUM STRUCTURE	FUNCTIONS	I	
12. PERSONAL AUTHOR(S)						
Laurence A. Baxte	er and Chul K	im	1.4 0.4 TE OF 0500		The page /	
Technical	FROM	TO	OCT 84	(1 (17., 300., Day)	15. FAGE (
					<u>+</u> ĭ	
6. SUPPLEMENTARY NOTA						
16. SUPPLEMENTARY NOTA						
6. SUPPLEMENTARY NOTA						
16. SUPPLEMENTARY NOTA		18 SUBJECT TERMS (C	Continue on reverse i/ no	cessory and identi	ify by block numbe	r, nimel noth
6. SUPPLEMENTARY NOTA 7 COSATI COL FIELD GROUP	DES SUB GR	18 SUBJECT TERMS (C Continuum str set: minimal	Continue on reverse if no ructure functio cut set: upper	cessory and idention on; weak co	ity by block numbe bherency; mi	nimal path
6. SUPPLEMENTARY NOTA 7 COSATI COL FIELD GROUP	DES SUB GR	18 SUBJECT TERMS (C Continuum str set; minimal modular decom	Continue on reverse if no ructure functio cut set; upper aposition; asso	cessory and identi- on; weak co r simple; 1 ociated ran	<i>fy by block numbe</i> bherency; mi ower simple idom variabl	nimal path ; module; e
16. SUPPLEMENTARY NOTA 17 COSATI COI FIELD GROUP 19. ABSTRACT /Continue on	DES SUB GR	18 SUBJECT TERMS (C Continuum str set; minimal modular decon	Continue on reverse if ne ructure functio cut set; upper nposition; asso	cessory and identions; weak consimple; 1 bciated ran	bherency; mi ower simple dom variabl	, nimal path ; module; e
16. SUPPLEMENTARY NOTA 17 COSATI COL FIELD GROUP 19. ABSTRACT (Continue on the A continuum struct	DES SUB GR reverse if necessary an oture function	18 SUBJECT TERMS (C Continuum str set; minimal modular decom d (denti/) by block numbe n Y is a nondecr	Continue on reverse if no ructure functio cut set; upper nposition; asso ry reasing mapping	cessory and identi- on; weak co r simple; 1 ociated ran g from the	by block number oherency; mi ower simple idom variabl unit hyperc	nimal path ; module; e. ube to the
16. SUPPLEMENTARY NOTA 17. COSATI COL FIELD GROUP 19. ABSTRACT /Continue on the A continuum structure unit interval.	DES SUB GR reverse if necessary an cture function finimal path	18 SUBJECT TERMS (C Continuum str set; minimal modular decom d :denti/y by block numbe n Y is a nondecr (cut) sets of up	Continue on reverse i/ ne ructure function cut set; upper aposition; asso reasing mapping oper (lower) si	cessory and idention; weak co simple; 1 ociated ran g from the mple conti	<i>dy by block numbe</i> pherency; mi ower simple idom variabl unit hyperc	nimal path ; module; e ube to the ure func-
16. SUPPLEMENTARY NOTA 77 COSATI COL FIELD GROUP 19. ABSTRACT (Continue on the A continuum structure unit interval. Note tions are introdu	DES SUB GR reverse if necessary and cture function dinimal path uced and are n	18 SUBJECT TERMS (Continuum str set; minimal modular decom a identi/y by block numbe n Y is a nondecr (cut) sets of up used to determin	Continue on reverse if no cucture function cut set; upper aposition; asso reasing mapping oper (lower) si ane bounds on th	cessory and idention; weak consimple; 1 ociated ran g from the imple contine the distribu	by block number oherency; mi lower simple idom variabl unit hyperc nuum struct tion of Y (X	nimal path ; module; e. ube to the ure func-) when X
 SUPPLEMENTARY NOTA COSATI COL FIELD GROUP ABSTRACT /Continue on I A continuum structurity unit interval. Nota tions are introduties a vector of as 	DES SUB GR reverse if necessary an oture function dinimal path uced and are no spociated rand	18 SUBJECT TERMS (C Continuum str set; minimal modular decon d denti() by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables ar	Continue on reverse if no ructure functio cut set; upper mposition; asso reasing mapping oper (lower) si ne bounds on th nd when is ri	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ne distribu- .ght (left)	berency; mi ower simple dom variabl unit hyperc nuum struct tion of Y (X -continuous	nimal path ; module; e. ube to the ure func-) when X . It is
 16. SUPPLEMENTARY NOTA 17. COSATI COL FIELD GROUP 19. ABSTRACT (Continue on a A continuum structurity interval. Notations are introduced in the structure of as tions a vector of as shown that if Y 	DES SUB GR reverse if necessary and cture function dinimal path uced and are to ssociated rand	18 SUBJECT TERMS (Continuum str set; minimal modular decon a (denti() by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables ar	Continue on reverse if ne foucture function cut set; upper mposition; asso preasing mapping oper (lower) si the bounds on the ad when is ri-	cessory and idention; weak consimple; 1 ociated ran g from the mple contine distribution ght (left)	ty by block number oherency; mi ower simple idom variabl unit hyperco nuum struct tion of γ (X -continuous	nimal path ; module; e. ube to the ure func-) when X . It is
16. SUPPLEMENTARY NOTA 77 COSATI COL FIELD GROUP 19. ABSTRACT (Continue on the A continuum structure unit interval. Notations are introduced is a vector of associated ass	DES SUB GR reverse if necessary an oture function dinimal path uced and are no ssociated rand admits of a r	18 SUBJECT TERMS (Continuum str set; minimal modular decon a (denti/) by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables ar nodular decompos	Continue on reverse if ne ructure function cut set; upper aposition; asso per (lower) si and when is ri- sition, improve	cessory and identi- on; weak con- simple; 1 ociated ram g from the mple conti- ne distribu- ght (left) ed bounds m	bergency; mi ower simple dom variabl unit hyperc nuum struct tion of γ (X -continuous	nimal path ; module; e. ube to the ure func-) when X . It is ned.
 SUPPLEMENTARY NOTA COSATI COL FIELD GROUP ABSTRACT (Continue on A continuum structure) A continuum structure unit interval. Notains are introduited is a vector of as shown that, if Y 	DES SUB GR reverse if necessary an oture function Ainimal path uced and are no ssociated rand admits of a n	18 SUBJECT TERMS (C Continuum str set; minimal modular decom a denti() by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables ar nodular decompos	Continue on reverse if no ructure function cut set; upper imposition; asso reasing mapping oper (lower) si the bounds on the ad when is ri- sition, improve	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ne distribu- ght (left) ed bounds m	by block number oherency; mi ower simple unit hyperconnuum struct tion of γ (X -continuous ay be obtai	nimal path ; module; e. uube to the ure func-) when X . It is ned.
 SUPPLEMENTARY NOTA COSATI COL FIELD GROUP ABSTRACT (Continue on A continuum structure) A continuum structure unit interval. Notains are introdue is a vector of as shown that, if Y 	DES SUB GR reverse if necessary an oture function dinimal path uced and are no ssociated rand admits of a r	<pre>18 SUBJECT TERMS (C Continuum str set; minimal modular decon a identi/y by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables ar nodular decompos</pre>	Continue on reverse 1/ ne foucture function cut set; upper mposition; asso per (lower) si the bounds on the ad when is ri- sition, improve	cessory and idention; weak consimple; 1 ociated ran g from the imple continue distribution in the distribution of the second sec	be block number observery; mi ower simple adom variable unit hyperconnuum struct tion of γ (X -continuous may be obtai	nimal path ; module; e. ube to the ure func-) when X . It is ned.
16. SUPPLEMENTARY NOTA 10. SUPPLEMENTARY NOTA 17. COSATI COL FIELD GROUP 19. ABSTRACT (Continue on A A continuum structure unit interval. Notations are introduced is a vector of as shown that, if Y	DES SUB GR reverse if necessary an oture function dinimal path uced and are no ssociated rand admits of a r	18 SUBJECT TERMS (Continuum str set; minimal modular decon a denti/y by block numbe n	Continue on reverse if ne ructure function cut set; upper aposition; asso per (lower) si the bounds on the ad when is ri- sition, improve	cessory and idention; weak consimple; lociated range from the emple continue distributed is the distributed bounds methods and bounds and bound b	by block number oherency; mi ower simple adom variabl unit hypercon nuum struct tion of γ (X -continuous may be obtai	nimal path ; module; e. ube to the ure func-) when X . It is ned.
16. SUPPLEMENTARY NOTA 72 COSATI COL FIELD GROUP 19. ABSTRACT /Continue on A A continuum struct unit interval. M tions are introdu is a vector of as shown that, if Y OTIC FILE CO	DES SUB GR reverse if necessary an oture function Ainimal path uced and are no ssociated rand admits of a no DPS	18 SUBJECT TERMS (Continuum str set; minimal modular decom a denti() by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables ar nodular decompos	Continue on reverse if ne ructure function cut set; upper imposition; asso reasing mapping oper (lower) si the bounds on the ad when is ri- sition, improve	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ne distribu- oght (left) ed bounds m	berency; mi ower simple dom variabl unit hyperc nuum struct tion of Y (X -continuous ay be obtai	nimal path ; module; e. uube to the ure func-) when X . It is ned.
16. SUPPLEMENTARY NOTA 17. COSATI CON FIELD GROUP 19. ABSTRACT /Continue on I A continuum structurity unit interval. Notations are introduced is a vector of asons what, if Y Shown that, if Y	DES SUB GR reverse if necessary an cture function dinimal path uced and are no ssociated rand admits of a r	18 SUBJECT TERMS (Continuum str set; minimal modular decon d (denti() by block number (cut) sets of up used to determin dom variables ar nodular decompos	Continue on reverse 1/ ne foucture function cut set; upper mposition; asso per (lower) si the bounds on the ad when is ri- sition, improve	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ne distribu- ed bounds m	berency; mi ower simple dom variabl unit hyperc nuum struct tion of γ (X -continuous hay be obtai	nimal path ; module; e. ube to the ure func-) when X . It is ned.
16. SUPPLEMENTARY NOTA 17. COSATI COL FIELD GROUP 19. ABSTRACT (Continue on A A continuum structurity interval. Notations are introduced is a vector of as shown that, if Y OTIC FILE CO	DES SUB GR reverse if necessary an cture function dinimal path uced and are no ssociated rand admits of a r DES	18 SUBJECT TERMS (Continuum str set; minimal modular decon d (denti/) by block numbe n	Continue on reverse if ne ructure function cut set; upper aposition; asso reasing mapping oper (lower) si he bounds on the ad when is ri sition, improve	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ine distribu- ght (left) ed bounds m	berency; mi ower simple dom variabl unit hyperc nuum struct tion of γ (X -continuous bay be obtai	nimal path ; module; e. ube to the ure func-) when X . It is ned. CTE 4 1984
16. SUPPLEMENTARY NOTA 17. COSATI CON FIELD GROUP 19. ABSTRACT (Continue on A Continuum structure unit interval. M tions are introdu is a vector of as shown that, if Y OTIC FILE CO	DES SUB GR reverse if necessary an oture function dinimal path uced and are no ssociated rand admits of a no DES BILITY OF ABSTRAC	18 SUBJECT TERMS (Continuum str set; minimal modular decom a identify by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables an nodular decompos	Continue on reverse if no ructure function cut set; upper imposition; asso preasing mapping oper (lower) si the bounds on the ad when is ristion, improve	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ne distribu- ght (left) ed bounds m	berency; mi ower simple dom variabl unit hyperc nuum struct tion of Y (X -continuous hay be obtai	nimal path ; module; e. ube to the ure func-) when X . It is ned. CTE 4 1984
16. SUPPLEMENTARY NOTA 17. COSATI CON FIELD GROUP 19. ABSTRACT (Continue on I A continuum struc unit interval. N tions are introdu is a vector of as shown that, if Y DTIC FILE CO 10. DISTRIBUTION/AVAILAN INCLASSIFIED/UNLIMITED	DES SUB GR reverse if necessary an cture function dinimal path uced and are in ssociated rand admits of a r DPS BILITY OF ABSTRAC	18 SUBJECT TERMS (Continuum str set; minimal modular decon a (denti() by block numbe n Y is a nondecr (cut) sets of up used to determin dom variables an nodular decompos	Continue on reverse 1/ ne cucture function cut set; upper mposition; asso per (lower) si ne bounds on the nd when is ri sition, improve	cessory and identi- on; weak con- simple; 1 ociated ram g from the mple conti- ine distribu- oght (left) ed bounds m	berency; mi ower simple dom variabl unit hyperc nuum struct tion of γ (X -continuous hay be obtai	nimal path ; module; e. ube to the ure func-) when X . It is ned. CTE 4 1984
16. SUPPLEMENTARY NOTA 17. COSATI COL FIELD GROUP 19. ABSTRACT (Continue on I A continuum structurity on the structurity of the structure of asserved to the structure of th	DES SUB GR reverse if necessary an cture function dinimal path uced and are in ssociated rand admits of a r DPS BILITY OF ABSTRAM	18 SUBJECT TERMS (C) Continuum str set; minimal modular decom a (denti/y by block numbe) n Y is a nondecr (cut) sets of up used to determin dom variables ar nodular decomposition	Continue on reverse if ne ructure function cut set; upper imposition; asso reasing mapping oper (lower) si he bounds on the ad when is ri sition, improve 21 ABSTRACT SECU UNCLASSIFIED 22b TELEPHONE NU (Include Are Co	cessory and identi- on; weak con- simple; 1 ociated ran g from the mple conti- ne distribu- ght (left) ed bounds m BITY CLASSIFIC MBER der	berency; mi ower simple dom variabl unit hyperc nuum struct tion of Y (X -continuous bay be obtai DEC 1	nimal path ; module; e. ube to the ure func-) when X . It is ned. CTE 4 1984

DD FORM 1473, 83 APR

ŝ

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED

.

Revised Version

BOUNDING THE STOCHASTIC PERFORMANCE

OF CONTINUUM STRUCTURE FUNCTIONS I*

Laurence A. Baxter and Chul Kim

Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony Brook, NY 11794, USA

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
By	
Distribution/	
Availability Codes	
Avail and/or	
Dist Special	
A-1	ł

Approved for public volume; distribution unlimited.

*Research supported by the National Science Foundation under grant ECS-8306871 and, in part, by the Air Force Office of Scientific Research under grant AFOSR-84-0243.

84 12 05 003

ABSTRACT

A continuum structure function γ is a nondecreasing mapping from the unit hypercube to the unit interval. Minimal path (cut) sets . of upper (lower) simple continuum structure functions are introduced and are used to determine bounds on the distribution of $\gamma(X)$ when X is a vector of associated random variables and when γ is right (left)continuous. It is shown that, if γ admits of a modular decomposition, improved bounds may be obtained.

<u>KEYWORDS</u>: Continuum structure function; weak coherency; minimal path set; minimal cut set; upper simple; lower simple; module; modular decomposition; associated random variable.

ASCT Chief, leg colors interacts on prvision 1. INTRODUCTION

Let $C = \{1, 2, ..., n\}$ denote a set (of components) of finite cardinality n. A <u>continuum structure function</u> (CSF) is a nondecreasing mapping $\gamma: [0,1]^n \mapsto [0,1];$ we assume, without loss of generality, that $\gamma(\underline{0}) = 0$ and $\gamma(\underline{1}) = 1$ where $\underline{\alpha}$ denotes $(\alpha, ..., \alpha) \in \Delta = [0,1]^n$. Such a function is said to be <u>weakly coherent</u> if $\sup[\gamma(1_i, \underline{X}) - \gamma(0_i, \underline{X})] > 0$ for each $\underset{\underline{X} \in \Delta}{X \in \Delta}$

 $i \in C$ where (δ_i, X) denotes $(X_1, \dots, X_{i-1}, \delta, X_{i+1}, \dots, X_n)$. See Baxter (1984a,b) and Block and Savits (1984) for further details of CSFs.

In this paper, we show how <u>minimal path</u> (<u>cut</u>) <u>sets</u> of CSFs, subsets of C which are necessary and sufficient for a CSF to attain any value in its image when the state of every other component is zero (one), can be used to determine bounds on the distribution of $\gamma(X)$ when the X_i 's are associated random variables. We also continue our study of <u>modules</u> of CSFs (Baxter and Kim, 1984) by showing how the assumption of a <u>modular</u> <u>decomposition</u> yields uniformly improved bounds, thereby extending the well-known results for binary structure functions (Barlow and Proschan (1975), Chapter 2) to the continuum case.

We shall make use of the following notation:

2. BOUNDS USING MINIMAL PATH AND CUT SETS

A <u>minimal vector</u> to level $\alpha \in \text{Im } \gamma - \{0\}$ is a vector $\underline{X} \in \Delta$ such that $\gamma(\underline{X}) = \alpha$ whereas $\gamma(\underline{Y}) < \alpha$ for all $\underline{Y} < \underline{X}$. The corresponding <u>path set</u> to level α is $T_{\alpha} = T_{\alpha}(\underline{X}) = \{i \in C | X_i \neq 0\}$.

Definition (Baxter and Kim, 1984)

Let T be a nonempty subset of C. If T is a path set to level α for all $\alpha \in \text{Im } \gamma - \{0\}$, then T is a <u>minimal path set</u> of γ .

Minimal path sets do not necessarily exist for an arbitrary CSF nor, if they do exist, do they necessarily exhibit the desirable properties of minimal path sets of binary structure functions. The following definition yields a large class of CSFs for which minimal path sets exist and are "well-behaved".

Definition (Baxter and Kim, 1984)

A CSF γ is upper simple if it satisfies the following four conditions:

C1
$$P_1 \neq \emptyset$$
 and $P_1 \subset \{0,1\}^n - \{0,1\}^n$

- C2 $\bigcup_{i=1}^{r} T_{1i} = C$ where T_{11}, \dots, T_{1r} are the r path sets of γ to level 1.
- C3 If T is a path set to level $\alpha \in \text{Im } \gamma \{0\}$, then T is also a path set to level $\beta \in \text{Im } \gamma \{0\}$ for all $\beta \leq \alpha$.
- C4 If T_{α} is a path set to level $\alpha < 1$, then $T_{\alpha} \subset T_{1i}$ for some path set T_{1i} to level 1.

Proposition 2.1

Let γ be an upper simple CSF. Then

- (i) γ has at least one minimal path set
- (ii) γ is weakly coherent
- (iii) No proper subset of a minimal path set is itself a minimal path set
- (iv) $\bigcup_{i=1}^{1} T_{i} = C$ where T_{1}, \ldots, T_{r} denote the r minimal path sets of γ .
- Proof. See Baxter and Kim (1984).

Similarly, we can define minimal cut sets and lower simple CSFs.

A <u>maximal vector</u> to level $\alpha \in \text{Im } \gamma - \{1\}$ is a vector $X \in \Delta$ such that $\gamma(X) = \alpha$ whereas $\gamma(Y) > \alpha$ for all Y > X. The corresponding <u>cut set</u> to level α is $S_{\alpha} = S_{\alpha}(X) = \{i \in C | X_i \neq 1\}$.

Definition

Suppose that S is a nonempty subset of C. If S is a cut set to level α for all $\alpha \in \text{Im } \gamma - \{1\}$, then S is a <u>minimal cut set</u> of γ .

Definition

A CSF γ is <u>lower simple</u> if it satisfies the following four conditions:

- D1 $K_0 \neq \emptyset$ and $K_0 \subset \{0,1\}^n \{1\}$.
- D2 $\bigcup_{j=1}^{t} S_{0j} = C$ where S_{01}, \dots, S_{0t} are the t cut sets of γ to level 0.
- D3 If S is a cut set to level $\alpha \in \text{Im } \gamma \{1\}$, then S is also a cut set to level $\beta \in \text{Im } \gamma - \{1\}$ for all $\beta > \alpha$.
- D4 If S_{α} is a cut set to level $\alpha > 0$, $S_{\alpha} \subset S_{0j}$ for some cut set S_{0j} to level 0.

An argument similar to the proof of Proposition 2.1 yields the following results.

Proposition 2.2

Let γ be a lower simple CSF. Then

(i) γ has at least one minimal cut set

(ii) γ is weakly coherent

(iii) No proper subset of a minimal cut set is itself a minimal cut set

(iv)
$$\bigcup_{j=1}^{L} S_j = C$$
 where S_1, \ldots, S_t are the t minimal cut sets of γ .

Definition

If γ is both upper simple and lower simple, it is <u>simple</u>.

Examples of upper simple CSFs include the CSFs ζ and η studied by Baxter (1984a) and the CSF $\mu(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$; examples of lower simple CSFs include ζ, μ and $\gamma(X) = \prod_{i=1}^{n} X_i$.

Theorem 2.3 (Decomposition Theorem)

(i) Let γ be a right-continuous, upper simple CSF with minimal path sets T_1, \ldots, T_r . Then

$$\Upsilon(X) = \max_{1 \le i \le r} \Upsilon(X^{T_i}, \mathcal{O}^{T_i}).$$

(ii) Let γ be a left-continuous, lower simple CSF with minimal cut sets S_1, \ldots, S_t . Then

$$\gamma(\underline{X}) = \max \gamma(\underline{X}^{i}, \underline{0}^{i}) = \min \gamma(\underline{X}^{j}, \underline{1}^{j}).$$

$$1 \le i \le r$$

$$1 \le j \le t$$

<u>Proof</u>: See Baxter and Kim (1984) for the proof of (i). The proof of (ii) is similar, and (iii) follows immediately from (i) and (ii).

This theorem extends formulae (3.2) and (3.4) of Barlow and Proschan (1975, p. 10) to the continuum case.

Suppose that the CSF γ is right-continuous. Then $\{X \in \Delta | \gamma(X) \ge \alpha\}$ is closed (Block and Savits, 1984) and is therefore a Borel set for all α . Thus γ is Borel-measurable and hence, if X_1, \ldots, X_n are random variables defined on the same probability space $(\Omega, \mathcal{F}, P), \gamma(X)$ is also a random variable on (Ω, \mathcal{F}, P) . The same is true if γ is left-continuous.

It is henceforth assumed that X_1, \ldots, X_n are associated (Barlow and Proschan (1975), p. 29). The following property of associated random variables will subsequently prove useful.

Proposition 2.4

If X_1, \ldots, X_n are associated random variables, then

(i)
$$P\{X_1 \ge x_1, ..., X_n \ge x_n\} \ge \prod_{i=1}^n P\{X_i \ge x_i\}$$

(ii)
$$P\{X_1 < x_1, \dots, X_n < x_n\} \ge \prod_{i=1}^n P\{X_i < x_i\}$$

for any choice of x_1, \ldots, x_n .

Proof: Barlow and Proschan (1975), p. 33, prove a similar result.

We now derive bounds on the distribution of $\gamma(\underline{X})$ using the minimal path and cut sets of γ . These bounds generalise Theorems 3.4 and 3.9 of Barlow and Proschan (1975, Chapter 2).

Theorem 2.5

(i) Let
$$\gamma$$
 be a right-continuous, upper simple CSF with minimal path sets
 T_1, \dots, T_r . Then, if X_1, \dots, X_n are associated random variables,
 $\max_{\substack{x \in Y \\ 1 \leq i \leq r}} P\{\gamma(x, \overset{T_i}{x}, \overset{T_i}{, 0}) \geq x\} \leq P\{\gamma(x,) \geq x\} \leq \prod_{i=1}^r P\{\gamma(x, \overset{T_i}{x}, \overset{T_i}{, 0}) \geq x\}$

for all $x \in \mathbb{R}$.

(ii) Let γ be a left-continuous, lower simple CSF with minimal cut sets S_1, \dots, S_t . Then, if X_1, \dots, X_n are associated random variables, $\prod_{j=1}^t P\{\gamma(X_j^{j}, 1_j^{j}) > x\} \le P\{\gamma(X_j) > x\} \le \min_{\substack{1 \le j \le t}} P\{\gamma(X_j^{j}, 1_j^{j}) > x\}$

for all $x \in \mathbb{R}$.

<u>Proof</u>: (i) By the Decomposition Theorem, $P{\gamma(\underline{x}) \ge x} = P{\max_{\substack{i \le i \le r}} \gamma(\underline{x}_{i}, \underbrace{j}_{i}, \underbrace{j}_{i}) \ge x}$

and so

(2.1)
$$P\{\gamma(\underline{x}) \geq x\} = 1 - P\{\gamma(\underline{x}^{T_1}, \underbrace{0}_{2}^{T_1}, \underbrace{0}_{2}^{T_1}) < x, \ldots, \gamma(\underline{x}^{T_r}, \underbrace{0}_{2}^{T_r}) < x\}.$$

Since γ is nondecreasing, and nondecreasing functions of associated random variables are themselves associated random variables, it follows

that $\gamma(X, \overset{T_1}{,}, \overset{T_1}{,}, \overset{T_r}{,}, \overset{T_r}{,}, \overset{T_r}{,} \overset{T_r}{,}$

$$\mathbb{P}\{\gamma(\underline{X}) \geq x\} \leq \prod_{i=1}^{r} \mathbb{P}\{\gamma(\underline{X}^{T_{i}}, \underbrace{\bigcirc}^{T_{i}}) \geq x\}.$$

To establish the lower bound, observe that

$$\mathbb{P}\{\gamma(\underline{X}^{T_{1}}, \underline{0}^{T_{1}}) < x, \ldots, \gamma(\underline{X}^{T_{r}}, \underline{0}^{T_{r}}) < x\} \leq \min_{\substack{1 \leq i \leq r}} \mathbb{P}\{\gamma(\underline{X}^{T_{i}}, \underline{0}^{T_{i}}) < x\}$$

and hence, from (2.1),

$$\mathbb{P}\{\gamma(\underline{X}) \geq x\} \geq 1 - \min_{\substack{1 \leq i \leq r}} \mathbb{P}\{\gamma(\underline{X}^{T_i}, \underline{0}^{T_i}) < x\} = \max_{\substack{1 \leq i \leq r}} \mathbb{P}\{\gamma(\underline{X}^{T_i}, \underline{0}^{T_i}) \geq x\}.$$

(ii) The proof is similar and is omitted. \prod

Remark 2.6

If γ is continuous and simple, both sets of bounds hold. Neither lower bound dominates the other. Consider, for example, the binary structure function $\gamma(\underline{x}) = x_1 \vee (x_2 \wedge x_3 \wedge x_4)$, $\underline{x} \in \{0,1\}^4$, which is clearly simple. Suppose that x_1, x_2, x_3 and x_4 are independent Bernoulli random variables with parameter $p \in (0,1)$. Then $\max_{i=1,2} P\{\gamma_i(\underline{x}^{T_i}, \underline{0}^{T_i}) = 1\} = p_{i=1,2}$

whereas
$$\frac{3}{\prod_{j=1}^{N} P\{\gamma(x, j, j, j) = 1\}} = p^{3}(2-p)^{3}$$
. Thus, if $p = 0.1$, the lower

bound based on minimal cut sets is majorised by the lower bound based on minimal path sets whereas, if p = 0.9, the order of majorisation is reversed.

Similarly, neither upper bound majorises the other.

3. IMPROVED BOUNDS USING A MODULAR DECOMPOSITION

Let A be a nonempty subset of C and suppose that γ is weakly coherent. [A] Suppose, further, that there exists a weakly coherent CSF γ_1 : [0,1] \mapsto [0,1] and a CSF χ : [0,1]^{**n**-|A|+1} \mapsto [0,1] such that $\gamma(\chi) = \chi[\gamma_1(\chi^A), \chi^{A^C}]$ for all $\chi \in \Delta$. Then (A, γ_1) is a module of (C, γ).

This definition is due to Baxter and Kim (1984).

Definition

Let γ be a weakly coherent CSF. Suppose that $(A_1, \gamma_1), \dots, (A_N, \gamma_N)$ are modules of (C, γ) where $\{A_1, \dots, A_N\}$ is a partition of C, i.e. there exists a CSF χ : $[0,1]^{n-|A|+1} \mapsto [0,1]$, the <u>organising structure</u>, such that $\gamma(\chi) = \chi[\gamma_1(\chi^{A_1}), \dots, \gamma_N(\chi^{A_N})]$ for all $\chi \in \Delta$. Then $\{\chi, (A_1, \gamma_1), \dots, (A_N, \gamma_N)\}$ is a <u>modular decomposition</u> of (C, γ) .

In this section, we show that, if γ admits of a modular decomposition, improved bounds on the distribution of $\gamma(X)$ may be obtained. It is first necessary to introduce some further notation.

Suppose that γ is upper (lower) simple with minimal path (cut) sets T_1, \ldots, T_r (S_1, \ldots, S_t) and that the organising structure χ is also upper (lower) simple with minimal path (cut) sets μ_1, \ldots, μ_p (ν_1, \ldots, ν_k). We write $\mu_i = \{A_{i1}, \ldots, A_{iM_i}\}$ for i=1,2,...,p ($\nu_j = \{A_{j1}, \ldots, A_{jM_j}\}$ for j=1,2,...,k) where each $A_{kh} \in \{A_1, \ldots, A_N\}$. Further, we write

 $B_{i} = \bigcup_{\ell=1}^{M_{i}} A_{i\ell} (D_{j} = \bigcup_{\ell=1}^{M_{j}} A_{j\ell}); \text{ these are those elements of C which are}$

contained in the elements of $\mu_i(v_i)$.

Proposition 3.1

(i) Suppose that γ admits of a modular decomposition $\{\chi, (A_1, \gamma_1), \dots, (A_N, \gamma_N)\}$ and that γ and χ are both upper simple and right-continuous. Then each B_i contains at least one of the minimal path sets of γ , and each of these minimal path sets is a subset of precisely one of B_1, \dots, B_p .

(ii) Suppose that γ admits of a modular decomposition $\{\chi, (A_1, \gamma_1), \ldots, (A_N, \gamma_N)\}$ and that γ and χ are both lower simple and left-continuous. Then each D_j contains at least one of the minimal cut sets of γ , and each of these minimal cut sets is a subset of precisely one of D_1, \ldots, D_k .

<u>Proof</u>: (i) Suppose, firstly, that there exists a minimal path set of γ , T say, such that $T \notin B_i$ for each i=1,2,...,p. Since T is a path set to level $\alpha \in \text{Im } \gamma - \{0\}$, there exists a minimal vector X^T to level α . A₁ $\cap T$ A₁ $\cap T^C$ Let $Y_h = \gamma_h (X \stackrel{h}{\sim} , 0 \stackrel{h}{\sim})$ for h=1,2,...,N.

Since μ_1, \ldots, μ_p are the minimal path sets of χ , it follows from the Decomposition Theorem that

$$\chi(\underline{Y}) = \max_{1 \le i \le p} \chi(\underline{Y}^{\mu_{i}}, \underline{0}^{\mu_{i}})$$
$$= \max_{1 \le i \le p} \chi[\gamma_{i1}(\underline{X}^{A_{i1}}, \underline{0}^{A_{i1}}, \underline{0}^{T^{c}}), \dots, \gamma_{iM_{i}}(\underline{X}^{A_{iM_{i}}}, \underline{0}^{A_{iM_{i}}}, \underline{0}^{T^{c}}), \underline{0}^{\mu_{i}}]$$

where $\gamma_{\mbox{ij}}$ is the CSF associated with A $_{\mbox{ij}}$

 $< \gamma(\underline{x}^{T}, \underline{o}^{T^{c}})$

hy hypothesis. B OT is a proper subse

since, by hypothesis, $B_i \cap T$ is a proper subset of T for each i. This is a contradiction, and hence there exists a B_i containing T. Since T is arbitrary, it follows that each minimal path set of γ is a subset of some B_i .

Since, clearly, no B_i is empty, and thus contains at least one minimal path set of γ , it remains to show that no T can lie in more than one of the B_i 's. Suppose, conversely, that $T \subset B_i$ and $T \subset B_j$ $(i \neq j)$. Suppose, further, that, for some $\Upsilon = (\gamma_1(\chi^{A_1}), \ldots, \gamma_N(\chi^{A_N})), (\Upsilon^{\mu_i}, O^{\mu_i})$ is a minimal vector to level α , i.e.

$$\max_{1 \le \ell \le p} \chi(\underline{\underline{Y}}^{\mu_{\ell}}, \underline{\underline{O}}^{\mu_{\ell}}) = \chi(\underline{\underline{Y}}^{\mu_{i}}, \underline{\underline{O}}^{\mu_{i}}) > \chi(\underline{\underline{Y}}^{\mu_{h}}, \underline{\underline{O}}^{\mu_{h}})$$

for all $h \neq i$. Now

$$\begin{aligned} \chi^{\mu_{i},\mu_{i}^{c}}, \chi^{e_{i}}, \chi^{e_{i}$$

since μ_j is a minimal path set of χ = $\chi(\chi^{\mu_j}, \chi^{\mu_j})$,

thereby contradicting the assumption that $\chi(\chi^{\mu_i}, \chi^{\mu_i}, \chi^{\mu_i}) > \chi(\chi^{\mu_j}, \chi^{\mu_j})$. It follows that T is a subset of precisely one of B_1, \dots, B_p .

This completes the proof of part (i). The proof of part (ii) is similar, and is omitted.

Theorem 3.2

Suppose that γ is a CSF with modular decomposition $\{\chi, (A_1, \gamma_1), \dots, (A_N, \gamma_N)\}$ and that χ is a vector of associated random variables. Let $Y_j = \gamma_j (\chi^{j})$ for j=1,2,...,N.

(i) If γ and χ are both right-continuous and upper simple with minimal path sets T_1, \ldots, T_r and μ_1, \ldots, μ_p respectively,

$$\max_{1 \leq i \leq r} P\{\gamma(\underline{x}^{T_{i}}, \underline{0}^{T_{i}}) \geq x\} \leq \max_{1 \leq i \leq p} P\{\chi(\underline{y}^{\mu_{i}}, \underline{0}^{\mu_{i}}) \geq x\} \leq P\{\gamma(\underline{x}) \geq x\} \leq \prod_{i = 1}^{r} P\{\chi(\underline{y}^{\mu_{i}}, \underline{0}^{\mu_{i}}) \geq x\} \leq \prod_{i = 1}^{r} P\{\gamma(\underline{x}^{T_{i}}, \underline{0}^{T_{i}}) \geq x\}.$$

(ii) If γ and χ are both left-continuous and lower simple with minimal cut sets S_1, \ldots, S_t and v_1, \ldots, v_k respectively,

$$\frac{1}{\substack{j=1\\ j=1}} P\{\gamma(\underline{X}^{j}, \underline{1}^{j}, \underline{1}^{j}) > x\} \leq \frac{1}{\substack{j=1\\ j=1}} P\{\chi(\underline{Y}^{j}, \underline{1}^{j}, \underline{1}^{j}) > x\} \leq P\{\gamma(\underline{X}) > x\} \leq P\{\gamma(\underline{X}) > x\} \leq \frac{1}{\substack{j=1\\ 1 \leq j \leq k}} P\{\chi(\underline{Y}^{j}, \underline{1}^{j}, \underline{1}^{j}) > x\} \leq \frac{1}{\substack{j=1\\ 1 \leq j \leq t}} P\{\gamma(\underline{X}^{j}, \underline{1}^{j}, \underline{1}^{j}) > x\}.$$

 $\underbrace{Proof}_{\substack{\mu \\ \gamma(X) > x}}^{\mu} \xrightarrow{\mu^{c}}_{i,0} \xrightarrow{\mu^{c}}_{j,\infty}$ follows immediately $1 \leq i \leq p$

from the modular decomposition of γ and from Theorem 2.5, so it is sufficient to verify that the assumption of a modular decomposition yields an improved bound.

an improved bound. $\mu_{i} \mu_{i} \mu_{i}^{c} B_{i} B_{i}^{c}$ Since $\chi(\underline{Y}, \underline{0}) = \gamma(\underline{X}, \underline{0})$ on Ω and, by Proposition 3.1, there exists at least one minimal path set of γ which is contained in B_{i} , it follows from the Decomposition Theorem that

(3.1)
$$\gamma(\mathbf{X}^{\mathbf{B}_{i}}, \mathbf{O}^{\mathbf{B}_{i}}) = \max_{\{T \mid T \subset B_{i}\}} \gamma(\mathbf{X}^{T}, \mathbf{O}^{T^{c}}) \text{ on } \Omega.$$

Thus $\gamma(\underline{X}^{\mathbf{I}}, \underline{\mathcal{O}}^{\mathbf{I}}) \geq \gamma(\underline{X}^{\mathbf{T}}, \underline{\mathcal{O}}^{\mathbf{C}})$ on Ω for each $\mathbf{T} \subset \mathbf{B}_{\mathbf{i}}$ and so $P\{\chi(\underline{Y}^{\mu_{\mathbf{i}}}, \underline{\mathcal{O}}^{\mu_{\mathbf{i}}}) \geq x\} \geq P\{\gamma(\underline{X}^{\mathbf{T}}, \underline{\mathcal{O}}^{\mathbf{T}}) \geq x\}$ for each $\mathbf{T} \subset \mathbf{B}_{\mathbf{i}}$. Hence,

$$\mathbb{P}\{\chi(\underline{y}^{\mu_{i}}, \underline{o}^{\mu_{i}}) \geq x\} \geq \max_{\{T \mid T \in B_{i}\}} \mathbb{P}\{\gamma(\underline{x}^{T}, \underline{o}^{T}) \geq x\}$$

for i=1,2,...,p, from which it follows that

$$\max_{\substack{\substack{\mu_i, \mu_i \\ i \le p}}} P\{\chi(\underline{Y}^{\mu_i}, \underline{0}^{i}) \ge x\} \ge \max_{\substack{1 \le i \le r}} P\{\gamma(\underline{X}^{i}, \underline{0}^{i}) \ge x\}$$

as claimed.

It follows from the modular decomposition of γ and from Theorem 2.5 that $P\{\gamma(X) \ge x\} \ge \prod_{i=1}^{p} P\{\chi(Y_{i}, 0) \ge x\}$ and so it is again sufficient to show that the assumption of a modular decomposition leads to a uniformly improved bound.

From (3.1), we see that

$$\chi(\overset{\mu_{i}}{\overset{\mu_{i}}}{\overset{\mu_{i}}{\overset{\mu_{i}}{\overset{\mu_{i}}{\overset{\mu_{i}}{\overset{\mu_{i}}}{\overset{\mu_{i}}{\overset{\mu_{}$$

for $i=1,2,\ldots,p$, and so

$$\prod_{i=1}^{p} \mathbb{P}\{\chi(\underline{x}^{\mu_{i}}, \underline{o}^{\mu_{i}}) \geq x\} = \prod_{i=1}^{p} \mathbb{P}\{\max_{\{T \mid T \in B_{i}\}} \gamma(\underline{x}^{T}, \underline{o}^{T^{c}}) \geq x\}$$

$$\leq \prod_{i=1}^{p} \prod_{\{\ell \mid T_{\varrho} \in B_{i}\}} \mathbb{P}\{\gamma(\underline{x}^{T\ell}, \underline{o}^{T^{\ell}}) \geq x\}$$

on appealing to Proposition 2.4 and performing some manipulations

$$= \prod_{i=1}^{r} \mathbb{P}\{\gamma(X^{i}, \mathcal{O}^{i}) \geq x\}$$

from Proposition 3.1.

(ii) This is proved by similar arguments.

Remark 3.3

If γ is simple and continuous, both sets of bounds hold. Except for the fact that the assumption of a modular decomposition leads to an improved bound, none of the upper (lower) bounds majorises any of the others; counterexamples are easily constructed.

ACKNOWLEDGEMENT

We should like to thank the referee for drawing our attention to some errors in an earlier version of this paper. REFERENCES

BARLOW, R. E. and PROSCHAN, F. (1975). "Statistical Theory of Reliability and Life Testing", Holt, Rinehart and Winston, New York.

BAXTER, L. A. (1984a). "Continuum Structures I", J. Appl. Prob.,

21 (to appear).

BAXTER, L. A. (1984b). "Continuum Structures II", submitted for publication.

BAXTER, L. A. and KIM, C. (1984). "Modules of Continuum Structures",

Conference on Reliability Theory and Quality Control, University of Missouri-Columbia, June 4-8, 1984.

BLOCK, H. W. and SAVITS, T. H. (1984). "Continuous Multistate Structure Functions", Operations Research, 32, 703-714.

FILMED

1-85

DTIC