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ABSTRACT

’*

£ Ty

[T A

A continuum structure functions (€5F}-is—e nondecreasing
5 ¥ ‘

mappings from the unit hypercube to the unit interval. Such a
F g%

function, y say, is said to be weakly coherent if SUPFYUi,SJ“YUHEJ]>0
for each component i € C. Suppose that y is weakly coherent
and that A € C is nonempty. Then (A,Yl) is a module of
(C,vy) if Y, is weakly coherent and if there exists a CSF
x such that y(X) = X[YI(EA),EAC] for all X. A minimal path set
of y is, essentially, a subset of C which is necessary and
sufficient for the CSF to attain any value in its image when
every other component is in state zero.

Using these concepts, the main results of Birnbaum and

Esary's theory of modules of binary structure functions, in

-y R Y R .

particular the Three Modules Theorem, generalize to the continuu

case.
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;3: 1. INTRODUCTION

F;: A continuum structure function (CSF) on the unit hypercube

'éi is a nondecreasing mapping vy: [0,1]n » [0,1]. The dimension of

t;j the domain space is |C|, the cardinality of C = {1,2,...,n},

b a set of components, and is assumed to be finite. It is supposed,
if without any loss of generality, that y(0) = 0 and v(l) =1

,iﬁ' where o denotes (a,...,a). Definitions of various types of

\Ei component relevancy are given by Baxter (1984b); only the following
;gﬁ will be required here.

?j Definition

“:-1 A CSF y is said to be weakly coherent if sup[y(li,z‘)-y(oi,z)] >0
( for each i € C.

fig In the above, (8.,X) denotes (X;,...,X: 1,8,X. . 75...,X)€EA = ULl]n.
AN i’~ 12°°771-127271+1° """ " n

?ﬁ See Baxter (1984a,b) and Block and Savits (1984) for further

réx details of CSFs.

L:E The purpose of the present paper is to describe a theory of
%E modules of CSFs analogous to that of modules of binary coherent

.:p structures (Birnbaum and Esary, 1965). Indeed, our main results
Eé are extensions of those of Birnbaum and Esary (1965), though our
?ﬁ approach is rather different; in particular, a continuum version
i;ﬁ of ¢-equivalence is not required.

'éé It will be necessary to introduce the notion of minimal

33 path sets of CSFs, subsets of C which are necessary and sufficient
- for a CSF to attain any value in its image when the state of

3
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\¥§ every other component is zero. In order to do so, however,
{:V it is necessary to restrict the class of CSFs considered so that
$¥: the minimal path sets have certain desirable properties.
Sik Hence, before proceeding to a definition of modules, it is
i}’ convenient to define and study minimal path sets of upper simple
200 CSFs.
?\ \
L
W
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-'-'\'.;
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!.\ {
lta 2. MINIMAL PATH SETS OF UPPER SIMPLE CSFs
s
L
( } A minimal vector to level o € Im v-{0} is a vector X €A
:;ﬁ such that y(X) = a whereas y(Y) < a for all ¥ < X. (Im y denotes
':“‘ ~ "~
-Ebl the image of y and Y < X means that Yi < Xi for i=1,2,...,n
N '.‘ g ~ ~ -—_
*A but Y # X.) Let P, denote the set of all minimal vectors to
g
;3f level a. (Notice that our definition of P  differs from that
‘?i of Block and Savits (1984) as we require that a € Im v.)
e X
® A path set to level o € Im v-{0} is a nonenmpty set
ii; T, = T, (X) = {1€C|Xi#0} where X € P_.
ifj Definition
®
2O Let T be a nonempty subset of C. If T is a path set to
"N Y
o level o for all o« € Im y-{0}, then T is a minimal path set of vy.
‘-': .
7
o
I
S
o
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A
S Remarks
SR ER—
(¢ 1. Replacing A and y by {0,1}" and ¢, a binary coherent structure
ﬁ} function, respectively, in this definition yields the minimal
Sf path sets of ¢, and hence the above definition is a direct
AN :
) generalization of the definition of the minimal path sets of ¢.
N
X 2. There is an analogous definition of minimal cut sets of CSFs,
Y )
N but this concept will not be needed here.
€ :
oy : Minimal path sets do not necessarily exist for arbitrary
b
- CSFs and, if they do exist, they may exhibit undesirable
e e,
' properties. The following definition yields a large class of
.:ij CSFs for which minimal path sets exist and are "well-behaved".
o
.~ .
WY Notation
-,'.- -
( A ¢ B means that A is a subset of B; A « B means that A is
,é: a proper subset of B; ﬁp denotes {XiliEPg;C}.
o
2 Definition
'LQ A CSF vy is upper simple if it satisfies the following four
=y
e conditions.
.:{.
P~ Cl: P, # # and P;  {0,1}"-{Q}
o r
AR . =
wi. C2: .géTli C where Tll,...,Tlr are the r path sets of y to
AW =
X level 1.
l\'-
I:; C3: If T is a path set to level o € Im y-{0}, then T is also a
5 .
jé path set to level B € Im y-{0} for all B < a.
,. C4: If T 1is a path set to level a <1, then T < T;; for some
7 a S o i
s path set T,; to level 1.
Y
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Condition C1 asserts that, if a component is necessary to
ensure that the system is fully operational, that component
must itself be fully operational. Conditions C2 and C3 state,
respectively, that each component is required in at least one
of the path sets to level 1 and that, if a set of components is
sufficient to attain a given level, it must also be sufficient
to attain any lower level. Condition C4 is, essentially, a
regularity condition.

Examples of upper simple CSFs include the CSFs

g(z) = max min'Xi
1<r<p 1i€P,

and

N = max  TT X
1<r<p 1€P,
(Baxter, 1984a), where Pl?""Pp denote the minimal path sets of

¢, a binary coherent structure function, and

u(X) = X, .

1 1

Sl
i t~133

i
Some properties of upper simple CSFs are given in the

following proposition.
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Proposition 2.1

Let y be an upper simple CSF. Then
(1) y has at least one minimai path set
(ii) vy is weakly coherent
(iii) No proper subset of a minimal path set is itself a minimal

path set.

T
(iv) L}Ti = C where Tl,...,Tr denote the r minimal path sets
i=1
of vy.

Proof: ~ (i) This is immediate from C1 and C3.

(ii) By Cl1, there exist path sets to level 1, Tll"“’Tlr say,
T TS

. . T
such that y(1 11,2 11

. TS,
1
) = 1 whereas Y(X 1,2 11)‘< 1 for all

Ty T
Y ** <1+t (=1,2,...,7r). Thus, for each j € T

 T,.-{j} TS. T,.-{j
v, @t L0 M) = 1 whereas y(0, (3 M

This holds for each j € C by C2, and hence y is weakly coherent.

11’
} TS,
0 ) <L

(iii) Suppose that T, and T, are minimal path sets of y such

that T1 c T2. Clearly, T1 and TZ are both path sets to level 1.

T, Ty T, TS T, T,
By C1, vy(1 7,0 7) = 1 whereas Yy 7,0 7) <1 for all ¥ <17,
T, T1¢ T, TS T T
and yv(1l Z,Q 2) = 1 whereas y(Z 2,2 2) <1 for all Z z 1 2_

T, T] T, T
Since, however, T1 c TZ’ we have (L 7,0 7) < (1 ,0 "), thereby

contradicting the minimality of TZ' Thus T1 ¢ TZ'
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(iv) This is immediate from CZ and C3. []

The following decomposition will subsequently prove useful.
It can be viewed as a generalization of formula (3.2) of Barlow

and Proschan (1975, p. 10).

Theorem 2.2 (Decomposition Theorem)

Let y be a right-continuous, upper simple CSF with minimal

path sets T ”"’Tr’ Then

1

T, TS
y(X) = max y(X ',0 ).

Proof: The result is trivially true for r = 1, so suppose that

r > 2,
T, TS |
By the monotonicity of vy, y(X) > y(z 0 7) for i = 1,2,...r
‘ . T TS
and hence y(X) > "max y(X 7,0 7). Suppose that
T, TS
y(é) > max y(5 1,9 ) for some X €-A.

l<i<r

Consider firstly the case where X € Pa (observe that, by
Proposition 2.1(i), Pa # § for all o € Im y). If Xj # 0 for

T. T¢

all j € T; (l<i<r), then, since X > (X 1,0 %), we must have

Xy # 0 for some k € Tg and hence there exists a path set, T_ say,

o

to level a such that Ta ) Ti’ in contradiction to C4. If
Xj = 0 for some j € T, (1<i<r), then, again, Xy # 0 for some
k € Tg and hence there exists a path set,bTa say, to level a such

that T ¢ T; and T, # T., again a contradiction to C4. Thus
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equality holds for all minimal vectors.

Suppose, now, that y(X) = o, but that X £ Pa' Since vy is
right-continuous, X > Y € Pa (Block and Savits, 1984) and so
T. T¢ T T¢ T 1¢

y(Y) = max y(X ,0MH =yx™o™ (say) >yx ™0™,
1<i<r
thereby contradicting the monotonicity of y.
TS
It follows that v(X) = max vy(X l,g 1) as claimed. D
l1<i<r

3. MODULES AND THEIR MINIMAL PATH SETS

We start by defining modules and modular sets of CSFs.

Definition

Suppose that y is a weakly coherent CSF and that A c C
is nonempty. Suppose, further, that there exists a weakly
coherent CSF yy: 10,1714 . [0,1] and a csF : [0,117 121+ [0,1]
such that y(z) = X[yl(ﬁA),EAC] for all X € A. Then (A,Yl)

is a module of (C,y) and A is a modular set of (C,y).

In this section, we present three of our main results. We
prove that, if (A,y;) is a module of (C,y), and if T is a
minimal path set of the upper simple CSF y, then AN T is a
minimal path set of Yp» thereby generalizing Theorem 4.1 of
Birnbaum and Esary (1965) to the continuum case. We also

prove a partial converse to that theorem: a condition on the
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L

(“ minimal path sets of vy under which A c C is a modular set of

L 4

o (C,Y). The third result is that if (A,Yl) is a module of (C,Y),
‘;j and if y and vy, are both upper simple, then (ANT) U (ACnT') is
& a minimal path set of y whenever T and T' arc minimal path sets
< of v which intersect A; this generalizes part of the Birnbaum-
o Esary Test for Modularity.

\ Remark

3 It is easily seen that y is weakly coherent.

e |

I

£ Examples

53, 1. For the CSF u, any nonempty subset of C is a modular set.
-ii 2. For the CSF¥ ¢z, any modular set of (C,¢) is also a modular
set of (C,z).

e 3. For the CSF n, any minimal path set of ¢ which does not

5i intersect any of the other minimal path sets is a modular
i; set.

o .

o Theorem 3.1
rﬁi Let y be an upper simple CSF with minimal path sets

Ze Tl’ "’Tr' Suppose that (A,Yl) is a module of (C,y) and that
.jz An Tj # B for j =1,2,...,k whereas A N Tj = @ for

ii j = k+1,...,r. Suppose further that Yy is upper simple. Then
jg; the minimal path sets of Y, are AnTl,...,AnTk.
o
K
\IP'
WA

P -

T Tt [

/o
]

N

TN A A A s o G o7 e Tt e A AN AN )




Proof: If k = 1, the result is trivial, so suppose that k > Z.

Firstly, we show that A n Tj (1<j<k) is a minimal path set
of Y,- Since v, is upper simple, it is sufficicnt to verify
that A n Tj is a path set of y; to level 1.

AnT. AnT:
Suppose that Yl(l J,Q ) =g <1, If g = 0, then,

using the definitions of Tj and (A,yl), we see that

AnT. AnTS A T. TS
vi@ 7,0 ) =0=1v;(0") and thus y(1 7,0 7) =
A ASnT. ASnTS ASaT. AuTS
xly1(07),1 7,0 1 =vQ 7,0 ) =1, thereby contradicting

T. TS
the assumption that (l J,g J) € Pl‘ Suppose, now, that 0 < g < 1.

Since v; is upper simple, it possesses a minimal path set, W say.

Let (XW,QA h) be a minimai vector of Yy to level B. By the
W oAa-w AT, ASaTS
definitions of T; and (A,yl), xIyy 0", 0¥, 1 3, 0 9y -

ASnT, ASaTS ASnT. ASnTS
whereas x(y,Y J,Q J) <1 for all (y,Y J.o J) <

ASnT. ASnTS \ ASaT.  ASnTS
.1 3,0 J). Thus, y(v",08",1 " J,0 ) -

~

AnT.  ASHTS ACnT.
whereas Y(z’ AWy J0 ) <1 for ann 2V, 3y <

ASnT, - o ASaT. ASaTS
w1 9y, de 00N e D er.
however, that 0 < VW < iw, and hence we have a contradiction

It is clear,

AnT. AnTS
to C1. It follows that y(l J,Q J) =

AnT, AnT,
Suppose that there exists a vector Y ) < 1 J such that

AnT, AnTS
yl(z J,Q Jy = 1. Then, since (A,yl) is a module of (C,y),
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........................

~

T +0
&

T, 1§ AnT, AnTS  ASaT, ASnTS

o v l,o ) =xivpyaa Y0 N, 1 o )
~ ANT, AnTS  ASnT, ASnTS
:: = X[Yl(z, ’,:, J)’ ,1-, J,,Q, J]

., il
- AnT; ASnT. TS 1
Z =y(x J,p o 4
. |
- | -1,
_::: T c

-’ 3 L3

N contradicting the assumption that (1 J,g )y € Pl'
\ It follows that AnTl,...,AnTk are minimal path sets of Y

A%

% as claimed.

- Suppose, now, that there exists a minimal path set T of Y1

1A

- such that T # AnTj for j=1,2,...,k. An argument similar to
:? that of the first part of the proof shows that T U (Achj)

T& is a minimal path set of y for j=1,2,...,k and is hence equal
(h to one of Tl""’Tr’ Since, however, T intersects at least

o .

A vy aC - c

3 two of AnTl,...,AnTk, Tg n [Tu(A nTj)] (TznT) 1] (TlnA nTj) c

T
N2, (T,nA)-U (T,nA®) = T, for all j=1,2,...,k, £=1,2,...,r. This is

)

NS a contradiction, and hence T must be of the form A N Tj (1<j<k). D
% »
0% Theorem 3.1 generalizes Theorem 4.1 of Birnbaum and

X

Esary (1965). These authors do not prove a converse to their

ot
"‘.ffa.

theorem, and a converse to our own result is not immediate.
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v ORI

WA,

The following theorem gives a condition under which a nonempty
subset of C is a modular set; the proof is a construction of the

"natural'" CSF induced by the restriction y to that subset and by

)

the minimal path sets of .
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Theorem 3.2

Let v be a right-continuous, upper simple CSF with minimal

path sets Tl""’T Suppose that A is a nonempty subset of C

re
such that Tj c A for j=1,2,...,k whereas AnTj = # for j=k+1,...,r.
Then there exists a weakly coherent CSF Yot [0,1]'Al -+ [0,1] such

that (A,YA) is a module of (C,y).

Proof: By the Decomposition Theorem,

I T. TS
(3.1) Y(X) = max{ max y(X ?,07), max y(xJ,07%)
~ 1<j<k 7 k+l<j<r ~

for all X € a. Since T; = AnT; and T§ = (AnT;)lJAC, it follows

T. TS ANT. AnTS

. . . (o4
that yX 7,09 = v(x .0 J,0") for j-1,2,... k.

Define the CSF y,: [0,1]'A! o [0,1] by

A AS
(3.2) v, (XY = vt oM.
From (3.1) and (3.2),
ANT, AnTS T, T?
(3.3) v(X) = maxf max v, (X 7,0 ), max y(x?,0 ).
11<j<k k+l<j<r

Clearly, Ya is right-continuous. We show that YA is upper
simple and that its minimal path sets are AnTl,...,AnTk.

Since Tj (1<j<k) is a minimal path set of v,
T. TS ANT. AnTS T. TS
Y1 7,07) = v,@ 7,0 J) =1 whereas y(y 7,0 %) -

AnT. AnTc

c . T T ANT. ANT.
YA(Z J,g J) <1 for all Y

J <13, ie. foranny J <1 3,

Thus A nTj is a path set of Ya to level 1, and it is easily seen




that there are no path sets of Yy to level 1 other than
AnTl""’AnTk' Further, it is obvious that Ya satisfies Cl

and, since AnTj =@ for j = k+1,...,r,

k
U (anTy) =
j=1 j

T T
(AnT.) = An|J T, = A,

=1 J j:l J

so that Ya satisfies C2.

Claim: Let T be a nonempty subset of C such that ANT # .
Then T is a path set of y to level « <1 if and only if Tc A

and AnT is a path set of Yy to level a.

Proof of Claim: Suppose that T is a path set of y to level

a < 1. We show that T < A or, equivalently, that ASnT = p.
Suppose, conversely, that ASnT # @; since T is a path set to

level o, there exists an X € POl such that
c

c.,mC c
T 1€ T.nT T uT T.nT TmUT)
14

Y(X',0° ) = max y(XJ ,07 )=yx™ ,0
1<j<r

say. Since AN T and A® n T are both nonempty, T N Tc T,
thereby contradicting the minimality of (5T,QTC). Thus
ASnT-= p as claimed, and it is obvious that An T is a path
set of YA to ‘level

The proof of the converse is straightforward and is

omitted. (]
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o

\ The claim enables us easily to verify that Y satisfies

_ C3 and C4. Suppose that T is a path set of y to level a and

( that AnT # #. Then, by the claim, A n T is a path set of v,

'3-:::j A to level a. Since T is a path set of y to level B for all B < a,

' - it follows that A n T is a path set of vy, to level B for all

B < o. Further, if T is a path set of y to level «, then, by

C4, T c Tj for some j=1,2,...,k. Thus, by the claim, AN T

.- is a path set of Y, to level a and AnTSAnTj.

o . . :

o In summary, Yp 1S right-continuous and upper simple, and

20 its minimal path sets are AnT;,...,AnT,. Thus, by the Decomposition

‘o Theorem and (3.3),

o T. TS

LT

+.3 y(X) = maX{YA(QS,A), max y(X 7,0 J)}-

( k+l<j<r

N

'I -

o Define the CSF : [0,11" AI+L | [0,1] by

:’:::" C

o - AC T, TS

¥ 3.4)  xtr,x) = mex{y, max yxJ,0h}.

v, k+l<j<r

o <=

e

:.:’:% The CSFs y and Y, are upper simple and hence weakly coherent.

N c

SE Thus, from (3.2) and (3.4), v(X) = x[x,(X"),X" ] for all X € a

"’ and so (A:YA) is a module of (C,y). (]

o Theorem 3.3

'..._',.' Let y be an upper simple CSF with minimal path sets

I\J‘,

Yool Tl”"’Tr' Suppose that (A,Yl) is a module of (C,y) and that

f‘.l'

'.,;}.' AnTj # P for j=1,2,...,k whereas AnTJ- = f for j=k+l,...,r.

T

. Suppose, further, that y; is upper simple. Then (AnTJ.) v (Achz)
is a minimal path set of y for j,2 = 1,2,...,k.




iy _
)." . 14
3
poi
N
roof: ince vy is upper simple, it is sufficient to show that
‘ Proof: Si i imple, it i ffici h h
. 1002
e (AnTj) U(ACnTl) is a path set of vy to level 1, and this follows
-..h
jzﬁ easily from the definitions. []
T
&% This theorem generalizes part of the Birnbaum-Esary Test
gi for Modularity. Birnbaum and Esary (1965) also show that, if
EE (AnTj)lJ(ACnTZ) is a minimal path set of a binary coherent
Q_\ structure function, then A is a modular set of that structure.
l\-
j§ We have not yet been able to determine conditions on y under
{i: which a converse to our theorem holds.
‘ Rl
o
w
"
o
C 4. THE THREE MODULES THEOREM
N
o, The main result of Birnbaum and Esary (1965) is their
.Ef Three Modules Theorem which asserts that, if A1 U A, and A, U Ag
}f; are modular sets of a binary coherent structure, then so are
IR0 '
;ﬂ% Al’ AZ’ A3 and AllJAzlJAS. The following theorem extends this
ﬂfﬁ result to upper simple CSFs. Since, as previously noted, a
. -
A converse to Theorem 3.3 has not yet been established, the following
L additional condition will be assumed.
53" C5 Suppose that y is upper simple with minimal path sets
Eﬂ§ TyseeenTo. Suppose, further, that A is a nonempty subset
.
j% of C such that Ar)Tj # # for j=1,2,...,k whereas At\Tj =f
r.;\

for j=k+1,...,r. If (AnTj)(J(ACnTl) is a minimal path set
of vy for all j,e=1,2,...,k, then A is a modular set of (C,Y)

and the associated CSF is upper simple.
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Theorem 4.1 (Three Modules Theorem)

Let vy be an upper simple CSF which satisfies C5. Suppose

that Al’ AZ and A3 are disjoint, nonempty subsets of C such that

AluA2 and AZUA3 are modular sets of (C,y) and that the associated

CSFs are upper simple. Then A,, A,, A,, A, UA, and AILJA

12 722 732 71 3 2
are all modular sets of (C,y). Further, those minimal path

UA3

sets of vy, Tl""’Tr say, which intersect AluAZUA3 all inter-

sect each of A,,A, and A;, or else they all intersect exactly

one of these sets.

Proof: Define the following subcollections of Tl,...,Tr:

B, = {T|AlnTi 9, AynT, = g, ANnT; = p for some i}
B2 = {T]AlnTj =, AZnTj ¢ 0, A311Tj = f for some j}
B3 = {T|A1nTk = §, Azr\Tk = #, Ast)Tk # § for some k}
B, = {T|AnT, # 8, AynT, # 9, A;nT, = § for some £}
B5 = {T]AlnTm #0, AZ|1Tm.= g, Az n T # P for some m}
B6 = {T|AlnTV =g, AZnTv $ 0, A3(1Tv # § for some v}
B7 = {TIAlnTw 8, AZnTw £ 0, A3nTw # § for some w}.
Clearly, Bl,...,B7 form a partition of é;QTh.

The first stage of the proof is to show that B4, B5 and
B6 are all empty.

Suppose that B4 is not empty. Then, since A3 is, by
hypothesis, nonempty, there exists a minimal path set, T say,
such that A3r1T-# P, and so B; UB, UB, UB, # #. We show that
this latter event, in conjunction with the event B4 $ 9,

leads to a contradiction.
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Suppose, firstly, that B3 # #. Then, since B3 and B4
are nonempty, there exist distinct minimal path sets Tk € B3
and Tz € B, both of which intersect the modular set AZlJAS.

Noting that (AZUAS)lﬁTl = A,nT,, it follows from Theorem 3.3

2
that (A,NT,) U ((A,nA5)S NT,) is a minimal path set of y. This
assertion is not, however, true: consider, for example, the
case AluAZUA3 = C. Then (AZUA3)CnTk = § and A2r1T2 is not a
minimal path set of y since A2t1T2<:T2.

By similar arguments, it can be shown that B, and BS cannot
simultaneously be nonempty; neither can B4 and B6’ nor B4 and

B Thus, if B, # #, then B, UB. UB UB, = g and Ag does not

7° 3 5 6

intersect any minimal path set of y. This is clearly a
contradiction, and hence we must have B4 = @#. By similar
arguments, B5 and B6 are also empty.

The same arguments show that, ifiB1 uB, U B, # §, then

B, = g and, conversely, that if B, # #, then ByUB,UB; = g.

T
Case I: BluBzuB3 = A:QTh. : |

From the definitions of Bl’ B2 and B3, it follows that each

of Tl""’T intersects exactly one of Al’ A2 or A3.

T
To show that Al is a modular set, observe that, since
AllJA2 is a modular set, it follows from Theorem 3.3 that

T = [(AjUA,) nTiI] u [(AJuA )€ nTiZ] is a minimal path set of

Y Where Til, Tiz € Blo Let A4 = C - (A1UA2UA3)a Then

o - . . . -

R TR LI TS T T R N '...‘v..\.\’\'_‘-..\ sl




_.‘_'.‘ ......... AT T IR T - Ve L Y ] LSLAL QL GL RALE b Al R SR L
=
3 17
o
e

":‘:‘ = = c i

3 T (AlnTil) ) (A4 n Tiz) (AlnTil) U (AlnTiz). Since, by
{*

o assumption, y satisfies C5, it follows that Al is a modular set
o of (C,Y).

D |
S5 Similarly, it can also be shown that AZ’ A3, A1 UA3 and
)

e .l\1 UA2 UA3 are also modular sets of (C,Yy).

g o

o~ Case II: B, = T
‘ A 7 o1 h
A\

s

- From the definition of B7, each of Tl""’Tr intersects

Al, A2 and A3.

N To show that A1 is a modular set, observe that, since

Y

j% Al UA2 is a modular set of (C,Y), it follows from Theorem 3.3
o,
.3'( that T = [(A;UA,) nT ] U [(AVUA )ch ] is a minimal path set
{- 1772 Wy 1772 W,
_-:Z: of y where Tw , Tw € B7. Further, again from Theorem 3.3,
o 1 2

::j;; since A2 UAz is a modular set of (C,v), [(AZUA3) nTwz] U
' [(AZUAs)CnT] is a minimal path set of y. The latter term
.l::: reduces to (A1 NT_ JV (A(lz NT ), from which it follows (by
X "1 "2
> C5) that A is a modular set of (C,y).

A

O Similarly, AZ, A3, A1 UA3 and Al UA2 UA3 are also modular .
": sets of .

." This completes the proof. (]
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Remarks

1.  Birnbaum and Esary (1965), in the statemenet of their Three
Modules Theorem, do not explicitly assume that Al, AZ and A3

are mutually disjoint. That this is a necessary requirement

is easily seen. Consider, for example, the binary structure
function ¢(x) = xll\(xzvxs) A Xy where x € {0,1}4 and let

Ay = {1,2}, A, = {2,3} and A = {3,4}. Clearly, Aj UA, and A, UA,
are modular sets, but neither A1 nor A3 is a modular set of
({1,2,3,41},¢).

2. The Three Modules Theorem can be interpreted as follows:

a suffici;nt condition for the union of two modular sets to be a
modular set is that the two sets have a nonempty intersection,

in which case the intersection, the union, the two differences

and the symmetric difference of these sets are also modular

sets.
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