



CIVICIP

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

- 55ごご用 アト ごし	SIFIED ASSIFICATION OF THIS	PAGE		• • •		• ·	
	الافتقاب وينبيه المكن فحدياتهم	ز این کار بر بر نی بر منط ر	REPORT DOCUM	ENTATION PAG	E		
1. REPORT	SECURITY CLASSIFICAT	TION		10. RESTRICTIVE N			
UNCLASSIFIED				3. DISTRIBUTION/AVAILABILITY OF REPORT			
28 SECURIT	Y CLASSIFICATION AUT	HORITY		Approved for			ributi
26 DECLASS	SIFICATION DOWNGRAD	DING SCHED	DULE	unlimited.	-		
4 PERFORM	ING ORGANIZATION RE	PORT NUM	BER(S)	5. MONITORING OF	GANIZATION R	EPORT NUMBER	S)
ł				AFOSR	-TR- 84	- 108	3
TO NAME OF	PERFORMING ORGANI	ZATION	66. OFFICE SYMBOL	7a. NAME OF MONI			
State University of New York at Stony Brook			(If applicable)	Air Force Office of Scientific Research			
A ADDRESS	S Curs State and ZIP Code	81	1	76. ADDRESS (City,			
Department of Applied Mathematics and				Directorate of Mathematical & Informati			
Statis	tics, Stony Brod	OK NY 1	.1794	Sciences, Bo	olling AFB	DC 20332-6	448
			BD. OFFICE SYMBOL	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
ORGANIZATION (11 applicable) AFOSR NM			AF0SR-84-0243				
BC ADDRESS (City, State and ZIP Code)				10. SOURCE OF FUNDING NOS			
				PROGRAM	PROJECT NO.	TASK	WOR
Bolling	g AFB DC 20332-	-6448		61102F	2304	A5	
	S OF CONTINUUM S					· ·	
	AL AUTHOR(S)	SINCTON					^
	ce A. Baxter and			LAL DATE OF DEDO			
13. TYPE OF Techni		136. TIME C	TO	JUN 84	Hi (3r, Mo., Day	, 15. PAGE 19	
16. SUPPLEN	MENTARY NOTATION					A	
1						I	
17	COSATI CODES		18. SUBJECT TERMS (Continue on reverse if n	ecessary and ident	ity by block numbe	ifi Vr
17 FIELD	COSATI CODES GROUP SUB	GR	18. SUBJECT TERMS (Continue on reverse if n	ecessary and ident	ity by block number	
		GR	18. SUBJECT TERMS (Continue on reverse if n	ecessary and ident	ity by block numbe	Sec. 1
FIELD	GROUP SUB	necessary and	d identify by block numbe	·ri		A	565 T
FIELD	GROUP SUB	necessary and		·ri		A	Ster 1
FIELD	GROUP SUB CT (Continue on reverse of a A continuum	necemary and struc	d identify by block number ture function	<u>n</u> (CSF) is a	a nondecr	easing (Sec. 14
FIELD 19. ABSTRAC	GROUP SUB CT (Continue on reverse if i A continuum ping from the	necessary and struc unit	d identify by block number ture function hypercube to	(CSF) is a the unit ir	a nondecr nterval.	easing C Such a	JEC.
FIELD 19. ABSTRAC	GROUP SUB CT (Continue on reverse of a A continuum	necessary and struc unit	d identify by block number ture function hypercube to	(CSF) is a the unit ir	a nondecr nterval.	easing C Such a	JEC.
FIELD 19. ABSTRAC Mapj func	GROUP SUB CT (Continue on reverse if i A continuum ping from the	necessary and struc unit is sa	d identify by block numbe ture function hypercube to id to be weal	n (CSF) is a the unit in kly coherent	n nondecr nterval. t if sup[y	easing \langle Such a $r(1_i, \chi) - \gamma(0)$	JEC.
FIELD 19. ABSTRAC mapj func func for	GROUP SUB CT (Continue on reverse (f) A continuum ping from the ction, γ say, each compone	unit is sa is truc	identify by block number ture function hypercube to id to be weal C. Suppose	<u>n</u> (CSF) is a the unit ir kly coherent that γ is w	a nondecr nterval. <u>t</u> if sup[weakly co	easing $(1_i, \chi) - \gamma(0)$ herent	JEC.
FIELD 19. ABSTRAC mapj func func and	GROUP SUB CT (Continue on reverse if if A continuum ping from the ction, γ say, each compone that $A \subseteq C$ i	necessary and struc unit is sa nt i € s none	d identify by block number ture function hypercube to id to be weal C. Suppose mpty. Then	the unit in $\frac{1}{1}$ (CSF) is a the unit in $\frac{1}{1}$ coherent that γ is w (A, γ_1) is a	a nondecr nterval. t if sup[weakly co <u>module</u> o	easing $(1_i, \chi) - \gamma(0)$ herent	JEC.
FIELD 19. ABSTRAC mapj func func and	GROUP SUB CT (Continue on reverse (f) A continuum ping from the ction, γ say, each compone	necessary and struc unit is sa nt i € s none	d identify by block number ture function hypercube to id to be weal C. Suppose mpty. Then	the unit in $\frac{1}{1}$ (CSF) is a the unit in $\frac{1}{1}$ coherent that γ is w (A, γ_1) is a	a nondecr nterval. t if sup[weakly co <u>module</u> o	easing $(1_i, \chi) - \gamma(0)$ herent	JEC.
FIELD 19. ABSTRAC mapj func func for and	GROUP SUB CT (Continue on reverse if if A continuum ping from the ction, γ say, each compone that $A \subseteq C$ i	necessary and struc unit is sa nt i € s none	d identify by block number ture function hypercube to id to be weal C. Suppose mpty. Then	the unit in $\frac{1}{1}$ (CSF) is a the unit in $\frac{1}{1}$ coherent that γ is w (A, γ_1) is a	a nondecr nterval. t if sup[weakly co <u>module</u> o	easing $(1_i, \chi) - \gamma(0)$ herent f SF	€ 2 1.∑]>:
FIELD 19. ABSTRAC Mapp func for and (C, -	GROUP SUB CT (Continue on reverse if if A continuum ping from the ction, γ say, each compone that $A \subseteq C$ i	unit is sa is is cont is none reakly	identify by block number ture function hypercube to id to be weal C. Suppose mpty. Then coherent and	the unit in $\frac{1}{1}$ (CSF) is a the unit in $\frac{1}{1}$ coherent that γ is w (A, γ_1) is a	a nondecr nterval. <u>t</u> if sup[weakly co <u>module</u> o kists a C	easing $(1_i, \chi) - \gamma(0)$ herent f SF	€ 2 1.∑]>:
FIELD 19. ABSTRAC Map) func func func func 10. DISTRIBU	GROUP SUB CT (Continue on reverse () A continuum ping from the ction, γ say, each compone that $A \subseteq C$ i γ) if γ_1 is w	necessary and struc unit is sa is sa int i E s none reakly	d (dentify by block number ture function hypercube to id to be weal C. Suppose mpty. Then coherent and	$\frac{1}{2}$ (CSF) is a the unit in <u>kly coherent</u> that γ is w (A, γ_1) is a if there ex	a nondecr nterval. <u>t</u> if sup[weakly co <u>module</u> o kists a C	easing $(1_i, \chi) - \gamma(0)$ herent f SF	€ ••••••••••••••••••••••••••••••••••••
FIELD 19. ABSTRAC Map) func func for and (C, 1) 20. DISTRIBU JNCLASSIFI	GROUP SUB CT (Continue on reverse ()) A continuum ping from the ction, γ say, each compone that $A \subseteq C$ i γ) if γ_1 is w	necessary and struc unit is sa nt i E s none reakly of ABSTRAC ME AS RPT	d (dentify by block number ture function hypercube to id to be weal C. Suppose mpty. Then coherent and	(CSF) is a the unit in the unit in that γ is w (A, γ_1) is a if there ex 21 ABSTRACT SECT UNCLASSIFIED 225 TELEPHONE N	a nondecr nterval. t if sup[weakly co <u>module</u> o kists a C	easing $(1_i, \chi) - \gamma(0)$ herent f SF	j € i∑)]>:
FIELD 19. ABSTRAC map] func func for and (C, 1) 20. DISTRIBU JNCLASSIFI 222. NAME O	GROUP SUB CT (Continue on reverse (f) A <u>continuum</u> ping from the ction, γ say, each compone that $A \subseteq C$ i γ) if γ_1 is w UTION/AVAILABILITY O ED/UNLIMITED Σ SAM	necessary and struc unit is sa nt i E s none reakly of ABSTRAC ME AS RPT DUAL	d (dentify by block number ture function hypercube to id to be weal C. Suppose mpty. Then coherent and	(CSF) is a the unit in the unit in that γ is w (A, γ_1) is a if there ex 21 ABSTRACT SECT UNCLASSIFIET	a nondecr nterval. t if sup[weakly co <u>module</u> o kists a C	easing $(1_i, \chi) - \gamma(0)$ herent f SF (CORTOR USE CATION	sε ^γ

ITEM #19, ABSTRACT, CONTINUED:

 χ such that $\gamma(\chi) = \chi[\gamma_1(\chi^A), \chi^{A^C}]$ for all χ . A <u>minimal path set</u> of γ is, essentially, a subset of C which is necessary and sufficient for the CSF to attain any value in its image when every other component is in state zero.

Using these concepts, the main results of Birnbaum and Esary's theory of modules of binary structure functions, in particular the Three Modules Theorem, generalize to the continuum case.

Accession For NTIS GRA&I X DTIC TAB Unannounced Justification By_ Distribution/ Availability Codes Avail and/or Dist Special

AFOSR-TR. 34-1083

Revised Version

MODULES OF CONTINUUM STRUCTURES*

Laurence A. Baxter and Chul Kim

Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony Brook, NY 11794, U.S.A.

Invited paper prepared for presentation at the Conference on Reliability Theory and Quality Control University of Missouri-Columbia, June 4-8, 1984.

> Approved for public release; distribution unlimited.

*Research supported by the National Science Foundation under grant ECS-8306871 and, in part, by the Air Force Office of Scientific Research under grant AFOSR-84-0243.

84 12 05 004

ABSTRACT

A <u>continuum structure function</u> (CSF)-is-a nondecreasing mapping from the unit hypercube to the unit interval. Such a function, γ say, is said to be <u>weakly coherent</u> if $\sup[\gamma(l_i, \underline{X}) - \gamma(0_i \underline{X})] > 0$ for each component $i \in C$. Suppose that γ is weakly coherent and that $A \subseteq C$ is nonempty. Then (A, γ_1) is a <u>module</u> of (C, γ) if γ_1 is weakly coherent and if there exists a CSF χ such that $\gamma(\underline{X}) = \chi[\gamma_1(\underline{X}^A), \underline{X}^{A^C}]$ for all \underline{X} . A <u>minimal path set</u> of γ is, essentially, a subset of C which is necessary and sufficient for the CSF to attain any value in its image when every other component is in state zero.

Using these concepts, the main results of Birnbaum and Esary's theory of modules of binary structure functions, in particular the Three Modules Theorem, generalize to the continuum case.

1. INTRODUCTION

A <u>continuum structure function</u> (CSF) <u>on the unit hypercube</u> is a nondecreasing mapping γ : $[0,1]^n \leftrightarrow [0,1]$. The dimension of the domain space is |C|, the cardinality of $C = \{1,2,\ldots,n\}$, a set of components, and is assumed to be finite. It is supposed, without any loss of generality, that $\gamma(\underline{0}) = 0$ and $\gamma(\underline{1}) = 1$ where $\underline{\alpha}$ denotes (α,\ldots,α) . Definitions of various types of component relevancy are given by Baxter (1984b); only the following will be required here.

Definition

A CSF γ is said to be <u>weakly</u> <u>coherent</u> if $\sup_{X \in \Delta} [\gamma(1_i, X) - \gamma(0_i, X)] > 0$ for each $i \in C$.

In the above, (δ_i, χ) denotes $(X_1, \dots, X_{i-1}, \delta, X_{i+1}, \dots, X_n) \in \Delta = [0,1]^n$. See Baxter (1984a,b) and Block and Savits (1984) for further details of CSFs.

The purpose of the present paper is to describe a theory of modules of CSFs analogous to that of modules of binary coherent structures (Birnbaum and Esary, 1965). Indeed, our main results are extensions of those of Birnbaum and Esary (1965), though our approach is rather different; in particular, a continuum version of ϕ -equivalence is not required.

It will be necessary to introduce the notion of <u>minimal</u> <u>path sets</u> of CSFs, subsets of C which are necessary and sufficient for a CSF to attain any value in its image when the state of

every other component is zero. In order to do so, however, it is necessary to restrict the class of CSFs considered so that the minimal path sets have certain desirable properties. Hence, before proceeding to a definition of modules, it is convenient to define and study minimal path sets of <u>upper simple</u> CSFs.

2. MINIMAL PATH SETS OF UPPER SIMPLE CSFs

A <u>minimal vector</u> to level $\alpha \in \text{Im } \gamma \{0\}$ is a vector $X \in \Delta$ such that $\gamma(X) = \alpha$ whereas $\gamma(Y) < \alpha$ for all Y < X. (Im γ denotes the image of γ and Y < X means that $Y_i \leq X_i$ for i=1,2,...,n but $Y \neq X$.) Let P_{α} denote the set of all minimal vectors to level α . (Notice that our definition of P_{α} differs from that of Block and Savits (1984) as we require that $\alpha \in \text{Im } \gamma$.)

A <u>path</u> <u>set</u> to level $\alpha \in \text{Im } \gamma - \{0\}$ is a nonempty set $T_{\alpha} = T_{\alpha}(X) = \{i \in C | X_i \neq 0\}$ where $X \in P_{\alpha}$.

Definition

Let T be a nonempty subset of C. If T is a path set to level α for all $\alpha \in \text{Im } \gamma$ -{0}, then T is a <u>minimal path</u> set of γ .

Remarks

Replacing Δ and γ by {0,1}ⁿ and φ, a binary coherent structure function, respectively, in this definition yields the minimal path sets of φ, and hence the above definition is a direct generalization of the definition of the minimal path sets of φ.
There is an analogous definition of minimal cut sets of CSFs, but this concept will not be needed here.

Minimal path sets do not necessarily exist for arbitrary CSFs and, if they do exist, they may exhibit undesirable properties. The following definition yields a large class of CSFs for which minimal path sets exist and are "well-behaved".

Notation

 $A \subseteq B$ means that A is a subset of B; $A \subset B$ means that A is a proper subset of B; χ^{P} denotes $\{X_{i} | i \in P \subseteq C\}$.

Definition

A CSF γ is <u>upper simple</u> if it satisfies the following four conditions.

C1: $P_1 \neq \emptyset$ and $P_1 \subseteq \{0,1\}^n - \{0\}$

- C2: $\bigcup_{i=1}^{r} T_{1i} = C$ where T_{11}, \dots, T_{1r} are the r path sets of γ to level 1.
- C3: If T is a path set to level $\alpha \in \text{Im } \gamma \{0\}$, then T is also a path set to level $\beta \in \text{Im } \gamma \{0\}$ for all $\beta < \alpha$.
- C4: If T_{α} is a path set to level $\alpha < 1$, then $T_{\alpha} \subseteq T_{1i}$ for some path set T_{1i} to level 1.

Condition C1 asserts that, if a component is necessary to ensure that the system is fully operational, that component must itself be fully operational. Conditions C2 and C3 state, respectively, that each component is required in at least one of the path sets to level 1 and that, if a set of components is sufficient to attain a given level, it must also be sufficient to attain any lower level. Condition C4 is, essentially, a regularity condition.

Examples of upper simple CSFs include the CSFs

$$\zeta(X) = \max \min X_{i \le r \le p} i \in P_r$$

and

$$n(X) = \max_{\substack{1 \le r \le p \ i \in P_r}} X_i$$

(Baxter, 1984a), where P_1, \ldots, P_p denote the minimal path sets of ϕ , a binary coherent structure function, and

$$\mu(X) = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Some properties of upper simple CSFs are given in the following proposition.

Proposition 2.1

Let γ be an upper simple CSF. Then

- (i) γ has at least one minimal path set
- (ii) γ is weakly coherent
- (iii) No proper subset of a minimal path set is itself a minimal path set.

(iv)
$$\bigcup_{i=1}^{r} T_{i} = C$$
 where T_{1}, \dots, T_{r} denote the r minimal path sets of γ .

<u>Proof</u>: (i) This is immediate from C1 and C3.

(ii) By C1, there exist path sets to level 1, T_{11}, \ldots, T_{1r} say, such that $\gamma(\underline{1}^{T_{1i}}, \underline{0}^{T_{1i}}) = 1$ whereas $\gamma(\underline{1}^{T_{1i}}, \underline{0}^{T_{1i}}) < 1$ for all $\underline{1}^{T_{1i}} < \underline{1}^{T_{1i}}$ (i=1,2,...,r). Thus, for each $j \in T_{1i}$, $\gamma(\underline{1}_{j}, (\underline{1}^{T_{1i}^{-\{j\}}}, \underline{0}^{T_{1i}^{-}})) = 1$ whereas $\gamma(\underline{0}_{j}, (\underline{1}^{T_{1i}^{-\{j\}}}, \underline{0}^{T_{1i}^{-}})) < 1$. This holds for each $j \in C$ by C2, and hence γ is weakly coherent. (iii) Suppose that T_{1} and T_{2} are minimal path sets of γ such that $T_{1} \in T_{2}$. Clearly, T_{1} and T_{2} are both path sets to level 1. By C1, $\gamma(\underline{1}^{T_{1}}, \underline{0}^{T_{1}^{C}}) = 1$ whereas $\gamma(\underline{2}^{T_{2}}, \underline{0}^{T_{2}^{C}}) < 1$ for all $\underline{2}^{T_{2}} < \underline{1}^{T_{2}}$. Since, however, $T_{1} \in T_{2}$, we have $(\underline{1}^{T_{1}}, \underline{0}^{T_{1}^{C}}) < (\underline{1}^{T_{2}}, \underline{0}^{T_{2}^{C}})$, thereby contradicting the minimality of T_{2} . Thus $T_{1} \notin T_{2}$.

(iv) This is immediate from C2 and C3. □

The following decomposition will subsequently prove useful. It can be viewed as a generalization of formula (3.2) of Barlow and Proschan (1975, p. 10).

Theorem 2.2 (Decomposition Theorem)

Let γ be a right-continuous, upper simple CSF with minimal path sets T_1, \ldots, T_r . Then

$$\gamma(\underline{X}) = \max_{1 \le i \le r} \gamma(\underline{X}^{T_i}, \underline{0}^{T_i}).$$

<u>Proof</u>: The result is trivially true for r = 1, so suppose that $r \ge 2$.

By the monotonicity of γ , $\gamma(\underline{X}) \geq \gamma(\underline{X}^{T_{i}}, \underline{0}^{T_{i}})$ for i = 1, 2, ... rand hence $\gamma(\underline{X}) \geq \max_{\substack{1 \leq i \leq r \\ 1 \leq i \leq r}} \gamma(\underline{X}^{T_{i}}, \underline{0}^{T_{i}})$. Suppose that $\gamma(\underline{X}) > \max_{\substack{1 \leq i \leq r \\ 1 \leq i \leq r}} \gamma(\underline{X}^{T_{i}}, \underline{0}^{T_{i}})$ for some $\underline{X} \in \Delta$.

Consider firstly the case where $X \in P_{\alpha}$ (observe that, by Proposition 2.1(i), $P_{\alpha} \neq \emptyset$ for all $\alpha \in \text{Im } \gamma$). If $X_{j} \neq 0$ for all $j \in T_{i}$ $(1 \leq i \leq r)$, then, since $X > (X \stackrel{T_{i}}{, 0} \stackrel{T_{i}}{, 0})$, we must have $X_{k} \neq 0$ for some $k \in T_{i}^{C}$ and hence there exists a path set, T_{α} say, to level α such that $T_{\alpha} \supset T_{i}$, in contradiction to C4. If $X_{j} = 0$ for some $j \in T_{i}$ $(1 \leq i \leq r)$, then, again, $X_{k} \neq 0$ for some $k \in T_{i}^{C}$ and hence there exists a path set, T_{α} say, to level α such that $T_{\alpha} \notin T_{i}$ and $T_{\alpha} \not > T_{i}$, again a contradiction to C4. Thus

equality holds for all minimal vectors.

Suppose, now, that $\gamma(\underline{X}) = \alpha$, but that $\underline{X} \notin P_{\alpha}$. Since γ is right-continuous, $\underline{X} > \underline{Y} \in P_{\alpha}$ (Block and Savits, 1984) and so $\gamma(\underline{Y}) = \max_{\substack{1 \le i \le r}} \gamma(\underline{Y}^{T_{i}}, \underline{0}^{T_{i}}) = \gamma(\underline{Y}^{T_{m}}, \underline{0}^{T_{m}}) (say) > \gamma(\underline{X}^{T_{m}}, \underline{0}^{T_{m}}),$ thereby contradicting the monotonicity of γ .

It follows that $\gamma(X) = \max_{\substack{1 \le i \le r}} \gamma(X \xrightarrow{T_i}, \mathcal{O}^i)$ as claimed. []

3. MODULES AND THEIR MINIMAL PATH SETS

We start by defining modules and modular sets of CSFs.

Definition

Suppose that γ is a weakly coherent CSF and that $A \subseteq C$ is nonempty. Suppose, further, that there exists a weakly coherent CSF γ_1 : $[0,1]^{|A|} \mapsto [0,1]$ and a CSF χ : $[0,1]^{n-|A|+1} \mapsto [0,1]$ such that $\gamma(\chi) = \chi[\gamma_1(\chi^A), \chi^{A^C}]$ for all $\chi \in \Delta$. Then (A, γ_1) is a module of (C, γ) and A is a modular set of (C, γ) .

In this section, we present three of our main results. We prove that, if (A,γ_1) is a module of (C,γ) , and if T is a minimal path set of the upper simple CSF γ , then A \cap T is a minimal path set of γ_1 , thereby generalizing Theorem 4.1 of Birnbaum and Esary (1965) to the continuum case. We also prove a partial converse to that theorem: a condition on the

minimal path sets of γ under which $A \subseteq C$ is a modular set of (C, γ). The third result is that if (A, γ_1) is a module of (C, γ), and if γ and γ_1 are both upper simple, then (ANT) U ($\Lambda^C \cap T'$) is a minimal path set of γ whenever T and T' are minimal path sets of γ which intersect A; this generalizes part of the Birnbaum-Esary Test for Modularity.

Remark

It is easily seen that χ is weakly coherent.

Examples

- 1. For the CSF μ , any nonempty subset of C is a modular set.
- 2. For the CSF ζ , any modular set of (C,ϕ) is also a modular set of (C,ζ) .
- 3. For the CSF η , any minimal path set of ϕ which does not intersect any of the other minimal path sets is a modular set.

Theorem 3.1

Let γ be an upper simple CSF with minimal path sets T_1, \ldots, T_r . Suppose that (A, γ_1) is a module of (C, γ) and that $A \cap T_j \neq \emptyset$ for $j = 1, 2, \ldots, k$ whereas $A \cap T_j = \emptyset$ for $j = k+1, \ldots, r$. Suppose further that γ_1 is upper simple. Then the minimal path sets of γ_1 are $A \cap T_1, \ldots, A \cap T_k$.

<u>Proof</u>: If k = 1, the result is trivial, so suppose that $k \ge 2$.

Firstly, we show that A \cap T_j $(1 \le j \le k)$ is a minimal path set of γ_1 . Since γ_1 is upper simple, it is sufficient to verify that A \cap T_j is a path set of γ_1 to level 1.

Suppose that $\gamma_1(1, 0, 0) = \beta < 1$. If $\beta = 0$, then,

using the definitions of T_i and (A, γ_1) , we see that

$$\begin{split} & \gamma_{1}(\underline{1}^{AnT_{j}}, \underline{0}^{AnT_{j}^{C}}) = 0 = \gamma_{1}(\underline{0}^{A}) \text{ and thus } \gamma(\underline{1}^{J}, \underline{0}^{T_{j}^{C}}) = \\ & \chi[\gamma_{1}(\underline{0}^{A}), \underline{1}^{A^{C}nT_{j}}, \underline{0}^{A^{C}nT_{j}^{C}}] = \gamma(\underline{1}^{A^{C}nT_{j}}, \underline{0}^{AUT_{j}^{C}}) = 1, \text{ thereby contradicting} \\ & \text{the assumption that } (\underline{1}^{T_{j}}, \underline{0}^{T_{j}^{C}}) \in P_{1}. \text{ Suppose, now, that } 0 < \beta < 1. \\ & \text{Since } \gamma_{1} \text{ is upper simple, it possesses a minimal path set, W say.} \\ & \text{Let } (\underline{V}^{W}, \underline{0}^{A-W}) \text{ be a minimal vector of } \gamma_{1} \text{ to level } \beta. \text{ By the} \\ & \text{definitions of } T_{j} \text{ and } (A, \gamma_{1}), \chi[\gamma_{1}(\underline{V}^{W}, \underline{0}^{A-W}), \underline{1}^{A^{C}nT_{j}^{C}}, \underline{0}^{A^{C}nT_{j}^{C}}] = 1 \\ & \text{whereas } \chi(y, \underline{Y}^{A^{C}nT_{j}}, \underline{0}^{A^{C}nT_{j}^{C}}) < 1 \text{ for all } (y, \underline{Y}^{A^{C}nT_{j}}, \underline{0}^{A^{C}nT_{j}^{C}}) = 1 \\ & \text{whereas } \gamma(\underline{Z}^{W}, \underline{0}^{A-W}, \underline{Y}^{A^{C}nT_{j}}, \underline{0}^{A^{C}nT_{j}^{C}}) < 1 \text{ for all } (\underline{Z}^{W}, \underline{Y}^{A^{C}nT_{j}}) = 1 \\ & \text{whereas } \gamma(\underline{Z}^{W}, \underline{0}^{A-W}, \underline{Y}^{A^{C}nT_{j}}, \underline{0}^{A^{C}nT_{j}^{C}}) < 1 \text{ for all } (\underline{Z}^{W}, \underline{Y}^{A^{C}nT_{j}}) < \\ & (\underline{Y}^{W}, \underline{1}^{A^{C}nT_{j}}), \text{ i.e. } (\underline{Y}^{W}, \underline{0}^{A-W}, \underline{1}^{A^{C}nT_{j}^{C}}) \in P_{1}. \text{ It is clear,} \\ & \text{however, that } \underline{0} < \underline{Y}^{W} < \underline{1}^{W}, \text{ and hence we have a contradiction} \\ & \text{to C1. It follows that } \gamma(\underline{1}^{AnT_{j}}, \underline{0}^{AnT_{j}^{C}}) = 1. \end{split}$$

Suppose that there exists a vector $\Upsilon^{A\cap T_j} < \chi^{A\cap T_j}$ such that $\Lambda^{A\cap T_j}, \Lambda^{O\cap T_j}, \chi^{A\cap T_j} = 1$. Then, since (A, γ_1) is a module of (C, γ) ,

$$\begin{aligned} \mathbf{Y}(\underline{1}^{T_{j}},\underline{0}^{T_{j}}) &= \mathbf{X}[\mathbf{Y}_{1}(\underline{1}^{A \cap T_{j}},\underline{0}^{A \cap T_{j}}), \underline{1}^{A^{C} \cap T_{j}},\underline{0}^{A^{C} \cap T_{j}}] \\ &= \mathbf{X}[\mathbf{Y}_{1}(\underline{1}^{A \cap T_{j}},\underline{0}^{A \cap T_{j}}), \underline{1}^{A^{C} \cap T_{j}},\underline{0}^{A^{C} \cap T_{j}}] \\ &= \mathbf{X}[\mathbf{Y}_{1}(\underline{Y}^{A \cap T_{j}},\underline{1}^{A^{C} \cap T_{j}}), \underline{1}^{T_{j}}] \\ &= \mathbf{Y}((\underline{Y}^{A \cap T_{j}},\underline{1}^{A^{C} \cap T_{j}}), \underline{0}^{T_{j}}) \\ &= \mathbf{1}, \end{aligned}$$

contradicting the assumption that $(1, j, 0, j) \in P_1$.

It follows that $\text{Ant}_1,\ldots,\text{Ant}_k$ are minimal path sets of γ_1 as claimed.

Suppose, now, that there exists a minimal path set T of γ_1 such that T $\neq A \cap T_j$ for j=1,2,...,k. An argument similar to that of the first part of the proof shows that T U $(A^C \cap T_j)$ is a minimal path set of γ for j=1,2,...,k and is hence equal to one of T_1, \ldots, T_r . Since, however, T intersects at least two of $A \cap T_1, \ldots, A \cap T_k$, $T_k \cap [T \cup (A^C \cap T_j)] = (T_k \cap T) \cup (T_k \cap A^C \cap T_j) \subset$ $(T_k \cap A) \cup (T_k \cap A^C) = T_k$ for all j=1,2,...,k, $k=1,2,\ldots,r$. This is a contradiction, and hence T must be of the form A $\cap T_j$ $(1 \le j \le k)$.

Theorem 3.1 generalizes Theorem 4.1 of Birnbaum and Esary (1965). These authors do not prove a converse to their theorem, and a converse to our own result is not immediate. The following theorem gives a condition under which a nonempty subset of C is a modular set; the proof is a construction of the "natural" CSF induced by the restriction γ to that subset and by the minimal path sets of γ .

Theorem 3.2

Let γ be a right-continuous, upper simple CSF with minimal path sets T_1, \ldots, T_r . Suppose that A is a nonempty subset of C such that $T_j \subseteq A$ for j=1,2,...,k whereas $A\cap T_j = \emptyset$ for j=k+1,...,r. Then there exists a weakly coherent CSF γ_A : $[0,1]^{|A|} \mapsto [0,1]$ such that (A, γ_A) is a module of (C, γ) .

<u>Proof</u>: By the Decomposition Theorem,

(3.1)
$$\gamma(\underline{X}) = \max \left\{ \max_{\substack{j \le k}} \gamma(\underline{X}^{j}, \underline{0}^{j}), \max_{\substack{k+1 \le j \le r}} \gamma(\underline{X}^{j}, \underline{0}^{j}) \right\}$$

for all $\underline{X} \in \Delta$. Since $T_j = A \cap T_j$ and $T_j^c = (A \cap T_j^c) \cup A^c$, it follows that $\gamma(\underline{X}^{T_j}, \underline{O}^{T_j}) = \gamma(\underline{X}^{A \cap T_j}, \underline{O}^{A \cap T_j}, \underline{O}^{A^c})$ for $j=1,2,\ldots,k$. Define the CSF γ_A : $[0,1]^{|A|} \mapsto [0,1]$ by

(3.2)
$$\gamma_{A}(\overset{X}{\sim}^{A}) = \gamma(\overset{X}{\sim}^{A}, \overset{O}{\sim}^{A^{c}}).$$

From (3.1) and (3.2),

Clearly, γ_A is right-continuous. We show that γ_A is upper simple and that its minimal path sets are ANT₁,...,ANT_k.

Since T_j $(1 \le j \le k)$ is a minimal path set of γ , $\gamma(1 \xrightarrow{T_j}, 0 \xrightarrow{T_j}) = \gamma_A(1 \xrightarrow{A \cap T_j}, 0 \xrightarrow{A \cap T_j}) = 1$ whereas $\gamma(Y \xrightarrow{T_j}, 0 \xrightarrow{T_j}) = \gamma_A(1 \xrightarrow{A \cap T_j}, 0 \xrightarrow{A \cap T_j}) < 1$ for all $Y \xrightarrow{T_j} < 1 \xrightarrow{T_j}$, i.e. for all $Y \xrightarrow{A \cap T_j} < 1 \xrightarrow{A \cap T_j}$. Thus $A \cap T_j$ is a path set of γ_A to level 1, and it is easily seen

that there are no path sets of γ_A to level 1 other than AnT₁,...,AnT_k. Further, it is obvious that γ_A satisfies C1 and, since AnT_j = \emptyset for j = k+1,...,r,

$$\bigcup_{j=1}^{k} (AnT_{j}) = \bigcup_{j=1}^{r} (AnT_{j}) = An \bigcup_{j=1}^{r} T_{j} = A,$$

so that γ_A satisfies C2.

<u>Claim</u>: Let T be a nonempty subset of C such that $A\cap T \neq \emptyset$. Then T is a path set of γ to level $\alpha \leq 1$ if and only if $T \subseteq A$ and $A\cap T$ is a path set of γ_A to level α .

<u>Proof of Claim</u>: Suppose that T is a path set of γ to level $\alpha \leq 1$. We show that $T \subseteq A$ or, equivalently, that $A^C \cap T = \emptyset$. Suppose, conversely, that $A^C \cap T \neq \emptyset$; since T is a path set to level α , there exists an $\chi \in P_{\alpha}$ such that

$$\gamma(\underline{X}^{T},\underline{0}^{T^{C}}) = \max_{1 \le j \le r} \gamma(\underline{X}^{j},\underline{0}^{T^{C}},\underline{0}^{T^{C}}) = \gamma(\underline{X}^{m},\underline{0}^{T^{C}},\underline{0}^{T^{C}}),$$

say. Since $A \cap T$ and $A^C \cap T$ are both nonempty, $T_m \cap T \subset T$, thereby contradicting the minimality of (χ^T, Q^{T^C}) . Thus $A^C \cap T = \emptyset$ as claimed, and it is obvious that $A \cap T$ is a path set of γ_A to level .

The proof of the converse is straightforward and is omitted.

The claim enables us easily to verify that γ_A satisfies C3 and C4. Suppose that T is a path set of γ to level α and that A $\cap T \neq \emptyset$. Then, by the claim, A \cap T is a path set of γ_A to level α . Since T is a path set of γ to level β for all $\beta \leq \alpha$, it follows that A \cap T is a path set of γ_A to level β for all $\beta \leq \alpha$. Further, if T is a path set of γ to level α , then, by C4, $T \subseteq T_j$ for some $j=1,2,\ldots,k$. Thus, by the claim, A \cap T is a path set of γ_A to level α and A \cap T \subseteq A \cap T_j.

In summary, γ_A is right-continuous and upper simple, and its minimal path sets are $A\cap T_1, \ldots, A\cap T_k$. Thus, by the Decomposition Theorem and (3.3),

$$\gamma(\underline{X}) = \max\left\{\gamma_A(\underline{X}^A), \max_{\substack{k+1 \leq j \leq r}} \gamma(\underline{X}^{T_j}, \underline{0}^{T_j})\right\}.$$

والمساجرة والمراجر والمراجر

Define the CSF χ : $[0,1]^{n-|A|+1} \rightarrow [0,1]$ by

(3.4) $\chi(y,\chi^{A^{c}}) = \max\left\{y, \max_{k+1 \le j \le r} \gamma(\chi^{T_{j}}, \chi^{T_{j}})\right\}.$

The CSFs γ and γ_A are upper simple and hence weakly coherent. Thus, from (3.2) and (3.4), $\gamma(\chi) = \chi[\gamma_A(\chi^A), \chi^{A^C}]$ for all $\chi \in \Delta$ and so (A, γ_A) is a module of (C, γ) .

Theorem 3.3

Let γ be an upper simple CSF with minimal path sets T_1, \ldots, T_r . Suppose that (A, γ_1) is a module of (C, γ) and that $A\cap T_j \neq \emptyset$ for $j=1,2,\ldots,k$ whereas $A\cap T_j = \emptyset$ for $j=k+1,\ldots,r$. Suppose, further, that γ_1 is upper simple. Then $(A\cap T_j) \cup (A^C\cap T_k)$ is a minimal path set of γ for $j, k = 1, 2, \ldots, k$. <u>Proof</u>: Since γ is upper simple, it is sufficient to show that (AnT_j) U (A^C nT_l) is a path set of γ to level 1, and this follows easily from the definitions.

This theorem generalizes part of the Birnbaum-Esary Test for Modularity. Birnbaum and Esary (1965) also show that, if $(A\cap T_j) \cup (A^C\cap T_l)$ is a minimal path set of a binary coherent structure function, then A is a modular set of that structure. We have not yet been able to determine conditions on γ under which a converse to our theorem holds.

4. THE THREE MODULES THEOREM

The main result of Birnbaum and Esary (1965) is their Three Modules Theorem which asserts that, if $A_1 \cup A_2$ and $A_2 \cup A_3$ are modular sets of a binary coherent structure, then so are A_1 , A_2 , A_3 and $A_1 \cup A_2 \cup A_3$. The following theorem extends this result to upper simple CSFs. Since, as previously noted, a converse to Theorem 3.3 has not yet been established, the following additional condition will be assumed.

C5 Suppose that γ is upper simple with minimal path sets T_1, \ldots, T_r . Suppose, further, that A is a nonempty subset of C such that $A \cap T_j \neq \beta$ for $j=1,2,\ldots,k$ whereas $A \cap T_j = \beta$ for $j=k+1,\ldots,r$. If $(A \cap T_j) \cup (A^C \cap T_k)$ is a minimal path set of γ for all $j, l=1,2,\ldots,k$, then A is a modular set of (C,γ) and the associated CSF is upper simple.

Theorem 4.1 (Three Modules Theorem)

Let γ be an upper simple CSF which satisfies C5. Suppose that A_1 , A_2 and A_3 are disjoint, nonempty subsets of C such that $A_1 \cup A_2$ and $A_2 \cup A_3$ are modular sets of (C, γ) and that the associated CSFs are upper simple. Then A_1 , A_2 , A_3 , $A_1 \cup A_3$ and $A_1 \cup A_2 \cup A_3$ are all modular sets of (C, γ). Further, those minimal path sets of γ , T_1 ,..., T_r say, which intersect $A_1 \cup A_2 \cup A_3$ all intersect each of A_1 , A_2 and A_3 , or else they all intersect exactly one of these sets.

<u>Proof</u>: Define the following subcollections of T_1, \dots, T_r : $B_1 = \{T | A_1 \cap T_i \neq \emptyset, A_2 \cap T_i = \emptyset, A_3 \cap T_i = \emptyset$ for some i} $B_2 = \{T | A_1 \cap T_j = \emptyset, A_2 \cap T_j \neq \emptyset, A_3 \cap T_j = \emptyset$ for some j} $B_3 = \{T | A_1 \cap T_k = \emptyset, A_2 \cap T_k = \emptyset, A_3 \cap T_k \neq \emptyset$ for some k} $B_4 = \{T | A_1 \cap T_k \neq \emptyset, A_2 \cap T_k \neq \emptyset, A_3 \cap T_k = \emptyset$ for some k} $B_5 = \{T | A_1 \cap T_k \neq \emptyset, A_2 \cap T_k \neq \emptyset, A_3 \cap T_k \neq \emptyset$ for some m} $B_6 = \{T | A_1 \cap T_v = \emptyset, A_2 \cap T_v \neq \emptyset, A_3 \cap T_v \neq \emptyset$ for some v} $B_7 = \{T | A_1 \cap T_w \neq \emptyset, A_2 \cap T_w \neq \emptyset, A_3 \cap T_w \neq \emptyset$ for some w}. Clearly, B_1, \dots, B_7 form a partition of $\bigcup_{h=1}^r T_h$.

The first stage of the proof is to show that B_4 , B_5 and B_6 are all empty.

Suppose that B_4 is not empty. Then, since A_3 is, by hypothesis, nonempty, there exists a minimal path set, T say, such that $A_3 \cap T \neq \emptyset$, and so $B_3 \cup B_5 \cup B_6 \cup B_7 \neq \emptyset$. We show that this latter event, in conjunction with the event $B_4 \neq \emptyset$, leads to a contradiction.

Suppose, firstly, that $B_3 \neq \emptyset$. Then, since B_3 and B_4 are nonempty, there exist distinct minimal path sets $T_k \in B_3$ and $T_k \in B_4$ both of which intersect the modular set $A_2 \cup A_3$. Noting that $(A_2 \cup A_3) \cap T_k = A_2 \cap T_k$, it follows from Theorem 3.3 that $(A_2 \cap T_k) \cup ((A_2 \cap A_3)^C \cap T_k)$ is a minimal path set of γ . This assertion is not, however, true: consider, for example, the case $A_1 \cup A_2 \cup A_3 = C$. Then $(A_2 \cup A_3)^C \cap T_k = \emptyset$ and $A_2 \cap T_k$ is not a minimal path set of γ since $A_2 \cap T_k \subset T_k$.

By similar arguments, it can be shown that B_4 and B_5 cannot simultaneously be nonempty; neither can B_4 and B_6 , nor B_4 and B_7 . Thus, if $B_4 \neq \emptyset$, then $B_3 \cup B_5 \cup B_6 \cup B_7 = \emptyset$ and A_3 does not intersect any minimal path set of γ . This is clearly a contradiction, and hence we must have $B_4 = \emptyset$. By similar arguments, B_5 and B_6 are also empty.

The same arguments show that, if $B_1 \cup B_2 \cup B_3 \neq \emptyset$, then $B_7 = \emptyset$ and, conversely, that if $B_7 \neq \emptyset$, then $B_1 \cup B_2 \cup B_3 = \emptyset$. <u>Case I</u>: $B_1 \cup B_2 \cup B_3 = \bigcup_{h=1}^r T_h$.

From the definitions of B_1 , B_2 and B_3 , it follows that each of T_1, \ldots, T_r intersects exactly one of A_1 , A_2 or A_3 .

To show that A_1 is a modular set, observe that, since $A_1 \cup A_2$ is a modular set, it follows from Theorem 3.3 that $T = [(A_1 \cup A_2) \cap T_{i_1}] \cup [(A_1 \cup A_2)^C \cap T_{i_2}]$ is a minimal path set of γ where T_{i_1} , $T_{i_2} \in B_1$. Let $A_4 = C - (A_1 \cup A_2 \cup A_3)$. Then

 $T = (A_1 \cap T_{i_1}) \cup (A_4 \cap T_{i_2}) = (A_1 \cap T_{i_1}) \cup (A_1^C \cap T_{i_2}).$ Since, by assumption, γ satisfies C5, it follows that A_1 is a modular set of $(C, \gamma).$

Similarly, it can also be shown that A_2 , A_3 , $A_1 \cup A_3$ and $A_1 \cup A_2 \cup A_3$ are also modular sets of (C, γ) .

Case II:
$$B_7 = \bigcup_{h=1}^{r} T_h$$

From the definition of B_7 , each of T_1, \ldots, T_r intersects A_1 , A_2 and A_3 .

To show that A_1 is a modular set, observe that, since $A_1 \cup A_2$ is a modular set of (C, γ) , it follows from Theorem 3.3 that $T = [(A_1 \cup A_2) \cap T_{w_1}] \cup [(A_1 \cup A_2)^C \cap T_{w_2}]$ is a minimal path set of γ where T_{w_1} , $T_{w_2} \in B_7$. Further, again from Theorem 3.3, since $A_2 \cup A_3$ is a modular set of (C, γ) , $[(A_2 \cup A_3) \cap T_{w_2}] \cup$ $[(A_2 \cup A_3)^C \cap T]$ is a minimal path set of γ . The latter term reduces to $(A_1 \cap T_{w_1}) \cup (A_1^C \cap T_{w_2})$, from which it follows (by C5) that A_1 is a modular set of (C, γ) .

Similarly, A_2 , A_3 , $A_1 \cup A_3$ and $A_1 \cup A_2 \cup A_3$ are also modular sets of γ .

This completes the proof.

Remarks

1. Birnbaum and Esary (1965), in the statemenet of their Three Modules Theorem, do not explicitly assume that A_1 , A_2 and A_3 are mutually disjoint. That this is a necessary requirement is easily seen. Consider, for example, the binary structure function $\phi(\underline{x}) = x_1 \wedge (x_2 \vee x_3) \wedge x_4$ where $\underline{x} \in \{0,1\}^4$ and let $A_1 = \{1,2\}, A_2 = \{2,3\}$ and $A_3 = \{3,4\}$. Clearly, $A_1 \cup A_2$ and $A_2 \cup A_3$ are modular sets, but neither A_1 nor A_3 is a modular set of $(\{1,2,3,4\},\phi)$.

2. The Three Modules Theorem can be interpreted as follows: a sufficient condition for the union of two modular sets to be a modular set is that the two sets have a nonempty intersection, in which case the intersection, the union, the two differences and the symmetric difference of these sets are also modular sets.

REFERENCES

- BARLOW, R. E. and PROSCHAN, F. (1975). "Statistical Theory of Reliability and Life Testing", Holt, Rinehart and Winston, New York.
- BAXTER, L. A. (1984a). "Continuum Structures I", Journal of Applied Probability, 21 (to appear).
- BAXTER, L. A. (1984b). "Continuum Structures II", submitted for publication.
- BIRNBAUM, Z. W. and ESARY, J. D. (1965). "Modules of Coherent Binary Systems", Journal for the Society of Industrial and Applied Mathematics, 13, 444-462.

BLOCK, H. W. and SAVITS, T. H. (1984). "Continuous Multistate Structure Functions", Operations Research, 32, 703-714.

م م شر مدید م

FILMED

1-85

DTIC