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ABSTRACT

.%- I / , i'

A continuum structure function5 (-SP}-is- nondecreasing

mapping-,from the unit hypercube to the unit interval. Such a

function, y say, is said to be weakly coherent if sup[y(li,X)-Y(OiXj] >0

for each component i E C. Suppose that y is weakly coherent

and that A E C is nonempty. Then (A,y1 ) is a module of

(Cy) if y1 is weakly coherent and if there exists a CSF

x such that = X[y1 (XA),XA for all X. A minimal path set

of y is, essentially, a subset of C which is necessary and

0. sufficient for the CSF to attain any value in its image when

every other component is in state zero.

Using these concepts, the main results of Birnbaum and

Esary's theory of modules of binary structure functions, in
%4" *-" -" "5"~~* ' "* (----- . . .. . .

particular the Three Modules Theorem, genoralize to the continuum

"., case.
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1. INTRODUCTION

A continuum structure function (CSF) on the unit hypercube

is a nondecreasing mapping y: [0,1]n " [0,1]. The dimension of

the domain space is ICJ, the cardinality of C = {l,2,...,n},

'- a set of components, and is assumed to be finite. It is supposed,

without any loss of generality, that y(O) = 0 and y(1) = 1

where a denotes (c,...,c). Definitions of various types of

-'" component relevancy are given by Baxter (1984b); only the following

will be required here.

Definition

A CSF y is said to be weakly coherent if sup [y(li,X) -Y(0i,X)] >0
XEA

mI-

for each i E C.

I In the above, (6iX) denotes (Xl,...,Xi , x i + , . . . , X ) E = [0,11n .

See Baxter (1984a,b) and Block and Savits (1984) for further

details of CSFs.

The purpose of the present paper is to describe a theory of

modules of CSFs analogous to that ot modules of binary coherent£

structures (Birnbaum and Esary, 1965). Indeed, our main results

are extensions of those of Birnbaum and Esary (1965), though our

approach is rather different; in particular, a continuum version

of 4-equivalence is not required.
-p.

It will be necessary to introduce the notion of minimal

path sets of CSFs, subsets of C which are necessary and sufficient

for a CSF to attain any value in its image when the state of

- '
v MLAO_~4****
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every other component is zero. In order to do so, however,

it is necessary to restrict the class of CSFs considered so that

the minimal path sets have certain desirable properties.

Hence, before proceeding to a definition of modules, it is

convenient to define and study minimal path sets of upper simple

S-"CSFs.

2. MINIMAL PATH SETS OF UPPER SIMPLE CSFs

A minimal vector to level a E Im y-{0 is a vector X E L

such that y(X) = a whereas y(Y) < a for all Y < X. (Im y denotes

the image of y and Y < X means that Y. < X. for i=l,2,...,n
1- 1

but Y X.) Let P denote the set of all minimal vectors to
a

level a. (Notice that our definition of Pa differs from that

of Block and Savits (1984) as we require that a E Im y.)

A path set to level a E Im r-{O} is a nonempty set

Ta= T (X) = [iECIXijO} where X E Pa.

Definition

Let T be a nonempty subset of C. If T is a path set to

level a for all a E Im y-{O}, then T is a minimal path set of y.

.4

o'5o



3

Remarks

1. Replacing A and y by {0,1 }n and P, a binary coherent structure

function, respectively, in this definition yields the minimal

path sets of *, and hence the above definition is a direct
generalization of the definition of the minimal path sets of *.

2. There is an analogous definition of minimal cut sets of CSFs,

but this concept will not be needed here.

Minimal path sets do not necessarily exist for arbitrary

CSFs and, if they do exist, they may exhibit undesirable

properties. The following definition yields a large class of

CSFs for which minimal path sets exist and are "well-behaved".

Notation

A - B means that A is a subset of B; A c B means that A is

a proper subset of B; X P denotes {XjjiEP C1.
V..

Definition

A CSF y is upper simple if it satisfies the following four

conditions.

Cl: P1 , 0 and P1  {0'l}n-{cj

r
C2: UJTli = C where T 11, ..,Tlr are the r path sets of y to_ i=l

level 1.

C3: If T is a path set to level a E Im y-{0}, then T is also a

path set to level a E Im y-{O} for all 8 < a.

C4: If T is a path set to level a < 1, then Ta c Tli for some

path set Tli to level 1.

b:%.
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. Condition C1 asserts that, if a component is necessary to

ensure that the system is fully operational, that component

must itself be fully operational. Conditions C2 and C3 state,

respectively, that each component is required in at least one

of the path sets to level 1 and that, if a set of components is

sufficient to attain a given level, it must also be sufficient

to attain any lower level. Condition C4 is, essentially, a

regularity condition.

Examples of upper simple CSFs include the CSFs

r(X) = max min X.
S l <r .<_p iEPr 1

and

Y)(X) =max Tf[X
l<r<p iEPr

(Baxter, 1984a), where Pl''''P p denote the minimal path sets of

S, a binary coherent structure function, and

V(X) X
n 1

" Some properties of upper simple CSFs are given in the

following proposition.
S ..°

-
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Proposition 2.1

Let y be an upper simple CSF. Then

(i) y has at least one minimal path set

(ii) y is weakly coherent

(iii) No proper subset of a minimal path set is itself a minimal

path set.

r
(iv) U. = C where T1 ,...,T r denote the r minimal path sets

i=l

of y.

Proof: (i) This is immediate from Cl and C3.

(ii) By Cl, there exist path sets to level 1, T1 1 ,...,Tir say,
T T C T Tc .

such that y(i li '0 li) I whereas Y(yTli '0 11li 1fr l=1 wheras < 1 for all

yTli < 1Tl (i=l,2,...,r). Thus, for each j E T

T1 { {j TT Tc

S(1  ,(1  )) = 1 whereas y(Oj,(1li , 0 )< 1.

This holds for each j E C by C2, and hence y is weakly coherent.

(iii) Suppose that T1 and T2 are minimal path sets of y such

that T1 c T2 . Clearly, T1 and T2 are both path sets to level 1.
T 1)CT c T1 T1

T1  T1 T1  T 1
By Cl, y(l ,0 =1 whereas y(Y l, ) < I for all Y < 1

T Tc T Tc T2  Tand 2 ,O 2) = 1 whereas y(Z 2,O 2) < 1 for all Z < 1

T Tc  T2  Tc
Since, however, T c T we have ( , 1) < (i ,O 2), therebyLotrdT 1  T 2  (

contradicting the minimality of T2 Thus T 9T 2T
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(iv) This is immediate from C2 and C3.

The following decomposition will subsequently prove useful.

It can be viewed as a generalization of formula (3.2) of Barlow

and Proschan (1975, p. 10).

Theorem 2.2 (Decomposition Theorem)

Let y be a right-continuous, upper simple CSF with minimal

path sets Tl,..., Tr . Then

T. Tc

y(X) = max y(X 1,0 1)

l<i<r

Proof; The result is trivially true for r ; 1, so suppose that

r > 2.
T. T.

By the monotonicity of y, y(X) > y(X ,O 1) for i 1,2,...r

T_ Tc
and hence y(X) > max y(X 1,0 1). Suppose that

1<i<r

T. Tc

y(X) > max y(X 1,O ) for some X E.A.
l<i<r

Consider firstly the case where X E P (observe that, by* a

Proposition 2.1(i), P 0 for all a E Im y). If Xj 0 for
aJ

T. T -

all j E T (l<i<r), then, since X > i ,O 1), we must have
ic

Xk 0 for some k E T. and hence there exists a path set, Ta say,1

to level a such that T D Ti, in contradiction to C4. If

Xj 0 for some j E T i (l<i<r), then, again, Xk  0frsm

k E Ti and hence there exists a path set, T say, to level a such

that T - Ti and T ; Ti , again a contradiction to C4. Thus

a 1

.5 -g --%..
!o,.,y,;/, ,~g.~e~gt~,. ;¢ ?.. ¢..



equality holds for all minimal vectors.

Suppose, now, that y(X) = a, but that X P a Since y is

right-continuous, X > Y E P a (Block and Savits, 1984) and so

T. T T Tc T T c

y(Y) = max y(Y O ) = y(Y m o m) (say) > y(X m )0 m

l<i<r

thereby contradicting the monotonicity of y.

T. T .
It follows that y(X) max y(X 1,0 1) as claimed.

l<i<r

3. MODULES AND THEIR MINIML PATH SETS

L%: We start by defining modules and modular sets of CSFs.

Definition

Suppose that y is a weakly coherent CSF and that A c C

is nonempty. Suppose, further, that there exists a weakly

coherent CSF yI: [0'I]IAI - [0,1] and a CSF X: [0,1]n - AI+l. [0,1]
such that y(X) =[IXAAc

'uc taX = ] for all X E A. Then (A,yI )

- is a module of (C,y) and A is a modular set of (C,y).

In this section, we present three of our main results. We

prove that, if (A,yl) is a module of (C,y), and if T is a

minimal path set of the upper simple CSF y, then A n T is a

minimal path set of yl, thereby generalizing Theorem 4.1 of

,..,Birnbaum and Esary (1965) to the continuum case. We also

prove a partial converse to that theorem: a condition on the

rstc.. 0
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0.

minimal path sets of y under which A c C is a modular set of

(C,y). The third result is that if (A,yI ) is a module of (C,y),

and if y and y, are both upper simple, then (AnT) U (ACfnT ' ) is

a minimal path set of y whenever T and T' are minimal path sets

of y which intersect A; this generalizes part of the Birnbaum-

*i- Esary Test for Modularity.

Remark

It is easily seen that X is weakly coherent.

Examp l e s

1. For the CSF p, any nonempty subset of C is a modular set.

2. For the CSF C, any modular set of (C,q) is also a modular

set of (C, ).

3. For the CSF n, any minimal path set of which does not

intersect any of the other minimal path sets is a modular

set.

-p.

Theorem 3.1

.0p Let y be an upper simple CSF with minimal path sets

. TI,...,Tr . Suppose that (A,yI ) is a module of (C,y) and that

A n T. for j = 1,2,...,k whereas A n T. - 0 for

j - k+l,...,r. Suppose further that y1 is upper simple. Then

. the minimal path sets of Y1 are ANTl,...,AnTk.

O__
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Proof: If k 1, the result is trivial, so suppose that k > 2.

Firstly, we show that A n T; (1<j<k) is a minimal path set

vof yl. Since yjis upper simple, it is sufficient to verify

that A n T. is a path set of yl to level 1.

AnT. AnTc
Suppose that yl(l 31 3 <1,I , hn

".Nusing the definitions of T. and (.~lwe see that

AnT. AnT j = 0 = Y(A an thu T T
* ~.Y 1 (l JO and thus) y ,2b

%:AcnT. A cnT. A cnT. AUT.
''1' ,0 =y(l ',0 J 1, thereby contradicting

T. T.
the assumption that (1 J,O 3) E P1  Suppose, now, that 0 < a < 1.

Since yjis upper simple, it possesses.a minimal path set, W say.

Let (VW' -V)be a minimai vector of yjto level a. By the
AA- AfT. A cfTc

definitions of Tan Ay XyVWO-l) 1 it 0 J] =1

AcflT. Ac nTc, A'cAT. A cflTc
whereas X(y,Y JO J) < 1 for al~l (y,Y 3,0 J) <

(Y( V 0AI 1 A TjO A TJ). Thus, y(V', ,_I 91AnTO A Tj) =1

~ -WAcnT. AcnTc Acn
whereas y(Z 110 A-V Y 3,0 J) < 1 for all (Z ,Y J) <

W nvW - AcAT. A nT.
(V)' i~e (V A~ c0 3l0 ) E P. It is clear,

however, that 0 < V < 1 and hence we have a contradiction

AnT. AnTe

to Cl. It follows that y(l 1,O J) = 1.

AnT. AnT.
Suppose that there exists a vector Y ~< I such that

c

qU( 3n ' n ) =1. Then, since (A,y,) is a module of (C,y),
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T. T AnT. AnT .  ACAT. ACTC
y(% 1,o J) = X[Yl(L 1 '0 ) 1 3,

AnT. AT c.  ACnT. ACflT c.

SX[l(Y 3 ), 1 0 j

AnT. ACflT. T.

- Y((Y ,l J),o )

-. T. T .
-contradicting the assumption that (1 J, 3) E Pl.

It follows that AT 1,... ,AflTk are minimal path sets of yi

as claimed.

Suppose, now, that there exists a minimal path set T of y1

such that T AnT. for j=l,2,...,k. An argument similar to

that of the first part of the proof shows that T U (A nT.)

is a minimal path set of y for j=l,2,...,k and is hence equal

to one of TI,...,Tr . Since, however, T intersects at least

.ktwo of AnTI,...,AT k , W. n [Tu(A = (TJOT) U (T AT)

(T nA)-U (T ,nAc) = Tk for all j=l,2,...,k, k=l,2,...,r. This is

a contradiction, and hence T must be of the form A A T. (l<j<k).

Theorem 3.1 generalizes Theorem 4.1 of Birnbaum and

* Esary (1965). These authors do not prove a converse to their

theorem, and a converse to our own result is not immediate.

The following theorem gives a condition under which a nonempty

subset of C is a modular set; the proof is a construction of the

"natural" CSF induced by the restriction y to that subset and by

the minimal path sets of y.A
"S.



Theorem 3.2

Let y be a right-continuous, upper simple CSF with minimal

. path sets T1 ,...,Tr . Suppose that A is a nonempty subset of C

--* such that Tj S A for j=l,2,...,k whereas AnTj = 0 for j=k+l,...,r.

Then there exists a weakly coherent CSF YA: [0,I] IAI . [0,1] such

that (ArA) is a module of (C,y).

Proof: By the Decomposition Theorem,

T. T. T
(3.1) y(X) = maxlmax y(X J,O J), max r(X ,

l: j:Sk k +1!j < r

for all X E A. Since T. = An T and T . = (AnTe) UA c  it follows

c cT. T. AnT AnT Ac
that yCX 3,0 3) = yr( X Q JPO ) for j=1,2,...,k.

Define the CSF yA: [0, 1 ]IAI [0,1]. by

(3.2) TAC) = "(Y,OA).

From (3.1) and (3.2),

AnT. AnTe T. T .

(3.3) y(X) --maxf max TA(X J'0 3), max y(X JOJ)}

Clearly, YA is right-continuous. We show that YA is upper

simple and that its minimal path sets are AnTl,...,AnTk.

Since T. (l<j_<k) is a minimal path set of y,

T. T .  AnT. AnTs T. T.

Y ,O = YA(Q J,O J) = 1 whereas yrY , 0) =

AnT. ANT . T. T. AnT. AnT.
"y( 0, 3)*< 1 for all Y < 1 3, i.e. for all Y < I J.

Thus A NT is a path set of YA to level 1, and it is easily seen

P
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that there are no path sets of yA to level 1 other than

AnTl,...,AnTk. Further, it is obvious that YA satisfies Cl

and, since AnT. = 0 for j =

k r r
U (AflT)= U (AnT)= An Ui T. A,
j=l j=l j=l

so that YA satisfies C2.

* . Claim: Let T be a nonempty subset of C such that AnT 1 0.

Then T is a path set of y to level a < 1 if and only if T c A

* and AnT is a path set of YA to level a.

Proof of Claim: Suppose that T is a path set of y to level

a < 1. We show that T a A or, equivalently, that ACAT = 0.

Suppose, conversely, that A nT # 0; since T is a path set to

level a, there exists an X E P such thata

T T T.AT cU c TmflT TcUTc
r( Q ). T max y(X J ,O = Y(X ,O.[ ,E) l<j<r

say. Since A n T and Ac A T are both nonempty, Tm A T a T,
'D'- .. T ^T

S.thereby contradicting the minimality of (T ,0c) Thus

Ac T - 0 as claimed, and it is obvious that A n T is a path

set of YA to level

The proof of the converse is straightforward and is

- °-:.omitted. [i
* a"

U..
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The claim enables us easily to verify that TA satisfies

C3 and C4. Suppose that T is a path set of y to level a and

'-'.:- that A nT 0. Then, by the claim, A fl T is a path set of YA

to level a. Since T is a path set of y to level B for all B < a,

it follows that A n T is a path set of YA to level 0 for all

B < a. Further, if T is a path set of y to level a, then, by

C4, T c T. for some j=l,2,...,k. Thus, by the claim, A fl T

is a path set of YA to level a and AnT c:AAT.

In summary, TA is right-continuous and upper simple, and

its minimal path sets are AnTI,...,AnTk . Thus, by the Decomposition

Theorem and (3.3),

rA T. TCX) -- max () max (X JO J).
L A(X k+l<j_

Define the CSF X: [0,1] n-A+l 1] by

c
c r '.T. T

(3.4) (yx ) = max y, max y(X J,O j)1.
k+l <j<r

The CSFs y and TA are upper simple and hence weakly coherent.
YAc

Thus, from (3.2) and (3.4), T(X) = X[A(~ ),X ] for all X E AYAQA

and so (ATA) is a module of (C,y).

Theorem 3.3

Let y be an upper simple CSF with minimal path sets
-..

T1,...Tr . Suppose that (A,y1 ) is a module of (C,y) and that

AnT. $ for j=1,2,... ,k whereas AnT. = for j=k+l,...,r.

Suppose, further, that y1 is upper simple. Then (AnT)U(AC T

is a minimal path set of T for j,Z = 1,2,...,k.

... .. .. . . . ..-.
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Proof: Since y is upper simple, it is sufficient to show that

(AnT.) U (AcnT.) is a path set of y to level 1, and this follows

easily from the definitions.

This theorem generalizes part of the Birnbaum-Esary Test

for Modularity. Birnbaum and Esary (1965) also show that, if

(AnT.) U (AcT is a minimal path set of a binary coherent

structure function, then A is a modular set of that structure.

We have not yet been able to determine conditions on y under

which a converse to our theorem holds.

4.-¢

4. THE THREE MODULES THEOREM

The main result of Birnbaum and Esary (1965) is their

Three Modules Theorem which asserts that, if A1 u A2 and A2 U A3

are modular sets of a binary coherent structure, then so are

A1, A2, A3 and A1 uA2 0A 3. The following theorem extends this

result to upper simple CSFs. Since, as previously noted, a

converse to Theorem 3.3 has not yet been established, the following

- additional condition will be assumed.

0 CS Suppose that y is upper simple with minimal. path sets

T1 ,...,Tr Suppose, further, that A is a nonempty subset

off C such that A n Tj for j=l,2,... ,k whereas A n T 0

for j=k+l,...,r. If (AnT.) U (AcnT£) is a minimal path set

of y for all j,Z=l,2,..., k, then A is a modular set of (Cy)

and the associated CSF is upper simple.
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Theorem 4.1 (Three Modules Theorem)

Let y be an upper simple CSF which satisfies CS. Suppose

S .' " that A1  A2 and A3 are disjoint, nonempty subsets of C such that

-" A1 UA 2 and A2 uA 3 are modular sets of (C,y) and that the associated

CSFs are upper simple. Then A1 , A2 , A3 , A1 UA 3 and A 1 UA 2 UA 3

are all modular sets of (C,y). Further, those minimal path

sets of y, TI,...,Tr say, which intersect A1 UA 2 uA 3 all inter-

" sect each of A1 ,A 2 and A3 , or else they all intersect exactly

one of these sets.

Proof: Define the following subcollections of T1,...,Tr

B1 = {TIA nTi  A n Ti 0, A3 Ti  for some ii

B2 - {TIA~nT j = 0, A2 n T 9 0, A3 AT j  0 for some i}

B3 = {TIA1nTk = , A2 nTk 0, A 3 nTk 0 0 for some k)

B4 = {TIA 1nT £ k 0, A2 nT£ k 0, A3 nT£ -- 0 for some Z}

B5 = {TIAIATm 0, A2 Tm = 0, A3 3nTm 9 0 for some m}

B6 = {TIA 1  0Tv , A2 nT v  90, A T3 n T9 0 for some vI

B7 = {TIAIOTw 9 0, A2 nTw 9 , A3 T w  0 for some w}.
r

Clearly, BI,...,B7 form a partition of Uh_ 1

The first stage of the proof is to show that B4 , B5 and

B6 are all empty.

Suppose that B4 is not empty. Then, since A3 is, byV
hypothesis, nonempty, there exists a minimal path set, T say,

such that A3 T.9 0, and so B3 uB 5 uB 6 UB 7 9 0. We show that

. this latter event, in conjunction with the event B4 9 0,

..Y leads to a contradiction.

cA~*
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Suppose, firstly, that B3  0. Then, since B3 and B4

are nonempty, there exist distinct minimal path sets Tk E B3

and T B4 both of which intersect the modular set A2 UA 3.

Noting that (A2uA3 ) nT, = A2 NT., it follows from Theorem 3.3

that (A2nT,) U ((A2nA3) nTk) is a minimal path set of y. This

assertion is not, however, true: consider, for example, the

case A1 U A2 u A3 = C. Then (A2 UA3 )c n Tk - 0 and A2 NTX is not a

minimal path set of y since A2 fT1 cT .

By similar arguments, it can be shown that B4 and B5 cannot

simultaneously be nonempty; neither can B4 and B6, nor B4 and

B7. Thus, if B4  0 0, then B3 UB 5 UB 6 UB 7 = 0 and A3 does not

intersect any minimal path set of y. This is clearly a

contradiction, and hence we must have B4 = 0. By similar

arguments, B5 and B6 are also empty.

The same arguments show that, if B1 uB 2 UB 3 $ 0, then

B7 = 0.and, conversely, that if B7  0 0, then B1 uB 2 UB 3 = 0'.

r
Case I: B IuB 2 uB 3 - UTh.

h=1

From the definitions of B1 , B2 and B3, it follows that each

of T1 ,...,Tr intersects exactly one of A1 , A2 or A3.

To show that A1 is a modular set, observe that, since

A1 UA 2 is a modular set, it follows from Theorem 3.3 that

T = [(A1uA2) nT i ] U [(A1UA2)c nT i ] is a minimal path set of

y where Ti , Ti E BI . Let A4 = C - (AIUA2UA3) Then
1, 2

S ~q.,.-•." -,,.'d'¢ ,.' ,,L ,4.U- L' O P-P 4.'q,""* , q4- % 4; d , . 4 , ' ' P " ""'J ' ""d % , % .,
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T (AnTil) U (A AT i ) (A ATi) U (AcT Since, by
11 4 12 11 1AT ). Sicb

assumption, y satisfies CS, it follows that A1 is a modular set

of (Cy).
Similarly, it can also be shown that A2 , A3 , A1 UA 3 and

A 1 UA 2 U A 3 are also modular sets of (C,y).

r
Case II: B7 = Th

h=1

From the definition of B7, each of Ti...,Tr intersects

A1 , A2 and A3 .

To show that A 1 is a modular set, observe that, since

A1 UA 2 is a modular set of (C,y), it follows from Theorem 3.3

that T = [(A1uA 2 ) n Twl] U [(AIUA 2 ) c Tw 2] is a minimal path set

of y where Tw l , Tw E B7. Further, again from Theorem 3.3,

-.'. since A2 UA 3 is a modular set of (C,y), [(A 2 UA3 ) nTw2 U

[(A2UA3 )cnT] is a minimal path set of y. The latter term

reduces to (A1 n Tw) U (AI n Tw), from which it follows (by

C5) that A1 is a modular set of (C,y).

* Similarly, A2 , A3 , A1 UA and A 1 uA 2 UA 3 are also modular

sets of y.

This completes the proof. [l

V.i..
."
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Remarks

1. Birnbaum and Esary (1965), in the statemenet of their Three

Modules Theorem, do not explicitly assume that A1, A2 and A3

are mutually disjoint. That this is a necessary requirement

is easily seen. Consider, for example, the binary structure

function *(x) = x A (x2vx3) AX 4 where x E {0,11 4 and let

A1 = {1,2}, A 2 = {2,3} and A3 = {3,4}. Clearly, A1 UA 2 and A 2 UA 3

are modular sets, but neither A1 nor A3 is a modular set of

2. The Three Modules Theorem can be interpreted as follows:

a sufficient condition for the union of two modular sets to be a

modular set is that the two sets have a nonempty intersection,

in which case the intersection, the union, the two differences

and the symmetric difference of these sets are also modular

sets.

,.
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