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ABSTRACT

When studying the aeroacoustic performance of fluid moving
machinery, spacial and temporal disturbances in the supply flow may
induce otherwise nonexistent noise characteristics in the test
device. To control these incoming disturbances, inlet screens,
honeycombs, and other wind tunnel configurations have been used.

To investigate whether an aeroacoustic test facility could be
designed which would utilize neither a wind tunnel configuration
nor an inlet control structure at the test device inlet, a one-
sixth-scale model of a proposed high-volume-flow subsonic anechoic
chamber was evaluated. An experimental investigation of inlet-flow
controlling walls with combined anechoic and aerodvnamic capabilities
was carried out. Aerbdynamic performance was measured in the plane
of a proposed test fan rotor. Data from several inlet wall
configurations give guidance in the design of inflow ducting
configurations for high-volume~flow subsonic anechoic chambers. The
results indicate that substantial reduction of axial turbulence
intensities and steady-state spacial disturbances can be achieved
without degradation of the anechoic capability of the inlet wall.
Because inflow control is no longer needed near the test device
inlet, the acoustical characteristics of the test device should
match those of a free-field device. It is further noted that with
the test device inlet open, known disturbance producing devices

can be attached if the experimental objectives require such

alterations of the inflow.
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CHAPTER I

INTRODUCTION

1.1 Anechoic Chambers

An acoustically free-field environment is one in which the direct
field from a sound source predominates and the reflected sound field
has an amplitude small enéugh so that it may be neglected. 1In
practice this result is achieved within specified frequency bounds in
anechoic chambers. The design of anechoic chambers is well documented
(e.g., Beranek, 1946; Duda, 1977), and has not changed significantly
since the acceptance of wedge-shaped fiberglass wall linings as
proposed by Beranek (1946).
The walls, roof, and floor of an anechoic chamber must serve two
purposes: sound absorption and sound transmission loss. For this
reason, standard anechoic chamber design utilizes a two-room
construction where the outer room provides isolation from external !
noise sources, and the inner room provides a support system for the J
sound-absorbing wedge lining. The resulting space between the two r
rooms can be varied to alter the free—field characteristics of the 1

completed chamber at low frequencies. The low-frequency cutoff of an

. o
b
i . f

anechoic chamber is determined by room volume, room dimensions, wedge

Y HOAS
'.. tate

geometry, wedge material, and the depth of the air space behind the

Y
L4

. -,o ac .

wedges.

1.2 Anechoic Chambers for use in Aeroacoustic Studies

o
@

Often it is desired to perform an acoustical evaluation of fan

rotors or other devices which are used to move large volumes of air.

. : Acoustical analysis of fluid moving machinery is complicated by the

RIS 05 o P e R 0 T T T D I R S A I S s e R R R e T R WA -
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|xi' noise generating effect of the interaction of incoming turbulence with
o
- ' the fan rotor : ~der test. This problem is of particular importance in

I‘.
P

N the case of fluid moving machinery used in aircraft, where the

igs turbulence of incoming air in flight differs substantially from that
ﬁE: found in a static, on-ground test situation. In the static case,

%;; inflow disturbances created by atmospheric conditions and the ground,
LY

C;ﬁ as identified by Hanson (1974), produce noise conditions which differ
':R from those in the in-flight case, thereby hindering the acoustical
\33' analysis of in-flight conditions when the equipment is tested in a

ﬂgi: static configuration. The importance of providing a non-distorted

;E inflow to the fan rotor under test is also appérent when cousidering
.;;j the use of screens or other obstructions which are designed to

fz; intentionally distort the inflow to a test fan rotor.

4:: One method of simulating in-flight inflow conditions is to test
':ﬂ: the rotor in a wind tunnel. When the acoustical aspects of this type
Eﬁ of solution are considered, the result is a wind tunnel facility which
F;; has an open-jet section housed in an anechoic chamber. Wind tunnels
;i: of this type are the NASA-Lewis 9 x 15 Anechoic Wind Tunnel (Rentz,
;;é 1976; Yuska, et al., 1971) and the Naval Ship Research and Development
-.': Center, Carderock, Anechoic Flow Facility (Brownell, 1968). A second
;ﬁﬂ method is to remove the flow disturbances with a screen and honeycomb
f;i configuration placed over the test-rotor inlet. In this case, the
1225 inlet and the inlet-flow control device are situated in an anechoic
.jﬁ chamber which allows supply air to enter through mufflers or a porous
'§§ wall arrangement. Chambers of this type are General Electric's CRD
'2§ Aero/Acoustic Laboratorf in Schenectady, New York (Bekofske, et al.,
_;;. 1977), and NASA-Lewis' Anechoic Chamber (Wazyniak, et al., 1977). An
'.r,‘:

b

.

& ;
N G G L L G A R L RN i G S L T G I T Tt G4 Y G L G S G L R R SRS L




T AT A T TAN T T (Mg v T T S e e e e, -'...'-‘-I.u . P .-"n.. .-'J" Ll i R R

advantage of this method is that it is not necessary to have a wind

tunnel in addition to an anechoic test environment, although auxiliary

::' air pumps may oftentimes be required in order to insure design

-i§ operation of the test rotor. A disadvantage is that the inlet control

;s§ device prevents the installation of other screens for intentional

‘ij flow distortion, and may affect acoustical measurements by altering

.E; the radiation impedance of the fan rotor.

o

{ 1.3 High-Volume-Flow Subsonic Anechoic Chambers

'35 In an attempt to combine the best features of the previous

-:E: systems, the research presented in this thesis focuses on the design

f; of an anechoic chamber with a high-volume-flow inlet wall gystem for

;; use in subéonic aeroacoustic studies. 1t is a purpose of this design

:i to eliminate the need for wind tunnel configurations and inlet control

K: ) devices which obscure the test-rotor inlet., The goal of the present

i;: _ research is to investigate the flow field in the plane of a typical

é% axial flow fan rotor as a function of different inlet wall

T) configurations and to determine whether a significant reduction of

‘i}: flow distortion can be attained through anechoic chamber inlet wall

,t:? design alterationm.

.fi Designing a flow-controlling anechoic chamber which allows

{ii significant air-flow rates through it is a task which demands both
acoustical and aerodynamic consideration. The most important

“i aerodynamic criterion is that the flow field at the test-fan rotor

be free of large—scale turbulence, vorticity, and non-uniform

disturbances. The most'importanc acoustic criteria are that the

anechoic property of the chamber not be deteriorated, and that noise

l'l.'.‘
| 2R I )

Y
.

not be generated by air entering the chamber. The acoustic criteria
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are somewhat difficult to satisfy. The second acoustic criterion
suggests that the total open inlet area should be large so as to
result in low alr velocity through the inlet; however, the first
acoustic criterion suggests that this total open inlet area be small
so that the wedge treatment area is not diminished. Additionally, the
inlet system should not introduce a significant head loss to the flow
path.

A summary list of the inlet wall design criteria is presented

here, with a short discussion of the implications of each:

9@ Low Inlet Velocity = Should be less than 250 fpm
(1.27 m/s) to prevent noise
generation at the inlet
(Knudsen, 1950).

= This requires a large open
inlet area.,

e Anechoic Behavior - Should have almost 1007
coverage by anechoic
wedges.

= This requires that there be
no large open inlet areas.

® Low Head Loss = This rules out most types
of porous materials and

fibrous absorbents of high

permeability which might
have both acoustic and

' aerodynamic applications.

‘I‘ l. .' "“A
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. o Low Turbulence Generation - This requires that there be
:::: no sharp edges, sudden
expansions, or sudden
contractions, encountered
by the inlet air stream.
o Ability to Straighten - This suggests that the
Non-Uniform Flow
inlet ducting may require
flow-straightening vanes.
# High Sound Transmission - This is necessary to aid in
Loss Capability
maintaining an acceptable
ambient noise level in the
chamber,
® Structural Integrity - The system must be realizable
given the typically large
scale and small working space
between inner and outer room
walls of conventional
anechoic chambers.
1.4 Design Approach
'![‘ It was decided to perform an experimental study of inlet walls
ﬁ?; for high-volume-flow anechoic chambers. A scale-model anechoic
FEE chamber with high-volume-flow capability would be designed and
jif fabricated. 1Its design would be based upon typical anechoic chamber
E;E congtruction, but it would allow different iﬁlet walls to be fastened
&;% onto the inner chamber. This scale model would then be used to
A
'e investigate experimentally the effect of different inflow
Egg - configurations on the flow-field at a given test-rotor location.
e |
2
o
e
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CHAPTER TI

DESIGN OF THE EXPERIMENT

2.1 The One-Sixth-Scale Model

2.1.1 1Introduction

The Applied Research Laboratory of The Pennsylvania State
University (ARL/PSU) is considering the building of a 24' x 34' x 43'
(7.3m x 10.4m x 13.1m) anechoic chamber for use in subsonic a;ro-
acoustic studies of fluid moving turbomachinery. The primary test
device to be used in this chamber is the ARL/PSU Axial Flow Research
Fan (AFRF), shown in Figure 1 and described by Bruce (1972). This
research fan can be used to investigate the fundamental mechanisms of
axial-flow fan noise generation and unsteady flow. The proposed
anechoic chamber must allow air flow at approximately 300 cfs
(8.5 m3/s) which is the maximum flow of the AFRF. An illustration
showing the general design concept is presented in Figure 2.

In order to study experimentally the effect of different inflow
ducting configurations on the flow field at a test fan rotor, a one-

sixth-scale model of the proposed anechoic chamber was constructed.

The inlet duct of the model fan was instrumented at the fan rotor

l%L plane, and several inlet wall ducting configurations were examined.
%35 Acoustical modeling and associated tests were not performed.

EE: The fan-rotor plane was instrumented with three five-hole probes
:fg to measure the three time-average velocity components at each of

':i three radial locations, a hot-wire probe oriented to measure axial

flow fluctuations at one radial position, and a pitot-static

tube for refereace velocity and pressure measurements. Previous

e e
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investigations have identified large—scale, axial vortices passing

through the rotor plane as a discrete-frequency noise-generating
mechanism (e.g., Hansoa, 1974). These large-scale, axial vortices

are steady-state distortions that are typically formed by nearby walls
or a ground plane, as opposed to random inlet disturbances which are
typically formed by winds (in outdoor facilities) or wakes shed from
fan supports, motor mounts, and other geometric irregularities in the
vicinity of the fan inlet. The anechoic chamber construction and
careful installation of the fan under test will substantially reduce
the occurrence of random inlet disturbances, but steady-state
disturbances due to nearby walls and inlet duct configurations will
persist. The five-hole-probe system measures the steady-state
secondary flows and axial velocity at each probe position in the plane
of the fan rotor,‘and provides a map of secondary flows which is
useful in identifying the presence of large-scale vortices that may

pass through the plane of the fan rotor,

2.1.2 Design of the One-Sixth-Scale Model

2.1.2.1 Reynolds Number Scaling

The one-sixth-scale model chamber was designed using Reynolds

«
[ Rethd
o e fe Te e

number scaling so that dynamic similarity between the model and the

full-scale chamber would be maintained. Two Reynolds numbers are

involved in the scaling procedure. The first is the Reynolds number

DY
IR T

4 ~
TSN

f.' at the inlet wall, the second is that for the AFRF. Constraining
Etf conditions for scaling were that the model should be of a size which
Y{j could be easily assembled and worked with, and that it should have air
[

b

_!_ as the fluid wedium. It was found to be impossible to maintain the
s

b
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Reynolds number both at the inlet wall and in the AFRF without having

the flow velocity in the scaled-down AFRF become supersonic.
Glycerine and water were examined as possible fluid media, but for
these cases too, the flow velocity in the AFRF became much too large
to be feasible.

The Reynolds number at the inlet wall was assumed to be critical
in that this is the primary experimental variable. Also, the inlet
wall is the primary turbulence controlling device in the system.

Based on inlet wall Reynolds number scaling, a one-gixth-scale model
proved to be most convenignt, providing a maximum model dimension of
less than 10' (3.05m). In this case the model fan provides a flow
rate of 50 cfs (1.42 m3/s). 1In order to minimize compressibility
effects in the scaled-down AFRF, its diameter is scaled so that the
maximum flow veloéity at the fan rotor plane is approximately 100 fps
(30.48 m/s). Thus, the scale diameter of the AFRF is larger than the
exact one-gixth-scale size by a factor of three. From the fundamental
viewpoint, this has little consequence, because the AFRF may not be
the only research fan evaluated in the anecho}c facility.

The scaled-down AFRF duct is made of cast acrylic resin with
1/4” (6.4mm) thick walls and its inner diameter 1s 9 1/2" (21.4cm).

A bellmouth was fabricated from expanded polystyrene and fitted to the

duct inlet as detailed in Figure 3.

2.1.2.2 Model Construction

Photographs of the completed model are shown in Figures 4 through
9. The 2 x 4 (1.5" x 3.,5" or 3.8 cm x 8.9 cm) framing and homosote

sheeting model the outer shell of the full scale chamber., The inner

4 8
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room of the full scale chamber is modeled with steel-angle-reinforced

'l

Lhh

h

1/4" (6.4mm) plywood walls that are lined with expanded polystyrene

7
N

wedges. Great care was taken during the model construction to insure

N
i; a sealed system. Seams between the homosote sheets are sealed with
;: duct tape, cracks are filled with caulk, and removable parts which
] join are treated with foam or felt weather stripping. The floor is
; made of particleboard and is caulked and bolted to the wall sole

, plate.

‘}; The inner room dimensions were chosen as to allow a full-scale 2'

;Ei (0.61m) access space between the walls of the two rooms; this space
1} also serves as a backing air-space behind the anechoic wedges. A
‘:2 full-scale 4' (1.22m) space is allotted for air conditioning ductwork
:;3 above the inner room. The model-scale inner room is mounted on a
;:; movable pla;form so that inlet wall design changes can be performed

\ i\ conveniently. 1In Figure 7, there is no test inlet wall in place aund
Gé the inside of the inner room, lined with wedges, 1is visible.

-?): Because of its light weight, low cost, and ability to be easily
~%3 mounted, the wedges are made of expanded polystyrene, and were cut to
N -

'i; shape by the supplier with a hot wire system. The wedges are

»
™ -
-
b

& a"

¥

individually glued to cardboard panels, which are then fastened to

2
Y

the 1/4" (6.4um) plywood walls using small machine bolts. Because
acoustical measurements are not to be made in the model, the
acoustical characteristics of the materials used are of no importance.
The wedge size corresponds to a full-scale wedge 8" x 24" x 36" long

(0.2m x 0.610! X 0.9m long)o
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':{. In order to supply the required volume flow for the experiment,
(\- the auxiliary fan from the AFRF was obtained; this is part number 9 in
T

a:f Figure 1. The auxiliary fan is a Joy Corporation Series 1000 axial
E“: flow fan with a 23.25" (0.59m) inner diameter and 10" (25.4cm) rotor
[» o v

b hub. The test duct inner diameter is 9.5" (24cm), so an adapter

‘«

-ft shell was added between the fan and the test duct, This adapter is a
-Qi simple sudden expansion and contains a screen to help minimize flow
,‘; distortion. The fan is placed in a movable housing, as shown in
\

f: Figure 5, and is coupled to the one—sixth-scale model in such a manner
=

f:: that its exhaust flow paths resemble those anticipated for the

&N full-scale chamber, Figure 10.
&

e 2.1.3 Description of the Data Acquisition System

. .
2\' A schemartic diagram of the data acquisition system is given in
] "'
\ Figure 11.

, .

-~ i

-._\
- 2.1.3.1 The Probe Rake

.J_:

: ) The probe rake is shown in Figures 12, 13 and l4. The three

S five-hole probes mounted on support stems are at radii of 4.15"

o X

?: (10.5cm), 2.75" (7cm), and 1.25" (3.2cm) in a measurement plane

oY

,;: which 1s 4.1" (10.4cm) downstream of the tangent point between the

;? test duct and bellmouth. They are spaced 120 degrees apart. A five-
| '.'g:
‘;Q hole probe senses pressure in five principal directions. Four of the
€34
_:F‘ five pressure-sensing holes lie in two perpendicular planes with the
';i line of intersection of the two planes passing through the fifth,

~
15: central hole. The velocity component in any plane in space can be

» '

i: obtained independently from three pressure measurements in the plane
N

2
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(Pien, 1958). From the five pressure measurements provided by the

five-hole probe (obtained in a non-nuiling mode), the three orthogonal
velocity components at the point of measurement can be derived.
Treaster and Yocum (1979) give a complete description of this
experimental technique. The probe radii were chosen such that the
outermost and innermost probes would be out of the turbulent boundary
layer of the test-duct wall and the rake base, respectively. At the
measurement plane, the turbulent boundary layer along the duct wall
was calculated to be 0.15" (4mm) thick. The outermost probe is 0.6"
(15mm) away from the duct wall, well out of the turbulent layer. The
turbulent boundary layer along the rake base was tripped by adding a
0.0152" (0.39mm) diameter trip wire 0.4" (10mm) downstream of the
nose. At the measuring plane, the turbulent boundary layer along the
rake base was calculated to be 0.14" (3.6mm) thick. The shortest
probe used is 0.63" (16mm) away from the rake base.

Each five-hole probe was individually calibrated in the laminar
core of a free round jet calibration facility. The five—hole probe
tip diameter is 0.0625" (l1.6mm), and the probe support is six probe
diameters downstream of the probe tip. All of the pressure tubes
leading to the five-hole probes are taped and fastened to prevent them
from fluttering. The five-~hole probe pressure measurements are
performed at a discrete number of circumferential steps. A 4 second
time delay is implemented between each step to allow possible
pressure surges in the line to settle out. The five-hole probes are

insensitive to fluctuating pressure of‘frequency greater than about

A L A T R Ad - - M -
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:%j 1 Hz. Hot-wire anemometry is used to measure fluctuating velocities.,
'.' .

{f’ The hot-wire probe is mounted such that its wire is 2" (5.lcm) behind
i: the measurement plane of the five—hole probes, at a radius of 2.55"
WY

\i: (6.5cm), The hot-wire probe was calibrated three different times
- during the course of the experiment, and its sensitivity was found to
L
LQ, drife slightly. Microscopic inspection of the probe revealed that
o

‘;:é this drift was due to a build up of foam particulate from the wedges.

b~

- The total drift over the duration of the experiment was less than 1%,

\

: Mean voltages were measured with an integrating voltmeter having a
A

;: 10 second time constant. The fluctuating voltages were measured
<

o simultaneously using an rms voltmeter having a 30 second time

: constant.

.2% As a reference velocity indicator, a pitot-static tube is mounted

" through the duct wéll between 11 and 12 o'clock looking downstream; as

A

f:ﬁ . shown in Figure 12,
~
7o
. 2.1.3.2 The Electronic Equipment
) Photographs and an identification of the electronic equipment
»

e

3? used are given in Appendix A. All of the electronic equipment was
S8
i: calibrated at the start of the experiment., A calibration check
'y
o midway through the tescing revealed no equipment drift.

T

N
.':.;

i? 2.1.4 Experimental Procedure
;: The experimental procedure is discussed in two parts: data

acquisition and data reduction. Data acquisition is performed
manually and by the Digital Controller/Data Acquisition System

(DC/DAS) designed and assembled at the Applied Research Laboratory.
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Data reduction is accomplished using a Digital Equipment Corporation

VAX 11/782 computer, with five-hole probe data reduction software

written at the Applied Research Laboratory.

2.1.4,1 Data Acquisition

The probe rake must be manually stepped to its starting position;
this is with the longest radius five-hole probe positioned at 12
o'clock. After installing the test inlet wall and sealing the
chamber, the auxiliary fan is started and brought up to speed. The
DC/DAS is initialized and started, and automated data acquisition
begins. The DC/DAS steps the scanivalve pressure~line multiplexer to

the position corresponding with the first five-hole probe pressure

L
4
P4
o«

line. The DC/DAS pauses for 4 seconds, allowing possible pressure

-
>
-l

surges in the line to settle out, then reads the voltage at the

o
LN

pressure transducer and records it on paper tape. The scanivalve
multiplexer is stepped tc read the pressure at the next five-hole
probe pressure line, and the procedure is repeated until all 15 of

the five-hole probe pressure lines' corresponding voltages have been

recorded. The scanivalve 1is then stepped to the 2 pitot-static piobe
pressure lines, and their corresponding voltages are recorded as
above. The last measurement recorded on paper tape for each
probe-rake position is the temperature in the vicinity of the probes;
it, éoo, is recorded as a voltage.

While the DC/DAS is automatically acquiring the above data,
hot-wire anemometer data are recorded manually. For each probe-rake

position the hot-wire anemometer's output voltage is measured by an

integrating voltmeter with a 10-second time constant, and
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simultaneously by an rms voltmeter with a 30-second time constant.
These two voltages and the temperature at the corresponding time of
measurement, are recorded manually. The hot-wire anemometer's output
voltage is also recorded on an X-Y plotter for 30 seconds in the
first probe-rake position.

After the DC/DAS has completed data acquisition for a given
probe-rake position, the DC/DAS automatically prompts the stepping
motor controller, and the stepping motor rotates the probe rake to
the next position.

There are 41 probe-rake measurement positions, each 9° apart; the
first and last probe-rake positions are the same. The DC/DAS must be
interrupted after the 4lst position to stop the data acquisition
process.

Because the model chamber is a closed-loop system, the
circulating air is heated by the fan motor and fluid friction with
each pass-by. To keep the model chamber temperature within the
temperature bounds which would be expected in a full-scale chamber,
data acquisition would temporarily be terminated while the chamber
doors were opened to allow air exchange with the ambient.room_air.

The chamber would then be resealed, and data acquisition would

continue.
':f 2.1.4,2 Data Reduction
‘éﬂt The paper tape from the DC/DAS, and the manually recorded
;%3 hot-wire data are reduced independently of each other. The paper tape
Eé is read onto the VAX 11/782 disk and is reduced using software
>

written at the Applied Research Laboratory's Garfield Thomas Water

Y
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Tuanel, This software follows Treaster and Yocum (1979), and reduces
five-hole probe data., Calibration data for each of the five-hole
probes used were recorded with the DC/DAS pricr to running the inlet
wall tests, and these data are stored in a database which is accessed
by the five-hole probe data reduction software. Calibration constants
for the pressure transducer and the digital thermometer are also
stored in this database. The software produces, for each probe
position, a plot of the axial, radial, and tangential velocity
components; a printout containing the numerical values of the reduced |
data, including temperature, probe-tip Reynolds number, and velocity
data; and a radial plot of the resultant velocity component in the
plane of the test fan rotor. These velocity vectors are calculated by
vector summation of the radial and tangential velocity components.

The hot-wire anemometer data are reduced to obtain the axial
component of turbulence intensity for each hot-wire probe position.
The hot-wire data reduction gsoftware accesses a database containing
the hot-wire calibration data; the hot wire is calibrated with
velocity and temperature as variables. For each of the measured
temperatures, rms voltages (e'), and mean voltages (e), ﬁhe axial
turbulence intensity is calculated as (DISA type 55D01 anemometer

unit instruction manual):

.
s PREAE)
-
ettt

.
Percent Turbulence Intensity = Sﬁl&g—lisl-x 100

\ B0y }/? '
‘iif where U is the calibration velocity corresponding to e and the
Eiz measured temperature, and B is the slope of the calibration curve
. |
‘{:2 plotted as (E)2 on the ordinate, and (U)I/2 on the abscissa, for the

measured temperature. The resulting turbulence intensity 1is plotted

for each hot-wire probe position.
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:::._\ CHAPTER IIIL

‘ EXPERIMENTAL RESULTS

LA
::.‘::j 3.1 Description of the Inlet Walls and Discussion of the

‘j:,'-: Steady-State Results 1‘
i\ -

», A total of five inlet configurations are reported. To maintain
-

1\ as much of a working volume as possible inside the chamber, these

' J,\- inlet walls were designed for the back wall only. Side wall inlets
e
{ would have required a larger plenum between the two rooms to allow
:{;‘: ductwork placement, and would have thereby reduced the size of the

:.-\.: .
::_\- inner room.

g As a test of the data acquisition system, an ideal flow field was
-,_ set up through removal of the bellmouth and installation of a 4"

= 4

_:'_-: (10.2cm) thick honeycomb flow straightener in its place at the end of
I
g the test duct, The measured velocity was purely axial, demonstrating
:: :: that both the probe rake and the flow straightener were performing

':f;;- properly.
,J A reference cofiguration is required so that improvements due to
Lo

g ::’: the inlet walls can be evaiuated. The ideal reference configuration
-
\ would have the inlet duct in a free-space environment; that is, with
_. no walls or boundaries nearby. This is an unrealizable configuration.
j::_': The next most desirable configuration would have the inlet duct

- bounded on one side only, for example, by the ground. Finding a space
! . large enough for this configuration is difficult, particularly because
e
.Z’-z outdoor sites are subject to atmospheric disturbances. Not being able
N

::5: to use either of these free-space configurations led to the use of the
DAY

o scale-model anechoic facility, with no test inlet wall, as the

N
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reference configuration. This reference configuration takes account
of any model asymmetries and irregularities. (The model is
constructed of lumber and steel, and is, accordingly, limited in its
accuracy. Likewise, the fan and inlet duct were aligned as accurately
as possible, but, due to their large scale and weight, may be slightly
misaligned.) The reference configuration is called the open-back case
because there is no inlet wall in place, as shown in Figure 15. The
open-back case cannot be considered as a practical full-scale chamber
configuration because its anechoic, flow straightening, and turbulence
properties are poor.

Results from measurements made in the open-back configuration are
shown in Figures 16 and 17. These data are obtained from the
five-hole probe measurements, V_ is the reference axial velocity as
measured by the pitot-static probe. The arrows in the radial plot,
Figure 16, represent the velocity vectors in the plane of the test fan
rotor, which are obtained by the vector summation of the radial and
tangential velocities at each measurement point. The length of each
arrow indicates the magnitude, and the arrow point indicates the
direction, of the resultant velocity vector in the plane of the test
fan rotor. For each probe, the 360° spatial mean is subtracted out,
leaving only the magnitude of the variation from the spatial mean as
the length of the arrow. This view is taken looking downstream into
the probe rake; that is, towards the fan unit from the anechoic

chamber. 1Ideally, the flow entering the duct will be irrotatiomal,

and the direction of the flow in the duct would be purely axial.

nLW, ",
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This radial plot would then be made up only of dots, one at each

measurement position, indicating that there is no steady-state flow

_— )
- , [

:{ in either the radial or tangential directlons. ;
‘ig: Figure 17 is a plot of the normalized axial velocity at each of

(E; three radii. The velocity at each radius is normalized to V., the

_JR reference velocity measured with the fixed position pitot-static

:%3 probe. Zero degrees is at 12 o'clock, and the degree increments

~{

proceed in the clockwise direction around the duct looking downstream.

=

Ideally, there would be no variations in the axial flow velocity

f?ﬁ{

:E throughout the cross section of the measuring plane. Such an ideal
Qfs case would be plotted as three straight lines, each of unity value.
if The results for the open back configuration indicate two strong
ig counter-rotating vortices in the plane of the test fan rotor, and a
k;: small amount of aiial non-uniformity.
i;i Test wall number three is shown in place in Figure 18. At the
=?? time of the photo, the width of the vertical slots had been increased
“: by 1.1" (2.79cm) in preparation for assembling test wall number four;
. other than this change, the wall in the photo is identical to test
~.i wall number three. The total open inlet area, 2.5 ft2 (0.232@2), was -
A,é calculated so that the velocity through the wall would be 3.33 fps

e (1.016 m/s) at a full-scale flow of 300 cfs (8.5 m3/s). The slots
are 1.25" (0.032m) wide and total 290" (7.37m) in length. The inside
of the wall is lined with wedges as shown in Figure 19. They are
mounted so as to act as flow straighteners and linear diffusers for
the incoming air. From an acoustical standpoint, this wall is better

than an open back chamber in that 89% of the chamber's back wall is

g
Ca
* -~

\i‘.-v'...:‘--' N b .;.‘.;-’_:J‘. )




covered with wedges. From an aerodynamic standpoint, incoming air
will experience a sudden contraction as it enters the inlet wall., The
absorptive wedges act as linear diffusers to the flow that leaves the
inlet wall. This feature would be expected to incite less turbulece
than would a sharply edged inlet. The wedges will also act as flow
straighteners, aiding in the reduction of large-scale vorticity.

The results for test wall number three are shown in Figures 20
and 21, and a substantial improvement toward the desired pure axial
case is seen when these results are compared with the open-back case
of Figures 16 and 17.

The results from test wall number three indicate that significant
improvement of the flow field at the test plane is indeed possible,
and that the large-scale vortices seen in the open-back case can be
minimized by proper inlet wall design. Two improvements to wall
number three brought about the design of wall number four. A ducting
configuration was designed which would simultaneously increase the
wedge coverage of the back wall to almost 100%, reduce the sudden
contraction at the upstream side of the inlet wall, and act as a
flow straightener; it is shown in Figure 22. The width of the
vertical slots of wall number three was increased by 88%. This
increase in area was then occupled by wedges mounted on standoffs
on the upstream side of the inlet wall. These rear mounted wedges
act as flow straighteners and turning vanes to the entering air,
and as absorptive wedges to sound sources located inside of the

chamber. Wall number four is shown in Figures 23 and 24. The
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: steady-state aerodynamic results for wall number four are shown in
:::;‘. ’ Figures 25 and 26. Vortices are still visible in the measuring plane, ;
:.:.: and, in an attempt to reduce these vortices still further, wall number |
-:C five was designed.

o Wall number five is shown in Figures 27 and 28. The slot width

\

fj was maintained at 2.35" (6cm), as in wall number four, but two

:q"\ additional horizontal cross panels were added to the design. They
"'\ were added so as to aid in the straightening of the flow which is

. - presumably angled from the top side. This has the same effect as the
: :; vertical cross panels which presumably straighten the flow entering
'r"': from the sides. The total open area remains unchanged at 2.5 fr2

_:'ﬂ (0.232m2) for this configuration. The most significant effect of this
{j. alteration can be seen in Figure 29, whare the vortices in the test
".:': ' plane are almost .completely removed. The disturbance at 0° is due to
," N the coalescence of residual vortices. Figure 30 shows the

' steady-state axial velocity for this case. Test wall number five has
1 ‘ the ability to straighten air passing through it, while at the same
‘:x.: time maintaining a low turbulence intensity (this will be discussed
':;‘:: further in Section 3.2). It also provides an anechoic <.:hamber wall
"- with very good anechoic design properties. The head loss across the
',._ inlet wall is expected to be low because the slots are not filled with
any fibrous absorbent for acoustical purposes, nor has a porous wedge
s:* design been used to increase the duct area. Adding additional

' horizontal cross panels appears to be unnecessary.
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In an attempt to locate the source of the remaining vorticity

L ‘l ‘t
/.,./n

near 0°, and to more fully examine wall number five's ability, several

’rs."‘
-

DAt
A

other tests were undertaken, The purpose of the first of these was to

[}
¢, 48

demonstrate that neither the bellmouth nor the wedge geometry were

B

Pt

responsible for the formation of the residual vortices. For this

.
.

test, the return path from the fan exhaust to the inlet wall was

/.

£§: significantly altered. Styrofoam blocks were installed above and

,\;‘ below the inner chamber, thereby preventing return flow along the

};i ceiling and the floor, as shown in the photograph of Figure 31. This
‘S; figure, along with Figure 32, shows the results of this room

l{; configuration with wall number five in place. The flow in the

Eﬁ measurement plane has changed considerably, demonstrating that the

i& effectiveness of wall number five is dependent upon the quality of the
% flow which suppliés it.

x{; : This gives rise to a concern on the design of the entire chamber.
va; For example, the amount of return air flow which can be supplied along
;}: the floor of the outer room is dependent upon how the inner room {is
E:; vibration mounted. In the most extreme case, the inner chamber might
EE rest directly on the floor of the ocuter chamber, and there will be no
i? return of air along the floor. To investigate this condition, the

;E;f styrofoam top blockage was removed, and the bottom blockage was left
ti; in place. The results are shown in Figures 33 through 36 for the
‘5; blocked bottom with and without wall number five in place. The

;;: results are encouraging in that they are much better than the totally
gg blocked top and bottom case, and that wall number five does have a

ﬁ? beneficial effect on straightening the flow. In another trial, a
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iE? symmetric flow situation was forced by unblocking the bottom opening
):i; ’ and partially blocking the top opening so that the top and bottom
Sg?: openings were of equal area. The results for the open-back

:;&Q configuration with equal top and bottom areas are shown in Figures 37
0 and 38, The variation in flow field from the case of a totally

E;;. blocked bottom is small, which is encouraging in that small geometry
'd§§ changes don't significantly alter the flow quality at the measurement
~$£; plane, Turbulence intensity data for these cases are presented in
%tf: Section 3.2. Further study of the room configuration, as opposed to
&is the inlet wall configuration, would have required major modification
.:iz of the experimental set-up and was seen to be well out of the scope
.3§§ of this project. In Chapter IV, a return-flow control system.is

,;Ei _ described which would hopefully alleviate problems of room

}t( ) configuration.
k},: . A low velocity test was performed to help in assessing wall

%;EE number five's capability at speeds other than the maximum test

%f: velocity. Figures 39 and 40 show the results for V_ = 54 fps

[d

K.

(16.46 m/s), approximately one-half of the maximum test velocity.

ﬁﬁ.#

A,

The resulting flow field at the measurement plane is almost

’
O
s &

S
LA

identical to the result obtained at full velocity. No turbulence

e

i

intensity data are available for this case because the hot-wire

was not calibrated at velocities below 60 fps (18.29 m/s).

-.. _.l _‘l !

The steady-state axial velocities showed no measurable change

.

\ a3
N DA

from case to case. The very small variations in the steady-state

axial velocities appear to be repeatable and unrelated to the

) 'n'_ -l...l‘..n'

’&)

other components of velocity.
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3.2 Unsteady Flow Results

The axial turbulence intensities for the configurations in
Section 3.1 are shown in Figures 41 through 43. Figure 41 contains
the results for the open—-back case and wall number three, four, and
five. As the wall designs are improved from the open-back case
through wall number five, there is a general reduction in the overall
axial turbulence intensity. The turbulence intensity is calculated
as described in Section 2.1.4.2, The maximum axial turbulence
intensity for each configuration occurs where the vortices in the
plane of the test fan rotor coalesce.

Figure 42 shows the axial turbulence intensity for wall number
five with the top and bottom return-flow paths completely blocked.
The turbulence intensity maxima have relocated because the locations
of the vortices have changed.

The axial turbulence intensity data in Figure 43 is for the
bottom blockage alone and partial top blockage configurations. For
the open-back case, the effect of changing the blockage is detectable
in the turbulence intensity data. Installing inlet wall number five
subgstantially reduces the turbulence intensity, even for'chis case of

altered return—-path flow.

3.3 Repeatability

To demonstrate repeatability, one of the first test runs was
repeated. Figures 44 and 45 show the results for a test performed at
the start of the final testing phase. Figures 46 and 47 show the

results for a test performed after the completion of the final testing
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phase. The agreement is good except for the point at -5° at the
middle radial position, because this point is in the wake of the
pitot-static tube. To again demonstrate the effectiveness of inlet
wall number five, it was installed for this case of V_ = 90 fps
(27.43 m/s). The results are shown in Figures 48 and 49. Turbulence

intensity results for these three cases are shown in Figure 50.
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CHAPTER IV

(: . SUMMARY, CONCLUSION, AND RECOMMENDATIONS FOR FUTURE RESEARCH

;§§ 4.1 Summary of Results

ﬁg Guided by the aerodynamic and acoustical criteria set forth in
1_{ Chapter I, test walls were successively designed which had an

'Egé increasingly beneficial effect on straightening the flow and reducing
u?é the turbulence intensity in the plane of a hypothetical test rotor

\: . mounted in a duct. Although not determined experimentally, the

r::. anechoic capability of the best inlet wall would be expected to be
Eéi unaffected because of its nearly 100% coverage by wedges. The sound
)A transmission loss capabilities of the wall were not considered because
;i: auxiliary fan noise could be effectively controlled at a location

E;n . closer to the source. The performance of the best wall design was
(%‘ found to be limited by the quality of the return air supplying the
‘:a inlet wall. Small changes in the symmetry of the return air supply
;E% appeared to have a negligible effect on the flow field at the

%{ measuring plane, while large scale return flow path alterations were
O

f;i capable of inducing vortices and turbulence which were significant in
22& the plane of the test rotor. The best wall's performance was found to
‘: be independent of velocity.

Y

,Eif The design of the final wall is based on a rear-mounted wedge
.EEE system which allows an unrestricted flow of air, anechoic behavior,
';; and aerodynamically beneficial performance such as flow straightening
‘Eg and low turbulence generation. It is believed that any attempt to
‘EEE further improve the wall's behavior in one of the above areas would
ii.
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? degrade its behavior in one or more of the others. The character-
:} ) istic rectangular inlet 1is based upon rectangular wedges being the
N conventional anechoic chamber wall covering.

>

;5 4,2 Conclusion

A\,

This experimental study demonstrates that a carefully designed

,% inlet wall can share aerodynamic and acoustical capabilities, and

; provide an environment for aeroacoustic studies which is superior

>
\ to outdoor sites and anechoic chambers without flow straightening
L

}' capabilities.
-.

N 4.3 Recommendations for the Design of High-Volume-Flow Subsonic

- Anechoic Chambers for Use in Aeroacoustic Studies
ii The most basic element of the system described herein is the

“~ A

o ) duct/wedge configuration detailed in Figure 22, This counfiguration
4
:\ serves three purposes: It maintains the anechoic capability of the
,i inlet wall; it acts as a flow straightener; it acts as a linear

Q-\

" contraction, a linear diffuser, and a flow separator. Understanding
. these three devices aids in the proper design of the duct/wedge unit.
‘:‘ For example, the rear mounted wedge must have a base width which is
‘.‘

Y

e larger than the slot width to prevent acoustical reflections from

f’ entering the anechoic chamber, and must be loung enough to emter
’t: into the chamber and maintain the specified chamber low frequency

N
'} cutoff, For this reason there must also be an airspace behind the
L

O rear mounted wedge. From a flow standpoint, a smooth wedge covering
& should be chosen as to minimize one mechanism which can lead to

‘} premature turbulent boundary layer flow over the wedge.
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Placement of the inlet slots 1is also of importance. 1If it were
possible to structurally support them, small crosses of duct/wedge
systems would provide the optimal flow straightening capability.
Given that this will often not be an easily achieved goal, long runs
of inlet slots in any one direction will provide a good result, but
these should be broken up by flow straightening wedges running in the
perpendicular direction. Inlet slots should not be less than one
wedge length from any side wall; this will lessen the effect of
vortices forming at the boundary layer due to the wedges at the
sidewall, Althougnh not studied in detail, the rounding off of the
sharp corners of the slots may provide additional improvements in
turbulence suppression.

The effect of inner room placement and return flow quality is a

- topic which was not examined in depth in this thesis. Results were
presented, though, which show cause for concern in the design of
return flow paths. The use of a return—-flow control system can serve
two purposes: provide a control system whereby the flow which
supplies the inlet wall can be varied; and provide a mechanism for

attenuating noise from auxiliary air moving equipment befors it

reaches the inlet wall. A typical system might direct the exhaust

of the air moving system to an acoustically damped manifold which

Wy

T

h .l" .\' -l' . :

exhausts to several silencers. The silencers then connect to duct-

;. work which 1s treated and sized to aid in acoustic attenuation, and
if: eventually leads to the inlet wedge/duct system. If these ducts

:;E are fitted with variable dampers, the return air volume can be varied
iﬂﬁ over different sections éf the inlet wall, thereby allowing the
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5:? system to be fine-tuned or altered independently of the room
B
& structure. The simple addition of a return air control system
t
CORY such as this could prove to be the difference between a
T
N successful installation and a poor ome.
:' ~
J 4.4 Recommendations for Future Research
L
“..‘
S The most important problem which this thesis has exposed is
Ay
Sy
ey that of the effect of the quality of the air flow which reaches
L the inlet wall. Given that, in order to maintain an acoustically
’ﬁ:} and aerodynamically balanced inlet wall, it is impossible for
10
;i:% the inlet wall to correct all flow inhomogeneities which it
e encounters, it would be valuable to study the effect of such
! 4"':
!;: features as increasing the plenum space behind the duct/wedge
A%
&
~jﬁ unit, or blocking return paths from the fan exhaust. An
" e ‘
& interesting follow—-onr research task would be to actually
:if construct the return-flow control system described in the
':jf' previous section and investigate the variability and control
_J of the flow field in the desired test region as a function of
)
\Ft the raturn supply.
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>— OUTER ROOM

| INNER ROOM

INLETS IN WALL
— OPPOSITE THE
FAN, ONLY

ANECHOIC
™ CHAMBER

Figure 2. General design concept for the
high-volume-flow subsonic
anechoic chamber.
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Exterior view of the one-sixth-scale
model.

The Joy Axivane fan, shown uncoupled
from the one-sixth-scale model,

with the fan housing door opened.
The 9.5" test duct and stepping
motor can be seen in the right hand
photo.
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Figure 6. Exterior view of the one-sixth-scale
model showing the front door, which
allows access to the test chamber.

Figure 7. The test chamber as seen with the
front door opened and no test
inlet wall in place.
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Figure 8. The inner room as seen when rolled
out of the outer room.

Figure 9. The outer room, the test duct, and
the Joy Axivane fan. The inner
room is completely removed.
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Figure 13. Looking downstream at the bellmouth and

the probe rake.
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Figure 14.

Looking downstream at the probe rake.
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Figure 16. SceadyQStace flow in the plane of the
test rotor, for the case of no test
wall. V_ = 105 fps (32 m/s).
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Figure 19. Test wall number three as seen
from inside the chamber.
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Figure 20. Steady-state flow in the plane of the test rotor,
for the case of test wall number three.
V, = 105 fps (32 m/s).
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Figure 23. Wall number four shown with the rear-mounted
wedges removed.
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Figure 24. Wall number four; (A) with the rear-mounted wedges
in place; (B) as seen from inside the chamber; the
wedges have not yet been mounted on the rear-
mounted support strips.
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Figure 25. Steady-state flow in the plane of the test rotor,
for the case of test wall number four.
- vV, = 98 fps (29.9 m/s).
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Figure 27. Wall number five with the rear-mounted -
wedges removed; (A) as seen from
outside of the chamber; (B) as seen

o from inside the chamber.
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RELATIVE SCALE:
= 0.20V,
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Figure 29.

V_ = 104 fps (31.7 m/s).
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Figure 31. Steady-state flow in the plane of the test rotor,
for the case of test wall number five and total
top and bottom blockage. V_ = 98 fps (29.9 m/s).
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Figure 33. Steady-staté flow in the plane of the test rotor,
for the case of no test wall and total bottom
blockage. V, = 104 fps (31.7 m/s).
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Figure 35. Steady-state flow in the plane of the test rotor,
for the case of test wall number five and total
bottom blockage. V_ = 104 fps (31.7 m/s).
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Figure 37. Sceady-staté flow in the plane of the test rotor,
for the case of no test wall and parctial top
blockage. V_, = 97 fps (29.6 m/s).
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Figure 39. Steady-state flow in the plane of the test rotor,
for the case of test wall number five.
Vo, = 54 fps (16.5 m/s).
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(26.8 m/s). Measurements made at the start of
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Figure Al. Scanivalve pressure-line multiplexer.
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Figure A4. Hot-wire probe calibration tunnel.

Figure AS5. Borg Warner Accuspede power inverter.
Speed control for fan.
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