

5 J J M D

161121

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

	SAI INTERIM SCATTERING MODEL/ICE (SISM/ICE)	
	SAI-84/1100	
	Apr11 1984	
	Branarad hu.	
	R. R. Greene	
	Prepared for:	
	Mr. E. D. Chaika Mr. B. N. Wheatley	
	NORDA Code 270	
	Contract No. N00014-84-C-0180	
SCIENCE	APPLICATIONS, INC.	
P. O. Bo	VX 1303 VA 22102	
(703) 82	21-4300	
	<i>[</i> 1•	
<u> </u>		_

REPORT DOCUMENTATION PAGE		READ DISTRUCTIONS
DEPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
SAI-84/1100	AD-A148 57	<u>к</u>
4 TITLE (and Subilite)		S. TYPE OF REPORT & PERIOD COVERE
SAI Interim Scatteri (SISM/ICE)	ng Model/Ice	Technical Report
		6. PERFORMING ORS. REPORT NUMBER SAI-84/1100
AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(+)
		N00014-84-C-0180
R. R. Greene		
DERFORMING ORGANIZATION NAME AND Science Applications 1710 Goodridge Drive McLean, VA 22102	ADDRESS , Inc. , P.O. Box 1303	19. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADD	RESS	12. REPORT DATE
Naval Ocean Research	and Development	April 1984
Activity		IJ. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRES	S(Il dilferent from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING
17. DISTRIBUTION STATEMENT (of the ebatte	act entered in Block 20, it different fre	ian Roportj
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if n	ecossary and identify by block number	,
Arctic, Acoustics, Scatt	tering, Reflection I	oss, Ice
\$		
20. ABSTRACT (Continue on reverse side II ne	cessary and identify by block number)	
 A reflection loss magnetic sea ice is described. 0.to 45 degrees. A sequence perturbation techniques to an asymptotic loss leteration techniques sequence to an asymptotic loss leteration. 	nodel for acoustic p it is applicable ove sence of scattering provides a smooth t evel, based on a bos	ropagation under Arctic r the frequency range of loss formulas based on ransition in frequency s model, at the highest used to relate the
frequencies. Probabalis	stic techniques are	

TABLE OF CONTENTS

	Page
SAI INTERIM SCATTERING MODEL/ICE (SISM/ICE)	1
Ice Roughness Parameters	1
Derivation of Ice-Roughness Parameters from Standard Deviation Roughness	4
Reflection-Loss Formulas	5
Conclusion	6
REFERENCES	7
APPENDIX	A-1

Accession For NTIS GRALI DTIC TAB Unannounced Justification. By ----Distribution/ Availability Codea Avail and/or Spectral Dist

iii

SAI INTERIM SCATTERING MODEL/ICE (SISM/ICE)

The SAI Interim Scattering Model/Ice (SISM/ICE) is a reflection loss model for the coherent reflected field in ice-covered environments. The standard deviation of roughness is the only parameter required by the model for predictions. A contour map of the standard deviation of roughness in meters, shown in Figure 1, is from Buck.¹ It is already available to Fleet users as part of Buck's empirical transmission-loss model. The range of validity of SISM/ICE is from 0-5000 Hz and 0-45 degrees. A sequence of scattering-loss formulas based on perturbation techniques provides a smooth transition in frequency to an asymptotic loss level at the highest frequencies. The perturbation formulas are derived in Bass and Fuks² and are summarized in Stokes.³ The derivation of the formula for the asymptotic loss level is contained in Burke and Twersky⁴ and is the same one used in Diachok.⁵ In addition, probabilistic techniques derived by R. Greene are used to relate the standard deviation of roughness to the ice-roughness parameters required by the individual reflection-loss formulas.

Ice Roughness Parameters

The under-ice surface is considered to be flat with cylindrical bosses of elliptical cross section.

The bosses:

- 1) have a half-width-to-depth ratio of 1.6, as suggested by Diachok,⁵
- 2) have a Rayleigh depth distribution,

- 3) have random orientation,
- 4) have random spacing along a track.

Based on these assumptions, the standard deviation of roughness is related to the ridge keel parameters by the formula:

$$\sigma^{2} = \frac{4 R_{0} h^{3}}{\Delta} - \frac{\pi^{2} R_{0}^{2} h^{4}}{\Lambda^{2}}, \qquad (1)$$

where:

 σ is the standard deviation of roughness, $R_0 = 1.6$ is the half-width-to-depth ratio, Δ is the mean keel spacing, and h is the mean keel depth.

Under-ice roughness spectra measured along a track can be well approximated by the function:

$$\frac{c}{(\beta^2 + K^2)^{3/2}},$$
 (2)

where K $(=2\pi/\lambda)$ is the wave number of the roughness component in the surface. This function has an asymptotic fall-off for large K of the form:

$$\frac{c}{K^3}$$
 (3)

The standard deviation of roughness derived from such a spectrum is:

$$\sigma^2 = \frac{2c}{\beta^2}$$
 (4)

-3-

The roughness spectrum derived from the bossed surface has the same asymptotic behavior as Eq. (3), where the coefficient c can be calculated to be:

$$c = \frac{\pi h}{8\Delta R_0}$$
 (5)

Derivation of Ice-Roughness Parameters from Standard Deviation Roughness

It is assumed that of all the ridge parameters, the mean spacing is the most slowly varying as a function of the standard deviation of roughness. It is assigned a constant representative value of 100 meters:

$$\Delta = 100 \, \text{m}$$
 (6a)

The mean ridge-keel depth (h) in meters, can be found as the solution of Eq. (1) by the iteration:

$$h_{n+1} = \left[(\Delta/4R_0) (\sigma^2 + \pi^2 R_0^2 h_n^4 / \Delta^2) \right]^{1/3} , \qquad (6b)$$

where:

$$R_0 = 1.6$$
 (6c)

The asymptotic coefficient (c), of the spectral model, Eq. (2), is calculated using Eq. (5):

$$c = \pi h / 8 \Delta R_0 \tag{6d}$$

The β coefficient of the spectral model is calculated using Eq. (4):

$$\beta = (2c/\sigma^2)^{1/2} .$$
 (6e)

In terms of the ice-roughness parameters, four formulas for the reflected power $|R^2|$ are evaluated. The predicted value of $|R^2|$ is the maximum of the four calculated values.

Choose the maximum of:

• Low Frequency-Free Surface Formula

$$|\mathbf{R}|^2 = 1 - 4 \sin\theta k^2 \sigma^2 (1 - \pi^2 c (\sin\theta)/2)$$

(7a)

High Frequency-Free Surface Formula

$$|\mathbf{R}|^2 = 1 - 4 \sin\theta (1.198) c (k/\beta)^{3/2}$$
, (7b)

$$|\mathbf{R}|^{2} = \frac{(\sin\theta - \mathbf{x})^{2} + \mathbf{x}^{2}}{(\sin\theta + \mathbf{x})^{2} + \mathbf{x}^{2}}, \mathbf{x} < \sin\theta, \qquad (7c)$$

where:

$$x = 1.311 c (k/\beta)^{1/2}$$
.

• Asymptotic Twersky formula

$$|\mathbf{R}|^2 = (\sin\theta - \mathbf{x})^2 / (\sin\theta + \mathbf{x})^2 , \qquad (7d)$$

where:

$$x = n L \cos(\theta - \gamma),$$

$$\tan \gamma = \rho^{-2} \tan \theta,$$

$$L^{2} = w^{2} (\tan^{2} \theta + \rho^{4}) / (\tan^{2} \theta + \rho^{2}),$$

$$w = R_{0} \pi h/2,$$

$$\rho = 2 / (R_{0}\pi),$$

$$n = 1/\Delta.$$

In all of formulas 7a-7d, θ is grazing angle and k is the acoustic wavenumber in inverse meters.

Conclusion

SISM/ICE is suggested as an interim scattering-loss model in ice-covered environments. It is based on several simplifications and assumptions. However it fulfills the requirement for a loss model with a wide range of validity, based on the only known environmental parameter, the standard deviation of roughness. SISM/ICE can be used with acoustic propagation models such as FACT and RAYMODE to predict the coherent propagating field. There may also be a significant propagating incoherent component at the higher frequencies, which would not be predicted by these models. As propagation models become available which can describe the propagating incoherent field, SISM/ICE can be extended to give the scattering kernel for the incoherent field. The details for doing this are contained in Refs. 2, 3, and 4.

REFERENCES

- B. M. Buck, "Preliminary Underice Propagation Models Based on Synoptic Ice Roughness (Area TR No. 9)," Polar Research Laboratory Report TR-30, 123 Santa Barbara St., Santa Barbara, CA 93101 (May 1981).
- 2. F. G. Bass and I. M. Fuks, <u>Wave Scattering from Statisti-</u> <u>cally Rough Surfaces</u>, Pergamon Press, New York (1979).
- 3. A. P. Stokes, "A Primer on Rough Surface Scattering," Science Applications Inc. Report No. SAI-83-140-WA, 1710 Goodridge Drive, McLean, VA 22102 (April 1983).
- J. E. Burke and V. Twersky, "Scattering and Reflection by Elliptically Striated Surfaces," J. Acoust. Soc. Am. 40, 883-895 (1966).
- 5. O. I. Diachok, "Effects of Sea-Ice Ridges on Sound Propagation in the Arctic Ocean," J. Acoust. Soc. Am. 59, 1110-1120 (1976).

Appendix

REFLECTION LOSS CURVES FOR REPRESENTATIVE ARCTIC ENVIRONMENTS USING SISM/ICE

The curves are evaluated for: Standard Deviation of Roughness, sigma = 2 m and 4 m, and frequencies (Hz), Freq = 20, 50, 100, 200, 800, 3500, 5000.

- The vertical scale represents the power reflection coefficient, R². The scale goes from .2 to 1.0 in units of .1.
- The horizontal scale represents grazing angle in degrees. The scale goes from 0 to 45° by degree.

. (). [. [.] .] .] . [.] .]

ANGLE = 0 TO 45°

ANGLE = 0 TO 45°

A-2

FREQ =5000 SIGMA=2

R²= .2 TO 1.0

ANGLE = $0 \text{ TO } 45^{\circ}$

A-3

ANGLE = 0 TO 45°

ANGLE = 0 TO 45°

.....

A-4

R²= .2 TO 1.0

FREQ =5000 SIGMA=4

FREQ =800 SIGMA=4

R²= .2 TO 1.0

FREQ =3500 SIGMA=4

R²= .2 TO 1.0

