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/ We show that numerical differentiation of images is an ill-posed problem in the
sense of Hadamard. Differentiation needs to be regularized by a regularizing
filtering operation before differentiation. This shows that this part of edge
detection consists of two steps, a filtering step and a differentiation step.
Following this perspective, the paper discusses in detail the following theo-
retical aspects of edge detection:

(1) The properties of different types of filters - with minimal uncertainty,
with a bandpass spectrum, and with limited support-are derived. Minimal
uncertainty filters optimize a tradeoff between computational efficiency
and regularizing properties.

(2) Relationships among several 2-D differential operators are established.
In particular, we characterize the relation between the Laplacian and the
second directional derivative along the gradient. Zero-crossings of the
Laplacian are not the only features computed in early vision. -

(3) Geometrical and topological properties of the zero crossings of dif-
ferential operators are studied in terms of transversality and Morse theory.

u-We discuss recent results on the behavior and the information content of
zero crossings obtained with filters of different sizes. These results
imply a specific order in the sequence of filtering and differentiation
operations. Topological properties are preserved by level-crossings.......
Setting a level in the optimal filtering stage is a threshold operation -
which can be implemented in an adaptive way - that preserves all the "nice"
geometrical and topological properties of zero crossings. -

Finally, some of the existing local edge detector schemes are briefly out-
lined in the perspective of our theoretical results.
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ON EDGE DETECTION

V. Torre and T. Poggio

Abstract. Edge detection is the process that attempts to characterize the intensity changes
in the image in terms of the physical processes that have originated them. A critical,
intermediate goal of edge detection is the detection and characterization of significant
intensity changes. This paper discusses this part of the edge detection problem. To
characterize the types of intensity changes derivatives of different types, and possibly
different scales, are needed. Thus, we consider this part of edge detection as a problem in
numerical differentiation.
We show that numerical differentiation of images is an ill-posed problem In the sense
of Hadamard. Differentiation needs to be retularized by a regularizing filtering operation
before differentiation. This shows that this part of edge detection consists of two steps, a
filtering step and a differentiation step. Following this perspective, the paper discusses in
detail the following theoretical aspects of edge detection:
(1) The properties of different types of filters-with minimal uncertainty, with a bandpass
spectrum, and with limited support-are derived. Minimal uncertainty filters optimize a
tradeoff between computational efficiency and regularizing properties.
(2) Relationships among several 2-D differential operators are established. In particular, we
characterize the relation between the Laplacian and the second directional derivative along
the gradient. Zero-crcssings of the Laplacian are not the only features computed in early
vision.

(3) Geometrical and topological properties of the zero crossings of differential operators
are studied in terms of transversality and Morse theory.
We discuss recent results on the behavior and the information content of zero crossings
obtaified with filters of different sizes. These results imply a specific order in the sequence
of filtering and differentiation operations. Topological properties are preserved by level-..*-
crosisings. Setting a level in the optimal filtering stage is a threshold operation - which
can be inplemented in an ad:aptive way - that preserves all the "nice" geometrical and
topological properties of zero crossings.
Finally, soine of the existing local edge detector schemes are briefly outlined in the
purspective of our theoretical resLilts.
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7 .. 1. INTRODUCTION

Vision begins with the transformation of a flux of photons into a set of intensity values at
an array of sensors. The first step in visual information processing is to obtain a compact
description of the raw intensity values. The primitive elements of the initial description
should ideally be complete in the sense of representing the full information contained in
the image, and meaningful (that is, capturing significant properties of the three-dimensional
surfaces around the viewer). Physical edges are one of the most important properties of
objects since they correspond to object boundaries or to changes in surface orientation
or material properties (Ballard and Brown, 1982; Binford, 1981, 1982; Brady, 1981; Canny,
1983; Davis, 1975; Hildreth, 1980; Marr and Hildreth, 1980; Pavlidis, 1977; Rosenfeld and
Kak, 1976).

Three-dimensional edges are often mapped by the imaging process into critical points of
the two-dimensional intensity profile formed in the eye or in a camera. The ultimate goal
of edge detection is the characterization of intensity changes in the image in terms of
the physical processes that originated them. For instance, a shadow may be distinguished
from an occluding boundary and material properties may be identified from the associated
intensity changes.' A traditional belief in computational vision-that we fully share--is that
this goal cannot be reached in a single step. At least two separate stages are required.
First, one needs to characterize the intensity changes in the image. Second, one uses
this representation, combined with high-level knowledge, to make assertions about the 3-D
surfaces and their properties.

The first part of edge detection then, requires the evaluation of derivatives of the image
intensity. To characterize the types of intensity changes, derivatives of different type and
order may be needed, possibly at different scales. The first part of edge detection is thus
a problem in numerical differentiation. In this paper, we will consider only this first stage
of edge detection as the process that attempts to detect, localize and characterize local
edges, the sharp changes in intensity that are natural primitives for later processing. We
will not consider here the second stage of edge detection that includes processes such
as boundary detection. segmentation, region growing and groupings of local edges (that
group local edge elements into structures better suited for the interpretation of image data
in terms of the underlying physical processes).

In this paper, we begin by analyzing the problem of differentiating a sampled image. We -'-

show that differentiation is an ill-posed problem (in the sense of Hladamard). Well-posedness
and numerical stability of the differentiational step requires the regularization of the image
intensities by a regularizing filtering operation preceding differentiation. This argument
represents a novel and rigorous justification of the basic sequence of filtering and
differentiation that can be recognized in all existing local ed'e delector schemes. We then
examine in detail the filtering and the differentiation stage. We COn1tinLie our analysis by
characterizing properties of the critical points of the differentiation operation.

Our main practical conclusions in this p;per are (a) that Gatisnian filtering, although not
oplimal under all conditions. is near-optimal, and computationally convenient: (b) the choice
between rotatioi:lly invarianl op-rati,,; (roLtional fillers and rotational invariant difforential .
HI) operatois. as the Laplacian or Ihe socoiid dorivaliv in the (irection nl the gradient)
or dirt.,.liuial (difo( lioriil filler .n '01011,11ia dilleieiitil DD) ojei atois) opoi .lto :(ucl
as tlife tionall (I1,rivalit.s) dp ( n s on llle .tibs(quent into:)m ation processinq t :sk. 11lO

operaitors en.iure clo!,,-d etil. contours. that are not provided in gqineral by DL) operators.

We now outline the or(lqani.ation of this paper in more detail.

ill, ,11,41 01 o lor inumh m.ition-wlhich we will not dict:- in this i),q r --is a a umal ex lrc.siont .tl | iuuuu it: u n \ k)l . . -
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1.1. Organization of the paper

In this paper. we consider edge detection as the process of computing derivatives in the
two-dimensional intensity image. In Section 2, we show that the problem of differentiation ,..,
of a sampled image is ill-posed. We prove that filtering of the image prior to differentiation
is necessary for regularizing the problem and make it well-posed. The filtering step is
analyz ad in Section 3. Filters with minimal uncertainty (Hermite and Gabor functions), with -- -

bandpss properties (sinc and prolate functions) and others that are support-limited are •
review 3d. Filter with minimal uncertainty tend to optimize the trade off between band-limited
characteristics (required for a correct sampling and for "regularizing" the differential
operat on) and computational efficiency.
Section 4 is devoted to the differential stage. We consider separately the second order RID
and D) operators and analyze their main properties. The main focus is on the localization
of the zeros of the Laplacian V2, the second derivative along the gradient -. and the 5
usual 3econd order partial derivatives. Section 5 considers the geometrical structure of
the contours formed by edge detectors and in particular their closure property. For this
purpose. we use elementary tools from Morse and Thom theories. The problem of the
geometry of contours across different spatial scales-where scale is parameterized by the
size of the filter-is considered in Section 6. A comparison of the results of our study with
several previously proposed edge detectors is given in Section 7, and a discussion of the P ... -

"best" filtering and differential steps is given in the final section.

2. COMPUTING DERIVATIVES OF IMAGES

In this chapter, we consider the problem of computing (spatial or temporal) derivatives
of sampled intensity images. Our main result is a rigorous justification of filtering before
differentiation in terms of the theory of regularization. Our approach also clarifies the issue -.--

of the optimal filter for edge detection. In practice, it justifies the use of suitable derivatives
of gau,;sian-like filters in edge detection (for linear differential operators).
In the first section. we discuss the ill-posed nature of differentiation. which is equivalent to
its lack of robustness against noise in the input data. In section 2.2. we review the main
technicetis for transforming differentiation into a well-posed problem. Section 2.3 shows
that numerical difterentiation can be regularized via previous convolution of the image data
with an appropi ial(' filter. In section 2 4. we consider the application of two of the general
r,'t .lr,:iti(in techniqtis. and show that they lead to spline interpolation and to spline
azip ii smltion re,',)ectively (prior to the dillerenliation stagt ). In these methods. regulaiized
dill. itiaItin is tuilS pJrformed by convolvinig the data with an appropriate derivative of
th, r., l;iii.'mg lilt,,r. In some siltations. lov.,' ",0. it may be more convenient in practice
to fi I filler the cil and Own dillereinti,-lt lh e rest ills. We consider somei implications
of Ii mz , ,ti,ition IIi .AI)p...,i.. I I he prOli['.mn Cl tsniphrj a)|1pr .imtcly the i1.a e prior to
lilt -1ni,; anl ll eit . m (mf it' dm.;ctd ii Appendix 2. Interpolation, approximation and -

d .lm h i i are ml ,ci m",', oin Appundix 4.

2.1. Ill-posed nature of differentiation -

In fI1al, liime vmor1. ats woll as i mot mnm ,rnal prohlein. the dlat ame noisy. Noise in
flit- p tolian.,duCton pm occ.;S iS ultimately imavoim tablle. e i sor n(iSt arises at least in

3
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Tart from quantum fluctuations in the number of absorbed photons per sensor and unit
time. This represents a fundamental limitation for real time imagery when integralion time
and size of the sensors are limited by the need of high temporal and spatial resolution.
It is critically important. therefore, that the results of numerical operations performed on
the data are not too sensitive to noise. It is well known that differentiation is not robust
against noise. Even a small amount of noise may disrupt differentiation. Let us consider
a function f1(x) and f(x) f(x) sn wx. f (x) may be close to .f(.) according to standard
norms (, ... ), provided ( is sufficiently small. On the other hand, f'(x) may be quite

different from 7'(x) if , is large.

In the beginning of this century, Hadamard (1923) defined a mathematical problem to be
well-posed if its solution

(a) exists

(b) is unique

(c) depends continuously on the initial data (this is equivalent to saying that the solution is
robust against noise).

Most of the problems of classical physics are well-posed in this sense, and Hadamard
argued that meaningful physical problems had to be well-posed.

Now differentiation of the function 1(x) is a typical ill-posed problem, since it can be seen
as the solution to the inverse problem

U(-) AJ(x) 12.1]

where A 1(x) is the integral operator

aCO
. f(, +di f h(x -- i)f'(i),iL 12.2]

where h is the step function. It is well known that inverse linear problems in which fl(X) and

/(.) belong to Hilbert space are ill-posed (Tikhonov and Arsenin, 1977; Bertero, 1981).

2.2. Regularization techniques

Rigorous methods for transforming ill-posed problems into well-posed problems have been
developed over the past years (see especially Tikhonov, 1963: Tikhonov and Arsenin, 1977;
and Nashed, 1974. 1976). Regularization of the ill-posed problem of finding z from the data
y, such that A: -- y requires the choice of suitable norms ji-Il, (usually quadratic) and of
a stabilizing functional lI' lI. The choice of the stabilizing functional and of the norms is
dictated by mathematical considerations, and most critically, by an analysis of the ph ;Ical
constraints on the problem. There are three main methods of standard regularization
(Bertero, 1981):

(1) Among z that satisfy I1'z-l< C, (where C, is a constant) find z that minimizes

iAz !/1 12.31

(2) Among z that satisly 1!t ( " C", find z that minimizes

2 11

and (3) Find z that minimizes

-o o" %l:I

t.-,..i

-. .-.-. -
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where X is a regularization parameter.

The fi-st method consists of finding the function that satisfies the constraint 11l'zll < (71,
and best approximates the data. The second method computes the function - that is
sufficiently close to the data and is most "regular". In the third method, the regularizatiun
parameter X controls the compromise between the degree of regularization of the solution
and its closeness to the data.

Differentiation can also be regularized using the stabilizing operators introduced by Tikhonov
(Tikhonov and Arsenin, 1977; Bertero, 1981). In the case of differentiation these operators
are equivalent to filtering the data with low.pass filters of the kind we will discuss in chapter
3.
In the next section, we show how to use method 2 and 3 directly for solving the ill-posed
problem of numerical differentiation. In section 2.4, we will consider a wide class of
regularizing filters that correspond to Tikhonov stabilizing operators and can be used to
make numerical differentiation well-posed.

2.3. Regularizing differentiation with interpolating and approximating splines

Poggio, Voorhees and Yuille (1984) have recently applied the second and the third
regularizing methods to the problem of edge detection. Following Schoenberg (1964) and
Reinsch (1962), they chose for I' the simplest form of Tikhonov's stabilizing functionals
with I' ' and the usual I,L norm. This choice corresponds to an "a priori" constraint
of smoothness on the intensity function. Its physical justification is that the noiseless image
has to be smooth in the sense that all its derivatives must exist and be bounded because the
image is band-limited by the optics. Physically, this constraint of smoothness allows us to
eliminate effectively the noise that creeps in after or during the sampling and transduction
process, and makes the operation of differentiation unstable and ill-posed. This is, of course,
inot the only stabilizing functional for this problem, as we will see in the next section, but
it is probably the simplest one.
Let us now consider in more detail for the second and third regularization methods. Consider ... "
a function f(x) defined in Ia,b] and be A a < xo < x,...x,, -r b a mesh of distinct points,
and

f. = f(X) 12.61

the values of f(.) at :r,. Given the sample points of k, the problem of computing the
numerical derivative fi at ,rk is ill-posed. The second regularizing method leads (usig the
stabilizing operator I' 1 and the 1,2 norm) to the search of a function S(x) such that

(a)

.'rk) f&: k I t 12.71

and (b) flIS',t()II is minimized. The stabilizing functional I' is

12.81

The soltiinn to this problm is tjiven by the cubic spline .A'() which interpolates f(.r) in
A (Ahlhrq. Nilson & Walsh. 1967). As a consequence. the numerical derivative '. will be
tle vu of .',(x) in X. Ior equidistant points the following equation holds

IWA~~~~~. I- .A 1) "(•..1.o. A 1 h 2.

. "5

-. -- .. p • .]
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where h is the sampling period, and

that is

'= - f ,) - .21(fk+2 - A-2) + .057?(fk+3 - .A-a)...1 [2.101

Poggio et al. (1984) have obtained the following theorem which is a reformulation ol results
due to Schoenberg (1946, 1964):
Theorem:The cubic spline interpolating the data points assumed on a regular lattice and
satistyinq the second regularizing method with P = - can be obtained by convolving the
data points with the cubic spline filter, which corresponds to the I,4 function of Schoeberg
(1946).

Numerical differentiation, therefore, can be regularized for exact data on a regular grid by
convolving the data points with the first derivative of the h' filter given by Schoenberg,
which is a cubic spline.

In the case of non-exact data which is the most natural situation, the third regularizing
method has to be used leading to the problem of finding S(x) such that

(fk - S(Xk)) 2 + XJIS"(x)12dx [2.1]

i is minimum. Both Schoenberg (1964) and Reinsch (1967) proved that approximating cubic
-. splines are the solution to this variational problem. Poggio et al. (1984) have proved the .

following result:

Theorem:The solution to the variational problem [2.11) in the case of inexact data on a
regular grid (and appropriate boundary conditions), can be obtained (a) by convolving the
data will) a filter, (b) which is a cubic spline. and (c) which is very similar to a gaussian.

This implies that regularized differentiation of image data can be performed by convolving
the data with the first derivative of a cubic spline filter, which is very close to the gaussian,
as shown in figure 1.

This result probably is the simplest and most rigorous proof that a gaussian-like filter
represents the correct operation to be performed before differentiation for edge detection.
We refer to the paper by Poggio et al. (1984) for a detailed proof of this result and for a
comparison between the optimal filter and the gaussian. Poggio et al. (1984) also analyze
the role of the regularizing parameter X, its connection to the optimal scale of the filter,
and discuss methods for finding the optimal X.

2.4. Regularizing filters

In the previous section we have seen that differentiation can be regarded as the inverse
problem of the integral equation

¢" .T.. .-.".

where f(.r) must be recovertd from the knowledge of the data r). which is usually
givu-n only on a discrete lallice. I his problem is ill-pos'Ad, and caan he rugtlarized hy the

6
. *. .. .. :..:.. . . . . . . ..
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Toire. Poggio On Edge Detection

a)
R Filter

-- Gaussian Filter

XI 0.5 =0.05 =0.005
.5 Increasing ).--s-

Effect of the smoothing parameter X on R'

Figure 1 a) The convolution filter obtained by regularizing the ill-posed problem of edge
detection with method (ill) (see Poggio et al., 1984). It is a cubic spline (solid line), very
similar to a gaussian (dotted line). b) The first derivative of the filter for different values of
the regularizing parameter X, which effectively controls the scale of the filter (from Poggio
and Torre, 1984).

regularizing methods previously mentioned. Furthermore, Tikhonov and Arsenin (1977, see
also Bertero. 1981) have proved that it is in general possible to regularize inverse problems
by using Tikhonov's stabilizing operators. For equations of the convolution type as equation
[2.121, the stabilizing operators correspond to convolving f/(x) with a filter /(.r, r), (where
o > (1 is a parameter) whose Fourier transform l;(w, a) satisfies the following conditions:
(Cl) F(w.() is bounded for a > 0 and all w.

(C2) '(w, t) is an even function with respect to ,, and it belongs to I.2(-o0, +00),

(C3) "(w,-)jw belongs to I,..(-oo, +oo).

(C4) For every (t > 0 it holds i,."(wa) 0.

(C5) I'(w, ) -. I as (v. 0 and I'(w,O) I.
This regularizing filter is equivalent to a smooth low pass filter. In the next chapter, we will
discuss three different classes of low pass filters that have been used for edge detection.
The first two of them fully satisfy the previous conditions (C-C5), and are therefore
regularizing filters in Tikhonov's sense. As a final remark, it is interesting to notice that . "
this rcqularizing filters usually correspond to the solution of variational principles of the
type provided by the third regularization method with an appropriate stabilizer I' (compare
Tikhonov and Arsenin, 1977, page 121).

3. FILTERING

In this ;ection. we will make sone preliminary observations on fillerin.; and then. we will
rtwiw tliecee kinds of low p;-s filltrs, which have beenii us; d in iachine vir;ion for edge
dt-t,,elion. We will uoew,,ider 1ba dpans filter in '.clion 3.1. support limited fllers in section

7
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3.2 and minimal uncertainty filters in section 3.3. Our conclusion is that bandpass filter as
well as minimal uncertainty filters me good regularizing operators for differentiation in the
sense of Tikhonov, while support-limited filters are only marginally useful.

As in the study of functions in analysis, many properties of intensity changes can be
characterized in terms of zeros of appropriate derivatives. For instance, one-dimensional
step edges in intensity correspond to extrema of the first derivative, whereas roof edges
correspond to zeros in the first derivative. The main goal of the filtering and differentiation
stage in edge detection is to produce a representation of zeros and extrema. Interestingly.
the type of derivative - whether directional or rotationally invariant - and the type of
representation - whether zeros or extrema - dictate some general properties of the filter
to be used. We will now briefly discuss these two points.

The first point is obvious: directional derivatives require one-dimensional filters properly
oriented alone tho chosen direction; when rotationally invariant operators are used, the
filter f is a function of the radial coordinate p.
We restrict ourselves to examine linear, space invariant filters. Since isotropy can be

assumed, the shape of filters. when viewed one-dimensionally, is an even or odd function.
Let us now consider the implications of this for the case of step intensity edges. Because
of the arguments developed in the previous section, we detect intensity edges from the
zeros of a suitable derivative of the filtered intensity profile (i.e. its critical points). If the
shape cf the step edge to be detected is V(z), defined as

I >0
0 < 0'

t then the output 9(x) of the convolution '(x) * S(x) where J(x) is the filter, will be

9(r) = (X) - P'(-oo), 13.1 _

with I,(x) the integral primitive of 1(r). Therefore:

oThe extrema of !q(.r) correspond to the zeros of 1(x).

*The zero-crossings of,.;' .,(,-) correspond to the extrema of f(a).

Three consequences can be derived from these observations:

1. If we ,are interested in the extrema of the output q(.r), and if we want to have an extremum
located at the position of the edge, then f(.r) must be an odd function.

2. If we are interested in the zero-crossings of ;', fq(), and if we want to have a zero-crossing
located at the position of the edge. then f/(.r) must be an even function.

3. If we are interested in the extrema or zero-crossings. and if ,(x-) has many zero-crossings,
we will have many secondary extrema or zero-crossings. To avoid false edge detection,
J(x) should have the least number of zero-crossings, and the optimal situation would then
be:

elf f'(.r) is odd, then f (j-) has only one zero.

elf J(r) is even, then 1(xr) has no zero.

3.1. Band-limited filters.

Band-limited filtfs are an obvious choice for regularizing differentiation, since the simplest
way to avoid hairmflI no:v, is IC) filter out high Irec-tiencies that are amhli,d by differentialion.
Linear and circular prolate functions constitute an especially itilere.;ing cliss of band-limiled
fillers (Fricdn. 1971): 1. andau and Pollack, 196 1). Linear prolate lunctions ,,,(.r) are dMfined
by the. rltion
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where X,, are called "linear prolate eigenvalUes'. From [3.21, we see that i.,()depends
on two parameters, r,, and 1!, whose significance will be seen later. The value of X,, is a
functkcn of c xj I and may be written as X, (r, c). q,,(x) depends on r. The main properties
of ,(;)are

(1) a,,.)are band-limited.
(2) c,,.r) are orthogonal on both the interval I and I oo aol, with

(3) ,,.)form a complete set of functions of the space of band-limited functions whose
Fourier transform /,(w,) is 0()1 for jwI > 11.

In the defining expression [3.2] of there are three constants, 11, X,, and xr,,. From
13.31. we see that 11 is the cutoff frequency and from [3.3], .r,, is half the length of the
finite interval over which linear prolate functions ~',~)are orthogonal. From 13-31, we also
see that X, represents the fraction of energy of a',.)within I .r,, The dependence of
X, on .- r.,1 is shown in Figure 4.3 of Frieden (1971). Therefore, once we have chosen
II. we can find -, and consequently xr,, such that the energy of '(.)is almost completely
contained in jx < x_~

Linear prolate functions have the nice property that the band-limited function with cutoff-
frequency Q~ and maximal energy concentrated in .r,.,]is U%'{r) with c Il,-,, Similarly,
the odd band-limnited function with cutoff frequency 11 that has maximal energy concentrated
in X-j..r, is ;,,(.r) with c 11 -r. Linear prolate functions are also useful for solving the
Inverse prohlem: tfhat is. the strictly support-limited function in j x_.,,j that has maximally
concentrated frequencies in 111,1i1 is

where 0.,, is the operator defined as

Tht-se res;ults show clearly the difference between '(.)and sinc(x-). They are both
bandi limiited. but t-, (A) falls off more rapidly than sinic(-.) (see Fig. 2 of Landau and Pollack
1961). Onh the other hand, the stiwitly support-limiled function, which has the minimal spread
Of freq-(Uencies. is not a Haar function or a Difference Of Boxes filter (see later) but is

(.ililions in the filter may producc rinqirig phonoinia in the edge detection process.
To rejdtIi- tlleseL ph i~um.It IF, r'CtcSI;.iry to lmve maiiial encirqy of c.'.x) (or 'iI)
coricel tud in1 111 iii,11n l0110 Wit1 1 aVale ofc equ il to 7. more th an 99 per cent of the
unltrgly of .. l i) nd ) r, coiict.ni .ited in Ix J"

It Is imim1utwdiate to ve2i iy that ht~aidl'miod filters s;alisly all conditions (see section 3) of
I ikhoni in order to rtci liiw m i e lt'ertiatioii.
1I Vw" , r' lilt. -In. %.It'd III rot ihinmi'illy movalmimlil two dmmih'onslonal fillers that are' hand limited.

Cii ,IllllY I ike tw'v' Ii lint-jr linlil - lmictri('ns 11,2 i . 1 I mid Stih tatloe x Willi

I7)
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"/ p Now q,,(p) is a band-limited function, but does not have the two-dimensional
analog of properties (1). (3). These properties are satisfied by the circular prolate functions
'',,(i,}, defined by relation: ..

P" \'At"

where ,. is the Bessel function of order zero. -,..-..

3.2. Support-limited filters

All real filters have a finite extension and are support-limited. Computational efficiency
requires that the support of a filter is as compact as possible. Therefore it is interesting to
investigate the properties of filters with strictly limited support. The simplest even filter with
a strictly limited support and with unitary energy is

{ iV - Ik1 I )
0 I1 > )':

whose Fourier transform P(w) is

w ~. .. ' - -
2_ inr wi)

l'(w) -13.71

W

In two dimensions, we have

0 p > po '.'..'

whose Fourier transform is

I Ji(wp0 )

This kind of filtering represents the well-known "blurring" of the image through a circular
aperture of radius po.

It is important to observe that this class of support-limited filters fails to satisfy, in a strict
sense, the five conditions of section 2.4. In particular, condition (3) (V'(W, e)jw belongs to

-oo,-+oo) is not satisfied (because differentiation introduces back high frequencies in'.
the same amount as they are removed by this type of filtering). Thus, support limited filters
are not good regularizing filters in the sense of Tikhonov. Nonetheless, this class of filters
can be still considered as regularizing operators in a weak sense.
If we are interested in odd filters, the simplest support-limited filter is

whose Fourier transform is

0 (I , ,, <,, ).0 2%."%.

to:--':t
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This filter has already been proposed by Herskovitz and Binford (1970) and is commonly
caled DOB (Difference of Boxes). It is also a Haar function (see Fig.19 of Harmuth 1972
and page 399 of Kolmogorov and Fomine, 1974). The system of Haar functions is complete 0
and constitutes a basis for all square integrable functions on a bounded interval. This
property may have some relevance in the context of image pro, .vsing with Haar functions.
Support-limited filters that are even functions can be easily extended in two dimensions
by a simple rotation around the origin. A complete set of support-limited functions in two
dimensions, which can be used as filters, is the Haar system with two variables (see
Harmuth 1972). The Haar function of equation [3.81 has the nice property of being the 0
optimal support-limited filter that maximizes the signal-to-noise ratio for an ideal step edge,
S(,r). It is easy to see that spatial spread of 1(,r) favors the signal-to-noise ratio, while
spatial concentration favors localization, for instance of zero-crossings. This can be seen
as another formulation of the uncertainty relation (Canny, 1983).

3.3. Filters with minimal uncertainty .0

In the two previous sections, we analyzed band-limited and support-limited filters: Band-
limited filters have theoretically infinite support. A drawback of support-limited filters is that
they are regularizing only in a weak sense. It is natural then to try to find an optimal
compromise between these two types of filters. A measure of the spread of a function

c I,2(R) in the space and frequency domain is the uncertainty All, defined as: 0

AU -OX, 13.1]

where

t(X- y)2 f .-X)d "

= f xf()dX 13.1]

= f) I "(W)1"2 13.12]

N(t) is the Fourier transform of f( ) and -w.'"(w-j-w

Notice that 11- is proportional to the density of of zero-crossings for Gaussian white noise '

(Papoulis. 1962: Papoulis. 1965. p. 487). It is well-known that the Gaussian function
is the real function f ( 1,"(W) that minimizes the uncertainty AI,. On these grounds it has
been proposed by Marr & Hildreth (1980) as the optimal lilter. Ihe uncertainty of an even or - -

an odd function I c I.i')t) can be easily computed it its representation in terms of Hermite.- ----

functions is known; that is, if we know the set of c,, such that:"-

....................),.I: *] ........

. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . ."."

* _." -. .. I*-' ..- .-. .-..."_. ,' '.'....-_._- . ...._. .. ... _..''.- -.. '. -.--- - '' "._._.-._,_''' . .t", "._,_ -_ ,_.'.- _,_.3
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where

II,,(x) is the Hermite polynomial of order ?L. The uncertainty of 0,X is simply it AM~ If 1(X)
is an even function, then

P(z) -- "If:kV2k(X), :.6

and the uncertainty All is given by

A11f12 13. 171

Yk-O C2k f2c"k\/(2k 4 2)(2k+t1)

If 1(x) is odd,

+ac

1(r) ~j 2h+ifW~h+ IX),1:.]

and the uncertainty All is given by

4I 1'~ )C2

A .:h 0(1 +:I)+ 2 2h2)

Equations [3.161-[3.191 follow from properties of Hermite functions. We can easily see that
the uncertainty of Herrnite functions (,),(x) increases with v~ as the number of zero-crossings
of ,()increases. From these observations, we see that good filters will be composed
by Hermite functions with low n. From the point of view of uncertainty, the optimal even
filter is -.. and the optimal odd filter is x,~ (the two-dimensional case has been treated
by Daugman, 1984a). Another class of functions with small uncertainty consists of Gabor
functions

j(.:i..t *.,.)1:4.201

They r complex functions of a real variable and have uncertainty All equal to ,.Howe,.r

the real and imaginary part ol op.,x) do not have muinimal uncertainty. The onfy real function
with uncertainty equal to .~is the Gaussian.

*Fillers with minimal uncertainty, as well ats bandlimited filters, satisfy the conditions of
* . . section 3 in order to regularize differentiation.

12
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I - protate
-gaussian
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3.3.. Rlaton etwen rolte nd ermte uncion

Theesenia dffrecebewen roat ad erit fncios s ha te orerar
band-limited ~ ~ an alaIwietelfe aloffse-o ehttofs ob
band-limitedI Ithsbe hwhwvr htacueapoiaino .xwe ri
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I3.21
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ft n essenteldifne etwaiee ua prlt and rmie functidn lise th th fer toe

badlmt thas been shpte con hovr thatue approximation ofcibdi F r), when71) i

large(seeSlepin 195)1i
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3.3.2. Gaussian filtering and the heat equation
We consider here briefly an interesting analytic property of Gaussian filtering of images.

Gaussian filtering, i.e. the convolution of the image I(x, y,) (when I(x, y) is bounded and
continuous) with the Gaussian,

C 2.2 ,1:.231

can be seen as a solution at an appropriate time t - of the two dimensional heat
equation

[3.24]Oz= ~~+ a z= -t- ii

with the initial condition:

'., ,,o) 1 (-T, Y). [3-251]
This is because the "source solution" of the heat equation (Widder, 1975) is

+

k(., y, t) r [3.26]

with time playing the role of the variance, that is,

or 2t. [3.27] -

From Theorem 4.1 of Widder (1975) the solutions of the heat equation are entire functions
of x and y. In other words the convolution of a continuous and bounded function with
a Gaussian generates an entire function. This characterizes well the strong regularizing
properties of the gaussian filter.

4. Differentiation stage

In this chapter, we will discuss the properties of some differential operators that have beenproposed and used in edge detection. We first briefly consider directional derivatives in

section 4.1. In section 4.2 we discuss properties of two second-order rotationally invariant
differential operators: the Laplacian and the second derivative along tle direction of the
gradient. We stress here that it is unlikely that zero-crossings of one differential operator
- such as the Laplacian - are sufficient for early vision. T-
The many two-dimensional differential operators that can be used for detecting sharp changes
in intensity can be classilied according to whether they are (a) linear or nonlinear, and (b)
directional or rotationally symmetric. In this paper. we use the (somewhat inappropriate)
terminology of zeros of a (ilferential operator 1)f (f defined in ! (V !I) in the .;ense of the
locus of points of t uch that I)f 1). 1 lls notion is different from the usuial deinition of

". , the kernel of an operator 0. that is. the set of function f such that /)f o in I -

14
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4.1. Directional differential operators (DD)

The directional differential DD operators used in edge detection are the usual directional
derivalives. The use of directional operators has been criticized (Hildreth, 1980) on the
grounls that such operators lead to smearing of zero-crossing contours (see Fig. 11 of
Hildrelh 1980). In that case the vertical operator was implemented with an operator of i x m
pixels. Smoothing was performed in both the orthogonal and the parallel direction to the
filter's orientation. A correct implementation of a vertical derivative however consists of an
operator of I X 71 pixels. The smearing observed by Hildreth (1980). however, is not due
to the use of a directional operator but to the distortion introduced by a too large width of
the operator. The concomitant use of several directional derivatives has been proposed by
several authors (Binford 1982; Canny 1983). Since in _%

2 the directional derivative in any
arbitrary direction can be expressed in terms of A and i it is evident that in a noise-free
image the use of more than two-directional derivatives is of no help at all. In a noisy image
the use of several directional derivatives may be useful for increasing the signal-to-noise
ratio.

We will see in a later paper that the use of just two narrow directional derivatives is sufficient
to detect all edges detected by rotationally invariant differential operators or by a large set
of directional derivatives.

4.2. Rotational invariant differential operators (RID)

Rotationally symmetric operators have several attractive features. Two of the most widely
used operators of this class are the Laplacian (V 2, which is linear) and the second
directional derivative along the gradient which is nonlinear. We will derive in this
section several properties of the two derivatives and especially of their zero-crossings. In
particular, we derive a necessary and sufficient conditions on image intensities for the
zero-crossings of the two derivatives to coincide.

4.2.1. Null space of the Laplacian and subharmonic functions

Certain classes of functions do not originate zero-crossings in the Laplacian: they are
harmonic and subharmonic functions. Harmonic functions are the null space of the Laplacian
operator. Interestingly. they are invariant with respect to heat diffusion and therefore do not
chang a under convolution with a gaussian of any size (Yuille, pers. comm.). This property,
however, is not stable. Another non trivial result is that any non-linear function 0 of an
harrnoiic function has zero-crossings at the locations of the inflection points of '0 (Yuille,
Poggio and UlIman, pers. comm.). Harmonic functions are non-generic, in the sense that a
small perturbation destroys the harmonic property.

Subliarmonic functions are such functions that the modulus of their Laplacian is everywhere
positiva (Daugman. 1984a). These functions are robust against small perturbations. ,.

4.2.2. Cartesian and polar form

We just give the explicit representation of the two operators in cartesian and polar -..-.

coordinates:

f" 1, ri f Il #' 112.11it. 0

- - -~------------
4 ~~~t~~.ttA.~% ---.------ -- - -- - --
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i2f ff , t 2fj1,f 3fy fufy, 2 i f iOf I (i)fi

1 ' ,;)2 + ;i o) +

We also give the explicit representation for the second directional derivative in the direction
orthogonal to the gradient: O

i) 2f ff, - 2fIfjr 1 r f+ Y.,-,, 2 fr2 + f2 . -

Remark,

The representation in polar coordinates shows clearly that the two operators are rotationally
symmetric, since their form does not change for a rotation of the coordinate system 0". We
can now state

*Characteristic Property of Rotationally Symmetric Operators. A sufficient condition for
an operator to be rotationally invariant is that 0 appears only as derivative in the polar
representation of the operator.

09.

4.2.3. Simple properties of V2 and i)0-

Marr and Hildreth (1980) had attempted to prove that in most cases the zero-crossings
of the Laplacian coincide with the intensity edges. Since zeros of the second directional
derivative along the intensity gradient are the natural definition of intensity edges, we are
able to give here a more rigorous characterization of the problem, in terms of four simple
properties.

(I) If the image fr,,) can be represented as a function of only one variable, i.e., f(.r, y,,)-
the two operators V2 and -

'.
- are equivalent, i.e., 5,, "f.

As a consequence, for f(a', y.,) the zeros of 1 and of V2
1 coincide.

Property I is similar but not identical to the "linear variation" result of Marr and Hildreth
(1980), which states that if f changes at most linearly along the edge direction t, then

(1i) If 4, f= 0 at I', when 0. the zeros of ,,,, coincides with the zeros of V"f.
The assumptions on the image are here stronger than the condition of linear variation of
Marr and Hildreth (1980). but are equivalent to the assumptions of their theorem 1: locally ..-

around the zero-crossing, f has the form f(x, y) -- ax r by + r.

(Ill) If f (-,.) :-- (p) is rotationally symmetric. V 2 f and ;",/ differ by the additive term f,,

For circularly symmetric functions, the zeros of V 2f are farther apart than the zeros of '
-!

This lack of localization by V- (for circularly symmetric patterns) can also be seen in the
tact that zeros of V' (but not of ." ) "swing wide" of corners.

" (IV). (,a) is nonlinear.

(b).; neither conitit's nor associates with ic convolution. i.e.,

16
.. -.. ". .. %.
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dt 0 P i [ 14.4] 5*, (
3 /F ) fl~.I

(f,,) * / * [4.5]

(( ;" is a linear operator on f, if f f(p), but not shift invariant. 5

((!)The mean of '. applied to a zero-mean function need not to be zero.

4.2.4. Geometric characterization of the zeros of V2 and -..-

It is interesting to consider under which conditions the zeros of the Laplacian coincide
with the zeros of the second directional derivative along the gradient. Zeros of the second
directional derivative along the gradient are a natural way of characterizing and localizing
intensi y edges. Zeros of the Laplacian, however, are extensively used for their computational
converience. In this section we derive rigorous results that clarify completely this set of
questic ns.

Let us consider the intensity surface represented as X (z, y, z), where z = '(z, Y) with
f c ("()), I)c and r > 2.

The mean curvature of the surface X is

- ..N i- (.. -- 2/,l = (I + f2),ft + (I + . - 2f fj ,-

2gI 2g 3

where

I I f ff ( = [4J7, fG--

are thE coefficients of the first fundamental form I(d.r,dy) (Lipschutz, 1969, Pogorelov,
1965), and

with *-'- I f are the coefficients of the second fundamental form II(,x, dy).

We use equations [4.21. [4.31 and [4.8] and the property

~f , ,[4.91]

for writing II in terms of V and ' •"

II ' 221, 1 (Vf)2 /, ).['.]

We can now characterize the connection betw.en the zeros of V" and tile zeros of , :

Ptoipctv V. If VJ II. th' zoros of f coincidfe with the zeros of V2 iff the mean curvature
II os ,c.r*).

17 . ° . • ' °
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Thus, only for surfaces with minimal curvature (11 = 0), the zeros of !,N coincide with
the zeros of V2 f where the gradient of I is different from zero. Note that (M. Kass,
personal communication) V 2f has the same zeros as ! where the curvature of the lines
of level-crossings of the intensity image is zero. Recently. Berzins (1984) analyzed in detail
the behavior of zeros of the Laplacian of a Gaussian filtered image around corner edges
and edges with high curvature. He showed that the zeros of the Laplacian are displaced
from the true edge by less than a (the variance of the Gaussian filtering) when the radius
of curvature is large compared to a, and when the distance to the nearest sharp corner is
large compared to ; (where 0 is the angle of the corner in radians). Note that eq. [4.10] 
shows that the difference between -'I and V-f is small if the mean curvature II is small,
Smoothing the image with a two-dimensional filter reduces the curvature (and more so
for larger-sized filters). Therefore, we may expect that in filtered images, V'J will perform
almost as well as

4.2.5. The normal curvature

The second directional derivative along the gradient has a simple interpretation in terms of
the normal curvature along the gradient. The normal curvature K, in the direction of the
gradient is (Lipschutz, 1969)

Ldu2 + 2Mdudv + Ndvs ".1-

Edu2 + 2k'dudv + Gdv2

with du and dv as direction numbers. Setting dug + dv = I, the direction numbers along . -

the gradient are

du 14.12

dv =14.13]

Thus, equations (4.11] and [4.13], together with equations [4.6] and [4.7), lead to

K,, f -- -y 14. 141 -:-:::

In particular, it follows K.2f44

Property V"

The second directional derivative along the gradient and the normal curvature in the
direction of the gradient have the same zeros when IV I -,' 0.

Our geometrical characterization of the gradient and the second derivative along the
gradient is completed by Appendix 3, that gives the geodesic curvature of the curve directed
along the gradient. For surfaces of revolution the geodesic curvature of such lines is always
zero.
The operator and the normal curvature in the direction of the gradient K,, are not
defined when 'f I -- o. In this case, the direction of the gradient is underdetermined,
although the Hessian can of course be diagonalized (determining the princip.l directions).
Thus. ;:: has the disadvantage with respect to V that it is not defined everywhere.

. ." ,," ...
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4.2.6. Potential biological consequences

A natural question arising from these comparisons is: which derivative operators are used
by the human visual system? It is obvious from the earlier sections that several different
derivat yes possibly at different scales have to be used for efficient edge detection. It would
be very strange it the human Visual system would make use of only one differential operator.
The important questions is therefore which operators or combinations thereof are used
in different visual tasks and under different conditions. Zero-crossings in the output of
directional second derivatives approximated by the difference of one-dimensional Gaussians
(DOG) were suggested by Marr & Poggio (1977) in their theory of stereo matching. Marr &
Hildret~i (1980) later proposed the rotationally symmetric Laplacian V 2

(; (approximated by
a rotat onally symmetric DOG) for edge detection and for stereo matching. Psychophysical
eviden,.e does not rule out either of these schemes. Physiology shows that a class of
retinal ganglion cells performs a roughly linear operation quite similar to the convolution
of the image with the Laplacian of a Gaussian. Data on cortical cells are still somewhat
contradictory on whether some simple cells may perform the equivalent of a linear directional
derivative operation, or instead, signal the presence of a zero-crossing of the rotationally
symmetric Vl2G.
On physiological grounds. it seems unlikely that retinal cells could perform the rotationally
symmetric nonlinear operation although not all classes of ganglion cells have been

L tested properly to allow a firm conclusion. In particular, one-dimensional and rotationally
symmetric patterns are customarily used as stimuli for physiological experiments. In the first
case wand V-' are equivalent, whereas in the second case, they my be distinguishable
only QUantitatively. Let us now consider three classes of psychophysical experiments.
(I) An interesting possibility for distinguishing the Laplacian from the directional second
derivative on the basis of physiological or psychophysical experiments is suggested by the
observation that the zero-crossings of the Laplacian swing wide" of gray-level corners. In
particular, the zero-crossings associated with an elongated blac bar, for example, coincide
for V2 and o whereas they differ in the case of a circular black disk. Hyperaculty
experiments maey allow one to distinguish the two cases. Notice that both operators are
linear in this case. They associate therefore with Gaussian convolution (G c tia The
corresponding point-spread functions are
(a) for the one -dimensional, f(o):

(11) for rhe two-dimensional f(p)

v (Y. 2(12 .1 4.6

where is the standard deviation of the Gaussian function. Let us call the diameter of
the centeal resion of ilitye nks, i.e.. the disance between the central zeros. tip) denotes
divt ivler for the oicdim hsiotnal case and y for the two-dimensional case. It is easy
to see that the second directional derivtive has whereas this is not true for
he Laplacian e - Fro ci (a) and (b) we get

corsodnIon-pedfntn are

- ..1 9

~' - ,,[lx,

L. .
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A possible psychophysical test is:

elf zero-crossings in the Laplcian are used by our visual system to estimate position of
edges, the apparent width of a narrow 1-D bar and of a small circle (with equal physical
widths) should be different-the bar should appear smaller. This is not expected if the
second directional derivative is used.

(II) There are classes of intensity edges that generate zeros in ; but not in V". An - "

example is given by:

(X ")) [4.,,]:
+ ea.

which, with appropriate values of ji does not satisy V2I = 0 for any y > 0. It is possible,
however, to find solutions to 0 = 0. Thus, the edge I could again be used to discriminate

peychophysically between V2 and -- .

More in general, functions h c (.2 in a certain region I) such that V 2h > 0 In ) are called
subharmonic, as we discussed earlier. These functions do not have zero-crossings of the
Laplacian (Daugman, 1984a), but generally zero-rossings of -e- are present. There are
special cases, however, in which both -L- and V2 do not have zeros. An example is given by;ht"

(zr) co. + -with VT-" -f + 2b, which does not have any zero-crossings
if b > A. It would be interesting to test this kind of pattern both psychophysically and
physiologically (controlling carefully for nonlinearities in the phototransduction).

Ill) As we mentioned earlier in this chapter, harmonic functions cannot be characterized
in terms of the zero-crossings of their Laplacian. Worse yet, any image is characterized
uniquely by zero-crossings of the Laplacian (across gaussian scales, see chapter 6)
modulus any harmonic function. Psychophysical experiments that measure the detectability
of edges in subharmonic patterns are difficult to interpret, because they would give a
clear answer only if the Laplacian were the only differential operator in the human visual
system, a very unlikely possibility. Furthermore, harmonic functions are unstable against
small perturbations, making difficult to control for non-linearities in the display and in the
transduction process.

5. Geometrical properties of edge contours

In this section, we will discuss geometrical properties of edge contours obtained by differentL
methods. We will show that edges derived through rotational operators are generally smooth,
closed curves, while edges obtained with directional operators do not have such special
geometrical properties.

In many edge detection schemes, as we discussed in the Introduction, the image I(-, y) is
first filtered and then a second order differential operator / ' is applied to the filtered image
I(.r, y. Edges are identified in correspondence to the zero-crossings of l)*-i(.r, 1). In other
cases, edges are identified as extrema of some derivative of the filtered image. Again they
may correspond to zero-crossings of a higher order derivative. In this way, the first part
of edge deleclion provides a rompnct and possibly complete representation of intensity
changes (see chapter 6).

Therefore, it is important to analyze theoretically geometrical properties of the locus of
points defined by

1)2 " (,,) 0, IWI"

20
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where (j, p,) is the filtered image and 1)2 can be a RID or a DD operator. We first recall
in the next two sections the notions of transversality (Abraham and Robbin, 1967, Poston
and Stewart, 1976) and of Morse functions (Poston and Stewart, 1976). In section 5.4 we
will cla;sify the types of zero-crossings contours that can appear in images.

5.1. Transversality and zero-crossing (z.c.)

A curve (or a surface) S, meets a curve (or a surface) S2 in 1' transversally when the
tangent space 7'S, to S, in I' and the tangent space 7I'S2 to .2 in 1' have locally around 1.
an emp'y intersection. More generally, two subspaces II, V of W" are transverse if they meet .-

in a subspace whose dimension is as small as possible. From this definition, it follows that
the surface S, (z, y, f'(x, y)) meets the surface ., - (x, y, O) in "= (;i, j, 0) transversally if-
in (1, j)

Igrad!' 1 0. [5.2]

The isotopy theorem (Thom, 1954) shows that transversal intersections are structurally
stable. The converse is also true in that non-transversal intersections are structurally
unstable. Transversality (and the implicit function theorem) indicates that if Sf meets S,
transversally in P then the intersection of S1 and S,, around 11 is a smooth curve.
The previous result is only local. Globally we find that if f(z, y) is defined in the compact
domain V c /?" whose boundary is 6V and if S1 always meets .o transversally, then the
intersection of S and S, consists of:

(a) smooth closed curves 1', E V.

(b) smooth curves I't that terminate in 6V. .

In other words, transversality of zero-crossings means that zero-crossing contours are
closed curves or curves that terminate at the boundary of the image.

5.2. Closed and open contours of z.c. -. "

From th; previous section a necessary and sufficient condition for transversality in P is:

grad f)2 )(x, yp $ 0. [5-3]

A preliminary condition required by eq. [5.31 is that D)l(;r, y) is a differentiable function.
This condition is obviously met if I(x-, y) is analytic (or entire or band-limited). But we have
already -;tressed that it is safer to suppose that the original image I(., .) is a piece-wise
continuous function or belongs to C", with n not known a priori. If we filter the original
image I(i-, y) with an appropriate rotational filter, then I(r, y) is analytic both in x and y,"
and If-( ., .y) 0 defines a differential function. On the other hand, if we use a directional
filter f. 5r example along .-, we have

I 1r, (X) I ) f ((X,.) -

and there is no reason for /(-. ii) to be a three times differentiable function of y. Therefore,
if the original imaige has been filtered with a directional operator only, it is possible that
the zero-crossings of IPm(, !/) may not be smooth curves.

5.3. Morse functions

A ftnction f:l'!, H I is called a Morse function if at its critical point (i.e., points where
grad(lf ). the Hessian is nondegenerate. Morse functions have the following properties:

21



Torre, Poggio On Edge Detection

(a) Suppose that f( , j) 0 and Igradf/, - 0 with P = (3, j), but the Hess (f)r is non
degenerate. Thus, there is a smooth local change of coordinates around i'Igrad(r, i)j,I-
such that f takes the exact form

I ij=f ' f fIi'f ." "f (X, ) -" 11,X 2 + _ .- I j,sy + I pY [ar .f )  :','V. :"

2 j);2 i.rdy1

(b) A small enough perturbation of a Morse function f can always be expressed in the
same form as the original f by a change of coordinates and of scale.

Property (a) says that around i' the function I has the behavior of the quadratic form
induced by the Hessian. Property (b) is a kind of structural stability property. A basic
property of Morse functions is that they are dense so that, if f is a non-Morse function, then
an arbitrary small perturbation of f makes f a Morse function (obviously the perturbation
must not vanish at the critical points). This is the reason of the importance of Morse ....
functions here: we can always assume that images are Morse functions (especially because
of the unavoidable noise).

5.4. Classification of z.c.

We now analyze the geometrical properties of the z.c. contours, i.e., the locus of points
defined by

y)~~~ h- y) 0. 157

(a) If h(z, y) is not a smooth function of z and y (at least C1), the implicit function theorem
cannot be used and the z.c. may be isolated points, i.e., segments of intersecting curves
and 2-D regions.
(b) If h(z, y) is a smooth function of z and y and if in I - (i, ) we have

h(1, j) 0 and jgrad)(x, y)I, = 0,

then h(x, y) has in P a "transversal zero-crossing", which is a smooth curve.

(c) If h(x, y) is a smooth function and in i' we have

h(,j) = 0 and )gradh(x,),,I =0 15.81

but around i', h(z, y) we find

h(r, y) a,z + hXY+ + =(), y.) n + m 3, [5.']

where,,, b J, r flj. The zero crossing j) is:
(i) an elliptic z.c., if Hess h(,y)li,> 0 (see Fig. 2A).
(ii) a hyperbolic z.c., (saddle point) if Hess /(, y)l ,< 0 (see Fig. 2B).
(iii) a parabolic z.c., if Hess 1,(r, 0),= ( but a, b and c are not identical to zero (see Fig.
20).
(d) Ifth ir, y) is a smooth function and if in I' we have

.(J , ) -- 0 lgradf(w, .)[i, - ,

and in i'(, depends on the thiud order terms,
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h(, Y) v rX 3 + /I ..,2  + ,-., + +by + O(-"y"'), n + m 4, (5.1)

where .he coefficients t, ji, and A are obtained by the Taylor expansion. It is easy to see
that the set of points

{A (., j4:(VX3  i jr -. r j - 6Y3 }(51

are straight lines. The z.c. lines may be:

(i) an eliptic umbilic, if IA consists of three lines (see Fig. 2D).

(ii) a h~perbolic umbilic, if ItA consists of a single real line (see Fig. 2E)

(iii) a parabolic umbilic, if IrA consists of three lines, two of which are coicident (see Fig.
2F)

(iv) a symbolic umbilic, if IA consists of three coincident lines.

(e) If h(x, y) is a smooth function and in f) we have

h(l, 0)- o. ,

and in I', y(,.y) depends on the fourth order terms, the z.c. lines have a complex shape

that can be analyzed using results of Poston & Stewart (1976).

Bifurcations of zero-crossings

The isotopy theorem (Thom, 1954, Abraham and Robbin, 1967) shows that transversal
intersections are structurally stable, i. e. that "transversal zero-crossings" are structurally
stable: their topological properties do not change if the size of the filter is slightly changed.

If f(.r, !i) is a Morse function then S may meet S, non-transverally, and these intersections
are not ,;tructurally stable (observe that Morse functions are structurally stable but not their
interseclions with S,,). It f is a Morse function, then S! may meet 5,, non-transversally at
elliptic points and hyperbolic points. These intersections are not structurally stable and may
change :heir topological properties for small perturbations of f. More specifically we may
have two bifurcations:

() Ellipti,- z.c. At elliptic z.c., a small perturbation of f may lead to the disappearance of
the z.c. or to the appearance of a contour of z.c. constituted by a closed curve.

(it) hypeibolic z.c. At hyperbolic z.c., which consists of the intersection of two curves any "',
small perturbation leads to the breaking of the intersection of the two curves and the
appearance of two disjoint curves.

These are the two bifurcations that may appear when h(r, y,) is a Morse function. Interestingly
enough. the zero-crossing contours obtained with real images (which will be explored in a
later paper) can be classified as type (b) and (c) of the previous section; Morse functions ..-

can have z.c. only of type (b) and (c). The two types of bifurcation, that may originate with
Morse functions are illustrated in Fig. 3A and 3B. respectively (see also Koenderink and ..

van Doom. 1979). Yuille and Poggio (1983a. 1983b) have shown that (if Gaussian filtering
Is used) when the scale of the filter is changed (i.e. n). the second type of bifurcation
may appear either when a is increased or decreased, but the first type of bifurcation only
occAurs when (, is increased. Thus. the Gaussian filter forbids creation of a zero-crossing
contour from an elliptic z.c. for mcreasing a. It is important to note that all these topological ..

propetie~ arealsovali forleve-crossings. Thus setting a threshold in the output ofth
, ooper .areals vai fo r leve i 1111 o11, ,.
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• . . .

-,4

Figure 3 The zero crossing points may be of the elliptic (A). hyperbolic (B), parabolic
(C) type; the zero-crossing lines can also be an elliptic umbilic (D), a hyperbolic umbilic
(E) or a parabolic umbilic (F). See text.

filtering and derivative operation preserves all topological and geometrical properties of
zero-crossings.

In summary, we have characterized the geometrical properties of zero-crossing contours:
these properties - for instance the tact that zero-crossing contours are closed --- nm;y be
exploited in various ways in edge detection and even in stereo- or motion matching.
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A

elliptic z.c.

B hyperbolic z.c.

cD~ Oxc 00

Figur( 4 The two types of bifurcations that can occur for increasing (left to right) and
decreasing (right to left) (Y in the case of Morse functions. See text.

6. EDGE CONTOURS AND FILTER SCALE

As we have seen, differential operations on sampled images require the image to first be
smoothed by filtering. The filtering operation introduces an arbitrary parameter - the scale
of the filter. e.g.. the standard deviation for the Gaussian filter. In computer vision, the
advantiges of using several scales of filtering was realized quite early on, and this was
supported by evidence suggesting the presence of filters of several sizes in the human visual
system (Rosenfeld, 1982: Marr, 1976: Marr and Poggia, 1979: Marr and Hildreth. 1980) More
recently. Witkin (1983: see also Stansfield, 1980) introduced a scale-space description of
zero crossings which gives the position of the zero-crossing across a continuum of scales.
i.e., sizes of the Gaussian filter (parametrized by the 7' of the Gaussian). The signal-oir the
result of apfplying to the signal a linear (difteiential) operator-is convolved with a Gaussan
filler ov.er a continuum11 Of sizeS Of the filter. Zero- or level crossings of the filtered signal
are cootours on the r rT plane and surfaces in the .r, ye Space. Willon proposed that
this coicise map can be effectively used to obtain a rich and qualitative desicription of the
signal Yuille and Poggio (19CU3a. 19831)) -- who called the m1aps of zero crossinigs across
scales finwirprints -- have estabtlished interesting relationships between intiltore:;oluticin
aimalyi ;. the Gaussian filter and zero-crossings of filtered signals. Thieir main results are
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- I two theorems:

(a) zero- and level-crossings of an mage filtered through a Gaussian filter have nice scaling
properties, i.e., a simple behavior of zero-crossings across scales. Zero-crossings are not
created as the scale increases. The Gaussian filter is the only filter that has this nice scaling
behavior (see also Babaud, Witkin and Duda, 1983).
(b) The map of the zero-crossings across scales determines the filtered signal uniquely
for almost all signals in the absence of noise. The scale map obtained by Gaussian filters
is thus a complete representation of the image. This result applies to level-crossings of --

any arbitrary linear differential operator of the Gaussian (modulus the null space of the
differential operator and provided there are at least two zero-crossing contours), since it
applies to functions that obey the diffusion equation.
The first result sheds some light on the properties of zero-crossings and level.crossings
at different scales with the Gaussian filter. It supports the use of the Gaussian filter in
a multiresolution edge detection scheme. Reconstruction of the signal is, of course, not
the goal of early signal processing. Symbolic primitives must be extracted from the signals
and used for later processing. The second result implies that scale-space fingerprints are
complete primitives, that capture the whole information in the signal and characterize it
uniquely. Subsequent processes can therefore work on this more compact representation
instead of the original signal (see Asada and Brady, 1984).
The second theorem has theoretical interest in that it answers the question of what
information is conveyed by the edges identified with zero- and level-crossings of mJltiscale
Gaussian filtered signals. It is furthermore interesting that this complete representation
happens to coincide with the basic scheme for edge detection discussed in this paper.
From this point of view it can be argued that the fingerprint representation makes explicit
exactly the information that is needed on physical grounds, i.e., it makes explicit edges in
the image.
It may be asked at this point what the right sequence is for the two steps of differentiation
and filtering For linear operators the order is of course immaterial, since they commute.
It is not so for nonlinear operators, such as the directional derivative along the gradient.
The regularization argument for the filtering step implies that filtering at one scale must
precede the differentiation operation. The computation of different scales requires filtering
at a range of resolutions after differentiation. The reason is that the theorems of Yuille and
Poggio (1963a. 1963bl hold true even for the identity operator, but are not necessarily valid
if hltering is performed before a nonlinear differential operation. In particular, Gaussian
scaling after the nonlinear directional derivative along the gradient does not have a nice
scaling behavior Thus filtering as a regularizing operator must be performed first at one
scale and filtering at different scales must be performed after the differential operation. For
linear differential operators this is equivalent to a multiscale filtering either before, after, or
togethe with the differential operation (e.g. the Laplacian of the Gaussian).

7. OVERVIEW OF SOME EDGE DETECTORS

In this section. we will briefly compare our main conclusions with several edge detectors
presented in the literature Our review is neither intended to be exhaustive nor does it aim
to present edge detectors in full detail.

7.1. Difference of boxes (DB

EBinford and coworke'rs (Herskovitz and Diford. 1970: Horn. 1972: Binford, 1981) have
. - stiggested the use of Support tiinitd filters in the filtering stop of edge (letection. They have -

used Ith Haar futnction Ii 1 hBl in direc IionAl fillfrinq or a (hlhlence of functions of tie type
13.8al for rotalionil hlterinq I here art- two problems using this approach:

I,6
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(1) Filtering with support-limited functions does not regularize the image intensity profile;
therefo e the use of any differential operator is unsafe. -

(2) A strictly support-limited filter, such as a DOB, cannot be correctly sampled, and it is
very dilficult to obtain a good digital representation.

7.2. Shanmugam, Dickey and Green

Shanmjgam, Dickey and Green (1979) looked for a linear, band-limited operator that would
yield maximal output energy within a given spatial interval in the vicinity of the edge. No
explicit reference was made to a differentiation step in edge detection. They proposed that
the optimal filter for an ideal edge S(x), has a Fourier transform

{0mw ,, -, Jill!5} >-r' [7.11
op(w) > r'

where k, is a constant, /,(x, ) is a linear prolate function (see section 3.1). This edge
detector performs very poorly on localization and has the intrinsic feature of giving two
maxima of energy in the output of the response to an edge. The reason is simply that
using an even filter such as eq. [7.1] which has the same shape of w c), edges are
located at the zero-crossing of the output and not at the extrema. Moreover, these authors
use properties of linear prolate functions (their eq. 1) to derive their optimal filter which are
valid in 1-D, but not in 2-D when linear prolate functions are extended in 2-D by rotation.
In addition, their asymptotic approximation to the optimal filter was incorrect, as shown by
Lunscher (1983).

7.3. Marr and Hildreth - -.

Marr & Hildreth (1980), and Hildreth (1980), extending the work of Marr and Poggio (1979),
have proposed an edge detection scheme based on a filtering step consisting of a 2-D
symmetric Gaussian followed by the localization of zero-crossings of V2 !(z, yr), where !(x, y)
is the filtered image. This edge detector performs rather well, but its optimality was not
rigorously proved. Indeed,

(1) " in many instances achieves a better localization than V2, particularly for rounded
edges with large curvature.
(2) The use of directional filters and directional derivatives when performed correctly does
not give rise to the problems that forced Marr and Hildreth to reject such edge detection
schemes (see section 4.1). The use of two directional filters with directional derivatives may
be as efficient as the Marr-Hildreth scheme. with the advantage of not introducing spurious
edges Ihat appear with rotational filtering because of the closure property of z.c. contours
(see section 5).

7.4. H;aralick

Haralich (1980. 1981, 1982) has proposed a scheme for edge detection in which a pixel is
marked as a step edge pixel if, in its neighborhood, there is a zero-crossing of the second
directional derivative taken in the direction of the gradient. Haralick, in order to evaluate
the derivatives he approximates, interpolates the sampled intensity values with discrete
Chebychev polynomials. There is no explicit mention of a filtering step. Canny (1983),
however, has shown that the above procedure is practically equivalent to using a filtering
step (in our terms. a regularization step) before differentiation. The type of equivalent filter
depends on the set of approximating functions and on the degree of differentiation required. . :

7.5. Canny

Canny (1983) has investigated the desirable properties of in optimal edge detector, based
on efficiency of detection and reliability in localization. We have already seen that detection
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' of an ideal step edge is favored by broad filters while localization is favored by small filters.
Canny has shown through variational methods that the optimal odd filter f,,4(;r) (according
to his criteria) in the 1.D case is the linear combination of four exponentials.

Interestingly fur(xs) is very close to 2r-, which is the optimal odd filter from the point ofK view of minimal uncertainty. The treatment of Canny may also be seen as a well-founded
justification for the use of filters with minimal uncertainty, because simply by first changing
some constraints in his variational approach it is possible to obtain the second Hermite
function.' Canny's procedure for finding two-dimensional step edges and other types of
edges uses directional operators of varying width, length and orientation. This procedure,
which includes as an essential part an appropriate thresholding, works remarkably well
on real images. His justification of the choice of directional operators is not completely

* satisfactory. Indeed:

(1) For 2-D images, Canny uses two alternative differential operators, either a (see section
4.2 and Havens and Strickwerda, personal communication) or directional operators. The
prefereice for directional operators originates from his one-dimensional treatment of the
problem. The optimal filter is chosen to be an antisymmetric function, because it is designed
to detect maxima. Therefore the corresponding 2-D operator is not rotationally invariant,
suggesting the use of directional operators for 2-D images. The output of directional
operators can be directly used in the adaptive threshold scheme used by Canny, offering
advantages with respect to the symmetric operator 2.
(2) As already mentioned in section 4.1, to obtain all edges in a 2-D image it is sufficient
to use only two different directional derivatives. The use of more than two orientations is
useful only to increase the signal-to-noise ratio, but is not required for edge detection in a
noise-free 2-D image.

8. DISCUSSION

We will now summarize the main points of our analysis of edge detection. *,.'-,-

A. The first step in edge detection, after sampling of the image, consists of a filtering
stage followed by a differentiation stage. Filtering has the main function of regularizing
the ill-posed nature of edge-detection and should be performed before the differentiation
operation. Filtering for the purpose of multiresolution analysis should be performed after -
the differentiation operation, when nonlinear differential operators are used.
B. To be physically realizable, digital filters should be represented with a good approximation
by a finite sequence of samples of points. From this point of view, a Gaussian or the first
linear prolate (0,(x,c)) function are practically equivalent. Filtering with prolate functions
regularize "more" the image (the image becomes entire and band-limited), whereas using
a Gaussian the image becomes only entire. The Gaussian filtering, however, has two
advantages over prolate functions:

(i) It does not create z.c. when the size of the filter is increased (see section 6).
(i) In 2-D, the Gaussian decomposes into the product of 1-D Gaussians: as a
consequence, it is particularly easy to reduce drastically the amount of computations -,.

involved in its use.

C. Filtering of the image with a rotationally symmetric filter insures with high probability the
closure of z.c. contours (see section 5). Filtering the image with directional filters does not
ensure closed z.c. contours. Localization, however, is more accurate.

D. Sev ral types of derivatives at different scales may be needed for detecting and labeling
intensity changes under the most general conditions. In the diflerentiation step, directional

'P"ccl ly Spacek and Brady have investigPa(d split-gaussian iltrs similar to Canny's but with
poorer signal -o- noise ratio and better (ocalization.

I. 8" "
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derivatives in only two directions are necessary, when DD operators are used. When RID
operators are used, . performs better then V2 in localization, but 112 has the disadvantage
of not commuting with the convolution.
E. In order to characterize the types of intensity changes in the image in terms of the
physical properties that have originated them, it is useful to have a set of hierarchical
symbolic descriptions. The lowest symbolic description uses as a substrate the associated
fingerprints of the image, containing the map of zero crossings and their slope at different
scales, and provides a local labeling of edges still in terms of image data. The final symbolic
description must label edges in terms of the properties of the physical surfaces that originate
the intensity changes, and therefore as object boundaries, shadows, reflexes, changes in
texture, specular reflections, etc. This final representation of the type of the primal sketch
is obtained using high level knowledge and geometrical reasoning from lower symbolic
descriptions.
In later papers, we will evaluate performance of different filters and different operators in
real images, and we will outline a theory of a symbolic description of edges.

Acknowledgement: We are grateful to A. Yuille, A. Verri, M. Kass for useful discussions and
suggestions. M. Bertero first pointed out to us that differentiation is an ill-posed problem.
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1. Appendix: Differentiation through Taylor expansion

In previous sections, we have seen that to safely perform differentiation, it is necessary to
smooth the data by some appropriate (analog or digital) filtering. If this filtering has removed
enough high frequencies. so that our filtered image is band-limited function, and by the
Paley-Wiener theorem (Boas, 1954) is also an entire function (see Section 3), numerical
differentiation can be performed in a computationally more efficient way through Taylor
expansion.
If f(z) is entire, than f(r) is also analytic and the Taylor series

(X XA;
f(z) = f + (Z -- )f +... + - +"' . .

has an infinite radius of convergence. If we have 2n + I sampled points from [2], we can
obtain 2n linear equations from which we can solve for Ji) j- 12,.. ,2n.
Three equidistant points give

A - A-1)

=k ,(fA:-, - 2fk + f&+i)

With five equidistant points, we obtain

'-e rjA--2, ( 1 k+8- k.i - .) -4]

f = -' (-fk--', + 16f-_i - 30fk + l6fk+i -fA+2)

When the performances of the numerical differentiation obtained through spline interpolation
(eqs. 2.9 - 2.10) are compared with those obtained by Taylor expansion (equations 3-4 in
this appendix), it turns out that the first method gives more accurate and consistent results
with noisy data while the second method is more efficient with data that are already smooth.

.7:.
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2. Appendix: Sampling

Since image processing is performed in terms of discrete representations of signals and
filters, it is important that manipulations of sampled images and filters have a meaningful
connection with the original image 1(2-) and the analytic form of the filter f (x). More precisely,
for linear filtering, if I, is a discrete sequence of points of I(z), and fi is another discrete
sequence of points of f(z), the discrete convolution

g, = 1, . Ik-, [1II::

should be related to the exact convolution

g(r) = J i(y)1(y - .)d = 1(.) f (x). [2]

This relation is clarified by standard results (Oppenheim and Johnson, 1972; Borsellino and
Poggio, 1973).

L Suppose that we may represent I(z) and '(x) as .

-). -[3a

f (z) E Zf i(z) [3b]

where Oj(x) sin c[(r - ih)]. Then

1(X), 1(x) = g(z) = 14g1#(,

where g = l h I .
Thus from the discrete convolution of the sampled values [2], it is possible to recover

completely, the exact convolution of the original image with the filter. It is now possible to
represent a signal In the form of equation [1] when the signal is band-limited and correctly
sampled. If one uses band-limited filters it is possible to obtain the required representation -

0 [3b] for the filter. For an arbitrarily sampled image, however, it is difficult to obtain the
required representation [3a]. Indeed it would be necessary to sample the image according
to the cutoff frequency of the optical system used in the imaging process, which is generally
too high to be of practical use. This is related to the classical problem of aliasing. The
simple'.;t way to obtain a reasonable solution to the problem is to initially filter the image
with an appropriate band-limited filter, before any further operation.

2
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3. Appendix: The geodesic curvature

It may be of some interest to ask whether the line on the surface X .- ( f, ,f(a, y)), whose

tangent is always in the direction of the gradient is also a geodesic. A geodesic is aline

whose geodesic curvature K, is always zero. In what follows we will briefly answer this

question The surface .\ has the first fundamental form [4.6).

As shown later, the geodesic curvature of a curve on surface X whose tangent is always .

in the direction of the gradient is

K9 = [I]2)] [ 7

fg+ .2fl + f,(f2 +1 fi)]

Now, K9 = 0, when f' f and f,,= , that is, for surface of revolution. Therefore the

line on surface X, which is always directed along the gradient, has the following properties:
(1) its normal curvature K,. is equal to X _

0-

(2) it is a geodesic, only for surface of resolution.

Let us now compute K.. Given that the coefficients of the first fundamental form are

E I + f2 '==,o +I,":"
Z=1f F==f~fy G=I+f,

The associated Cristoffel symbols 1'' 1 p2, satisfy the equations
CID I 

I ..
: 

.,,[- .--

+ IF 2 F= [21

Il', ,' + 'I, G = '" - 13'/,,. 1

or

(F4+ E~, - FE~ 4
2 ,4-

Finally,

2 _(f1J ,,_4 " I 4 f') ff,,) - (I -+ f X)(f.h + f',)
- - - 161

1,2F- f*l-" f, f,-, , f,

' I " f"fu ,

11 V1- * , I

(I I f) " 2N.
l f".
2::

. . :i:i~ii3

:::;_. :.::. .:..:.:;;,_ .:.::.:.-;.:- .:.::.:-,:-: ;.:.,.::.'.;:?) :- ;.::: :- - :-:::;-:::. ::'::.-::::::':;" :':-::, : -. " . - -.".. : - - -- : - :
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Similarly, ,., I. satisfy the equations

2',./I ' + 2 8 - -

11 H,(.,(4)."'1 ":

Some algebra gives from 191 and [101

fx f. V .

1112~ 2%Q~ 110)

Now suppose that X (x. ,, f (x, y)) is a regular parametrization of our surface around P,
and let x .(t), y = y(t) be the equation of the curve -y in a neighborhood of P. Then
(Pogor!lov, 1965)

-- -
K9 - xily - y"x' + Ay' - Iix'} [121

(Ex 2'rY' + G"

is the geodesic curvature of -y in 1', where _

A 1',,x" + 2'Y' + 1"22Y:(a) [13a

12IY + 2 2 + + [13b

If we want to compute the geodesic curvature of a curve -y which lies on the surface X
and always has the tangent vector in the direction of the gradient of .(x, .y), we must find
the equation of the curve (.r(t), y(t)). Let us suppose

x(t) = t [ ]4-

and thetefore .

(it f,(.(), Y())

Now equation [151 defines a differential equation in y ,(t) whose solution completes the -7
equation of the curve. We have .r(t) - x and .1(t) such that

.-'(l) I £"(t) 0

Now let us compute

4

I" P .7
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?"/'-j~'Ay' - 13x, 1!!( !Uy -D I,-.)

f.~' 
:2Z)

+ " + fli. +1 
7" ] L2

2/ + 2Abjt +2
[f f.f. + 2f. f, + I. u I '. "~i?

_ 21

f. ( i +i~ L2ry- .) + t)

Now

and "G--

AW" + 21"x'y' + G'2 
- (I + f2 y + + f,),-

f 2 _ _

f! + I' + 2ffg + Ij +l~ 14")
- A u.- .2 -t 

+

-f2(i- f2) + f4 + |fi(.2 + f) + I.

Finally, we have

* K, g.[Q',(,¢,- )+
11 2,) + I + + iy 411312

I+ 1 + +(f+

The geodesic curvature K. is zero when

f2(fy- .) 0.

Eq. [20] is not generally satisfied; it is satisfied for surfaces such that

1111:1 1,, 
".-..)

as a sphere or a surface of revolution.

5 
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4. Ap:)endix: Approximation and interpolation

The treditional procedure for performing numerical differentiation of sampled functions
is to interpolate using polynomials or related functions and to analytically differentiate
the interpolated function. This procedure is usually justified if the interpolated function
convergles uniformly to the original function as the number of samples increases. Most
of the classical results in the interpolation and approximation of functions deal with this
problem. In the case of images the main problem is however different: approximation for
the puraose of differentiation has to be robust against noise. The solution to this problem
has to be sought in regularization theory, as we explained earlier. In this appendix, we
discuss some of the classical results on interpolation and approximation for completeness
and no' because they are directly relevant to the problem of regularizing edged detection.
The reider will notice, however, that there are several connections between the classical As,
results outlined here and our approach described in the the main body of this paper.
Uniforrr convergence for polynomial interpolation is not guaranteed even when the original
function is C', or when it is analytical. Uniform convergence on bounded sets requires the
original function to be entire. From the Paley-Wiener theorem (Boas, 1954) we know that
this is tie case with band-limited functions.,.---.
If the original function is analytic, numerical differentiation may be performed using an
appropiiate Taylor expansion without interpolation. Interestingly, almost every function is
made analytic by filtering with a Gaussian, since the filtered function is a solution of the
heat equation (Widder, 1975). Thus, in order to safely perform numerical differentiation, it
is nece 3sary to use band-limited or Gaussian filters.

Note that if approximation (in the Weierstrass-Bernstein sense) rather than interpolation is
used, ve obtain uniform convergence for all continuous bounded functions on bounded
sets. T erefore, differentiation through approximation is successful on bounded sets for all
boundei (' functions. We will see, however, that convergence is too slow for this approach - -

to be p actical.

In what follows, we will use a one-dimensional approach for the sake of simplicity, but all
our conclusions and results can be easily extended to two dimensions. S

4.1. Interpolation and dilferentiation

Consider a function f(.r) defined in [a,b] and have a < x, < x, < X2 < ... < :- < "<
1) Aistinct points, and

A 1( ) [],: -

the values of f at rk. It is well known that there exists a polynomial 1,,,(X) of degree it such
that for the given values r,, .. .rc... . .r,, takes the values /o,. -.., y,, (Davis, 1975). This
polynomtial is

ii,.)!i / ,12]1

whero / (.r) are Lagrange polynomials

6 -'..
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-T 1)- - - X -IX t )..( - Z",) .
(Xrk - - .I). .. (Fk - Ik-IXZk - Xk+ 1).. .(2k - [.)'3]

From equation [2] and [3], we consider the best way to estimate the derivative of 1(z) in
xk, f'(-k) by computing

,= uk,) L,) z==z. [41
0

In order to use this procedure reliably we need to know that in some way p,,() is a good
approximation of f(r) outside the sampled points. We would like to know that by increasing
the number n of sampled points zX in [a, b], we have

lim -. p,,() - 1(z). [5]

This is equivalent to uniform convergence. At the beginning of the century, Bernstein (see
P. Davis, 1975) proved that equidistant interpolation over 12j1 < i to the function y = 12.
diverges for 0 < I1 < i; that is, continuity of '(z) is not sufficient to ensure uniform
convergence. Runge showed that even if 1(x) is analytical in [a,b] uniform convergence
may fail (P. Davis, 1976). For the function f (X) = I/(I + z 2 ), Runge showed that if p,(z)
interpolates f'(z) at equidistant points in [-5,5], p,,(z) converges to f only in Ix1 < 3.63... and
diverges outside the interval. Although f(z.) is analytic in N is not analytic in the complex
plane C and the singular points ±i induce this divergence (see P. Davis, 1975). To obtain
uniform convergence of p,(z) to f(z) in [a, b], it is necessary for f(z) to be analytic in a
subregion of the complex plane C containing the segment [a,b] (see Theorem 4.3.1 of P.
Davis, 1975).
It may be useful to remember that polynomial interpolation is not optimal if the sampled
points are equidistant. Polynomial interpolation is optimal if interpolation of f'(z) in [0, 1]
of order n is carried at the zeros of the Chebychev polynomials T,(z). In general, the
procedure of differentiation through interpolation with polynomial or related functions may
badly fail when applied to arbitrary sampled functions.

4.2. Differentiation of analytic-, entire- and band-limited functions

. If we know that f1(x) is analytic in [a, b] and we have no information about its behavior on
the complex plane ( we cannot safely use differentiation through interpolation. If 1(z) is
analytic in z& E [a, b], we have

(Z - :'::. )n ,:Xk 6
f (z) f (zk) + (x - z)1(')(zk) +. + n 

in [-- 6,zrk 1- t6. If we have 2n + I sampled points in Irk - 6, rk -1 6], from equation [61, we
can obtain 2tn linear equations, from which we can solve for f U(;r), I.. •21. In the case
of three or five equidistant points we obtain the formulae shown in Appendix 1.
The main problem with this procedure of numerical differentiation is that we do not generally

• .-'- know the radius of convergence of the Taylor expansion (6] and, given an arbitrary sampled --.-
. "analytical function, we do not know how many points around r. fall in the convergence

interval. When the class of original functions f is further restricted to enlire functions, the

7
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Taylor expansion [6] is valid in R, that is, it has an infinite radius of convergence, and the
above procedure can be carried out safely.

Now let us suppose that J(z) is entire, fL'I(R), and

lim, L.ouInM(p) 6 [7]

where

M(p) = max11 =,I)fl 181-

with z E C and f extended to the complex plane.

If 6 < o then f(x) is said to be of exponential type 6 and by the Paley-Wiener Theorem
(Boas, 1954; Achieser, 1956), f(2) is band limited with F(w) = 0 for IwI > 6, where F(W)
is the Fourier transform of f(z). The Paley-Wiener Theorem represents the connection
between entire and band limited functions. It may be useful to remember that the Gaussian
is entire and belongs to L2(R) but falls off just too quickly to be of finite exponential type
and therefore to be band-limited.

If '(x) is band-limited (with cutoff frequency w.), and 1(z) has been correctly sampled at
equidistant points spaced h, the Shannon Sampling Theorem gives us

f 00 risinc[( ih) 19]

h-

where sincz = ' -. In this case, we can compute ', exactly from [9 as

1+00 cos r(k - i)

I h k-i , -

- (k+- -- 1&-i) - 2(fk+ - A-2) + 3(fk+ - fk-3)

Although [10] is exact for correctly sampled band-limited functions, it converges rather
slowly.

4.3. Approximation and Differentiation

It is well known that if f(r) is continuous in [a,], for every given c > 0, we can find a
polynomial 1,,,(;r) of sufficiently high degree such that

If (r)--P',(.01 S , 'I < X < 1'. Jim) ::::

This is the so-called Weierstrass approximation theorem. Now let us suppose that we have -

an 1(.r) continuous and bounded in 01, 11 and we know the values of J(.r) at equidistant
points rk Instead of interpolating a polynomial through the known points, we can
conutruct the Bernstein polynomial:

• . , - •
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I1,,(z) = / (z=,()z(1 - z)"-k. 1I j-- -
k-

Observe that n.(O) f(0) and I1,,(l)= fr(1), but apart from 0 and 1 Ii,(X) is not in general
equal to f(z&). A fundamental theorem of Berstein shows that

lim1-.oB.(= (z) in [0,1]. [13]
0

Moreover, if r(z) E C', we have

lim..,B,,(z)= f'() in [0,1]. [14]

Thus, Bernstein polynomials provide simultaneous approximation of the function and its
derivatives. If we want to obtain an estimation of the derivative of a sampled function, we
can construct the Bernstein polynomial from the sampled values, compute the analytical
derivative of 3,,(z) and take it as an estimate of f'(z). The drawback of Bernstein polynomials
is that their convergence is very slow as shown by the poor performance of a 3- or 5- point
approximation. Therefore, if we have samples of a generic function of class C', we can
use Bernstein polynomials to obtain an estimation of the values of derivatives at sampled
points, but many points are needed for a good estimate. If we have samples of an entire .
function, the most efficient procedure is to use the equations derived in Appendix 1.

9 f .
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