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In particular, we characterize the relation between the Laplacian and the R
second directional derivative along the gradient. Zero-crossings of th NS
Laplacian are not the only features computed in early vision. L S
(3) Geometrical and topological properties of the zero crossings of dif-

ferential operators are studied in terms of transversality and Morse theory.

Y~We discuss recent results on the behavior and the information content of
zero crossings obtained with filters of different sizes. These results .o
imply a specific order in the sequence of filtering and differentiation .
operations. Topological properties are preserved by level-crossingsa:EE:w_,~"r«
Setting a level in the optimal filtering stage is a threshold operation -
which can be implemented in an adaptive way - that preserves all the "nice"
geometrical and topological properties of zero crossings.

Finally, some of the existing local edge detector schemes are briefly out-
lined in the perspective of our theoretical results.

Accession For

NTIS GRA&I

DTIC TAB g
Unannounced O
Justificatio

By
Distrivutiony

I Avniinl "lity Codes
' “..."i and/or
oy, swecial




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo 768 August, 1984

ON EDGE DETECTION

V. Torre and T. Poggio

Abstract. Edge detection is the process that attempts to characterize the intensity changes PR
in the image in terms of the physical processes that have originated them. A critical, n

intermediate goal of edge detection is the detection and characterization of significant
intensity changes. This paper discusses this part of the edge detection problem. To
characterize the types of intensity changes derivatives of different types, and possibly
difterent scales, are needed. Thus, we consider this part of edge detection as a problem in IR
numerical differentiation. —

We show that numerical differentiation of images is an ili-posed problem in the sense -
of Hadamard. Differentiation needs to be regularized by a regularizing filtering operation
before differentiation. This shows that this part of edge detection consists of two steps, a
filtering step and a differentiation step. Following this perspective, the paper discusses in
detail the following theoretical aspects of edge detection:

(1) The properties of different types of filters—with minimal uncertainty, with a bandpass
spectrum, and with limited support—are derived. Minimal uncertainty filters optimize a
tradeoff between computational efficiency and regularizing properties.

(2) Relationships among several 2-D differential operators are established. In particular, we
characterize the relation between the Laplacian and the second directional derivative along
the gradient. Zero-cressings ot the Laplacian are not the only features computed in early
vision.

(3) Geometrical and topological properties of the zero crossings of difterential operators
are studied in terms of transversality and Morse theory.

Wz discuss recent results on the behavior and the information content of zero crossings NGRS
obtained with filters of ditferent sizes. These results imply a specific order in the sequence
of tiltering and differentiation operations. Topological properties are preserved by level. Bl
crossings. Setting a level in the optimal filiering stage is a threshold operation — which
can be implemented in an adaptive way — that preserves all the “‘nice” geometrical and
topological properties of zero crossings.

Finally. scme of the existing local edge detector schemes are briefly outlined in the
purspective of our theoretical results.
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1. INTRODUCTION P

Vision begins with the transformation of a flux of photons into a set of intensity values at
an array of sensors. The lirst step in visual information processing is to obtain a compact
description of the raw intensity values. The primitive elements of the initial description
should ideally be complete in the sense of representing the full information contained in
the image. and meaningiul (that is, capturing significant properties of the three-dimensional
surfaces around the viewer). Physical edges are one of the most important properties of
objects since they correspond to object boundaries or to changes in surface orientation
or material properties (Ballard and Brown, 1982; Binford, 1081, 1982; Brady, 1981; Canny,
1983; Davis, 1975; Hildreth, 1980; Marr and Hildreth, 1980; Pavlidis, 1977; Rosenleld and
Kak, 1976).

Three-dimensional edges are often mapped by the imaging process into critical points of
the two-dimensional intensity profile formed in the eye or in a camera. The ultimate goal
of edge detection is the characterization of intensity changes in the image in terms of
the physical processes that originated them. For instance, a shadow may be distinguished
from an occluding boundary and material properties may be identified from the associated
intensity changes.' A traditional belief in computational vision—that we fully share—is that
this goal cannot be reached in a single step. At least two separate stages are required.
First, one needs to characterize the intensity changes in the image. Second, one uses
this representation, combined with high-level knowledge, to make assertions about the 3-D
surfaces and their properties.

The first part of edge detection then, requires the evaluation of derivatives of the image
intensity. To characterize the types of intensity changes, derivatives of different type and
order may be needed, possibly at different scales. The first part of edge detection is thus
a problem in numerical differentiatian. tn this paper, we will consider only this first stage
of edge detection as the process that attempts to detect, localize and characterize local
edges, the sharp changes in intensity that are natural primitives for later processing. We
will not consider here the second stage of edge detection that includes processes such
as boundary detection, segmentation, region growing and groupings of local edges (that
group local edge elements into structures betler suited for the interpretation of image data
in terms of the underlying physical processes).

In this paper, we begin by analyzing the problem of differentiating a sampled image. We
show that differentiation is an ill-posed problem (in the sense of Hadamard). Well-posedness
and numerical stability of the differentiational step requires the reqularization of the image
intensities by a regularizing filtering operation preceding differentiation. This argument
represents a novel and rigorous justification of the basic sequence of liltering and
ditferentiation that can be recognized in all existing local edge delecior schemes. We then
examine in detail the filtering and the diffcrentiation stage. We continue our analysis by
characterizing propertics of the critical points of the dilferentiation operation.

Our main practical conclusions in this pitper are (a) that Gaussian filtering, although not
optimal under all conditions. is near-optimal. and computationally convenient: (b) the choice
between rotationally invariant operators (rotational filters and rotationaf invariant dilterential
RID operators. as the Laplacian or the second dervabive in the direction of the gradient)
or directional (directionad filtler and ducehonal dilferential DD operators) operators (such
as directional denvatives) depends on the subsequent intormation processing task. (10D }
opcrators ensure closed wdae contours. that are not provided in general by DD operators.

we now outhne the organization of this paper in more detail. _—
"The weae of colore information—which we wilt not discuss i s papor---is a reitural extension :\_.'
witlun s hamewio k., .."-‘:"'3
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1.1. Organization of the paper

‘ In this paper. we consider edge detection as the process of computing derivatives in the

{ two-dimensional intensity image. In Section 2, we show that the problem of differentiation
of a sumpled image is ill-posed. We prove that filtering of the image prior to differentiation
is necassary for regularizing the problem and make it well-posed. The filtering step is
analyz2d in Section 3. Filters with minimal uncertainty (Hermite and Gabor functions), with
bandpiss properties (sinc and prolate functions) and others that are support-limited are
reviewad. Filter with minimal uncertainty tend to optimize the trade off between band-limited
characteristics (required for a correct sampling and for ‘‘regularizing” the differential
operat on) and computational efficiency.

Section 4 is devoted to the differential stage. We consider separately the second order RID
and DI) operators and analyze their main properties. The main focus is on the localization
of the zeros of the Laplacian V*, the second derivative along the gradient ‘; ; and the
usual second order partial derivatives. Section 5 considers the geometrical structure of
the contours formed by edge detectors and in particular their closure property. For this
purpose, we use elementary tools from Morse and Thom theories. The problem of the
geometry of contours across different spatial scales—where scale is parameterized by the
size of the filter—is considered in Section 6. A comparison of the results of our study with
several previously proposed edge detectors is given in Section 7, and a discussion of the
“best" filtering and differential steps is given in the final section.

2. COMPUTING DERIVATIVES OF IMAGES

In this chapter, we consider the problem of computing (spatial or temporal) derivatives
of sampled intensity images. Our main result is a rigorous justification of filtering before
differentiation in terms of the theory of regularization. Our approach also clarifies the issue
of the optimal filter for edge detection. In practice. it justifies the use of suitable derivatives
of gaussian-like filters in edge detection (for linear differential operators).

In the tirst section. we discuss the ill-posed nature of differentiation. which is equivalent to
its lack of robustness against noise in the input data. In section 2.2, we review the main
technicues for transtorming differentiation into a well-posed problem. Section 2.3 shows
that numencal ditterentiation can be regularized via previous convolution of the image data
with an approptiate bilter. In section 2 4. we consider the application of two of the general
regularcabon techniques. and show that they lead to spline interpolation and 1o spline
approxination respectively (pnor to the dilterentiation stage). In these methods. regulatized
ditterontiahon as thus pertormed by convolving the data with an appropriate derivative of
the reaukuising filter., In some situations, however, it may be more convenient in practice
to tust flter the data and then dilterentiate the results. We consider some implications
af this sitiation wy Appendin 10 Fhe problem of scampling approphnately the image prior to
bt and diftcrentiation s discussad in Appendix 2.0 Interpolation, approximation and
diflorentiatian are dincusaod i Appendix 4.

2.1. lll-posed nature of dilterentiation

In madc e viston, as wall as o most numencal problems. the data are noisy. Noise in
the: phototran..duction process s ultimately unavordable, Lensor nose anses at least in
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rart from quantum fluctuations in the number of absorbed photons per sensor and unit
time. This represents a fundamental limitation for real time imagery when integration time
and size of the sensors are limited by the need of high temporai and spatial resolution.
It is critically important. therefore. that the results of numerical operations performed on
the data are not too sensitive to noise. It is well known that differentiation is not robust
against noise. Even a small amount of noise may disrupt difterentiation. Let us consider
a function f(r) and f(r} = f(«) t sinwr. f(r) Mmay be close to f(r) according to standard
norms (1°,1.%...), provided « is sulficiently small. On the other hand, f'(x) may be quite
different from J'(r) if w is large.

In the beginning of this century, Hadamard (1923) defined a mathematical problem to be
well-posed if its solution

o (a) exists
E (b) is unique

(c) depends continuously on the initial data (this is equivalent to saying that the solution is
robust against noise).

Most of the problems of classical physics are well-posed in this sense, and Hadamard
argued that meaningfu! physical problems had to be well-posed.

Now differentiation of the function f(r) is a typical ill-posed problem, since it can be seen

. e e e -
AR RSV

R

:

as the solution to the inverse problem
o(z) = Af(z) [2.1]
where A/(x) is the integral operator
z o
/ J(F)dr == f h(z - 7)f(x)dz (2.2)
where h is the step function. It is well known that inverse linear problems in which g(x) and
i::- /(r) belong to Hilbert space are ill-posed (Tikhonov and Arsenin, 1977; Bertero, 1981).
_. 2.2. Regularization techniques
:::: Rigorous methods for transforming ifl-posed problems into well-posed problems have been
- developed over the past years (see especially Tikhonov, 1963: Tikhonov and Arsenin, 1977,
and Nashed, 1974. 1976). Regulanzation of the ill-posed problem of finding = from the data
4. such that A: - y requires the choice of suitable norms {-||. (usually quadratic) and of
i‘ a stabilizing functional ||/°:]]. The choice of the stabilizing functional and of the norms is
. dictated by mathematical considerations, and most critically. by an analysis of the physical

» constraints on the problem. There are three main methods of standard regularization
(Bertero, 1981):

¥ ¥=~4
CARAEN

o (1) Among : that satisfy j|/’z])] < ', (where (', is a constant) find - that minimizes

oty

Q: Az - yll (23]

. (2) Among = that satisfy i vz »)i - ', find = that minimizes :
% e [2.1] i
— e and {3) Find : that minimizes .

- 4l NP, 125

!: 1
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where \ is a regularization parameter.

. The first method consists of finding the function : that satisfies the constraint ||/’:]| < €,
and best approximates the data. The second method computes the function = that is
sufficiently close to the data and is most “regular”. In the third method, the regularization

;. parameter A controls the compromise between the degree of regularization of the solution
and its closeness to the data.
% Differentiation can also be regularized using the stabilizing operators introduced by Tikhonov
I (Tikhonov and Arsenin, 1977; Bertero, 1981). In the case of differentiation these operators
: are equivalent to filtering the data with low-pass filters of the kind we will discuss in chapter
3.

In the next section, we show how to use method 2 and 3 directly for solving the ill-posed

problem of numerical differentiation. In section 2.4, we will consider a wide class of

regularizing filters that correspond to Tikhonov stabilizing operators and can be used to
= make numerical differentiation well-posed.

2.3. Regularizing differentiation with interpolating and approximating splines

Poggio, Voorhees and VYuille (1984; have recently applied the second and the third
_ regularizing methods to the problem of edge detection. Following Schoenberg (1964) and
) Reinsch (1962), they chose for I’ the simplest form of Tikhonov's stabilizing functionals
with /I’ . ,’1 and the usual /.. norm. This choice corresponds to an *‘a priori"’ constraint
of smoothness on the intensity function. Its physical justification is that the noiseless image
has to be smooth in the sense that all its derivatives must exist and be bounded because the
image is band-limited by the optics. Physically, this constraint of smoothness allows us to
eliminate effectively the noise that creeps in after or during the sampling and transduction .
i process. and makes the operation of differentiation unstable and ill-posed. This is, of course, C:
not the only stabilizing functional for this problem, as we will see in the next section, but
it is probably the simplest one.

Let us now consider in more detail for the second and third regularization methods. Consider

a function f(x) defined in [a,b] and be A == a < z, < z,...7, = b @ mesh of distinct points,

and
. Je = f(xx) [2.6]
C the values of f(x) at r,. Given the sample points of /., the problem of computing the
| numerical derivative [} at r, is ill-posed. The second regularizing method leads (usig the
i.. stabilizing operator I° ;"; and the . norm) to the search of a function S(x) such that
e (a) '
v S o ko n [2.7]
% and (b) ||I’S(r)]| is minimized. The stabilizing functional I’ is
|
]
/ |S”(e) 2 edr [2.8]
:'-: The solution to this problem s given by the cubic spline Sy (r) which interpolates f(r) in
<, A (Ahlheorg. Nilson & Walsh, 1967). As a consequence. the numernical derivative f; will be
L the value of ~'\(r) in »,. For equidistant points the following equation hoids
. , 4 . . d
o Ix h{"(')(fk»l Loy oM Koo (UG S ) [2.9]
.‘:
2
<
A A S e
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where L is the sampling period, and

I afr) = g - (;)2 -1 [2.9]
that is
. j’k = %[.8()1([*“ - fk-l) - .2”)(]*.;2 - fk..z)+ .0577([;4.3 - fk-:!)‘--] [2|0]

Poggio et al. (1984) have obtained the following theorem which is a reformulation oi resuits
due to Schoenberg (1946, 1964):

Theorem:The cubic spline interpolating the data points assumed on a regular lattice and
satislying the second regularizing method with I’ = d" = can be obtained by convolving the
data points with the cubic spline filter, which corresponds to the L* function of Schoeberg
(1946).

Numerical differentiation, therefore, can be regularized for exact data on a regular grid by
convolving the data points with the first derivative of the L' filter given by Schoenberg,
which is a cubic spline.

In the case of non-exact data which is the most natural situation, the third regularizing
method has to be used leading to the problem of finding S(z) such that

— S(xk))? + N
pUSEEEY

i (Oﬁ is minimum. Both Schoenberg (1964) and Reinsch (1967) proved that approximating cubic
S splines are the solution to this variational problem. Poggio et al. (1984) have proved the

following resuit:

Theorem:The solution to the variational problem [2.11] in the case of inexact dala on a

regular grid (and appropriate boundary conditions). can be obtained (a) by convolving the
I data with a filter, (b} which is a cubic spline, and (c) which is very similar to a gaussian.
: This implies that regularized differentiation of image data can be performed by convolving
the data with the first derivative of a cubic spline filter, which is very close to the gaussian,
as shown in figure 1.

.

§"(z)|dz [2.11]

This result probably is the simplest and most rigorous proof that a gaussian-like filter
represents the correct operation to be performed before differentiation for edge detection.
We refer to the paper by Poggio et al. (1984) for a detailed proof of this result and for a
comparison between the optimal filter and the gaussian. Poggio et al. (1984) also analyze
the role of the regularizing parameter X, its connection to the optimal scale of the filter,
and discuss methods for finding the optimal X.

~ -~ e e s e e - -
. ‘ ‘ oot
P

RS

V. 2.4. Regularizing filters

In the previous section we have seen that differentiation can be regarded as the inverse
problem of the integral equation

alr) - /\\ J(EMz [2.12]

S where f(r) must be recovered from the knowledge of the data ¢lr). which is usually
given only on i discrete Ltice. This problem s ill-posed, and can be regulanzed by the

.
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. a)
. — R Filter
. === Ggussian Filter

+|
1/2=0.0005
I/2A=0.5 =0.05 =0.005
-1 Increasing A --«
Z Effect of the smoothing parameter A on R'
L

Figure 1 a) The convolution lilter obtained by regularizing the ill-posed problem of edge
detection with method (Ill) (see Poggio et al., 1984). It is a cubic spline (solid line), very
similar to a gaussian (dotted line). b) The first derivative of the lilter for different values of
the regularizing parameter )\, which effectively controls the scale of the filter (from Poggio

i and Torre, 1984). {

:;; regularizing methods previously mentioned. Furthermore, Tikhonov and Arsenin (1977, see

‘. also Bertero. 1981) have proved that it is in general possible to regularize inverse problems

::: by using Tikhonov's stabilizing operators. For equations of the convolution type as equation

s [2.12). the stabilizing operators correspond to convolving ¢(r) with a filter F(r, «), (where

I a > 0 is a parameter) whose Fourier transform /'(w, o) satisfies the following conditions:

K (C1) i'(w. o) is bounded for « > 0 and all w.

- (C2) I(w,0) is an even function with respect to w, and it belongs to 1.,(- oo, +00),

. (C3) #(w.)jw belongs to La(-oo, + o).

- (C4) For every a > 0 it holds limj.o Flw, ) = 0.

) - . : -

- (C5) F(w,) > 1 as a++ 0 and F(w,0) = 1. _1

] This reqularizing filter is equivalent to a smooth low pass filter. In the next chapter, we will e

. discuss three different classes of low pass filters that have been used for edge detection.

. The first two of them fully satisfy the previous conditions (C1-C5), and are therefore

. regulanizing filters in Tikhonov's sense. As a final remark, it is interesting to notice that :

) this regyulanizing filters usually correspond 1o the solution of variational principles of the =

" type provided by the third regularization method with an appropriate stabilizer I’ (compare . e

Tikhonov and Arsenin, 1977, page 121). A

OIS

. 3. FILTERING S

) R s

n In this section. we will make some preliminary obscrvations on filtering and then. we will e __.:

review three kinds of Jow pacs hlters. which have been used in machine vision for edge ) RRASA

" detection. We will consider bandpass tilter in section 3.1, support-imited hiters in section A
RO
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3.2 and minimal uncertainty filters in section 3.3. Our conclusion is that bandpass filter as .
well as minimal uncertainty filters 2ie good regularizing operators for differentiation in the -]
sense of Tikhonov, white support-limited filters are only marginally useful. .

. . N *.
)
)

N As in the study of functions in analysis, many properties of intensity changes can be L
g:j;: characterized in terms of zeros of appropriate derivatives. For instance, one-dimensional
- step edges in intensity correspond to extrema of the first derivative. whereas roof edges
. correspond to zeros in the first derivative. The main goal of the filtering and differentiation

stage in edge detection is to produce a representation of zeros and extrema. Interestingly.
the type of derivative — whether directional or rotationally invariant — and the type of
representation — whether zeros or extrema — dictate some general properties of the filter o
to be used. We will now briefly discuss these two points. S

The first point is obvious: directional derivatives require one-dimensional filters properly
oriented¢ along the chosen direction; when rotationally invariant operators are used, the ~ }
filter f is a function of the radial coordinate p. . ~

We restrict ourselves to examine linear, space invariant filters. Since isotropy can be
assumed, the shape of filters. when viewed 2one-dimensionally, is an even or odd function.
Let us now consider the implications of this for the case of step intensity edges. Because
of the arguments developed in the previous section, we detect intensity edges from the
zeros of a suitable derivative of the filtered intensity profile (i.e. its critical points). If the
shape cf the step edge to be detected is S{z), defined as

Y O EROERRAE 4 ORI

E‘ then the output g(z) of the convolution f(z) « S(x) where f{x) is the filter, will be
e
s olz) = F(z) - F(~oo), [3.1]
s,
AN with F(x) the integral primitive of f(r). Therefore:

oThe extrema of ¢(r) correspond to the zeros of f(z).
oThe zero-crossings of ,;‘f_, a(+) correspond to the extrema of f(z).
Three consequences can bhe derived from these abservations:

1. It we are interested in the extrema of the output ¢(r), and it we want to have an extremum
located at the position of the edge. then f(r) must be an odd function.

2. It we are interested in the zero-crossings of ‘;',‘_. a(), and if we want to have a zero-crossing
located at the position of the edge. then f(r) must be an even function.

3. If we are interested in the extrema or zera-crossings. and if f{.r) has many zero-crossings,
i we will have many secondary extrema or zero-crossings. To avoid false edge detection,
o /() should have the least number of zero-crossings, and the optimal situation would then
sy be:
L olf f(r) is odd. then f(r) has only one zero.
. .
e olf f(r) is even, then f(r} has no zero.
b«h‘.
- % .
N 3.1. Band-limited filters.
. %
J- . . . . . . . . . . . - -.
;”"‘ Band:limited filters are an obvious choice for regularizing differentiation. since the simplest
T - waty 10 avoid harmtul nor.e 1s to hilter out high Irequencies that are amphiicd by differentiation. ]
" L Lincar and arcular prolate functions constitute an especially interesting class ol band-limited RN
:-':: fiters (Foeden. 1971); Landau and Pollack, 1961). Linear prolate functions ¢, (r) are delined e
+ . >
o by the relation s
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where X\, are called “linear prolate eigenvalues"”. From [3.2]. we see that 4, (s) depends
on two parameters, -, and {1, whose significance will be seen later. The value of X,, is a
functicn of ¢ £,01 and may be written as A, (r, ¢). ¢,.(.r) depends on . The main properties
ot ¢, {-) are

(1) «,(r) are band-limited.

(2) v, (r) are orthogonal on both the interval | ry,rg} and | - 0o, 1 o], with

. [

/ ",,(.I')Q",“(J')(Lr )‘nbnm
r e [3.3]

/ . ‘l/’,.(.r)l/',,.(-l‘)lll' “'um

3 (3) v.(r) form a complete set of functions of the space of band-limited functions whose

- Founer transform /(w) is F(w) - 0 for |w| > (L

. In the defining expression [3.2] of ¥,(r), there are three constants, {1, »\,, and r.. From

* {3.3). we see that (1 is the cutoHf frequency and from [3.3]. r, is half the length of the

fimte inmterval over which hinear prolate functions 4, (+) are orthogonal. From [3.3}, we also
see that X, represents the fraction of energy of v, () within |«| < r,. The dependence of
X, on .« rAlis shown in Figure 4.3 of Frieden (1971). Therefore, once we have chosen
{). we can find ¢, and consequently r, such that the energy of ,(r) is almost completely
contained in |r] < . —_—

Linear prolate functions have the nice property that the band-limited function with cutoft
frequency ! and maximal energy concentrated in | r,,r,] is ¢.(r) with ¢ - (. Similarly,
the odd band-limited tunction with cutoff frequency 1 that has maximal energy concentrated
N - r..or. 18 () with e (- Linear prolate functions are also useful for solving the
nverse problem; that is. the stnctly support-limited function in | - r,, r,| that has maximally
concentrated frequencies in {11, 11] is

J o Dia(rie) g0 [3.4)

where 1. is the operator defined as

D, J(r) { (f)(—r) el <, [3.5] .

el >,

These resulls show clearly the difference between ., (r) and sinc(s). They are both
band - fimited. but o () falls off more rapidly than sinc(.) (see Fig. 2 of Landau and Pollack
1961). On the other hand. the strictly support-limited function. which has the minimal spread
of frequencres. is not a Haar function or a Difference Of Boxes filter (see later) but is
/),.,l,‘“(.l‘).

Ouaitabions i the hiter may produce ringing phenomena in the edge detection process.
To reduce these phenomena, it s necessary to have masimal encrgy of o.(#) (or ey(+)) )
concentrated n the mam lobeo With a value of ¢ egual 1o 7. more than 99 per cent of the -
energy of oo and oy ) s concentiated inorLr g

iy

$2

It s mmediate to venty that bandluntted  filters satisty all conditions (see section 3) of .
Dikhonav in order to tegulanze dilferentiation, ;

owe crenteresded o rotationally invanant two dimengional filters that are band limited. -
wer can sumply Dike oven hinear prolate functions o (). o 0.2 01 and substitute  waith SN
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V2t 32 = p. Now v,(p) is a band-limited function, but does not have the two-dimensional
analog of properties (1)- (3). These properties are satisfied by the circular prolate functions
V..(p), defined by relation:

o
/ﬂ S ¥ulplpde == (-1 2 aaw(h2), (3.6]

where J, is the Bessel function of order zero.

3.2. Support-timited filters

All real filters have a finite extension and are support-limited. Computational efficiency
requires that the support of a filter is as compact as possible. Therefore it is interesting to
investigate the properties of filters with strictly limited support. The simplest even filter with
a strictly limited support and with unitary energy is

. A= UVED 2| <D
/("){.-_—o lz| > D’

whose Fourier transform F(w) is

2 sinwbh .
Fw) = D o [3.7)
In two dimensions, we have
| oy /(,,)2.{1/\/”;' P b
p> /’a
whose Fourier transform is
F(w) = - D1{wpe) (3.8]
v

This kind of filtering represents the well-known *“blurring” of the image through a circular
aperture of radius p,.

It is important to observe that this class of support-limited filters fails to satisfy, in a strict
sense, the five conditions of section 2.4. In particular, condition (3) (#(w, v)jw belongs to
L.{ -0o0,+00) is not satisfied {because differentiation introduces back high frequencies in
the same amount as they are removed by this type of filtering). Thus, support limited fiiters
are not good regularizing fiiters in the sense of Tikhonov. Nonetheless, this class of filters
can be still considered as regularizing operators in a weak sense.

If we are interested in odd filters, the simplest support-limited filter is

- 0 ,.rl >D
I - -y".l'n 0sr D {3.8q]
A D r<o
Vveh
whose Fourier transform is
{ 2
F(w) : (1 conwh). |3.80]
Jw l)
10
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This filter has already been proposed by Herskovitz and Binford (1970) and is commonly . . Y
called DOB (Difterence of Boxes). It is also a Haar function (see Fig.19 of Harmuth 1972 ' -
and page 399 of Kolmogorov and Fomine, 1974). The system of Haar functions is complete S
ancd constitutes a basis for all square integrable functions on a bounded interval. This R
property may have some relevance in the context of image pro. .csing with Haar functions.
Support-limited filters that are even functions can be easily extended in two dimensions
by a simple rotation around the origin. A complete set of support-limited functions in two
dimensions, which can be used as filters, is the Huar system with two variables (see
Harmuth 1972). The Haar function of equation [3.8] has the nice property of being the
optimal support-limited filter that maximizes the signal-to-noise ratio for an ideal step edge,
S(s). It is easy to see that spatial spread of f(r) favors the signal-to-noise ratio, while
spatial concentration favors localization, for instance of zero-crossings. This can be seen
as another formulation of the uncertainty relation (Canny, 1983).

3.3. Filters with minimal uncertainty
In the two previous sections, we analyzed band-limited and support-limited filters. Band-
limited filters have theoretically infinite support. A drawback of support-limited filters is that
they are regularizing only in a weak sense. It is natural then to try to find an optimal L
compromise between these two types of filters. A measure of the spread of a function o ud
J € L*(R) in the space and frequency domain is the uncertainty Al/, defined as: @ 1
AU = 01X, 3.9]
where
s I~ %) Y (2)da ]
— s [3.10]
oo JE(x)dz
+ 90
T —:./ z[%(x)dz [3.11]
—oo Y te
*“(w ~ @)° | (w) e I
0 = [3.12] R
o P ()2 SENES
*
F(«) is the Fourier transform of f(z) and 1,
+oc ) '_.31
T == w|P(w))? o [3.13) - -
_ \.‘.-‘_.- ':J
CEPRTRR g
Notice that (1* is proportional to the density of of zero-crossings for Gaussian white noise .. =

(Papoulis. 1962:; Papoulis. 1965. p. 487). It is well-known that the Gaussian function ¢ -+
is the real function f ¢ 17(R) that minimizes the uncertainty At/. On these grounds it has
been oroposed by Marr & Hildreth (1980) as the optimal filter. The uncertamnty of an even or
an odd function f ¢ L*(®) can be easily computed it its representation in terms of Hermite
functions is known; that is, if we know the set of ¢, such that:

)Y el 3.11) T

o0
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where ;_:::'.
" -
enlr) = 74 U ,(x) [3.15] .

M, (r) is the Hermite polynomial of order . The uncertainty of o, (r) is simply n + }. If f(z)
is an even function, then

Hz) = Z cakp2e(L) [3.16]

k=0

and the uncertainty Al/ is given by

b
F AU = VAT 32 .

A= --Jl(gi_tib" _ ..';:.I

e o [3-17) o~

H= _E_::o cak vaczr/(2k + 2)(2k + 1) \

V2l ) S

If f(s) is odd, -~ .
I(T) = Z C2h4 1P+ I(I), [3 1 8] A:\ '._._

o S

and the uncertainty Al/ is given by

/.- \/;r'-'—.,_—

"(‘,h + 1 ' )(‘ Ih.

Ao T T XAS ) L
lisie 3.19) e

“_’_;‘: [ (_'»’l_j_‘r:'l+l[_’l_j-i)("'l + 2) "
Ik -

Equations [3.16]-[3.19] follow from properties of Hermite functions. We can easily see that
the uncertainty of Hermite functions ¢,,(r) increases with » as the number of zero-crossings <
of ¢, (r) increases. From these observations. we see that good filters will be composed
by Hermtte tunctions with low ». From the pomt of view of uncertainty, the optimal even

;::- filter is « -- , and the optimal odd filter is r. -- (the two-dimensional case has been treated .
r::'. by Daugman, 1984a). Another class of functions with small uncertainty consists of Gabor e
é; tunctions o
o alr) o T e, [3.20] :

L":: o
b - They are complex functions of a real variable and have uncertainty Al' equal to !. However, T

the real and magmary part of ¢, () do not have minimal uncertainty. The only real function oo
with uncertiunty equal to } is the Gaussian. o

IR

Flters with minimal uncertainty. as well as bandlimited filters, satisty the conditions of
section 3 .n order to regularize differentiation.
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— prolate
- .--- gaussian

]
L

Figure 2 Comparison between the gaussian and a prolate function. See text.

3.3.1. Relation between prolate and Hermite functions

The essential difference between prolate and Hermite functions is that the former are LT
band-limited and fall as !, while the latter fall off faster—somewhat too fast to be e
band-limited. It has been shown, however, that a crude approximation of ¢.(x), when ¢ is e
large (see Slepian 1965) is L

Yn(z) =2 Duley/2¢), [3.21]

where 1), is a Weber parabolic cylinder function. Now

Du(eV¥e) = ¢ =i Hoa (e} == ¢ (), [3.22]

where /1,(r) are the usual Hermite polynomials. This approximation fails for large r, where
o (r) falls off as ! and D,(r) as a Gaussian function. However, when ¢ is larger than 7,
then ¢..(+) and +,(+) have more than 99 per cent of their eneray in | r., . where the

approximation [3.22] is satisfactory. In Fig. 1, we see the comparison between a Gaussian
function (dotted line) with variance equal to \/ 2 and (+(r) (solid line) with ¢ equal to 7.

¢

¢.(r) has been computed according to the approximation described in Frieden (1971). DA
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3.3.2. Gaussian filtering and the heat equation
We consider here briefly an interesting analytic property ot Gaussian filtering of images. B

Gaussian filtering, i.e. the convolution of the image /{x,y) (when I{r,y) is bounded and Lo
continuous) with the Gaussian, R

o [3.23]

[ e ,

can be seen as a solution at an appropriate time ¢ = "7‘ of the two dimensional heat
equation

N2u Hu du

@ + El—i = 5’[, [3.24]
with the initial condition: ——
LN
"(Iy yvo) = I(I, y)‘ [325] . -
This is because the ''source solution” of the heat equation (Widder, 1975) is a_'ﬁ::-j
¢ iy
Kz, y,t) = (3.26]
vAnt
with time playing the role of the variance, that is,
o? =2t [3.27)

From Theorem 4.1 of Widder (1975) the solutions of the heat equation are entire functions
of r and y. In other words the convolution of a continuous and bounded function with
a Gaussian generates an entire function. This characterizes well the strong regularizing
properties of the gaussian filter.

4. Differentiation stage -
In this chapter, we will discuss the properties of some differential operators that have been :'.-'\i-j
proposed and used in edge detection. We first briefly consider directional derivatives in .'_'.\f.‘
section 4.1. In section 4.2 we discuss properties of two second-order rotationally invariant e
differential operators: the Laplacian and the second derivative along the direction of the -j}-:.
gradient. We stress here that it is unlikely that zero-crossings of one ditferential operator PR
— such as the Laplacian — are suflicient tor early vision, =
The many two-dimensional differential operators that can be used for detecting sharp changes ;7:{:2
in intensity can be classilied according to whether they are (a) linear or nonlinecar, and (b) -:(-::
directional or rotationally synunetric. In this paper. we use the {somewhat inappropriate) :.:j.:
terminology of zeros of a differential operator 1/ (f defined in V' ¢ W¥) in the sense of the Ce
tocus of points of ¥ such that Pf 8. Tins notion is diffcrent from the usual detinition of i
the kernel of an operator (3. that is. the set of function f such that Hf 0 in V. :b‘"
S
)
_'-'__-'
R
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The directional differential DD operators used in edge detection are the usual directional
derivaiives. The use of directional operators has been criticized (Hildreth, 1980) on the
grounds that such operators lead to smearing of zero-crossing contours (see Fig. 11 of
- Hildreth 1980). In that case the vertical operator was implemented with an operator of n X m
N pixels. Smoothing was performed in both the orthogonal and the parailel direction to the
filter's orientation. A correct implementation of a vertical derivative however consists of an
operator of | X m pixels. The smearing observed by Hildreth (1980), however, is not due
to the use of a directionai operator but to the distortion introduced by a too large width of
the operator. The concomitant use of several directional derivatives has been proposed by
several authors (Binford 1982; Canny 1983). Since in ®* the directional derivative in any
arbitrary direction can be expressed in terms of ;% and .. it is evident that in a noise-free R
image the use of more than two-directional derivatives is of no help at all. In a noisy image o

L 4.1. Directional differential operators (DD)’

the use of several directional derivatives may be useful for increasing the signal-to-noise .

ratio. ST

We will see in a later paper that the use of just two narrow directional derivatives is sufficient -
to detect all edges detected by rotationally invariant differential operators or by a large set W]
of directional derivatives.

4.2. Rotational invariant differential operators (RID) - 1
Rotationally symmetric operators have several attractive features. Two of the most widely

used operators of this class are the Laplacian (VZ, which is linear) and the second

directional derivative along the gradient (.2) which is nonlinear. We will derive in this 1
section several properties of the two derivatives and especially of their zero-crossings. In — —
particular, we derive a necessary and sufficient conditions on image intensities for the . [
zero-crossings of the two derivatives to coincide.

4.2.1. Null space of the Laplacian and subharmonic functions N 1
Certain ciasses of functions do not originate zero-crossings in the Laplacian: they are ,‘
harmonic and subharmonic functions. Harmonic functions are the null space of the Laplacian e
operator. Interestingly. they are invariant with respect to heat diffusion and therefore do not - “:

chang 2 under convolution with a gaussian of any size (Yuille, pers. comm.). This property,
however, is not stable. Another non trivial result is that any non-linear function ¢ of an
harmonic function has zero-crossings at the locations of the inflection points of ¢ (Yuille,
Poggic and Uliman, pers. comm.). Harmonic functions are non-generic, in the sense that a
smatll perturbation destroys the harmonic property.

Subharmonic functions are such functions that the modulus of their Laplacian is everywhere
positive (Daugman, 1984a). These functions are robust against small perturbations.

4.2.2. Carlesian and polar form

We just give the explicit representation of the two operators in cartesian and polar
coordinates:

Ffaf ! A f

o _ ‘
J Y PPN gt pin U o [1.1]

et et At Pt et ettt e e - R Mt et et e atat v .-
o e e L e e e e e e T e e e T e e e e S e
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PR PNC T S i PR 2 R R SR L S SR AR S P <o PP oy R MR P P TIPSR P




Ol HafC \ \'1‘\ S
et b -

On Edge Detection

+ af a* /
p‘ a0 ) o0?

Torre, Poggio

r)2]

n?

f f.:.r + "fljvjlll *j_fvv .

f'ff

i iij‘(df ' arye o‘*] o
P dp\ aa dp ] dp* n? ar\? )
( 'ﬂ) + ;pl-'(‘t_f;)

We also give the explicit representation for the second directional derivative in the direction
orthogonal to the gradient:

2daf ()f_() '/

p- Ap 0 Spdo
(1.2]

2[;/}:]” + f.ijw
i+ 1

{, f j;.;f.u'

=z [4.3}
dn_L

Remark-

The representation in polar coordinaies shows clearly that the two operators are rotationally
symmetric, since their form does not change for a rotation of the coordinate system ¢*. We
can now state

eCharacteristic Property of Rotationally Symmetric Operators. A sufficient condition for
an operator to be rotationally invariant is that 0 appears only as derivative in the polar
representation of the operator.

4.2.3. Simple properties of V? and -2

Marr and Hildreth (1980) had attempted to prove that in most cases the zero-crossings
of the Laplacian coincide with the intensity edges. Since zeros of the second directional
derivative along the intensity gradient are the natural definition of intensity edges, we are
able to give here a more rigorous characterization of the problem, in terms of four simple
properties.

(1) It the image [f(r,y) can be represented as a funclion of only one variable, ie., f(x,y.)

the two operators V* and ;’ ; are equivalent, ie., i, L= Vi

As a consequence, for f(r,y,) the zeros of ,':"J, and of V?/ coincide.
Property | is similar but not identical to the ‘linear variation" result of Marr and Hildreth
(1980), which states that it f changes at most linearly along the edge direction /, then

vif .- 2

4’)1‘

() I fyy == Joy = 0 at P, when 924 =0, the zeros of 2.1 coincides with the zeros of V*f.

The assumptions on the image are here stronger than the condition of linear variation of
Marr and Hildreth (1980). but are equivalent to the assumptions of their theorem 1: locally
around the zero-crossing, / has the form f(x,y) = ax + by + c.

J

dp

(W) If f(x.u) == J(p) is rotationally symmetric, V* [ and ’ differ by the additive term :

For circularly symmetric functions. the zeros of V* are farther apart than the zeros of _'.,-,-,
This lack of localization by V* (for circularly symmetric patterns) can also be seen in the
fact that zeros of V* (but not of ,.) "swing wide" of corners.

(V). (a)
(b) ;"

.. is nonlinear.

neither commutes nor assoclales with the convolution, ie.,

16
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e n 4 () )
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(¢ )‘,"_. is a linear operator on [, it { - [(p). but not shift invariant.

(¢)The mean of ', applied to a zero-mean function need not to be zero.

ime

4.2.4. Geometric characterization of the zeros of V2 and .°;

and

It is interesting to consider under which conditions the zeros of the Laplacian coincide
with tha zeros of the second directional derivative along the gradient. Zeros of the second
directional derivative along the gradient are a natural way of characterizing and localizing
intensi'y edges. Zeros of the Laplacian, however, are extensively used for their computational
conver ience. In this section we derive rigorous results that clarify completely this set of
questicns.

Let us consider the intensity surface represented as X = (z,y,z), where z = f(z,y) with
S, bcR and r > 2.

The mean curvature of the surface X is

_EN +GL-20M (I A SV oy + (V4 T e = 2L oSy S oy
292' 2g3 ’

where

R L, Gete gl 42

are the coefficients of the first fundamental form [(dxr,dy) (Lipschutz, 1969, Pogorelov,
1965), ind

- IJ Mot e [4.7]
q

9 9

with ¢* - 1 f3 1 [7, are the coelficients of the second fundamental form //(dz, dy).

I

We use equations [4.2]. [4.3] and [4.8] and the property

. io* o
v ((M” ‘ dnt"l;)f 4-9]
for writing /1 in terms of V* and ;",:
N atf
oy (eSS [1.10]

We can now characterize the connection between the zeros of ©F and the zeros of °

dnd

Property V. IES £ 7 0. the zeros of l',i [ coincide with the zeros of V* iff the mean curvature
s zern.

- -~
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Thus, only for surfaces with minimal curvature (/! = 0), the zeros of "’—4 coincide with
the zeros of V*f where the gradient of f is different from zero. Note that (M. Kass,
personal communication) V2/ has the same zeros as —1 where the curvature of the lines
of level-crossings of the intensity image is zero. Recently Berzins (1984) analyzed in detail
the behavior of zeros of the Laplacian of a Gaussian filtered image around corner edges
and edges with high curvature. He showed that the zeros of the Laplacian are displaced
from the true edge by less than o (the variance of the Gaussian filtering) when the radius
of curvature is large compared to o, and when the distance to the nearest sharp corner is
large compared to ;' (where 8 is the angle of the corner in radians). Note that eq. [4.10)
shows that the difference between f;—,',{ and V*/ is small if the mean curvature /I is small.
Smoothing the image with a two-dimensional filter reduces the curvature (and more so
tor larger-sized filters). Therefore. we may expect that in filtered images, V*f will perform

EYS
almost as well as 5:4.

4.2.5. The normal curvature

The second directional derivative along the gradient has a simple interpretation in terms of
the normal curvature along the gradient. The normal curvature K,, in the direction of the
gradient is (Lipschutz, 1969)

Ldu?® + 2M dudv + Ndv?
Edu? + 2Fdudy + Gdv?

Kn= [4.11)

with du and dv as direction numbers. Setting du? + dv? = 1, the direction numbers along
the gradient are

du = -l—é%fl [4.'2]
dv = I—vhfi (4.13]

Thus, equations {4.11} and [4.13). together with equations [4.6] and [4.7], lead to

1 8

In particular, it follows
Property VI

The second directional derivative along the gradient and the normal curvature in the
direction of the gradient have the same zeros when |V f| # 0.

Our geometrical characterization of the gradient and the second derivative along the
gradient is completed by Appendix 3, that gives the geodesic curvature of the curve directed
along the gradient. For surtaces of revolution the geodesic curvature of such lines is always
zero.

The operator . and the normal curvature in the direction of the gradient h, are not

IR
delined when [V /| .- 0. In this case, the direction of the gradient is underdetermined,
although the Hessiun can of course be diagonalized (determining the principal directions).
Thus. ;. has the disadvantage with respect to V* that it is not defined everywhere.

n
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4.2.6. Potential biological consequences

A natural question arising from these comparisons is: which derivative operators are used
by the human visual system? It is obvious from the earlier sections that several different
derivat ves possibly at different scales have to be used for efficient edge detection. it would
be very strange it the human visual system would make use of only one dilferential operator.
The important questions is therefore which operators or combinations thereof are used
in different visual tasks and under different conditions. Zero-crossings in the output of
directional second derivatives approximated by the difference of one-dimensional Gaussiansg
(DOG) were suggested by Marr & Poggio (1977) in their theory of stereo matching. Marr &
Hildreth (1980) later proposed the rotationally symmetric Laplacian V*(; (approximated by
a rotat onally symmetric DOG) for edge detection and for stereo matching. Psychophysical
eviden:e does not rule out either of these schemes. Physiology shows that a class of
retinal ganglion cells performs a roughly linear operation quite similar to the convolution
of the image with the Laplacian of a Gaussian. Data on cortical cells are still somewhat
contradictory on whether some simple cells may perform the equivalent of a linear directional
derivative operation, or instead. signal the presence of a zero-crossing of the rotationally
symmetric V(.

On physiological grounds. it seems unlikely that retinal cells could perform the rotationally
symmetric nonlinear ;. operation. although not all classes of ganglion cells have been
tested properly to allow a firm conclusion. In particular, one-dimensional and rotationally
symmetric patterns are customarily used as stimuli for physiological experiments. In the first
case ;.;‘:", and V- are equivalent, whereas in the second case, they may be distinguishable
only quantitatively. Let us now consider three classes of psychophysical experiments.

(1) An interesting possibility for distinguishing the Laplacian from the directional second
derivative on the basis of physiological or psychophysical experiments is suggested by the
observation that the zero-crossings of the Laplacian “swing wide" of gray-level corners. In
particuiar, the zero-crossings associated with an elongated blact. var, for example, coincide
for V¥ and ... whereas they differ in the case of a circular black disk. Hyperacuity
experiments may allow one to distinguish the two cases. Notice that both operators are
linear in this case. They associate therefore with Gaussian convolution (¢ = u-a) The
corresponding point-spread functions are

(a) for the one-dimensional, f(z):

I N -1z
at ;,--.{(;2 ) ') -1
(i) for the two-dimensional f(p)
] 2 _.3

Vi = (;“._.-(2’;__, - .),.:_.;‘7 [1.16)
I .
AT L P [.17]
an® a*\a*

where o is the standard deviation of the Gaussian function. Let us call w the diameter of
the central region of these masks, i.e.. the distance between the central zeros. oy, denotes
the dameter for the one-dimensional case and ., for the two-dimensional case. It is easy
to see that the second directionad derivative has f,,  w¥,, whereas this is not true for
the Laplacian «f,, , wf,,. From (a) and (b) we get

w! w! a’ 20
h (¥ (N I ' lxl

/.
REAVILY

f
Wap

LSNP

(1




.
< %t

» '.C -2 .. .A .. L] .
NIRRT

L T Ak S/
A

N AT A e e 20
AL A TSN T IR S R A A PN A e T e ettt

- W S B e,

Torre, Poggio On Edge Detection

A possible psychophysical test is:

olf zero-crossings in the Laplacian are used by our visual system to estimate position of
edges, the apparent width of a narrow 1-D bar and of a small circle (with equal physical
widths) should be different—the bar should appear smaller. This is not expected if the
second directional derivative is used.

(I) There are classes of intensity edges that generate zeros in J:.ia but not in V% An
example is given by:

e"z
1+ e

I(z,y) = (1 + ) {4.19]

which, with appropriate value§ of 3 does not satisy VI = 0 for any y > 0. It is possible,
however, to find solutions to 5"’;;1 = (0. Thus, the edge / could again be used to discriminate
psychophysically between V* and 2.

More in general, functions k € (' in a certain region 1 such that V%A > 0 in 1) are called
subharmonic, as we discussed earlier. These functions do not have zero-crossings of the
Laplacian (Daugman, 1984a), but generally zero-rossings of ;;'{‘i, are present. There are
special cases, however, in which both 7}‘— and V2 do not have zeros. An example is given by

J(z) = cosz + br® with V3f = 2= f = — cos? 7 + 2b, which does not have any zero-crossings

if 5> 1.1t would be interesting to test this kind ot pattern both psychophysically and
physiologically (controlling caretully for nonlinearities in the phototransduction).

i) As we mentioned earlier in this chapter, harmonic functions cannot be characterized
in terms of the zero-crossings of their Laplacian. Worse yet, any image is characterized
uniquely by zero-crossings of the Laplacian (across gaussian scales, see chapter 6)
modulus any harmonic function. Psychophysical experiments that measure the detectability
of edges in subharmonic patterns are difficult to interpret, because they would give a
clear answer only if the Laplacian were the only differential operator in the human visual
system, a very unlikely possibility. Furthermore, harmonic functions are unstable against
small perturbations. making difficult to control for non-linearities in the display and in the
transduction process.

5. Geometrical properties of edge contours

In this section, we will discuss geometrical properties of edge contours obtained by different
methods. We will show that edges derived through rotational operators are generally smooth,
closed curves, while edges obtained with directional operators do not have such special
geometrical properties.

In many edge detection schemes, as we discussed in the Introduction, the image I(r,y) is
first filtered and then a second order differential operator /)¢ is applied to the filtered image
I(r,y). Edges are identitied in correspondence to the zero-crossings of 1)*I(r,y). In other
cases. edges are identified as extrema of some derivative of the filtered image. Again they
may correspond to zero-crossings of a higher order derivative. In this way, the first part
of edye delection provides a compact and possibly complete representation ol intensity
changes (see chapter 6).

Therelore, it is important to analyze theoretically geometrical properties of the tocus of
points defined by

DEl(e,y) 0, 5.1
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A where /(r, ) is the filtered image and N* can be a RID or a DD operator. We first recall
. in the next two sections the notions ot transversality (Abraham and Robbin, 1967, Poston
and Stewart, 1976) and of Morse functions (Poston and Stewart, 1976). In section 5.4 we
will classify the types of zero-crossings contours that can appear in images.

-'l

5.1. Transversality and zero-crossing (z.c.)

A curve (or a surface) 5, meets a curve (or a surface) S in I’ transversally when the
tangent space 7'S, to §, in /I’ and the tangent space 7'S. to S» in !’ have locally around P
an empty intersection. More generally, two subspaces {/,V of R" are transverse if they meet
in a subspace whose dimension is as small as possible. From this definition, it follows that
the surface S; = (z, y, f(+, v)) meets the surface S, = (z,y,0) in P’ = (,#,0) transversally iff
in (z, )

CESA S

B

_: Igrads| # 0. [5.2]

The isotopy theorem (Thom, 1954) shows that transversal intersections are structurafly
stable. The converse is also true in that non-transversal intersections are structurally
unstable. Transversality (and the implicit function theorem) indicates that if S; meets S,
transversally in i then the intersection of S; and §, around i’ is a smooth curve.

The previous result is only local. Globally we find that if f(z,y) is defined in the compact
domain V ¢ 1t* whose boundary is §V and if S, always meets S, transversally, then the
intersection of S, and S, consists of:

(a) smooth closed curves I'. € V.
i (b) smooth curves I'; that terminate in §V.

R e

In other words, transversality of zero-crossings means that zero-crossing contours are
closed ctlirves or curves that terminate at the boundary of the image.

5.2. Closed and open contours of z.c.

' From the previous section a necessary and sufficient condition for transversality in P is:

igradD?I(z, y)|p # 0. 53]

A preliminary condition required by eq. [5.3] is that D*l(z,y) is a differentiable function.
This condition is obviously met if /(x, y) is analytic (or entire or band-limited). But we have
already stressed that it is salter to suppose that the ariginal image /(x,y) is a piece-wise N
continuous function or belongs to (', with » not known a priori. If we filter the original 0N
image /(r,y) with an appropriate rotational filter, then /(r, y) is analytic both in = and y,
and 1*i(r,y) - 0 defines a differential function. On the other hand, if we use a directional
tilter /. for example along x, we have

v e et

Mg R

I(w y) = (2, 9) » S(2) (5.4)

and there is no reason for /(.. ) to be a three times differentiable function of y. Therefore, W
it the original image has been filtered with a directional operator only, it is possible that -’-I-‘_j"
the zero-crossings of D*1(x, y) may not be smooth curves. .

5.3. Morse functions

A function f:1F I is called a Morse function if at its critical point (i.e.. points where
.. grad/ ). the Hessian 1s nondegenerate. Marse functions have the following properties:
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(a) Suppose that f(#,j) == 0 and |gradf|; — 0 with /> -= (#.7), but the Hess (/) is non
degenerate. Thus, there is a smonth local change of coordinates around I"|grad(r.u)1-|.
such that f takes the exact form

13y, 8 1o . ‘e
[, !I) = Q;’,ﬁ;‘._,‘l,»-ﬁ + 2)}(3;;""” + 2 ;,;‘;l,’.y . [.).-)]

(b) A small enough perturbation of a Morse function f can always be expressed in the
same form as the original f by a change of coordinates and of scale.

Property (a) says that around i’ the function / has the behavior of the quadratic form
induced by the Hessian. Property (b) is a kind of structural stability pro:.erty. A basic
property of Morse functions is that they are dense so that, if f is a non-Morse function, then
an arbitrary small perturbation of / makes f a Morse function (obviously the perturbation
must not vanish at the critical points). This is the reason of the importance of Morse
functions here: we can always assume that images are Morse functions (especially because
of the unavoidable noise).

§5.4. Classification of z.c.

We now analyze the geometrical properties of the z.c. contours, i.e., the locus of points
defined by

Dti(z,y) = h(z,y) = 0. 5.7)

(a) 1f h(z,y) is not a smooth function of = and y (at least C'), the implicit function theorem
cannot be used and the z.c. may be isolated points, i.e., segments of intersecting curves
and 2-D regions.

(b) If k(x,y) is a smooth function of z and y and if in /> = (&, §) we have

Wi, §) =0 and |gradh(z,y)|p # 0,

then A(z,y) has in I a “transversal zero-crossing”, which is a smooth curve.
(c) i h(z,y) is a smooth function and in /> we have

h(z,§) =0 and |gradh(z,y);,| =0 [5.8]
but around , h(z,y) we find
h(r,y) = az? + bry + cy® + O(z"y™) n+m=23, [5.9]

where a = Lf, (.. b= fsy|jn ¢ = }[y,1;» The zero crossing I is:
(i) an elliptic z.c., if Hess h(r, y)|,,> 0 (see Fig. 2A).
(i) a hyperbolic z.c., (saddie point) if Hess h(r,y)|,, < 0 (see Fig. 2B).

(iii) a parabolic z.c., if Hess /(«,y){,,= 0 but «, & and ¢ are not identical to zero (see Fig.
2C).
(d) ¥ h(s,y) is a smooth function and if in i> we have

h(z, i) = 0 |gradf(z, y)l,. == O,

and in /*, h(x,y) depends on the third order terms,
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i h(r,y) == ar® + frly + gry® + 8y + O(e?y™), n+m =14, (5.10)

where :he coefficients «, /4, and 4 are obtained by the Taylor expansion. It is easy to see
that the set of points

» ean
]

Ra = {(s, p)az® + prly + vyt ¢ §y* = 0} (5.11)

- -
.

are straight lines. The z.c. lines may be:

(i) an elliptic umbilic, if 124 consists of three lines (see Fig. 2D).

(ii) a hyperbolic umbilic, if 24 consists of a single real line (see Fig. 2E)

B (iii) a parabolic umbilic, if /¢, consists of three lines, two of which are coicident (see Fig.
- 2F)

‘ (iv) a symbolic umbilic, if £, consists of three coincident lines.

(e) If h(z,y) is a smooth function and in /> we have

h(z,5) =0

and in I, h(r,y) depends on the fourth order terms, the z.c. lines have a complex shape
that can be analyzed using results of Poston & Stewart (1976).

Bifurcations of zero-crossings

The isotopy theorem (Thom, 1954, Abraham and Robbin, 1967) shows that transversal
intersections are structurally stable, i. e. that “transversal zero-crossings"” are structurally
stable: their topological properties do not change if the size of the filter is slightly changed.

If f(.r,y) is a Morse function then §; may meet S, non-transverally, and these intersections
are not structurally stable (observe that Morse functions are structurally stable but not their
interseclions with §,). It f is a Morse function, then §; may meet S, non-transversally at
elliptic points and hyperbolic points. These intersections are not structurally stable and may
change ‘heir topological properties for small perturbations of f. More specifically we may
have two bifurcations:

(i) Eniptic z.c. At elliptic z.c., a small perturbation of f may lead to the disappearance of
the z.c. or to the appearance of a contour of z.c. constituted by a closed curve.

(ii) hypeitbolic z.c. At hyperbolic z.c., which consists of the intersection of two curves any
small perturbation leads to the breaking of the intersection of the two curves and the
appearance of two disjoint curves.

These are the two bifurcations that may appear when /(xr, ») is a Morse function. Interestingly
enough. the zero-crossing contours obtained with real images (which will be explored in a
later paper) can be classified as type (b) and (c) of the previous section; Morse functions
can have z.c. only of type (b) and (c). The two types ot biturcation, that may originate with
Morse functions are illustrated in Fig. 3A and 3B. respectively (see also Koenderink and
van Doorn. 1979). Yuille and Poggio (1983a. 1983b) have shown that (it Gaussian filtering
1Is used) when the scale of the hilter is changed (i.e. ). the second type of bifurcation

may appear either when « is increased or decreased, but the first type of biturcation only L e
occurs when « is increased. Thus, the Gaussian hiter forbids creation of a zero-crossing S et
contour from an elliptic z.c. for mcreasing a. It 1s important to note that all these topological :'-:‘:::‘
properties are also valid for level-crossings. Thus setting a threshold in the output of the ::’_-‘.:-:

23
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Figure 3 The zero-crossing points may be of the elliptic (A). hyperbolic (B), parabolic
(C) type; the zero-crossing lines can also be an elliptic umbilic (D), a hyperbolic umbilic
(E) or a parabolic umbilic (F). See text.

filtering and derivative operation preserves all topological and geometrical properties of
Zero-crossings.

In summary, we have characterized the geometrical properties of zero-crossing contours:
these properties — lor instance the fact that zero-crossing contours are closed --- may be
exploited in various ways in edge detection and even in stereo- or motion matching.
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elliptic z.c.

- /

G

—p

B hyperbolic z.c.
6 > :
< < R
.- . “
e
Figure 4 The two types of bifurcations that can occur for increasing (left to right) and -
decreasing (right to left) o in the case of Morse functions. See text. -
-~
6. EDGE CONTOURS AND FILTER SCALE :‘
As we have seen, differential operations on sampled images require the image to first be )
smoothed by filtering. The filtering operation introduces an arbitrary parameter -~ the scale .
ot the lilter. e.g.. the standard deviation for the Gaussian filter. In computer vision. the .
advantiges of using several scales of filtering was realized quite early on. and this was iy

supported by evidence suggesting the presence of filters of several sizes in the human visual

Lol el

system (Rosenteld, 1982: Marr, 1976. Marr and Poggio. 1979; Marr and Hildreth. 1980) More ;“
recently. Witkin (1983; see also Stansfield. 1980) introduced a scale-space description of .

zero crossings which gives the position of the zero-crossing across a eontinuum of scales.

i.e.. sizas of the Gaussian filter (parametrized by the » of the Gaussian). The signal—or the

result of applying to the signal a linear (differential) operator—is convolved with a Gaussian

lilter over a contmuum of sizes of the filter. Zero- or level- crossings of the hitered signal

are contours on the r « plane and surfaces in the r,y.a space. Within proposed that

this concise map can be cffectively used to obtain a rich and qualitative descniption of the ) -

signal. Yuille and Poggio (1983a. 1983h) — who called the maps of zero crossngs across
scides hnqgerprints -—— have esliblished interesting relationships between mulliresolution
analysis. the Gaussian filter and zero-crossings ol hitered signals. Ther mamn resulls we R
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. .

two theorems:

(a) zero- and level-crossings of an image filtered through a Gaussian filter have nice scaling
properties, i.e., a simple behavior of zero-crossings across scales. Zero-crossings are not
created as the scale increases. The Gaussian filter is the only filter that has this nice scaling
behavior (see also Babaud. Witkin and Duda, 1983).

(b) The map of the zero-crossings across scales determines the filtered signal uniquely
for almost ali signals in the absence of noise. The scale map obtained by Gaussian filters
is thus a complete representation of the image. This result applies to level-crossings of
any arbitrary linear differential operator of the Gaussian (modulus the null space of the R
differential operator and provided there are at least two zero-crossing contours), since it ’
applies to functions that obey the diffusion equation.

The first result sheds some light on the properties of zero-crossings and level-crossings
at different scales with the Gaussian filter. It supports the use of the Gaussian filter in
a multiresolution edge detection scheme. Reconstruction of the signal is, of course, not N
the goal of early signal processing. Symbolic primitives must be extracted from the signals o
and used for later processing. The second result implies that scale-space fingerprints are
complete primitives, that capture the whole information in the signal and characterize it
uniquely. Subsequent processes can therefore work on this more compact representation
instead of the original signal (see Asada and Brady, 1984).

The second theorem has theoretical interest in that it answers the question of what L
information is conveyed by the edges identified with zero- and level-crossings of multiscale
Gaussian filtered signals. It is turthermore interesting that this complete representation j;?;-‘.-‘
happens to coincide with the basic scheme for edge detection discussed in this paper. A
From this point of view it can be argued that the fingerprint representation makes explicit e
exactly the information that is needed on physical grounds, i.e., it makes explicit edges in PN

the image. —
It may be asked at this point what the right sequence is for the two steps of differentiation o
and filtering. For linear operators the order is of course immaterial, since they commute.
It is not so for nonlinear operators. such as the directional derivative along the gradient.
The regularization argument for the filtering step implies that filtering at one scale must
precede the differentiation operation. The computation of different scales requires filtering
at a range of resolutions atter differentiation. The reason is that the theorems of Yuille and —
Poggio (1983a. 1983bj hold true even tor the identity operator, but are not necessarily valid SRR
i hitering is performed before a noniinear ditterential operation. In particular, Gaussian

scahng after the nonhinear directional derivative along the gradient does not have a nice

scaling behavior Thus hitenng as a regulanzing operator must be performed first at one

scale and hitering at different scales must be performed after the differential operation. For S
linear differential operators this is equivalent to a multiscale filtering either before, after, or -
together with the differential operation (e.g. the Laplacian of the Gaussian). Ry

7. OVERVIEW OF SOME EDGE DETECTORS i

A ABDAnAN Jhe

In this section. we will briefly compare our main conclusions with several edge detectors -
presented in the lterature. Our rewiew 1s neither intended to be exhaustive nor does it aim S
to present edge delectors i tull detan. A

7.1. Difference of boxes (DOB)

Binford and coworkers (Herskovitz and Binford. 1970 Horn, 1972: Binford, 1981) have
suggestad the use of suppert timited filters in the filtering step of edge detection. They have
used the Haar funchon |3 8b] i directhional Mteang or a diterence of functions of the type
[3.8a] for rotational hitenng There are two problems using this approach:

e e e e e et N . - . N . . - o e s
. PRI L I P LA ) . . - L o
e e e T e e T e T L e ey e et Tttt e T -\.. LRI
PRI JN, L P N P I WS ) A T AT S S L

DR et
A LEPA T RN e b




R TR ——————~— T R T N Y W Y Y L W W s o v vy =T ¥~ &%
- - . Rt e R R e R O R i e R P L - BN

Towre. Poggio On Edge Detection

(1) Filtering with support-limited functions does not regularize the image intensity profile; :..",5;; R
therefore the use of any differential operator is unsafe. o e
(2) A stirictly support-limited filter, such as a DOB, cannot be correctly sampled, and it is '
very dilficult to obtain a good digital representation.

= 7.2. Shanmugam, Dickey and Green

o Shanm.sgam, Dickey and Green (1979) looked for a linear, band-limited operator that would —ie
yield maximal output energy within a given spatial interval in the vicinity of the edge. No
explicit reference was made to a differentiation step in edge detection. They proposed that
the optimal filter for an ideal edge S(«), has a Fourier transform
, _ Jewy (¥32.e) N <Tr S
Fat) = {grt () (ST, 1
where k, is a constant, ¥, (z,c) is a linear prolate function (see section 3.1). This edge
detector pertorms very poorly on localization and has the intrinsic feature of giving two
maxima of energy in the output of the response to an edge. The reason is simply that
using an even filter such as eq. [7.1] which has the same shape of wiy,(¥3", ¢}, edges are
located at the zero-crossing of the output and not at the extrema. Moreover, these authors
use properties of linear prolate functions (their eq. 1) to derive their optimal filter which are
valid in 1-D, but not in 2.D when linear prolate functions are extended in 2-D by rotation.
In addition, their asymptotic approximation to the optimal filter was incorrect, as shown by
Lunscher (1983).

7.3. Marr and Hildreth

- Marr & Hildreth (1980), and Hildreth (1980), extending the work of Marr and Poggio (1979), C
have proposed an edge detection scheme based on a filtering step consisting of a 2-D

symmetric Gaussian followed by the localization of zero-crossings of V?i(z,y), where i(z, y)

n is the filtered image. This edge detector performs rather well, but its optimality was not

: rigorously proved. Indeed,

1) T’,i in many instances achieves a better localization than V?, particularly for rounded
edges with large curvature.

(2) The use of directional filters and directional derivatives when performed correctly does
not giv:2 rise to the problems that forced Marr and Hildreth to reject such edge detection
schemes (see section 4.1). The use of two directional filters with directional derivatives may
be as €fficient as the Marr-Hildreth scheme. with the advantage of not introducing spurious AR
edges that appear with rotational filtering because of the closure property of z.c. contours -
(see section 5). .~

7.4. Haralick

Haralick (1980. 1981, 1982) has proposed a scheme for edge detection in which a pixel is
marked as a step edge pixel if, in its neighborhood, there is a zero-crossing of the second
directional derivative taken in the direction of the gradient. Haralick, in order to evaluate
the derivatives he approximates, interpolates the sampled intensity values with discrete
. Chebychev polynomials. There is no explicit mention of a filtering step. Canny (1983),
N however, has shown that the above procedure is practically equivalent to using a filtering
step (in our terms. a regularization step) betore dilferentiation. The type of equivalent filter
depends on the set of approximating functions and on the degree of differentiation required.

7.5. Canny

Canny (1983) has investigated the desirable properties of an optimal edge detector, based
on eliciency of detection and reliability in localization. We have alrcady seen that detection
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RO of an ideal step edge is favored by broad filters while localization is favored by smali filters.
- Canny has shown through variatioral methads that the optimal odd filter f.,(r) (according -
to his criteria) in the 1-D case is the linear combination of four exponentials.

;Fi:

—.2
Interestingly f,,(r) is very close to x¢ =7, which is the optimal odd filter from the point of
view of minimal uncertainty. The treatment of Canny may also be seen as a well-founded
justification for the use of filters with minimal uncertainty, because simply by first changing
some constraints in his variational approach it is possible to obtain the second Hermite
function.? Canny's procedure for finding two-dimensional step edges and other types of
edges uses directional operators of varying width, length and orientation. This procedure,
{ which includes as an essential part an appropriate thresholding, works remarkably well
on real images. His justification of the choice of directional operators is not completely

Zh ' satisfactory. Indeed:

(1) For 2.D images, Canny uses two alternative differential operators, either ;,%"—, {see section
4.2 and Havens and Strickwerda, personal communication) or directional operators. The
- preference for directional operators originates from his one-dimensional treatment of the
problem. The optimal filter is chosen to be an antisymmetric function, because it is designed
) to detect maxima. Therefore the corresponding 2-D operator is not rotationally invariant,
. suggesting the use of directional operators tor 2-D images. The output of directional
: operators can be directly used in the adaptive threshold scheme used by Canny, offering
advantages with respect to the symmetric operator ; 4
(2) As already mentioned in section 4.1, to obtain aII edges in a 2-D image it is sufficient
to use only two different directional derivatives. The use of more than two orientations is
useful only to increase the signal-to-noise ratio, but is not required for edge detection in a
noise-free 2-D image.

- -

LSRN

8. DISCUSSION —

We will now summarize the main points of our analysis of edge detection.

A. The first step in edge detection, after sampling of the image, consists of a filtering
stage followed by a differentiation stage. Filtering has the main function of regularizing
the ill-posed nature of edge-detection and should be performed before the differentiation
operation. Filtering tor the purpose of multiresolution analysis should be performed after
the differentiation operation, when nonlinear differential operators are used.
B. To be physically realizable, digital filters should be represented with a good approximation
by a finite sequence of samples ot points. From this point of view, a Gaussian or the first "
linear prolate (¢.(x,c)) function are practically equivalent. Filtering with prolate functions 0 JORS
regularize “more" the image (the image becomes entire and band-limited), whereas using
a Gaussian the image becomes only entire. The Gaussian filtering, however, has two
advantages over prolate functions:

(i) It does not create z.c. when the size of the filter is increased (see section 6).

(i) In 2-D, the Gaussian decomposes into the product of 1-D Gaussians: as a

consequence, it is particularly easy to reduce drastically the amount of computations

involved in its use.

0
i

O

S

N -

' C. Filtering of the image with a rotationally symmetric filter insures with high probability the I:}I::-

v closure of z.c. contours (see section 5). Filtering the image with directional filters does not :.-f:..j

- ensure closed z.c. contours. Localization. however, is more accurate, e

| . . N,
D. Several types of derivatives at different scales may be needed for detecting and labeling s

BAON intensity changes under the most general conchtions. In the differentiation step, directional ‘

Necently Spacek and Brady have investigated split-gausstan tillers similar to Canny's but with
poorer signal-to-noise ratio and betler localization.
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derivatives in only twg directions are necessary, when DD operatou;s are used. When RID
operators are used, -2 performs better then V* in localization, but £; has the disadvantage
of not commuting with the convolution.

E. In order to characterize the types of intensity changes in the image in terms of the
physical properties that have originated them, it is useful to have a set of hierarchical
symbolic descriptions. The lowest symbolic description uses as a substrate the associated
fingerprints of the image, containing the map of zero crossings and their slope at different
scales, and provides a local labeling of edges still in terms of image data. The final symbolic
description must label edges in terms of the properties of the physical surfaces that originate
the intensity changes, and therefore as object boundaries, shadows, reflexes, changes in
texture, specular reflections, etc. This final representation of the type of the primal sketch
is obtained using high level knowledge and geometrical reasoning from lower symbolic
descriptions.

In later papers, we will evaluate performance of different filters and different operators in
real images, and we will outline a theory of a symbolic description of edges.

Acknowledgement: We are grateful to A. Yuille, A. Verri, M. Kass for useful discussions and
suggestions. M. Bertero first pointed out to us that differentiation is an ill-posed problem.
M. Brady, J. Canny, E. Grimson, M. Kass, H. Voorhees, W. Richards and especially E.
Hildreth read the manuscript and provided tremendously useful and poorly implemented
suggestions. Carol Bonomo typed the math, edited the English, and generally managed to
look quite busy, even if she wasn't.
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Y 1. Appendix: Differentiation through Taylor expansion

In previous sections, we have seen that to safely perform differentiation, it is necessary to
smooth the data by some appropriate (analog or digital) filtering. If this filtering has removed
enough high frequencies. so that our filtered image is band-limited function, and by the
Paley-Wiener theorem (Boas, 1954) is also an entire function (see Section 3), numerical
differentiation can be performed in a computationally more efficient way through Taylor
expansion.

If /() is entire, than f(r) is also analytic and the Taylor series
f(z)=fk+(z—x.‘)f'k+...+(”_'_"i'i)ﬁ")*,m 1]

has an infinite radius of convergence. If we have 2n + | sampled points from [2], we can
obtain 2n linear equations from which we can solve for f\, j = 1,2,...,2n.

Three equidistant points give

. [ = 2"(flc+| Je1) .

k= ,z(fk 1= 2fk + [r41)

With five equidistant points, we obtain

i. “. fe= 2, —(fk-2—8fu—y + 8fxy — [x-2) "

Ji= 2h‘( Sz + 16 ey = 30fk + 16fk41 — frs2)
. When the performances of the numerical differentiation obtained through spline interpolation
i (egs. 2.9 - 2.10) are compared with those obtained by Taylor expansion (equations 3-4 in
this appendix), it turns out that the first method gives more accurate and consistent results
with noisy data while the second method is more efficient with data that are already smooth.

--------
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2. Appendix: Sampling

Since image processing is performed in terms of discrete representations of signais and
filters, it is important that manipulations of sampled images and filters have a meaningful

::' connection with the original image /(r) and the analytic form of the filter /(). More precisely,
- for linear filtering, if /; is a discrete sequence of points of /(z), and J; is another discrete
I sequence of points of f(z), the discrete convolution
gi= ) I fus )
k

should be related to the exact convolution

e) = [ 1)y~ 2y = 1e) + 1(2) 2

This relation is clarified by standard resuits (Oppenheim and Johnson, 1972; Borsellino and
Poggio, 1973).

E Suppose that we may represent /(z) and f(z) as

_' ’(1‘) = Z I.'¢.'(:I.') [30]
3 1@) = 3 fibia) 34
:‘ where ¢;(z) = sinc[}(+ — ih)]. Then

3 (2 J(a) = olz) = T aibifa), g

where g; = 3, I fa—s.
Thus from the discrete convolution of the sampled values [2], it is possible to recover

- completely, the exact convolution of the original image with the filter. It is now possible to

) represent a signal In the torm of equation [1] when the signal is band-limited and correctly A
- sampled. If one uses band-limited filters it is possible to obtain the required representation -
> [3b] for the filter. For an arbitrarily sampled image, however, it is difficult to obtain the

required representation [3a]. Indeed it would be necessary to sample the image according
A to the cutoft frequency of the optical system used in the imaging process, which is generally
v too high to be of practical use. This is related to the classical problem of aliasing. The
simplest way to obtain a reasonable solution to the problem is to initially filter the image
with an appropriate band-limited filter, before any further operation.
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3. Appendix: The geodesic curvature

it may be of some interest to ask whether the line on the surface X' .= (r,y, f(z,y)). whose
tangent is always in the direction of the gradient is also a geodesic. A geodesic is aline
whose geodesic curvature h, is always zero. In what follows we will briefly answer this
question The surface N has the first fundamental form [4.6).
As shown later, the geodesic curvature of a curve on surface X whose tangent is always
in the direction of the gradient is

- g[!’l(ﬁ - l) + Hy - Iu)]

{g+ T"[' + J2(s2 +I;")]}a/-z-

Now, K, = 0, when [; = I3 and f;. = [y, that is, for surface of revolution. Therefore the
line on surface X, which is always directed along the gradient, has the following properties:
(1) its normal curvature K, is equal to % x 24
(2) it is a geodesic, only for surface of resolution.

Let us now compute K,. Given that the coefficients of the first fundamental form are

(1

E=1+f2 F=Lf, G=1+]},

The associated Cristoffel symbols I'}, '}, satisfy the equations

1
P EF + T3 F? = SFEe 2)
PLEF 4 U3 EG = FoE ~ %LI, [3)
or
YFE, + EEy) - F.E
2 __ 2 z v z
=" G i
I, = 1hs lt(’"%«"‘ - I""u? - "‘z. [5)
2L # - LG
Finally,
jo _ MUehiles (04 [0Sy = (1 JiWSzaly + Jra)
" TR VPR R T o
_ L) = (0 A i Meidy _ Sasly
. y'-' y‘.'

L7 S Y P PV PR Y
2l Wy oy g g Lt fE
S SV ) el )
(V1 f)e?

I-’jfl.
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Similarly, I'}, 1'j, satisfy the equations

9 . 1
PlabF + 13,1 = 3 FEy 8]

) |
PLEF V3L, EG - éh‘(.‘,,(d). 19)

Some algebra gives from [9] and [10]

, :/z
= Lo L
'Yy = ”gé—" [11]

Now suppose that X - (x,y, f(z,y)) is a regular parametrization of our surface around P,
and let r = z(t),y = y(t) be the equation of the curve v in a neighborhood of #’. Then
(Pogorelov, 1965)

 VEGTHE

Kg = —- N {z"y' - y"z' + AY' — Bz') (12]
(Fe 4 282"y + Gy)
is the geodesic curvature of + in I’, where
A == I‘: |I’2 + 2":21"!}, + l‘;2y'z(6(l) “3(‘]
B=1%z" + 252y +12,y". [138)

If we want to compute the geodesic curvature of a curve 4y which lies on the surface X
and always has the tangent vector in the direction of the gradient of f(z, y), we must find
the equation of the curve (.r(1), y(t)). Let us suppose

xt) = ¢ (14]

and therefore

dy _ [u(a(t), (1)) [15]
dt j,(.r(l), .’/(’)).

Now equation {15] defines a differential equatian in y == y{t) whose solution completes the
equation of the curve. We have (1) -~ r and y(t) such that

1) £2"(t):= 0

| 2
J0) f 4"(1) ’j( fgf’")‘f’r;“w L) [16]

Now let us compute
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.
2"y — "' + Ay ~ B! = __fj_i;_v(l — ;,Z) + L:AU'W ~ [12z) P
2 i .
+ ‘g—{'};[fzfzz'*’?/zjn!:i +Iz[ﬂﬂ§¥'] '
’ 17 ;
| . Iy ff 1 e
- ;} fyf:r.z + zfyfzy'j: + ,VIIWE _,A:
(/3
= —{{—:—(7% - l) + ;'—Ié(fyy - jzz) + g_li{o}
Now
VG Fi=g -
and s
2
Ez” 42Ky + G = (14 12) + 2/:!.,51 +(1+ !ﬁ);l
4
=l+j§+2[:+?%+§—; (18]
| = ,ig{fi S L4214 )
(o = G0+ 1)+ ST+ 1)+ 1)

Finally, we have

¢ [’71(% —1)+ Bl - /n)]

K, =
G R B A PR 19
' 19
{525 1)+ =1
T e+ 0+ AT YRy
The geodesic curvature K, is zero when
(73
LafZe )4 Bogyy - p) =0 [20]
!2 I: 2z
Eq. [20] is not generally satisfied; it is satistied for surfaces such that
2 T 2 -:-:
fyy = fl.f . ':
as a sphere or a surface of revolution. : ‘jii
T
s
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4. Apoendix: Approximation and interpolation

The treditional procedure for performing numerical differentiation of sampled functions
is to interpolate using polynomials or related functions and to analytically differentiate
the interpolated function. This procedure is usually justified if the interpolated function
converges uniformly to the original function as the number of samples increases. Most
of the classical results in the interpolation and approximation of functions deal with this
problem. In the case of images the main problem is however different: approximation for
the puraose of differentiation has to be robust against noise. The solution to this problem
has to be sought in regularization theory, as we explained earlier. In this appendix, we
discuss some of the classical results on interpolation and approximation for completeness
and no because they are directly relevant to the problem of regularizing edged detection.
The reuder will notice, however, that there are several connections between the classical

results outlined here and our approach described in the the main body of this paper.

Uniforr convergence for polynomial interpolation is not guaranteed even when the original
function is =, or when it is analytical. Uniform convergence on bounded sets requires the
original function to be entire. From the Paley-Wiener theorem (Boas, 1954) we know that

this is the case with band-limited functions.

It the criginal function is analytic, numerical differentiation may be performed using an
appropiiate Taylor expansion without interpolation. Interestingly, almost every function is
made analytic by filtering with a Gaussian, since the filtered function is a solution of the
heat equation (Widder, 1975). Thus, in order to safely perform numerical differentiation, it

is necessary to use band-limited or Gaussian filters.

Note that if approximation (in the Weierstrass-Bernstein sense) rather than interpolation is
used. v:e obtain uniform convergence for all continuous bounded functions on bounded
sets. Therefore, differentiation through approximation is successtul on bounded sets for all
bounded (' functions. We will see, however, that convergence is too stow for this approach

to be p-actical.

In what follows, we will use a one-dimensional approach for the sake of simplicity, but ail

our conclusions and results can be easily extended to two dimensions.

4.1. Interpolation and ditferentiation

Consider a function f(r) defined in [a,6]) and have « <z, < £ <z < ... <2 < ... <

r,, < b Jistinct points, and

T == [(ri)

the values of f at r,. it is well known that there exists a polynomial p,(r) of degree n such
that for the given values r, < ry... < r, takes the values », y...,y., (Davis, 1975). This

polynomial is
pale) Y i),

where 1 (r) are Lagrange polynomials

(1]

[2]
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(z— 2oz — 21). . (r — Th i 2 — Zi44)- . (2 — 20)

ulz) = (rk — 2o)(#k — 21). - {2k = 2k N2k — Zaa ). - (T — 20)

(3]

From equation [2] and [3], we consider the best way to estimate the derivative of f(z) in
zk,f'(zk) by computing

Pa(r) = 3 ukl(s) e )
0

In order to use this procedure reliably we need to know that in some way p,(z) is a good
approximation of f(r) outside the sampled points. We would like to know that by increasing
the number n of sampled points z,, in [a,b], we have

liMpeoo  Palz) = f(2). (5]

This is equivalent to uniform convergence. At the beginning of the century, Bernstein (see
P. Davis, 1975) proved that equidistant interpolation over |z| < | to the function y = |z|
diverges for 0 < |z|] < 1; that is, continuity of f(z) is not sufficient to ensure uniform
convergence. Runge showed that even it f(z) is analytical in [a,b] uniform convergence
may fail (P. Davis, 1976). For the function f(z) = 1/(1 + z?), Runge showed that if p,(z)
interpolates f(z) at equidistant points in -5, 5], p.(r) converges to f only in |z| < 3.63... and
diverges outside the interval. Although f(z) is analytic in R is not analytic in the complex
plane C and the singular points +: induce this divergence (see P. Davis, 1975). To obtain
uniform convergence of p,(z) to f(z) in {e,8], it is necessary for f(z) to be analytic in a
subregion of the complex plane C containing the segment [a,b] (see Theorem 4.3.1 of P.
Davis, 1975).

It may be useful to remember that polynomial interpolation is not optimal if the sampled
points are equidistant. Polynomial interpolation is optimai if interpolation of s(z) in [0,1]
of order n is carried at the zeros of the Chebychev polynomials 7.,(x). In general, the
procedure of differentiation through interpolation with polynomial or related functions may
badly fail when applied to arbitrary sampled functions.

4.2, Differentiation of analytic-, entire- and band-limited functions

If we know that f(z) is analytic in [a,b] and we have no information about its behavior on
the complex plane ¢ we cannot safely use difterentiation through interpolation. If f(z) is
analytic in z € [a,b], we have

n
T—-7z
f(.l:) = f(:rk) + (1' - :k)j“)(zk) + ...+ (—;‘T—k) j""(zg) + ... [6]
in [ry - 8,1, + 6]. f we have 2n + | sampled points in [rx - §, 7, - 8], from equation [6], we
can obtain 2n linear equations, from which we can solve for fV}{(x;),j -= 1...2n. In the case
of three or five equidistant points we obtain the formulae shown in Appendix 1.

The main problem with this procedure of numerical differentiation is that we do not generally
know the radius of convergence of the Taylor expansion [6] and, given an arbitrary sampled
analytical tunction, we do not know how many points around r, fall in the convergence
interval. When the class of original functions [ is further restricted to entire functions, the
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Taylor expansion [6] is valid in R, that is, it has an infinite radius of convergence, and the
ﬂ above procedure can be carried out safely.

Now let us suppose that f(z) is entire, fcL%(R), and

lim,,_.wsupllh?ﬂ =6 (7]
where
N
M(p) = maxsi—,|/(2) 9 g
with z € C and f extended to the complex plane. o]
If 6§ < co then f(z) is said to be of exponential type § and by the Paley-Wiener Theorem c
(Boas, 1954; Achieser, 1956), /() is band limited with F(w) = 0 for |w| > 6, where F(w) S
is the Fourier transform of f(z). The Paley-Wiener Theorem represents the connection .;ft s
between entire and band limited functions. It may be useful to remember that the Gaussian A
is entire and belongs to L*(R) but falls off just too quickly to be of finite exponential type DN
and therefore to be band-limited. P
If f(z) is band-limited (with cutoff frequency w,), and f(z) has been correctly sampled at .

equidistant points spaced h, the Shannon Sampling Theorem gives us

I(z)= E !.-sinC[i(z - -'h)]. [9)

—Q0¢

where sincz = %22, |n this case, we can compute [} exactly from [9] as

1 2], cosn(k~1)
fi=7 Xk — T

h — B d
—O0,psh k s [10 <] ety

= %[(/I&l = fr-1) - %(fuz — fr—2)+ %(I‘HG - fe-3)—...|

Although [10] is exact for correctly sampled band-limited functions, it converges rather
slowly.

~ 4.3. Approximation and Ditferentiation

it is well known that if f(r) is continuous in [a, 4], for every given « > 0, we can find a
polynomial p,(r) of sufficiently high degree such that

()~ pule) K¢ a<z<h (18]

This is the so-called Weierstrass approximation theorem. Now let us suppose that we have — —r—
an J(r) continuous and bounded in |0, 1] and we know the values of f(r) at equidistant O
POINtS ry k. Instead of interpolating a polynomial through the known points, we can
construct the Bernstein polynomial:
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Ba(z) = z": [z )(:)z"(l — )™k, (1]
k=0

Observe that 11,(0) = /(0) and B,(1) = f(1), but apart from 0 and 1 B,(z) is not in general
equal to f(xx). A fundamental theorem of Berstein shows that

liMpoo Ba(z) = J(z) in [0,1]. (13]

Moreover, if f(z) € C', we have

liMpreoo B, (z) = f'(z) in [0,1]. [14]

Thus, Bernstein polynomials provide simultaneous approximation of the function and its -
derivatives. If we want to obtain an estimation of the derivative of a sampled function, we
can construct the Bernstein polynomial from the sampled values, compute the analytical
derivative of B3,(z) and take it as an estimate of f’(z). The drawback of Bernstein polynomials
is that their convergence is very slow as shown by the poor performance of a 3- or 5- point
approximation. Therefore, if we have samples of a generic function of class C', we can ) o
use Bernstein polynomials to obtain an estimation of the values of derivatives at sampled B
points, but many points are needed for a good estimate. If we have samples of an entire f o
function, the most efficient procedure is to use the equations derived in Appendix 1. .
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