ſ	AD-A14	8 564	NO- MAS EXP	SLUMP S CONC ERIMEN	ROLLEI RETE (R-COMP CONSTR	ACTED UCTION ICKSBU	CONCRI I(U) AI IRG MS	ETE (R RMY EN STRUC	CC) FO GINEER	R USE WATEI L SAU	IN RWAYS CIER	1/	'1	
L	UNCLAS	SIFIED	0CT	84 WE	S/TR/9	5L-84-	17				F/G :	11/2	NL	•	_
		-	2 D								đ.,	2			
								-							
					END Filmed DTHC										
ļ															
ļ		_		.											

.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

S Army Corps f Engineers

TECHNICAL REPORT SL-84-17

NO-SLUMP ROLLER-COMPACTED CONCRETE (RCC) FOR USE IN MASS CONCRETE CONSTRUCTION

by

Kenneth L. Saucier

Structures Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631 Vicksburg, Mississippi 39180-0631

October 1984 **Final Report**

Approved For Public Release, Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000

Under CWR Work Unit 31240

LABORATORY

AD-A148 564

84 12 05 028

.ECT DEC 1 3 1994

B

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

(c) determine methods of improving hardened lifts joints, (d) determine the relative frost resistance of RCC, (e) evaluate the erosion susceptibility, and (f) discover economical methods of obtaining void-free vertical surfaces.

Indications are that: (a) the curb concrete is a viable method of forming and containing RCC; (b) the degree of compaction achieved is dependent on the stiffness and the paste content of the mixture, the lift thickness, and the individual roller; (c) the tensile strength of the untreated joints increased with paste content and quality from approximately 25 percent for relatively lean RCC to approximately 50 percent for richer RCC; (d) erosion resistance at 35-ft/sec fluid velocity of RCC is good; (e) resistance to freezing and thawing of the RCC is poor, apparently due to a poor air void system; and (f) surface treatment with a mortar gun (shotcrete) appears to be a practical method to achieve smooth vertical surfaces. χ

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Unclassified

PREFACE

The investigation reported herein was authorized by a letter dated 24 April 1975 from the Office, Chief of Engineers, U. S. Army, in response to a US Army Engineer Waterways Experiment Station (WES) letter dated 19 March 1975, subject: Project Plan for Investigation of No-Slump Roller-Compacted Concrete (CWR Work Unit 31240). The Technical Monitor for this investigation was Mr. Fred Anderson, DAEN-ECE-DC.

The investigation was conducted during the period 1975 to 1981 at the Structures Laboratory (SL), WES, under the supervision of Messrs. Bryant Mather, Chief, SL, and John M. Scanlon, Chief, Concrete Technology Division. Mr. Kenneth L. Saucier was the project leader and prepared this report.

Commanders and Directors of WES during this investigation and the preparation of this report were COL John L. Cannon, CE, COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

ŝ

	Page
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Background	4
Purpose	5
Scope	5
PART II: MATERIALS, EQUIPMENT, AND TESTS	6
Materials	6
	8
PART III: RESULTS	13
Mixture Proportioning	13
Tests of Fresh Joints	19
Tests of Cold Joints	19
Moisture-Density Relationships	20
Erosion Tests	21
Surface Treatment	21
Freezing and Thawing Resistance	21
PART IV: CONCLUSIONS	25
REFERENCES	26
TABLES 1-12	

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

4

.

Multiply	By	To Obtain
cubic feet	0.02831685	cubic metres
degrees	0.01745329	radians
feet	0.3048	metres
feet per second	0.3048	metres per second
horsepower (550 ft-lbf/sec)	745.6999	watts
inches	25.4	millimetres
pounds (force)	4.447	newtons
pounds (mass)	0.4535924	kilograms
pounds (ma ss) per cubic foot	16.01846	kilograms per cubic metre
pounds (mass) per cubic yard	0.5932764	kilograms per cubic metre
pounds (force) per square inch	6.894757	kilopascals
square feet	0.09290304	square metres
tons (2000 lb)	907.1847	kilograms

ويتعرب ويتعرب والمتعاد والمتع

NO-SLUMP ROLLER-COMPACTED CONCRETE (RCC) FOR USE IN MASS CONCRETE CONSTRUCTION

PART I: INTRODUCTION

Background

1. The cost of concrete construction is continually rising. Recent proposals indicate that if the present conventional methods of placing mass concrete were changed, considerable savings in construction costs could be realized. The use of no-slump concrete and embankment techniques (i.e., a bulldozer to level the concrete and a vibratory roller to externally consolidate the concrete) would permit a significant cost reduction (Camellerie 1974).

2. No-slump concrete is concrete having no slump but containing the minimum amount of water necessary to achieve consolidation with a vibrating roller. It is anticipated that such a concrete mixed and placed in large volumes would result in moderate savings in cement cost and significant savings in labor cost required for consolidation of conventional mass concrete. Most promising applications appear to be for use in construction of mass sections or as a foundation or pavement slab.

3. Results of a previous investigation using earth compaction methods (15-ton* vibratory roller) have been reported by the Tennessee Valley Authority (Cannon 1972). Tests at the U. S. Army Engineer Waterways Experiment Station (WES) demonstrated the feasibility of mixing, hauling, spreading, leveling, and compacting no-slump concrete for a massive section (Tynes 1973). Additional studies indicated that the RCC technique could be adapted to certain types of paving construction (Burns 1976). Results of tests on drilled core specimens indicated that the unit weight and strength properties of the concrete were the equal of conventionally placed concrete.

4. Studies by Hall and Houghton (1974) at the Lost Creek Dam site proved the practicality of application of RCC to a mass concrete project. The first full-scale use of RCC in mass concrete construction in the United States

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

occurred with the completion of Willow Creek Dam in Oregon in 1982 (U. S. Army Engineer District, Walla Walla, 1983).

Purpose

5. The objective of the investigation reported herein was to study the problems associated with the use of no-slump RCC for mass concrete construction and investigate possible solutions for problems encountered.

Scope

6. Tests were conducted to: (a) optimize mixtures for application of no-slump techniques, (b) develop a consistency and quality control technique, (c) determine methods of improving hardened lift joints, (d) determine the relative frost resistance of RCC, (e) evaluate the erosion susceptibility, and (f) discover economical methods of obtaining void-free vertical surfaces.

Materials

Portland cement

7. A Type II portland cement (RC-705) from Alabama was used in all mixtures; the chemical and physical properties of the cement are presented in Table 1.

Fly ash

5 5

8. A fly ash meeting the requirements of CRD-C 255 (ASTM C 618) (U. S. Army Engineer Waterways Experiment Station 1949) for Class F was used in several mixtures. The chemical and physical properties of fly ash are given in Table 2.

Aggregates

9. The limestone fine (CRD MS-27) and coarse (CL-2 G-1) aggregates were obtained from Alabama. The natural fine and coarse aggregates were obtained locally. The physical properties and gradings of the aggregates used for specific mixtures are given in Tables 3-6.

Equipment

Vibratory roller

10. A small self-propelled, dual-drum vibratory roller (Figure 1) was used to compact small test sections for study. The purpose in using a relatively small roller was to (a) allow work to be conducted on a laboratory scale and (b) determine if a small roller would facilitate compaction around obstacles and boundaries. Pertinent information on the roller follows:

Length, in. (mm)	76	(1,930)
Height, in. (mm)	35	(890)
Width, in. (mm)	33	(840)
Drum width, in. (mm)	27	(690)
Drum diameter, in. (mm)	16	(400)
Static mass, 1bm (kg)	1212	(550)
Vibrations per minute	3300	
Dynamic force, 1bf (N)	4400	(19,570)
Power unit; diesel, hp (W)	7.0	(5,220)

Vibrating table

11. A vibrating table was used in the tests to control the consistency

Figure 1. Vibratory roller used for compacting RCC

of the RCC. The table had a frequency of 3600 Hz and was operated at an amplitude of 0.015 in. (0.38 mm) during this study. Erosion apparatus

12. An apparatus was constructed for this investigation to determine the amount of erosion of RCC due to the impingement of high velocity water. The apparatus was designed so that a jet of water (approximately 1 by 8 in.) having a velocity of 40 ft/sec would impinge on the specimen surface at an angle of 5 deg from the horizontal. The center of the specimen was placed 12 in. from the source of the water jet. The specimen was examined at intervals to note any deterioration of the surface. The intervals were every 1/2-hr up to 1-hr testing, every 1-hr up to a total of 4-hr testing, and, finally, every 4 hr up to termination of the test. The test specimens were 12 by 12 by 1 in. thick. A specimen under test is shown in Figure 2.

Figure 2. Erosion test apparatus

Mortar gun

13. A small mortar gun which pneumatically applies a shotcrete mixture to a rigid surface was used as a surface treatment technique for the rough edges of RCC. The gun, developed at the Missouri River Division Laboratory, is shown in Figure 3 (Coy 1974).

Mechanical compactor

14. A large mechanical compactor normally used to define moisturedensity curves for gravel-sand mixtures was used to study the compaction characteristics of two RCC mixtures (Donaghe and Townsend 1975). For these tests a 10-lb hammer compacted the material in a 6-in.-diam mold.

Tests

Mixtures

15. Work by Leflaire and Morel (1975) indicated that RCC mixtures must be optimized for the particular roller to be used. Mixtures were therefore proportioned to accommodate the smaller roller and to determine if more fluid or smaller-nominal-maximum-size-aggregate mixtures could be consolidated near rigid boundaries. Information on the individual mixtures is given in Table 7.

Figure 3. Mortar gun and applications

Summary information on all mixtures is given in Table 8. The excess paste was that portion of the water and cementitious material (portland cement and fly ash) in excess of that required to fill all voids in the fine aggregate. Quality_control

16. The consistency and quality control technique used in this investigation was essentially that used by Cannon (1972). A sample of material was placed in a 0.25-cu-ft (0.007 cu m) container, struck off level with the top of the container, and vibrated until consolidation occurred. The time of vibration was recorded as consolidation time. The test result is, of course, subject to the judgment of the operator. The same operator conducted the tests throughout this program, and results appeared to be consistent. Tensile strength of joints

17. A point-load tensile test was used to evaluate the strength of the lift joints. The tensile strength is determined by applying compressive point-loads to the curved surface of a cylindrical core specimen with the axis of the core horizontal (Reichmuth 1963). The point-loads are applied by a test-ing machine through small-diameter, hardened steel rollers at right angles to the axis of the specimen. This loading produces tensile stresses perpendicular to the axis of loading; the tensile strength σ_{t} is given by an empirical

expression

$$\sigma_t = \frac{0.96P}{D^2}$$

where

P = failure load, lb

D = core diameter in.

The test configuration is shown in Figure 4. <u>Curb concept</u>

18. Preliminary work indicated that even relatively wet RCC would not consolidate against a vertical boundary (Figure 5). The curb concept for containment of RCC was therefore investigated in a small-scale field experiment. The basic idea consists of extruding high quality rapid setting concrete from a forming machine to the shape required for construction of the curbs. After one day the concrete should attain a compressive strength of 2000 to 3000 psi (14 to 20 MPa), thus being able to withstand the pressures of the vibratory roller used to compact the RCC.

19. The study plan is given in Figure 6. The curb concept is considered attractive since the sloping sides of the curbs allow the vibratory roller to force the RCC down into the hardened curb concrete, thus reducing the large number of voids which usually occur when compaction is effected against a vertical boundary. The small, dual-drum, 1200-1b (550-kg) roller was used in the work described herein. An extrusion apparatus was not available for fabricating the curbs; therefore, the curbs were formed and cast by conventional methods. The curb concrete contained 600 lb (270 kg) or portland cement per cubic yard and had a slump of 1.5 in. (38 mm); this mixture achieved a strength of 3000 psi (20 MPa) at one-day age. The curbs were cured overnight and stripped immediately prior to placement of the no-slump rolled concrete; this usually occurred when the curb concrete was about 24 hr old. On one occasion the sloping face of the curb was removed soon after initial set and the face scarified to improve bond.

Resistance to freezing and thawing

20. Resistance of RCC to freezing and thawing was investigated in the laboratory. Laboratory specimens were cast and tested according to American Society for Testing and Materials (1983), C 666-80, Procedure A. Some of the tests were not started until the specimens were 90 days old.

11

1.1

.

.

Figure 5. RCC compacted against a vertical surface (three lifts)

· · · · ·

·...*

12

1.7

PART III: RESULTS

Mixture Proportioning

21. Due to its successful application in the work reported by Tynes (1973), mixture 1 was used as a starting point. It was discovered that the relatively dry (consolidation time of 90 sec), large aggregate (3 in., 75-mm) mixture could not be effectively consolidated by the small roller. Since a lift thickness of 10 in. (250 mm) was needed due to the rock size, the water content of the concrete was increased (mixture 6). A consolidation time of 20 sec produced concrete that was a little wet; a consolidation time of 30 to 40 sec appeared to produce a concrete of the consistency required in order to achieve good consolidation under the roller. Consolidation times of less than 20 sec (mixture 13) resulted in segregation problems. Mixtures 7 and 8 were made to investigate changes in aggregate fractions which might improve consolidation of 3-in. material. Ten percent smaller rocks (mixture 8) proved beneficial. Use of natural coarse aggregates (mixture 14) resulted in an exceptionally smooth rolled surface not observed with crushed aggregates. However, it was concluded that the small roller would not prove feasible for extended rolling of 3-in. (75-mm) nominal maximum size aggregate concrete. Also, in actual practice smaller aggregate concrete would normally be used near obstacles and boundaries. Consequently, most of the remainder of the test program was devoted to the techniques of working with nominal 1.5-in. (37.5-mm) or smaller maximum size aggregate concrete.

22. The work with mixture 2 indicated that the roller would consolidate relatively dry small aggregate concrete but only in lifts of approximately 4 in. (100 mm). Since 4-in. lifts would not likely prove practical, it was decided to try incremental lift depths up to 10 in. The 10-in. lifts at a consolidation time of 60 sec were not satisfactory (mixture 4), but were satisfactory at a consolidation time of 45 sec when placed over relatively fresh concrete. A consolidation time of 25 to 35 sec proved to be the optimum (mixtures 9 and 11) for concrete placed on rigid, hardened surfaces. Mixture 12A was a modification of a conventional RCC mixture to achieve 7 percent total air. The rolling of mixture 12A was satisfactory, but there was no practical way to determine how much of the total air was entrained air. Mixture 15 was proportioned to represent a paving mixture reported by Burns (1976), and the

rolling and consolidating of this mixture were satisfactory.

23. The tests with mixtures 16 and 17 proved to be very significant. During the curb tests a board was wedged between the curbs to provide a continuous curb section. Immediately after the lifts were rolled, the board was removed to observe the effect of consolidation in the underside of the compacted concrete. Figure 7 shows the undersides of mixtures 16 and 17. Note the improved degree of consolidation with mixture 17, which had 5 percent excess paste compared with only 2 percent for mixture 16. It was concluded that the excess paste was the significant factor in the compaction process. However, when the paste content became relatively large (8 percent in mixture 18), the mixture became sticky. Mixture 10 with natural aggregates had a springy

Figure 7. Underside of compacted mixtures 16 and 17

effect and yielded a very smooth surface similar to mixture 14 under the rolling action.

24. All three RCC mixtures used in the curb trials were proportioned to have a consolidation test time of 20 to 25 sec. Thus, all were relatively wet by no-slump concrete standards. Three double passes were used in compacting all lifts. Mixture 16, the basic mixture, was used for the first three lifts. Mixtures 17 (lift 4) and 18 (portion of lift 5) were proportioned to have increased paste contents. Observations indicated that (a) all mixtures rolled satisfactorily and (b) the curb concept appeared to be a viable method of forming and containing RCC (Figures 8-11).

25. The concrete curbs were cast in two sections (Figure 12). The resulting space between the adjacent curb sections was closed prior to RCC placement by wedging a board in line with the sloping curb surfaces. The board was removed after compaction and the degree of consolidation was observed. Although the mixtures appeared to be fully consolidated, the underside of the compacted concrete revealed differences in the mixtures. Some minor alignment problems developed with the formed curbs; however, a properly operated extrusion machine designed especially for the curb section should rectify these problems.

Figure 8. One 16-cu-ft batch of mixture 1

E

Figure 9. Complete lift of mixture 1

Figure 10. Compacted top surface of mixture 2

. .

Figure 11. Completed curb trial section

Figure 12. Forming and casting of curbs

26. The test section was cored when the concrete reached 90 days age. Twelve 6-in. (152-mm) cores were taken as follows: (a) four vertical cores full depth through the RCC, (b) four vertical cores at the interface of the RCC and the curbs, and (c) four horizontal cores at the RCC joints. Intact joints were present only on the untreated joint and the retarded-then washed joint of mixture 17 of the RCC. Good mechanical interlock was evident at all other RCC joint surfaces; however, the core separated at the joints when removed from the hole. It was expected that good bond would develop at the top lift under mixtures 17 and 18, but such did not happen. The four cores drilled horizontally through the joints verified the findings of the vertical cores, namely that the joints were intact in two cores drilled at the interface of mixture 17 (placement day 7), but only mechanical interlock on the other joints was observed.

27. The four vertical cores drilled at the interface of the RCC and the curbs revealed (a) excellent adhesion between the curbs and (b) relatively good bond of the RCC to the curbs. The 6-in.- (152-mm-) diam cores included only feather edges of the RCC; thus many of the edges broke during removal from the core hole. Good bond was evident in many cases, where the RCC exceeded the 2-in. (50-mm) depth, and especially on the scarified curb (Figure 13).

Figure 13. Scarified face on one curb section

Tests of Fresh Joints

28. Examination of specimens taken from concrete produced during the mixture proportioning studies revealed that very poor bond developed between lifts of mixtures which were very dry or contained relatively low amounts of cementitious material. In order to investigate the bonding characteristics of RCC, three 6-in. (150-mm) lifts of mixture 9 were rolled and cores were taken and tested for tensile strength at 90 days age by the point-load test proposed by Reichmuth (1963) (Figure 4). Results are given in Table 9. The fresh joint (1-hr age) strength is almost the equal of the parent concrete. However, the cold joint developed a strength of only about half that of the base material. Apparently if the concrete is consolidated before time of initial setting, the material acts almost as a uniform mass; however, after time of final setting is reached in the lower lift, complete bond between lifts will not be achieved.

Tests of Cold Joints

29. In order to determine if the intact joints achieved with mixture 17 were due to the increased paste content or the reduced lift height, a supplemental test section was rolled (Figure 14). A 3-in. (75-mm) lift of mixture 16 provided the base for placement of three 6-in. (150-mm) lifts, one each of mixtures 16 and 18, and half sections of mixtures 19 and 20. Mixture 19 with a slump of 1 in. (25 mm) and mixture 20 with a slump of 8 in. (200 mm) were used to provide a basis for evaluating the bond of the RCC concrete. Mixture 19 was vibrated; mixture 20 was essentially flowing concrete. All joints were untreated except for wetting prior to concrete placement. Twelve vertical concrete cores were drilled through the section for testing.

30. The tensile strengths of the cold joints and the parent concrete were determined at 90 days age. Results of the tensile tests are given in Table 10. Mixture 19, the control mixture, developed 305-psi (2100-kPa) tensile strength in the concrete and 223 psi (1550 kPa) or 74 percent in the joints. Mixture 16 developed 225 psi (1550 kPa) in the concrete and only 60 psi (410 kPa) or 27 percent in the joint. Significantly, only 7 of the 12 joint cores were recovered from mixture 16. Mixture 18 had cement content and water-cement ratio identical with those of mixture 19 and developed almost

Figure 14. Supplemental study

as much strength in the matrix. Thus, it appeared that good consolidation was achieved with the roller on mixture 18. An average joint strength of 44 percent of the concrete strength was obtained on 11 out of 12 possible core tests. This compares with 50 percent joint strength achieved previously on mixture 9. Mixture 20, the high-range water-reducing admixture, developed less strength than mixture 19, although mixture proportions were identical. Significant segregation which was obtained when using mixture 20 may have caused the lower strengths.

した豊富 しょうばい かいたい たんしん ススト 金川市 しいり ちんじろ しんたま たたさ たけいちょうけい

Moisture-Density Relationships

31. In order to gain some measure of the relative amount of water being used in the RCC mixtures in relation to the compaction curves developed for conventional earth compaction procedures, moisture-density relationships were determined for two mixtures, 12 and 15. The results, given in Figures 15 and 16, indicate that the optimum water content (to secure maximum density) is approximately 5 percent for these mixtures. By comparison, the water contents used for these mixtures, as determined from Table 8, to secure compaction with the vibratory roller were 3.7 percent and 4.1 percent, respectively. Therefore, indications are that the vibratory roller must operate on RCC mixtures which have approximately 1 percent less moisture than optimum to prevent sinking of the roller into the mass.

Erosion Tests

32. Tests of erosion resistance of RCC were conducted on two specimens received from the U. S. Army Engineer Division Laboratory, North Pacific, and two specimens fabricated at WES from mixture 6. The specimens were examined at intervals to note any deterioration of the surface. The impinging jet is shown in Figure 2. The velocity achieved during these tests fluctuated between 30 and 35 ft/sec. Results are given in Table 11. Very little erosion was indicated on any of the four test specimens after 14 hr of flow. An additional 6 hr of testing on specimen 2 produced no further loss of material. Observation indicated that material lost during erosion consisted of small amounts of weak mortar adjacent to the voids in the test specimens.

Surface Treatment

33. One of the problems associated with RCC for use in mass construction is the rough edges left if forming is not used. A small mortar gun was used to determine if a properly applied shotcrete would provide an acceptable alternative to a formed surface. The mixture used was a wet process mixture in which the ratio of sand to cement was varied between 2:1 and 4:1. Only enough water was used to provide the proper gunning consistency in accordance with instructions (Coy 1974). Figure 3 shows the result of gunning several areas with different mixture proportions. Apparently, a gunned mortar would provide an acceptable surface treatment to the rough RCC either as a natural gunned finish or as a troweled or floated finish.

Freezing and Thawing Resistance

34. Results of freezing and thawing tests are shown in Table 12. Specimens from mixture 12A, which contained 5 to 6 percent total air as a result

Figure 15. Compaction test report, mixture 12

ا میاد بر امیا میاد بر ایرا برا میادید از ایرا میک<mark>اند</mark> و ا

22

. . .

Figure 16. Compaction test report, mixture 15

23

a a she a ba a ba a she a s

of the addition of an air-entraining admixture (AEA), were tested at two ages. At the specified test age (14 days), the relative modulus of elasticity E dropped to less than 20 percent at 11 cycles. At a test age of 90 days the test ran to 34 cycles before termination, indicating some slight improvement in resistance to freezing and thawing. Apparently the air void system obtained with the AEA was not satisfactory. Specimens from mixture 15, which contained no entrained air, sustained 69 cycles before the modulus decreased to 50 percent.

PART IV: CONCLUSIONS

35. Based on the results of this study, the following conclusions appear warranted:

- <u>a</u>. The curb concept is a viable method of forming and containing RCC.
- b. The degree of compaction achieved is dependent on the stiffness and the paste content of the mixture, the lift thickness, and the individual roller. An excess paste content of 5 percent appears to be needed to secure satisfactory compaction.
- <u>c</u>. The tensile strength of the untreated joints compared with the parent concrete increased with paste content and quality from a value of approximately 25 percent for relatively lean RCC to approximately 50 percent for richer RCC to 75 percent for conventional concrete.
- <u>d</u>. Erosion resistance of RCC at 35-ft/sec fluid velocity for 20 hrs of test is indicated to be very good.
- e. The moisture content which is best for rolling is approximately l percent less than optimum as determined by soil compaction techniques.
- \underline{f} . Surface treatment by use of a mortar gun appears to be a practical method to secure smooth edges on RCC.
- g. Resistance of RCC to freezing and thawing containing up to 5 to 6 percent total air is poor, apparently due to an unsatisfactory air void system.

REFERENCES

American Society for Testing and Materials. 1983. "Resistance of Concrete to Rapid Freezing and Thawing," Vol 04.02, Philadelphia, Pa.

Burns, Cecil D. 1976 (Aug). "Compaction Study of Zero-Slump Concrete," Miscellaneous Paper S-76-16, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Camellerie, J. F. 1974. "Cost and Feasibility Study; Alternate Designs to Permit Use of Slip Form and Other Techniques to Maximize Economies, Trumbull Lake Dam, Pequonnock River Basin, Connecticut," Miscellaneous Paper C-74-15, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Cannon, R. W. 1972 (May). "Concrete Dam Construction Using Earth Compaction Methods," <u>Proceedings, Engineering Foundation Conference</u>, 14-18 May 1972, American Society of Civil Engineers, New York, N. Y., pp 143-152.

Coy, William R. 1974 (Apr). "Development of Equipment and Techniques for Pneumatic Application of Portland Cement Mortar in Shallow Patches," Technical Report MRDL 2-74-?, U. S. Army Missouri River Division, CE, St. Louis, Mo.

Donaghe, R. T., and Townsend, F. C. 1975 (Aug). "Compaction Characteristics of Earth-Rock Mixtures," Miscellaneous Paper S-73-25, Report 2, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Hall, D. J., and Houghton, D. L. 1974 (June). "Roller Compacted Concrete Studies at Lost Creek Dam," U. S. Army Engineer District, Portland, Oreg.

Leflaire, D., and Morel, G. 1975 (Feb). "LeCompactage: Orientation Actveles" ("Compaction, Present Trends"), Translation No. 76-1 (CTIAC Report No. 18), translated by J. C. Van Tienhoven, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated from <u>Annales des Institute</u> <u>Technique du Batiment et des Travaus Publics, No. 325, pp 46-64.</u>

Reichmuth, D. R. 1963. "Correlations of Force-Displacement Data with Physical Properties of Rock for Percussive Drilling Systems," <u>Proc Symp. Rock</u> Mechanics, 5th, MacMillan, New York, N. Y., p 33.

Tynes, W. O. 1973 (Oct). "Feasibility Study of No-Slump Concrete for Mass Concrete Construction," MP C-73-10, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

U. S. Army Engineer Waterways Experiment Station, CE. 1949. "Handbook for Concrete and Cement" (with quarterly supplements), Vicksburg, Miss.

U. S. Army Engineer District, Walla Walla. 1983 (July). "Concrete Report, Willow Creek Dam," Walla Walla, Wash.

Chemical and Physical Properties of				
Portland Cement (RC-705)				
·····				
Chemical Properties				
Si0 ₂ , %	22.8			
Al ₂ 0 ₃ , %	4.0			
Fe ₂ 0 ₃ , %	4.2			
CaO, %	62.8			
MgO, %	3.5			
so ₃ , %	1.7			
Ignition loss, %	0.6			
Insoluble residue, %	0.26			
Na ₂ 0, %	0.12			
κ ₂ 0, %	0.49			
Total alkali, as Na ₂ O	0.44			
C ₃ A	3.5			
Physical Properties				
Fineness, air permeability, cm ² /g	3150			
Compressive strength, psi (MPa)				
3 days	1630 (11)			

7 days

2280 (16)

Table 1

Chemical and Physical Properties of Fly Ash (AD-474)

r									
LABORA	TORY			1			REPORT	NO.:	
Concrete Division					REPORT OF	TESTS	WES-	928-12	
USAE	Waterwa Box 63	iys Ex 1	cp.Sta.		ON POZZ	0LAN 262)	SHEET	1 OF	1
Vicks	burg. N	liss.	39180		•		DATE:	15 May 72	
							* 7 .	<u>Jun 72</u>	
CLASS	FXN	к	ND OF POZ	ZOLAN: F	'ly Ash				
SOURCE:	Amax I	'ly As	h Co.,	Wilso	nville,	<u>Ala.</u>	BRAND:		
TEST RE	SULTS OF TH	IS SAMPL	ELOT XX	COMPLY	DO NOT O	COMPLY WITH	SPECIFICATION L	IMITS (SEE REM	ARKS)
FOR USE	AT:								
CONTRAC	CT NO.:								
CAMPLET							ATE SAMPLED:	1 1/0-0 7	2
CAR NO	MI MI	<u> </u>	L. Bar	<u>SON J</u>	<u>r.</u>	600 T	long	I May /	۷
1 713LD S/	MPLE NO.:				<u> </u>	LAB SAMPLE	0115 NO.:		
DATE RECEIVED: 3 MAY 72						LAB JOB NO	.:		· ·
TESTED	ev: Cemer	t & F	ozzola	n Test	Section	CHECKED BY	r:		
TESTS OF	N COMPOSITE	OFTHE	200-TON SA	MPLES LIST	ED BELOW R	EPRESENTING	2000 TONS OR LE	55	
sio, + Al	20,							AUTOCIANS	REDUCTION
- F	2 ⁰ 3	490 7	^{so} ,	AL	KALIES	STRENGTH	SHRINKAGE	EXPANSION	EXPANSION
			<u> </u>			CONTROL	% (o)	*	~ (b)
					REQUIREN	ENTS			
MIN 70	.0 MA	X 5.0	MAX 4.0) M	AX 1.5	MIN 75	MAX 0.03	MAX 0.50	MIN 75
					TEST RES	ULTS	· · · · · · · · · · · · · · · · · · ·		r — — — — — — — — — — — — — — — — — — —
87.8	1.	4	0.1	*0	.8	*90	l	-0.02	
TESTS ON SAMPLES REPRESENTING 200 TONS OR LESS									
SAMPLE NO.	MOISTURE CONTENT 2	LOSS IGNIT	ON PER ION F S(AIR MEABILITY INENESS Q CM/CC VERAGE)	FINENESS VARIATION FROM AVERAGE OF PRECEDING 10, %	LIME POZZOLAN STRENGTH PSI	WATER REQUIREMENT INCREASE IN FLOW 3	SPECIFIC GRAVITY	SP GR VARIATION FROM AVERAGE OF PRECEDING 10, %
	REQUIREMENTS								
	MAX	MA 10.0	X (N)	MIN	MAX	MIN	MIN		MAX
i	3.0	6.0	(#)	6500	20	300		<u> </u>	3
├	0.4	1 2	0	6710	TEST RES	ULTS	11	0.10	
	0.4	- 3.	8	6630	7	1255		2.18	4
3	0.4	3.	7	6720	5	1255	11	2.10	
	0.4			0/20		1200		2.10	
	·	1				+	+	1	
		+			1	1	1	<u> </u>	<u> </u>
						1			
					L	ļ			
 		1			ļ	 _	+		
AVERAGE				6690			 ****	<u> </u>	
(a) APPLI (b) OPTIC		TO CLASS	N		LABORATORY	CEMENT USED	Che	mstone	
REMARKS	Meets	reaui	rement	s of s	pecific	tion CR	D-C 262 a	t 7 dava	
				0	LNL	n M		- / days.	
=28-0	ay tes	cs re	suits			mar	•		
l					W. G.	MILLER			
L					Chief	f, Cemen	t and Poz	zolan Tes	t Section
NOTE: THE	E INFORMATE	DN GIVEN	IN THIS REPO	MENT OF TH	OT BE USED IN	THE U. S. GOV	OR SALES PROMOT	ION TO INDICATE I	

ENG FORM NO. 6000-R

		Tab	ole 3		
	Physical P	roperties and Gradings	of Manufactured Limesto	one Fine and	
	Coa	rse Aggregates for Mixt	tures 1, 3, 6, 7, 8, and	d 13	
			Size Range		Combined
Test	Fine	(No. 4 to 3/4 in.) (4.75 to 19.0 mm)	(3/4 to 1-1/2 in.) (19.0 to 38.1 mm)	(1-1/2 to 3 in.) (38.1 to 75.0 mm)	Coarse <u>Aggregate</u> *
		Physical	Properties		
Bulk specific gravity, saturated surface dry	2.71	2.73	2.71	2.72	
Absorption, %	0.7	0.5	0.5	0.2	
Size		<u>Cumulative Pe</u>	ercent Passing		
3 in. (75 mm)				100	100
2 in. (50 mm)			100	45	78
1-1/2 in. (38.1 mm)			92	5	60
1 in. (25.0 mm)		100	30	0	97
3/4 in. (19.0 mm)		96	1		38
1/2 in. (12.5 mm)		47	0		19
3/8 in. (9.5 mm)		19			8
No. 4 (4.75 mm)		0			0
* The three size ran to 3/4 in.; 20 perce	ges of coar ent, 3/4 to	se aggregates were comb 1-1/2 in.; and 40 perc	bined in the following F cent, 1-1/2 to 3 in.	proportions: 40 perce	ent, No. 4
No. 4	100	No. 50	15		
No. 8	06	No. 100	7		
No. 16	55	No. 200	:		
No. 30	30	Fineness m	modulus = 3.04		

K .

. مى ت 1.1.

		Inpit 4		
Physical P	roperti	es and Gradings of M	anufactured Limeston	e
Fine	and Coa	rse Aggregates for M	lixtures 2, 4, 5,	
	9, 1	1, 12, 15, 16, 17, 1	9, and 20	
		$\frac{\text{Size}}{(N_0, 4 \text{ to } 3/4 \text{ in })}$	$\frac{\text{Range}}{(2/(1+\alpha))^{1-1/2}}$	Combined
Test	Fine	(4.75 to 19.0 mm)	(19.0 to 38.1 mm)	Aggregate*
		Physical Properti	es	
Bulk specific				
surface dry	2.71	2.73	2.71	
Absorption, %	0.7	0.5	0.5	
	<u>C</u>	umulative Percent Pa	ssing	
Sieve				
2 in. (50 mm)			100	100
1-1/2 in. (38.1 mm)			92	97
1 in. (25.0 mm)		100	30	75
3/4 in. (19.0 mm)		96	1	62
1/2 in. (12.5 mm)		47	0	31
3/8 in. (9.5 mm)		19		12
No. 4 (4.75 mm)		0		0

Ł

L

Note: *	Mixtur The tw ing pro 1-1/2 i	e No. 18 contained onl o size ranges of coars portions: 65 percent, n.	ly the No. 4 to 3/4 in. size range. se aggregates were combined in the f , No. 4 to 3/4 in.; and 35 percent,	ollow- 3/4 to
	No. 4	100		
	No. 8	90		
	No. 16	55		
	No. 30	30		
	No. 50	15		
	No. 100	7		
	No. 200			
	Finenes	s modulus = 3.04		

Table 4

Physical Propertie	es and Grading	s of Natural Fine
and Coarse	Aggregate for	Mixture 10
Test	Fine	Size Range (No. 4 to 3/4 in.) (4.75 to 38.1 mm)
Ph	ysical Propert	ies
Bulk specific gravity, saturated surface drv	2.64	2.56
Absorption, %	0.2	1.9
Cumula	tive Percent F	Passing
Size		
1 in. (25 mm)		100
3/4 in. (19 mm)		100
1/2 in. (12.5 mm)		63
3/8 in. (9.5 mm)		35

No. 4 (4.75 mm)

No. 4	98	
No. 8	89	
No. 16	76	
No. 30	51	
No. 50	15	
No. 100	2	
No. 200		
Fineness	modulus = 2.79	

		Size Ra	nge	Combined
Test	<u>Fine</u>	(No. 4 to 1-1/2 in.) (4.75 to 38.1 mm)	(1-1/2 to 3 in.) (38.1 to 75 mm)	Coarse Aggregate*
		Physical Properties		
Bulk specific gravity, saturated				
surface dry	2.64	2.57	2.75	
Absorption, %	0.2	1.9	0.9	
	č	umulative Percent Pass	ing	
Size				
4 in. (100 mm)			100	100
3 in. (75 mm)			87	94
2 in. (50 mm)			42	71
1-1/2 in. (38.1 mm)		100	10	55
1 in. (25 mm)		96		48
3/4 in. (19 mm)		78		39
1/2 in. (12.5 mm)		46		23
3/8 in. (9.5 mm)		29		15
No. 4 (4.75 mm)		6		3

Physical Properties and Gradings of Natural Fine and Coarse Aggregates for Mixture 14

Table 6

* The two size proportions:	ranges of coar 50 percent, No	cse aggregates b. 4 to 1-1/2	were combined i in.; and 50 perc	n the following ent, 1-1/2 to 3 in.
No. 4	98			
No. 8	89			
No. 16	76			
No. 30	51			
No. 50	15			
No. 100	2			
No. 200				
Fineness modu	lus = 2.79			

ł

Weight, S Solid Volume Surfac					
Materials	_ft ³	<u>(m</u> ³)	lb/yd ³	(kg/m ³)	
<u> </u>	<u>Limes</u>	tone 3/4 in.			
	М	<u>ixture l</u>			
Portland cement	1.196	0.034	235.0	139.4	
Fine aggregate	6.810	0.193	1151.4	683.1	
Coarse aggregate	16.670	0.472	2831.5	1679.9	
Water	2.324	0.066	145.0	86.0	
Total	27.000	0.765	4362.9	2588.4	
	M	<u>ixture 3</u>			
Portland coment	0 508	0 017	117 5	60 7	
Fly sch	0.390	0.017	21 2 Q1 2	/ ۲۷ ۵ م/	
Fipe accreate	0.390	0.017	01.3	40.2	
	1.300	0.209	1248.8	740.9	
Jatan	13.095	0.445	2003.3	1581.4	
valer Nim	2.324	0.000	145.0	80.0	
111	0.400	0.011			
Total	27.000	0.765	4258.1	2526.2	
	M	ixture 6			
Portland cement	0.689	0.020	135.0	80.1	
Fly ash	0.689	0.020	93.7	55.6	
Fine aggregate	7.250	0.205	1226.0	727.4	
Coarse aggregate	15.406	0.436	2616.8	1552.4	
Vater	2.566	0.073	160.1	95.0	
Air	0.400	0.011			
Total	27.000	0.765	4231.6	2510.5	
	Limest	one 1-1/2 in.			
	M	ixture 2			
Portland cement	1,196	0.034	235.0	139.4	
Flv ash	0.722	0.022	105.0	62.3	
Fine aggregate	7.808	0.221	1320.3	783.3	
Coarse appregate	14.500	0.411	2463.7	1461.7	
Water	2.324	0.066	145.0	86.0	
Air	0.400	0.011			
		<u></u>		<u> </u>	
Total	27.000	0.765	4269.0	2532.7	

Table 7Individual Maximum Mixture Proportions

(Continued)

(Sheet 1 of 5)

	Solid V	Volume	Weight, S Surfac	Saturated ce Dry
Materials	_ft ³	<u>(m</u> ³)	lb/yd ³	(kg/m^3)
	Limestone 1-	1/2 in. (Contin	ued)	
	<u>M</u> :	ixture 4		
Portland cement	0.984	0.028	193.4	114.7
Fly ash	0.984	0.028	133.9	79.4
Fine aggregate	8.463	0.240	1431.1	849.0
Coarse aggregate	13.808	0.391	2346.2	1392.0
Water	2.361	0.067	147.3	87.4
Air	0.400	0.011		
Total	27.000	0.765	4251.9	2522.5
	<u>M</u> :	ixture 5		
Portland cement	1.196	0.034	235.0	139.4
Flv ash	0.722	0.022	105.0	62.3
Fine aggregate	7.724	0.219	1306.1	744.9
Coarse aggregate	14.344	0.406	2437.2	1445.9
Water	2.564	0.073	160.0	94.9
Air	0.400	0.011		
Total	27.000	0.765	4243.3	2487.4
	Lime	stone 3 in.		
	<u>M</u> :	ixture 7		
Portland cement	0.689	0.020	135.0	80.1
Flv ash	0.689	0.020	93.7	55.6
Fine aggregate	7.250	0.205	1226.0	727.4
Coarse aggregate	15.406	0.436	2616.8	1552.4
Water	2.566	0.073	160.1	95.0
Air	0.400	0.011		~ =
Total	27.000	0.765	4231.6	2510.5
	<u>M</u>	<u>ixture 8</u>		
Portland cement	0.689	0.020	135.0	80.1
Flv ash	0.689	0.020	93.7	55.6
Fine aggregate	7.250	0.205	1226.0	727.4
Coarse aggregate	15,406	0.436	2616.8	1552.4
Water	2.566	0.073	160.1	95.0
Air	0.400	0.011		
m = 4 = 1	27 000	0 745	4231 6	2510 5
lotal	27.000	0.705	7231.0	2310.3

Table 7 (Continued)

(Continued)

(Sheet 2 of 5)

	saturated ce Dry			
<u>Materials</u>	ft ³	<u>(m³)</u>	lb/yd ³	<u>(kg/m³)</u>
	Limestone	3 in. (Continued)	<u></u>	
	Mi	xture 13		
Portland cement	0.509	0.014	100.0	59.3
Fly ash	0.735	0.021	100.0	59.3
Fine aggregate	7.092	0.201	1199.3	711.5
Coarse aggregate	15.070	0.427	2559.6	1518.6
Water	2.244	0.064	140.0	83.1
Air	1.350	<u>0.038</u>		
Total	27.000	0.765	4098.9	2431.8
	Natu	ral 3/4 in.		
	Mi	xture 10		
Portland cement	1.196	0.034	235.0	139.4
Fly ash	0.772	0.022	105.0	62.3
Fine aggregate	8.981	0.254	1479.5	877.8
Coarse aggregate	13.472	0.382	2168.9	1286.7
Water	2.179	0.062	136.0	80.7
Air	0.400	0.011		
Total	27.000	0.765	4124.4	2446.9
·	Nat	ural 3 in		
	Mi	xture 14		
Portland cement	0.509	0.014	100.0	59.3
Fly ash	0.735	0.021	100.0	59.3
Fine aggregate	6.295	0.179	1037.0	615.2
Coarse aggregate	16.188	0.458	2686.9	1594.1
Water	1.923	0.055	120.0	71.2
Air	1.350	0.038		ہ ہے ۔۔۔۔
Total	27.000	0.765	4043.9	2399.1

Table 7 (Continued)

(Continued)

(Sheet 3 of 5)

	Solid	Volume	Weight, Surfa	Saturated ce Dry
Materials	ft ³	<u>(m</u> ³)	$1b/yd^3$	<u>(kg/m³)</u>
	Limest	one 1-1/2 in.		
	Mi	xture_15		
Portland cement	2.630	0.074	517.0	306.7
Fine aggregate	7.433	0.211	1256.9	745.7
Coarse aggregate	13.803	0.392	2345.3	1391.4
Water	2.734	0.077	170.6	101.2
Air	0.400	0.011		
Total	27.000	0.765	4289.8	2545.0
	Mi	xture_16		
Portland cement	0.509	0.014	100.0	59.0
Fly ash	1.470	0.042	200.0	119.0
Fine aggregate	7.277	0.206	1226.0	727.0
Coarse aggregate	14.778	0.419	2505.0	1486.0
Water	2.404	0.068	150.0	89.0
Air	0.562	0.016		
Total	27.000	0.765	4181.0	2480.0
	Mi	xture 17		
Portland cement	0.677	0.019	133.0	79.0
Fly ash	1.676	0.048	228.0	135.0
Fine aggregate	6.695	0.190	1128.0	669.0
Coarse aggregate	14.780	0.418	2505.0	1486.0
Water	2.596	0.074	162.0	96.0
Air	0.576	0.016		
Total	27.000	0.765	4156.0	2465.0
	Mi	xture 18		
Portland cement	0.763	0.022	150.0	89.0
Fly ash	1.838	0.052	250.0	148.0
Fine aggregate	7.328	0.208	1235.0	733.0
Coarse aggregate	13.610	0.385	2310.0	1370.0
Water	2.885	0.082	180.0	107.0
Air	0.576	0.016		
Total	27.000	0.765	4125.0	2447.0

Table 7 (Continued)

(Continued)

(Sheet 4 of 5)

	Solid	Volume	Weight, Surfa	Saturated ce Dry
<u>Materials</u>	_ft ³	<u>(m³)</u>	lb/yd ³	<u>(kg/m³)</u>
	Limestone 1-	1/2 in. (Contir	ued)	_
	Mi	xture 19		
Portland cement	0.763	0.022	150.0	89.0
Fly ash	1.838	0.052	250.0	148.0
Fine aggregate	6.054	0.171	1020.0	605.0
Coarse aggregate	14.884	0.422	2490.0	1477.0
Water	2.885	0.082	180.0	107.0
Air	0.576	0.016		
Total	27.000	0.765	4090.0	2426.0
	Mi	xture 20		
Portland cement	0.763	0.022	150.0	89.0
Fly ash	1.838	0.052	250.0	148.0
Fine aggregate	6.054	0.171	1020.0	605.0
Coarse aggregate	14.884	0.422	2490.0	1477.0
Water	2.885	0.082	180.0	107.0
Air	0.576	0.016		
Total	27.000	0.765	4090.0	2426.0

•

-

Table 7 (Concluded)

(Sheet 5 of 5)

80	,
ble	
Ta	2

J

r,

Summary of Mixture Proportions

.

	Max	i mum	Lene J	titione		Water/	Sand/		Consol-		
Mix- ture No.	Si. Aggre	ze egate (mm)	Mat Mat 1b/vd ³	erial (ke/m ³)	Fly Ash % by Volume	Cement & Pozzolan bv Wei <i>ø</i> ht	Aggregate % by Volume	Excess Paste X	idated Time sec	Lift Depth in. (mm)	Remarks
1	e	(16)	235	(139)	0	0.62	29	2.1	96	1	Not rolled; mixture from previous work. Did not appear to consolidateroller could not roll over large rock
5	1.5	(38)	340	(202)	36	0.43	35	3.5	96 06	8 (200) 6 (150) 4 (100)	Did not consolidate Did not consolidate well Consolidated (over previous lifts)
e	ŝ	(92)	200	(611)	50	0.73	32	0	06	None	Too harsh for roller
4	1.5	(38)	327	(193)	50	0.45	38	1.8	60	None	Too harsh for 10-in. lifts
Ś	1.5	(38)	340	(202)	6 E	0.47	35	5.0	45 45 45	6 (150) 8 (200) 6 (150) 10 (250)	Rolled on 2-hr-old concrete Over fresh concrete, rolled better Over 2-hr concreteOK Over 1-hr concreteOK
Q	e	(26)	229	(136)	50	0.70	32	3.2	20 35 40		Consolidated well; a little too wet "Rubbery," good consolidation Appeared to be approaching dry limit
7	e	(92)	229	(136)	50	0.70	32	3.2	20		Used 20% mortar sandrolled well
œ	e	(76)	229	(136)	50	0.70	32	3.2	60 25 25		Over 4-hr concretetoo dry Over fresh concrete; rolled well 3-in. rockrolled well
6	1.5	(38)	340	(202)	39	0.48	35	5.0	35 35 35	8 (200) 6 (150) 4 (100)	Looked good; rolled well "Rubbery," rolled well Mixture 5 with slight increase in water
10	0.75	(19)	340	(202)	39	07.0	40	1.6	50	10 (250) 6 (150)	Natural aggregates; rolled well, sprang back after rolling
11	1.5	(38)	300	(178)	74	0.50	37	2.8	20 25	10 (250) 10 (250)	Looked good; rolled well Used 20% mortar sand, rolled well
12	1.5	(38)	250	(148)	68	0.60	38	0	20	10 (250)	Rolled well
12A	1.5	(38)	250	(148)	68	0.60	38	0	30	10 (250)	Rolled well; contained 5 to 6% air

(Continued)

Table 8 (Concluded)

用われた

ст. с	Kemarks	Roller moved large rock OK, but mix too wetsegregated	Natural aggregatesproduced very smooth rolled surface	Paving mixrolled well Reported in Burns (1976)	Curb testsvoids noted in underside of rolled area	Few voids noted underside	Very rich mixture, small aggregate; result, sticky	Conventional concrete	Mixture 19 with high range vater-reducing admixture
ift oth		(250) (250)	(250) (250)	(150) (250)	(150)	(200)	(200)	(150)	(150)
Der	i	0101	0101	10 (6	10	8	80	9	9
Consol- idated Time	sec	15 18	20 25	20 25	25 20	25	21 25	1*	*8
Excess Paste	re	0	3.5	3.0	2.0	5.0	8.0	10.0	10.0
Sand/ Aggregate % by	Volume	32	28	35	33	31	35	29	29
Water/ Cement & Pozzolan	by Weight	0.70	0.60	0.33	0.50	0.45	0.45	0.45	0.45
Fly Ash % by	Volume	59	59	0	74	11	61	61	61
Cementitious Material	1b/yd (kg/m)	200 (119)	200 (119)	517 (305)	300 (178)	361 (213)	400 (238)	400 (238)	400 (238)
mum gate		(16)	(26)	(38)	(38)	(38)	(61)	(38)	(38)
Aggre) .u	e	e	1.5	1.5	1.5	0.75	1.5	1.5
Mix- ture	No.	13	14	15	16	17	18	19	50

* Slump, ín.

	Point Load
	Tensile Strength
Specimen No	psi (kpa)
Cold joint (24 hr)	
1	175 (1210)
2	115 (790)
3	175 (1210)
4	175 (1210)
5	185 (1280)
6	165 (1140)
Avg	165 (1140)
Fresh joint (1 hr)	
1	230 (1590)
2	275 (1900)
3	350 (2410)
4	260 (1790)
5	255 (1760)
6	255 (1760)
Avg	270 (1860)
Parent concrete	
1	340 (2340)
2	295 (2030)
3	320 (2210)
4	325 (2240)
5	285 (1970)
6	295 (2030)
Avg	310 (2140)

Table 9Tests of Joints (Mixture 9)

Table 10

Tensile Strength Tests of Concrete and Joints

Numbers in parentheses are the number of tests included in the average.

-20

Specimen	<u></u>	Hours	of Test	Erosi	on/lb*
No.	Surface	Individual	Cumulative	Individual	Cumulative
1	Cast	7	7	0.05	0.05
		7	14	0.01	0.06
2	Cast	7	7	0.10	0.10
		7	14	0.05	0.15
		6	20	0.00	0.15
3	Rolled	5	5	0.00	0.00
	(smooth)	3	8	0.00	0.00
		6	14	0.00	0.00
4	Rolled	3	3	0.04	0.04
	(rough)	3	6	0.01	0.05
	-	4	10	0.00	0.05
		4	14	0.00	0.05

Table	11
Erosion	Tests

* On a 1-sq-ft surface.

Table	12
-------	----

Results	of	Freezing	and	Thawing	Tests
	_				

	Test Age			Relative Modulus of				
Mixture		Specimen	Elast:	E at	Cycles	Shown		
<u>No.</u>	days	No.	0	<u>11</u>	23	<u>34</u>	<u>69</u>	
12A	14	1	100	7				
		2	-	17				
		3		20				
		4	i	19				
		5		13				
		6		18				
12A	90	7			30	11		
		8	1		32	13		
		9			31	12		
		10			27	8		
		11			31	12		
		12			27	9		
15	14	13		91		76	50	
		14		89		78	48	
		15		91		75	44	
		16		91		79	50	
		17		91		76	46	
		18	Ţ	86		60	32	

FILMED

END

1-85

DTIC