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Abstract

" Direct numerical solutions of the three-dimensional

time-dependent Navier-Stokes equations are presented for the

evolution of three-dimensional finite-amplitude

disturbances

of plane Poiseuille and plane Couette flows. Spectral methods

using Fourier series and Chebyshev polynomial series are used.

It is found that plane Poiseuille flow can sustain neutrally

stable two-dimensional finite-amplitude disturbances at

Reynolds numbers larger than about 2800. No neutrally stable

two-dimensional finite amplitude disturbances o

Couette flow were found.

f plane

Three-dimensional disturbances are shown to have a strongly

destabilizing effect. It is shown that finite-amplitude

disturbances can drive transition to turbulence in both plane

Poiseuille flow and plane Couette flow at Reynolds numbers

of order 1000. Details of the resulting flow fields are

presented. It is also shown that plane Poiseuille flow can not

sustain turbulence at Reynolds numbers below about 500, =t -
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1. Introduction

One of the oldest unsolved problems of fluid mechanics
is the theoretical description of the inception and growth
of instabilities in laminar shear flows that lead to trans-
ition to turbulence. The behavior of small amplitude disturb-

ances on a laminar flow is reasonably well understood, but

understanding of the behavior of finite amplitude disturbances
is in a much less satisfactory state. There is as yet no
close agreement between theoretical and experimental studies

of transition flows.

In the laboratory, Davies & White (1928), Kao—& Park
(1970), and Patel & Head (1969) have shown that plane Poiseuille
flow is unstable to finite amplitude disturbances at Reynolds
numbers as low as 1000 and that initially turbulent flow
remains turbulent at slightly lower Reynolds numbers. Here the
Reynolds number is R = Uh/v, where U is the maximum
downstream velocity, h is the half-channel depth and v
is the kinematic viscosity. On the other hand, Nishioka,
Iida & Ichikawa (1975) performed experiments in a low-
turbulence wind-tunnel in which they were able to maintain
laminar plane Poiseuille flow at Reynolds numbers as large
as 8000. In order to postpone transition to R = 8000

’

Nishioka et al had to reduce the background turbulence level
to less than 0.G5%. At larger disturbance levels, instab-
ilities were obtained at lower (subcritical) Reynolds numbers.
The experiments of Nishioka et al were performed in a

channel with aspect ratio (ratio of width to depth of




channel) of 27.4. At lower aspect ratios, -

the channel geometry may induce significant three-dimen-
sionality that may drive transition at lower R . This latter
effect may influence the results of Kao & Park but
should not affect those of Davies & White and Patel & Head.
Thus, it appears that the transition Reynolds number.
observed experimentally depends on both the spectrum and
amplitude of the initial two and three-dimensional dist-
urbances to the flow. Typically, transition is observed i

at Reynolds numbersof about 1000.

The experimental situation with regard to plane Couette
flow is far less satisfactory. Reichardt (1959) showed that
a turbulent flow is obtained at Reynolds numbers
(based on half~channel depth and wall velocity) as low as
750. Mollo-Christensen (private communication) has obtained
similar results. These experimental findings may be subject to
-dispute because of end effects which ,it seems, are difficult.to remove.
In summary, the only experimental evidence available to
date suggests that plane Couette flow undergoes transition
at Reynolds numbers similar to those of plane Poiseuille
flow. )

Some insight into the mechanism of transition in planar
shear flows was given by the pioneering experiments of

Klebancff, Tidstrom, & Sargent (1962) who studied the




evolution of a controlled three-dimensional disturbance
in a laminar boundary layer. They found that prod-
' uction of longitudinal vorticity by the three-dimensional
disturbance gives a secondary motion that creates local
g inflectional profiles; the resulting highly unstable profiles lead
'

almost instantaneously to turbulent spots. The key result obtained by
Klebanoff et al is that initially weak three-dimensional
disturbances may control the nonlinear development of‘the
flow and its transition to turbulence. In this paper we
expand on this idea by studying whether a similar effect
can control the transition to turbulence in plane Poiseuille
and plane Couette flow.
Let us begin by reviewing theoretical approaches to

these problems. The equations of motion are the Navier- ¢

Stokes equations

avix,t) 2

—2—32—— + v (§,t)-Vv(x,t) = - Vp(x,t) + vV Y(§,t) (1.1)

Vevix,t) =0 (1.2)
where Y(x,t) = (u,v,w) is the velocity field at location

) X = (x,y,2) and time t, p(§,t) is the pressure (divided

-~

by density), and v is the kinematic viscosity. To date there

is no compelling evidence that the Navier-Stokes equations are
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in any way inadequate on the space~ and time-scales involved
in transition and turbulence.

The flows discussed in the present paper are confined
between rigid walls at 2z = *1 and extend to infinity in
the horizontal directions Xx,y. The boundary conditions
at the rigid walls 2z = %1 are that the velocity of the
fluid must equal the velocity of the wall. In plane

Poiseuille flow, the undisturbed fluid motion is given by

vix,t) = (1-27,0,0) , p(x,t) = -2vx ; (1.3)

this flow is driv n by a pressure gradient. In plane

Couette flow, the undisturbed fluid motion is given by
Y(f't) = (z,0,0) , p(f,t) =0 ; (1.4)

this flow is driven by the motion of the walls at 2z = 1.

For these flows the maximum velocity of the undisturbed

flow is 1, so the Reynolds number based on half-channel

width is

=1
R = = (1.5)

The evolution of a small disturbance on a plane-parallel

shear flow is governed by the Orr-Sommerfeld equation, which is

_




2 2
-% -a?-8%) 2 = iR[(aU-0) (<& -0a2-82) w-aU"w] (1.6)
2 2
dz dz
with boundary conditions
w=w'=0 at z = 1, (1.7)

Here the unperturbed velocity is (uU(z),00) and the small
disturbance is assumed to have the form
w(f,t) = Re[w(z)eiax+iBY-iwt] (1.8)
where o and B are the wave numbers in the x and vy
directions, respectively, and w is the (complex) frequency
of the disturbance. If o and B are real and Imuw>0,
then che small disturbance is linearly unstable. On the
other hand if all such small disturbances to a plane-
parallel shear flow have Imw<0, then the shear flow is
linearly stable.

The critical Reynolds number Rc is defined as

the lowest value of R at which there is any

solution of the Orr-Sommerfeld equation with Im w= 0 .
For R1>Rc . linearly unstable solutions of the Orf-
Sommerfeld equation may exist. In a unidirectional plane -
parallel shear flow [v(x,y,2z)/u(x,y,2) is independent of
x,¥,z and w(x,y,z) = 0], Squire's theorem (see Lin 1955)

implies that if,at some Reynolds number R , there exists

an unstable three-dimensional disturbance [B#0

in (1.8)] then

il




there exists an unstable two~dimensional disturbance

[B = 0] at a lower Reynolds number. Therefore, the mode
that becomes unstable at RC must be a two~dimensional
mode. [We emphasize for later reference that at Reynolds
numbers larger than Rc , the most unstable solution of
the Orr-Sommerfeld equation may be three-dimensional

(see Michael 1961).]}

Asymptotic analysis of the Orr-Sommerfeld equation for

plane Poiseuille flow using recently improved WKB techniques
leads to the estimate Rc 25769.7 (Lakin, Ng & Reid 1978);
earlier asymptotic analysis had given Rc=5360 (see Lin 1955).
Direct numerical solution of the Orr-Sommerfeld equation

gives Rc:5772.22 (Orszaqg 1971b). The mode that becomes
unstable at Rc has wavenumbers o0>1,02055 and 8= 0. Thus the

theory of small amplitude disturbances suggests that plane

Poiseuille flow is unstable only for Reynolds numbers
greater than 5772, in contrast with the experimental
observation of possible transition to turbulence at
Reynolds numbers as low as 1000.

In plane Couette flow, all numerical evidence suggests
that all modes of the Orr-Sommerfeld equation are stable at
all Reynolds numbers (Davey 1973). The absence of any
critical Reynolds number Rc for plane-Couette flow is in
conflict with the available experimental evidence that this
flow undergoes transition at modest Reynolds numbers.

Meksyn & Stuart (1951) suggested that finite-amplitude

nonlinear effects may permit the growth of disturbances at
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subcritical Reynolds numbers. Meksyn & Stuart introduced
the so-called mean field equations in which only the
interaction of the mean flow with the primary disturbance
wave is retained and higher harmonics are neglected. They
found that finite-amplitude two-dimensional disturbances
to plane Poiseuille flow are unstable at Reynolds numbers
larger than about 2900 with a threshold amplitude of about
8% of the centerline velocity. Numerical work by Grohne
(1969) solving the mean field equations gave a critical
Reynolds number of about 2500 (based on the perturbed

centerline velocity).

Stuart (1960) and Watson (1960, 1962) extended the
Meksyn-Stuart theory to include the second harmonic of the
two-dimensional primary wave. Their results for plane
Poiseuille flow are close to those of Meksyn & Stuart.
Further work using the Stuart-Watson method by Reynolds g
Fotter (1967) has confirmedthat velocity fluctuations of a
few percent can drive two-dimensional finite-amplitude
instabilities at Reynolds numbers above 2900. The original
Stuart-Watson method involves expansions in both small amplitude
and small Im(w) about the neutrally stable modes at Rc.
Re?ently, Ttoh (1977) has extended the method of Eckhaus
(1965) in order to reformulate the theory in a manner
that he claims avoids the restriction to the neighborhood of

R : a critique of Itoh's theory is given by Davey (1978) .

1
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A slightly different approach to the two-dimensional finite-
amplitude instability problem has been given by Pekeris &

Shkoller (1967,1969,1971), Zahn, Toomre, Spiegel & Gough (1974),

and Herbert (1976,1977). 1In these investigations, the two-
dimensional Navier-Stokes equations are solved using periodic
boundary conditions in x by expanding the solution in a
highly truncated Fourier series in x. Pekeris & Shkoller
(1971) found two dimensional instabilities of plane Poiseuille
flow at Reynolds numbers as low as 1000; at R = 1000, instab-
ility is achieved with a 6% perturbation, while at R = 3000
instability is achieved with a 0.4% perturbation. art
(1971) faults the accuracy of the Pekeris-Shkol! (1967,1969)
calculations. Our numerical solutions of the Na. _.-Stokes
equations reported in Sec. 3 give no evidence of two-dimensional '
finite-amplitude instabilities in the vicinity of those predicted
by Pekeris & Shkoller (1971) on the basis of nonlinear
stability calculations using expansions in eigenfunctions of
the Orr-Sommerfeld equation.

Zahn et al solved the Navier-Stokes equations for plane
Poiseuille flow by retaining only two Fourier modes in x
and using an unequally spaced finite difference grid in z.
They found a minimum critical Reynolds number for two-dimensional
finite-amplitude instability of 2707. The instability at this
Reyholds number is achieved with a value of o = 1.3126.

Herbert (1976,1977) performed a similar calculation using
up to eight Fourier harmonics in x and 41 Chebyshev polynomials

in the 2z direction. He found a critical Reynolds number of

2935 with a corresponding a = 1,3231. Herbert's calculations




are directly comparable to ours in that he used essentially
the same numerical technique as we do. The principal diff-

erences are that; (i) Herbert seeks neutrally stable finite-

amplitude two-dimensional modes by solving time-independent
equations while we solve the time-dependent problem;and

(ii1) Herbert uses up to eight Fourier harmonics in x
while we use up to 32. Our two-dimensional calculations are

in good agreement with those of Herbert.

In summary, the best available evidence to date suggests
that two-dimensional disturbances are unstable only for Reynolds
numbers larger than about 2800. Our numerical solutions reported

in Sec. 3 confirm this result.

Direct numerical calculations of the two-dimensional

Navier-Stokes equation were performed by George, Hellums
& Martin (1974). They obtained instability only for
Reynolds numbers larger than about 3500. Further discussion

of their results is given in Sea. 3.

The current state of understanding of the effect of
three~dimensional disturbances on plane Poiseuille flow
is less well settled. Meksyn (1964) applied the mean
field equations for plane Pouiselle flow and found three-
dimensional finite-amplitude instability at R = 1260,
but he also found two-dimensional instability at R = 1270.
The inconsistency of these results with other numerical
calculations of the mean field equations and the Stuart-
Watson equations remains unexplained, but, in any case,

they do not show a large effect of three-dimensionality.

10




Zahn et al (1974) examined some three-dimensional modes
and found them to be at least as stable as the two-

dimensional ones. Most recently, Itoh (1978) has extended

the Stuart-Watson-Eckhaus theory to three-dimensional disturbances
for Reynolds numbers close to the linear stability limit

of 5772. TItoh found that three-dimensional disturbances

are strongly destabilizing, but Davey's (1978) criticism may

still apply; in any case, Itoh's theory does not apply
to strongly subcritical Reynolds numbers. Also,
Hocking, Stewartson & Stuart (1972) and Davey,

Hocking & Stewartson (1974) studied the evolution of three-

dimensicnal finite amplitude disturbances to plane Pouiselle
flow at supercritical Reynolds numbers. They found that three-
dimensional effects are destabilizing above the linear stability
limit.

Theoretical investigations of the finite-amplitude
stability of plane Couette flow are also incomplete at this
time. Kuwabara (1967) applied the mean field equations of
Meksyn & Stuart and found that the minimum critical Reynolds
number for finite-amplitude instability of plane Couette flow
to two-dimensional disturbance +to be R = 45212 with the

unstable mode having wavevector o = 13.565, B8 = 0. Ellingsen,

Gjevik & Palm (1970) Davey & Nguyen (1971), and Coffee (1977)

used the Stuart-Watson method to study two-dimensional finite-
amplitude instability. They found instability to low-amplitude

disturbances down to Reynolds numbers of 1000 and below. However,




the absence of neutrally stable linear eigenmodes of plane
Couette flow casts some doubt on the applicability of the
Stuart-Watson method which involves an expansion about neutral
stability (Rcsenblat & Davis 1978). Lessen & Cheifetz (1975)
also studied the nonlinear evolution of two-dimensional
disturbances of plane Couette flow. Their calculations cast
doubt that any unstable two~dimensional disturbances exist.
Herbert (1977) reports inability to £ind neutrally stable
finite amplitude solutions of plane Couette flow using highly
truncated Fourier expansions in X. Our numerical solutions
of the Navier-Stokes equations reported in Sec. 3 give no
evidence yet of two-dimensional finite~amplitude instabilities
in the neighborhood of those predicted by Ellingsen et al,
Davey & Nguyen, and Coffee. In summary, there are some
significant disagreements on the existence and strength of
two-dimensional finite amplitude instabilities of plane
Couette flow.

In this paper, we solve the Navier~Stokes equations
numerically to study gquantitatively the instability and
transition to turbulence of plane Poiseuille and plane
Couette flows. Since the resulting turbulence is strongly
three-dimensional and since two-dimensional nonlinear
disturbances of these laminar shear flows do not seem to
be able to explain observed experimental results, we con-

centrate on the study of possible three-dimensional mechanisms.

Some insight is given by results for transition in boundary

12
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layer flows where the experiments of Klebanoff et al (1962)

and the theory of Benney and Lin (Benney & Lin 1960, Benney
1961, 1964) suggest that the secondary motions produced by

the interaction of three-dimensional modes with two-dimensional
modes can produce velocity profiles that are highly inflectional
and unstable. Numerical calculations of the Benney-Lin
equations by Antar & Collins (1975) have shown that this kind of
theoretical approach is in some agreement with experiments.
Direct numerical calculations of the three-dimensional
Navier~-Stokes equation for boundary-layer flow have shown
guantitatively the strength of these three-dimensional

effects in producing transition (Orszag 1976)., On the other
hand, direct numerical calculations of the two-dimensional
Navier-Stokes equations for boundary layer flow (Fasel 1976,
Fasel, Bestek & Schefenacker 1977, Murdock 1977, Murdock &
Taylor 1977) do not exhibit explosively strong physical
instabilities and the small scale excitation and apparent

randomness characteristic of transition.

Because of the limited spatial resolution of our calculations,
we do not address in detail the nature of the small scale
flow structures that result from flow breakdown. Our goal
is to explain the mechanisms by which flows develop that break
down to turbulence. The development of very small scale
structures in these flows, as studied by Landahl

(1972), is beyond the scope of the present work.

In Sec. 2, we discuss briefly the numerical methods

used in the present study. Then, in Sec. 3, we present

13
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results for two-dimensional linear and nonlinear disturbances
of plane Poiseuille and plane Couette flow. In Sec. 4, we
present results of calculations of three-dimensional finite-
amplitude instabilities of these flcws and the resulting

transition to turbulience. Finally, in Sec. 5, we summarize

our results,




2. Numerical Methods

We solve the Navier-Stokes equations (1.1)-(1.2)

expressed in rotation form

avix, t)

= = v(x, £ w(x,t) - YT, t) + vwWovix,e),  (2.1)

where w(x,t) = Vxv(x,t) is the vorticity and
I{x,t) = p(x,t) + %ly(g,t)lz is the pressure head.

The flow is assumed to take place in the three-dimensional
box 0 < x < X, -%—Yiyf_-lé-Y, -1l<z<1l. At

z = t1 we impose the boundary conditions that the fluid
velocity match the wall velocity. In the horizontal

directions, we impose periodic boundary conditions so that
v{x+mX, y+nYy, z,t) = v(x,y,2,t) (2.2)

for all integers m, n. These periodic boundary conditions
are consistent with the Navier-Stokes equations and the
laminar solutions (l.3)} for Poiseuille flow and (1.4) for
Couette flow,

The choice of periodic boundary conditions in horizontal
planes does cause some problem with respect to comparison
with experiment since these boundary conditions are not

realized in the laboratory. There are two justifications

15
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! for their use: (a) The instabilities of laminar flows

that lead to turbulence are of small spatial scale so that

boundary conditions should have little effect; and (b)

the spatial growth of a disturbance in a laboratory

coordinate frame appears in an advectaed coordinate frame
as temporal growth, similar to that observed with the
boundary conditions (2.2). Transition experiments in a
flat plate boundary layer have been performed (Orszag 1976)
with proper inflow-outflow boundary conditions applied and

the results are gqualitatively the same as in the present

work. Also, Fasel et al (1977) have used inflow-osutflow
boundary conditions in their numerical simulations of two-
dimensional disturbances to plane Poiseuille flow with results
similar to those obtained using periodic boundary conditions.
We offer no more excuses for the boundary conditions (2.2)
used here and urge further study of their effect by future

investigators.

We solve the Navier-Stokes eguations in Eulerian coor-
dinates using the pseudospectral method suggested by
Orszag (1971la). An introduction to the theory of spectral
methods is given in the monograph by Gottlieb & Orszag
(1977). Here we summarize the implementation of spectral
methods for the present channel flow simulations.

The velocity field is represented using Fourier series

in x and y and a Chebyshev polynomial series expansion

in 2z . Thus, the velocity field is represented as

: p
vix,t) =/, /. /. u(mn,p,t)emHmX/Xeny/Y) gy ()
[mj{<M  |n|<N p=0 ~ p
{2.3)
16
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where m, n, p are integers and Tp(z) = cos(pcos-lz)
is the Chebyshev polynomial of degree p .

Equations for the spectral components u(m,n,p,t) are
obtained using a pseudospectral method to evaluate the non-
1inearAterms of the Navier~Stokes equation. Thus, the

rotation term v x w in (2.1) is evaluated as

Y' 3 T(Xj'yklzg) = Y,(Xj,yk’z}l.) x (g(leykrzﬂ')

(2.4)
(0 < j<2M, 0 <k < 2N, 0 < 2 <P

where the collocation points xj, Yyr 2z, are

Xy = ix/@2m), y, = (k-N)Y/(2N), z, = cosTi/P .

The values of v(xj,yk,zg) are obtained from (2.3) wusing
fast Fourier transform algorithms {improved to take

advantage of the reality of v and the cosine (Chebyshev)

transform in 2z as described in the appendix to Orszag
(1971a)]. similarly, “(xj’yk'zg) is evaluated using

fast Pourier transforms applied to the curl of (2.3);

for this purpose it is helpful to note that
£
j;“ El(1)(m 2n1(mx/x+ny/Y)Tp(z)

oy \
'a**z' = / (n,p)e

-4 4 -
|m| <M |n|<N p=

[«1

(2.5)

17




(1 . . .
where u ) is given in terms of u by the recurrence relation

~ -~

1
' cP-lB( )(m,n,p-l) - g(l) (m,n,p+l) = 2p u(m,n,p) (1<p<P);

(2.6)
’
where cq = 1 if g»1 and ¢y =2, and Ll(l)(m,n,P+l)=
g(l)(m,n,P) = 0 for all m,n . Alsc, we apply a special
' circular truncation to the spectral representation of v X w

in the x-y plane in order to minimize aliasing effects
(Orszag 197la, Sec.s).

' The evaluation of v x w by this algorithm requires
9 Fourier transforms on 2MNP complex data points [three

transforms each to get v in physical space, w in physical

space, and Vv x w Dback in transform {Fourier-Chebyshev)
space (which is the resident representation through most of
our computer code)l]. With M=N=16 and P = 32, each component
of the velocity field is represented by 33,792 real degrees
of freedom (before the circular truncation in the x-y plane
is applied); evaluation of vV oxow by the above pseu-
dospectral algorithm requires about 2.5s on the CDC 7600. In
contrast, direct evaluation of the convolution-like sums

that would be obtained by formulating equations for
ag(m,n,p,t)/at using a Galerkin approximation procedure

would require about 1000 times more computer time. It is

18
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noteworthy that of this speedup by a factor 1000, the fast
Fourier transform contributes only roughly a factor 2; most
of the speedup is due to the reorganization of the calculation
in terms of transforms (which factor into a sequence of one-
dimensional transforms) be they fast or not. This latter
result and the result noted by Gottlieb & Orszag (1977)

that Legendre polynomial expansions are especially accurate
may suggest that Legendre polynomials be used in place of
Chebyshev polynomials in future studies. We also note that
one of us (S.A.0) has recently developed a 'fast' Legendre
transform that requires O(N(logZN)z/log2 logzN) operations
to transform an N term Legendre polynomial or surface

harmonic series to or from physical space.

Four additional features of our numerical methods
deserve comment: time stepping, determination of the
pressure, viscous dissipation, and initial conditions. A
fractional step method is used in time so that we shall
first discuss a time step of the inviscid equation, then
the imposition of the incompressibility constraint,
then viscous effects, and finally initial conditions.

In order that time steps not be unduly restricted
by convective stability conditions due to the relatively
laxge unperturbed (laminar) flow we use a semi-implicit
scheme in which the largest effects of this parallel flow
are handled implicitly. If the (x-component of the)
unperturbed parallel flow is denoted by U(z), then the terms
in (1.1) responsible for convective stability restrictions

that trace to U(z) are just U(z)dy/dx. This term is best

-19-




evaluated in the mixed spectral-physical space representation

in which x and y are represented as Fourier modes while
2z 1is kept in physical space; in this representation
U(z)ay/ax - i(2"m/X)U(z)B(m,n,z), which is diagonalized.
With the semi-implicit treatment of U(z) , it is a
little tricky to obtain an efficient time-stepping procedure
for (2.1) and (1.2) that is high-order accurate in time;f
We use an Adams-Bashforth-Crank-Nicholson (ABCN) method
with global error of order O(Atz) + 0(vAt), where we
tolerate first-order accuracy on the viscous terms because
our calculations are done with very small values of v. If
v is large, the semi-implicit treatment of U(z) should be
sacrificed for better accuracy in time. The ABCN scheme
for the nonlinear terms in (2.l1) is derived by writing
v/t +U3V/3x = v X 9+-t13¥/8x and applying the Crank-
Nicolson scheme on che left and the second-order Adams-

Bashforth scheme on the right; the result is

An+l n -
unt_ 3n 1 01 i 2mm n+l _.n,.n-1 \
< U(z) (G -247+4 1 (2.7

L
]
|
]
1
g
i
(N1

in the mixed spectral-physical space representation. Here

E‘ = vx wt f in the mixed representation where we have
generalized the problem slightly by introducing an external
force (mean pressure gradient) denoted by f; the superscripts

label the time step and no boundary conditions (except

t+ Orszag & Deville (to be published) have recently shown how
to obtain unconditionally stable, easily implementable
schenes of a?bitrary order accuracy in time for the Navier-
Stokes equations. Comparisons with the results reported

in the present paper show no appreci
lower order scheme used here. PP lable errors due to the

h




periodicity are applied yet. Eq. (2.7) is formulated

for constant time steps At; for nonconstant time steps
[as for the first few time steps (we use a slow start

to minimize initial truncation errors)}, the coefficients in

'
(2.7) are different. It is important to emphasize that
the terms multiplying U(z) on the right side of (2.7)
are all intermediate results at time steps n-1, n, and
]

n+l; if u™! and u® are replaced by gn-l and gn

or %gn+ -J‘i-\:xn (as would be the case if naive application
of the Adams-Bashforth method were made) then the scheme
(2.7) would lead to errors of order 0(At) after
application of the pressure terms in (2.1).

Once the fractional step (2.7) is made, it is
necessary to include the effect of pressure. This is

done by the fractional step

[) A
vn+1 - vn+1 - - VHn+l
' vt =0 (2.9)
2n+l 2 .
where v has global error of order O0(At“) despite the
fn+l

fact that At has global error 0(At) relative to the
pressure head I, Egs. (2.8)-(2.9) are solved with the

boundary conditions

A
ey

n+
w 1

+
P
-

= 0, z =

21

(2.8)

(2.10)




assuming no normal wall motion.

Egs. (2.8)-(2.10) are best solved in the full

spectral representation using a spectral tau method in

’
z (Gottlieb & Orszag 1977, Sects. 10, 13). The result-
ing equations for § (dropping the time-step label) are,
' in the full spectral representation,given by
U(m,n,p) = u(m,n,p) - iomfl(m,n,p) (0<p<P) (2.11)
' A A ~
v(m,n,p) = v(m,n,p) - iBnli(m,n,p) (0<p<P) (2.12)
A - 2 (1) )
w(m,n,p) = w(m,n,p) - 0 (m,n,p) (0<p<pP-2) (2.13)

~ ~

iomu(m,n,p) + i8nv(m,n,p) + w'*) (m,n,p)=0 (0<p<P)  (2.14)

P

Smn,p) = ¥ (-1)Pa(m,n,p) = 0 (2.15)
0 p=0

fo~1 0

P

for all retained m,n (|m|<M, |n|<N), where T

o= 21 /X , B= 2n/Y and H(l) and Q(l) are related
to T and w as in (2.6).

2+n2 # 0, an efficient procedure to solve

. If m
(2.11)-(2.15) 1is to rewrite (2.11)-(2.15) as the nearly

tridiagonal system (see Sec. 10 of Gottlieb & Orszag 1977)

+ Note that these definitions of a , B are consistent with &8
used in (1.8) and (2.23)-(2.27) below if the linear
mode in (1.8) is the fundamental mode in the box
0<x<X,- 4+ Y<y<}v.




B2 2 2pr2 L Yopra_ o +2)
35 (p-1) w(m,n,p-2) ~ (1 + 2(pz_l))w(,n,p) Zp (p+ 1) (m,n,p
where ¢, =2, c_ =1 (p>1), e, = 1(p<P), ey = 0(p>P),

2 2 2 2
Y= om + $mn  and

_ Sp-2fp-2 _ Speafp | eo+afp2

F(m,n,p) (2<p<P) (2.17)

4p(p-1) 2(p2-1y 4p(p*D)
with
fp = - iamﬁ(l)(m,n.p) - ian(l)(m.n.p) -yw{m,n,p)
(2.18)
and oM ana v related to u and v by (2.6).

The system (2.15)-(2.16) is solved for @ by standard
techniques in roughly the same number of operations required

to solve pentadiagonal systems. The equations for @ in

this form are essentially diagonally dominant so no appreciable
accumulation of roundoff errors occurs.

~

Once W is found then I is found from

2(1)

A ~ A~
YI(m,n,p) = ~ igu(m,n,p)~-ignv(m,n,p)~ (m,n,p)

(0<p<P) (2.19)
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where a,f,Y are given as before in terms of m,n, Then

A ~

@ and ¥ are found directly from (2.11)-(2.12), completing

the solution for

re»
L]

If m=n=0, then (2.11)-(2.15) are easily solved
by appropriate applications of recurrences like (2.6).
Finally, we use a full implicit fractional step

to impose the viscous terms and the boundary conditions:

n+1l_2An+1
v -
h 4 v - \)Vz n+l
L)

At (2.20)

Ml_ oy (2 = t1) (2.21) '

<

where v, is the wall velocity at z = %1, respectively.
The full implicit scheme (2.20)-(2.21) is unconditionally
stable but it does induce global errors of order O0(VAt),
Egs. (2.20)-(2.21) are solved efficiently in a full spectral
representation using a spectral-tau method; the resulting
equations are essentially tridiagonal in the Chebyshev index
and diagonal in the Fourier indices (see Sec. 10 of Gottlieb
& Orszag 1977). This completes the description of the main
part of our computer code.

Initial conditions for the runs reported in Sects.
3-4 usually consist of the unperturbed flow (1.3) or (1.4)

on which we superpose finite-amplitude combinations of
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two- and three-dimensional eigenmodes of the Orr-Sommerfeld
equation (1.6)-(1.8). The Orr-Sommerfeld equation is
solved by expanding w(z) in the Chebyshev series

(Orszag 1971b)

P
w(z) = § aT (2),

p=0 PP

constructing equations for the expansion coefficients
ap by matrix methods (Metcalfe 1974), finding the eigen-
value by either a global eigenvalue routine based on
a matrix QR eigenvalue analysis or a local eigenvalue
routine based on an inverse iteration-Rayleigh quotient
method, and finally obtaining the eigenfunction by an
inverse iteration method. The accuracy of our eigenvalues
and eigenfunctions is better than 1 part in 106.

Once the complex z-velocity w(z) of an eigenmode

of the Orr-Sommerfeld equation is obtained, the x~ and

y- velocity components, u({z) and v(z) , respectively,

are obtained as follows. The z-component of the perturbed vorticity,

given by n(z)expliox+iBy-iwt] with

ni(z) = iBuf{s' - iav(z),
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satisfies the linear inhomogeneous equation

a2 2 2 .
(527 - a® - 87)n(z)= iR[(aU(2)-w)n(z)+iBU'(z)w(z)] (2.24)
n(+l) =0, (2.25)

where R = 1/v. Using the incompressibility condition

(1.2), it follows that

(@®+82)u(z) = -iBn(z) + iaw' (2) (2.26)
2,.,.2 . .
(a"+8%)v(z) = idan(z) +iBw'(z). (2.27)
For two-dimensional disturbances, B = 0 and n(z) = v{(z) =0.

In concluding this section we summarize some features
of our computer code. Fourier series representations are
used in x and y and Chebyshev series representations
are used in z . Pseudospectral methods are applied to the
nonlinear terms while tau methods are ipplied to the
pressure and viscous terms. The resulting scheme is infinite-
order accurate in space, has no phase errors in x and y ,
can resolve boundary layers of thickness 0(1/P2) in 2z ,

(the collocation points z, and in (2.4) are

Zp-1
located a distance 1r2/2P2 from the walls at z = 1]

and accurately imposes the boundary conditions at the rigid




walls and the incompressibility condition throughout

the layer (see Gottlieb & Orszag 1977 for discussion of
these features). A fractional time step method is used
with global error of order O(At2+vAt); time steps are
formally restricted only by convective stability rest-
rictions due to the perturbed velocity [although in
practive we do not take time steps more than about three
times larger than the convective stability limit due to

u(z)].
A run using 32 x32 x33 modes (M=N=16,P=32)

to represent each component of velocity requires about 6s (2.5s

for evaluation of Y><9) on the CDC 7600 computer per time

step, including input-output overhead. The computer time
is nearly proportional to MNP, A typical run involves
about 1000 time steps. Some runs to validate our code

are reported in Sec. 3. We note here that it is our
(unpleasant) experience that typical transition calculations
require about 10 times as many time steps as typical
turbulence decay calculations (see Orszag & Patterson
1972). The reason seems to be the need to maintain
accurate phase relations over many linear oscillation times
in transition calculations whereas turbulent flows are
nearly critically damped and evolve quite rapidly in

interesting ways. We also note that less than 15 h




of CDC 7600 time was spent on the present series of
computations (including a large number of runs not
reported here). On the newly introduced CRAY-1l computer
the same series of runs requires less than 1.4h, showing
the great strides that can now be made on significant

fluids problems with modest computer resources.
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3. Two-Dimensional Finite-Amplitude Disturbances

In this Section, we present results obtained using
the computer code described in Sec. 2 for the evolution of
small and finite-amplitude two-dimensional disturbances of plane
Poiseuille and plane Couette flow. The first series of
runs were made primarily to verify the accuracy of our computer
program in comparison with known results. Two types of
tests have been made: comparison of the evolution of small-
amplitude disturbances with their predicted behavior according
to the Orr-Sommerfeld equation; and comparison of some special
finite-amplitude two-dimensional solutions with the numerical
results of George, Hellums & Martin (1974).

In Table 1, we present results of small-amplitude tests
of the computer code. The values of w are obtained by
Chebyshev-spectral solution of the Orr-Sommerfeld equation
and represent the least stable eigenmode of the flow for the
given a and B8 . The predicted amplitude change in the
time interval O0<t<T 1is exp[(Im w)T] , while the predicted
phase éhange in the same time interval is (in radians)

-(Re w)T . It seems that most of the small error between

the predicted and computed amplitude and phase changes of
both the two-and three-dimensional modes of plane Pouiseuille
flow and plane Couette flow is due to time differencing

error. Similar tests of the computer code on small-amplitude
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disturbances have been made for Reynolds numbers up to

50,000 with similarly good results.

Our next verification run used a large two-dimensional
disturbance studied previously by George et al (1974). George
et al solved the two~dimensional Navier-Stokes equations by
expanding the velocity field into a Fourier series in x
and applying finite-difference methods in 2z . George et al
did not use initial conditions corresponding to eigenmodes
of the Orr-Sommerfeld equation, but rather chose the initial

velocity field to be that generated by the streamfunction

cosh az COSs az
- 3.1
i ) cCos aXx, { ) i

Y(x,z) = k(

Here a = 2.365 in order to satisfy the boundary conditions,
and we integrated the neutrally stable case found by George
et al in which R = 4000, o = 1,05, k = 0.0599, The initial

maximum amplitude of the perturbation of x-velocity is 0.1465.

Using 8 Fourier modes in x and 33 Chebyshev polynomials in

z , the results of our computer code agreed well through late

times with those of George et al. It seems that the reason that

George et al were unable to achieve two~dimensional instability ;
at Reynolds numbegs as low as those predicted by the Stuart~ ‘

Watson technique is due to two causes: (a) the initial
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condition (3.1) is not a pure mode of the Orr-Sommerfeld
equation; and (b) more importantly, the choice o = 1.05,
while close to the most unstable a for small-amplitude
disturbances is far from the most unstable a for finite-
amplitude disturbances (see below).

Some characteristics of the two-dimensional finite-amplitude

runs discussed below are given in Table 2. Additional details

are given by Kells (1978). The results of Herbert (1956) suggest
that the critical Reynolds number for finite-amplitude two-dimen-
sional instability of plane Poiseuille flow is roughly 2935 with
the unstable mode having a wavenumber o = 1.3231, Runs 2-4
present results of our numerical simulations of such a flow.

In Fig. 1 we plot the profile of the x-velocity component

of the two dimensional primary disturbance mode [which depends on !

x like exp(iax))] imposed at t = 0 in Run 2. The initial
disturbance imposed in Runs 3 and 4 has the same shape but

is reduced in amplitude. 1In Fig. 2 we plot the time evolution
in Run 2 of the maximum amplitude A of the x-velocity of

the primary wave and its harmonic {[that depending on x like
exp(2iax)]. After an initial transient period the primary wave
settles down into a period of slow growth suggesting that the
initial finite-amplitude disturbance does not die out as

t+«< , However, déspite the growth of the finite-amplitude

disturbance, there is no sign of 'turbulence' in the sense that




the flow remains ordered and well behaved. 1In Fig. 3, we plot

the profile of the primary wave after evolution to t = 120

in Run 2; in this Figure, the x~velocity component u(z) is
pPlotted as a function of 2z at a point x at which its phase
relative to the initial perturbation is 0 . Comparision of
Figs. 1 and 3 shows that nonlinear effects tend to move the

maximum perturbation velocity away from the walls at z =

1+

1

N

In Fig. 4, we plot the unperturbed velocity profile 1 ; z
and the mean velocity profile obtained from Run 2 at t = 120.
In Fig. 5, we plot the curvature of the unperturbed flow

and the mean flow at t = 120. Observe that although the mean
flow is changed only slightly in evolution from t=0 to

t = 120, there are large changes in the curvature in the wall

regions.

Run 2 has 32 Fourier modes in x and 33 Chebyshev modes
in z. 1Its numerical accuracy was tested by making other runs
with different values of M and P . A run with 16 Fourier
modes in x and 33 polynomials in 2z gave nearly identical
results, while a run with 8 Fourier modes indicated faster in-
stability. Increasing the number of Chebyshev polynomials in
z to 65 gave neqgligible change. In Run 2, higher harmonics
have very small amplitudes; the harmonic exp(3iax) has maximum
amplitude 0.01 in 2z at t = 120 while the harmonic
exp(7iax) has amplitude 0.001l.

The results of Runs 3 and 4 indicate the effect of chang-
ing the initial amplitude of the finite-amplitude disturbance.

In Run 3 a nearly stationary disturbance is achieved in
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evolution to t = 100 (see Fig. 10). On the other hand,
Run 4 shows that there is a critical amplitude of about
10% below which finite-amplitude disturbances decay at
R = 2935. 1In Fig. 6, we plot the maximum amplitude of the

x-velocity of the primary disturbance and its harmonic as

a function of time in Run 4. After an initial transient period,
both the primary and its harmonic settle down to a state of

steady decay.

In Fig. 7 we plot the primary wave and harmonic wave
amplitude vs. time for Run 1 at R = 2500. The result that
the disturbance decays as t increases for an initial disturb-
ance which is designed to be close to the most unstable finite-
amplitude disturbance at this Reynolds number suggests that all
two-dimensional disturbances decay at R = 2500. We conclude
that the threshold for neutral stability is near R = 2800,
in rough agreement with previous theoretical results,

Run 5 shows that decreasing o to o = 1 gives stable
finite-amplitude results even at R = 3500. This result explains
why George et al (1974) were unable to find two-dimensional
instabilities at Reynolds numbers below 3500. George et al
used a disturbance wave number o = 1.05 which is close to
the value of a that gives the linearly least stable mode
of plane Poiseuille flow at R = 3500 among all real o ,
but a = 1.05 is far from those modes that give unstable

finite-amplitude disturbances. While the amplitudes of the
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harmonics of the primary wave disturbances in Runs 2 and 3 are

quite small, nonlinear effects do cause considerable distortion
of the primary wave itself (see Figs. 1 and 3), giving a large
effect on the least stable a .

In summary, while there are finite-amplitude two-dimensional
instabilities of plane Poiseuille flow at subcritical Reynolds
numbers, there are apparently no explosive instabilities that
can generate small-scale random flow structures when only

two-dimensional interactions are allowed.
Run 6 illustrates the effect of finite-amplitude two-

dimensional disturbances on plane Couette flow. In Fig. 8

we plot the profile of the x-velocity component of the initial
disturbance in Run 6. This initial disturbance is constructed
from a solution of the Orr-Sommerfeld equation as follows.

For the given a = 2, B = 0, and R = 5000, the least stable
eigenmode G (z) of plane Couette flow is asymmetric about z=0.
It is easy to verify from the Orr-Sommerfeld equation (1.6)
that if G(z) corresponds to the wave vector-frequency

a,8,w, then G*(-z) is the eigenfunction associated with

a,B, -Re(w)+iIm(w). Note that the phase velocity of this
complex-congugate reflected mode is the negative of the phase
velocity of the original mode. The initial conditions for

Run 6 are chosen to be the (symmetrized) conditions in which
the xzvelocity is given by

~

ulx,z,0) = %Re[\J(z)ﬂl*(-z)]e

ioax

(3.2)

In Fig. 9 we plot the time evolution of the maximum amplitude

of the primary disturbance and its harmonic as functions of time

for Run 6. The decay is quite rapid, in contrast with the
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predictions of Ellingsen, Gjevik & Palm (1970) and Coffee

{(1977) whose theoretical calculations seem to predict that

Run 6 should lead to a finite-amplitude stationary disturbarce.

Other runs for plane Couette flow give r.o indication as yet

of any region of two-dimensional instability [although our

computer code is not capable of resolving the case suggested

by Kuwabara (1967)]. It is not likely that our decay results

for plane Couette flow are due to the low 8 x 33 resolution

used in Run 6. The 33 Chebyshev polynomials used in z are

more than adequate to resolve the vertical structure. The

8 Fourier modes used in x also seem to be adequate; at

t = 90, the primary wave has maximum amplitude 0.0053, its

harmonic has maximum amplitude 0.00034, while its second

harmonic has amplitude 0.000060. In any case, our experience

with increasing the x-resolution is that higher resolution

gives more stable results than low resolution (see Sec. 4).
The high frequency oscillation exhibited by the primary

wave in Fig. 9 is due to the fact that the maximum amplitude

of u(z) appears alternately near 2z = *1; this effect is

a consequence of the symmetrized mode (3.2) in which the two

components have equal and opposite phase velocity. Unsymmetrized

initial conditions do not lead to these rapid oscillations (see Fig. 37).
Our results suggests a serious discrepancy between the '

Stuart-Watson-Eckhaus theory predictions of two-dimensional

finite-amplitude instability of plane Couette flow and direct
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numerical calculations that indicate decay. One possible explanation
is that we have not sought solutions with large enough «¢.
According to Davey & Nguyen (1971), the finite-amplitude disturbances

1/2 or

requiring the least energy to excite have o = 0.13R
a®9 for R = 5000. However, the energy required to excite a
finite-amplitude mode at this large Reynolds number is a fairly

flat function of o and our inability to find instability with

" a=2 1is, in our view, a serious criticism of the theory. We
are now studying solutions with larger o using a higher resolution
computer code in order to resolve the discrepancy between non-
linear stability theory and numerical experiments. However, the
main point of the present paper is the strength of three-
dimensional effects; the possibility that two-dimensional inter-
actions may be slightly stronger for much larger o than
considered here is, we believe, a secondary issue.

In summary, our direct calculations of the Navier-Stokes
equations are in reasonably good agreement with nonlinear stab-
ility theory calculations of plane Poiseuille flow. While no
transition to turbulence is either observed or predicted due to
two-dimensional disturbances, there are finite-amplitude motions
that do not decay for Reynoids numbers larger than about 2800.
Serious discrepancies do now exist between nonlinear stability
theory and direct calculations of two-dimensional finite-amplitude

effects in plane Couette flow.
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4. Three-Dimensional Finite-Amplitude Disturbances

In this Section, we present results obtained using the
computer code described in Sec. 2 for the evolution of finite-
amplitude three-dimensional disturbances of plane Poiseuille
and plane Couette flow. Some characteristics of the runs
discussed in this Section are given in Table 3 for the plane
Poiseuille runs and in Table 4 for the plane Couette flow runs.

Run 3A is identical to Run 3 discussed in Sec. 3 except
for one interesting three-dimensional feature. The two-
dimensional Run 3 was made with the three-dimensional computer
code using 8 x 4 x 33 resolution and setting all flow components
to be independent of y at t = 0. Since we did not reset the
flow to be independent of y at later times, round-off error

14) three-dimensionality on the

induced a small (order 10
flow. This three-dimensional component was rapidly filtered

into an unstable three-dimensional mode that grew rapidly on

the finite-amplitude two-dimensional background. A plot of the
maximum amplitude of the primary two-dimensional disturbance,

its two-dimensional harmonic, and the fundamental oblique wave
(with wave numbers a = 1.3231, B8 = 1) is given in Fig. 10.

Note that the amplitude of the oblique component is multiplied
by 108 . The results of Run 3A show that the evolved two-
dimensional finite-amplitude state is quite susceptible to three-
dimensional instabilities.

Run 3A suggests a simple mechanism for transition. Whereas

two- and three-dimensional linear instabilities of plane
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Poiseuille flow are quite mild and occur only for large

Reynolds numbers (R35772), finite-amplitude two-dimensional

neutrally stable states of plane Poiseuille flow seem to
be explosively unstable to three dimensionnal perturbations

at subcritical Reynolds numbers.

In Runs 7-16 we investigate the finite-amplitude aspects
of three-dimensional instability of plane Pouiseuille flow.

All of these runs (except Run 16) are made by choosing the

initial condition to consist of a superposition of four

components:
iax jax+1B
y = (U(z),O,O)+Re[Y2D(z)e ]+Re[Y+,3D(z)e Y]
+Re [v_ 3D(z)elax—18y] (4.1)
Here U(z) = 1-22 is the unperturbed plane Pouiseuille flowf

Y2D(z) ijs a two-dimensional eigenfunction of the Orr-Sommerfeld
equation, and Yt,3D(Z) is a three-dimensional eigenfunction

of the Orr-Sommerfeld eguation with spanwise wave number:

+B . The form of this initial flow field is chosen to corresp-

ond to that suggested by the experiments of Klebanoii, Tidstrom &
Sargent (1962) and the theory of Benney & Lin (1960). The oblique
three-dimensional .disturbance is always formed with symmetric

+8 components, so the initial conditions give a standing

wave disturbance with the x-axis an axis of symmetry. For

all runs (except Runs 12 and 13) the Orr-Sommerfeld eigenfunctions
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yZD and YjD are chosen to be the least stable eigenfunctions

for the given values of a ,B . Because of the computational

cost of the three-dimensional runs, we have not been able to

make a complet= survey of the effects of disturbance wave
length and amplitude on the strength of the transition process.
However, there are indications on the basis of the results
reported below that the chosen values of o and B give

nearly the most strongly unstable results.

In Figs. 11 and 12 we plot the profiles of the two dimensional

disturbance uZD(Z) and the three-~dimensional disturbance u+3D(z),

[

respectively, applied initially in Runs 7 and 8. In Figs.

13 and 14, we plot the maximum amplitude of the two-dimensional
primary disturbance, its two~dimensional harmonic [depending
on x like exp(2iax)] , and the primary oblique wave [depending

on x and y like exp(iax+iBy)] for Runs 7 and 8, respectively.

The only difference between Runs 7 and 8 is that Run 7 has twice

the x-y resolution. It is apparent from Figs. 13 and 14 that
the results are nearly identical through t = 35, but the results

later diverge. 1In Run 7, the flow seems to 'break down' at

1

t 40 , while in Run 8 the 'breakdown' seems to occur for

t = 37. (Part of this difference may be due to time truncation
error since Run 7 uses a time step of 0.05 while Run 8

uses a time step of 0.1.) Another run made with the initial
conditions of Runs 7 and 8 but increasing the z-resolution

to 65 Chebyshev polynomials showed no change from the results

with 33 Chebyshev polynomials until well into the breakdown

region.
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In Tables 5 and 6, we give values of the maximum amplitudes
in z of the x-velocity Fourier components u(m,n,z,t), given
in terms of the spectral components u(m,n,p,t) in (2.3) by

P

u(m,n,2,t) = z ul{m,n,p,t) T (2).
p=0 P

While the convergence of the expansion (2.3) evidently does

deteriorate somwehat with time, especially near t <40

when the flow breaks down, the decrease of the maximum amplitude

with increasing m and n is sufficiently rapid for us to

confidently assert that the results of Run 7 are real and not

due to numerical instability. Also, while the effects of truncation

of the Fourier expansion (2.3) in Run 8 are even more pronounced

than for Run 7, the lower resolution results of Run 7, are a faithful

predictor of flow breakdown and accurately represent the flow

until just before breakdown occurs. '
We emphasize the gqualitative change in the behavior of

the flow brought about by three dimensionality. While the

finite amplitude two-dimensional results presented in Sec. 3

show the resulting flow to be smooth, periodic and with no

appreciable small-scale excitation, gquite the opposite is true

in the three-dimensional flows considered here. In three

dimensions, the flow develops into a state of apparent random-

ness with appreciable small-scale excitation. It is this latter

state that we claim is representative of the transition to

turbulence.
While we cannot claim that our results for Run 7 are in detail
accurate for t >50 when the flow is seemingly random and

"turbulent", the relative insensitivity to changes in resolution
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suggest strongly that our simulations accurately portray the

breakdown of the laminar flow and its transition to turbulence.
[While the flow after breakdown is almost certainly not being

treated in detail accurately, there is some basis for the

assertion that the statistical properties of the resulting flow

are in reasonable agreement with real flows. Some further
elaboration of this point is given below. However, we do not
stress the turbulence aspects of the developed flow in this
paper as numerical simulations of turbulence are best done
slightly differently.]

The apparent discontinuities in the time-history curves
plotted in Figs. 13, 14, and later arise because the maximum
amplitude of each of the flow components may come from different
local maxima and, hence, quite distinct z locations at different
times.

In Fig. 15, we plot x-y averages of the X-component

of the velocity field in Run 8 at t = 30-75(15):
Y

2

u(z,t) = = [ ax

XY dy u(x,y,z,t) (4.2)
0 -

N —

The results for Run 7 at t = 30 and t = 45 (the only times
at which corresponding results are available) are indistinguishable
from the plotted curves. The mean velocity profiles plotted in

Fig. 15 correspond to profiles in the nonlinear laminar,




early transition, late transition, and turbulent flow regimes.

The mean velocity profile at t = 75 is strikingly similar to

mean velocity profiles observed experimentally in turbulent

channel flow (Laufer 1951, Comte-Bellot 1965). In a continuation
of Run 8 to t >75, no change in the mean velocity profile is

found.

While there are no strong inflections appearing in the
mean velocity profiles plotted in Fig. 15, instantaneous
velocity profiles plotted in Figs. 16 and 17 for Run 7 at
t = 30 and t = 45, respectively, show strong inflections.
These local velocity profiles are strongly unstable and,
presumably, their instability leads to the random behavior

observed at later times.

Contour plots of the x-velocity component for Run 7
in the y~-z plane at x = 0 are given in Fiq, 18 for
t = 0-45(15). At the spanwise-y location of the center of
the 'cat's-eyes' observed in Fig., 18, the velocity
profile is much fuller than the undisturbed plane Poiseuville
profile and the corresponding wall shear is much greater (see
Figs. 16 and17). 1In the region between the 'cat's-eyes',
the local velocity profile is highly inflectional (as shown

in Figs. 16 and 17).

Contour plots of the longitudinal wvorticity component
for Run 7 in the y-z plane at x = 0 are given in Fig. 19 for

t = 0-45(15). Several features of these contour plots should
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be observed. First, there is considerable enhancement of
longitudinal vorticity during time evolution of this flow.
In Table 5, we present data on the maximum amplitude of the

transverse waves [m=0 in (2.3)]as a function of time in Run 7.

Through t = 35, the data in Table 5 agrees to within a relative
error of less than 2% with the corresponding data for Run 8,
The primary transverse mode seems to achieve rapidly a nearly
steady value, while the flow breakdown is signaled by rapid
growth of the n=2 harmonic component. Second, the small-~-
scale structure evident in Fig. 19 at t = 45 indicates the
breakdown of the flow.

In Fig. 20, contour plots are given of the y- and z-
components of the velocity and vorticity for Run 7 in the
y-z plane at x =0 at t = 30. Examination of these contour '
plots (and others made at different locations) show several
interesting features. First, there is evidently a correlation
between the x-~ and z-velocity components representing enhanced
transfer of momentum towards the walls. Also, the contours of
u in the x~y plane given in Fig. 21 show gusts of high-
velocity fluid moving through the center of an otherwise
slow-moving stream; the leading edges of a gust seem to be
sharper than the trailing edges, implying negative skewness
in velocity deriva?ives.

In Fig. 22, we plot the profile of the two-
dimensional primary wave at t = 30 and t = 45 , respcctively,
for Run 7. 1In Fig. 23, we present a similar plot of the
two-dimensional harmonic components at t = 45 in Run 7,

while in Fig. 24 we plot the profile of the primary oblique !
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wave (a0 = 1,8 = 1) at t = 45 in Run 7. Figs. 22-24 show

that, through the period of initial breakdown, the largest

fluctuations occur in the neighborhood of the walls. At later
times, the harmon?c components develop slightly stronger activity
near the center of the channel. The spatial structure and amplitude
of these fluctuations is not inconsistent with experimental

observations (Laufer 1951, Comte-Bellot 1965).

Run 9 tests the effect of decreasing the initial amplitude
of the two-dimensional and three-dimensional initial disturbances
in Runs 7 and 8 by 25%. 1In Fig. 25, the maximum amplitude of the
primary two-dimensional wave, its harmonic, and the primary three-
dimensional wave for Run 9 are plotted as functions of t . The
instability in Run 9 is considerably weaker than in Run 8. 1In
other runs, we have found that keeping the amplitude of the
two-dimensional disturbance in Run 8 at 0.11, but decreasing
the amplitude of the three-dimensional disturbance to 0.025
stabilizes the flow. Similarly, another run decreasing the
amplitude of the two-dimensional wave to 0.05, but keeping the
amplitude of the three-dimensonal wave disturbance at 0.05 as
in Run 8, stabilized the flow. At R = 1250, there seems to
be a critical amplitude of about 0.08 for the two-dimensional
component and about 0.04 for the three~-dimensional component.

Runs 10-13 were designed to test the sensitivity of the
flow to various spanwise wave numbers. The amplitude of the
initial disturbances in these runs is chosen to be close to that
of Runs 7 and 8. Run 10 uses a primary spanwise wave number

B = 0.25. In this case, the three-dimensional disturbance is




nearly two-dimensional and is barely distinguishable from the

primary two-dimensional disturbance. The resulting flow is

so nearly two-dimensional that the disturbances die away quickly.
Run 11 uses a primary spanwise wave number 8 = 0.5 ; in this
case transitior was observed but only at the late time t =z 120.
(Even though Runs 10-13 use the low spatial resolution

8 x 8 X 33 , we believe that the prediction of transition in
Runs 11 and 12 is justified because the three-dimensional distur-
bance remains at large amplitude during the laminar phase. The
resolution problems discussed below with regard to Runs 14 and 15

seem to apply only to marginally unstable flows .)

Other runs made with the two- and three-dimensional
disturbances detuned from the least stable modes of the Orr-
Sommer feld equation[used in (4.1)] gave significantly less

tendency to undergo transition than the runs discussed here.

Runs 12 and 13 introduce a new feature into the calculation.
Wwith B8 = 2 (Run 12) and 8 = 4 (Run 13), the least stable three-
dimensional mode of the Orr-Sommerfeld equation is no longer concent-
rated near the wall like the two-and three-dimensional modes plotted
in Figs. 11 and 12. The least stable three-dimensional mode with
B =4 at R = 1250 1is plotted in Fig. 26; it is evident that
this mode is concentrated near the center of the channel. Runs
made using this three-dimensional center mode together with
the two-dimensional disturbance mode plotted in Fig. 11 invariably
decay, evidently because there is not enough interaction between
the center mode and the wall mode disturbances. However, transition
to turbulence with these larger spanwise wave numbers { can be

achieved by using a three~dimensional wall mode disturbance.
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The least stable three-dimensional wall mode disturbance with

B =4 at R = 1250 is plotted in Fig. 27. Runs 12 and 13 use

these least stable wall modes. Run 12 is strongly unstable

and leads gquickly to transition. On the other hand, Run 13 is

stable and does not undergo transition, even though the

wall mode disturbance is used. Evidently there is a spanwise

wave number selection mechanism involved in the transition

process. It seems that the most dangerous three-dimensional disturbances
have wavefronts at an angle of about 45°-60° to the mean flow.

Runs 14 and 15 illustrate a possible pitfall of numerical
analysis of these transition problems. The only difference between
these two runs is the horizontal resolution: in Run 14, only
8 x 8 Fourier modes are used to resolve the x and y directions;
in Run 15, 16 x 16 Fourier modes are used. Both runs are
made at R = 750. In Fig. 28, we plot the maximum amplitudes
of the primary two-dimensional wave, its harmonic, and the
primary three-dimensional wave for Run 14. The disturbances
decay until about t = 100 and then abruptly erupt into
turbulence. A similar plot for Run 15 is given in Fig. 29.

In this case, the disturbances undergo only a smooth continuous

decay and no 'transition' is observed. We have also made a run

in which the 8 x B x 33 resolution of Run 14 is increased to

16 x16x33 at t = 90 in Run 14; in this case, as in Run 15,

no transition is obéerved. Evidently low-resolution can give

premature predictions of transition. Similar effects of low !
resolution have been observed by McLaughlin & Orszag (1979) in

calculations of transitioén in three-dimensional Bénard

46




convection. It is essential that transition calculations be

done with utmost care, in order to avoid these spurious predictions

of instability and breakdown in three-dimensional calculations.
Our spectral calculations do provide a 'bootstrap' procedure to
test internal accuracy of the simulations; if the spectrum
obtained by Run 14 is tested for convergence in the same way

as the spectrum of Run 7 is tested by the results given in
Tables 5 and 6, it is found that the 8 x8 truncation in

X and y in Run 14 has a large effect.

We are confident that our transition predictions cited earlier
in this Section,especially for Run 7, are not affected by these
resolution problems of Run 14,

Our final plane Poiseuille flow run is Run 16. Here the
initial conditions consist of the output from Run 8. These
"turbulent” ‘nitial conditions are then run at the lower
Reynolds number R = 500, in order to test whether an initial

field of turbulence can persist at this lower Reynolds number.

In Fig. 30, we plot the evolution of the maximum amplitude

of the two-dimensional primary wave, its harmonic, and the primary

three-dimensional wave. While the results are not conclusive,
it seems that the field of turbulence is slowly decaying and

that R = 500 is not sufficiently high to sustain turbulence.

Runs 17-20 investigate the effect of three-dimensional finite-

amplitude disturbances on planc Couette flow. While plane Couctte

flow is much more stable than plane Poiseuille flow for small-
amplitude disturbances and two-dimensional finite-
amplitude disturbances (see Sec. 3), the effects

of finite-amplitude three-dimensional disturbances at modest
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Reynolds numbers are just as dramatic in plane Couette flow as

in plane Poiseuille flow.

In Figs. 31 and 32, we plot the profiles of the x-velocity
of the two- and three-dimensional primary disturbances, respectively,
applied initially in Runs 17 and 18 at R = 1250. These profiles

are obtained from the corresponding least stable eigenfunctions

of the Orr-Sommerfeld equation for plane Couette flow by forming
the symmetric combination (3.2) [with an extra factor exp(iBy)
for the three-dimensional mode]. (The asymmetry observed in

Fig. 31 is due to the complex phase of the mode at the particular
value of x at which the plot was made,) In Fig. 33, we plot

the maximum amplitude of the two-dimensional primary disturbance,

its harmonic, and the primary three-~-dimensional disturbance vs

t for Run 17. The flow breaks down to turbulence near t = 45 .
A similar plot for the lower resolution Run 18 is given in Fig.

34, There is good agreement between the results plotted in Figs.
33 and 34 until beyond the brcakdown of the laminar flow. We

conclude that this flow does undergo transition to turbulence.

In Fig. 35, we plot the mean-velocity profile u(z)
for Run 17 at t = 60 . It is apparent that the mean-
velocity profile is tending toward the characteristic

S-shape expected in turbulent Couctte flow.

The effect of the symmetrized initial condition (3.2) on the
evolution of the flow is illustrated by Runs 19 and 20 made at
R = 1000. The maximum amplitude plot for Run 19 plotted in Fig.

36 suggests possible transition near t = 75 ; we hesitate to
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claim that this transition is recal because of possible resolution
limitations. The maximum mode amplitudes for Run 19 listed in
Table 7 show that the transverse (m = 0) modes are likely to

be inadequately resolved for t >60. An interesting feature
oleigs. 33, 34, and 36 for the symmetrized initial disturbances
is the high frequency oscillation of the maximum amplitude of

the two-dimensional primary wave and its harnomic. Run 20 is

made using unsymmetrized Orr-Sommerfeld eigenfunctions as

initial conditions. The maximum amplitude plot for this run, made
at R = 1000, 1is given in Fig. 37. Two features are noteworthy.

First, in contrast with Run 19, the transition in this case can

be much more confidently asserted, because the resolution limit-
ations do not appear to be severe until after breakdown occurs.
Second, the high frequency oscillations in the two-dimensional

disturbances and its harmonic have disappeared. .

As for plane Poiseuille flows, the plane Couette flow
runs are characterized by very rapid generation of the transverse
Fourier components m = 0 in (2.3) {[see Table 7 for the results
of Run 19]. In these flows, it seems that small-scale structures
are generated by the strong instability of the flows resulting
from superposition of the longitudinal vortices, represented
by the transverse ( m = 0) Fourier components, on the basic
laminar flows (l.3-4).

We have encountered significant difficulty in extending
our plane Couette flow runs to later times than initial breakdown.
Evidently, the turbulence that develops is of a particularly
severe kind that is inadequately resolved using the current

codes.

In conclusion, it seems that plane Couctte flow undergoes

transition at Reynolds numbers at least as low as those for which
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plane Poiscuille flow undergoes transition. Three-dimensional
effects are crucial in establishing breakdown at Revnolds numbers

of order 1000.

.

5. Conclusions

The results presented in Sects. 3 and 4 show the central
role pléyed by the interaction of two~and three-dimensional
finite~amplitdue disturbances in the breakdown of plane Poiseuille
and plane Couette flows. The basic character of this interaction
is qualitatively consistent with the theory developed by Benney &
Lin(1960) to explain the experiments of Klebanoff, Tidstrom &
Sargent (1962). However, as has been emphasized by

Stuart (1961), the Benney-Lin theory can be at

best qualitatively correct. The theory assumes that the phase

velocities of the interacting two- and three~-dimensional waves '
are identical, which is not correct (see Tables 3 and 4).
Our calculations show that three~dimensional finite-
amplitude effects produce strong inflectional velocity profiles
that eventually break down to turbulence. In plane Poiseuille
flow, these three-dimensional effects due to initial disturbances
with amplitudes of 5-10% of thé mean flow explain the experimentally
observed transitions at Reynolds numbers of order 1000, whereas
arbitrarily large two-dimensional finite-amplitude disturbances
seem powerless at Reynolds numbers much below 3000. The most
dangerous three-dimensional interactions seem to be between
‘oblique Orr-Sommerfeld modes propagating at about 45° to the
unperturbed flow with a wavelength about 3 times larger than the
channel depth. 1In plane Couctte flow, our numerical results *

suggest that three-dimensional effects due to initial disturbances
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with amplitudes of order 5-10% can drive transition at Reynolds

numbers of order 1000, while two-dimensicnal effects do not seemn

strong even at Reynolds numbers an order of magnitude larger.

The numerical results also suggest that turbulence can be

sustained in these planar shear flows at somewhat lower Reynolds

numbers but not as low as 500.

One disturbing feature is the high resolution in both

space and time that seems to be necessary to compute these trans-

ition flows. To compute transition accurately, it is necessary

to calculate relatively weak interactions over many linear
oscillation periods. While turbulent flows do require high
spatial resolution, they also evolve quickly so that the total
computer time may be less than for a transition calculation.
Also, in turbulence calculations, only statistical averages
need be determined accurately and practice has shown that
accurate statistical results can be obtained with relatively
low resolution.

It is interesting that we have found, in contrast to
some previous investigators, that the accuracy requirements
of transition calculations are more severe in the horizontal
x- and y-directions than in the z-direction normal to the
walls. The Chebyshev expansions used in the z-direction
have extraordinarily good resolution near the walls. Our
result that low horizontal resolution can give spurious
predictions of transition must be considered carefully in
future work on these problems. Low horizontal resolution
prevents the excitation of small scale métions that can act

as an 'eddy' visccsity that damps out instabilities,
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Table 1. Behavior of small~amplitude disturbances computed
numerically compared with behavior predicted by
Orr-Sommerfeld equation.

: Plane Poiseuille flow Plane Couette flow
Two- Three~ Two- Three-
dimensional dimensional dimensional dimensional
disturbance disturbance disturbance disturbance
leynolds number R 1500 1500 5000 5000
x-wavenumber o 1 1 0.5 0.5
y-wavenumber 8 0 1 0 0.5
te w 0.3262988 0.4012928 0.3511072 0.3517084
Im w -0.0282057 -0.0282305 ~0.0413797 -0.0418436
Initial amplitude _s -4 -4
’(x-velocity) 2.198 xlO"5 4.964x 10 1.209 x10 6.338 x10 ‘
Spatial resolution
(2M) x (P+1) 8 x 33 8 x 33 8 X 65 8 ~ 65
Time step At 0.1 0.1 0.1 0.1
Vinal time T 10 10 6 6
Computed amplitude
decay 0<t<T 0.753519 0.756756 0.781904 0.778925
Fredicted amplitude
decay expl(Im w)T] 0.754231 0.754044 0.780143 0.777975
Computed phase
change (radians)
0<t<T -3.25644 ~-4,00617 ~-2.10548 ~-2.10545
%redicted phasé
change -(Re w)T -3.26299 ~4.01293 -2.10664 ~2.11025
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Table 6.

Maximum Amplitude in z of the Fourier components of the x-velocity

u(m,n,2z,t) in the mixed spectral (x-y)-~physical (z) space

representation for Run 7.

Time (t)

Component (m,n) 20 30 40 50
Two Dimensional

Harmonics

(1,0) 5.69(-2) 4.11(~-2) 2,70(~2) 1.78(-2)
(2,0) 4.50(-3) 4.45(-3) 3.31(-3) 7.66(-3)
(3,0) 1.45(-3) 8.31(-4) 3.05(-4) 5.33(-3)
(4,0) 4.99(-4) 9.63(-5) 2.16(-4) 3.75(-3)
(6,0) 6.08(-5) 3.02(-5) 3.50(-5) 2.26(-3)
(8,0) 1.10(-5) 1.03 (-5) 1.28(-5) 5.92(-4)
Obligue

Harmonics

(1,1) 7.61(-2) 8.15(-2) 6.14(-2) 2.31(-2)
(2,1) 6.75(-3) 2.47(-3) 8.71(-4) 9.46(-3)
(4,1) 5.98(-4) 2.80(-4) 2.32(-4) 1.89(~3)
(6,1) 6.35(-5) 4.34(~-5) 3.06(-5) 1.20(-3)
(8,1) 1.61(-5) L.43(-5) 1.35(-5) 4,31(~4)
Diagonal

Components

(2,2) 5.90(-3) 6.37(-3) 3.99(-3) 9.55(~3)
(3,3) 1.12(-3) 1.14(-3) 1.28(-3) 3.09(~3)
(4,4) 1.32(-4) 3.69(-4) 4.05(-4) 2.385(~-3)
(6,6) 5.38(-6) 7.00(=5) 9.30(~5) 1.37(~3)
(8,8) 5.64(-7) 2.07(-5) 1.38¢(-5) 7.94(~4)
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Table 7. Maximum amplitude in 2z of the Fourier components of
the x-velocity wu{m,n,z,t) in the mixed spectral

(x-y) -~ physical (z) space representation for Run 19.
Time (t)

Component (m,n) 30 45 60 75
Two—Dimen§iona1

Harmonics
(1,0) 4.87(-3) 2.08(-3 1.40(-3) 2,.58(-3)
(2,0) 8.51(-4) 2.57(-4) 1.42(-3) 1.85(-3)
(3,0) 8.53(-5) 2,52(-5) 1.87(-4) 8.56(-4)
(4,0) 1.92(-5) 2.42(-6) 7.07(-5) 2,98(~4)
{(6,0) 2.70(-6) 3.29(-7) 1.20(-6) 4,39(-5)
Oblique

Harmonics
(1,1) 2.76(-2) 6.30(~3) 1.11(~3) 4.97(-3) )
(2,1) 1.31(~3) 9.32(~-5) 3.95(-4) 2.96(-3)
(3,1) 9.69(~5) 4.41(-5) 4.82(~5) 1.37(-3)
(4,1) 2.29(~5) 3.91(-6) 3.30(-5) 3.92(-4)
(6,1) 3.50(~6) 2.47(-7) 1.17(-6) 3.46(-5)
Transverse

Components
(0,1) 1.32(~2) 1.63(-2) 1.95(-2) 1.95(-2)
(0,2) 2.57(~2) 4.19(-2) 4.08(-2) 3.65(-2)
(0,3) 6.14 (~3) 9.12(-3) 5.51(~3) 1.14(-2)
(0,4) 1.91(~3) 6.34(-3) 5.62(~3) 7.72(-3)
(0,6) 1.38(~4) 1.53(~3) 3.08(~3) 6.09(-3)
Diagonal

Components
(2,2) 1.30(~3) 3.55(-4) 2.44(~-3) 3.55(-3)
(3,3) 1.14(-4) 8.14(-5) 1.45(~4) 1.62(-3)
(4,4) 1.37(~5) 8.86(-6) 2.20(~5) 4.22(-4)




Figure Captions

Fig. 1. A plot of the profile u(z) of the x-velocity of
the two-dimensional initial disturbance used in Run 2, This
disturbance is chosen as the least stable eigenmode of the
Orr-Sommerfeld eguation for plane Poiseuille flow with

R = 2935 and a = 1.3231. The phase of the initial
perturbation is chosen so that the maximum velocity
perturbation occurs initially at x = 0, where this plot

is made. The initial disturbances used in Runs 3 and 4 are
proportional to that imposed in Run 2,

Fig. 2. A plot of the time evolution of the maximum amplitude
in z of the x-velocity component of the two-dimensional
primary disturbance {[that depending on x 1like exp(iax)]

and its harmonic [depending on x like exp(2iax)] for

Run 2. At late times the primary disturbance is undergoing
slow growth.

Fig. 3. A plot of the =z-profile of the x-velocity component
of the primary disturbance in Run 2 at t = 120.

Fig. 4. A plot of the mean velocity u(z) in Run 2 at t = 120.
For comparison, the undisturbed plane Poiseuille flow profile
l—z2 is also plotted.

Fig. 5. A plot of the curvature -u'(z) of the mean
velocity profile in Run 2 at t = 120. For comparison, the
curvature 2 of the parabolic profile 1—z2 is also plotted.

Fig. 6. A plot of the maximum amplitude A of the primary
disturbance and its harmonic for Run 4. See Fig. 2. :

Fig. 7. A plot of the maximum amplitude A of the primary
disturbance and its harmonic for Run 1 at R = 2500. The
initial disturbance is chosen to be the least stable eigen-
mode of the Orr-Sommerfeld equation with R = 2500 a= 1.3231.
See Fig. 2.
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Fig. 8. A plot of the z-profile of the x-velocity component
of the two~-dimensional primary disturbance wu(z) for the
plane Couette flow Run 6 at R = 5000, o = 2. The initial
conditions are chosen as the symmetrized combination (3.2)
of the least stable eigenmode of the Orr-Sommerfeld equation
and its complex-conjugate reflected eigenmode.

Fig. 9. A plot of the maximum amplitude A vs t of the
x-velocity of the primary disturbance and its harmonic for
the two-dimensional plane Couette flow Run 6 at R = 5000.

Fig. 10. A plot of the maximum amplitude A wvs t for the
two-dimensional primary disturbance and its harmonic and

the three-dimensional primary wave {with o = 1.3231 and

B = 1) in Run 3A., The two-dimensional part of the initial
conditions is the same as in Run 3 of Sec. 3 while the three-
dimensional component is introduced initially through rouna-
off error. Note that the amplitude of the three-dimensional
component is multiplied by 108.

Fig. 11. A plot of the z-profile ot the x-velocity of the
two~-dimensional disturbance used in Runs 7-13., This disturb-
ance is chosen to be the least stable eigenmode of the Orr-
Sommerfeld equation for plane Poiseuille flow at R = 1250
with o = 1. The amplitude of this initial perturbation is
reduced by 25% in Run 9.

Fig. 12. A plot of the z-profile of the x-velocity of the initial
three-dimensional disturbance imposed in Runs 7-9. This dist-
urbance is chosen as the least stable eigenmode of the
Orr-Sommerfeld equation at R = 1250 with a =1 and B8 = 1.

In Run 9, the initial amplitude is decreased by 25%.

Fig. 13. A plot of the maximum disturbance amplitudes A vs
t for the three-dimensional plane Poiseuille flow Run 7 at
R = 1250. The plotted amplitudes are the maxima in 2z of
x-velocity of the two-dimensional primary disturbance and its
harmonic (multiplied by 10) and the three-dimensional primary




disturbance [depending on x like exp(iax+iBy) with
a=1 and B = 1].

Fig. 14, Same as Fig. 13 except for Run 8. The amplitude
of the two-dimensional harmonic is not multiplied by the
factor 10 used in Fig. 13.

Fig. 15. Plots of the mean velocity profiles (4.2) for
Run 8. t=30; - -—-— t = 45; ————m- t = 60;
seses t =75 ., The corresponding plots for t = 30 and
t = 45 for Run 7 are indistinguishable from those plotted

in this Figure.

Fig. 16. Plots of the instantaneous x-velocity profiles<ﬁ(x,y,z,t)

z at t =30 for Run 7. ——— x =0, ¥y = =T } — — ——
x=0,y=-~- '"/2 R i XxX=0,y= 0; covevvene

Fig. 17. Same as Fig. 16, except at t = 45. Labeled curves
are plotted at the same values of x and y as in Fig. 16.

Fig. 18. Contour plots of the instantaneous x-velocity ul(x,y,z,t)
in the y-z plane at x = 0 in Run 7. (a) t = 0, contours
0,0.9(0.1). (b) t =15, contours O0,1(.1). (¢} ¢t = 30,
contours 0,1(0.1). (d) t = 45, contours 0,1(0.1). Note that
while the tick marks along the y-axis do indicate the available
y-resolution, the tick marks along the z-axis are included for
reference only and do not indicate the available resolution of
the Chebyshev series, especially near the walls.

Fig. 19. Contour plots of the x-vorticity component wl(x,y,z,t)
in the y-z plane at x =0 in Run 7. (a) t = 0, contours
-0.35, 0.35(0.07). (b)) t = 15, contours -0.32,0.32(0.08).

(c) t = 30, contours -1,1(0.2). (d) ¢t = 45, contours
-2,2(0.4).

Fig. 20. Contour plots of flow components in Run 7 at t = 30
in the y-z plane at x = 0. (a) vi{(x,y,z), contours -0.06,0.06
(0.01). (b)) w (x,y,2), contours -0.024,0.012(0.004). (c)
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wz(x,y,z), contours -2.5,2(0.5). (4) w3(x,y,z), contours
-0.3,0.3(0.06).

Fig. 21. Contour plots of the instantaneous x-velocity
u{x,y,z,t) 1in the x-y plane at z = cos 37/l6 in Runs 7,8.
(a) t = 0, contours 0.19, 0.41(0.01) . (b) ¢t = 30,
contours 0.21, 0.42(0.01) for Run 7. (c) t = 60,
contours 0.16, 0.84(0.04) for Run 8.

Fig. 22. A plot of the z-profile of the two-dimensional
primary disturbance u(l,0,z,t) [see (2.3)] in Run 7:
(a) t = 30; (b) t = 45.

Fig. 23. A plot of the x-profile of the two-dimensional
harmonic disturbance u(2,0,&,t) [that depends on x and y
like exp(2iax)] at t = 45 in Run 7.

Fig. 24. A plot of the z-profile of the primary three-dim-
ensional disturbance u(l,l,z,t) fthat depends on x and

y like exp(iax+ify)] at t = 45 in Run 7.

Fig. 25. A plot of the maximum disturbance amplitudes vs t
in Run 9 at R = 1250. This run is the same as Run 8 except
that the initial amplitudes of both the two- and three-

dimensional disturbances are reduced by 25%.

Fig. 26. A plot of the z-profile of the least stable eigen-
mode ot the Orr-Sommerfeld equation for plane Poiseuille
flow at R = 1250 with o =X and B = 4. Observe that
this mode is concentrated near the center of the channel,
so it has little opportunity to interact with the least
stable two-dimensional disturbance which is concentrated
near the walls. This kind of three-dimensional disturbance
typically does not lead to transition. The eigenvalue of
the-Orr-Sommerfeld equation is w = 0.9076 - i0.0579. The
phase velocity of this mode is about 0.9, in contrast to
the phase velocity of wall modes which are usually in the
range 0.3-0.4.

Fig. 27. A plot of the z-profile of the second least stable
eigenmode of the Orr-Sommerfeld equation for plane Poiscuille
flow at R = 1250 with a =1 and B = 4. This wall mode
has eigenvalue w = 0.4635 ~ i0.1607. This mode is used

as the three-dimensional disturbance in Run 13.
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Fig. 28. A plot of the maximum disturbance amplitudes in Run
14 at R = 750. This run uses 8 x 8 x33 spatial resolution.

Fig. 29. Same as Fig. 28, except for Run 15. The amplitude of
the two-dimensional harmonic components is multiplied by a
factor 10. Run L5 differs from Run 14 only in that the spatial
resolution is 16 x 16 x33. Observe that the flow no longer

undergoes 'transition'.

Fig. 30. A plot of the maximum disturbance amplitudeslvs t
for Run L6 at R = 500. The initial conditions for this run
are the output conditions from Run 8. These initial conditions

are intended to simulate turbulence.

Fig. 31. A plot of the z-profile of the initial two-dimensicnal
disturbance used in Run 17 and 18. This disturbance is const-
ructed from the least stable eigenmode of the Orr-Sommerfeld
equation for plane Couette flow at R = 1250 with o =1

and B= 0 by symmetrizing according to (3.2).

Fig. 32. Same as Fig. 31, except that the profile of the
initial three-dimensional disturbance for Run 17 and 18 is
plotted.

Fig. 33. A plot of the maximum disturbance amplitudes A
vs t in Run 17 for plane Couette flow at R = 1250.

Fig. 34. Same as Fig. 33, except for Run 18, also at R = 1250.

Fig. 35. A plot of the mean velocity profile u(z) at t = 60
in Run 17.

Fig. 36. Same as Fig. 33, except for the plane Couctte flow
Run 19 at R = 1000. Symmetrized initial conditions are used.

Fig. 37. Same as Fig. 33, except for the pilane Couette flow
Run 20 at R = 1000. 1In this case, unsymmetrized initial
conditions are used. Observe that the high frequency time
oscillations in the maximum amplituls of the two-dimensional

primary disturbance and its harmonic disappear.
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