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Abstract

-Direct numerical solutions of the three-dimensional

time-dependent Navier-Stokes equations are presented for the

evolution of three-dimensional finite-amplitude disturbances

of plane Poiseuille and plane Couette flows. Spectral methods

using Fourier series and Chebyshev polynomial series are used.

It is found that plane Poiseuille flow can sustain neutrally

stable two-dimensional finite-amplitude disturbances at

Reynolds numbers larger than about 2800. No neutrally stable

two-dimensional finite amplitude disturbances of plane

Couette flow were found.

Three-dimensional disturbances are shown to have a strongly

destabilizing effect. It is shown that finite-amplitude

disturbances can drive transition to turbulence in both plane

Poiseuille flow and plane Couette flow at Reynolds numbers

of order 1000. Details of the resulting flow fields are

presented. It is also shown that plane Poiseuille flow cannot

sustain turbulence at Reynolds numbers below about 500.
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I. Introduction

One of the oldest unsolved problems of fluid mechanics

is the theoretical description of the inception and growth

of instabilities in laminar shear flows that lead to trans-

ition to turbulence. The behavior of small amplitude disturb-

ances on a laminar flow is reasonably well understood, but

understanding of the behavior of finite amplitude disturbances

is in a much less satisfactory state. There is as yet no

close agreement between theoretical and experimental studies

of transition flows.

In the laboratory, Davies & White (1928), Kao & Park

(1970), and Patel & Head (1969) have shown that plane Poiseuille

flow is unstable to finite amplitude disturbances at Reynolds

numbers as low as 1000 and that initially turbulent flow

remains turbulent at slightly lower Reynolds numbers. Here the

Reynolds number is R = Uh/v, where U is the maximum

downstream velocity, h is the half-channel depth and V

is the kinematic viscosity. On the other hand, Nishioka,

Iida & Ichikawa (1975) performed experiments in a low-

turbulence wind-tunnel in which they were able to maintain

laminar plane Poiseuille flow at Reynolds numbers as large

as 8000. In order to postpone transition to R = 8000 ,

Nishioka et al had to reduce the background turbulence level

to less than 0.05%. At larger disturbance levels, instab-

ilities were obtained at lower (subcritical) Reynolds numbers.

The experiments of Nishioka et al were performed in a

channel with aspect ratio (ratio of width to depth of
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channel) of 27.4. At lower aspect ratios,

the channel geometry may induce significant three-dimen-

sionality that may drive transition at lower R . This latter

effect may influence the results of Kao & Park but

should not affect those of Davies & White and Patel & Head.

Thus, it appears that the transition Reynolds number

observed experimentally depends on both the spectrum and

amplitude of the initial two and three-dimensional dist-

urbances to the flow. Typically, transition is observed

at Reynolds numbersof about 1000.

The experimental situation with regard to plane Couette

flow is far less satisfactory. Reichardt (1959) showed that

a turbulent flow is obtained at Reynolds numbers

(based on half-channel depth and wall velocity) as low as

750. Mollo-Christensen (private communication) has obtained

similar results. These experimental findings maybe subject to

*dispute because of end effects which ,it seems, are difficultto remove.

In summary, the only experimental evidence available to

date suggests that plane Couette flow undergoes transition

at Reynolds numbers similar to those of plane Poiseuille

flow.

Some insight into the mechanism of transition in planar

shear flows was given by the pioneering experiments of

Klebanoff, Tidstrom, & Sargent (1962) who studied the
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evolution of a controlled three-dimensional disturbance

in a laminar boundary layer. They found that prod-

uction of longitudinal vorticity by the three-dimensional

disturbance gives a secondary motion that creates local

inflectional profiles; the resulting highly unstable profiles lead

almost instantaneously to turbulent spots. The key result obtained by

Klebanoff et al is that initially weak three-dimensional

disturbances may control the nonlinear development of the

flow and its transition to turbulence. In this paper we

expand on this idea by studying whether a similar effect

can control the transition to turbulence in plane Poiseuille

and plane Couette flow.

Let us begin by reviewing theoretical approaches to

these problems. The equations of motion are the Navier-

Stokes equations

av(x,t)
+ v (x,t).Vv(x,t) = - Vp(x,t) +vV 2v(x,t) (1.1)at . . .. .. .. .

V.v(x,t) = 0 (1.2)

where v(x,t) = (u,v,w) is the velocity field at location

(x,y,z) and time t, p(x,t) is the pressure (divided

by density), and v is the kinematic viscosity. To date there

is no compelling evidence that the Navier-Stokes equations are
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in any way inadequate on the space- and time-scales involved

in transition and turbulence.

The flows discussed in the present paper are confined

between rigid walls at z = ±1 and extend to infinity in

the horizontal directions x,y. The boundary conditions

at the rigid walls z = ±1 are that the velocity of the

fluid must equal the velocity of the wall. In plane

Poiseuille flow, the undisturbed fluid motion is given by

v(x,t) = (l-z 2 ,0,0) , p(x,t) = -2vx ; (1.3)

this flow is driv n by a pressure gradient. In plane

Couette flow, the undisturbed fluid motion is given by

v(xt) = (z,0,0) , p(x,t) = 0 ; (1.4)

this flow is driven by the motion of the walls at z = +1.

For these flows the maximum velocity of the undisturbed

flow is 1, so the Reynolds number based on half-channel

width is

R = 1 (1.5)

The evolution of a small disturbance on a plane-parallel

shear flow is governed by the Orr-Sommerfeld equation, which is
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(d- -a ) w = iR[(cU-w)(- - 8 2 ) w-aU"w] (1.6)
dz 2  d

with boundary conditions

w = w' = 0 at z = ±1. (1.7)

Here the unperturbed velocity is (U(z),OO) and the small

t disturbance is assumed to have the form

w(x,t) = Re[w(z)eiax+i y - iwt] (1.8)

where a and B are the wave numbers in the x and y

directions, respectively, and w is the (complex) frequency

of the disturbance. If a and 0 are real and Imw>0,

then the small disturbance is linearly unstable. On the

other hand if all such small disturbances to a plane-

parallel shear flow have Imw<0, then the shear flow is

linearly stable.

The critical Reynolds number R is defined asc

the lowest value of R at which there is any

solution of the Orr-Sommerfeld equation with Im w = 0

For R >R , linearly unstable solutions of the Orr-

Sommerfeld equation may exist. In a unidirectional plane-

parallel shear flow Ev(x,y,z)/u(x,y,z) is independent of

x,y,z and w(x,y,z) = 0 ], Squire's theoTem (see Lin 1955)

implies that if,at some Reynolds number R , there exists

an unstable three-dimensional disturbance 30 4 0

in (1.8)] then
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there exists an unstable two-dimensional disturbance

[8 = 0] at a lower Reynolds number. Therefore, the mode

that becomes unstable at R must be a two-dimensionalc

mode. [We emphasize for later reference that at Reynolds

numbers larger than R , the most unstable solution ofc

the Orr-Sommerfeld equation may be three-dimensional

(see Michael 1961).]

Asymptotic analysis of the Orr-Sommerfeld equation for

plane Poiseuille flow using recently improved WKB techniques

leads to the estimate R z5769.7 (Lakin, Ng & Reid 1978);C

earlier asymptotic analysis had given Rcz53 60 (see Lin 1955)

Direct numerical solution of the Orr-Sommerfeld equation

gives R Z5772.22 (Orszag 1971b). The mode that becomes
c

unstable at R~ has wavenumbers c Zi.02055 and 8= 0. Thus the

theory of small amplitude disturbances suggests that plane

Poiseuille flow is unstable only for Reynolds numbers

greater than 5772, in contrast with the experimental

observation of possible transition to turbulence at

Reynolds numbers as low as 1000.

In plane Couette flow, all numerical evidence suggests

that all modes of the Orr-Sommerfeld equation are stable at

all Reynolds numbers (Davey 1973). The absence of any

critical Reynolds number Rc for plane-Couette flow is in

conflict with the available experimental evidence that this

flow undergoes transition at modest Reynolds numbers.

Meksyn & Stuart (1951) suggested that finite-amplitude

nonlinear effects may permit the growth of disturbances at
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subcritical Reynolds numbers. Meksyn & Stuart introduced

the so-called mean field equations in which only the

interaction of the mean flow with the primary disturbance

wave is retained and higher harmonics are neglected. They

found that finite-amplitude two-dimensional disturbances

to plane Poiseuille flow are unstable at Reynolds numbers

larger than about 2900 with a threshold amplitude of about

8% of the centerline velocity. Numerical work by Grohne

(1969) solving the mean field equations gave a critical

Reynolds number of about 2500 (based on the perturbed

centerline velocity).

Stuart (1960) and Watson (1960, 1962) extended the

Meksyn-Stuart theory to include the second harmonic of the

two-dimensional primary wave. Their results for plane

Poiseuille flow are close to those of Meksyn & Stuart.

Further work using the Stuart-Watson method by Reynolds&

rftter(1967) has confirradthat velocity fluctuations of a

few percent can drive two-dimensional finite-amplitude

instabilities at Reynolds numbers above 2900. The original

Stuart-Watson method involves expansions in both smallamplitude

and small Im(w) about the neutrally stable modes at R .c

Recently, Itoh (1977) has extended the method of Eckhaus

(1965) in order to reformulate the theory in a manner

that he claims avoids the restriction to 
the neighborhood of

Rc; a critique of Itoh's theory is given by 
Davey (1978).



A slightly different approach to the two-dimensional finite-

amplitude instability problem has been given by Pekeris &

Shkoller (1967,1969,1971), Zahn, Toomre, Spiegel & Gough (1974),

and Herbert (1976,1977). In these investigations, the two-

dimensional Navier-Stokes equations are solved using periodic

boundary conditions in x by expanding the solution in a

highly truncated Fourier series in x. Pekeris & Shkoller

(1971) found two dimensional instabilities of plane Poiseuille

flow at Reynolds numbers as low as 1000; at R = 1000, instab-

ility is achieved with a 6% perturbation, while at R = 3000

instability is achieved with a 0.4% perturbation. art

(1971) faults the accuracy of the Pekeris-Shkoll (1967,1969)

calculations. Our numerical solutions of the Na. --Stokes

equations reported in Sec. 3 give no evidence of two-dimensional

finite-amplitude instabilities in the vicinity of those predicted

by Pekeris & Shkoller (1971) on the basis of nonlinear

stability calculations using expansions in eigenfunctions of

the Orr-Sommerfeld equation.

Zahn et al solved the Navier-Stokes equations for plane

Poiseuille flow by retaining only two Fourier modes in x

and using an unequally spaced finite difference grid in z.

They found a minimum critical Reynolds number for two-dimensional

finite-amplitude instability of 2707. The instability at this

Reyholds number is achieved with a value of a = 1.3126.

Herbert (1976,1977) performed a similar calculation using

up to eight Fourier harmonics in x and 41 Chebyshev polynomials

in the z direction. He found a critical Reynolds number of

2935 with a corresponding a = 1.3231. Herbert's calculations
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are directly comparable to ours in that he used essentially

the same numerical technique as we do. The principal diff-

erences are that: Ci) Herbert seeks neutrally stable finite-

amplitude two-dimensional modes by solving time-independent

equations while we solve the time-dependent problem~and

(ii) Herbert uses up to eight Fourier harmonics in x

while we use up to 32. Our two-dimensional calculations are

in good agreement with those of Herbert.

In summary, the best available evidence to date suggests

that two-dimensional disturbances are unstable only for Reynolds

numbers larger than about 2800. Our numerical solutions reported

in Sec. 3 confirm this result.

Direct numerical calculations of the two-dimensional

Navier-Stokes equation were performed by George, Hellums

&Martin (1974). They obtained instability only *for

Reynolds numbers larger than about 3500. Further discussion

of their results is given in Se-. 3.

The current state of understanding of the effect of

three-dimensional disturbances on plane Poiseuille flow

is less well settled. Meksyn (1964) applied the mean

field equations for plane Pouiselle flow and found three-

dimensional finite-amplitude instability at R = 1260,

but he also found two-dimensional instability at R = 1270.

The inconsistency of these results with other numerical

calculations of the mean field equations and the Stuart-

Watson equations remains unexplained, but, in any case,

they do not show a large effect of three-dimensionality.
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Zahn et al (1974) examined some three-dimensional modes

and found them to be at least as stable as the two-

dimensional ones. Most recently, Itoh (1978) has extended

the Stuart-Watson-Eckhaus theory to three-dimensional disturbances

for Reynolds numbers close to the linear stability limit

of 5772. Itoh found that three-dimensional disturbances

are strongly destabilizing, but Davey's (1978) criticism may

still apply; in any case, Itoh's theory does not apply
to strongly subcritical Reynolds numbers. Also,

Hocking, Stewartson & Stuart (1972) and Davey,

Hocking & Stewartson (1974) studied the evolution of three-

dimensional finite amplitude disturbances to plane Pouiselle

flow at supercritical Reynolds numbers. They found that three-

dimensional effects are destabilizing above the linear stability

limit.

Theoretical investigations of the finite-amplitude

stability of plane Couette flow are also incomplete at this

time. Kuwabara (1967) applied the mean field equations of

Meksyn & Stuart and found that the minimum critical Reynolds

number for finite-amplitude instability of plane Couette flow

to two-dimensional disturbance to be R = 45212 with the

unstable mode having wavevector a = 13.565, B 0. Ellingsen,

Gjevik & Palm (1970) Davey & Nguyen (1971), and Coffee (1977)

used the Stuart-Watson method to study two-dimensional finite-

amplitude instability. They found instability to low-amplitude

disturbances down to Reynolds numbers of 1000 and below. However,
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the absence of neutrally stable linear eigenmodes of plane

Couette flow casts some doubt on the applicability of the

Stuart-Watson method which involves an expansion about neutral

stability (Rcsenblat & Davis 1978). Lessen & Cheifetz (1975)

also studied the nonlinear evolution of two-dimensional

disturbances of plane Couette flow. Their calculations cast

doubt that any unstable two-dimensional disturbances exist.

Herbert (1977) reports inability to find neutrally stable

finite amplitude solutions of plane Couette flow using highly

truncated Fourier expansions in x. Our numerical solutions

of the Navier-Stokes equations reported in Sec. 3 give no

evidence yet of two-dimensional finite-amplitude instabilities

in the neighborhood of those predicted by Ellingsen et al,

Davey & Nguyen, and Coffee. In summary, there are some

significant disagreements on the existence and strength of

two-dimensional finite amplitude instabilities of plane

Couette flow.

In this paper, we solve the Navier-Stokes equations

numerically to study quantitatively the instability and

transition to turbulence of plane Poiseuille and plane

Couette flows. Since the resulting turbulence is strongly

three-dimensional and since two-dimensional nonlinear

disturbances of these laminar shear flows do not seem to

be able to explain observed experimental results, we con-

centrate on the study of possible three-dimensional mechanisms.

Some insight is given by results for transition in boundary
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layer flows where the experiments of Klebanoff et al (1962)

and the theory of Benney and Lin (Benney & Lin 1960, Benney

1961, 1964) suggest that the secondary motions produced by

the interaction of three-dimensional modes with two-dimensional

modes can produce velocity profiles that are highly inflectional

and unstable. Numerical calculations of the Benney-Lin

equations by Antar & Collins (1975) have shown that this kind of

theoretical approach is in some agreement with experiments.

Direct numerical calculations of the three-dimensional

Navier-Stokes equation for boundary-layer flow have shown

quantitatively the strength of these three-dimensional

effects in producing transition (Orszag 1976). On the other

hand, direct numerical calculations of the two-dimensional

Navier-Stokes equations for boundary layer flow (Fasel 1976,

Fasel, Bestek & Schefenacker 1977, Murdock 1977, Murdock &

Taylor 1977) do not exhibit explosively strong physical

instabilities and the small scale excitation and apparent

randomness characteristic of transition.

Because of the limited spatial resolution of our calculations,

we do not address in detail the nature of the small scale

flow structures that result from flow breakdown. Our goal

is to explain the mechanisms by which flows develop that break

down to turbulence. The development of very small scale

structures in these flows, as studied by Landahl

(1972), is beyond the scope of the present work.

In Sec. 2, we discuss briefly the numerical methods

used in the present study. Then, in Sec. 3, we present

13



results for two-dimensional linear and nonlinear disturbances

of plane Poiseuille and plane Couette flow. In Sec. 4, we

present results of calculations of three-dimensional finite-

amplitude instabilities of these flows and the resulting

transition to turbulence. Finally, in Sec. 5, we summarize

our results.
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2. Numerical Methods

We solve the Navier-Stokes equations (1.1)-(1.2)

expressed in rotation form

ayv(x,t)

t __ _ = v(x,t)xw(x,t) - Vfl(xt) + vV2v(x,t), (2.1)

where w(x,t) Vxv(x,t) is the vorticity and

II(xt) = p(x,t) + !.v(xt)I 2 is the pressure head.

The flow is assumed to take place in the three-dimensional

box 0< x< X, -:!< . -I<z<l. At

z = ±1 we impose the boundary conditions that the fluid

velocity match the wall velocity. In the horizontal

directions, we impose periodic boundary conditions so that

v(x+mX, y+nY, z,t) = v(x,y,z,t) (2.2)

for all integers m, n. These periodic boundary conditions

are consistent with the Navier-Stokes equations and the

laminar solutions (1.3) for Poiseuille flow and (1.4) for

Couette flow.

The choice of periodic boundary conditions in horizontal

planes does cause some problem with respect to comparison

with experiment since these boundary conditions are not

realized in the laboratory. There are two justifications
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for their use: (a) The instabilities of laminar flows

that lead to turbulence are of small spatial scale so that

boundary conditions should have little effect; and (b)

the spatial growth of a disturbance in a laboratory

coordinate frame appears in an advected coordinate frame

as temporal growth, similar to that observed with the

boundary conditions (2.2). Transition experiments in a

flat plate boundary layer have been performed (Orszag 1976)

with proper inflow-outflow boundary conditions applied and

the results are qualitatively the same as in the present

work. Also, Fasel et al (1977) have used inflow-outflow

boundary conditions in their numerical simulations of two-

dimensional disturbances to plane Poiseuille flow with results

similar to those obtained using periodic boundary conditions.

We offer no more excuses for the boundary conditions (2.2)

used here and urge further study of their effect by future

investigators.

We solve the Navier-Stokes equations in Eulerian coor-

dinates using the pseudospectral method suggested by

Orszag (1971a). An introduction to the theory of spectral

methods is given in the monograph by Gottlieb & Orszag

(1977). Here we summarize the implementation of spectral

methods for the present channel flow simulations.

The velocity field is represented using Fourier series

in x and y and a Chebyshev polynomial series expansion

in z . Thus, the velocity field is represented as

P

v(x,t) = , u(m,n,p,t) e 27i((mx/X+ny/Y) T (z)
~ ~ ImI<M Inj<N p=O P

(2.3)
16



-l
where m, n, p are integers and T (z) = cos(pcos z)p

is the Chebyshev polynomial of degree p .

Equations for the spectral components u(m,n,p,t) are

obtained using a pseudospectral method to evaluate the non-

linear terms of the Navier-Stokes equation. Thus, the

rotation term v x w in (2.1) is evaluated as

v x (xjYkZ) = V(xjYk,Z) X W (xjYkZi)

(2.4)

(0 < j <2M, 0 < k < 2N, 0 < Z < P

where the collocation points xj, Yk' z£ are

x. = jX/(2M), yk (k-N)Y/(2N), z = cosnk/P
)k

The values of v(xj, ykz ) are obtained from (2.3) using

fast Fourier transform algorithms (improved to take

advantage of the reality of v an'd the cosine (Chebyshev)

transform in z as described in the appendix to Orszag

(1971a)]. Similarly, w(xj ) is evaluated using

fast Fourier transforms applied to the curl of (2.3);

for this purpose it is helpful to note that

8V 7 - (I) 27i(mx/X+ny/Y)T (z)

ImI<M InI<N p=0

(2.5)
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where u (I ) is given in terms of u by the recurrence relation

cp-u l( ) (m,n,p-l) - u ( I ) (m,n,p+l) = 2p u(mn,p) (l<p<P);

(2.6)

where c q= 1 if q>l and c0 = 2, and u (1) (m,n,P+l)=qI
U(1) (m,n,P) = 0 for all m,n . Also, we apply a special

circular truncation to the spectral representation of v x w

in the x-y plane in order to minimize aliasing effects

(Orszag 1971a, Sec.6).

The evaluation of v x w by this algorithm requires

9 Fourier transforms on 2MNP complex data points [three

transforms each to get v in physical space, w in physical

space, and v x w back in transform (Fourier-Chebyshev)

space (which is the resident representation through most of

our computer code)] . With M=N=I6 and P = 32, each component

* of the velocity field is represented by 33,792 real degrees

of freedom (before the circular truncation in the x-y plane

is applied); evaluation of v x W by the above pseu-
oIn

dospectral algorithm requires about 2.5s on the CDC 7600. In

contrast, direct evaluation of the convolution-like sums

that would be obtained by formulating equations for

au(m,n,p,t)/Dt using a Galerkin approximation procedure

would require about 1000 times more computer time. It is

I



noteworthy that of this speedup by a factor 1000, the fast

Fourier transform contributes only roughly a factor 2; most

of the speedup is due to the reorganization of the calculation

in terms of transforms (which factor into a sequence of one-

dimensional transforms) be they fast or not. This latter

result and the result noted by Gottlieb & Orszag (1977)

that Legendre polynomial expansions are especially accurate

may suggest that Legendre polynomials be used in place of

Chebyshev polynomials in future studies. We also note that

one of us (S.A.O) has recently developed a 'fast' Legendre

transform that requires 0(N(Zog 2 N) 2/og2 kog 2 N) operations

to transform an N term Legendre polynomial or surface

harmonic series to or from physical space.

Four additional features of our numerical methods

deserve comment: time stepping, determination of the

pressure, viscous dissipation, and initial conditions. A

fractional step method is used in time so that we shall

first discuss a time step of the inviscid equation, then

the imposition of the incompressibility constraint,

then viscous effects, and finally initial conditions.

In order that time steps not be unduly restricted

by convective stability conditions due to the relatively

large unperturbed (laminar) flow we use a semi-implicit

scheme in which the largest effects of this parallel flow

are handled implicitly. If the (x-component of the)

unperturbed parallel flow is denoted by U(z), then the terms

in (1.1) responsible for convective stability restrictions

that trace to U(z) are just U(z)ay/ax. This term is best

-19-
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evaluated in the mixed spectral-physical space representation

in which x and y are represented as Fourier modes while

z is kept in physical space; in this representation

U(z)v/ax - i(2rm/x)tu(z)u(m,n,z), which is diagonalized.

With the semi-implicit treatment of U(z) , it is a

little tricky to obtain an efficient time-stepping procedure
f

for (2.1) and (1.2) that is high-order accurate in time.

We use an Adams-Bashforth-Crank-Nicholson (ABCN) method

with global error of order O(At 2) + O(vt), where we

tolerate first-order accuracy on the viscous terms because

our calculations are done with very small values of v. If

v is large, the semi-implicit treatment of U(z) should be

sacrificed for better accuracy in time. The ABCN scheme

for the nonlinear terms in (2.1) is derived by writing

av/at +U v/3x = v x w + U V/ax and applying the Crank-

Nicolson scheme on zhe left and the second-order Adams-

Bashforth scheme on the right; the result is

-n+l n n-U -U 3 3n ~1 i 2rm n~l nn-nt 2=m tU(z) Q -2,n+Qn- ] (2.71
"At = n  2 X~~ ~"

in the mixed spectral-physical space representation. Here

F = v x w+ f in the mixed representation where we have

generalized the problem slightly by introducing an external

force (mean pressure gradient) denoted by f; the superscripts

label the time step and no boundary conditions (except

t Orszag & Deville (to be published) have recently shown how
to obtain unconditionally stable, easily implementable
schemes of arbitrary order accuracy in time for the Navier-
Stokes equations. Comparisons with the results reported
in the present paper show no appreciable errors due to the
lower order scheme used here.
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periodicity are applied yet. Eq. (2.7) is formulated

for constant time steps At; for nonconstant time steps

[as for the first few time steps (we use a slow start

to minimize initial truncation errors)], the coefficients in

(2.7) are different. It is important to emphasize that

the terms multiplying U(z) on the right side of (2.7)

are all intermediate results at time steps n-l, n, and
n-l ^n n-1 n

n+l; if u and u are replaced by u and u

or 4 + T n (as would be the case if naive application

of the Adams-Bashforth method were made) then the scheme

(2.7) would lead to errors of order 0(At) after

application of the pressure terms in (2.1).

Once the fractional step (2.7) is made, it is

necessary to include the effect of pressure. This is

done by the fractional step

An+l ^n+l A~n+l

v - v = - Vi (2.8)

V.vn + l = 0 (2.9)

A n+1 2
where v has global error of order O(At 2) despite the

fact that At l  has global error 0(At) relative to the

pressure head R. Eqs. (2.8)-(2.9) are solved with the

boundary conditions

Wn+1
w = 0, z = ±, (2.10)
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assuming no normal wall motion.

Eqs. (2.8)-(2.10) are best solved in the full

spectral representation using a spectral tau method in

z (Gottlieb & Orszag 1977, Sects. 10, 13). The result-

ing equations for u (dropping the time-step label) are,

in the full spectral representationpgiven by

A

u(m,n,p) = u(m,n,p) - iamll(m,n,p) (0_p<P) (2.11)

AA

v(m,n,p) = v(m,n,p) - i~nfl(m,n,p) (0<p<P) (2.12)

A A 
Uw(m,n,p) = w(m,np) - 1(i) (m,n,p) (0<p<P-2) (2.13)

icmu(m,n,p) + ianv(m,n,p) + w (m,n,p)=O (O<p<P) (2.14)

P P
W w(m,n,p) = 7 (-l)Pw(m,n,p) = 0 (2.15)

p=O p=0

for all retained m,n (ImI<M,jnI<N), wheret

a= 21r/X , 0- 2t/Y and i(l) and w are relatedA A

to I and w as in (2.6).

If m2+n2 # 0, an efficient procedure to solve

(2.1l)-(2.15) is to rewrite (2.1l)-(2.15) as the nearly

tridiagonal system (see Sec. 10 of Gottlieb & Orszag 1977)

t Note that these definitions of a , a are consistent with a 
'

used in (1.8) and (2.23)-(2.27) below if the linear
mode in (1.8) is the fundamental mode in the box
0<x<X,- I Y<y<f.*
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Y - e p+ 2  y ep+4  ^
4p(p-2) w(m,n,p-2) - (1 + 2 )w(,n,p) + 4  A2)

4p p-l)2 (p2-1)

- F(m,n,p) (2<p<P) (2.16)

where c0 = 2, cp 1 (p>l), e = l(p<P), ep = O(p>P),
p pp

22 22y= c m + n ,and

c2fp2 ep f e f
F(m,n,p) -2 - P + p 2  (2<p<P) (2.17)4p(p-l) 2(p2_i) 4p(p+l)

with

ia(I~ p in()A

f = - icmu I (m,n,p) - inv I (m,n,p) -yw(m,n,p)p

(2.18)

^ v ( A

and u and ^ related to u and v by (2.6).

The system (2.15)-(2.16) is solved for w by standard

techniques in roughly the same number of operations required

to solve pentadiagonal systems. The equations for w in

this form are essentially diagonally dominant so no appreciable

accumulation of'roundoff errors occurs.

Once w is found then H is found from

yf(m,n,p) =- icu(m,n,p)-ionv(m,n,p)- w (mn,p)

(0<_p<P) (2.19)
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where s,, are given as before in terms of m,n, Then
AA

u and v are found directly from (2.11)-(2.12), completing

the solution for u

If m = n = 0 , then (2.1l)-(2.15) are easily solved

by appropriate applications of recurrences like (2.6).

Finally, we use a full implicit fractional step

to impose the viscous terms and the boundary conditions:

vn+l_ n+1

= L = VV l (2.20)At

n+l
v = V (z = ±) (2.21)

where V is the wall velocity at z = ±1, respectively.

The full implicit scheme (2.20)-(2.21) is unconditionally

stable but it does induce global errors of order 0(vAt).

Eqs. (2.20)-(2.21) are solved efficiently in a full spectral

representation using a spectral-tau method; the resulting

equations are essentially tridiagonal in the Chebyshev index

and diagonal in the Fourier indices (see Sec. 10 of Gottlieb

& Orszag 1977). This completes the description of the main

part of our computer code.

Initial conditions for the runs reported in Sects.

3-4 usually consist of the unperturbed flow (1.3) or (1.4)

on which we superpose finite-amplitude combinations of
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two-and three-dimensional eigenmodes of the Orr-Sommerfeld

equation (1.6)-(1.8). The Orr-Sommerfeld equation is

solved by expanding w(z) in the Chebyshev series

(Orszag 1971b)

P
w(z) I apT (z), (2.22)

p=0 p

constructing equations for the expansion coefficients

a p by matrix methods (Metcalfel974), finding the eigen-

value by either a global eigenvalue routine based on

a matrix QR eigenvalue analysis or a local eigenvalue

routine based on an inverse iteration-Rayleigh quotient

method, and finally obtaining the eigenfunction by an

inverse iteration method. The accuracy of our eigenvalues

and eigenfunctions is better than 1 part in 106.

Once the complex z-velocity w(z) of an eigenmode

of the Orr-Sommerfeld equatioi is obtained, the x- and

y- velocity components, u(z) and v(z) , respectively,

are obtained as follows. The z-component of the perturbed vorticity,

given by n(z)exptiax+i~y-iwt] with

-z) i ~u' iav(z), (2.23)
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satisfies the linear inhomogeneous equation

_ a2  )Tl(z)= iR[(aU(z)-w)rl(z)+iU'(z)w(z)] (2.24)
dz2

1) , (2.25)

where R = 1/V. Using the incompressibility condition

(1.2), it follows that

(a 2+ 2)u(z) = -i an(z) + iaw' (z) (2.26)

(a2 + 2)v(z) = ictp(z) +iw'(z). (2.27)

For two-dimensional disturbances, 8 = 0 and n(z) = v(z) =0.

In concluding this section we summarize some features

of our computer code. Fourier series representations are

used in x and y and Chebyshev series representations

are used in z . Pseudospectral methods are applied to the

nonlinear terms while tau methods are ipplied to the

pressure and viscous terms. The resulting scheme is infinite-

order accurate in space, has no phase errors in x and y

can resolve boundary layers of thickness 0(1/P ) in z

(the collocation points z1  and zp_ 1  in (2.4) are

located a distance r2 /2P2 from the walls at z = ±1]

and accurately imposes the boundary conditions at the rigid
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walls and the incompressibility condition throughout

the layer (see Gottlieb & Orszag 1977 for discussion of

these features). A fractional time step method is used

with global error of order 0( 1 t 2+vi~t); time steps are

formally restricted only by convective stability rest-

rictions due to the perturbed velocity [although in

practice we do not take time steps more than about three

times larger than the convective stability limit due to

A run using 32 x32 x33 modes (M=N=l6,P=32)

to represent each component of velocity requires about 6s (2.5s

for evaluation of v xw) on the CDC 7600 computer per time

j step, including input-output overhead. The computer time

is nearly proportional to MNP. A typical run involves

about 1000 time steps. Some runs to validate our code

are reported in Sec. 3. We note here that it is ourI (unpleasant) experience that typical transition calculations

require about 10 times as many time steps as typical

turbulence decay calculations (see Orszag & Patterson

1972). The reason seems to be the need to maintain

accurate phase relations over many linear oscillation times

in transition calculations whereas turbulent flows are

nearly critically damped and evolve quite rapidly in

interesting ways. We also note that less than 15 h
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* of CDC 7600 time was spent on the present series of

computations (including a large number of runs not

reported here). On the newly introduced CRAY-l computer

the same series of runs requires less than 1.4h, showing

the great strides that can now be made on significant

fluids problems with modest computer resources.
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3. Two-Dimensional Finite-Amplitude Disturbances

In this Section, we present results obtained using

the computer code described in Sec. 2 for the evolution of

small and finite-amplitude two-dimensional disturbances of plane

Poiseuille and plane Couette flow. The first series of

runs were made primarily to verify the accuracy of our computer

program in comparison with known results. Two types of

tests have been made: comparison of the evolution of small-

amplitude disturbances with their predicted behavior according

to the Orr-Sommerfeld equation; and comparison of some special

finite-amplitude two-dimensional solutions with the numerical

results of George, Hellums & Martin (1974).

In Table 1, we present results of small-amplitude tests

of the computer code. The values of w are obtained by

Chebyshev-spectral solution of the Orr-Sommerfeld equation

and represent the least stable eigenmode of the flow for the

given a and $ . The predicted amplitude change in the

time interval O<t<T is exp[(Im w)T] , while the predicted

phase change in the same time interval is (in radians)

-(Re )T . It seems that most of the small error between

the predicted and computed amplitude and phase changes of

both the two-and three-dimensional modes of plane Pouiseuille

flow and plane Couette flow is due to time differencing

error. Similar tests of the computer code on small-amplitude
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disturbances have been made for Reynolds numbers up to

.50,000 with similarly good results.

Our next verification run used a large two-dimensional

disturbance studied previously by George et al (1974). George

et al solved the two-dimensional Navier-Stokes equations by

expanding the velocity field into a Fourier series in x

and applying finite-difference methods in z . George et al

did not use initial conditions corresponding to eigenmodes

of the Orr-Sommerfeld equation, but rather chose the initial

velocity field to be that generated by the streamfunction

coshaz cos az*(x,z) = k(c os ax (3.1)cosh a cos a

Here a z 2.365 in order to satisfy the boundary conditions,

and we integrated the neutrally stable case found by George

et al in which R = 4000, a = 1.05, k = 0.0599. The initial

maximum amplitude of the perturbation of x-velocity is 0.1465.

Using 8 Fourier modes in x and 33 Chebyshev polynomial3 in

z , the results of our computer code agreed well through late

times with those of George et al. It seems that the reason that

George et al were unable to achieve two-dimensional instability

at Reynolds numbers as low as those predicted by the Stuart-

Watson technique is due to two causes: (a) the initial

30



condition (3.1) is not a pure mode of the Orr-Sommerfeld

equation; and (b) more importantly, the choice a = 1.05,

while close to the most unstable a for small-amplitude

disturbances is far from the most unstable a for finite-

amplitude disturbances (see below).

Some characteristics of the two-dimensional finite-amplitude

runs discussed below are given in Table 2. Additional details

are given by Kells (1978). The results of Herbert (1976) suggest

that the critical Reynolds number for finite-amplitude two-dimen-

sional instability of plane Poiseuille flow is roughly 2935 with

the unstable mode having a wavenumber a = 1.3231. Runs 2-4

present results of our numerical simulations of such a flow.

In Fig. 1 we plot the profile of the x-velocity component

of the two dimensional primary disturbance mode [which depends on

x like exp(iax)] imposed at t = 0 in Run 2. The initial

disturbance imposed in Runs 3 and 4 has the same shape but

is reduced in amplitude. In Fig. 2 we plot the time evolution

in Run 2 of the maximum amplitude A of the x-velocity of

the primary wave and its harmonic [that depending on x like

exp(2iax)I. After an initial transient period the primary wave

settles down into a period of slow growth suggesting that the

initial finite-amplitude disturbance does not die out as

t-- . However, despite the growth of the finite-amplitude

disturbance, there is no sign of 'turbulence' in the sense that
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the flow remains ordered and well behaved. In Fig. 3, we plot

the profile of the primary wave after evolution to t = 120

in Run 2; in this Figure, the x-velocity component u(z) is

plotted as a function of z at a point x at which its phase

relative to the initial perturbation is 0 . Comparision of

Figs. 1 and 3 shows that nonlinear effects tend to move the

maximum perturbation velocity away from the walls at z = ±1

In Fig. 4, we plot the unperturbed velocity profile 1 - z2

and the mean velocity profile obtained from Run 2 at t = 120.

In Fig. 5, we plot the curvature of the unperturbed flow

and the mean flow at t = 120. Observe that although the mean

flow is changed only slightly in evolution from t = 0 to

t = 120, there are large changes in the curvature in the wall

regions.

Run 2 has 32 Fourier modes in x and 33 Chebyshev modes

in z. Its numerical accuracy was tested by making other runs

with different values of M and P . A run with 16 Fourier

modes in x and 33 polynomials in z gave nearly identical

results, while a run with 8 Fourier modes indicated faster in-

stability. Increasing the number of Chebyshev polynomials in

z to 65 gave negligible change. In Run 2, higher harmonics

have Very small amplitudes; the harmonic exp(3iax) has maximum

amplitude 0.01 in z at t = 120 while the harmonic

exp(7iax) has amplitude 0.001.

The results of Runs 3 and 4 indicate the effect of chang-

ing the initial amplitude of the finite-amplitude disturbance.

In Run 3 a nearly stationary disturbance is achieved in
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evolution to t = 100 (see Fig. 10) . On the other hand,

Run 4 shows that there is a critical amplitude of about

10% below which finite-amplitude disturbances decay at

R = 2935. In Fig. 6, we plot the maximum amplitude of the

x-velocity of the primary disturbance and its harmonic as

a function of time in Run 4. After an initial transient period,

both the primary and its harmonic settle down to a state of

steady decay.

In Fig. 7 we )lot the primary wave and harmonic wave

amplitude vs. time for Ru~n 1 at R = 2500. The result that

the disturbance decays as t increases for an initial disturb-

ance which is designed to be close to the most unstable finite-

amplitude disturbance at this Reynolds number suggests that all

two-dimensional disturbances decay at R = 2500. We conclude

that the threshold for neutral stability is near R = 2800,

in rough agreement with previous theoretical results.

Run 5 shows that decreasing a to a =1 gives stable

finite-amplitude results even at R =3500. This result explains

why George et al (1974) were unable to find two-dimensional

instabilities at Reynolds numbers below 3500. George et al

used a disturbance wave number a =1.05 which is close to

the value of a that gives the linearly least stable mode

of plane Poiseuille flow at R = 3500 among all real a

but ai = 1.05 is far from those modes that give unstable

finite-amplitude disturbances. While the amplitudes of the
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harmonics of the primary wave disturbances in Runs 2 and 3 are

quite small, nonlinear effects do cause considerable distortion

of the primary wave itself (see Figs. 1 and 3), giving a large

effect on the least stable C

In summary, while there are finite-amplitude two-dimensionil

instabilities of plane Poiseuille flow at subcritical Reynolds

numbers, there are apparently no explosive instabilities that

can generate small-scale random flow structures when only

two-dimensional interactions are allowed.

Run 6 illustrates the effect of finite-amplitude two-

dimensional disturbances on plane Couette flow. In Fig. 8

we plot the profile of the x-velocity component of the initial

disturbance in Run 6. This initial disturbance is constructed

from a solution of the Orr-Sommerfeld equation as follows.

For the given a = 2, B = 0, and R = 5000, the least stable

eigenmode u (z) of plane Couette flow is asymmetric about z=0.

It is easy to verify from the Orr-Sommerfeld equation (1.6)

that if u(z) corresponds to the wave vector-frequency

a,a,w, then u (-z) is the eigenfunction associated with

a',, -Re(w)+iIm(w). Note that the phase velocity of this

complex-congugate reflected mode is the negative of the phase

velocity of the original mode. The initial conditions for

Run 6 are chosen to be the (symmetrized) conditions in which

the x~velocity is given by

I a

u(x,z,O) = -Re[u(z)+u*(-z)]e (3.2)

In Fig. 9 we plot the time evolution of the maximum amplitude

of the primary disturbance and its harmonic as functions of time

for Run 6. The decay is quite rapid, in contrast with the
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predictions of Ellingsen, Gjevik & Palm (1970) and Coffee

(1977) whose theoretical calculations seem to predict that

Run 6 should lead to a finite-amplitude stationary disturbance.

Other runs for plane Couette flow give !.o indication as yet

of any region of two-dimensional instability [although our

computer code is not capable of resolving the case suggested

by Kuwabara (1967)]. It is not likely that our decay results

for plane Couette flow are due to the low 8 x 33 resolution

used in Run 6. The 33 Chebyshev polynomials used in z are

more than adequate to resolve the vertical structure. The

8 Fourier modes used in x also seem to be adequate; at

t = 90, the primary wave has maximum amplitude 0.0053, its

harmonic has maximum amplitude 0.00034, while its second

harmonic has amplitude 0.000060. In any case, our experience

with increasing the x-resolution is that higher resolution

gives more stable results than low resolution (see Sec. 4).

The high frequency oscillation exhibited by the primary

wave in Fig. 9 is due to the fact that the maximum amplitude

of u(z) appears alternately near z = ±1; this effect is

a consequence of the symmetrized mode (3.2) in which the two

components have equal and opposite phase velocity. Unsymmetrized

initial conditions do not lead to these rapid oscillatio-ns(see Fig. 37).

Our results suggests a serious discrepancy between the

Stuart-Watson-Eckhaus theory predictions of two-dimensional

finite-amplitude instability of plane Couette flow and direct
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numerical calculations that indicate decay. One possible explanation

is that we have not sought solutions with large enough a.

According to Davey & Nguyen (1971), the finite-amplitude disturbances

requiring the least energy to excite have a z 0.13R 1 /2  or

a=~9 for R = 5000. However, the energy required to excite a

finite-amplitude mode at this large Reynolds number is a fairly

flat function of a and our inability to find instability with

ai=2 is, in our view, a serious criticism of the theory. We

are now studying solutions with larger a using a higher resolution

computer code in order to resolve the discrepancy between non-

linear stability theory and numerical experiments. However, the

main point of the present paper is the strength of three-

dimensional effects; the possibility that two-dimensional inter-

actions may be slightly stronger for much larger a than

considered here is, we believe, a secondary issue.

In summary, our direct calculations of the Navier-Stokes

equations are in reasonably good agreement with nonlinear stab-

ility theory calculations of plane Poiseuille flow. While no

transition to turbulence is either observed or predicted due to

two-dimensional disturbances, there are finite-amplitude motions

that do not decay for Reynolds numbers larger than about 2800.

Serious discrepancies do now exist between nonlinear stability

theory and direct calculations of two-dimensional finite-amplitude

effects in plane Couette flow.
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4. Three-Dimensional Finite-Amplitude Disturbances

In this Section, we present results obtained using the

computer code described in Sec. 2 for the evolution of finite-

amplitude three-dimensional disturbances of plane Poiseuille

and plane Couette flow. Some characteristics of the runs

discussed in this Section are given in Table 3 for the plane

Poiseuille runs and in Table 4 for the plane Couette flow runs.

Run 3A is identical to Run 3 discussed in Sec. 3 except

for one interesting three-dimensional feature. The two-

dimensional Run 3 was made with the three-dimensional computer

code using 8 x 4 x 33 resolution and setting all flow components

to be independent of y at t =0. Since we did not reset the

flow to be independent of y at later times, round-off error

induced a small (order 10-1 ) three-dimensionality on the

flow. This three-dimensional component was rapidly filtered

into an unstable three-dimensional mode that grew rapidly on

the finite-amplitude two-dimensional background. A plot of the

maximum amplitude of the primary two-dimensional disturbance,

its two-dimensional harmonic, and the fundamental oblique wave

(with wave numbers a = 1.3231, a0 1) is given in Fig. 10.

Note that the amplitude of the oblique component is multiplied

by 1.0 8. The results of Run 3A show that the evolved two-

dimensional finite-amrlitude state is quite susceptible to three-

dimensional instabilities.

Run 3A suggests a simple mechanism for transition. Whereas

two- and three-dimensional linear instabilities of Plane
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Poiseuille flow are quite mild and occur only for large

Reynolds numbers (R,5772), finite-amplitude two-dimensional

neutrally stable states of plane Poiseuille flow seem to

be explosively unstable to three dimensional perturbations

at subcritical Reynolds numbers.

In Runs 7-16 we investigate the finite-amplitude aspects

of three-dimensional instability of plane Pouiseuille flow.

All of these runs (except Run 16) are made by choosing the

initial condition to consist of a superposition of four

components:

v= (U(z),0,0)+Re[v 2 D(z)eitx]+Re[v 3D (z)iX+iY

4.Re [v 3 D ()e iax-iBy] (4.1)

Here U(z) = 1-z2  is the unperturbed plane Pouiseuille flow,

2D(z) is a two-dimensional eigenfunction 
of the Orr-Sommerfeld

equation, and v ,3D(z) is a three-dimensional eigenfunction

of the Orr-Sounerfeld equation with spanwise wave number

±S . The form of this initial flow field is chosen to corresp-

ond to that suggested by the experiments of Klebanoi-, Tidstrom &

Sargent (1962) and the theory of Benney & Lin (1960). The oblique

three-dimensional .disturbance is always formed with symmetric

±8 components, so the initial conditions give a standing

wave disturbance with the x-axis an axis of symmetry. For

all runs (except Runs 12 and 13) the Orr-Sommerfeld eigenfunctions
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V2D and V3D are chosen to be the least stable eigenfunctions

for the given values of a ,8 Because of the computational

cost of the three-dimensional runs, we have not been able to

make a complete survey of the effects of disturbance wave

length and amplitude on the strength of the transition process.

However, there are indications on the basis of the results

reported below that the chosen values of a and give

nearly the most strongly unstable results.

In Figs. 11 and 12 we plot the profiles of the two dimensional

disturbance u 2D(z) and the three-dimensional disturbance u (3D(),

respectively, applied initially in Runs 7 and 8. In Figs.

13 and 14, we plot the maximum amplitude of the two-dimensional

primary disturbance, its two-dimensional harmonic [depending

on x like exp(2iax)] , and the primary oblique wave [depending

on x and y like exp(iax+i~y)] for Runs 7 and 8, respectively.

The only difference between Runs 7 and 8 is that Run 7 has twice

the x-y resolution. It is apparent from Figs. 13 and 14 that

the results are nearly identical through t = 35, but the results

later diverge. In Run 7, the flow seems to 'break down' at

t 40 , while in Run 8 the 'breakdown' seems to occur for

t 37. (Part of this difference may be due to time truncation

error since Run 7 uses a time step of 0.05 while Run 8

uses a time step of 0.1.) Another run made with the initial

conditions of Runs 7 and 8 but increasing the z-resolution

to 65 Chebyshev polynomials showed no change from the results

with 33 Chebyshev polynomials until well into the breakdown

region.
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In Tables 5 and 6, we give values of the maximum amplitudes

n z of the x-velocity Fourier components u(m,n,z,t), given

in terms of the spectral components u(m,n,p,t) in (2.3) by

Pu(m,n,z,t) I u(m,n,p,t) T (z) .
p=O p

While the convergence of the expansion (2.3) evidently does

deteriorate somwehat with time, especially near t z40

when the flow breaks down, the decrease of the maximum amplitude

with increasing m and n is sufficiently rapid for us to

confidently assert that the results of Run 7 are real and not

due to numerical instability. Also, while the effects of truncation

of the Fourier expansion (2.3) in Run 8 are even more pronounced

than for Run 7, the lower resolution results of Run 7, are a faithful

predictor of flow breakdown and accurately represent the flow

until just before breakdown occurs.

We emphasize the qualitative change in the behavior of

the flow brought about by three dimensionality. While the

finite amplitude two-dimensional results presented in Sec. 3

show the resulting flow to be smooth, periodic and with no

appreciable small-scale excitation, quite the opposite is true

in the three-dimensional flows considered here. In three

dimensions, the flow devetops into a state of apparent random-

ness with appreciable small-scale excitation. It is this latter

state that we claim is representative of the transition to

turbulence.

While we cannot claim that our results for Run 7 are in detail

accurate for t >50 when the flow is seemingly random and

"turbulent", the relative insensitivity to changes in resolution
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suggest strongly that our simulations accurately portray the

breakdown of the laminar flow and its transition to turbulence.

(While the flow after breakdown is almost certainly not being

treated in detail accurately, there is some basis for the

assertion that the statistical properties of the resulting flow

are in reasonable agreement with real flows. Some further

elaboration of this point is given below. However, we do not

stress the turbulence aspects of the developed flow in this

paper as numerical simulations of turbulence are best done

slightly differently.]I

The apparent discontinuities in the time-history curves

plotted in Figs. 13, 14, and later arise because the maximum

amplitude of each of the flow components may come from different

local maxima and, hence, quite distinct z locations at different

times.

In Fig. 15, we plot x-y averages of the x-component

of the velocity field in Run 8 at t =30-75(15):

y

ii(Z't) = 1 f dx f dy u(x,y,z,t) (4.2)

The results for Run 7 at t =30 and t =45 (the only times

at which corresponding results are available) are indistinguishable

from the plotted curves. The mean velocity profiles plotted in

Fig. 15 correspond to profiles in the nonlinear laminar,
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early transition, late transition, and turbulent flow regimes.

The mean velocity profile at t = 75 is strikingly similar to

mean velocity profiles observed experimentally in turbulent

channel flow (Laufer 1951, Comte-Bellot 1965). In a continuation

of Run 8 to t > 75, no change in the mean velocity profile is

found.

While there are no strong inflections appearing in the

mean velocity profiles plotted in Fig. 15, instantaneous

velocity profiles plotted in Figs. 16 and 17 for Run 7 at

t = 30 and t = 45, respectively, show strong inflections.

These local velocity profiles are strongly unstable and,

presumably, their instability leads to the random behavior

observed at later times.

Contour plots of the x-velocity component for Run 7

in the y-z plane at x = 0 are given in Fig. 18 for

t = 0-45(15). At the spanwise-y location of the center of

the 'cat's-eyes' observed in Fig. 1ST, the velocity

profile is much fuller than the undisturbed plane Poiseuille

profile and the corresponding wall shear is much greater (see

Figs. 16 and 17). In the region between the 'cat's-eyes',

the local velocity profile is highly inflectional (as shown

in Figs. 16 and 17).

Contour plots of the longitudinal vorticity component

for Run 7 in the y-z plane at x = 0 are given in Fig. 19 for

t = 0-45(15). Several features of these contour plots should
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be observed. First, there is considerable enhancement of

longitudinal vorticity during time evolution of this flow.

In Table 5, we present data on the maximum amplitude of the

transverse waves [m=0 in (2.3)1 as a function of time in Run 7.

Through t = 35, the data in Table 5 agrees to within a relative

error of less than 2% with the corresponding data for Run 8.

The primary transverse mode seems to achieve rapidly a nearly

steady value, while the flow breakdown is signaled by rapid

growth of the n=2 harmonic component. Second, the small-

scale structure evident in Fig. 19 at t = 45 indicates the

breakdown of the flow.

In Fig. 20, contour plots are given of the y- and z-

components of the velocity and vorticity for Run 7 in the

y-z plane at x = 0 at t = 30. Examination of these contour

plots (and others made at different locations) show several

interesting features. First, there is evidently a correlation

between the x- and z-velocity components representing enhanced

transfer of momentum towards the walls. Also, the contours of

u in the x-y plane given in Fig. 21 show gusts of high-

velocity fluid moving through the center of an otherwise

slow-moving stream; the leading edges of a gust seem to be

sharper than the trailing edges, implying negative skewness

in velocity derivatives.

In Fig. 22, we plot the profile of the two-

dimensional primary wave at t = 30 and t = 45 , respectively,

for Run 7. In Fig. 23 , we present a similar plot of the

two-dimensional harmonic components at t = 45 in Run 7,

while in Fig. 24 we plot the profile of the primary oblique
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wave (a~l, 1) at t :=45 in Run 7. Fiqs. 22-24 show

that, through the period of initial breakdown, the largest

fluctuations occur in the neighborhood of the walls. At later

times, the harmonic components develop slightly stronger activity

near the center of the channel. The spatial structure and amplitude

of these fluctuations is not inconsistent with experimental

observations (Laufer 1951, Comte-Bellot 2965).

Run 9 tests the effect of decreasing the initial amplitude

of the two-dimensional and three-dimensional initial disturbances

in Runs 7 and 8 by 25%. In Fig. 25, the maximum amplitude of the

primary two-dimensional wave, its harmonic, and the primary three-

dimensional wave for Run 9 are plotted as functions of t .The

instability in Run 9 is considerably weaker than in Run 8. In

other runs, we have found that keeping the amplitude of the

two-dimensional disturbance in Run 8 at 0.11, but decreasing

the amplitude of the three-dimensional disturbance to 0.025

stabilizes the flow, Similarly, another run decreasing the

amplitude of the two-dimensional wave to 0.05, but keeping the

amplitude of the three-dimensonal wave disturbance at 0.05 as

in Run 8, stabilized the flow. At R = 1250, there seems to

be a critical amplitude of about 0.08 for the two-dimensional

component and about 0.04 for the three-dimensional component.

Runs 10-13 were designed to test the sensitivity of the

flow to various spanwise wave numbers. The amplitude of the

initial disturbances in these runs is chosen to be close to that

of Runs 7 and 8. Run 10 uses a primary spanwise wave number

=0.25. in this case, the three-dimensional disturbance is
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nearly two-dimensional and is barely distinguishable from the

primary two-dimenslonal disturbance. The resulting flow is

so nearly two-dimensional that the disturbances die away quickly.

Run 11 uses a primary spanwise wave number ( = 0.5 ; in this

case transition was observed but only at the late time t z 120.

(Even though Runs 10-13 use the low spatial resolution

8 x 8 x 33 , we believe that the prediction of transition in

Runs 11 and 12 is justified because the three-dimensional distur-

bance remains at large amplitude during the laminar phase. The

resolution problems discussed below with regard to Runs 14 and 15

seem to apply only to marginally unstable flows .)

Other runs made with the two- and three-dimensional

disturbances detuned from the least stable modes of the Orr-

Sommerfeld equation[used in (4.1)) gave significantly less

tendency to undergo transition than the runs discussed here.

Runs 12 and 13 introduce a new feature into the calculation.

With ( = 2 (Run 12) and 0 = 4 (Run 13), the least stable three-

dimensional mode of the Orr-Sommerfeld equation is no longer concent-

rated near the wall like the two-and three-dimensional modes plotted

in Figs. 11 and 12. The least stable three-dimensional mode with

( = 4 at R = 1250 is plotted in Fig. 26; it is evident that

this mode is concentrated near the center of the channel. Runs

made using this three-dimensional center mode together with

the two-dimensional disturbance mode plotted in Fig. 11 invariably

decay, evidently because there is not enough interaction between

the center mode and the wall mode disturbances. However, transition

to turbulence with these larger spanwise wave numbers ( can be

achieved by using a three-dimensional wall mode disturbance.
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The least stable three-dimensional wall mode disturbance with

0 = 4 at R =1250 is plotted in Fig. 27. Runs 12 and 13 use

these least stable wall modes. Run 12 is strongly unstable

and leads quickly to transition. On the other hand, Run 13 is

stable and does not undergo transition, even though the

wall mode disturbance is used. Evidently there is a spanwise

wave number selection mechanism involved in the transition

process. It seems that the most dangerous three-dimensional disturbances

have wavefronts at an angle of about 45 0 60 0' to the mean flow.

Runs 14 and 15 illustrate a possible pitfall of numerical

analysis of these transition problems. The only difference between

these two runs is the horizontal resolution: in Run 14, only

8 x 8 Fourier modes are used to resolve the x and y directions;

in Run 15, 16 x 16 Fourier modes are used. Both runs are

made at R = 750. In Fig. 28, we plot the maximum amplitudes

of the primary two-dimensional wave, its harmonic, and the

primary three-dimensional wave for Run 14. The disturbances

decay until about t z100 and then abruptly erupt into

turbulence. A similar plot for Run 15 is given in Fig. 29.

In this case, the disturbances undergo only a smooth continuous

decay and no 'transition' is observed. We have also made a run

in which the 8 x 8 x 33 resolution of Run 14 is increased to

16 x16 x33 at t 90 in Run 14; in this case, as in Run 15,

no transition is observed. Evidently low-resolution can give

-premature predictions of transition. Similar effects of low

resolution have been observed by McLaughlin & Orszag (1979) in

calculations of transition in three-dimensional Be'nard
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convection. It is essential that transition calculations be

done with utmost care, in order to avoid these spurious predictions

of instability and breakdown in three-dimensional calculations.

Our spectral calculations do provide a 'bootstrap' procedure to

test internal accuracy of the simulations; if the spectrum

obtained by Run 14 is tested for convergence in the same way

as the spectrum of Run 7 is tested by the results given in

Tables 5 and 6, it is found that the 8 x 8 truncation in

x and y in Run 14 has a large effect.

We are confident that our transition predictions cited earlier

in this Section,especially for Run 7, are not affected by these

resolution problems of Run 14.

our final plane Poiseuille flow run is Run 16. Here the

initial con~ditions consist of the output from Run 8. These

"turbulent" .nitial conditions are then run at the lower

Reynolds number R =500, in order to test whether an initial

field of turbulence can persist at this lower Reynolds number.

In Fig. 30, we plot the evolution of the maximum amplitude

of the two-dimensional primary wave, its harmonic, and the primary

three-dimensional wave. While the results are not conclusive,

it seems that the field of turbulence is slowly decaying and

that R = 500 is not sufficiently high to sustain turbulence.

Runs 17-20 investigate the effect of three-dimensional finite-

amplitude disturbances on plane Couette flow. While plane Couette

flow is much more stable than plane Poiseuille flow for small-

amplitude disturbances and two-dimensional finite-

amplitude disturbances (see Sec. 3), the effects

of finite-amplitude three-dimensional disturbances at modest
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Reynolds numbers are just as dramatic in plane Couette flow as

in plane Poiseuille flow.

In Figs. 31 and 32, we plot the profiles of the x-velocity

of the two- and three-dimensional primary disturbances, respectively,

applied initially in Runs 17 and 18 at R 1250. These profiles

are obtained from the corresponding least stable eigenfunctions

of the Orr-Sommerfeld equation for plane Couette flow by forming

the symmetric combination (3.2) [with an extra factor exp(i.y)

for the three-dimensional model. (The asymmetry observed in

Fig. 31 is due to the complex phase of the mode at the particular

value of x at which the plot was made.) In Fig. 33, we plot

the maximum amplitude of the two-dimensional primary disturbance,

its harmonic, and the primary three-dimensional disturbance vs

t for Run 17. The flow breaks down to turbulence near t = 45

A similar plot for the lower resolution Run 18 is given in Fig.

34. There is good agreement between the results plotted in Figs.

33 and 34 until beyon1 the breakdown of the laminar flow. We

conclude that this flow does undergo transition to turbulence.

In Fig. 35, we plot the mean-velocity profile u(z)

for Run 17 at t = 60 . It is apparent that the mean-

velocity profile is tending toward the characteristic

S-shape expected in turbulent Couettc flow.

The effect of the symoetrized initial condition (3.2) on the

evolution of the flow is illustrated by Runs 19 and 20 made at

R = 1000. The maximum amplitude plot for Run 19 plotted in Fig.

36 suggests possible transition near t = 75 ; we hesitate to
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claim that this transition is real because of possible resolution

limitations. The maximum mode amplitudes for Run 19 listed in

Table 7 show that the transverse (m = 0) modes are likely to

be inadequately resolved for t > 60. An interesting feature

of Figs. 33, 34, and 36 for the symmetrized initial disturbances

is the high frequency oscillation of the maximum amplitude of

the two-dimensional primary wave and its harnomic. Run 20 is

made using unsymmetrized Orr-Sommerfeld eigenfunctions as

initial conditions. The maximum amplitude plot for this run, made

at R = 1000, is given in Fig. 37. Two features are noteworthy.

First, in contrast with Run 19, the transition in this case can

be much more confidently asserted, because the resolution limit-

ations do not appear to be severe until after breakdown occurs.

Second, the high frequency oscillations in the two-dimensional

disturbances and its harmonic have disappeared.

As for plane Poiseuille flows, the plane Couette flow

runs are characterized by very rapid generation of the transverse

Fourier components m = 0 in (2.3) (see Table 7 for the results

of Run 191. In these flows, it seems that small-scale structures

are generated by the strong instability of the flows resulting

from superposition of the longitudinal vortices, represented

by the transverse ( m = 0) Fourier components, on the basic

laminar flows (1.3-4).

We have encountered significant difficulty in extending

our plane Couette flow runs to later times than initial breakdown.

Evidently, the turbulence that develops is of a particularly

severe kind that is inadequately resolved using the current

codes.

In conclusion, it secs that plane Couette flow undergoes

transition at Reynolds numbers at least as low as those for which
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plane Poiseuille flow undergoes transition. Three-dimensional

effects are crucial in establishing breakdown at Reynolds numbers

of order 1000.

5. Conclusions

The results presented in Sects. 3 and 4 show the central

role played by the interaction of two-and three-dimensional

finite-amplitdue disturbances in the breakdown of plane Poiseuille

and plane Couette flows. The basic character of this interaction

is qualitatively consistent with the theory developed by Benney &

Lin(1960) to explain the experiments of Klebanoff, Tidstrom &

Sargent (1962). However, as has been emphasized by

Stuart (1961), the Bennev-Lin theory can be at

best qualitatively correct. The theory assumes that the phase

velocities of the interacting two- and three-dimensional waves

are identical, which is not correct (see Tables 3 and 4).

Our calculations show that three-dimensional finite-

amplitude effects produce strong inflectional velocity profiles

that eventually break down to turbulence. In plane Poiseuille

flow, these three-dimensional effects due to initial disturbances

with amplitudes of 5-10% of the mean flow explain the experimentally

observed transitions at Reynolds numbers of order 1000, whereas

arbitrarily large two-dimensional finite-amplitude disturbances

seem powerless at Reynolds numbers much below 3000. The most

dangerous three-dimensional interactions seem to be between
0

oblique Orr-Sommerfeld modes propagating at about 45 to the

unperturbed flow with a wavelength about 3 times larger than the

channel depth. In plane Couette flow, our numerical results

suggest that three-dimensional effects due to initial disturbances
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with amplitudes of order 5-10% can drive transition at Reynolds

numbers of order 1000, while two-dimensional effects do not seen

strong even at Reynolds numbers an order of magnitude 
larger.

The numerical results also suggest that turbulence can be

sustained in these planar shear flows at somewhat lower Reynolds

numbers but not as low as 500.

One disturbing feature is the high resolution 
in both

space and time that seems to be necessary 
to compute these trans-

ition flows. To compute transition accurately, it is necessary

to calculate relatively weak interactions over many linear

oscillation periods. While turbulent flows do require high

spatial resolution, they also evolve quickly so that the total

computer time may be less than for a transition calculation.

Also, in turbulence calculations, only statistical averages

need be determined accurately and practice has shown that

accurate statistical results can be obtained with relatively

low resolution.

It is interesting that we have found, in contrast to

some previous investigators, that the accuracy requirements

of transition calculations are more severe in the horizontal

X- and y-directions than in the z-direction normal to the

walls. The Chebyshev expansions used in the z-direction

have extraordinarily good resolution near the walls. Our

result that low horizontal resolution can give spurious

predictions of transition must be considered carefully in

future work on these problems. Low horizontal resolution

prevents the excitation of small scale motions that can act

as an 'eddy' visccsity that damps out instabilities.

51



References

Antar, B. N. & Collins, F. G. 1975 Numerical calculation of
finite amplitude effects in unstable laminar boundary layers.
Phys. Fluids 18, 289.

Benney, D. J. 1961 A non-linear theory for oscillations in
a parallel flot,. J. Fluid. Mech. 10, 209.

Benney, D. J. 1964 Finite amplitude effects in an unstable
laminar boundary layer. Phys. of Fluids 7, 319.

Benney, D. J. & Lin, C. C. 1960 On the secondary motion
induced by oscillations in a shear flow. Phys. of Fluids
3, 656.

Coffee, T. 1977 Finite amplitude instability of plane Couette
flow, J. Fluid Mlech. 83, 401.

Comte-Bcllot, G. 1965 Ecoulement Turbulent Entre Deux
Parois Paralle]es. Publications Scientifiques et Techniques
du MinistTlre de l'Air 419.

Davey, A. 1973 On the stability of plane Couette flow to
infinitesimal disturbances. J. Fluid _Mech. 57, 369.

Davey, A. 1978 On Itoh's finite amplitude stability theory
for pipe flow. J. Fluid mech. 86, 695.

Davey, A., Hocking, L. M. & Stewart[son, K. 1974 On the
nonlinear evolution of three-dimonsional disturbances in
plane Poiscuille flow. J. Fluid Mech. 63, 529.

1.11

Davey, A. & Nguyen, H.P.F. 1971 Finite-amplitude stability
of pipe flow. J. Fluid Mech. 45, 701.

Davies, S. J. & White, C. M. 1928 An experimental study ot
the flow ot water in pipes of rectangular section. Proc.
Roy. Soc. A119, 92.

Ellingsen, T., Gjevik, B. & Palm, E. 1970 On the non-lin-
ear stability of plane Couette flow. J. Fluid Mech. 40,
97.

Eckhaus, W. 1965. Studies in Non-Linear Stability Theory.
Springer-Verlag, New York.

Fasel, H. 1976 Investigation of the stability of boundary
layers by a finite-difference model of the Navier-Stokes
equations. J. Fluid Mech. 78, 355.

Fasel, H., Bestek, H. & Schefenacker, R. 1977 Numerical simulation
studies of transition phenomena in incompressible, two-dimensional
flows. Laminar-Turbulent Transition, AGARD Conference Proceedings
No. 224, p. 14-1.

52



George, W. D., lellums, J. D. & Martin, B. 1974 Finite-
amplitude neutral disturbances in plane Poiseuille flow.
J. Fluid Mech. 63, 765.

Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of
Spectral Methods: Theory and Applications. NSF-CBMS
Monograph 26, Soc. Ind. App. Math., Philadelphia.

Grohne, D. 1969 Die Stabilitat der ebenen Kanalstromung

9egendiber dreidimensionalen St6runcfen von endlicher Amplitude.
A. V. A. Gottingen Rep. 69-A-30.

Herbert, T. 1976 Periodic secondary motions in a plane
channel. Proceedings of the Fifth International Confer-
ence on Numerical Methods in Fluid Dynamics, ed. by
A. I. van de Vooren and P. J. Zandbergen, Springer-
Verlag. New York, p. 235.

Herbert, T. 1977 Finite amplitude stability of plane parallel
flows. Laminar-Turbulent Transition, AGARD Conference Proceedings
No. 224, p. 3-1.

Hocking, L. M., Stewartson, K. & Stuart, J.T. 1972 A
nonlinear instability burst in plane parallel flow. J. Fluid
Mech. 51, 705.

Itoh, N. 1977 Nonlinear stability of parallel flows with

subcritical Reynolds numbers. Part 1. An asymptotic
theory valid for small amplitude disturbances. J. Fluid

Mech. 82, 455.

Itoh, N. 1978 Three-dimensional growth of finite wave
disturbances in plane Poiseuille flow. To be published.

Kao, T. W. & Park, C. 1970 Experimental investigations of
the stability of channel flows. Part 1. Flow of a single
liquid in a rectangular channel. J. Fluid Mech. 43, 145.

Kells, L. C. 1978 Numerical calculations of turbulent
and transition flows. Ph. D. Thesis, M.I.T., Cambridge,
MA.

Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962
The three-dimensional nature of boundary-layer instab-
ility. J. Fluid Mech. 12, 1.

Kuwabara, S. 1967 Nonlinear instability of plane Couette
flow. Phys._of Fluids 10, S315.

Lakin, W. D., Ng, B. S. & Reid, W. H. 1978 Approximations to
the eigenvalue relation for the Orr-Sommerfeld problem. Phil.
Trans. Roy. Soc. Lond. A289, 347.

53



Landahl, M. T. 1972 Wave mechanics of breakdown. J. Fluid Mech.
56, 775.

Laufer, J. 1951 Investigation of turbulence in a two=
dimensional channel. N.A.C.A. Tech. Rep. no. 1053.

Lessen, M. & Cheifetz, M. G. 1975 Stability of plane
Couette flow with respect to finite two-dimensional dist-
urbances. Phys. of Fluids 18, 939.

Lin, C. C. 1955 The Theory of Hydrodynamic Stability.

Cambridge University Press.

McLaughlin, J. & Orszag, S. A. 1979. To be published.

Meksyn, D. 1964 Stability of laminar flow between parallel
planes for two- and three-dimensional finite disturbances.
Z. Phys. 178, 159.

Meksyn, D. & Stuart, J. T. 1951 Stability of viscous motion
between parallel planes for finite disturbances. Proc. Roy.
Soc. A208, 517.

Metcalfe, R. W. 1974 Spectral methods for boundary value problems
in fluid mechanics. Ph. D. Thesis, M.I.T., Cambridge, MA.

Michael, D.H. 1961 Note on the stability of plane parallel
flows. J. Fluid Mech. 10, 525.

Murdock, J. 1977 A numerical study of nonlinear effects on
boundary-layer stability. AIAA 15th Aerospace Sciences
Meeting, Paper 77-127.

Murdock, J. & Taylor, T. D. 1977 Numerical investigation of
nonlinear wave interaction in a two-dimensional boundary layer.
Laminar-Turbulent Transition, AGARD Conference Proceedings
No. 224, p. 4-1.

Nishioka, M., Iida, S. & Ichikawa, Y. 1975 An experimental
investigation of the stability of plane Poiseuille flow.
J. Fluid Mech. 72, 731.

Orszag, S. A. 1971a Numerical simulation of incompressible
flows within simple boundaries. I. Galerkin (spectral)
representations. Stud. in Appl. Math. 50, 293.

Orszag, S. A. 1971b Accurate solution of the Orr-Sommerfeld
stability equation. J. Fluid Mech. 50, 689.

Orszag, S. A. 1976 Turbulence and transition: a progress
report. Proceedings of the Fifth International Conference
on Numerical Methods in Fluid Dynamics, ed. by A. I. van
de Vooren and P. J. Zandbergen, Springer-Verlag, New York,
p. 32.

54



Orszag, S.A. & Patterson, G. S. 1972 Numerical simulation 
of

three-dimensional homoqeneous isotropic turbulence. 
Phys.

Rev. Letters 2-, 76.

Patel, V. & Head, M.R. 1967 Some observations 
on skin friction

and velocity profiles in fully developed pipe and channel

flows. J. Fluid Mech. 38, 181.

Pekeris, C. L. & Shkoller, R. 1967 Stability of plane Poiseuille
flow to periodic disturbances of finite amplitude in the
vicinity of the neutral curve. J. Fluid Mech. 29, 31.

Pekeris, C. L. & Shkoller, B. 1969 Stability of plane
Poiseuille flow to periodic disturbances of finite amplitude.
J. Fluid Mech. 39, 611.

Pekeris, C. L. & Shkoller, B. 1971 Stability of plane
Poiseuille flow to periodic disturbances of finite amplitude.
II. Proc. Nat. Acad. Sci. 68, 197.

Reichardt, H. 1959 Gesetzmassigkeiten der geradlinigen
turbulenten Couettestr6mung. Mitt. Max-Planck-Institut
fur Str6mungsforschung 22, G6ttingen.

Reynolds, W. C. & Potter, M. C. 1967 Finite-amplitude in-
stability of parallel shear flows. J. Fluid Mech. 27,
465.

Rosenblat, S. & Davis, S. H. 1978 Bifurcation from infinity.
To be published.

Stuart, J. T. 1960 On the non-linear mechanics ot wave dis-
turbances in stable and unstable parallel flows. Part 1.
The basic behavior in plane Poiseuille flow. J. Fluid Mech.
9, 353.

Stuart, J. T. 1961 On three-dimensional nonlinear effects
in the stability of parallel flows. Adv. Aeronaut. Sci. 3, 121.

Stuart, J. T. 1971 Nonlinear stability theory. Ann. Rev.
Fluid Mech. 3, 347.

Watson, J. 1960 On the non-linear mechanics of wave distur-
bances in stable ahd unstable parallel flows. Part 2.
The development of a solution for plane Poiseuille flow
and for plane Couette flow. J. Fluid Mech. 9, 371.

Watson, J. 1962 On spatially-growing finite disturbances in
plane Poiseuille flow. J. Fluid Mech. 14, 211.

Zahn, J.-P., Toomre, J., Spiegel, E. A. & Gough, D. 0. 1974
Nonlinear cellular motions in Poiseuille channel flow, J.
Fluid Mech. 64, 319.

55



Table 1. Behavior of small-amplitude disturbances computed

numerically compared with behavior predicted by

Orr-Sommerfeld equation.

Plane Poiseuille flow Plane Couette flow

Two- Three- Two- Three-

dimensional dimensional dimensional dimensional

disturbance disturbance disturbance disturbance

Jeynolds number R 1500 1500 5000 5000

x-wavenumber a 1 1 0.5 0.5

y-wavenumber 8 0 1 0 0.5

tfe w 0.3262988 0.4012928 0.3511072 0.3517084

Im W -0.0282057 -0.0282305 -0.0413797 -0.0418436

Initial amplitude

t (x-velocity) 2.198 X10 - 5  4.964x 10 - 5  1.209 x10- 4  6.338 x10 4

Spatial resolution
(2M)x(P+l) 8 x 33 8 x 33 8 x 65 8 ^ 65

Time step At 0.1 0.1 0.1 0.1

t'inal time T 10 10 6 6

Computed amplitude
decay 0<t<T 0.753519 0.756756 0.781904 0.778925

jredicted amplitude
decay exp[(Im w)T] 0.754231 0.754044 0.780143 0.777975

Computed phase
change (radians)
0<t<T -3.25644 -4.00617 -2.10548 -2.10545

,Predicted phase
change -(Re w)T -3.26299 -4.01293 -2.10664 -2.11025

4
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Table 6.

Maximum Amplitude in z of the Fourier components of the x-velocity

u(m,n,z,t) in the mixed spectral (x-y)-physical (z) space

representation for Run 7.

Time (t)

Component (m,n) 20 30 40 50

Two Dimensional
Harmonics

(1,0) 5.69(-2) 4.11(-2) 2.70(-2) 1.78(-2)

(2,0) 4.50(-3) 4.45(-3) 3.31(-3) 7.66(-3)
(3,0) 1.45(-3) 8.31(-4) 3.05(-4) 5.33(-3)

(4,0) 4.99(-4) 9.63(-5) 2.16(-4) 3.75(-3)
(6,0) 6.08(-5) 3.02(-5) 3.50(-5) 2.26(-3)
(8,0) 1.10(-5) 1.03(-5) 1.28(-5) 5.92(-4)

Oblique

Harmonics

(1,1) 7.61(-2) 8.15(-2) 6.14 (-2) 2.31(-2)

(2,1) 6.75(-3) 2.47(-3) 8.71 (-4) 9.46(-3)

(4,1) 5.98(-4) 2.80(-4) 2.32(-4) 1.89(-3)

(6,1) 6.35(-5) 4.34(-S) 3.06(-5) 1.20(-3)

(8,1) 1.61(-5) 1.43(-5) 1.35(-5) 4.31(-4)

Diagonal
Components

(2,2) 5.90(-3) 6.37(-3) 3.99(-3) 9.55(-3)

(3,3) 1.12(-3) 1.14 (-3) 1.28(-3) 3.09 (-3)
(4,4) 1.32(-4) 3.69 (-4) 4.05(-4) 2.35(-3)

(6,6) 5.38(-6) 7.00(-5) 9.30(-5) 1.37(-3)

(8,8) 5.64(-7) 2.07(-5) 1.38(-5) 7.94 (-4)
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Table 7. Maximum amplitude in z of the Fourier components of
the x-velocity u(m,n,z,t) in the mixed spectral
(x-y) - physical (z) space representation for Run 19.

Time (t)

Component (m,n) 30 45 60 75

Two-Dimensional
Harmonics

(1,0) 4.87(-3) 2.08(-3 1.40(-3) 2.58(-3)

(2,0) 8.51(-4) 2.57(-4) 1.42(-3) 1.85(-3)

(3,0) 8.53(-5) 2.52(-5) 1.87(-4) 8.56(-4)

(4,0) 1.92(-5) 2.42(-6) 7.07(-5) 2.98(-4)

(6,0) 2.70(-6) 3.29(-7) 1.20(-6) 4.39(-5)

Oblique
Harmonics

(1,i) 2.76(-2) 6.30(-3) 1.11(-3) 4.97(-3)
(2,1) 1.31(-3) 9.32(-5) 3.95(-4) 2.96(-3)

(3,1) 9.69(-5) 4.41(-5) 4.82(-5) 1.37(-3)

(4,1) 2.29(-5) 3.91(-6) 3.30(-5) 3.92(-4)
(6,1) 3.50(-6) 2.47(-7) 1.17(-6) 3.46(-5)

Transverse
Components

(0,1) 1.32(-2) 1.63(-2) 1.95(-2) 1.95(-2)

(0,2) 2.57(-2) 4.19(-2) 4.08(-2) 3.65(-2)
(0,3) 6.14(-3) 9.12(-3) 5.51(-3) 1.14(-2)

(0,4) 1.91(-3) 6.34(-3) 5.62(-3) 7.72(-3)

(0,6) 1.38(-4) 1.53(-3) 3.08(-3) 6.09(-3)

Diagonal

Components

(2,2) 1.30(-3) 3.55(-4) 2.44(-3) 3.55(-3)
(3,3) 1.14(-4) 8.14(-5) 1.45(-4) 1.62(-3)

(4,4) 1.37(-5) 8.86(-6) 2.20(-5) 4.22(-4)
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Figure Captions

Fig. 1. A plot of the profile u(z) of the x-velocity of

the two-dimensional initial disturbance used in Run 2. This

disturbance is chosen as the least stable eigenmode of the

Orr-Sommerfeld equation for plane Poiseuille flow with

R = 2935 and a = 1.3231. The phase of the initial

perturbation is chosen so that the maximum velocity

perturbation occurs initially at x = 0, where this plot

is made. The initial disturbances used in Runs 3 and 4 are

proportional to that imposed in Run 2.

Fig. 2. A plot of the time evolution of the maximum amplitude

in z of the x-velocity component of the two-dimensional

primary disturbance [that depending on x like exp(iax)]

and its harmonic [depending on x like exp(2iax)] for

Run 2. At late times the primary disturbance is undergoing

slow growth.

Fig. 3. A plot of the z-profile of the x-velocity component

of the primary disturbance in Run 2 at t = 120.

Fig. 4. A plot of the mean velocity u(z) in Run 2 at t = 120.

For comparison, the undisturbed plane Poiseuille flow profile

l-z2  is also plotted.

Fig. 5. A plot of the curvature -uG"(z) of the mean

velocity profile in Run 2 at t = 120. For comparison, the

curvature 2 of the parabolic profile l-z2  is also plotted.

Fig. 6. A plot of the maximum amplitude A of the primary

disturbance and its harmonic for Run 4. See Fig. 2.

Fig. 7. A plot of the maximum amplitude A of the primary

disturbance and its harmonic for Run 1 at R = 2500. The

initial disturbance is chosen to be the least stable eigen-

mode of the Orr-Sommerfeld equation with R = 2500 a = 1.3231.

See Fig. 2.
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Fig. 8. A plot of the z-profile of the x-velocity component

of the two-dimensional primary disturbance u(z) for the

plane Couette flow Run 6 at R = 5000, a = 2. The initial

conditions are chosen as the symmetrized combination (3.2)

of the least stable eigenmode of the Orr-Sommerfeld equation

and its complex-conjugate reflected eigenmode.

Fig. 9. A plot of the maximum amplitude A vs t of the

x-velocity of the primary disturbance and its harmonic for

the two-dimensional plane Couette flow Run 6 at R = 5000.

Fig. 10. A plot of the maximum amplitude A vs t for the

two-dimensional primary disturbance and its harmonic and

the three-dimensional primary wave [witn a = 1.3231 and

8 = 1] in Run 3A. The two-dimensional part of the initial

conditions is the same as in Run 3 of Sec. 3 while the three-

dimensional component is introduced initially through round-

off error. Note that the amplitude of the three-dimensional

component is multiplied by 108.

Fig. 11. A plot of the z-profile ot the x-velocity of the

two-dimensional disturbance used in Runs 7-13. This disturb-

ance is chosen to be the least stable eigenmode of the Orr-

Sommerfeld equation for plane Poiseuille flow at R = 1250

with a = 1. The amplitude of this initial perturbation is

reduced by 25% in Run 9.

Fig. 12. A plot of the z-profile of the x-velocity of the initial

three-dimensional disturbance imposed in Runs 7-9. This dist-

urbance is chosen as the least stable eigenmode of the

Orr-Sommerfeld equation at R = 1250 with a = 1 and 8 = 1.

In Run 9, the initial amplitude is decreased by 25%.

Fig. 13. A plot of the maximum disturbance amplitudes A vs

t for the three-dimensional plane Poiseuille flow Run 7 at

R = 1250. The plotted amplitudes are the maxima in z of

x-velocity of the two-dimensional primary disturbance and its

harmonic (multiplied by 10) and the three-dimensional primary
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disturbance (depending on x like exp(ix+iay) with

a = 1 and 0 = 1].

Fig. 14. Same as Fig. 13 except for Run 8. The amplitude
of the two-dimensional harmonic is not multiplied by the

factor 10 used in Fig. 13.

Fig. 15. Plots of the mean velocity profiles (4.2) for

Run 8. t = 30; ---t = 45; t = 60;

t = 75 . The corresponding plots for t = 30 and

t = 45 for Run 7 are indistinguishable from those plotted

in this Figure.

Fig. 16. Plots of the instantaneous x-velocity profiles u(x,y,z,t) vs.

z at t =30 for Run 7. x = 0, y = - -

x = 0, y = - 7/2 ;----- x = U, y = 0; -avow*##

x = 1 3 7/8, y = -5 1/8.

Fig. 17. Same as Fig. 16, except at t = 45. Labeled curves

are plotted at the same values of x and y as in Fig. 16.

Fig. 18. Contour plots of the instantaneous x-velocity u(x,y,z,t)

in the y-z plane at x = 0 in Run 7. (a) t = 0, contours

0,0.9(0.1). (b) t = 15, contours 0,1(.1). (c) t = 30,

contours 0,1(0.1). (d) t = 45, contours 0,1(0.1). Note that

while the tick marks along the y-axis do indicate the available

y-resolution, the tick marks along the z-axis are included for

reference only and do not indicate the available resolution of

the Chebyshev series, especially near the walls.

Fig. 19. Contour plots of the x-vorticity component w (x,y,z,t)

in the y-z plane at x = 0 in Run 7. (a) t = 0, contours
-0.35, 0.35(0.07). (b) t = 15, contours -0.32,0.32(0.08).

(c) t = 30, contours -1,1(0.2). (d) t = 45, contours

-2,2(0.4).

Fig. 20. Contour plots of flow components in Run 7 at t = 30

in the y-z plane at x = 0. (a) v(x,y,z), contours -0.06,0.06

(0.01). (b) w (x,y,z), contours -0.024,0.012(0.004). (c)
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W2 (x,y,z), contours -2.5,2(0.5). (d) w3 (x,y,z), contours

-0.3,u.3(0.06).

Fig. 21. Contour plots of the instantaneous x-velocity

u(x,y,z,t) in the x-y plane at z = cos 3 IT/16 in Runs 7,8.

(a) t = 0, contours 0.19, 0.41(0.01) (b) t = 30,

contours 0.21, 0.42(0.01) for Run 7. (c) t = 60,

contours 0.16, 0.84(0.04) for Run 8.

Fig. 22. A plot of the z-profile of the two-dimensional

primary disturbance u(l,0,z,t) [see (2.3)] in Run 7:

(a) t = 30; (b) t = 45.

Fig. 23. A plot of the x-profile of the two-dimensional

harmonic disturbance u(-2,0,-t,t) [that depends on x and y

like exp(2iax)] at t = 45 in Run 7.

Fig. 24. A plot of the z-profile of the primary three-dim-

ensional disturbance u(l,1,z,t) [that depends on x and

y like exp(iax+iy)] at t = 45 in Run 7.

Fig. 25. A plot of the maximum disturbance amplitudes vs t

in Run 9 at R = 1250. This run is the same as Run 8 except

that the initial amplitudes of both the two- and three-

dimensional disturbances are reduced by 25%.

Fig. 2b. A plot of the z-profile of the least stable eigen-

mode ot the Orr-Sommerfeld equation for plane Poiseuille

flow at R = 1250 with a = . and a = 4. Observe that

this mode is concentrated near the center of the channel,

so it has little opportunity to interact with the least

stable two-dimensional disturbance which is concentrated

near the walls. This kind of three-dimensional disturbance

typically does not lead to transition. The eigenvalue of

the-Orr-Sommerfeld equation is w = 0.9076 - iO.0579. The

phase velocity of this mode is about 0.9, in contrast to

the phase velocity of wall modes which are usually in the

range 0.3-0.4.

Fig. 27. A plot of the z-profile of the second least stable

eigenmode of the Orr-Sommerfeld equation for plane Poiscuille

flow at R = 1250 with a = 1 and 8 = 4. This wall mode

has eigenvalue w = 0.4635 - iO.1607. This mode is used

as the three-dimensional disturbance in Run 13.
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Fig. 28. A plot of the maximum disturbance amplitudes in Run

14 at R = 750. This run uses 8 x 8 x 33 spatial resolution.

Fig. 29. Same as Fig. 28, except for Run 15. The amplitude of

the two-dimensional harmonic components is multiplied by a

factor 10. Run 15 differs from Run 14 only in that the spatial

resolution is 16 x 16 x33. observe that the flow no longer

undergoes 'transition'.

Fig. 30. A plot of the maximum disturbance amplitudes vs t

for Run 16 at R = 500. The initial conditions for this run

are the output conditions from Run 8. These initial conditions

are intended to simulate turbulence.

Fig. 31. A plot of the z-profile of the initial two-dimensional

disturbance used in Run 17 and 18. This disturbance is const-

ructed from the least stable eigenmode of the Orr-Sommerfeld

equation for plane Couette flow at R = 1250 with a = 1

and = 0 by symmetrizing according to (3.2).

Fig. 32. Same as Fig. 31, except that the profile of the

initial three-dimensional disturbance for Run 17 and 18 is

plotted.

Fig. 33. A plot of the maximum disturbance amplitudes A

vs t in Run 17 for plane Couette flow at R = 1250.

Fig. 34. Same as Fig. 33, except for Run 18, also at R = 1250.

Fig. 35. A plot of the mean velocity profile u(z) at t = 60
in Run 17.

Fig. 36. Same as Fig. 33, except for the plane Couette flow

Run 19 at R = 1000. Symmetrized initial conditions are used.

Fig. 37. Same as Fig. 33, except for the plane Couette flow

Run 20 at R = 1000. In this case, unsymmetrized initial

conditions are used. Observe that the high frequency time

oscillations in the maximum amplituXe of the two-dimensional

primary disturbance and its harmonic disappear.
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