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IN HORIZONTALLY STRATIFIED OCEAN ENVIRONMENTS _.

hy :--

Henrik Schmidt and Finn B. Jensen

ABSTRACT

A new solution technique for wave propagation in horizontally stratified . ..
viscoelastic media is presented. The model provides a full-wave solution
for the field generated by a single source, as well as for that generated
by a vertical source array. It allows the spatial distribution of the
acoustic field to be evaluated at least one order of magnitude faster than
with existing models based on the Thomson-Haskell solution technique.
Computational examples demonstrate the model's versatility in providing
exact solutions to a wide range of guided and non-guided propagation
problems in underwater acoustics.

INTRODUCTION 
-

A numerical model providing a full-wave solution to propagation problems in
horizontally stratified fluid/solid environments is presented. During the
last decade a number of similar models have been developed, known in under-
water acoustics as Fast Field Programs <1-3> and in seismology as full wave
field response models <4>. These models are, however, in general based on
the Thomson-Haskell matrix method, which allows for field calculations for
only one source/receiver combination at a time. Hence calculations of the
field as a function of depth and of fields produced by vertical source
arrays need several separate runs, with the calculation time being propor-
tional to the number of sources and receivers.

In this model a more direct approach is taken. The field is considered as
a superposition of two fields: one produced by the sources in the absence
of boundaries, and an unknown field satisfying the homogeneous wave
equation. The unknown field is then determined from the boundary con-
ditions to be satisfied at each interface. This approach is equivalent to .
the technique used by Ewing et al <5> to derive analytic solutions,
although not in closed form, for special cases with only a few layers. The . -

model described here is in fact just a general numerical implementation of
their approach, but compared with the Thomson-Haskell technique there are a
number of important advantages. First there are no restrictions on the
number of sources, as the fields produced by more sources within a layer 0 .
are simply superimposed. Second, any number of receiver depths can be
treated with one solution, since the unknown field is found in all layers......
simultaneously. Thus the spatial distribution of the field produced by a

_.____ 1
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single source or by a beam-generating vertical array can be determined in a
computationally efficient manner. Third, even for only one source/receiver
combination, this solution technique as implemented here yields a code that
is an order of magnitude faster than existing models using the 0
Thomson-Haskell technique. This is partly due to the fact that the
Thomson-Haskell technique requires additional specialized numerical effort
in order to ensure stability in cases where evanescent waves are propa-
gating in very thick layers. Such problems, by contrast, are removed auto-
matically from this direct global solution technique by choosing a proper
local coordinate system within each layer. 0.

We describe the theoretical basis for wave propagation in stratified
viscoelastic media in Sect. 1, following closely Ewing et al <5>. The
numerical-solution technique particular to this model is described in
Sect. 2, with details on the numerical stability being addressed in
Appendix A. Section 3 is dedicated to computational examples for three O...
important propagation problems in underwater acoustics: 1) Lloyd-mirror
interference effects at the sea surface, 2) low-frequency propagation in a
shallow-water duct, and 3) reflection of a narrow beam of sound at the sea
floor. The paper ends with a summary and conclusions.

1 DERIVATION OF FIELD EQUATIONS

The representation of the field in terms of integral solutions closely "
follows the presentation given by Ewing et al <5> and thus only an outline ...

is given here. The environment is assumed to be horizontally stratified
and all layers, including the upper and lower half spaces, are considered
to be isotropic and homogeneous viscoelastic continua with Lamt constants
An and Un and density Pn, The subscript n refers to the layer number.

The field equations are here derived in cylindrical geometry. The deriva-
tion of the corresponding field representations in plane geometry is given
elsewhere <6>.

A cylindrical coordinate system {r,e,z} is introduced, with the z-axis per-
pendicular to the interfaces and positive downwards, see Fig. 1. S
In the absence of body forces the equations of motion will be satisfied
if the displacement components {u,v,w} in layer 'n' are expressed in terms
of the scalar potentials {n, I'n, Ani as

3 Tn 3 2An'
u(r,6,z) n r+ (Eq. 1)-

v0n - 3 n 1 a2An (Eq. 2)v(r~e,z) I  + r r an -n r) "--
= -L rL+L !L An, (Eq. 3)

w(r,ez) n I_ r 3r 3r r2  n-

r2
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FIG. 1 HORIZONTALLY STRATIFIED MEDIUM.

* where the potentials satisfy the wave equations

i 2

( 2 O n a (Eq. 4)
C at
cn

(2  
-~a

2  n 0. (Eq. 5)
sn at

Here Cc and Csn are the velocities of compressional and shear waves
p respectively:

n + 21j n (Eq. 6):.

C a _(Eq. 7)
Sn P
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If the medium is a fluid, Un vanishes, and only the potential On is pre-
sent. This can however be considered as a special case of the general

solid case, and only when necessary is it treated separately in the
following.

The sources are assumed to be harmonic and vibrate with the common angular .:
frequency w In complex notation a time dependence of the form exp(iwt)
is assumed, a common factor that will be omitted in the following. The
viscoelastic attenuation can be accounted for by letting the Lam6 constants
be complex. The wave equations, Eqs. 4 and 5, now take the form

(V2 +hn) On = 0 (Eq. 8)

(V2 +k ) {Yn, An} = 0 , (Eq. 9)

where hn and kn are the wavenumbers for compressional and shear waves respec-
tively:

2h2  = C )2 P_n. ..
h w (Eq. 10)
n Ccn n+2un

k2(-S-)2 - 2(Eq. 11)n Csn n

If only compressional sources placed on the axis r=O are allowed, the field
will be axisymmetric with vanishing tangential displacements v(r,z). The
torsional potential Yn can then be excluded from the analysis.

By applying the Hankel transform to Eqs. 8 and 9 the following integral
representations are obtained for the solutions <5>:

"z' (S) +(s Zcn (s "
On(r,z) f [A(s)e z n s  + A] sJo(rs)ds (Eq. 12) -

0 n n

*An(r,z) = f [B-(s)e z l n' s ) + B+ (s)ez l n(s)1 Jo(rs)ds, (Eq. 13)
o n n

where A- A+ B- and B+ are arbitrary functions in the horizontal wave-
n, -n n

number 's , and where

an(s) n (Eq. 14) .

n(S) F s2k . (Eq. 15)
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Note that Eqs. 12 and 13 are just decompositions of the total fields in up
and downgoing conical waves integrated over all angles (wavenumbers).

Recause of the attenuation and the choice of time factor, the imaginary S
parts of hn and kn are negative, and the complex s-plane is cut along
branches going from hn and kn to -i- and from -hn and -kn to +i.-

Substituting Eqs. 12 and 13 into Eqs. 1 and 3 gives the following integral
representations for the displacements:

u(r,z) fn  f -s A- e n - s A+ ezan
0 n n

_Z ~ + eZ~n'::
+ On B- e zBn 8 ' e sJd(rs)ds (Eq. 16)

n n

w(r,z)l n = {n-an A; e-za n + n A+ ez a n  .

+ sB- e - z n + s B+ ez~ n } sJo(rs)ds. (Eq. 17)
n n

The stress components involved in the boundary conditions follow by
H.H oooke's law:

V2 aw
azz(r'z) I n = OnV2¢n + 2uni . .-.

c3c

I-2 2 -Zan + Za= Un f {(2s -k )(A- e + A e z n)
o n n n

2s0n(-Bn e-z8n + R ezn J o(rs)ds (Eq. 18)
n

Orz(r'z) I n = Un(u + 'w)

Bz 3r .

=n f {2san(A n e-Zan " A+ e Zan)nn -.. -, .'

2 2 ZO n ez~n)}
-(2s -k )(B- e z  B+ e  sJi(rs)ds.(Eq. 19)

n n n .

In the case of a fluid layer the displacements follow directly from Eqs. 16
and 17 by setting B- and B+ to zero. The shear stress arz vanishes,

n n
whereas Eq. 18 has to be replaced by

*-.". U.-..

0,°- %*°°
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2 -Z n Zan.

Ozz(r.z) n = -xnhn f{An e + A+ ezanJ sJo(rs)ds. (Eq. 20) n "n

To obtain expressions for the total field in layer 'n', the field
produced by the sources within the layer has to be added. Only
compressional sources at r=O are considered and the field produced by
each, in an infinite medium with the material properties of layer 'n', has
the integral representation <5>:

SZ-Zs an "'"
* e .ZZ5 .'

on(r,z) = f sdo(rs)ds, (Eq. 21)
0 an'

An(r,z) 0 , (Eq. 22)

where zs is the source depth.

The corresponding displacements involved in the boundary conditions are
again obtained from Eqs. 1 and 3 as:

u(r,z) I n = - f s e sJl(rs)ds (Eq. 23)
0 On

w(rz)l n -I sign(z-zs) e r n (Eq. 24)
0

while the stresses are given by Hooke's law:

- - . .Z-Zs On : :." :.
ZZr,) n n (2s2 _k2 ) e sJo(rs)ds (Eq. 25)z(r',z)l n = n (2 - nk-

axz(r,z) I n = Un 7 2s sign(z-zs)e - l Z-Zsl On sJI(rs)ds. (Eq. 26)
0

In the fluid case, Eq. 25 is replaced by

• - -IzZs an
ozz(r~z) n Xn h2  f e an sJO(rs)ds. (Eq. 27)

If more than one source is present in the layer, the kernels in Eqs. 23 to
27 are replaced by a sum over the number of sources.

.9 %°.
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The field at each interface now has two different integral representations,
one from the layer above and one from the layer below. The boundary con-
ditions have to be satisfied at all ranges r; thus they have to be
satisfied by the kernels in the integral representations as well, leading -

to a linear system of equations in the unknown arbitrary functions A+, A-,
8+ and B-. This system can of course be solved analytically, as done for
special cases in <5>, but for a general multilayered environment a numeri-
cal solution is more convenient. This numerical solution and the sub-
sequent evaluation of the integral transforms is treated in the next
section.

2 NUMERICAL SOLUTION TECHNIQUE

The numerical solution is divided into two parts. First the unknown
arbitrary functions are found at a discrete number of horizontal wavenum-
bers from the system of equations that expresses the boundary conditions to
be satisfied. Secondly the field is found at selected depths by evaluation
of the integral transforms. The first part is the most critical in rela-
tion to computation time, and this is the part where the present model dif-
fers in approach from earlier models of the same type. Most emphasis is
therefore given to this part in the following.

The layers are numbered from 1 to N (Fig. 1) where the upper halfspace is
number 1 and the lower halfspace is number N. If the kernels for the field
parameters involved in the boundary conditions at interface m', and
evaluated in layer 'n', are expressed in vector form as {v)m, then the

local system of equations to be satisfied at interface 'mm is

Vjm = {v} m + {V}m = {vIm + vIm (Eq. 28)
m m m+1 m+1

where the asterisk denotes the source contribution. Here and in the
following the subscript refers to the layer number and the superscript to
the interface number. In the general solid/solid case, Eq. 28 expresses
continuity of u, w, azz and hrze If one of the media is a fluid, w, azz and
Orz has to be continuous, whereas the fluid/fluid case requires only con-
tinuity of w and azz. Where one of the media is a vacuum the stresses azz
and Orz must vanish. The number of elements in the vectors {vjm there-
fore vary from interface to interface. n

The contributions from the unknown homogeneous solutions are now isolated
on the left-hand side, and Eq. 28 can be rewritten as

[cm[v
m  -vm j(Eq. 29) "a" IV"'m

m m m 1 m+1 M+mm+l "mIl ....

where [cn is a coefficient matrix and {a} is a vector including the

m m

76
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degrees of freedom for layer 'W', i.e. all or some of the arbitrary
functions A-, A+, B- and B+.

.. .M • ..

To combine the N-1 local systems of equations (one for each interface) into
one global system, the following unique mapping is introduced:

{a}m = [S]m {A} (Eq. 30)

N-i i 
{V = [T] {v • (Eq. 31)

i=I1-:

Here {A} and {VJ are global vectors containing all degrees of freedom and
field parameters involved in the boundary conditions. The matrices [SIm
and [TJi are extremely sparse, containing only zeroes and ones. These
matrices are very similar to the topology matrices known from the finite-
element technique, and as is the case there, they are never set up in the
actual computer code, but replaced by a set of pointers <7>.

Insertion of the mappings of Eqs. 30 and 31 into Eq. 29 yields the
following global system of equations

[C]{A} = {V} , (Eq. 32)

where the coefficient matrix is

[C] ([Tji[c]j[Sji-[T]i[c]i [SI )• (Eq. 33)
i[+I i[+1c"[l'.ii i

The right-hand side due to the source contributions is

N-1I• N-i *. •*-.....

{V} Y Z  [T]i ({vJl - {v}1) • (Eq. 34)
i=1 i+1 i

As the mappings of Eqs. 30 and 31 are unique, the summations and the matrix .
multiplications in Eqs. 33 and 34 never need be performed, but can be
replaced by a unique set of pointers connecting the elements of the global
system with those of the similar local systems, as illustrated in Fig. 2.

The pointers defined by the mappings of Eqs. 30, 31, 33 and 34 are depen-
dent only on the environment and can thus be determined a priori. The
calculations needed at each horizontal wavenumber are then delimited to the
creation of the local coefficient matrices and right-hand sides, and to the
solution of Eq. 32. Then the kernels in Eqs. 16 to 20 and 23 to 27 can be
determined for any number of depths. 0 . .,, .. _-.



SACLANTCEN SN4-173

Local system:

[C]~. VI [Ivaa~~

Global system:

r 7;

la.
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The local coefficient matrices are functions of the horizontal wavenumber
s and the depth z of the actual interface. As can be observed from
Eqs. 16 to 20, the dependence on z is present only in the exponential
function; thus the two local matrices for layer number I can be written
as

[c" [d] [e"'(Eq. 35)
L , t

[c]t = [d] [ell , (Eq. 36)
£ £ L . ..

where [d]t is a matrix that is a function of the horizontal wavenumber
only, and [eli is a diagonal matrix containing the exponential functions

for interface number i evaluated in layer number X. By introducing a
local coordinate system where the plane z=O coincides with one of the
interfaces, the number of necessary calculations of the complex exponential
function can be reduced. If, for example, the interface above the layer is
chosen, Eqs. 35 and 36 take the simpler forms:

[c] = [d] (Eq. 37)

[c][ = [d][e]l . (Eq. 38)

To build the global coefficient matrix by means of the pointers defined by
Eq. 33, it is necessary only to calculate for each layer the elements of
the matrix [d]t,which are very simple functions of the horizontal wave-
number, and the exponentials in [el - -

Although, from a theoretical point of view, the origin of the local coor-
dinate system can be chosen arbitrarily, its choice is quite important for
the numerical stability when large real arguments of the exponential func-
tions appear. This is so for thick layers and large values of the horizon-
tal wavenumber. In these cases a numerical solution based on the original
Thomson-Haskell technique becomes unstable, as is clear from the physical
significance of the exponential functions. These express the depth beha-
viour of the field, and when the arguments are imaginary they correspond to .
up and downgoing conical waves. However, when the arguments become real ,
as is the case for large horizontal wavenumbers, the waves are inhomoge-
neous conical waves travelling in the horizontal direction with an exponen-
tial decay away from the interfaces (provided that no sources are present
in the layer). When the arguments become very large, the field produced at
the opposite Interface by these exponential "tails" will vanish. At these
wavenumbers a thick layer will therefore behave exactly as an infinite
halfspace. As the Thomson-Haskell technique requires that the solution is
"propagated" through all layers, numerical stability problems obviously
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arise because this is impossible at these wavenumbers. By factorizing out
the exponential functions a stable solution can be obtained, and several
computational schemes for this have been proposed, see for instance
Franssens <8>. These modifications of the original technique, however, .
yield a more complex and time-consuming computer code.

With the present technique it is possible to obtain unconditionally stable
solutions by applying gaussian elimination with partial pivoting to Eq. 32 ....
and by choosing proper origins of the local coordinate systems together '..-..-
with a proper mapping. This is demonstrated in detail in Appendix A. .

The fact that no special numerical effort, except the pivoting, is needed
to ensure numerical stability in this technique is one of the major reasons
for the order-of-magnitude improvement in computational speed over that of
the modified Thomson-Haskell technique <2>. Another important factor is
the mapping technique, which ensures that only a few simple functions of .
the horizontal wavenumber have to be calculated for each layer. Due to the
special band structure of the global coefficient matrix (Fig. 2), gaussian
elimination with partial pivoting can be performed very efficiently.

An important advantage of the present technique is that most operations can
be easily vectorized, making it very well suited for implementation on an
array processor. Because the local coefficient matrices, Eqs. 37 and 38,
are similar for all layers, the calculation of the elements, including the
square roots and the exponentials, can be vectorized. The indexed move
operations of the mapping are carried out very efficiently on array pro-
cessors, and the gaussian elimination is by nature a sequence of vector
operations. The implementation of this technique on an FPS-164 array pro-
cessor has therefore yielded a considerable improvement in computational
speed compared with serial computers, as can be observed from the calcula-
tion times given in Sect. 3.

When the system of equations (Eq. 32) has been solved, the kernels in
Eqs. 16 to 20 and 23 to 27 can be evaluated at any depth, z, with the only
additional functions needed being exp(±z an); all other functions and
expressions have been evaluated while setting up the system of equations.
The present technique is therefore very efficient if the field is to be
determined at many different depths.

It is well known that for guided propagation in loss-less media the kernels
in the integral representations will have poles on the real axis
corresponding to normal modes, Rayleigh waves, etc. In these cases a
direct numerical integration along the real axis is inconvenient. There
are two ways in which this problem can be overcome. One is to deform the
contour of integration Into the complex plane; the other is to introduce
physically realistic attenuations in the layers, which will result in the -

poles moving out into the complex plane and consequently make real-axis
integration possible. The latter approach has the advantage that the
integration can be performed by means of the Fast Field Technique <1>, and
this is the choice made here. It should be stressed however that the solu- .-.
tion technique described here is valid for both complex or real values of
the horizontal wavenumber 's', and that any complex integration contour .
could be chosen.
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The Bessel functions are expressed in terms of Hankel functions as
JI(rs) =E[H1)(rs) + H(2 )(rs)] (Eq. 39)

2£

and each integral is split into two. As only outgoing waye are con-
sidered, the integrals involving H( )(rs) are neglected, and H7')(rs) is
replaced by its asymptotic form .

H(2 )(rs) - - e 2 (Eq. 40)
I rs.a 2s(E

As shown in <3> this approximation yields insignificant errors for ranges

beyond a few wavelengths. .0

The field integrals now take the form

F(r,z) - e i(I +2)Y f f(sz), . e-irsds , (Eq. 41)

where £=0 for w and Ozz and 1=1 for u and Orz. The integral in Eq. 41 can
be evaluated by means of an FFT, but in order to do this, the interval of

integration must be finite. However, because of the exponential decay of
the kernels for s going towards infinity, the truncation error can be made
arbitrarily small. The truncated wavenumber space is discretized as -
follows

Sn= So + nas , n = 0, 1,... (M-1). (Eq. 42)

In addition, the range interval of interest is discretized as:

rm= ro = mr , m = 0, 1, ... (M-1) , (Eq. 43)

where

A 2rAs 2w (Eq. 44)
M

and M is a power of 2. The field integrals are now evaluated as

F(rm,z) 6s e- i[Sorm-(t+I/2)r/2]

M-1
x I [f(sn,z)e-ironAs /-n] e'i2imn/M , (Eq. 45)
n=O

where the summation is performed by means of an FFT yielding the field at

all M ranges, Eq. 43, simultaneously.

• -
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In the case of plane geometry the approximation given by Eq. 40 is not

needed, and the FFT integration can be performed directly <6>.

9.* -o...

3 COMPUTATIONAL EXAMPLES

In this section we present numerical solutions to three important propaga-
tion problems in underwater acoustics: 1) the Lloyd-mirror interference
effect at the sea surface, 2) low-frequency propagation in a shallow-water
duct, and 3) reflection of a narrow beam of sound at the sea floor. These
problems have been selected so as to demonstrate the full capability of the
numerical model described earlier, i.e. its applicability to a wide range
of guided and non-guided propagation problems in both plane and cylindrical
geometry. The computational efficiency of the code will become apparent
from the quoted calculation times on both a VAX-11/750 and on a FPS-164 - .
array processor.

3.1 Sea-surface interference effects -.

This is a classical problem dealt with in most text books on underwater
acoustics <9>. We consider an omnidirectional line source in a halfspace -- _-.
limited above by a perfectly reflecting boundary. The acoustic field in
the halfspace (Fig. 3a) becomes quite complex, exhibiting a series of
interference beams radiating out at different angles (in the contour plot. -
black indicates high sound intensity and white low sound intensity). A
closed-form solution to this problem can be easily derived <9>, showing
that the beam pattern arises as an interference effect between the two
possible sound paths from source to receiver, namely the direct path and
the surface-reflected path. This interference pattern is often referred
to as Lloyd-mirror beams, with the beam directions far from the source
given by

sin em = (2m-1) A/4zs

where A is the acoustic wavelength and zs the source depth; em is the
beam angle relative to horizontal.

The numerical solution given in Fig. 3a is in plane geometry with a line
source placed 33.75 m below the sea surface. The frequency is 100 Hz and
the water sound speed is 1500 m/s. The source depth is 2.25 X, leading to
five Lloyd-mirror beams at angles given by sin em = (2m-1)/9 or em - 6.4,
19.5, 33.7, 51.1, and 90.00. The computed angular spectrum for this propa-
gation problem is shown in Fig. 3b, and we see that energy is in fact pro-
pagating in the directions given by the simple formula, and that the peak
intensity is the same in all five beams. The beamwidth, however, increases
with increasing beam angle.

The iso-intensity contour plot of Fig. 3a is an exact numerical solution
to the sea-surface reflection problem. For a spatial grid of 50 x 1024 .
points the computation time was 5 min on the VAX-11/750 and 18 s on the
FPS-164.
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Even though the field solution here is available in closed form, many of
the standard wave-theory models in ocean acoustics are unable to handle
this particular problem. This is so for all normal-mode models that do not -.

include the branch-line integral (continuous spectrum) contribution to the S
field solution. It is also so for all parabolic equation models, with
their inherent small-angle approximation limiting the solution validity to
at best ± 400 away from the horizontal. This would here mean that only the
first three Lloyd-mirror beams would be correctly resolved with the parabo-
lic equation. In fact we consider this particular test problem extremely
well-suited for checking parabolic equation solutions, since inherent
amplitude and phase errors affect both beam directions and beam inten-
sities.

3.2 Propagation in a shallow-water duct

An isovelocity shallow-water duct that is limited above by the sea surface
and below by a homogeneous penetrable bottom constitutes a waveguide with
interesting frequency-dependent propagation characteristics. We will solve
this problem in cylindrical geometry, with environmental parameters as -

follows: 100 m water depth with a speed of 1500 m/s, a solid bottom with 0
compressional speed of 1800 m/s, shear speed of 600 m/s, compressional
attenuation of 0.1 dB/X, and shear attenuation of 0.2 dB/A. The density
ratio between bottom and water is 2.0. We have intentionally used a solid
bottom in order to demonstrate that the often-neglected shear properties
can be of considerable importance in low-frequency ocean acoustics.

A full-spectrum solution at 30 Hz is displayed in Fig. 4 for a source at
95 m and a receiver at 100 m (on the bottom). The propagating energy ver- .- "'-
sus horizontal wavenumber is shown on the integrand plot of Fig. 4a, which
displays the kernel of Eq. 12 with source contributions included. We have -. .'-.

here identified three spectral regions, defined in terms of the phase velo-
cities as: .

Evanescent spectrum: 0 4 cph < 1500 m/s . .

Discrete spectrum 1500 c cph 4 1800 m/s

Continuous spectrum: 1800 < c

where the phase velocity c h is related to the horizontal wavenumber ass

through cph w/s, with w being the angular frequency of the source. In
terms of an angular spectrum the evanescent waves (modes) have non-real S
angles at the receiver depth. The discrete modes, on the other hand,
correspond to propagation angles between horizontal (cph=1500 m/s) and -
3 3. 6 *(Cph=1800 mis), while the continuous modes correspond to steep propa-
gation angles above 33.60. Thus it is the compressional wave speeds in
water and bottom that determine the spectral regions.

We see from the integrand (Fig. 4a) that there are five peaks in the. '
spectrum corresponding to five preferred modes of propagation. There are
two discrete modes, two continuous (virtual) modes, and one evanescent

0-"•" '- %
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mode, which can be shown to be an interface wave of the Scholte type
<10,11,12> propagating along the sea floor. The interface wave has a phase
velocity of 530 m/s, which is slower than any of the body waves of this
problem (1500, 1800, 600 m/s). Moreover it has its highest amplitude at 0
the water/bottom interface, with exponentially decaying amplitude away from
the interface. The existence of the interface wave is intrinsically
related to the shear properties of the bottom, and, hence, if we neglect
shear we automatically exclude this propagation path.

The integrand plot (Fig. 4a) shows that the two discrete modes have highest 0
excitation and lowest loss (poles located close to the real axis in the
complex wavenumber space). The discrete modes will therefore dominate pro-
pagation beyond the nearfield, as shown in the lower transmission-loss
curve (shear = 600 m/s) of Fig. 4b. Beyond 2 km we have a typical 2-mode
interference pattern caused by the discrete modes. The two highly atte- _
nuated virtual modes are responsible for the irregularities of the inter- .
ference pattern at short ranges, while the interface mode causes the
"high-frequency" noise on the propagation-loss curve. The above detailed
analysis of the contributions of the various spectral components to the
propagation-loss curve can be demonstrated explicitly by solving for just
selected parts of the wavenumber spectrum.

A full-spectrum calculation without shear shows better propagation at long
ranges, but with essentially the same interference structure (Fig. 4b).
Hence the effect of shear is here to increase losses for waterborne propa-
gation.

We now move to a frequency of 5 Hz (Fig. 5), which is below the cut-off -

frequency for discrete modes. Here the effect of shear is to make propaga-
tion conditions better than they are in the case where shear is neglected
(see Fig. 5b). -et us shortly analyze the spectral content of the
integrand plot (Fig. 5a). There are no discrete modes and only one highly
damped virtual mode. The important peak, however, is associated with the
interface wave, which has low attenuation and therefore becomes the most -
important propagation path at this frequency. The resulting propagation
loss (Fig. 5b), with a shear speed of 600 m/s, shows interference between
the virtual mode and the interface mode. However, since the virtual mode
is highly attenuated, only the interface mode remains at long ranges
(beyond 5 km). If we neglect shear there is no interface mode; propagation
thus becomes very poor because energy can then propagate only in the con- S
tinuous mode. On the other hand, we notice from Figs. 4 and 5 that when
shear is included, propagation is just as good at 5 Hz as it is at 30 Hz, - "
even though the propagation mechanisms are quite different in the two
cases. The importance of shear in low-frequency ocean acoustics has been
addressed in more detail elsewhere <10,11>.

The numerical model described in this paper is extremely well suited for
solving low-frequency guided wave-propagation problems. A full-spectrum
solution is readily available with minimum computational effort. A
propagation-loss curve , such as shown in Fig. 4 or 5, is produced in 65 s
on the VAX-11/750 and in just 5 s on the FPS-164. These computation times
relate to the use of 2048 integration points along the wavenumber axis.

The most commonly used models for solving guided propagation problems are ..

S q~ '
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based on normalI-mode theory. Again, if such a model does not include the
branch-line integral, the continuous spectrum is not included. Moreover,
most normal-mode models solve a real eigenvalue problem, and hence neglect
shear altogether, or at best include shear in a perturbational manner as
just a loss mechanism. In any event, the interface wave is not part of the
modal solution, and hence such a model would fail when applied to a propa-
gation problem not dominated by discrete modes.

The full-spectrum solution technique presented here is clearly superior to
most existing models in handling guided-wave propagation in horizontally
stratified fluid/solid layers. Only in the case of many guided low-loss
modes do numerical problems arise, since many integration points are then
needed in order to resolve the peaks in the integrand.

3.3 Beam reflection at a water/bottom interface

In this last example we study the reflection and transmission of a narrow
beam of sound at a water/bottom interface. This example has been chosen to
demonstrate that directional sources (beams) are handled by the numerical
model in a computationally efficient manner. The beam is generated by a
vertical source array composed of a number of equidistantly spaced line
sources (plane geometry), and the resulting acoustic field is found by
superposition of the contributions from the individual sources, as
described in Sect. 1. The beam direction is varied by appropriately
phasing the source elements, and the intensity distribution across the beam
can be selected by applying an amplitude weighting across the array. By
varying Vie array distance from the interface and the number of source ele- -

ments (half-wavelength spacing), a beam of arbitrary width can be
generated. Moreover, beams can be focused or defocused by phasing the
sources appropriately. By using a "physical" array of finite length to
generate the beam we automatically ensure that only realistic beams are
generated, i.e. a focused beam in water (with realistic attenuation) cannot
be infinitely narrow, because that would lead to infinite intensity in the
focal plane, which is unphysical. Hence this model treats an entirely
realistic physical system.

The interest in the beam-reflection problem goes back to an experimental
study by Muir et al <13>, where it was shown in a laboratory experiment
that a narrow beam of sound impinging on the bottom at grazing angles below
the critical angle will not be totally reflected as predicted for an infi-
nitely wide plane wave. Instead there is significant energy transmitted-
into the bottom, this energy increasing as the incident beam narrows. This
interesting observation has remained unexplained for years, but we shall
demonstrate numerically that the beam penetration is a simple consequence
of the angular spectrum shape associated with narrow beams.

The beam reflection/transmission problem will be solved in plane geometry
for an environment similar to the one used by Muir et al <13>. We consider
a water halfspace overlying a fluid-bottom halfspace. The sound speeds are
1450 m/s in the water and 1675 in/s in the bottom, giving a critical
(grazing) angle of exactly 30 The density ratio between bottom and water-
is 2.0 and we initially neglect attenuation in the bottom. Calculations -

are done for a frequency of 20 kHz, which gives an acoustic wavelength (k)
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in the water of 7.25 cm. We have chosen a source array of 121 elements
with X/2 spacing, giving an array length of 4.25 m. A gaussian amplitude
weighting was applied across the array, producing a gaussian beam with low -
sidelobe levels. .

Calculated field solutions are given in Fig. 6 for a focused beam that is
2.5 A wide at the interface. The beamwidth is measured across the beam

-.- between the 3-dB down points. The arrows in the upper part of Fig. 6 ndi- .--

cate the beam directions; also shown are the angles of incidence (61),
reflection (Or), and transmission (0t), all measured along the direction of
maximum amplitude in a beam with respect to horizontal. Three cases are
considered, ej = 25.0, 30.0, 35.0, with the critical angle being 30.
Hence the upper beam is incident at 50 below the critical angle, and a
transmitted beam is still present in the bottom (Ot = 11.50). With
increasing angle of incidence more energy is propagated into the bottom
(contours show losses in arbitrary dB's). We also notice that the angle of
reflection is lower than the angle of incidence (non-specular reflection).
These beam reflection and transmission properties are In qualitative
agreement with the experimental results reported by Muir et al <13>, even
though the experiment was carried out with a true 3-dimensional pencil
beam, while the calculations here are done for a 2-dimensional beam.

A full understanding of the observed beam behaviour can be obtained by com-
paring the spectral content of the incident beam with the angular reflec-
tivity characteristics of the interface, as shown in Fig. 7. The upper ...

figure displays angular spectra for beams of different widths and incident
at the critical angle. Note that the narrow beam has the widest spectrum,
while the spectral width decreases with increasing beamwidth. In this
angular representation an infinitely wide plane wave becomes a delta func-
tion with only one direction of propagation. Any beam of finite width has
a spectrum of finite width; the very narrow beams have broad spectra, indi-
cating that energy is propagating over a wide range of angles. Hence it is
a contradiction to state that narrow beams are highly directional <13,14>.

Let us concentrate on the wide spectrum in Fig. 7a (D 2.5 A), which has
its peak energy propagating at 300 but also has significant energy propa-
gating at 20* and 40% Hence many propagation directions are associated -.
with the narrow beam. Figure 7b shows the plane-wave reflection loss and
phase shift versus angle at the interface, indicating perfect reflection
below 300 with a phase shift, and an increasing reflection loss above 30*
with no phase shift. Comparing Figs. 7a and 7b shows that the left
(hatched) half of the beam spectra are perfectly reflected (though with a
phase shift) while the right half is partly transmitted. Thus in practice
we need to weight the incident-beam spectrum with the reflectivity charac- .".

teristics of the interface in order to get the spectrum for the reflected
or transmitted beam. The above simple argument explains qualitatively what
to expect. For example, the hatched part of the spectrum will be entirely
reflected, while the right half will be partly transmitted. The different .

weightings put on the two half-spectra mean that the peak energy in the .
reflected beam moves to smaller angles (Or < 61), as also observed in
Fig. 4. On the other hand, only energy in the right half of the spectrum
will be transmitted, and the beam direction (0t) can be determined from the .'.,
peak in the transmitted spectrum.
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It is clear from Fig. 7 that even though each spectral component is
reflected and transmitted according to Snell's law, the total beam, in
which phase and amplitude weightings are applied to the broad spectrum, .
cannot be expected to be so. On the other hand, the beam results should S

approach Snell's law for increasing beamwidth (decreasing spectral width).
In fact, as shown in Fig. 8, we do retrieve SnelI 's law in the limit of
very wide beams.

Finally, when a realistic bottom loss of O.8 dB/x is included we notice no
substantial effect on the calculated beam angles, even though the
transmitted beam becomes strongly attenuated.

One last point will be briefly addressed. It was noted in the experimental
results <13> that the transmitted beam was horizontally displaced, i.e. the
incident and transmitted beam axes intersect the interface at different .. .
points. A closer look at Fig. 6 shows that both the reflected and the
transmitted beam centres are displaced; this is because a lateral wave is
excited when energy is incident on the interface below the critical angle.
The reflected and transmitted fields are then composed of contributions
from both the "specular" beam and the lateral wave field, causing an
apparent lateral displacement of the beams. The displacement can be both
forward and backward and will be a function of beamwidth as well as of
angle of incidence. Furthermore, reflected and transmitted beams will
generally have different displacements.

The computational efficiency of the numerical code is particularly evident
for this case, in which field calculations from 121 sources have been made
on a spatial grid of 50 x 512 points. Each contoured beam plot in Fig. 6
takes 6 min on the VAX-11/750 and 21 s on the FPS-164. Not only are these
acceptable calculation times, but this code seems to be the only one
capable of doing these types of calculations.

The results presented here are exact numerical solutions for 2-dimensional
beams, against which approximate solutions <14> can be checked. Similar e
beam reflection studies at fluid/solid interfaces have been reported by the
authors elsewhere <6,15,16>.

SUMMARY AND CONCLUSIONS •1, :

We have presented an efficient numerical solution technique for general
applications to wave propagation in horizontally stratified viscoelastic
media. The model provides a full-wave solution for the field generated by
a single source as well as for that generated by a vertical source array.
It allows the spatial distribution of the acoustic field to be evaluated at
least one order of magnitude faster than with existing models based on the
Thomson-Haskell solution technique. The computational examples clearly
demonstrate the model's versatility in providing exact solutions to a wide
range of guided and non-guided propagation problems in underwater
acoustics, but the model is equally applicable to problems in ultrasonics
and seismics. Moreover, the computational efficiency of the numerical code -
has made it feasible (on array processors) to perform pulse calculations
based on Fourier synthesis of time signals, even when hundreds of frequency
samples are needed.

• ".,• . 'm ", "t
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APPENDIX A

NUMERICAL STABILITY

The physically realistic attenuation introduced in the environment makes
the global system of equations (Eq. 32) theoretically well conditioned for
real horizontal wavenumbers. Because of the limited accuracy of digital
computers, this does not, however, guarantee stability of the numerical
solution technique. In this paper gaussian elimination is used to solve
Eq. 32, which, in general, requires scaling and pivoting to ensure numeri- •
cal stability. .

Equations 16 to 20 of the main text show that the difference in dimension
between the displacements and the stresses can yield several orders of "
magnitude in difference between the coefficients in the corresponding
Eqs. 29 and 32. In such cases gaussian elimination with partial pivoting
will not ensure unconditional stability, owing to truncation errors. The .
equations therefore have to be scaled in order to make all coefficients
dimensionless. The choice of actual scaling factors 2is not critical. Here
all stress equations are divided by the constant w ps, where ps is the 7-.
density of any layer. The displacement equations are made dimensionless by
dividing by the wavenumber hs for the same layer.

For purely imaginary arguments of the exponential functions, the magnitude
of the exponentials is unity, and the solution will be unconditionally --. .
stable. For real arguments, i.e. the evanescent regime with s>hn or kn, .
large differences in order of magnitude can however appear again. In this "
case the differences appear within the rows, and scaling of rows is there- -""
fore not applicable. Scaling of columns could theoretically be applied,
but this requires considerable additional computations at each horizontal
wavenumber, and the problem of exponential overflow in the actual computer
would still remain. With a little help from the physical significance of
the problem it is however straightforward to obtain stability also in this
case, without any additional computational effort.

This is most easily demonstrated by means of an example. Consider a series
of fluid layers with a very thick layer 'n' below the lowermost source. In
the evanescent case, i.e. s>>hn, this layer will behave like an infinite
half space, which means that the arbitrary function A+  associated with the

n
exponentially increasing depth function (eZon) should vanish. The solution 0
of the global system of equations (Eq. 32) by means of gaussian elimination
with partial pivoting can be forced to yield this behaviour automatically
simply by choosing a mapping that yields the structure of the system showed

* in Fig. Al. The upper boundary of the layer, i.e. interface n-1, is
selected as the origin of the local coordinate system, which removes the
exponentials from the submatrix [cn-1. When the argument to the exponen-

tial functions in [c]n becomes large it is simply truncated; the column

n , •

'. %
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closest to the diagonal of the global system then contains at least one
very large number, whereas the lefthand column contains two almost
vanishing numbers. No pivoting will then be performed between the sub-
matrices [c]n- 1 and [c] n  . As no sources are present in the layers >n, the ,

n n
right-hand sides corresponding to interfaces >n will then always be zero.

The element of [cl n placed on the diagonal of the global system remains
n

very large (eventually after pivoting with the row below) compared with the
other elements in that row and will therefore force the corresponding .
arbitrary function A+ to be zero after triangulation and back-substitution.

n
The lowest equation for interface n-1 then yields the correct value of
A-, and back-substitution can continue.
n

In a similar way it can be shown that for layers above the uppermost source
the origin of the local coordinate system must be placed at the lower boun-
dary in order to ensure numerical stability if the columns of the sub-
matrices are organized as shown in Fig. Al. Stability problems can then
appear only in two cases. The first is when sources are placed within a
very thick layer, but this can be avoided by adding dummy interfaces above
and below the sources. The other is the rather unrealistic situation in
which sources are present on both sides of a thick layer. The solution of
such a problem would require two separated solutions if the evanescent
regime is considered.

In the case of solid layers, unconditional stability is ensured in the same
way but because two large exponentials can appear in any layer it is
slightly more complicated to demonstrate.
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SACETJR 2 NLR Canada1
CINCNORTH 1 NLR Denmark1
CINCSOUTH 1 NLR Germany1
COMNAVSOUTH 1 NLR Greece1
COMSTRIKFORSOUTH 1 NLR Italy 10

COMEDCENT 1 NLR Netherlands1
COMMARAIRNED 1 NLR Norway1

CINCHAN 3 NLR Portugal
NLR Turkey1
NLR UK1
NLR US1

Total initial distribution 249
SACLANTCEN Library 10
Stock 21
Total number of copies 2V
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