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FOREWORD

This report was prepared by Dr James J. Olsen of the Structures and

Dynamics Division, Flight Dynamics Laboratory, Wright-Patterson Air Force

The ultimate purpose of the work is to define the aircraft structural

loads and operational limitations involved in ski-jump operations of USAF

needed for subsequent assessment of the structural aspects.

ii

The work was performed under Project 2401, "Aerospace Structures

This initial study concentrated on the aerodynamic performance

aspects of the problem, to provide the speeds, weights, and geometric parameters
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OPTIMUM PERFORMANCE PARAMETERS FOR SKI-JUMP
OPERATIONS OF USAF FIGHTER AIRCRAFT N

. e > e 4y
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Abstract

L*E?This paper discusses the equations of motion which govern the aerodynamic

AR R

performance of USAF fighter aircraft immediately after ski-jump takeoffs.
By a careful selection of coordinate systems and independent and dependent

variables, we eliminate the need for repetitive time-history integration SR

K . D

of the nonlinear, coupled equations. This allows a relatively simple,
but exact solution of the problem. Detailed results are presented for

the F-4, A-10, F-15 and F-16 for two cases — — i

>4 a nominal baseline of constant pitch attitude ,a nd _T,Z-_:
- , - ' s
P ?best possib]é" ctase which produces the lowest achieveable takeoff i
speeds. | L

?/ A } E:

/




TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION !

2. METHOD OF ANALYSIS 3

2.1 EQUATIONS OF MOTION 3

2.2 A BETTER COORDINATE SYSTEM 4

*: 2.3 ELIMINATION OF DISTANCE AS A VARIABLE 6
3 2.4 HANDLING THE PITCHING MOMENT EQUATION 7
- 2.5 SUMMARY OF TECHNIQUES 8
- 3. RESULTS 12

3.1 THE NOMINAL CASE OF CONSTANT PITCH ATTITUDE 12

3.1.1 The 15 Degree Ramp 12

3.1.2 Variable Ramps 13

3.1.3 A Closer Look at the F-1§ 14

& 3.2 THE "OPTIMUM" ANGLE OF ATTACK PROFILE FOR THE F-15 18

3.2.1 Maximum Angle of Attack of 15° 18

3.2.2 Variable Maximum Angles of Attack 19
3.2.3

20
Oltrim< Qlmax

CONCLUDING REMARKS

.............................................
---------------------

. . - ~ ~ e . st . .. atat.t .t . .
- CC S Lt et et CYRITIIRY SOOI = FCIRSCTNE IR N
n®eete ) e atw A N P P Y A P R A I T - -



2
L
LIST OF FIGURES 1
. '-L_"1
_'1
FIGURE PAGE ..
Climb Angles for Constant Pitch Attitude V¥ = 15° ‘ 24 ]
1 o F-4 ‘-'-:."-
2 e A-10 pue
3 o F-15 T
4 e F-16
5 Launchoand Trim Speeds for Constant Pitch Attitude 25
Y =15
Climb Angles for Constant Pitch Attitude ¥ = era 26 A
and Nominal T/W mp - -
6 o F-4, T/W = 0.52 SR
7 e A-10, T/W = 0.34 T
8 e F-15, T/W = 0.71
9 e F-16, T/W = 0.57 S
10 Launch and Trim S?eeds for Constant Pitch Attitude 27 ;Q#J
Vo= eramp and Nominal T/W - q
Performance of the F-15 at Constant Pitch Attitude ¥ = 15° 28 !
11 o Acceleration Along the Flight Path -
12 e Acceleration Normal to the Flight Path o
13 o Efficiency ~q
Performance of the F-15 at Constant Pitch Attitude 29 T
y=0 and T/W = 0.71 s
ramp s
14 e Acceleration Along the Flight Path o
15 e Acceleration Normal to the Flight Path Nle
16 e Efficiency u;a%
Selection of the Angle of Attack for “Best" Efficiency for 30 ,7'J
the F-15, « < 15%, T/W = 0.71 o
17 e Climb Angle e
18 o Efficiency RSN
-y
Performance of the F-15, a = a (<159 3
19 o Climb Angle optimum T
20 o Acceleration Along the Flight Path e
21 o Acceleration Normal to the Flight Path oot
22 o Efficiency o
23 Launch and Trim Spegds for ¥ = constant (15°) and for 32 R
a=za ( <15%) s
optimum L
s
e
v T
-
o)
.................................................. PR L T N T N T “:1




T~ DA DI A A T e T S

LIST OF FIGURES (CONT'D)

FIGURES PAGE

- Performance of the F-15 fora =a___.

: 24 e Climb Angle opt imum
25 e Acceleration Along the Flight Path
26 e Acceleration Normal to the Flight Path
27 e Efficiency

and T/W = 0.71 33

28 Launch and Trim Speeds for the F-15 for ¥ = constant and 34

for a = %ot imum® T/M = 0.71

29
30
31
32
33

Angle of Attack 35
Climb Angle
Acceleration Along the Flight Path 3
Acceleration Normal to the Flight Path

Efficiency

. < o
Performance for Oerim <% max . ‘

-t e

~ . d

I

~ e
- '-1
"4

<

.
1]

B R
. . ;
PR A N A e
PO

,
L RN

e Ta ot .

v

e s
]

vi

LI Sl S P S SR L TS AT ST S S YR}
C P P N R i U R R P N o _ - - »f . - . D A . - - .
PO ‘.,‘.'_- ., IR P Y L R R T e e T e e e e e N L e

-l e - \ 'Q".'n . . - » » Al -
B DV I T B N B I B Ll S VPSS PRGN WGP CIPIN TA D, " IR P R S R A S SR PR PR PR

q
. ) AR
ORI R N I - et et e Yttt e tr RN L N e N PR R TP TR TSP S .j




T T ST R YR

S
L . NN
| 3 e
) R
- SECTION 1. INTRODUCTION o
n There has been a great deal of recent interest within the United States e
. Air Force in the potential of ski-jump operations for fighter aircraft. Iifﬁ

et e

PP

e e’a
et

The British Royal Air Force employs ski-jumps for the AV-8, and the United

D ]

]
) Y

States Navy has demonstrated ski-jump operations for the T-2, F-14 and

F-18.
- =
F: The concept of operations is simply that the aircraft is given a vertical f;'j
f? component of velocity at a speed substantially less than flying speed. iﬁ
;{' The angle of the ski-jump and the launch speed are established so that fi
ii the aircraft accelerates to flying speed at a trimmed condition by the =
E' time it loses its vertical velocity component. The aircraft can be flown

?: with controls fixed for some preselected condition, or the pilot can execute

ii some control. However, the time interval is short (only a few seconds)

f:f during the trajectory, so the pilot's procedures must be simple and instinctive,

If the launch speed is too high, then the aircraft has used more runway

distance than necessary and may experience higher structural loads on the

ski-jump. [If the launch speed is too low, then the aircraft will not be

;; able to sustain a positive rate of climb. For a given ski-jump, the optimum

D
X launch speed probably is the one that just produces an inflection at a

trimmed condition at minimum flying speed. (See Sketch) gfjﬁ
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Generally, larger ramp angles also provide the desirable smaller launch
speeds, However, there is a complicated interplay that must be considered
among logistics, launch speed, ski-jump angle and aircraft loads. Also
one must consider the sensitivity of the results to small errors in thrust

and speed to provide arequate margins of safety.

The equations of motion which govern ski-jump performance are nonlinear

and coupled, but fairly simple. Recent attacks on those equations have
employed repetitive time-integrations over a host of values for the physical
variables. This paper re-examines those equations of motion and shows

that complete, exact solutions are easily obtained in the domain of airspeed,

angle of attack and climb angle. There is no need for numerical integrations

in time or distance. The process also shows the effects of the dominant

nondimensional parameters and eliminates the need for large numbers of

variations in the aircraft parameters for computed trajectories.

Section 2 derives the equations of motion; Section 3 gives numerical results
for simplified aerodynamic representations of the F-4, A-10, F-15 and
F-16 for two cases ((1) baseline and (2) optimum selections for angle of

attack histories). Section 4 contains concluding remarks.
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ECTION 2. METHOD OF ANALYSIS

————

2.1 EQUATIONS OF MOTION L

The aircraft is assumed to be a rigid point mass with freedom to translate e

in the x and y directions and rotate in pitch. :3-::.-1

3t

X

The forces acting are the Thrust (T), Lift (L), Drag (D) and Weight (W).
The thrust is at an angle &, above the fuselage reference line ; the fuselage
reference line is at an angle &k above the velocity vector (V); and the
velocity is at an angle © above the horizontal x axis. The pitch attitude
(*) is given by

Y= a+O (2.1)

The equations of motion for the three degrees of freedom in rectangular

coordinates are
X = Teos (d +4e+0)-D cosO-Lam© (2.2)
.y = T (44 40) +L e3® - DsmO-W (2.3)
=M (2.4) R
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i where M is the pitching moment, and 1 is the moment of inertia about the

center of mass. Together with the relation

4
T‘i‘ - +am e (2.5)

equations (2.1) through (2.4) are sufficient to solve for x, y,&,0, q. as

vf functions of time by integrating numerically in time from a set of initial
; conditions. Indeed many of the investigations of ski-jump performance
E; have used such a straightforward technique. However, a problem with the
; numerical integration (in time) of the equations is the tedious nature
E of the process and the difficulty with gaining engineering insight into
the effects of the many variables from the repeated, trial-and-error solutions.
i 2.2 A BETTER COORDINATE SYSTEM

A better approach is to abandon the fixed rectangular coordinates

(x,y) and write the equations in the normal/tangential coordinates (n,s).

pA n

L \ 5

k" \~ or q

g \

. e

5 v

o

o

s

Kl

W

~

‘o

o

:‘

l.:

> S

\ o n‘ -

?' e

o K

~ "

l.' -

. 4 1
-

: i

N te

S

..‘ --------- “‘

.................................................. B Tt T T S ST N R T R I DG NI

PN e N N A e T e e T N T e SR e A S R Sy aOR J




(SRS I I gt PO gt M S5 et B e

T >
L e ol o Ve VIR -"*F‘ T
Raite - . S

The equations of motion simplify to

0¥ = Teao (kiele )~ D - Wamb
wit = Tam [@4de) &+ L~ Wesob

TH=M

The real advantage, however, comes when we replace time as the independent

variable with tangential distance (s) by observing

s=V

The equations of motion become:
M\ %.—. Tess (dpde ) D-Wane
m‘%g: Tam (drde) +L-Wexe

T(\?%-} \\é-\s! %}c M

Now introduce the notation
2
L=C el = QW
D= G QW
M=C,,QWe
2z

«c oA o oA
s S
T=wmelc

T= TM

e= cAea
W
9
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(2.6)
(2.7)
(2.8)

(2.9)

(2.10)
(2.11)
(2.12)
(2.13)

(2.14)
(2.15)

(2.16)

(2.17)
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Then the exact equations of notion reduce to:

%: £ (‘rm(.w‘.)-ct\Q-me] - £ 5 (2.18) —

2Q 6£, .g [Tm(du.)-»C\_Q -w.e]s- £ M% (2.19)

¢ - £ 2.20 T

ke 8 ¥ e 1£:20) i
Equations 2.1, 2.5, 2.18, 2.19 and 2.20 are sufficient to integrate numerically e

in distance s to solve for Q,O‘,Q, andsb. Time does not enter the problem.

Also note that the main dependent variable has been reduced to nondimensional

variable 2 ‘ v:
0- KR
that the thrust effects are all contained in the ratio of thrust to weight o
T=1M T

and that the angle of attack effects are all contained in the nondimensional
parameters C , Cy and Cy,. e
2.3 ELIMINATION OF DISTANCE AS A VARIABLE o]
An even greater simplification occurs, however, if we divide equation
(2.19) by (2.18) to obtain :

29 (%3___ Taim(dide) + Q- cos 6
Yeao(d+de )- Co Q - Sm & (2.21)

We have eliminated the distance s from the solution and have found that:

e if we can somehow specify o =o (0,Q)

[Equivalent to Solving the Moment Equation]

e we can integrate equation (2.21) numerically 4in Q for a full

solution of the problem.

"
o =ty T - . e . A .
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There is no need for integrations in time or distance. The entire problem

can be solved exactly in the Q,6 ,« domain; and the dominant nondimensional

parameters of T= T/W, QCD are most apparent. For instance, if we solve

equation (2.21) for &(Q.4) for several values of T = T/W, al) of the variations j
of temperature and density due to "hot day" or “cold day" will be automatically :
accounted for and contained in one set of curves from one computer run. oty
Observe also that the expression
Vam (d4de) YOQ- s 0 = W, (2.22) =

.. 4

is just the acceleration normal to the flight path (in g's), and the expression
Z o (d+de ) -CoQ ~am® = 3y (2.23)
is just the acceleration along the flight path (in g's).

2.4 HANDLING THE PITCHING MOMENT EQUATION

We revert to the original pitching moment equation
1§= M (2.4)

and note that we can write

] - d - )

b= Re-L 8
= - X

=Y |
-.-\‘%% \\'d'% % (2.24) ‘
. NG 4 (2.25) 5
b= E0R 4@ e ]
After some algebraic manipulation the pitching moment equation becomes 1)

& (ﬁ‘ ? %1’ %;.% (2.26)

o
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where % will come from the equation

%Q‘ < £(Tenlirne) o0 -58 | ’ (2.18)

If we abbreviate:

_eF
“ﬁ- & (2.27)

then the moment equation becomes: & -3

A{mFyl-ai

2evF (2.28)

iyl
P el
with F = T co(dide )-CoQ-am® = 53 (2.29) S
—
The most complete solution process then is to integrate the moment equation

(2.28) simultaneously with the combined 1ift/drag equation (2.21) with Q
as the independent variable. RS
el
ey
Again, there is no need for numerical integrations in time or distance! .
2.5 SUMMARY OF TECHNIQUES i
r:;ij.

The exact solutions of the aerodynamic performance for ski-jump operations . ;-::I;

for a rigid airplane, considered as a point mass with weight and moment of
inertia, are given by simultaneous numerical integrations of:

= Taim (dide ) +(LQ-03 ©
2Q (gB = L - -
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and

P ﬁ[w i %g] .C"E':%?‘F (2.28) .—

' N Li;:.i
h where Q= % s Q-\—i-é, -.

and F = Tesr (dide )-CoQ ~amB = 'sa

The aerodynamic ccoefficients CL’ CD and (:M would need to be obained as functions

of & from available tabulated values or as analytical expressions. 57;;.'
i
The simultaneous numerical integration of both sets of equations has not -~
been performed for this paper, rather we have considered two simplified alternatives ',_-"_f
to solving the moment equation: ',ll':j
a. As a nominal baseline, assume the pilot has enough control :
authority to hold & and Cy to values such that t{)=d+9 is constant
(Constant pitch attitude).
.-—_'-
b. As limiting case, assume that the pilot has enough control
authority to hold & and CM to the “best" achievable values. The "best" values

will be defined as those values of & which drive % toward large negative -
values. The pilot leaves the ski-jump at
Q1 = Qauncn

o1 80\r'zamp :
and accelerates to a trimmed condition -~
Q2 : Qtrim ,::::f
NS
02 = 0

9
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We know @ will decrease from era to zero, and Q will increase from Ql

mp L
to Q. Since we know Q,, and we want Q; to be as small as possible, the e

“best" e will be the one that gives miximum \8Q/pg)\.

References 1 and 2 cortain descriptions of four computer programs which treat -

the two cases 2hove. In each case we actually start the integrations from

! the trimmed flight condition and integrate the equations backwards in Q to .
H the ski-jump starting points. :‘“
;:f: Reference 1 contains the programs which solve equation (2.21) under the assumption :.‘1;'-".:
-
E \\N 4 = constant. ——
- Joxss
’ Reference 2 contains the programs which solve equation (2.21) under the assun,.ion j:.'f-":;
of = ’(optimum for best a .
oo
30N
In each case one program solves the equation for a fixed 9,, and a range )
amp PR
of values for T/W, and one program solves the equations for a fixed T/W and e
L e
a range of values for enmp. e
In order to solve equation (2.21) we need CL and CD as function§ of &, _,.”
Those values depend on many variables for any particular aircraft and are MRS
\':~:
frequently given graphically or in tabular form. For the purposes of illustration ‘.‘_T:Z‘;;
in this paper we used the simple expressions \:'
CL*C ( eleddor ) (2.29) D
o e
C, = C, +Ke2 (2.30) 3
D D0 - *
i
i
t'.--’
.-"-'.
o
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k_ o
. [
o _ 3
ﬁ,‘_:l
- The approximate values used for the results in Section 3 are: =
i -
F-4 0.0%8 -2.0° 0.092 0.13 0° -
A-10 0.100 -1.5 0.098 0.13 -5 -
F-15 0.071 -2.53 0.064 0.13 0
F-16 0.077 -5.0 0.070 0.13 0
These values are subject to considerable variation from one aircraft configuration s
to another and cg position. While the follewing results should be used mainly j;i
to illustrate the method and are only broadly indicative of the capabilities e

of any particular aircraft, we do find that the most important parameter —

is the ratio of thrust-to-weight, while the aerodynamic effects are smaller.

1
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SECTION 3. RESULTS

3.1 THE "NOMINAL" CASE OF CONSTANT PITCH ATTITUDE

3.1.1 The 15 Degree Ramp

For purposes of establishing a baseline we assume that the

pilot has the capability to control the aircraft such that

¥ = a+ @ = constant = 15°
where a = angle of attack
8 = climb angle
¥ = attitude relative to the horizon

The aircraft then leaves the ramp at

Q4 = Qaunch
o°

. 10
61 15

and accelerates to a point of equilibrium flight:

Q2 : Qtrim

a, = 15°

6, = 0°

Figures 1-4 illustrate the behavior of the climb angle versus airspeed

for values of T/W from 0.4 to 2.0 for the F-4, A-10, F-15 and F-16. Since

the ratio of thrust to weight is a variable for each case, the differences

in the results are attributable to the low speed 1ift and drag characteristics
for each aircraft. Of course, the full range of T/W is not available for

each of the aircraft considered. Figure 5 shows the effect of T/W on the

launch and trim speeds. Obviously T/W is the primary influence on the

performance, with the aerodynamic effects being smaller.
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3.1.2 Variable Ramps fﬁ

Again we assume that the pilot has the capability to control :M;;

the aircraft such that Eifg;
Y =a+ 6 = constant. Eg;;a

However, in this case we fix T/W at a nominal value for each aircraft: ;;ké
A Weight Thrust I :

F-4 58,000 1b 30,000 1b 0.52 2

A-10 41,000 1b 14,000 1b 0.34 N %i

F-15 56,000 1b 40,000 1b 0.71 _i};j

F-16 35,000 1b 20,000 1b 0.57 -

and vary the ramp angles from 6° to 20°. The aircraft then leaves the -
ramp at -‘::j

Q1 * Q'Iaunch
= nO
o 0

- 0
el = eramp (6, 8, 10,...20")

and accelerates to a point of equilibrium flight

Q = Qpin
0
Oy = 8amp (65 8, 10, ...20°)
< 00
6, =0
Figures 6-9 illustrate the behavior of the climb angle versus airspeed f;fti
for values of 6, =6, 8...20° for the F-4, A-10, F-15 and F-16. Figure »
i: 10 shows the summary effect of the ramp angle on the launch and trim speeds s
- for the four aircraft. Clearly the best performance (lowest launch speed) .
D: s achieved at the larger ramp angles.
e T
..!' ’ "-J
.. e
= 13 i
\': - ‘:‘4
!7 |
SRR e A e e e e e e e T et e e e e ettt e e ettt . -
RO P AT R ARSI A e = ey .c':f " ".\ S et e -'.'-‘.. :'.'.;'A:-"':":.i :‘ ;’ :' :‘ :‘\:-‘ ‘":‘.-‘_‘:{“:‘_"::‘:-":-.‘--“‘-.‘j ..... .‘.:\ :\ ._\ _ .. 't :
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3,1.3 A Closer Look at the F-15

While the effect of ramp angle on the climb angle constitutes

the initial criterion for success, we also have to consider other aspects
such as

o acceleration along the flight path

0 acceleration normal to the flight path

o "efficiency" (dQ/de)
Figures 11-13 show the effects on those variables for T/W = 0.4, 0.6,...2.0
and for eramp = 159, Figure 11 gives the acceleration along the flight
path (in g's) for the F-15 and shows that T/W = 0.4 is about the minimum
value for which positive acceleration occurs. Figure 12 gives the acceleration

normal to the flight path (in g's) as the F-15 leaves the ramp (nearly

-19) and accelerates ta the equilibrium point (0 g's normal acceleration).

For a given ramp angle (g } we know we must accelerate to an equilibrium

ramp e
condition of 6, .. = 0. The airspeed at equilibrium Qi) wid) be fixed gi;i
by instantaneous values of T/W, C, and C. at that point. However, we want l}i})

L D -4
to fly the "best" history of angle of attack such that Qlaunch is as small -~
as possible. Therefore we want to obtain the maximum AQ as 6 decreases %

N 49
from elaunch to etrim = 0. So 6 is a measure of efficiency, and
we want -%g—- to be as large a negative number as possible. Alternatively,
we want 98 to be a negative number as close to zero as possible. Figure
13 shows versus airspeed for the 15° ramp for various values of
T/W. We would like to drive the values of :g into the upper left hand -
corner of Figure 13. L
For a nominal value of T/W = 0.71, Figures 14-16 show the effect of ramp f?iﬁ
angle on the acceleration along the flight path, the acceleration normal "
to the flight path, and the "efficiency" of the assumption ¢ =a+6 = eramp C;??

= constant. tlnf
14
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. 3.2 THE "OPTIMUM" ANGLE OF ATTACK PROFILE FOR THE F-15
= 3.2.1 Maximum Angle of Attack of 15°

E Again we want to launch the aircraft at conditions

i % * Qaunch

. a) = 0°

. o) = 18°

.' and accelerate to a point of equilibrium flight

. Q= Orim

a, = 15°

- 8, = 0°

,‘_‘ However, we do not require the angle of attack to be scheduled to obtain

a constant pitch attitude. Rather, we allow the angle of attack to seek

:;»_ the values which drive :—g to negative values, as close to zero as possible.

P There must be a constraint, however, that -

| » @ < Cmax
_,_?ﬁ As an example, Figure 17 presents the climb angle vs airspeed for the
i F-15 with T/W = 0.71 and @ <o . = 15°. The trim point is defined as ——t

the value of Q which produces a = “max’ 6 =0 and :—g = 0. Tr.\e points
A, B8, C, D are chosen by:
Point Q 8
Trim 0.66 0°
A 0.5 0.8°
B 0.4 3.1°
c 0.3 7.9°
D 0.2 18.1°
1%
RN _'-r,:z_' .
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. We actually start at the trim point and integrate the equations numerically
with Q as the independent variable, 6 as the main dependent variable, and «

as a free parameter. Figure 18 illustrates the process.

de
dQ
in Q to Q = 0.5 and search iteratively for values of 8 and a which produce

At the trim point Q = 0.66 we already have © = = 0.0. MWe step back

values of —%%— = 07 (Curve A). We find from curve A that if we set
@ = 19.1% we can set 9% = 0°. However, since a must be < thana __ (15°),
dQ max
we must pick a = 15°,
L
We then step back again in Q to Q = 0.4 and search iteratively for best values
. . R de _ A~
of 8 and o . Again we find values of o which will set a0 0, , but they
i are greater than G ax® SO we must pick o = amax(lso).
In this case, since we set initially O rim = %max® "€ find that the best
i (achievable) o is just Oax along the entire trajectory. If we had selected
.E % vim < %nax? then there would have been a short transition region as the
; "best" angle of attack moved from % rim to @ x* (We treat thig aspect
a further in Section 3.2.3.)
b
E Figures 17 and 18 were examples to illustrate the method. Figures 19-23
i give more extensive results for the F-15 with T/W varied as a parameter.
] 0 n "
In each case since we set @ im = % ax * 15°, the "best" angle-of-attack
) is ohax throughout the entire trajectory.
!
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- Figure 19 shows climb angie for the F-15 versus airspeed for values of T/W
-
. from 0.6 to 2.0. In particular note that at climb angles of 6 = 15° we have »
.; the following required airspeeds for the “"optimum" o , compared with the fﬁ}i
? required airspeeds for "constant ¥ “ from Figure 1. E;;;
I S
Q’Iaunch
/M Best @ Constant V
0.6 0.320 0.31
0.8 0.230 0.30
1.0 0.164 0.23
1.2 0.116 0.17
1.4 0.078 0.13
1.6 0.051 0.098
1.8 0.031 0.072
2.0 0.017 0.053

Figure 20 shows the acceleration along the flight path versus airspeed.
At 6 = 15% and "optimum o ", we have the following values of acceleration

(in g's) which are slightly lower than those for "constart ¥ * from Figure

11.
K
T/ Best a Constant ¥ -
0.6 0.23 0.33
0.8 0.45 0.53
1.0 0.66 0.73
1.2 0.87 0.93
1.4 1.00 1.13
1.6 1.29 1.33
1.8 1.50 1.53
2.0 1.68 1.73
17
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Figure 21 shows the acceleration normal to the flight path versus airspeed.
At 8 = 159 and "optimum o " we have the following values of acceleration

(in g's) which are markedly

n
T/ Best o . Constant
0.6 -0.41 -0.91

0.8 -0.47 -0.93

1.0 -0.49 -0.94

1.2 -0.51 -0.95

1.4 -0.50 -0.95

1.6 -0.49 -0.96

1.8 -0.47 -0.96

2.0 -0.43 -0.96

better than those for “constant ¥ * from Figure 12. Clearly the fact that
the "optimum o " is allowed to be large at the launch condition allows
the aircraft to generate more 1ift than the "constant V¥ " condition of

nearly zero 1ift at that point.

Figure 22 shows the "efficiency" -g%— versus airspeed for the "optimum
a ", At = 15° we have the following values which are superior to those

for "constant ¥ * from Figure 13 for T/W less than 1.

18
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: dQ o
T/ Best o Constant v
i 0.6 -2.6 -3.4 "
0.8 -2.3 -3.0 -
1.0 -2.3 -2.9 B
o
1.2 2.5 -3.0 o
. < d
i 1.4 -3.0 -3.2 S
1.6 -4.0 -3.7 " ;
: 1.8 -5.1 -4.3 -
R 2.0 6.2 -5.3

Figure 23 gives the "bottom 1ine" for the comparison of the results for
i “optimum a " with those for "constant ¥ “. Figure 23 plots launch and trim
speeds versus T/W for
v (a) v = a+8 = 15° = constant
= = e 0
} (b) v = a+ 6 = variable, but o %opt imum <157,

3.2.2 Variable Maximum Angles of Attack

= <160
Section 3.2.1 covered the case where ¢ aoptimum(—ls ) for
T/W = 0.6, 0.8,...2.0. In this Section we evaluate the effects of various
values of a . =8, 10,...20° for a constant T/W at the nominal value of
. 0.71.

In each case we establish a trimmed condition at a=oa .  and o
. de -'..:'.-1
': g = dq = 0.0. We again integrate the equations backwards in airspeed Q, jfj-_j?:-:
- -y
*a o
.‘.::'.‘::1
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searching iteratively for the "best" values of & and © which drive g

toward 0°. Again, however, we have the constraint that d€ok . .

Figure 24 illustrates the climb angle versus airspeed. Shown for comparison
later are the points where O has increased from the trim point to a value
9=‘Lmax' Figures 25, 26 and 27 give the acceleration along the flight
path, the acceleration normal to the flight path, and the "efficiency".
Figure 28 gives the key result, the launch speeds. The trim speed is given

by the conditions o =o 6 = 4—‘% = 0. The launch speed for the case

max?®
¢ =Gramp is given by = 0, © =eramp‘ The launch speed for the case
o = "optimum is given by ©=© ,  and « is free to assume the "best"
4
value less than max”

£ L
3.2.3 °‘trim max

The last case we consider is the case where we attempt to

provide a margin of safety by stipulating that the angle-of-attack at the

trim condition (o ) will be less than the maximum angle of attack

trim
(ax)s thereby trimming at a slightly higher speed.

As an example we consider the five cases for the F-15 and T/W = 0.71 (See

Figure 29).

= = o
«rim d?nax 15

(1) Seiect o such that § =& +© = 15% = constant

(2) Select £

opt imum such that % is an optimum
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o‘trim""‘max 20

(3) Select & such that ‘1 =& +0 = 20° = constant

such that @ is an optimum

(4) Select 'Loptimum aQ

_ 40 . an0
°Ltrim =15 ’dmax = 20

ol
(5) Select optimum

such that i% is an optimum LR
Figures 29 and 30 illustrate thee behavior of o and @ with airspeed for the
five cases.

(1) ol starts at the trimmed value of 15° at Q = 0.66 and decreases

to 0° at the launch speed of Q = 0.32.

(2) ol starts at the trimmed value of 15° and remains constant
at speeds down to as low as Q = 0.20. & increases from trimmed value of

0° to values larger than 15°, depending on how low we go for launch conditions.

(3) of starts at the trimmed value of 20° at Q = 0.46 ‘and decreases

to 0% at the launch speed of Q = 0.21 and &= 20°,

(8) ol starts at the trimmed value of 20° and remains constant
at speeds down to as low as Q = 0.15. © increases from the trimmed value

of 0° to values larger than 20°, depending on how low we go for launch conditions.
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(5) ek starts out'at a trimmed value of 15% at Q = 0.66. The
aircraft then follows an "optimum" angle of attack profile to %= 20° at
Q = 0.46, which is actually just the previous trimmed condition for o4

= 20°. It then follows the optimum angle of attack for case (4).

Figures 31, 32 and 33 give the corresponding results for acceleration along

the flight path, acceleration normal to the flight path and "efficiency".

if Figure 32 is the most revealing in that it shows how the "optimum " profile

keeps the acceleration normal to the flight path to smaller negative values

by providing a substantial angle of attack in the low speed launch region.

.
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SECTIé)N 4. CONCLUDING REMARKS

This paper shows that the performance equations for ski-jump operations reduce
to equations where:
k |
¢ Nondimension flight speed Q = e;é is the main independent

variable,and climb angle € is the main dependent variable.

¢ The main free parameter which governs the operation is the angle

of attack as a function of airspeed and climb angle,® (Q,0 ).

o The results depend only on the behavior of the nondimensional

ratio of thrust-to-weight (T/W) and CL(d) and CD(ﬂl).

o Strictly speaking o« (Q,© ) should be obtained by solving the
pitching moment equation. We considered two simplified approximations.
In the baseline case & is selected to maintain constant pitch attitude.
In the “optimum" case %X is selected to drive %—y 0, thus providing minimum

possible launch speeds.

We presented results for the F-4, A-10, F-15 andd F-16. In particular, from
the results of one computer run it is possible to consolidate all of the
results into one plot of launch and trim speed vs T/W (Figures 5 or 23) or

of launch and trim speed vs & (Figures 10 or 28).

ramp

23

RS
-ty f

e a—




R T U S T SR S PR IR N ¥ d S S

PR T TR TR T T e e —

l..

uy- -

Ve

Figure 1. F-4 Figure 2. A-10

Figure 3. F-15 Figure 4. F-16

: Climb Angles for a Constant Pitch Attitude v = 15°
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Pitch Attitude y = 15°
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Figure 13. Efficiency

Performance of the F-15 at Constant Pitch Attitude ¢ = 15°
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Performance of the F-15 at Constant Pitch Attitude y = Opamp 3nd T/W = 0.71 R
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Figure 31. Acceleration Along
the Flight Path
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