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FOREWORD

This report was prepared by Dr James J. Olsen of the Structures and __

0
Dynamics Division, Flight Dynamics Laboratory, Wright-Patterson Air Force

Base, Ohio. The work was performed under Project 2401, "Aerospace Structures

and Dynamics."

The ultimate purpose of the work is to define the aircraft structural

loads and operational limitations involved in ski-jump operations of USAF

fighter aircraft. This initial study concentrated on the aerodynamic performance

aspects of the problem, to provide the speeds, weights, and geometric parameters

needed for subsequent assessment of the structural aspects.
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OPTIMUM PERFORMANCE PARAMETERS FOR SKI-JUMP

OPERATIONS OF USAF FIGHTER AIRCRAFT

Abstract

* 2-'This paper discusses the equations of motion which govern the aerodynamic

performance of USAF fighter aircraft imediately after ski-jump takeoffs.

By a careful selection of coordinate systems and independent and dependent

variables, we eliminate the need for repetitive time-history integration

r-

* of the nonlinear, coupled equations. This allows a relatively simple,

* but exact solution of the problem. Detailed results are presented for

the F-4, A-10, F-15 and F-16 for two cases

a nominal baseline of constant pitch attitude~ OL0

a ,best possibl*1" case which produces the lowest achieveable takeoff

speeds.
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SECTION 1. INTRODUCTION

There has been a great deal of recent interest within the United States

Air Force in the potential of ski-jump operations for fighter aircraft.

The British Royal Air Force employs ski-jumps for the AV-8, and the United

States Navy has demonstrated ski-jump operations for the T-2, F-14 and

F-18.

The concept of operations is simply that the aircraft is given a vertical

component of velocity at a speed substantially less than flying speed.

The angle of the ski-jump and the launch speed are established so that

the aircraft accelerates to flying speed at a trimmed condition by the

time it loses its vertical velocity component. The aircraft can be flown

with controls fixed for some preselected condition, or the pilot can execute

some control. However, the time interval is short (only a few seconds)

during the trajectory, so the pilot's procedures must be simple and instinctive.

If the launch speed is too high, then the aircraft has used more runway

distance than necessary and may experience higher structural loads on the

ski-jump. If the launch speed is too low, then the aircraft will not be

able to sustain a positive rate of climb. For a given ski-jump, the optimum

launch speed probably is the one that just produces an inflection at a

trimmed condition at minimum flying speed. (See Sketch)
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Generally, larger ramp angles also provide the desirable smaller launch

speeds. However, there is a complicated interplay that must be considered

among logistics, launch speed, ski-jump angle and aircraft loads. Also

one must consider the sensitivity of the results to small errors in thrust

and speed to provide aeequate margins of safety.

The equations of motion which govern ski-jump performance are nonlinear

and coupled, but fairly simple. Recent attacks on those equations have

employed repetitive time-integrations over a host of values for the physical

variables. This paper re-examines those equations of motion and shows

L that complete, exact solutions are easily obtained in the domain of airspeed,

angle of attack and climb angle. There is no need for numerical integrations

in time or distance. The process also shows the effects of the dominant

j nondimensional parameters and eliminates the need for large numbers of

variations in the aircraft parameters for computed trajectories.

Section 2 derives the equations of motion; Section 3 gives numerical results

for simplified aerodynamic representations of the F-4, A-10, F-15 and

F-16 for two cases ((1) baseline and (2) optimum selections for angle of

attack histories). Section 4 contains concluding remarks.
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SECTION 2. METHOD OF ANALYSIS

2.1 EQUATIONS OF MOTION

The aircraft is assumed to be a rigid point mass with freedom to translate

in the x and y directions and rotate in pitch.

-

The forces acting are the Thrust (T), Lift (L), Drag (D) and Weight (W).

The thrust is at an angle Ae above the fuselage reference line; the fuselage

reference line is at an angles above the velocity vector (V); and the

velocity is at an angle 0 above the horizontal x axis. The pitch attitude

is given by

, (2.1)

The equations of motion for the three degrees of freedom in rectangular

coordinates are

tQ= -es( A4+G)-b cos-L 6 (2.2)

(2.3)

Ely N(2.4)

g7-, -.
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where M is the pitching moment, and I is the moment of inertia about the

center of mass. Together with the relation

(2.5)

equations (2.1) through (2.4) are sufficient to solve for x, Y,(, +i as

functions of time by integrating numerically in time from a set of initial

conditions. Indeed many of the investigations of ski-jump performance

have used such a straightforward technique. However, a problem with the

numerical integration (in time) of the equations is the tedious nature

L of the process and the difficulty with gaining engineering insight into

the effects of the many variables from the repeated, trial-and-error solutions.

j 2.2 A BETTER COORDINIATE SYSTEM

A better approach is to abandon the fixed rectangular coordinates

(x,y) and write the equations in the normal/tangential coordinates (n,s).

4
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The equations of motion simplify to

Teo M (2.6)

TA~m( A*(e)(2.7)

tA (2.8)

The real advantage, however, comes when we replace time as the independent

variable with tanqential distance (s) by observing

(2.9)

(2.10)

~.- (2.11)

%J #S(2.12)

~ '4. V~ 4~(2.13)
The equations of motion become:

3AIC W 44*-l-~ " (2.14)
ml* T~v . (,(Ae) +L-NNJx e (2.15)

(2.16)

Now introduce the notation

(2.17)

A

5
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Then the exact equations of notion reduce to:

C-ecg 61+ (?4(4~)CQs4 a (2.18)

4P A £A + (2.19)

+.. ~ (2.20)
rs rac

Equations 2.1, 2.5, 2.18, 2.19 and 2.20 are sufficient to integrate numerically

in distance s to solve for Q,.,G, andS. Time does not enter the problem.

Also note that the main dependent variable has been reduced to nondimensional

variable

Q

that the thrust effects are all contained in the ratio of thrust to weight

=T/W '
*and that the angle of attack effects are all contained in the nondimensional

parameters CL, CD and CM.

,. 2.3 ELIMINATION OF DISTANCE AS A VARIABLE

An even greater simplification occurs, however, if we divide equation

(2.19) by (2.18) to obtain

= ________- ___s, -(2.21)

We have eliminated the distance s from the solution and have found that:

if we can somehow specify "

[Equivalent to Solving the Moment Equation]

we can integrate equation (2.21) numerically in Q for a full

solution of the problem..'-"-

6
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There is no need for integrations in time or distance. The entire problem
can be solved exactly in the 0,19 A domain: and the dominant nondimensional

parameters oft= T/W. C,C_ are most apparent. For instance, if we solve

equation (2.21) forO(Q,d) for several values of T T/W, all of the variations

of temperature and density due to "hot day" or "cold day" will be automatically

accounted for and contained in one set of curves from one computer run.

Observe also that the expression

is just the acceleration normal to the flight path (in g's), and the expression

too (,(+A Ct.Q -VM •(2.23)

is just the acceleration along the flight path (in g's).

2.4 HANDLING THE PITCHING MOMENT EQUATION

We revert to the original pitching moment equation

I z M (2.4)

and note that we can write

- A Vs. v.:i IfS. (2.24)

.-S

After some algebraic manipulation the pitching moment equation becomes

7
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where will come from the equation

If we abbreviate:

(2.27)

then the moment equation becomes:

'?C (2.28)

with F T e~oa(4+e)-CbQ A A9 -  (2.29)

The most complete solution process then is to integrate the moment equation

(2.28) simultaneously with the combined lift/drag equation (2.21) with Q

as the independent variable.

Again, there is no need for numerical Integrations in time or distance!

2.5 SUMMARY OF TECHNIQUES

The exact solutions of the aerodynamic performance for ski-jump operations

. for a rigid airplane, considered as a point mass with weight and moment of

inertia, are given by simultaneous numerical integrations of:

,..F (2.21)•.-

mo - ol S
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and

1172F (2.28)

AA
where M e 2W

-- and 14Fsr ,W 9

The aerodynamic ccoefficients CL, C0 and CM would need to be obained as functions

of c, from available tabulated values or as analytical expressions.

The simultaneous numerical integration of both sets of equations has not

been performed for this paper, rather we have considered two simplified alternatives

to solving the moment equation:

a. As a nominal baseline, assume the pilot has enough control

authority to hold e(and CM to values such that i=.4e is constant

(Constant pitch attitude).

b. As limiting case, assume that the pilot has enough control

authority to hold s and CM to the "best" achievable values. The "best' values •
will be defined as those values of o which drive toward large negative

values. The pilot leaves the ski-jump at

Q1 Qlaunch.

Ol "0 ramp

and accelerates to a trimmed condition

Q2 = Qtrim

9(..-.0..•

. 4~ ~.4 . A .~ s4 ,~ % *°•



*We know 9will decrease from 09 to zero, and Q will increase from Q

toQ.Since we know Qand we want Qto be as small as possible, the

to ",2

"best" a( will be the one that gives nm.ximum Mw/,~

References 1 and 2 corptain descriptions of four computer programs which treat

the two cases ahove. In each case we actually start the integrations from

the trimmned flight condition and integrate the equations backwards in Q to

the ski-jump starting points.

Reference 1 contains the programs which solve equation (2.21) under the assumption

=constant.

Reference 2 contains the programs which solve equation (2.21) under the assut, .ion

for best ~

In each case one program solves the equation for a fixed and a range
ramp

of values for T/W, and one program solves the equations for a fixed T/W and

*a range of values for rap

SIn order to solve equation (2.21) we need Cs and C.. as functions of

Those values depend on many variables for any particular aircraft and are

frequently given graphically or in tabular form. For the purposes of illustration

in this paper we used the simple expressions

CL CL .-4. (2.29)

a~~~ ~~ rag of vausf2 )a

C C C (2.30)
D D0

.. 1 0 : ,1 0

-a .. L .,I. L Z .,- 'We. . ._.. *.L. ..
_
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The approximate values used for the results in Section 3 are:

A/C CL~.

F-4 0.068 -2.00 0.092 0.13 00

-. A-10 0.100 -1.5 0.098 0.13 -5

F-15 0.071 -2.53 0.064 0.13 0

F-16 0.077 -5.0 0.070 0.13 0

These values are subject to considerable variation from one aircraft configuration -.

to another and cg position. While the followi'ng results should be used mainly

to illustrate the method and are only broadly indicative of the capabilities

- of any particular aircraft, we do find that the most important parameter

* is the ratio of thrust-to-weight, while the aerodynamic effects are smaller.



SECTION 3. RESULTS

3.1 THE "NOMINAL" CASE OF CONSTANT PITCH ATTITUDE

3.1.1 The 15 Degree Ramp

For purposes of establishing a baseline we assume that the

pilot has the capability to control the aircraft such that

) = a + e = constant = 150

where a = angle of attack

0 = climb angle

'p attitude relative to the horizon

The aircraft then leaves the ramp at

Q= Qlaunch

= 0

150

and accelerates to a point of equilibrium flight:

2 = Qtrim 0.
a2 = 150

0 00

Figures 1-4 illustrate the behavior of the climb angle versus airspeed

for values of T/W from 0.4 to 2.0 for the F-4, A-1O, F-15 and F-16. Since

the ratio of thrust to weight is a variable for each case, the differences

in the results are attributable to the low speed lift and drag characteristics

for each aircraft. Of course, the full range of T/W Is not available for

each of the aircraft considered. Figure 5 shows the effect of T/W on the

launch and trim speeds. Obviously T/W is the primary influence on the

performance, with the aerodynamic effects being smaller.

12
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1- %7 ' 0

3.1.2 Variable Ramps

Again we assume that the pilot has the capability to control

the aircraft such that

= a + 6 = constant.

However, in this case we fix T/W at a nominal value for each aircraft:

A/C Weight Thrust T/W

F-4 58,000 lb 30,000 lb 0.52

A-10 41,000 lb 14,000 lb 0.34

F-15 56,000 lb 40,000 lb 0.71

F-16 35,000 lb 20,000 lb 0.57

and vary the ramp angles from 60 to 200. The aircraft then leaves the

ramp at

Q1 Qlaunch

=00

1 = eramp (6, 8, 10,...200)

and accelerates to a point of equilibrium flight

Q2= Qtrim

S ramp (6, 8, 10, ..200)

0 =00

Figures 6-9 illustrate the behavior of the climb angle versus airspeed

for values of eramp 6, 8 ...200 for the F-4, A-10, F-IS and F-16. Figure

10 shows the summary effect of the ramp angle on the launch and trim speeds

for the four aircraft. Clearly the best performance (lowest launch speed)

is achieved at the larger ramp angles.

... .

. . . . . . . -a a,. ... a. *.
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3,1.3 A Closer Look at the F-15

While the effect of ramp angle on the climb angle constitutes

the initial criterion for success, we also have to consider other aspects

such as

o acceleration along the flight path

o acceleration normal to the flight path

o "efficiency" (dQ/de)

Figures 11-13 show the effects on those variables for T/W = 0.4, 0.6,...2.O

-*. and for r = 150. Figure 11 gives the acceleration along the flight
.ramp

path (in g's) for the F-15 and shows that T/W = 0.4 is about the minimum

value for which positive acceleration occurs. Figure 12 gives the acceleration

normal to the flight path (in g's) as the F-15 leaves the ramp (nearly

-1g) and accelerates t-3 the equilibrium point (0 g's normal acceleration).

For a given ramp angle ( ramp) we know we must accelerate to an equilibrium

condition of etrim = 0. The airspeed at equilibrium (Qtrim) will be fixed

by instantaneous values of T/W, CL and CD at that point. However, we want

to fly the "best" history of angle of attack such that Qlaunch is as small

as possible. Therefore we want to obtain the maximum AQ as e decreases

from 6 to 6tri' 0. So is a measure of efficiency, and

we want dO to be as large a negative number as possible. Alternatively,
do
dowe want d to be a negative number as close to zero as possible. Figure"'" e 0r-:

13 shows -- versus airspeed for the 150 ramp for various values ofdQ d
T/W. We would like to drive the values of d- into the upper left hand

corner of Figure 13.

For a nominal value of T/W = 0.71, Figures 14-16 show the effect of ramp

angle on the acceleration along the flight path, the acceleration normal

to the flight path, and the "efficiency" of the assumption -.ca+6 - 0
ramp

" constant.

14
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3.2 THE "OPTIMUM" ANGLE OF ATTACK PROFILE FOR THE F-15

3.2.1 Maximum Angle of Attack of 150

Again we want to launch the aircraft at conditions

QI = Qlaunch

=0

and accelerate to a point of equilibrium flight

Q25 Qtrim
- 150

2= 00oo.

However, we do not require the angle of attack to be scheduled to obtain

a constant pitch attitude. Rather, we allow the angle of attack to seek
dethe values which drive 7- to negative values, as close to zero as possible.

There must be a constraint, however, that

< ma x

As an example, Figure 17 presents the climb angle vs airspeed for the

F-15 with T/W - 0.71 and a < amax  150. The trim point is defined as

the value of Q which produces a a 6=0 and =0. The points
dQ

A, B, C, D are chosen by:

Point R _

Trim 0.66 00

A 0.5 0.80

8 0.4 3.10

C 0.3 7.9

D 0.2 18.10

15 I .;

-s*, . .. " .' .'..... ... - •.".-%*



... *..*. * -.. *. * .--..

We actually start at the trim point and integrate the equations numerically

with Q as the independent variable, e as the main dependent variable, and "

as a free parameter. Figure 18 illustrates the process.

At the trim point Q =0.66 we already have e = --- =0.0. We step backdQ

in Q to Q = 0.5 and search iteratively for values of 0 and a which produce

values of -O =0- (Curve A). We find from curve A that if we set
dQ

* = 19.10 we can set - = 0". However, since a must be < than a (150),
dQ max

we must pick a = 150.

We then step back again in Q to Q = 0.4 and search iteratively for best values

of e and a. Again we find values of a which will set -- ,, but they

are greater than amax so we must pick a = %max (150).

In this case, since we set initially atrim = %max, we find that the best

(achievable) a is just amax along the entire trajectory. If we had selected

rim < <m-ax' then there would have been a short transition region as the

"best" angle of attack moved from atrim to amax" (We treat this aspect

further in Section 3.2.3.) -"

Figures 17 and 18 were examples to illustrate the method. Figures 19-23

". give more extensive results for the F-15 with T/W varied as a parameter.

In each case since we set atrim = a 3150, the "best" angle-of-attackO~rm=Omax 2"

is a throughout the entire trajectory.max

16
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Figure 1g shows climb angle for the F-15 versus airspeed for values of T/W

from 0.6 to 2.0. In particular note that at climb angles of 8 = 150 we have

the following required airspeeds for the "optimum" a compared with the

required airspeeds for "constant F " from Figure 1.

Qlaunch

T/W Best Constant P

0.6 0.320 0.31

0.8 0.230 0.30

1.0 0.164 0.23

1.2 0.116 0.17

1.4 0.078 0.13

1.6 0.051 0.098

1.8 0.031 0.072

2.0 0.017 0.053

Figure 20 shows the acceleration along the flight path versus airspeed.

At 0 = 150 and "optimum a ", we have the following values of acceleration

(in g's) which are slightly lower than those for "constar.t ' " from Figure

11. 00

S

T/W Best a Constant iP

0.6 0.23 0.33

0.8 0.45 0.53

1.0 0.66 0.73

1.2 0.87 0.93

1.4 1.00 1.13
1.6 1.29 1.33

1.8 1.50 1.53

2.0 1.68 1.73

17
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Figure 21 shows the acceleration normal to the flight path versus airspeed.

At e- 150 and "optimum a " we have the following values of acceleration

(in g's) which are markedly

@0
ng ;

T/W Best a Constant ..

0.6 -0.41 -0.91

0.8 -0.47 -0.93

1.0 -0.49 -0.94

1.2 -0.51 -0.95

1.4 -0.50 -0.95

1.6 -0.49 -0.96

1.8 -0.47 -0.96

2.0 -0.43 -0.96

better than those for "constant ) " from Figure 12. Clearly the fact that

the "optimum a" is allowed to be large at the launch condition allows

the aircraft to generate more lift than the "constant 4) " condition of

nearly zero lift at that point.

de
Figure 22 shows the "efficiency" dO versus airspeed for the "optimum

C". At = 150 we have the following values which are superior to those

for "constant 'P" from Figure 13 for T/W less than 1.

18
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dQ

TWBest a Constant 9P

0.6 -2.6 -3.4

0.8 -2.3 -3.0

1.0 -2.3 -2.9

1.2 -2.5 -3.0

1.4 -3.0 -3.2

1.6 -4.0 -3.7

1.8 -5.1 -4.3

2.0 -6.2 -5.3

Figure 23 gives the "bottom line" for the comparison of the results for

"optimum al" with those for "constant Figure 23 plots launch and trim

speeds versus T/W for

(a) Bp a + 150 constantconsta

.(b) a + variable, but a1 150.

3.2.2 Variable Maximum Angles of Attack

Section 3.2.1 covered the case where OL Oa oiu(150) f or

T/W =0.6, 0.8....2.0. In this Section we evaluate the effects of various

values of ama 8.6 10....200 for a constant T/W at the nominal value of

0.71.

In each case we establish a trimmed condition at aOamaa and
de

...............................

Fiur 23 zives-the againo inerate the coquaison ofatheard ls inrd.
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searching iteratively for the "best" values of akand which drive

toward 0. Again, however, we have the constraint that ad-.max.

Figure 24 illustrates the climb angle versus airspeed. Shown for comparison

later are the points where 0 has increased from the trim point to a value

max Figures 25, 26 and 27 give the acceleration along the flight

path, the acceleration normal to the flight path, and the "efficiency".

Figure 28 gives the key result, the launch speeds. The trim speed is given

by the conditions 0(= m• = = 0. The launch speed for the case
max'

4=0ramp is given by a = 0,0 =0 ramp The launch speed for the case

* = otmmis given by 9= E) ando( is free to assume the "best" ?.--Optimum ramp
value less than * max.

max*

3. 2. 3 otrim (m a x  
ii}i~

The last case we consider is the case where we attempt to

provide a margin of safety by stipulating that the angle-of-attack at the

trim condition ( trim) will be less than the maximum angle of attack

(O max)' thereby trimming at a slightly higher speed.

,- 7

As an example we consider the five cases for the F-15 and T/W 0.71 (See

Figure 29).

=trlm x = 150Grim Omax .

(1) Select . such that 4 -d, +e = 150= constant

(2) Select pti such that is an optimum
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0trim "Amax - 200

(3) Select 0(such that 4 = + 4G = 200 = constant

(4) Select OptiL m such that 4 is an optimum

00
Ctrim 150*0( =x200

(5) Select optimum such that is an optimum

Figures 29 and 30 illustrate thee behavior of stand.with airspeed for the

five cases.

(1) ok starts at the trimmed value of 150 at Q = 0.66 and decreases

to 00 at the launch speed of Q * 0.32.

(2) a4 starts at the trimmed value of 150 and remains constant

at speeds down to as low as Q 0.20. & increases from trimmed value of

0 to values larger than 150, depending on how low we go for launch conditions.

0 o 0(3) o4 starts at the trimmed value of 200 at Q =0.46and decreases---,..

to 00 at the launch speed of Q =0.21 and (9= 200 .  i;----.

(4) o4 starts at the trimmed value of 200 and remains constjnt

at speeds down to as low as Q 0.15. & increases from the trimmed value

of 00 to values larger than 200, depending on how low we go for launch conditions.

21
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(5) , starts out at a trimmed value of 150 at Q ; 0.66. The

aircraft then follows an "optimum" angle of attack profile to K- 200 at

Q = 0.46, which is actually just the previous trimmed condition for o.

=200. It then follows the optimum angle of attack for case (4).

Figures 31, 32 and 33 give the corresponding results for acceleration along

the flight path, acceleration normal to the flight path and "efficiency".

Figure 32 is the most revealing in that it shows how the "optimum " profile

keeps the acceleration normal to the flight path to smaller negative values

by providing a substantial angle of attack in the low speed launch region.

22
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SECTION 4. CONCLUDING REMARKS

This paper shows that the performance equations for ski-jump operations reduce

to equations where:

*Nondimension flight speed Q=is the main independent

variables and climb angleO is the main dependent variable.

e The main free parameter which governs the operation is the angle

* of attack as a function of airspeed and cl1mb angle,%((Q,G).

*The results depend only on the behavior of the nondimensional

*.ratio of thrust-to-weight (T/W) and CL(oi) and CD(Q&).

e Strictly speaking .(,)should be obtained by solving the

pitching moment equation. We considered two simplified approximations.

In the baseline caseo( is selected to maintain constant pitch attitude.

*In the "optimum" case 4K is selected to drive -. 0, thus providing minimum

possible launch speeds.

We presented results for the F-4, A-10, F-15 andd F-16. In particular, from 7

the results of one computer run it is possible to consolidate all of the

results into one plot of launch and trim speed vs T/W (Figures 5 or 23) or

of launch and trim speed vs19am (Figures 10 or 28).
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rigure 31. Acceleration Along
the Flight Path

Figure 33. Efficiency
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