PR et s 5 e - AT T AL e — -
.....
RFPRODU(‘ED AT GOVFRNMENT £ XPENSE _ A :

13

L]
&FOSR-TR. C 4. 1102

1
. -
& .
n
< RESPONSE OF SATURATED .
$ POROUS NONLINEAR MATERIALS
Q TO DYNAMIC LOADINGS
< '
L I
b
Approved for Public Release; .
Distribution unlimited. {

DTIC N
FLECTE
DEC 13 1984

Engineering and Applied Science

WA ik COPY



b
; AIR PORCR OPFI 7 A2 om e
v . Aocgfgigqﬂ?gg‘ | NOTHS?n? g{?I{7Q?f?TEiTTPICFRFEAHFH(Aysc)
NTIS GRA&I )¢ SR Tnraitia
DTIC TAB O ane ‘ e
Unannounced O Diig.. ' S
Justificatio T ¥
M & Xni . u.-,‘, »
I By S, *f. Teatiicul Inforuution Division
Distridution/ .
N Availability Codes
" B Avail and/or
i Disty | Special
’L'.
b RESPONSE OF SATURATED
L POROUS NONLINEAR MATERIALS
TO DYNAMIC LOADINGS IR
[ e
® |
o
31 May 1984 N e
Prepared for e i
Air Force Office of Scientific Research -9
Washington, D.C. L
Prepared under ?';{533
Contract No. F49620-81-C-0014 '; f

DTIC ;::':iff-
ELECTE "
DEC 13 1884 4
Kwang Jin Kim
Scott E. Blouin

D

Applied Research Associates, Inc.
New England Division
South Reoyalton, Vermont 05C3°




—UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

10. RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTRORITY

3. OISTRIBUTION/AVAILABILITY OF REPCRT

25 DECLASSIFICATION/OOWNGRADING SCHEDULE

Approved for Public Release;
Distribution Unlimited.

4. PEAFORMING ORGANIZATION REPORT NUMBERI(S)

k.

5. MONITORING QRGANIZATION REPORT NUMBER(S)

AFOSR-TR- 84 .11092

APPLIED RESEARCH ASSOCIATES, i1f appiicabie

6s. NAME OF PEAFOAMING ORGANIZATION b. OFFICE SYMBOL
IN

7a. NAME OF MONITORING ORGANIZATION

O Cd A

6c. AODRESS (City, State and ZIP Code)
NEW ENGLAND DIVISION
SOUTH ROYALTON, VT 05068

7b. ADDRESS (City, State and zf Code)

7 ; 1 \“ o i
420 K L ey ol

33 Ry

8. NAME OF FUNDING/SPONSORING
ORGANIZATION ATR FORCE

OFFICE OF SCIENTIFIC RESEARCH

8b. OFFICTE SYMBOL
(1f applicable)

AFOSR/NA

9. PROTUREMENT INSTRUMENT IDENTIFICATION NUMBER

N
F49620-81-C-0014 =

8 ADORESS (City, State and ZIP Code)
BOLLING AFB, DC 20332

10. SOURCE OF FUNDINC NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO. NO.
Gliod ¥ 0 c)

11. TITLE :Include Security Classification)

RESPONSE OF SATURATED POROUS NONLINEAR MATERI quCLASSlFIED
bL0 DYNAMIC J.OADINGS

12. PEASQONAL AUTHORI(S)
KWANG J. KIM, SCOTT E. BLOUIN

L S/

‘a. TYPE OF REPORT 13b. T'ME COVERED
FINAL FRAOM TO

14. OATE OF REPORT (Yr, Mo., Day) 15 PAGE COUNT

31 MAY 1984 100

18. SUPPLEMENTARAY NOTATION

17 J COSATI CODES
GROUP

SUB.GR.

> Finite element modeling,
blast-induced liquefaction,,soil dynamics. -

18. SUBJECT TERMS (Continue on reverse if necessary and ideritify by block number;

soll mechanics, liquefaction,”

Ly g -

two phase dynamic finite element code TPDAP.

is conducted.

investigated and described. -

9. ABSTRACT (Continue on reverse if necessary ond identify by block number)

K

"/ Past theoretical treatments of two phase media are reviewed and incorporated into the

A study of the response of two phase porous

elastic media to dynamic uniaxial loadings is conducted and the influence of loading shape,
material properties, and numerical techniques and parameters are evaluated,
calculations sgimulating uniaxial loadings of saturated solls having hysteretic skeletons
Zones of liquefaction occuring in these calculations are identified and

the mechanics of liquefaction and influence of parametric variations on liquefaction are

A series of

'

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

M

UNCLASSIFIED/UNLen=tz T same ~s met. G oric usens )

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

220. NAME OF RESPONSIBLE INDIVIDUAL

L1 Col Lawrence D Hohanson

22b TELEPHONE NUMBER
tinciude Arco Code)

22c OFFICESY ou

200, Tai =038

CD FORM 1473{83 APR

COITION OF 1 JAN 73 1S OBSOLETE.

INCIASSTFIED

AFOSR | MR

SECURITY CLASSIFICATION OF THIS PAGE

. S . - S R et e .
- . a'a = - e A L e s AR 2B e M s P A o WAL

4

L

VSR UP WY UP D S

VR L

PR




e T R S W Y T T W W Ty YT YT v M o m g e e e e -
R e e e T RS e L F At O T AU P P ST T T - e R

-y -

TABLE OF CONTENTS

-
1
PP 1
K .- N .
. s v .
PO RN S

SECTION PAGE RN

— e

1 INTRODUCTION 2 i"_;_.

2 THEORETICAL DEVELOPMENT AND IM-
PLEMENTATION 5

3 TWO PHASE DYNAMIC ANALYSIS - -
SATURATED POROUS ELASTIC SKELETON 33 L

4 TWO PHASE DYNAMIC ANALYSIS -
SATURATED POROUS INELASTIC SKELETON 70

5 SUMMARY AND CONCLUSIONS 95

REFERENCES 99 . y

—aa




SECTION 1

INTRODUCTION

Blast induced liquefaction has been identified as an
important mechanism in the development of craters and ground
motions from large explosions in or on saturated soil deposits.
Ligquefaction may have dominated crater formation processes in the
saturated geologies of the Pacific Proving Grounds where all the
high yield U.S. nuclear cratering data were obtained. Based on
analysis of these and other high explosive test data from sites
having shallow water tables within the continental United States
and Canada, Blouin and Shinn (1983) hypothesized liquefaction and
cratering mechanisms controlled by the ligquefaction which
explain the unusually flat broad shapes of these craters. Based
on their hypothesis, it was concluded that current cratering
prediction procedures founded on the Pacific data are not valid
tor dry continental sites. The data analysis indicates that
water table will influence the crater formation processes
whenever the scaled depth of the water table is less than about 7
ft/tonl/3, where the yield is expressed as an equivalent high
explosive half buried yield. It was also concluded, however,
that many so called dry sites may actually behave like wet sites,
because scaled water table depths for the high yield nuclear
threats of interest are quite shallow.

This previous work also included formulation of
liquefaction mechanisms due to explosive loadings. Application of
those mechanisms was limited by the simplifying assumptions u<ed

to derive the analytic equations.
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More precise methods to analyze and predict the
occurrence of blast induced liquefaction must rely on two phase
dynamic numerical computer codes. Such codes can incorporate
complicated models of real world material properties with
accurate characterization of actual explosive loading functions
to determine the dynamic response of saturated geologic media.
The complexity of the real world material properties, loading
functions and problem geometries puts realistic depiction of the
dynamic response beyond the reach of conventional analytic
techniques.

In general terms, two phase dynamic codes compute the
response of saturated porous media to static or dynamic loadings.
The media are modeled by combining the response characteristics
of the scoil skeleton with the response characteristics of the
pore water using two equations. The first of these describes the
motion uf the bhulk soil-water mixture as a function of the applied
load and the second describes the motion of the pore fluid
relative to the soil skeleton under the applied load. The
dynamic response of the saturated material is expressed in terms
of the intergranular or effective stress in the soil skeleton, the
absolute motion of the soil skeleton, the pressure in the pore
water, and the motion of the pore water relative to the soil
skeleton. Presentation of the calculational results in terms of
the response of each separate phase makes the two phase codes
extremely powerful tools for the study of blast induced
liquefaction.

The objectives of this study are to review and condense
past theoretical treatments of two phase media, to incorporate
these results in the Two Phase Dynamic Analysis Program (TPDAP),
to use TPDAP to study the response of saturated porous media to
dynamic loadings, and to identify and analyze liguefaction
occurring in tiiese calculations. Procedures used in, and results

of this study are described in the following three sections. The

objectives and content of each section are summarized below.
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SECTION 2: Fundamental theoretical treatments of two phase
porous media by Biot and others are reviewed. Biot's fluid
equation describing the interactions hetween the pore fluid and
soil skeleton is generalized and incorporated into the finite
element code TPDAP, Also, a general description of TPDAP is

presented.

SECTION 3: A series of parametric calculations of the response
of two phase porous elastic media to dynamic uniaxial loadings
is conducted. The influence of various loadings, material
properties and numerical techniques are described and analyzed.

SECTION 4: A series of parametric calculations on saturated
materials having hysteretic soil skeletons is conducted. These
include a bilinear material skeleton and an actual sand skeleton,
Zones of liquefaction occurring in these calculations are
identified and the mechanics of ligquefaction and influence of
parametric variations on liquefaction are described.

S e a T G aeaen




P R O N Py

T —— Y R TR WA T W WT YW TIENTI R - W Ve TR Tt ot ot vy -

SECTION 2

THEORETICAL DEVELOPMENT AND IMPLEMENTATION

BACKGROUND

The fundamental analytic work describing the behavior of
saturated porous media was performed by Biot. Biot's results
were reported in a series of papers extending over many years
(e.g. 1956, 1962a and 1962b). Other investigators have applied
Biot's analytic results using techniques which approximate his
equations with varying degrees of accuracy and sophistication
(e.g. Ghaboussi and Wilson 1972, Mengi and McNiven, 1977). In
this section, we summarize the development of the two phase
equations of motion based on Biot's work and their implementation
in the two phase finite element code TPDAPF,

ANALYTIC DEVELOPMENT

The behavior of saturated porous material can be
described in terms of two eguations of motion; the first is the
equation of motion of the bulk soil-water mixture and the second

is the equation of motion of the pore fluid within the soil
skeleton.

Governing Eguation for Bulk Mixture

The differential equation of motion ygoverning the bulk
mixture is given by

wn
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035,53 = (L= mlpguy +npe U (2-1)

Uij,j is the total stress gradient applied to an infinitesimal
element of saturated material at some given time. Oij,j is
expressed in tensor notation and represents the stress gradient
in each of 3 mutually perpendicular coordinates (e.g. see

Mendelson, 1968). For instance, in the x direction,

_ Xy _ _ .- . .
= + = + = (1 n) PgUy + n Pe Ux (2-2)

The term (1 - n)oS is the mass of the soil skeleton per unit
volume of saturated material, where n is the porosity and Pg is
the mass density of the solid grains. u, is the displacement of
the skeleton in the i direction and u, is the acceleration of the
skeleton in the i direction. The term neg is the mass of pore

fluid per unit volume of saturated material where ©_. is the mass

f
density of the pore fluid. Ui is the absolute displacement of the
pore fluid in the i direction and Ui the absolute acceleration of

the pore fluid in the i direction.

The bulk mass density of the saturated material, p, is
given by

p = (1 -nlp, + npg (2-3)

Substitution of the value for (1 - n)ps from Equatior 2-3 into
Equation 2-1 gives
L. . = - u, + U, 2-
01),3 (o npf)ul npr:L (2-4)

f A term w; is introduced which is the apparent fluid displacement

in the i direction relative to the soil skeleton and is given by

e laaaa el
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w, = n(Ui - ui) (2-5)

In seepage problems, w. is referred to as the discharge

i
displacement. It describes the discharge of fluid through a soil
mass of unit area. The discharge velocity, or apparent relative
velocity, Qi' between the soil particles and pore water is the
velocity of water in a discharge duct of unit area needed to
maintain the actual relative velocity in the porous soil of the
same unit area. The actual relative velocity between the
skeleton and the pore water is given by w;/n. Finally, w; is
the apparent relative acceleration between the soil skeletcn and

pore water given by

w, = n(Ui - ui) (2-6)

Equation 2-4 can be expressed in terms of the apparent relative
fluid acceleration as simply

pi}i + pf-;}i (2-7)

°i3,3

Governing Egquation for Pore Fluid

Biot's Eguations

The equation of motion governing the pore fluild is
derived from Biot's work (see previous references). Biot

expressed the pore pressure gradient, Myir AS

U. + D. (2-8)

In this equation, the pore pressuvre gradient is expressed 1in

tensor notation. For example, the gradient in the x direction

is given by
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The term Dfﬁi is the inertial force per unit volume oZ pore
fluid. Dj represents the viscous ftriction force between the pore
fluid and the soil skeleton per unit volume of pore fluid.
Solving Egquation 2-6 for ai and substitution into Eguation 2-8
gives
I . _
vy = Twi+pfui+Di (2-10)
Biot showed that the viscous friction term, D , is a
function of the excitation fre , uency, @, the pore geometry, the
dynamic viscosity, W, and the apparent relative velcocity between
the pore fluid and the skeleton, Wi. in an actual so0il the flow
of pore water would follow very complicated paths which are
difficult to describe. These flow paths wculd involve numerous
variations in directicn and in cross secticnal area., Binot
employed models of the flow paths which are gross simplifications
of the actual paths. He assumed two simple flow gzometries; flow
through a series of parallel circular ducts an¢ flow through o
series of parallel flat ducts. Biot derived equaticns describing
the pore fluid flow in these two simplified fore geometries,

Flow conditions in the flat duct are pictureq
schematically in Figure 2,1, The duct is assuzmed t> have
infinite width and a height 2a. Tlov is considered over a unit
width of duct having a cross se<tional area cof 2a. HBiot (1956)
expresses the ratio of viscous shear force 21, (wnere 1 13 tLhe
viscous shear stress) to the average fluid velocity welative to
the duct walls, wai' as

3l = Mg (2-11;
Wai a
8

dadh L ma ki . i



Trm T, v T

YT Te T 4

The average relative velocity is given by

.
No.o= U, - u. 2-12
ai Ua1 vy ( )
where Gai is the average absolute fluid velocity in the duct and
Gi the velocity of the duct walls. 1y is the dynamic viscosity e
(dyne-sec/cmz) and F(x) is a complex function of frequency which
describes the increase in viscous shear with frequency. Biot
(19%6) yives an eguation for ¥ of
[
F(Z) = %_ A tJaﬂh(Z) (2_13)
1 - = tanh(z)
z
wherce z = 11/2 K (2-14) ®
and VQ—fnj
1/2 R
pf w / d
K = a —_— (2-15) Sk
U LT

Thus, < is a function of the duct dimension, a, the dyrnamic

viscosity, u, the fluid density, P g and the excitation

frequency w. The friction force per unit volume of pore fluid, Dj

from Egquation %~6, is gliven by . @ . B
<

271 -

. = e 2_ §

Dl >3 {(2-16) i

[ ] i

Subhstitution of Eguation 2-11 into 2-1% gives

0

et i el L N P 0 T P A S S G ST S SR S S -




D, = R F(k) W, (2-17)

for the flat duct.

Flow conditions in the circular duct are pictured
schematically in Figure 2.2. 1In this case, a represents the

radius of the duct having a cross sectional area of mTa . Biot

{1956) gives the ratio of viscous shear force, 27mat, to the
average relative fluid velocity, W i, as

21aT  _  gnyF(x) (2-18)

wai
For the circular duct,

F(k) = % ‘f;‘) (2-19)
l - ET(K)

where ¥ is given in Equation 2~15, with, a, now egual to the radius

of the circular duct and the function T(x) given by

2 (J (i:‘x/2 K)) :
= 3 o (2-20)
The) = 372 S
' Jo <) T
®
J, represents Bessel's function for n = 0 and is given by
x2 x4 x6 .
k - - s s - AN 2_21 .’-.'..'."'._‘
Jo(x) =1 Tt &3 7395 * - ( ) R
i S
10 ‘.
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where X = i3/2 K (2-22)

The friction force per unit volume of pore fluid in the circular
duct Di from Eguation 2-8, is given by

_ 2mart -
D, = — (2-23)

p; =& ri Wy (2-24)

for the circular duct.

Biot's Approximations for Viscous Shear

Biot (1962b) derived an approximation for the viscous
friction correction factor, F(«k), for the case of a flat duct,
over a limited range of frequencies. An alternative derivation to
that used by Biot is presented here, For the flat duct, the
viscous correction factor is giv . hy Equation 2-13, If tanh(z)
is expr~ssed as

tanh(z) = z -~ 3 2 + 1T AR (2-25)

11
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e L2 _ 1,4 2 ,6 _ 12-26
2 tanh(z) = =2 3 2 + 15 2 cees | )

and
1l - -i tanh(z) = '3— Z E 2 4+ e ( )

Substitution of Equations 2-14, 2-26 and 2-27 into Egquation 2-13
gives an approximation for the flat duct of

F(e) = 1 4 o (i) + .... (2-28)

when higher order terms above KZ are dropped. This agrees with
Biot's approximation. Biot indicates that the above approximation
is accurate to within 5% for values of frequency of

¢V} _<_ —-2—- (2-29)

and represents a reasonable approxiimation of F(k) up to a

frequency of about

w < —%—2—” (2-30)
a Df

2
For a pore size of a = .005 cm and water at 15°C (p/pf = ,013 cm /sec)
Biot indicates that Equation 2-27 is accurate up to approximately

300 Hz, Mengi ancd McNiven (1977) determined that Biot's

12
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approximation given in Equation 2-27 is accurate even for the iii?ﬁfi

I abrupt stress changes at a wavefront. '“;*

A similar apprcach can be used to obtain an approximation

of the viscous correction factor for the circular duct given by

Equation 2-19, Evaluating T(kx) according to Equations 2-20 and
] g
2-21 gives L
. . 5 .
L T(k) = % ik + f% K3 - g% ik + ... (2-31) e :

Substitution of Equation 2-31 into 2-19 gives the approximation

for F(k) in the case of the circular duct of

1l ., 2 _
F(¢) = 1 + 5% (i) + .... (2-32)
2

when higher order terms above k= are dropped.

Biot (1956) indicates that there is an approximate

[ ] equivalence between the circular duct and the flat duct, when the 4.‘T;“‘
g height of the flat duct equals 3/4 of the diameter of the

.

circular duct. Applying this equivalence to Equations 2-29 and

Wor
Lt

2-30 indicates that Eguation 2-32 for the circular duct is

E: reasonably accurate up to freguencies of nearly twice that of a ®o
b flat duct if the respective diameters and heights are equal.

The expressions for the viscous friction correction _
factors from Equations 2-28 and 2-32 for the flat and circular :‘,,,
ducts respectively can be substituted intc Equations 2-17 and
2-24 to give the friction force per unit volume of pore fluid in
each type of duct. For the flat duct this yields
2, T

3y & u ; -
Di = -5 wi + — 1K wl (2-33)
a S5a

13 .
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and for the circular duct

T yo 2. e

D, = W, + =5 ik" W (2-34) ]

a 3a Hfuﬁf

PP

... 1

As discussed previously, the actual relative velocity between the A

skeleton and the pore fluid, W., is given by S

w. = % (2-35)
A n 1

Substitution of Equations 2-35 and 2-15 into Equation 2-33 gives _
the friction force per unit volume of pore fluid for the flat duct Q:iﬂ’.A

as :759 4
4
_ 3p . Pg . - _ :
I Di = ;;7 wi + 5n lwwi (2 36)

fFor an input excitation of frequency w, the excitation velocity
can be expressed as

: w, =W, e (2-37)

where Ui iz the amplitude of the excitation velocity.

(N

'

Differentiating Equation 2-37 with respect to time gives the

¥ apparent relative acceleration, w as

i!

£:
n

™

2

(0]

n

i i iuw, (2-38)

Thus, Equation 2-36 for the flat duct can be rewritten as

14




[v] .
D, = éﬁy w., + =L, (2-39)
na

For the circular duct substitution of Equations 2-35 and

2-15 into Equation 2-34 gives

8 . Of S
= — . 2-
Di ;if Wi + In iow, (2-40)

Finally, substitution of Equation 2-38 into 2-40 gives

= 8 _ 2-41
Py = ¥ Y om%i (2-41)

Even though Equations 2-39 and 2-41 were derived assuming
a single harmonic forcing function, it can be demonstrated that
they should apply for any arbitrary excitation. Since any
arbitrary excitation function can be decomposed into an infinite
series of harmonic functions, each of these excitations can be
treated by the above equations and the total friction force
obtained by superimposing the contribution from each harmonic
excitation of the decomposed total input.

Application of Darcy's Law

Biot's equations, based on thermodynamic theory, can be
related to Darcy's flow Law. Darcy's Law assumes that the flow
velocity is proporticnal to the hydraulic gradient. For an
arbitrary gradient, the equivalent permeability coefficients can
be derived analytically for both the flat and circular ducts.

These permeability coefficients can then be compared to Biot's

L

DU g
. @ 4
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T
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.". . . 4
e

.o




"N ~v-r-c

- &

flow equations. The advantage of incorporating Darcy's Law into
the Biot equations is that it permits use of parameters which are
readily obtained from laboratory tests.

The flow through a flat duct of length & under the
pressure gradient Py - Py is pictured schematically in Figure
2.3, The heignt of the duct is 2a and a unit width of flow is
considered, At an arbitrary distance, r, from the center of the

duct, force equilibrium conditions can be established as

thl(Zr) - th2(2r) *vwgry O 20 =0 (2-42)

where Ye is the unit weight of fluid, h; and h, are the pressure
heads at either end of the duct, u is the dynamic viscosity and v
is the fluid velocity at distance ¥, The first two terms of
Equations 2-42 represent the pressure forces P, and P, acting on
the area 2r at the left and right ends of the duct respectivel: .
The last term is the viscous friction force acting along the tw
surfaces at a distance r from the centerline of the duct.
Rearranging Equation 2-42 as

Ye (hy - hy = -y 1L (2-43)
and substitution of the hydraulic gradient i given by
h, - h
i= A - 2 (2-44)

into Equation 2-43 gives

N o
R
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Y. i
rdr (2-45)

integrating both sides of Equation 2-45 from o to r gives the
fluid velocity at the distance r as

£ 2
VvV = - r + C (2-46)
2y
At the duct wall the fluid velocity must drop to zero and

Y .

N

Combining Equations 2-46 and 2-47 yields

Ye i 2 2 (2-48)

The average velocity in the duct, V is defined as

al

a
=Q. 1. f (2-49
Va = R" 73 2o ir )

where Q is the total flow through the duct of area A (equal to

2a). Substitution of Equation 2-48 into the integral of 2-~49 and

manipulation gives

2
Y fa
= i (2-50)
Va —gu— 1
17
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This is the actual average fluid velocity relative to the duct.
The duct represents only the pore volume of the soil. As
explained in conjunction with Equation 2-5, the actual discharge

velocity w;, or apparent relative fluid velocity, is given by

na2Yf
w. = = 1 2-¢t1]
W, nv, -5 3 { )
Darcy's Law states that
w, = ki (2-52)
i
where k __. the coefficient of permeability (cm/sec). From

Equations 2-51 and 2-52 the coefficient of permeability tor the
flat duct can be expressed as

2
na ve

3y

{2-53)

A similar procedure can be followed for obtaining the
average apparent flow velocity through a circular duct. This

solution, known as the Hagen-Poiseulle flow law is given by

2
. na“y,
w, =

i & i (2-54)

where a is the radius of the circular duct (e.g. Bowles, 1979).
From Equations 2-52 and 2-53 the coefficient of permeability for
the circular duct is given as

18
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na Yf

(2-55)

Biot's equations for viscous friction (2-39 and 2-41) can now be
expressed in terms of the coefficient of permeability given in
Equations 2-53 and 2-55. For the flat duct,

Y p
- £ - £ - (2-56)
Dy % Yy Y 5 Y

and for the circular duct

- '- ) - -1
Yf . pf .- o T
= = : - . 2-57 :
Di x i Y Vi ( ) e e i
P f. —r
ﬂ Note that in both of the above equations when the input

excitation frequency drops to zero the last term drops out and
. Biot's equations agree exactly with Darcy's Law.

Explicit Form of Biot's Eguations

The explicit friction force terms from Equations 2-56 and RRRIEINRR

2-57 for the flat and circular ducts can be substituted into

Equation 2-10 for the pore pressure gradient giving

(1 +3) W, + o, + - w |(2-58)

=
!
©
:3ln.

for the flat duct, and

19




m - 2t (L +3)u, + pou + w, |(2-59)
‘g n 3% P el x Vi

for the circular duct.

The inclusion of the explicit approximations for viscous
friction in Equations 2-58 and 2-59 is in the form of a viscous
shear given by Darcy's Law in the last term plus an added

increment of inertial resistance associated with the apparent

acceleration of the pore fluid relative to the skeleton, For the

flat duct this increment is 1/5 and for the circular duct it is
1/3. The increment depends only on the pore shape and not the
size,

As discussed previously in the subsection on Biot's
eguations, it was explained that the assumed flow paths in the
form of flat and circular ducts were a poor approximation of the
actual paths in saturated soil. In order to study the influence
of more restrictive flow paths, Equations 2-58 and 2-59 can be

generalized in the following form

P

m =—f(1+r)€3 + p.u +Y—fv3 (2-60)
'i n i fi k i

where r represents the additional inertia or mass increment

factor which is a function of the flow path geometry.

TPDAP FORMULATIONS

The results of the previous analytic development are

incorporated into the two phase finite element code TPDAP., Based

on the governing differential equation for the bulk mixture
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(Equation 2-7) and for the pore fluid (Equation 2-60), global
equilibrium equations for two phase media are established. These

global equilibrium equations are presented in discretized form in ' :;7
both the space and time domain. TPDAP uses either Newmark's B '

method or Wilson's 6 method for time integration,

Notation ]
R
Positive signs are used for elongation and tension. A k
- L
comma denotes differentiation with respect to the subsequent . e 4
indices and a superposed dot denotes time rate. ' :
- o
oij ¢ total stress @ 4
G'ij : effective stress
i T : pore fluid pressure .o ]
uy ¢ solid skeleton displacement 3
!
I W, : apparent fluid displacement relative to solid . 9.
) skeleton ST
€55 : solid skeieton strain S
| N
€y ¢ solid skeleton volumetric strain -
L .
X €g : fluid phase volumetric strain R
' _.
£ (u}e ¢ nodal solid skeleton displacement vector at the
element degrees of freedom
é
i {W}e ¢ nodal apparent relative fluid displacement -9 -

vector at the element deyrees of freedom
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applied toundary traction (total stress)
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inverse of permeability matrix
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porosity

bulk modulus of pore fluid

bulk modulus of solid grain
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Field Equat:ions in Twc-Phase Dynamics

Effective stress strain relatiun:
By virtue ot Terzaghi's effective stress law, the total
stress 1s @xpresser o5 the sum of the effective stress and the

core water pressure

g.,, =o', ., + §.. (2-61)

Strain-displacement relation:

Under the assumption of small displacement theory,

=1 2-62
=% (u, . + u. .) ( )
Continuity eguation:

Based on the conservation of mass, the coupled continuity

equation of flow, as derived by Kim (1982), is given by

dn = [(l - n) dcv + n dcf ] Km (2-63)
where
Kng
K = (2-64)
m Kw + n(Kg - Kw)
23
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50l1id skeleton constitutive law: ff:15 J
. P
: ep , RIS
. ' . o= ( "65) o i
40755 = D gkp%€ke SO
- ..~ «.-,]‘
l ®
. Equation of motion for the bulk mixtures
' The differential equation of motion governing the bulk _Q
: mixture was derived earlier in this section and is expressed as
g follows:
b e
[
.. o= pu. W, 2=~
013’3 pu; + pew, (2=7)
!
i Equation of motion for the pore fluid: .9
: The generalized form of Biot's eguation was given by: ,tl:j
L of . e Yf L ﬁ' .."77‘
i = = , -_—w. -
; 'y - (1 + 1x) w. o+ PuL 3o Wy (2-60) o
o

Equation 2-60 was derived under the assumption of isotropic
permeability. In an anisotropically permeable porous medium, the
coefficient of isotropic permeability, Xk, can be replaced by the

symmetric anisotropic permeability matrix, [k], given by

Scheidegger {1957) as




And the generalized torm of Biot's equation in anisotropically
permeable medium can be expressed as

O f (1] L
Ty T ow (1 + r) W, + pfui +q

W (2-67)
b g

where

la) = (k371 \r (2-68)

Discretized Global Equilibrium Equation

Two global equilibrium equations are derived, first in
terms of field variables and then discretized by the nodal variables.

The first equation equates the total internal stresses
plus the inertia forces to the applied boundary tractions.
Letting the solid skeleton movement be the virtual displacement,
§u, the following global equilibrium equation for the bulk
mixture is established,

f{ce}T{o}dv = f{cu}T{T}as - f{éu}T p{i)dv
v v

- f{éu}T pf{W}dv (2-69)
v
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where 6e is the virtual strain corresponding to the virtual

displacement Su,

The second equation equates the applied pore pressure on the
houndary to the internal pore pressure plus the flow resistance
force plus the inertia force on thn pore fluid. Taking the
apparent relative fluid movement as the virtual displacement, §w,
the internal virtual work done by the pore pressure should be
equal to the external virtual work. That is,

J(.(éwi i)Tndv = jf{ew}T rds - Jf{aw}T{q]{a}av
v ' ' v

A\

- J{(sw]T‘of{ﬁ]dv - ./r{ﬁw}T 4+ r) pf{ﬁ}dv (2=-70)
v v

n

Field variables can be discretized into nodal values within the
finite element, .

{u} = [N] {ule
) {e} = [B] {Tle
{w} = [N] {w)e

Wiy o= (1YT[B] (wWle (2-71)

where {1)T = <111000>

Replacing the field variables in Equations 2-69 and 2-70

by the discretized nodal variables using Equation 2-71 gives the

followiny global equilibrium eguations at time step nj;




or

where

(2-72)

Moo= I f[NJT p[N]dv A
v

M = I f[N]T pe [N]av
v

=
"

[T %I (el e
E = I f[B]T {I}Km {l}T[B]dv
v L

T, .
Rsn-l = 1 /‘;[B] {o n_l}dv

£ - T
R n-1 - Z/;[B] {l}nn_ldv
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.......................
.........................

F, = Zf[N]T {T}ds
s

= T (l+r)
Mg N E‘/‘;[rﬂ T s (N]av

H = Z/[N]T[q][N]dv ','-'_"-_"'-;

Cn = Ef[N]T ;Tn ds -,::.i_:__.;+
v B

e

Now introducing Newmark's B method and Wilson's 5 S

method for time integration, Equation 2-72 can be expressed in o _
the following form; ]

=
>
it
]
g

{(2-73)

where 7
BT .
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and

{2-75)

+
o
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S
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with T =0 At (2-76) ' L
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Figure 2.1. Schematic view of fluid flow in a flat duct
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Schematic view of fluid flow in a circular duct
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TION 3

TWO PHASE DYNAMIC ANALYSIS -

SATURATED POROUS ELASTIC SKELETON

INTRODUCTION

The next two sections present a series of parameter
studies in which saturated two phase porous materials are
subjected to dynamic uniaxial loadings. These parametric
calculations, using tne TPDAP code, were arranged so that the
inf luence of the various material and loading parameters on the
overall response could be isolated and analyzed individually.
Three different soil skeletons were modeled. 1In this section a
linear elastic skeleton was studied., In the following section a
bilinear hysteretic skeleton was modeled, followed by

calculations on an actual sand from Enewetak Atoll.

In this section three different loadings are applied; a
step (or Heaviside) loading pulse, a triangular loading, and a
fifth order simple polynomial loading. All loadings applied a
peak stress of 5 ksi. Other parameters investigated in the
elastic calculations include a comparison between two phase and
total stress (one phase) analysis, the influence of mass
discretization techniques, the influence of Biot's additional
inertia term, and the influence of permeability, numerical

damping, and surface drainage conditions.
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CALCULATIONAL AND MATERIAL PARAMETERS

Loading Functions

The three 5 ksi loading time histories used in this
section are shown in Figure 3.1, The rise time for all loadings
was U.1 msec, The triangular and polynomial loadings had a
positive phase duration of 20.1 msec. The pressure decay of

polynomial loading is given by

t -
: tr) (3-1)

p(t) = Po 1 - T

where p, is the peak pressure, t the time, ty the rise time, and

ty the decay time.

loading is one third of the impulse under the triangular loading.

The total impulse under the polynomial

Finite Element Parameters

All the calculations throughout this study used the
finite element mesh shown in Figure 3.2.
200 elements with a total depth of 100 ft.

The mesh consists of
The elements increase
| in thickness with increasing depth, starting with a thickness of
0.2 ft at the loading surface and expanding to 0.8 ft at the 100
| ft depth. A constant time step of 0.05 msec was used in all

l calculations.

A number of parameters wevre standardized for the
calculations in this section. These were held constant in most
| nt the calculations, except when the influence of varying any one

of these parameters was examined. The most suitable value of
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each parameter was not known beforahand; thus, the sensitivity to
each was examined as part of this parametec study.

In most calculations, the loading pressure function was
partitioned on the ground surface in proportion to the areal
ratio of the solid and tluid constituents. In other words, n% of
the total force on the loading boundary was applied to the pore
water and the remaining (1 - n)% was applied to the soil
skeleton. For the porosity of 35% and peak stress of
5 Ksi, the peak stress applied to the pore water at the loading
boundary was 1750 psi while the peak effective stress applied to
the soil skeleton was 3250 psi,

In the discussion of Biot's equations of Section 2, an
additional inertia term (Equation 2-60) was added to TPDAP to
account for the increased friction forces which develop at higher
frequencies. In most of the calculations in this section, r is
given a value of zero; i.e. there is no added friction force due T
to relative acceleration between the skeleton and pore fluid. Lo
The oaly friction force between the two is proportional to the
relative velocity and is given by Darcy's law.

For high freqguency loadings, such as used in this study,
oftentimes oscillations develop at the wavefront. To minimize

the potential for oscillations, numerical damping was introduced

..v ,
@
R T .
a e

into most calculations in this section. In this study Newmark's oo
method for time integration was selected, with vy = 1.2, which :
results in relatively heavy damping. The corresponding value of
g = 0,7225 calculated from

2
B = (y +40.S) (3-2)

was used. SRR
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Archer (19613) demonstrated that the conventional lumped
treatment of mass in finite element calculations can result in
large errors when significant inertial forces are present. More
accurate solutions can be obtained by use of the consistent mass
matrix technigue described by Archer, in which the matrix is
consistent with the actual distribution of mass in the medium.
The use of the consistent mass technique results in a symmetric
mass matrix rather than the simple diagonal mass matrix of the
lumped mass approach. In most of the calculations in this study

the consistent mass technique is used.

Material Parameters

The material properties used in the linear elastic
analysis are summarized in Table 3.1. The skeleton properties are
representative of a uniform medium dense uncemented gquartz sand.
The elastic moduli, From Blouin and Kim (February, 1984) are the
secant moduli at 1.5% strain, obtained from laboratory data on 5
typical sands. The undrained bulk modulus of the soil water
mixture, Km'
the modulus of the soil water mixture with no stiffness

is obtained from the Wood equation and represents

contribution from the soil skeleton (for further discussion see
Blouin and Kim, February 1984 and Richart et al., 1970). Based
on the Wood eguation, a compressional wavespeed of 5161 ft/sec is
computed.

The simplest model for the composite undrained
compressibility of the saturated soil is the decoupled model
(Blouin and Kim, February, 1984). The decoupled model assumes
that the stress is resisted by the stiffness of the soil skeleton
acting in parallel with the stiffness of the soil-water mixture
from the Wood equation. The resultant hulk and constrained
moduli, Kd and Mgy, are simply the sum of the mixture modulus and
the bulk and constrained moduli of the soil skeleton

respectively. In the undrained case, the TPDAP continuity
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equation combined with Terzaghi's effective stress law results in
the decoupled modulus eguations.

Transmitting Boundary

In order to prolong the calculation time available with
the mesh ¢f Figure 3.2, a transmitting boundary was employed on
the base of the bottom element. In establishing this boundary,
it was assumed that there was no relative motion between the
pore fluid and solid skeleton at the boundary. This condition is

expressed as

w. =0 (3-3)

where w; is the apparent fluid displacement relative to the soil
skeleton at the boundary. Thus, the saturated soil is assumed to
have no drainage at the boundary and the equations for the
undrained decoupled modulus of Table 3.1 apply. This implies
that beneath the boundary one phase total stress analysis is

valid, where the compressional wavespeed
c . = 4 (3-4)
from Table 3.1 is used.
The above assumptions permit use of the transmitting
boundary developed by Lysmer and Kuhlemeyer (1969) where the
stress wave energy on the boundary is absorbed by dashpots at the

element nodes. The total normal stress on the boundary, O is

given by

o_ = pC . U (3-5)

.o
e
SRR
R
R
-9
..>.1
1
o

T 7
4.‘:
fﬁl
. hd i
S
’-.' ..‘

e




where Gn is the absolute velocity of the skeleton normal to the
boundary. In order for the energy dissipated in the dashpots to
just equal the energy in the compressional wave, the dashpot
constants are proportional to the undrained impedence pde.

Because there is relative motion between the skeleton and
the pore fluid, the above assumptions do not entirely eliminate
reflections frcm the boundary. Development of truly
non-reflecting boundaries for two phase media is heyond the scope
of this work. However, use of the above assumptions in the

elastic two phase calculations greatly reduced reflections from

5 t he boundary.
HEAVISIDE LOADING o é
i o ]
The Heaviside loading from Figure 3.1 was used in the RN
initial series of parametric calculations because it represented RS
a simple loading and permitted study of pore pressure dissipation lf;ﬂ?zi
. toward the ground surface. ;;~;a,;

b

One Phase Calculations

Y
'®

Two conventional one phase calculations were performed

g e

under the Heaviside loading with mass discretization using the

consistent and lumped technigues. These are compared in Figure

j 3.3 in the form of pore pressure profiles at times of 2, 6, and
10 msec. The material properties from Tabhle 3.1 were used, with E
the moduli given oy thne undrained decoupled moduli, Kd and Ma- e _;
; The results of the one phase total stress calculations were 3:f}ﬂ;:
; converted to pore pressure for comparison to the pore pressure 'i;"
r -9 -

profiles obtained in the later two phase calculations,
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The total vertical stress, O in uniaxial loading is given

by

0. = M. (3-6)

where €y is the vertical strain and Md 1s the decoupled
constrained modulus from Table 3.1. As described by Blouin and
Kim (February, 1984), the effective stress, g,', in uniaxial
loading is given by

o' =M (3-7)

where M, 1s the constrained modulus of the skeleton. According
to Terzaghi's effective stress law, the total stress is comprised

of the effective stress plus the pore water pressure, T,
as

The ratio of the pore pressure to the total vertical stress in an
undrained uniaxial loading is obtained by solving Equation 3-8
tor m and substituting the values of total and effective stress
from Equations 3-6 and 3-7 into the ratio to give

L e e T
kb "

oo Ma s
Ov Md

fdd

{3-9)
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Using the values of My and Mg from Table 3.1 gives the ratio as

m

Ov

= 0.892 (3-10)

Thus, the pore pressure profiles of Figure 3.3 were obtained by
miltiplying the total vertical stress from the one phase

calculations by the ratio of pore pressure to total stress given
in Equation 3-~10,

As demonstrated in Figure 3.3, there is no signif.cant
difference between the one phase calculations using the lumped
mass technique and those using the consistent mass technique.
Because the mesh used in these calculations is so fine, the
errors introduced by the lump mass technigue into the one phase
calculation are negligible.

TWO PHASE CALCULATIONS

Lumped Mass vs. Consistent Mass Calculations

The initial set of two phase calculations under the
Heaviside loading compared the computed response using the lumped
mass technique with that of the consistent mass technique. 1In
contrast to the one phase results, there was a significant
difference between the two techniques in the two phase
calculations. This difference is illustrated in the stress

profile comparisons at 2, 5, 10 and 14 msec shown in Figure 3.4.

As discussed previously, the 5 ksi Heaviside loading is
applied at the surface and is partitioned between the soil
skeleton and the pore water at the loading boundary. For the

assumed porosity, 35% or 1750 psi is applied to the pore water

40




and the remaining 65% or 3250 psi is applied to the solid
skeleton. Despite this partitioning at the surface, Figure 3.4
shows that within several feet from the surface the load is
redistributed between the two phases so that the pore water
carries about 90% of the total load, as specified by Equatiocon
3-10 for the undrained condition. Because of the fluid friction
between the pore water and the skeleton, the stress distribution
applied at the surface is very rapidly transformed to that which
would result from an undrained loading.

The permeability of the soil skeleton permits flow of
pore water toward the surface. This flow results from the pore
pressure gradient between the high pressure in the undrained
region behind the wavefront and the 1750 psi pore pressure
applied at the ground surface. The pore water migration from the
high pressure region toward the low pressure boundary region
causes dissipation of the pore pressure. As the pore pressure
decreases, the intergranular or effective stress increases as the
skeleton compresses and assumes an increasing portion of the
total stress. At all depths, the sum of the pore pressure and
the ef fective stress equals the total stress. The pore pressure
dissipation advances downward from the surface with increasing
time. The rate of advancement is a function of the permeability
and the pore pressure ygradient as in the usual consolidation
process. At 14 msec, the pore pressure dissipation front has
reached a depth of about 15 ft.

At the wavefront in PFiure 3,4, the profile computed using
the lumperd mass matrix is considerably more smeared thar that
computed from the consistent mass matrix. In Equation 2-72 the

first matrix multiplication term

L
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expresses the inertial resistance of the bulk mixture and the
: pore water. The inertial force vector for the soil water mixture
(I} is given by

.. {1} = [y + M) (w)} (3-11) il
RS

R

" ’!‘—' e
and the inertial force vector for the pore fluid {If} is given by ST

. T : : ’ 7. 1
. = - e ate v i

{If} [Mc] {un} + [Mf]{wn} (3-12) | |

The consistent mass matcix includes all the mass (M) terms in the
i above matrix. However, the lumped mass matrix includes only the
Mm and M terms in the above matrix. In addition, the lumped
mass matrices M and Mg are diagonalized, which introduces an
additional error. The effect of neglecting the coupling mass

' matrix term, M., drops the second inertial force term out of

Equation 3-11 and the first inertial force term out of Equation

3~12, In most problems the acceleration of the skeleton, ﬁn' is AR
much greater than the relative acceleration between the pore '>‘;A'
n* In Equatfon 3-11, the coupling mass N .r;’g
matrix, Mg, is also smaller than the 1ass matrix for the mixture, co o
' M - - . -

fluid and the skeleton, W

i e

me <Thus, the second inertial force term is of relatively minor

importance, However, in Equation 3-12 the coupling mass matrix

I is associated with the relatively large skeleton acceleration; and

the contribution of this term is substantial.

i The first irertial force term in Equation 3-12
' corresponds to the second inertial force term, pfﬁi, in the
governing differential equation of motion of the pore fluid,

Equation 2-60, Inspection of Equation 2-60 shows that neglecting
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this term will significantly increase the apparent relative

velocity and acceleration, w; and Qi' for a given pore pressure

i
gradient. This increased relative mction will result in
unrealistically high energy dissipation and smearing of the
wavefront as shown in Figure 3.4, 1In general, the lumped mass

technigue is inappropriate for use in two phase dynamic analysis.,

Comparison of One and Two Phase Calculations

The pore pressure profiles from the one phase calculation
using the consistent mass matrix are compared to those from the
two phase calculation in Figure 3.5. The pore pressure
dissipation near the surface in the two phase calculation is
clearly evident. At the wavefront the two phase calculation is
smeared considerably; however, this is not a result of numerical
smearing but is due to the dissipation of energy near the front
resulting from the relative motions induced between the pore
water and soil skeleton. The effect is similar to that caused by

numerical damping, but in this case is a real physical effect.

Influence of Mass Increment Factor

The final parameter examined in the Heaviside loading
calculations was the influence of the mass increment factor, r,
included in Equation 2~-60. As explained in Section 2, r is a
factor which attempts to accouat for frictional resistance
betweer the pore fluid and skeleton in excess of the resistance
accounted for by Darcy's law. For Biot's evaluation of the
circular and flat ducts, the factor r depends on the shape of
the duct but is independent of the size. The value of r for the
circular duct is 1/3 and the value for the flat duct is 1/5.

Figure 3.6 compares pore pressure and effective stress
profiles for two phase calculations with r equal to zero and
r equal to 1/3. For an r of 1/3 there is a slight reduction in

the smearing at the wavefront. The additional frictional

e e
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resistance due to the r factor results in somewhat reduced
relative motion and energy dissipation; a trend toward less
smearing of the wavefront as seen in the undrained one phase
calculation. As noted in the discussion of Section 2, the actual
pore shapes are far more complicated than the simple models used
by Biot, so realistic values of r mav be much greater than those
he derived. This is an area requiring further research.

TRIANGULAR LUADING

One Phase¢ vs. Two Phase Calculations

The triangular loading function of Figure 3.1 was used in
a second series of parametric calculations. With a rise time of
6.1 msec and a positive phase duration of 20.1 msec, this
pressure function more nearly approximates certain airblast
loadings. The first series of calculations using the triangular
loading pulse compared the pore pressure response from one and
two phase calculations as shown in Figure 3.7. In the one phase
calculation, plotted as a dashed line, the pore pressure rises
rapidly to a peak which is followed by a linear decay which
mirrors the linear decay of the loading waveform. As explained
in conjunction with the one phase calculation for the Heaviside
loading, the pore pressure is obtained by multiplying the total
stress by 0.892 given by Equation 3-9. The s0lid line shows the
profiles from the two phase calculation. At the wavefront, there
is significant smearing compared to the one phase calculation
and some attenuation of the peak stress. Both the smearing and
additional peak stress attenuation are primarily due to the
energy dissipation associated with the relative motion between the
pore fluid and the skeleton. Note that there is also somc
attenuation of the peak stress in the one phase profile as the
wave propagates downward. At the surface the applied peak stress
is 4460 psi. At 14 msec and a depth of 68 ft, the peak stress
has attenuated by 9% to about 4060 psi. This stress attenuation




in the one phase calculation is due to the numerical damping. The
additional peak stress attenuation in the two phase calculation

is due to dissipation by fluid friction. At 14 msec in the two
phase calculation the peak stress has attenuated by an additional
9% to a value of 3660 psi at a depth of 64 ft.

In the near surface region the two phase calculation

shows a decrease in pore pressure resulting from partial drainage

toward the surface. At 14 msecs the pore pressure dissipation

, f ront has reached a depth of 13 ft, slightly less than that f: ° 1
; cbserved for the Heaviside loading. This slower dissipation T
f front is due to the smaller pore pressure gradients under the . 5}  J
triangular loading. f:?lz._é

e = sy

N "

Influence of Permeability

The second parameter examined in the series of triangular
loading calculations was the influence of permeability on the
material response. Figure 3.8 compares the pore pressure and
effective stress profiles at various times between a soil having

the standard 0.1 in/sec permeability and a soil having a

permeability of 0.001 in/sec. The higher permeability is typical

of a coarse uniform sand of high permeability while the lower

value is typical of well graded sands of medium permeability.
There are significant differences hetween the two calculations
both at the wavefront and in the near surface region. As
expected, pore pressure dissipation toward the surface is

severely curtailed in the lower permeability material. At 14 msec

the pore pressure dissipation front has reached a depth of less

than 2 ft, compared to about 13 ft in the more permeable soil.

The wavefront in the lower permeability soil is

significantly less smeared than that in the higher permeability o

soil. The lower permeability inhibits relative motion between

the pore fluid and soil skeleton at the wavefront, thus, T
lessening the energy dissipation e€ffects due to fluid frictinn.
45
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Comparing the profiles for the two phase calculation in the low
permeability soil to the one phase calculation plotted in Figure
3.7 shows that the two phase calculation is nearly identical to
the one phase undrained case. Under the one dimensional linear
elast. ¢ assumptions of this set of calculations, the one phase i
calculation adequately models the response of this medium L
permeability soil to the dynamic loading.

Influence of Mass Increment Factor e Dl

N I
The third parameter investigated in this series of

calculations was the influence of the mass increment factor r. o

Under the Heaviside loading, use of an r value of 1/3, Vel

corresponding to Biot's circular pores, had only a small
influence on the response at the wavefront (see Figure 3.6).
Figure 3.9 compares the effective stress and pore pressure
profiles for calculations using r values of zero and one. An r
value of cne was picked to accentuate the influence of r. There
is less smearing of the wavefront for the calculation using an r
of one, the difference heing considerably greater than in the
previous comparison using an r value of 1/3. As was mentioned
previously, increasing the r value results in effectively

increasing inertial resistance in the pore fluid while reducing
the relative fluid motions., However, it is not known whether an

r of one 1s a meaningful value for this parameter.

Influence of Damping

The next parameter studied in the triangular loading i_l.
series was the influence of the Y damping on the response of the &iff
two phase material. A rather heavy Y damping of 1.2 was used as '?}&
the standard throughout most of this study. Figure 3,10 compares ';q:

the pore pressure and effective stress profiles calculated using

the standard damping and no y damping, 1.e. Yy = 0.5. Behind the
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peak stresses, the two solutions are identical. At the
i wavefront, the undamped profile exhibits a sharp jump in pore
pressure, as compared to the more smeared increase in pressure in
the damped case. At early time, the undamped stresses exhibit

—r——a

oscillations just behind the wavefront. Beyond 10 msec (below a
depth of 60 ft), these oscillations no longer occur. Finally,
the smearing around the peak stress in the damped calculation is
duplicated in the undamped calculation, indicating that it is
indeed caused by the dissipation resuiting from relative motion
between the two phases near the wavefront and is not associated

with numerical damping.

Another comparison of the influence of damping is

L mx s sl g—y IR sr ciGE s

illustrated in Figure 3.11 where the standard damping with y =
1.2 is compared to the response for a damping of 0.85, midway

: between the previous comparisons. There is little difference
between these two calculations. The 0.85 damping exhibits

i slightly less smearing at the wavefront. 1In retrospect, very
little damping would have been required in the linear elastic »
3 analysis. However, hysteretic materials normally exhibit more SR
{ severe oscillations due to changes in material properties. In }{?.éiﬂ
! such calculations heavier damping may be preferable. ;_jir;i
N

Influence of Mass Discretization Technique

4 The effect of using the lumped mass technique in a two
phase triangular loading calculation is demonstrated in Figure
A 3.12, The results are similar to those for the Heaviside loading

which were discussed in detail in conjunction with Figure 3.4.

Use of the lumped mass technigue causes heavy smearing in the
vicinity of the wavefront and is not suitable for use in these
two phase calculations (refer to the previous discussion for more

details).

4




Influence of Surface Drainage Conditions

The sixth and final parameter investigated using the
triangular loading function is the influence of the surface
drainage conditions on the stress profiles. In the first portion
of this phase of the study, the triangular loading function was
applied with no drainage allowed at the ground surface. This
calculation is compared to th. standard case in Figure 3.13 where
drainage is only partially inhibited by the specified pore
pressure loading (i.e. the pore pressure equals 35% of the total
applied load). The profiles for the calculations with no surface
drainage are plotted as dashed lines. This calculation was
performed by prohibiting relative motion between the pore water
and skeleton at the loading surface while applying the tctal load
to the ground surface. At the ground surface, the pore pressure
at the impermeable boundary is much higher than that on the
partially drained boundary. Though the pore pressure builds up
very rapidly as the wavefrcnt moves away from the partially
drained boundary, the buildup does not guite reach the magnitude
of the pore pressure developed beneath t..e impermeable boundary.
Thus, the pore pressures near the peak are slightly higher in the
case of the impermeable loading boundary. Because of the
impermeable boundary, there is no pore pressure dissipation in
~he near surface region in that calculation.

Comparison of the two phase calculation on the impermeable
loading boundary of Figure 3.13 with the totally undrained one
phase calculation of tfigure 3.7 shows that in the near surface
region the pore pressure response in hoth calculations is nearly
identical. At greater depths, however, the response of the two
phase calculation near the wavefront matches that of the drained

two phase calculations.
Figure 3.14 shows a comparison between the pore pressure

and effective stress profiles for partially drained and fully

drained conditions at the loading boundary. In the partially
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drained standard calculation, 35% of the total load is applied to
the pore water. 1In the fully drained calculations, the total
load is applied on the soil skeleton, thus maintaining zero pore
pressure at the loading boundary. In both calculations, the pore
pressures increase very rapidly with depth and are nearly equal
at the wavefront at all the times shown.

It is concluded from the results of the calculations
shown in Figures 3.13 and 3.14 that wave propagation in two phase
media is quite independent of the loading and/or drainage
conditions assumed at the ground surface. This is a fortunate
effect because the actual partitioning of the loading pressure
between the pore water and the soil skeleton on the surface is

difficult to assess.

POLYNOMIAL LOADING

Two parametric calculations were performed using the
linear elastic properties of Table 3.1 and the simple fifth order
polynomial pressure loading shown in Figure 3.1 The loading has

a 0.1 msec risetime and a decay described by

t

m

_ (t - £ ) (3-13)

p(t) =p, | 1- ———-—)
(o]

where the peak pressure, Py is 5 ksi, t is the time, t . the rise
time, the decay time, to' is 20 msec, and the decay exponent, m,

is 5. This loading function closely approximates many explosively

generated airblast loadings with their rapid early time pressure
decay. As noted previously, the impulse under the fifth order
loading is 1/3 of the impulse under the triangular loading used

in the previous set of parametric calculations,
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One Phase vs. Two Phase Calculations

Results of one and twn phase calculations using the fifth
order polynomial loading are compared in Figure 3.15. As in the
previous studies, the one phase total stress is multiplied by 0.892
from Egquation 3,10 to obtain the pore pressure under the
assumption of no drainage. The two phase calculation used the
staridard load partitioning, with 35% of the total pressure (1750
psi) applied to the pore water. Attenuation of the sharp peak in
the polynomial pressure loading function is more rapid than that
observed for the triangular locading. At 14 msec the peak pore
pressure from the one phase calculation has decayed from 4460 psi
at the surface to 3180 psi at the 70 ft depth, a decrease of
nearly 29%, This is much larger than the 9% drop observed in the
corresponding triangular loading calculation. The greater
attenuation is due to numerical damping of the much steeper
pressure decay from the peak. Use of less y damping would have
minimized this attenuation.

The two phase pore pressure profile, shown as a solid
line in Figure 3,15, is significantly more smeared and attenuated
than the one phase pore pressure profile. This is similar to the
effects oObserved in both the Heaviside and triangular loading
cases, The peak pore pressure in the two phase calculation at 14
msec 18 only 2500 psi, 44% less than the surface peak pore
pressure. The additional 15% drop in pressure is due to the
fluid damping associated with the relative motion between the
pore water and the soil skeleton. 1In the triangular loading
calculations, the additional attenuation due to the fluid damping
was 9%. The diCference indicates that the fluid damping is
sensitive tc the frequency of the loading function, being more

severe for steeper pressure gradients,
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Polynomial vs. Triangular Loadings

Figure 3.16 compares the pore pressure and effective
stress profiles from the standard two phase calculations under
the polynomial and triangular loadings. The initial rises in
pore pressure and effective stress are identical in the two
calculations. However, the more severs numerical and fluid
damping cause both the pore pressure and effective stress under
the polynomial loading to attenuate more rapidly than those under
the triangular loading. The shape of the loading functions and
the attenuation characteristics result in an apparently more
rapid propagation of peak stress under the peolynomial loading
than under the triangular loading. At 14 msec the peak stress is
at a depth of 70 ft under the polynomial loading but has reached
a depth of only 63 ft under the triangular loading.
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Table 3.1. Material parameters used in linear elastic

calculations.

MATERIAL PROPERTIES
(typical values)

Porosity
n=0.35

Specific gravity of solid grains (quartz)
Gs = 2.67

Permeability
k = 0.1 in/sec

Unit Weight
Pore water Y, = 62.4 1b/ft3
Bulk mixture y = 130.1 1b/ft3

Modulus
Skeleton bulk modulus Ks =
Skeleton shear modulus C6 =
l Skeleton constrained modulus Ms =
Skeletcon Poisson's ratio v, =
Water bulk modulus Kw =
Solid grain bulk modulus Kg =
’ Mixture undrained bulk
) modulus (Wood equation) K
Decoupled undrained bulk
modulus Kd =
Decoupled undrained
constrained moduluc Md =
:
; 52

50,111 psi
30,067 psi
90,200 psi
0.25

0.29 x 10% pst
5 % 106 psi

K K 6
£V = 0.748 x 10° psi

Kw + n(Kg - Kw)

6
Km + KB = 0.798 x 10" psi

K +M = 0,838 x 106 psi
m 5
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Table 3.1. Material parameters used in linear elastic
calculations (concluded).

P-wave Speed

Water c
Pw

4641 ft/sec

Skeleton 1583 ft/sec

0
n

PSS

K

= V—“l = 5161 ft/sec
pm P
M4

cpd F = 5463 ft/sec

Mixture (undrained) c

Decoupled (undrained)
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| Figure 3.2. Finite element mesh
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SECTION 4

TWU PHASE DYNAMIC ANALYSIS -

SATURATED POROUS INELASTIC SKELETON

INTRODUCTION

Rischbieter et al., (1977) and other investigators
hypothesized that liquefaction could result from one dimensional
loadings of saturated soils having hysteretic stress strain
response. An analytic formulation of this hypothesis was
developed by Blouin and Shinn (1983) which illustrates the
liquefaction mechanisms using simple hysteretic material models.
The TPDAP code combines these mechanisms with the capability of
handling realistic material properties to model wave propagation
in continuous two phase media. TPDAP permits the study of
liquefaction using realistic loadings and in situ material
profiles,

In this section, a brief description of the liquefaction
mechanisms discussed above is presented, followed by application
of TPDAP in preliminary studies of blast induced liquefaction in
two material types. The first is a simple bhilinear hysteretic
material model, and the secornd is bhased on data from uniaxial
tests on Enewetak sand presented by Blouin, Martin and McIntosh
(1984) and reported as a second volume of this study.
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LIQUEFACTION MECHANISMS

The analytic two phase model developed by Blouin and
shinn (1YB3) treats the stresses and deformations in the soil
skeleton as separate entities during compression wave loadings
and unloadings. Since granular soil skeletons are hysteretic,
expansion of the skeleton during unloading will generally involve
only a portion of the volume change which occurred during the
compressive wave loadings. buring both loading and unloading,
however, the pore water behaves elastically. On unloading, the
pore water may continue to expand elastically after the skeleton
has reached zero effective stress. At this point the expanding
pore water will begin to carry the soil particles into suspension
and the material will be in a state of liquefaction. Following
ligquefaction, the soil will consolidate into a more dense state
than originally, with the excess pore water pushed upward into
overlying unsaturated layers or onto the ground surface. The
rate of consolidation will be governed by the amount of excess
pore water (i.e. the extent of the zone of liquefaction and the
degree of liquefaction) and by the permeability of the liquefied
material itself and the permeability of any overlying non-
liquefied material.

A crude model depicting both the soil skeleton and the
solid/water mixture during uniaxial strain loading and unloading S
is shown in Figure 4.1. Loading of the soil skeleton occurs 4 kt1
along a bilinear path and unloading along a steeper linear path, |
The initial portion of the loading curve, represented by the

loading modulus M,, is assumed to he elastic and is limited by the "
maximum strain €ge’ ©F the corresponding effective stress O'ge' In i L4
instances where the elastic limit is not exceeded, the skeleton

will unlcad alony the loading path and there will be no inelastic

volume decrease in the soil skeleton. The elastic portion of

the loading curve can represent either a cemented soil or simply ~49-r¢f

a short elastic portion of the loading curve commonly evidenced
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during field tests known as the seismic or elastic toe. Beyond
the elastic strain limit Ege' the skeleton 1is no longer elastic and
loads at a modulus M2, and unloads at a much stiffer modulus Mu'

According to Terzaghi's effective stress law, the total
stress, o, applied to an increment of saturated soil will be
carried by the pore water pressure, T, and by the intergranular
stress, o‘g, within the soil skeleton. The pore water pressures
may ¢xceed the intergranular stresses by an order of magnitude.
In order for liguefaction to occur upon unloading, two conditions
must be met. The first is simply that the elastic strain limit
in the soil skeleton must be exceeded during loading to the peak
dynamically applied stress cp. Otherwise, hoth the soil skeleton
and pore water will unload elastically and no excess pore
pressures will be generated. VFigure 4,) depicts deformation in
the skeleton and soil-water mixture at depth d where the initial
eftective overburden stress is o'gd and the 1nitial pore pressure
is Ty Note that the in situ strain in each case is taken as
zero and that stresses are measured from the in situ conditions.
The first condition for liguefaction is satisfied when the strain
in the soil skeleton exceeds the elastic limit €ge- If no
relative flow between the pore water and skeleton is assumed,
then the strain in the solid/pore water mixture eguals that in
the skeleton, Upon unloading, the stiff skeleton unloading
modulus results in a rapid drop in effective stress until it

reaches zero at the strain ¢ At this point, the skeleton

go*
has lost all strength and reaches the liquefied state. Unloading

continues until the stress in the soil-water mixture reaches the

effective overburden stress O'gd at the strain ¢ Between

mr’
strains € go and eqnys the expanding pore water tends to carry the

soil particles into suspension. Finally, as the particles

reconsolidate, the pore pressure gradually drops from o back to

gd
its original value L
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BILINEAR MODEL

The triangular loading pulse from Figure 3.1 was applied
to a saturated material having bilinear load-unload
characteristics. All properties of the skeleton are the same as
those used in the previous section, given in Table 3.1, except
the unloading moduli are taken as three times the corresponding
loading moduli. Thus, hysteresis is introduced into the material

skeleton with a strain recovery ratio of 1/3.

The results of this calculation are plotted as a solid
line in Figure 4.2. The effective stress and pore pressure
profiles at four times, from 2 to 14 msec, are compared to those
from the corresponding calculations using the linear elastic
model. At 2 msec there is no apparent difference between the
calculations. At later times, however, the different unloading
slopes atfect the response behind the stress peaks. This effect
hecomes more pronounced with increasing depth and time. As
explained in the previous subsection, during unloading the
bilinear skeleton will tend to recover only 1/3 of the loading
strain, and the skeleton stress will drop proportionately faster.
For a totally undrained loading using this set of bilinear
properties, the effective stress would be expected to drop to
zero about 1/3 of the way into the unloading. At 14 msec the
effective stress in Figure 4.2 drops to zero at a depth of about
22 ft, at approximately 1/3 of the way into the unloading. At
this point, the soil particles would tend to begin separating and
a state of liquefaction would exist. In this bilinear
calculation, however, tension is allowed to develop in the soil
skeleton, so the post-liquefaction process 1s not accurately

depicted.
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Because of the hysteresis 1in the bilinear skeleton, the

effective stress drops faster during unloading than the eftective
stress in the elastic case. The pore pressure behind the
wavefront in the bilinear material drops less rapidly than the
pore pressures in the linear material, compensating for the more
rapid eftective stress drop in the bilinear soil. The total

stresses are about equal in both calculations.

The inelastic hehavior of the skeleton also causes
additional energy attenuation due to the hysteretic material
damping. Careful examiraticn of the 14 msec profile in Figure
4,2 shows that the total stress behind the wavefront is lower in
the bilinear material than that in the elastic case. This

difference evidently results from the hysteretic damping.

Figure 4.3 is an expanded view of the bilinear effective
stress and pore pressure profiles at 15, 16 and 17 msec. A zone
of effective tensile stress is developing at these later times.
This zone extends from a depth of ahout 14 ft to a depth of 40 ft
at a time of 17 msec. This developing tensile zone is indicative
of ligquefaction, but because tensile stresses are allowed to
develop in the skeleton and bhecause there are no gravitational
stresses in this calculation, it does not realistically model the

liquefaction process.

ENEWETAK SAND

The final set of parametric calculations undertaken in
this study examines the response of saturated sand from Enewetak
Atoll. The skeleton properties are taken from laboratory data
reported in the second volume of this study by Blouin, Martin and
McIntosh (1984). The sand is a uniform carbonate bheach sand with

a mean grain diameter of about 0.5 mm and a porosity of 45%.,
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Properties selected for this sand are shown in Figure 4.4. The
loading modulus is a stepwise approximation to the actual
constrained compression data from test 12. The unloading modulus

is expressed as a function of peak stress according to

M (0.651)

"

3470 ¢!

(4-1)
u am

where o'am is the maximum previous axial stress expressed in psi.
As indicated hy the data, the unload modulus becomes continually
stiffer with increasing peak stress.

Three uniaxial strain calculations were performed on the
saturated Enewetak sand. All used a triangular loading with
duration and risetime as specified in Figure 3.1. The peak
stress in the first two calculations was 50 ksi and the peak
stress in the last calculation was 5 ksi. Unlike the bhilinear
calculations, tensile stress was not allowed to develop in the
Enewetak sand. Whenever the effective stress dropped to zero,
the skeleton had no strength and the modulus dropped to zero.

22 ksi Peak Stress

The two 50 ksi calculations examined the influence of the
surface drainage conditions. Neither calculation included in
situ stresses due to gravity. In addition to the usual effective
stress and pore pressure profiles, motion and stress time
histories at selected depths are also presented. Figure 4.5
shows the stress profiles from the two calculations at 2, 6, 10
and 14 msec. Because the skeleton modulus of the Enewetak sand
was considerably lower than that of the previous skeletons
analyzed in this study, the effective stress profiles are
expanded by a factor of ten in Figure 4.5 to afford better

definition. The most significant feature of both sets of
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effective stress profiles is the development of a large zone of
liquefaction behind the wavefront. By 14 msec this zone extends
from the surface to a depth of 42 ft.

There is little difference between the profiles for the
two different surface drainage conditions., The partial surface
drainage condition was attained by partitioning the airblast
loading between the pore water and soil skeleton in proportivon to
the porosity. Thus, 45% of the total load was applied tc the
pore water and the remaining portion to the soil skeleton., 1In
the calculation with no surface drainage, relative
motion between the soil skeleton and pore water was prohibited at
the loading boundary. As was also observed in the linear
elastic analysis, the surface stress distribution is rapidly
repartitioned so that the undrained surface loading profile is
approximated within a very short distance heneath the surface.

In other words, the surface load partitioning/drainage conditions
affect only the very near surface response. The overall response
is insensitive to the assumed surface drainage conditions.

Time histories of the response of the soil skeleton at a
depth of 10 ft are shown for hoth the partial surface drainag:?
and no surface drainage caiculations in Figure 4.6. The top time
history compares the effective vertical and horizontal stresses
from the two calculations, and the remaining time histories
compare the displacement, velocities and accelerations. As
mentioned in the above discussion of the stress profiles, the
influence of surface drainage is small. According to the
effective stress time histories, liquefaction occurs at the 10 ft
depth shortly after 6 msec. The peak vertical effective stress
in the skeleton is approximately 1400 psi and the peak horizontal
effective stress, controlled by the K0 value of 0.5, is about 700
psi. Thus, the peak skeleton stress at this depth is only 2.8%
of the 50U ksi peak loading stress. Since so little stress is
carried in the skeleton, the influence of the liguefaction on the

overall skeleton motions during the constrained dynamic loading
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is negligible. However, it should be noted that the material 1in
the liquefied condition no longer has any shear strength. This
can result in very large mass movements at late times under
gravitational or other loadings whenever nonuniform stress fields
exist.

The corresponding pore pressure time histories and
apparent relative fluid motions bhetween the pore water and soil
skeleton at the 10 ft depth are plotted in Figure 4.7. As
described in the theoretical discussion of Section 2, the
apparent relative fluid motion equals rn times the actual relative
motion where n is the porosity. In the Enewetak sand, the actual
relative motions between the particles and pore water is 2.2
times the apparent values. The pore pressure time histories
resemble the triangular loading pvlse. Peak pressures are about
43 ksi, over 30 times higher than the peak vertical stress in the
soll skeleton at this depth. The displacement time history
indicates that the pore water moves downward relative to the soil
skeleton during the dynamic loading. The peak magnitude of
apparent relative displacement is approximately 0.9 in and occurs
just after 6 msec, which alsc is the time at which liquefaction
occurs.,

The velocity time histories indicate a sharp downward
velocity relative to the soil skeleton at the wavefront. The
peak apparent relative downwarc velocity is about 47 ft/sec and
the actual peak relative velocity is about 103 ft/sec. This
occurs at 2.4 msec. It compares to a peak downward velocity in
the soil skeleton of approximately 325 it/sec, though this peak
1s reached somewhat later at about 4 msec. The apparent relative
velocity decays rapidly from its peak value and levels off at
about 4 ft/sec by 5 msec., Just after 6 msec, at the time of
liguefaction, the velocity suddenly reverses direction and
becones stable in the upward direccion with a magnitude of 5
fr/sec. This reversal is evidently associated with the
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i liquefaction. The reversal in velocity controls the time of peak

in the apparent relative displacement time history.

The apparent relative acceleration is initially downward
with a peak value of about 2700 gs. This compares to a peak
skeieton acceleration of 14000 gs. The apparent relative

T TR Ty YT T

acceleration quickly reverses at 2.4 msec and reaches a peak
deceleration ct about 900 gs at 2.8 msec. It then tapers off to
near zero slightly after 5 msec and registers a small negative

value at the time of liguefaction.

Figures 4.8 and 4.9 present stress and motion time

histcries for the 50 ksi triangular loading at a depth of 20 ft

Mt SRR o A

for the undrained surface loading condition. These waveforms are
similar to those at the 10 ft depth of Figures 4.6 and 4.7. As AR
shown in the effective stress time histories of Figure 4.8, 17;? .i

h liquefaction occurs at 8.4 msec at the 20 ft depth. The peak
apparent relative velocity between the pore water and the
E; skeleton 1s 41 ft/sec at this depth and the peak appafent
:‘ relative acceleration is about 1700 gs. As was the case at the
. 10 £t depth, the relative velocity reverses at the time of e
! liquefaction indicating that the pore water begins to move upward “’f**4
! relative to the soil skeleton. )
é 5 ksi Peak Stress ‘; [';

The effective stress and pore pressure profiles as

functions of time and depth for the final Enewetak sand

- _ S
ﬁz calculation are presented in Figure 4.10. The applied loading ;E7i15;
?: was the 5 ksl triangular pulse from Figure 3.1 with no surface @ 1
- drainage permitted at the loading houndary. In this calculation R
L gravitaticnal stresses were included on both the soil skeleton f[%j;%

and the pore water. The initial in situ effective stress is o .

apparent in all the profiles, where the effective stress -?1f~«

increases linearly with depth and at 100 ft equals 43 psi.

78 RN




Coincidentally, the pore pressure under the gravitational loading
also is 43 psi at that depth. Because the effective stress
profiles are magnified by a factor of 10 compared to the pore

water pressures, the 43 psi pore pressure is barely noticeahle in
the scale of Figure 4.10,

Several differences are apparent between the 5 Kksi
loading profiles of Figure 4.10 and the 50 ksi loading profiles
of Figure 4.5. At 10 msec the peak effective stress in the 5 ksi
case is only about 1.6% of the peak pore pressure. In the 50 ksi
loading at this time, the peak effective stress is about 3,6% of
the peak pore pressure. The significantly greater portion of the
total stress carried in the pore skeleton under the 50 ksi
loading is due to the increase in skeleton modulus with
increasing strain indicated in the skeleton properties of Figure
4.4, Under the 50 ksi loading the skeleton strains are
proportionally higher than those under the 5 ksi loading; thus,
the increasingly stiff skeleton modulus at these higher strains
results in a relatively greater portion of the total stress
distributed to the skeleton.

Another difference observed in Figure 4,10 is the
increase in dynamic peak effective stress with increasing time
and depth. This is in contrast to the decreasing peak effective
stress in the 50 ksi loading. Here the difference is due to the
application of the gravitational effective stress in the 5 ksi
case. With increasing depth, the initial in situ effective
stress increases and the skeleton, in essence, becomes stiffer
with increasing depth. Thus, tor a given peak total stress
level, the portion of the total stress carried in the skeleton
would be less at shallow depths than it wouid be at deeper depths.
However, because peak stress attenuates with increasing depth due
to hysteretic and fluid damping, the net change in peak effective
stress depends on the summation of these two effects. 1In this
case, the net result is an increase in effective stress with
increasing depth.
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Inh the 5 ksl loading calculations with gravitational
stresses, the so0il also liquefied during unloading from the peak
dynamic stress., As shown in Figure 4,10, at 14 msec the soil is
liguefied frem the surface to a depth of about 36 ft. This is
somewhat less than the 42 ft depth of liquefaction shown in
Figure 4.5 tor the 50 ksi load at 14 msec.

|

Effect- stress and skeleton notion time histories at
the 10 ft and 20 [t depths for the 5 ksi lonading are shown in
Figure 4.11 and 4.13 respectively, The pore pressure and
apparent relative mot.ion time histories for the 10 ft and 20 ft
depths are shown in Figures 4.12 and 4,14, The waveforms in
these examples are similar tn tnouse precsented irn the
corresponding rigures 4.6 through 4,9 for tne 50 ksi loading.
The magrnitudes are correspondingly lcwer for the 5 ksi loading.
The only siynifizant differencz appears to ne that the apparent
relacive velocity of the pore water bhecomes negative relative to
the skelecon prior cvo liguefaction in the 5 ksi case. Thus,
velocity reverses gradually during the initial unloading rather
than abruptly at the time of liquefactinn.,
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SECTION 5

SUMMARY AND CONCLUSIONS

The dynamic response of saturated porous media is
examined undet uniaxial loadings. The material models used in
this study become increasingly more sophisticated culminating
with an actual saturated sand from Enewetak Atoll. In Section 2,
the theoretical backyground and numerical code, TPDAP, used in
this study are described. The ygoverning differential equations
of motion for the bulk soil-water mixture and the pore tluid are
derived. Hiot's fundamental analytic work describing the
behavior of saturated porous media is reviewed and summarized.
His differential equation for relative tluid molion is
generalized by inclusion of the mass increment factor r of
cgquation 2-60 which accounts tor additional friction force
resulting from relative acceleration between the pore water and
soil skeleton. Biot derived values of r for two simple assumed
pore geometries but actual values of r for real soils have not
heen determined. Values of r for so0ils should be obtained
through a2 combination of further analytical studies and
laboratory investigations. The latter portion of Section 2
presents the tinite element formulations used in the TPDAP two

phase dynamic analysis program,

Section 3 presents the results of dynamic uniaxial
loadings of saturated porous media having a linear elastic
skeleton. An analysis of these results produced the following
conclusions:
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! ® Use of lumped mass discretization techniques are not
b suitable for twn phase dynamic analysis. Instead,

consistent mass technigues are recommended;

. ® Surface drainage conditions and/or partitioning
' of the applied load between the pore fluid and
soil skeleton only influence the dynamic response

in the immediate vicinity of the loaded boundary.

!1 Below this zone, the dynamic response is

- essentially independent of the assumed loading
distribution and boundary drainage conditions. To R

— avoid undesirable numerical oscillations caused :

! by large stress gradients, use of an impermeable ;. L

loading boundary 1s generally recommended;

® Relative motion between the pore fluid and soil
ii skeleton near the wavefront creates fluid
ey frictional dissipation which tends to smear the

wavafront and attenuate the peak stress. These

etfects are a function of permeability and pore

geometry as represented by the mass increment ~9;5jf
factor, r. As permeability decreases, the dynamic L
response approaches that obtained using an equiv-
alent one phase analysis. As r increases the rel- .i'
ative motions decrease and the dynamic response L
approaches that of an eguivalent one phase loading. .
Values of r of 1/3 and 1/5, derived for the
simplified circular and flat pore geometries,
had a negligible influence on the overall dynamic -9
response in these calculations. Larger values
of r which may be representative of real soils

‘a could have a significant influence on overall

- response; o
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i ® Fluid damping results in more rapid stress
attenuation under loadings with more rapid

pressure decays;

i ® Artificial numerical y damping eliminated high
frequency oscillations, but smeared the wavefront
at the toe. Minimal artificial damping would have

been reguired in these elastic rcalenlations,

In Section 4, dynamic uniaxial loadings were applied to
saturated porous media having a bilinear hysteretic skeleton and

the skeleton properties of Enewetak sand. Principal con-

C Wy

clusions and observations include: -®

® Liquefaction occurred in the calcnlations using both

the hilinear and Enewetak hysteretic soil skeletons

during the unloading portion of the dynamic response. H!f?w

Liquefaction resulted trom non-recoverable strains

b

-~

induced in the skeleton during loading.

i
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- ®¢ The TPDAP two phase code provides a powerful tool for -9 .
. studying wave propagation in two phase materials. :f?&f
It permits detailed examination of dynamic material B
response including pore pressure, effective stresses,

skeleton motions and relative fluid motions at specified @

ﬁ' points in time and space. Based on the relative fluid

motions, pore water migration and flow rate can be

computed,
® Relationships between pnre pressure, effective stress, -
8 skeleton motion and relative motion bhetween the pore Eﬂﬁj{
- tluid and skeleton were examined in the calculations of AR,
i‘ the Enewetak sand. During loading, motion of the pore .

fluid relative to the skeleton is in the direction of

‘¢

[
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the wave propagation. During the unloading, the relative

velocity rapidly decreases and has reversed by the time
of liquefaction so that relative motion is opposite to

the direction of propagation.

¢ In situ gravitational stresses can result in an

increase in dynamic effective stress during loading
with increasing depth and time. The occurrence

of such an increase is dependent on the stress
strain properties of the soil skeleton and the

attenuation characteristics of the soil, - 8
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