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SECTION 1

INTRODUCTION
6

Blast induced liquefaction has been identified as an

important mechanism in the development of craters and ground
motions from large explosions in or on saturated soil deposits.

Liquefaction may have dominated crater formation processes in the
saturated geologies of the Pacific Proving Grounds where all the

high yield U.S. nuclear cratering data were obtained. Based on

analysis of these and other high explosive test data from sites

having shallow water tables within the continental United States

and Canada, Blouin and Shinn (1983) hypothesized liquefaction and

cratering mechanisms controlled by the liquefaction which

explain the unusually flat broad shapes of these craters. Based

on their hypothesis, it was concluded that current cratering

prediction procedures founded on the Pacific data are not valid

for dry continental sites. The data analysis indicates that 77
water table will influence the crater formation processes

whenever the scaled depth of the water table is less than about 7

ft/ton 1 /3, where the yield is expressed as an equivalent high

explosive half buried yield. It was also concluded, however,
that many so called dry sites may actually behave like wet sites,

because scaled water table depths for the high yield nuclear
threats of interest are quite shallow.

This previous work also included formulation of

liquefaction mechanisms due to explosive loadings. Application of

those mechanisms was limited by the simplifying assump~tions uced

to derive the analytic equations.

2



More precise methods to analyze and predict the

occurrence of blast induced liquefaction must rely on two phase

dynamic numerical computer codes. Such codes can incorporate

complicated models of real world material properties with

accurate characterization of actual explosive loa(ing functions

to determine the dynamic response of saturated geologic media.

The complexity of the real world material properties, loading

functions and problem geometries puts realistic depiction of the

dynamic response beyond the reach of conventional analytic

techniques. a

In general terms, two phase dynamic codes compute the

response of saturated porous media to static or dynamic loadings.

The media are modeled by combining the response characteristics -

of the soil skeleton with the response characteristics of the

pore water using two equations. The first of these describes the

motion uf the bulk soil-water mixture as a function of the applied

load and the second describes the motion of the pore fluid _ _.

relative to the soil skeleton under the applied load. The -..

dynamic response of the saturated material is expressed in terms .-.

of the intergranular or effective stress in the soil skeleton, the

absolute motion of the soil skeleton, the pressure in the pore .

water, and the motion of the pore water relative to the soil

skeleton. Presentation of the calculational results in terms of

the response of each separate phase makes the two phase codes

extremely powerful tools for the study of blast induced .

liquefaction.

The objectives of this study are to review and condense

past theoretical treatments of two phase media, to incorporate 6

these results in the Two Phase Dynamic Analysis Program (TPDAP),

to use TPDAP to study the response of saturated porous media to

dynamic loadings, and to identify and analyze liquefaction

occurring in t'ie.e calculations. Procedures used in, and results S

of this study are described in the following three sections. The

objectives and content of each section are summarized below.

3 9
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SECTION 2: Fundamental theoretical treatments of two phase .

porous media by Biot and others are reviewed. Hiot's fluid

equation describing the interactions between the pore fluid and

soil skeleton is generalized and incorporated into the finite

element code TPDAP. Also, a general description of TPDAP is

presented.

SECTION 3: A series of parametric calculations of the response

of two phase porous elastic media to dynamic uniaxial loadings

is conducted. The influence of various loadings, material

properties and numerical techniques are described and analyzed.

SECTION 4: A series of parametric calculations on saturated

materials having hysteretic soil skeletons is conducted. These

include a bilinear material skeleton and an actual sand skeleton.

Zones of liquefaction occurring in these calculations are

identified and the mechanics of liquefaction and influence of

parametric variations on liquefaction are described.

4
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SECTION 2

THEORETICAL DEVELOPMENT AND IMPLEMENTATION
0

IBACKGROUND

.0

The fundamental analytic work describing the behavior of - -..

saturated porous media was performed by Biot. Biot's results

were reported in a series of papers extending over many years

(e.g. 1956, 1962a and 1962b). Other investigators have applied e
Biot's analytic results using techniques which approximate his

equations with varying degrees of accuracy and sophistication

(e.g. Ghaboussi and Wilson 1972, Mengi and McNiven, 1977). In

this section, we summarize the development of the two phase

equations of motion based on Biot's work and their implementation

in the two phase finite element code TPDAP.

ANALYTIC DEVELOPMENT

The behavior of saturated porous material can be

described in terms of two equations of motion; the first is the

equation of motion of the bulk soil-water mixture and the second

is the equation of motion of the pore fluid within the soil

skeleton.

Governing Equation for Bulk Mixture

The differential equation of motion governing the bulk

mixture is given by

5
. " . . .-- -
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G

]ijj Sn)PS ui + n pf U' (2-1) - 9

is the total stress gradient applied to an infinitesimal

element of saturated material at some given time. ijj s.

expressed in tensor notation and represents the stress gradient

in each of 3 mutually perpendicular coordinates (e.g. see

Mendelson, 1968). For instance, in the x direction,

0xj)z l ""~u + n pf Ux (2-2)
+°x !Lx + - = (1 - n) psý+n f (22

xI), 3 x y z

The term (1 - n)ps is the mass of the soil skeleton per unit

volume of saturated material, where n is the porosity and Ps is

the mass density of the solid grains. u. is the displacement of

the skeleton in the i direction and u. is the acceleration of the1

skeleton in the i direction. The term no0f is the mass of pore

fluid per unit volume of saturated material where Pf is the mass

density of the pore fluid. U. is the absolute displacement of the

pore fluid in the i direction and 0 the absolute acceleration of

the pore fluid in the i direction.

The bulk mass density of the saturated material, p, is

given by

p (i n)p npf (2-3)

7.

Substitution of the value for (I - n)p 5 from Equation 2-3 into .*

Equation 2-1 gives 0

ij (p nf)ui + npfUi (2-4)

A term wi is introduced which is the apparent fluid displacement 0
in the i direction relative to the soil skeleton and is given by

6
.- -S -. .



w. n(Ui - ui) (2-5)

In seepage problems, wi is referred to as the discharge

displacement. It describes the discharge of fluid through a soil

mass of unit area. The discharge velocity, or apparent relative

velocity, i between the soil particles and pore water is the 0

velocity of water in a discharge duct of unit area needed to

maintain the actual relative velocity in the porous soil of the

same unit area. The actual relative velocity between the

skeleton and the pore water is given by wj/n. Finally, wi is S

the apparent relative acceleration between the soil skeletcn and

pore water given by

wi = n(Ui - ui) (2-6) 0

Equation 2-4 can be expressed in terms of the apparent relative

fluid acceleration as simply

oija j =Qui + Pfwi . (2-7)

Governing Equation for Pore Fluid

biot's Equations

The equation of motion governing the pore fluid is

derived from Biot's work (see previous references). Biot

expressed the pore pressure gradient, 1Ti' as

= , + D. (2-8)'i Pf Ui +D •-

In this equation, the pore pressure gradient is expressed in

tensor notation. For example, the gradient in the x direction .

is given by

7



I fUx ++(2-9) D 
-

The term Pfbi is the inertial force per unit volume of pore

fluid. Di represents the viscous friction force between the pore

fluid and the soil skeleton per unit volume of pore fluid.

Solving Equation 2-6 for Ui and substitution into Equation 2-8

gives

Pf .
I' n w. f + + b . (2-10)

n. f Pf ij 2

Biot showed that the viscous friction term, D , is a
function of the excitation freuency, w, the pore geometry, the

dynamic viscosity, v, and the apparent relative velocity between
the pore fluid and the skeleton, wi" in an actual soil the flow

of pore water would follow very complicated paths which are
difficult to describe. These flow paths would involve numerous

variations in direction and in cross secticnal areai, Bint

employed models of the flow paths which are gross simplifications

of the actual paths. He assumed two simple flow qeometries; flow

through a series of parallel circular ducts and flo; through a

series of parallel flat ducts. Biot derived equaticns describing *I
the pore fluid flow in these two simplified rore geometrie~s.

Flow conditions in the flat duct are pictureo

schematically in Figure 2.1. The duict is assu-nuýd to have

infinite width and a height 2a. Flov is considere"2 ov!r: a uinit

width of duct having a cross se'-tiona.l area of 2a. Biot (1956)

expresses the ratio of viscous shear forage 2 -, (wherc T i! Cie

viscous shear stress) to the aver-ge fluid velocity relative to 0

the duct walls, Wa ,

ai

2T - . --.

a

8



0

The average relative velocity is given by

= Ua - (2-12)

where Uai is the average absolute fluid velocity in the duct and

ui the velocity of the duct walls. 'j is the dynamic viscosity •

(dyne-sec/cm2) and F(K) is a complex function of frequency which

describes the increase in viscous shear with frequency. Biot

(1956) gives an equation for F of

F(z) = 1 z tanh(z) (2-13)3 1 - -_ tanh(z)

z

where z = 1/2 K (2-14)

K a /2 (2-15)

Thus, < is a function of the duct. dimension, a, the dynamic

viscosity, i, the fluid density, p and the excitation

frpquency w. The friction force per unit volume of pore fluid, Di

from Eq1ation '-6, is given by *

D 2-r (2-16)..

Di 2a

Substitution of Equation 2-11 into 2-i6 gives

0"

0' ' "'' '

S



D a F(K) (2-17)

for the flat duct.

Flow conditions in the circular duct are pictured

schematically in Figure 2.2. In this case, a represents the
2

radius of the duct having a cross sectional area of ia2. Biot

(1956) gives the ratio of viscous shear force, 27raT, to the

average relative fluid velocity, Wai' as

2at = r8TPF (K) (2-18)W ai

For the circular duct,

F(K) 1 KT(K) (2-19)4_ .-L- T(K) " /-/'-,

-i77 -J

where K is given in Equation 2-15, with, a, now equal to the radius

of the circular duct and the function T(K) given by

T(K) = - 0 - (2-20)Jo (i 3/ K). i-".'-,

0

J0 represents Bessel's function for n 0 and is given by

2 4 6 9
(X) 1 - + + 2 (2-21)04 64 2304 " "--.[•

100...... ...... -- .--. . . . . -•...-.. . . . ..--..-'..



S

where x =i3/2 K (2-22)

The friction force per unit volume of pore fluid in the circular •

duct D. from Equation 2-8, is given by

D,- 2raT (2-23)
7ra

Substitution of Equation 2-18 into 2-23 gives

8S

D F (tc) ~(2-24)
a

for the circular duct.

Biot's Approximations for Viscous Shear

Biot (1962b) derived an approximation for the viscous ,

friction correction factor, F(K), for the case of a flat duct,

over a limited range of frequencies. An alternative derivation to

that used by Biot is presented h-re. For the flat duct, the

viscous correction factor is gi- . by Equation 2-13. If tanh(z) S

is expr-essed as

1z3 2 5'""
tanh(z) = z - z + z - .... (2-25) 6

ii 2 ( 2 25

U S .°



-- . L lli

then

z2 1 4 2 z6 { 2-26):"
z tanh (z) z - 1z + -2- - ....

and

1 1 2 2 4
tanh(z) = z - z + (2-27)

Substitution of Equations 2-14, 2-26 and 2-27 into Equation 2-13

gives an approximation for the flat duct of

2S

F = + (iK + (2-28)
15

20
when higher order terms above Ki are dropped. This agrees with

Biot's approximation. Biot indicates that the above approximation

is accurate to within 5% for values of frequency of

311 (2-29)" ' "
/S

a pf
f

and represents a rea3onable approximation of F(K) up to a

frequency of about

12-p
< 2 (2-30) .

ap

f2

For a pore size of a = .005 cm and water at. 15'C (p/pf = .013 cm 2 /sec)

Biot indicates that Equation 2-27 is accurate up to approximately

300 Hz. Mengi and McNiven (1977) determined that Biot's

12
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approximation given in Equation 2-27 is accurate even for the

abrupt stress changes at a wavefront.IQ

A similar approach can be used to obtain an approximation

of the viscous correction factor for the circular duct given by

Equation 2-19. Evaluating T(K) according to Equations 2-20 and

2-21 gives

1 1 3 1.5 JL T(,+) =-6 K - + .... (2-31)

Substitution of Equation 2-31 into 2-19 gives the approximation

for F(K) in the case of the circular duct of

F(K) 1 + (ic + (2-32)

24

when higher order terms above K are dropped.

biot (1956) indicates that there is an approximate

equivalence between the circular duct and the flat duct, when the
height of the flat duct equals 3/4 of the diameter of the

circular duct. Applying this equivalence to Equations 2-29 and
2-30 indicates that Equation 2-32 for the circular duct is

reasonably accurate up to frequencies of nearly twice that of a S
flat duct if the respective diameters and heights are equal.

The expressions for the viscous friction correction

factors from Equations 2-28 and 2-32 for the flat and circular
ducts respectively can be substituted into Equations 2-17 and

2-24 to give the friction force per unit vo].ume of pore fluid in

each type of duct. For the flat duct this yields

Di=- Wi + iK2W (2-33) ..-
ij..21a (

13
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and for the circular duct

D 2 -4
a 7aiK 2 (32-34).

As discussed previously, the actual relative velocity between the

skeleton and the pore fluid, Wi' is given by

W w. (2-35)

Substitution of Equations 2-35 and 2-15 into Equation 2-33 gives
the friction force per unit volume of pore fluid for the flat duct

as

* Pf.
D= - 73 T. + 5-n- iwi (2-36)

na

For an input excitation of frequency w, the excitation velocity

can be expressed as

- ic1t- .
w. = w. e (2-37)

3 .o . - .1

0
where wi i3 the amplitude of the excitation velocity.

Differentiating Equation 2-37 with respect to time gives the

apparent relative acceleration, wij as

W. = iC. i(w. (2-38)

Thus, Equation 2-36 for the flat duct can be rewritten as

14



3wii

Di+ -_i (2-39) 5
na

For the circular duct substitution of Equations 2-35 and

2-15 into Equation 2-34 gives 0

Di 8-wi +Of (2-40)
na

Finally, substitution of Equation 2-38 into 2-40 gives

D 8Vfwi (2-41)
3n 1

na

Even though Equations 2-39 and 2-41 were derived assuming

a single harmonic forcing function, it can be demonstrated that.

they should apply for any arbitrary excitation. Since any

arbitrary excitation function can be decomposed into an infinite
series of harmonic functions, each of these excitations can be

treated by the above equations and the total friction force
obtained by superimposing the contribution from each harmonic

excitation of the decomposed total input. .

Application of Darcy's Law

Biot's equations, based on thermodynamic theory, can be 0

related to Darcy's flow Law. Darcy's Law assumes that the flow

velocity is proportional to the hydraulic gradient. For an
arbitrary gradient, the equivalent permeability coefficients can

be derived analytically for both the flat and circular ducts. 9
These permeability coefficients can then be compared to Biot's

15
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flow equations. The advantage of incorporating Darcy's Law into

the Biot equations is that it permits use of parameters which are

readily obtained from laboratory tests. 0

The flow through a flat duct of length Z under the

pressure gradient p1 - p 2 is pictured schematically in Figure

2.3. The heignt of the duct is 2a and a unit width of flow is 0

considered. At an arbitrary distance, r, from the center of the

duct, force equilibrium conditions can be established as

dv 2
Yfhl(2r) - Yfh 2 (2r) + 4 -2r (2-42)

where Yf is the unit weight of fluid, hl and h 2 are the pressure-.

heads at either end of the duct, v is the dynamic viscosity and v

is the fluid velocity at distance r. The first two terms of
Equations 2-42 represent the pressure forces P1 and P 2 acting on
the area 2r at the left and right ends of the duct respectivel"

The last term is the viscous friction force acting along the tw

surfaces at a distance r from the centerline of the duct. "

Rearranging Equation 2-42 as

dv Z 2 4 ). iiii
Yf (h 1 - h 2 ) (2-43)

1 2-

and substitution of the hydraulic gradient i given by

hI - h2-.
1 2 (2-44) 9

into Equation 2-43 gives

16
A



dv = rdr (2-45)

integrating both sides of Equation 2-45 from o to r gives the

fluid velocity at the distance r as -.- -

i 0.•f i 2. . .
v f r + C (2-46)

At the duct wall the fluid velocity must drop to zero and S

C = a-- a (2-47)

Combining Equations 2-46 and 2-47 yields

Yf

V(2(2-48)

The average velocity in the duct, Va is defined as S

a

V 2 2f-Ir (2-49)Va A 2-a""
0 S

where Q is the total flow through the duct of area A (equal to

2a). Substitution of Equation 2-48 into the integral of 2-49 and

manipulation gives .

a2Yfa .i. 2-i

V 1 j (2-50)

""17
17 "[""'
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This is the actual average fluid velocity relative to the duct.

The duct represents only the pore volume of the soil. As

explained in conjunction with Equation 2-5, the actual discharge .0

velocity wi, or apparent relative fluid velocity, is given by

na y f
=nV = -aU (2-r1)

Darcy's Law states that

= ki (2-52)

where k the coefficient of permeability (cm/sec). From "_____

Equations 2-51 and 2-52 the coefficient of permeability for the .

flat duct can be expressed as

na Yf (2-53)

k = Y3 (2-53)

A similar procedure can be followed for obtaining the

average apparent flow velocity through a circular duct. This

solution, known as the Hagen-Poiseulle flow law is given by

2
na -yf

w. =i (2-54)

,- where a is the radius of the circular duct (e.g. Bowles, 1979).

From Equations 2-52 and 2-53 the coefficient of permeability for

the circular duct is given as

18



k naf(2-55)

Biot's equations for viscous friction (2-39 and 2-41) can now be

expressed in terms of the coefficient of permeability given in

Equations 2-53 and 2-55. For the flat duct,

Yf Pf
D = + w (2-56)

and for the circular duct

Y f P f ( 2 -5 7 )
D . k i + w (-

Note that in both of the above equations when the input

excitation frequency drops to zero the last term drops out and
i3iot's equations agree exactly with Darcy's Law.

Explicit Form of Biot's Equations

The explicit friction force terms from Equations 2-56 and

2-57 for the flat and circular ducts can be substituted into

Equation 2-10 for the pore pressure gradient giving

PS

for the flat duct, and

19

n a Y - -

....................................... ,...... .. .. ..



|S

S(I +31w + Pfýi + •- i (2-59)
ni 3

for the circular duct.

The inclusion of the explicit approximations for viscous

friction in Equations 2-58 and 2-59 is in the form of a viscous

shear given by Darcy's Law in the last term plus an added

increment of inertial resistance associated with the apparent .
acceleration of the pore fluid relative to the skeleton. For the

flat duct this increment is 1/5 and for the circular duct it is
1/3. The increment depends only on the pore shape and not the

size.

As discussed previously in the subsection on Biot's

equations, it was explained that the assumed flow paths in the

form of flat and circular ducts were a poor approximation of the

actual paths in saturated soil. In order to study the influence

of more restrictive flow paths, Equations 2-58 and 2-59 can be

generalized in the following form

Pf Yf.
= - (1 + r) + Pu + -k- (2-60)•'i n fI + k)w '.•

1 k

where r represents the additional inertia or mass increment

factor which is a function of the flow path geometry.

TPDAP FORMULATIONS

The results of the previous analytic development are
incorporated into the two phase finite element code TPDAP. Based - .

on the governing differential equation for the bulk mixture

20
S
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(Equation 2-7) and for the pore fluid (Equation 2-60), global

equilibrium equations for two phase media are established. These

global equilibrium equations are presented in discretized form in S

both the space and time domain. TPDAP uses either Newmark's -

method or Wilson's e method for time integration.

Notation

Positive signs are used for elongation and tension. A

comma denotes differentiation with respect to the subsequent a
indices and a superposed dot denotes time rate.

Gij total stress S

G 1effective stress

: pore fluid pressure -

Ui : solid skeleton displacement

w. apparent fluid displacement relative to solid

skeleton

..- :solid skeleton strain
13

: solid skeleton volumetric strain
V

sf fluid phase volumetric strain

{U} nodal solid skeleton displacement vector at the
e

element degrees of freedom

fwe nodal apparent relative fluid displacement 9

vector at the element degrees of freedom

21
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{T) : applied boundary traction ttota.. stress)

7T specified boundary pore tluid pressure

[q] : inverse of permeability matrix

[Dep] : elasto-plastic stress-strain natrix

n : porosity

Kw : bulk modulus of pore fluid

K : bulk modulus of solid graing

K : bulk modulus of soil/water mixtuire

P bulk mass density of mixture

Pf fluid mass density

Y : parameters of Newmark's g method

e : parameter in Wilson's 6 method

6ij :Kronecker's delta

•.. =O0 if i 9

6.. 1 if ij

r mass increment factor
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Field EquatLons in Two-Phase Dynamics •

Effective stress strainrei'v

by virtue of. Terzaghi's effective stress law, the total 0

stress is zxpressu,. -s the sum of the effective stress and the

.-ore w~ater pre;ssure

ij + 7. (2-61)=

Strain-displacement relation:

Under the assumption of small displacement theory,

ij= (uj + uj,i) (2-62) - .

Continuity equation:

Based on the conservation of mass, the coupled continuity

equation of flow, as derived by Kim (1982), is given by

di= (1 - n) dcV + nl r! ]f K .(2-63)

where

K q K./ w

K• + n K (2-64) .

md v mn. . -.
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Solid skeleton constitutive law:

do' d Ee (2- 5 -" -- ""
ij ijki ki .-

Equation of motion for the bulk mixture:

The differential equation of motion governing the bulk

mixture was derived earlier in this section and is expressed as

follows:

Soij,j PUi + PfW i (2-7)

Equation of motion for the pore fluid: . __

The generalized form of Biot's equation was given by:

(11 + r) w + pf i + w. (2-60)
n f -k- i

Equation 2-60 was derived under the assumption of isotropic

permeability. In an anisotropically permeable porous medium, the - "
coefficient of isotropic permeability, k, can be replaced by the

symmetric anisotropic permeability matrix, [k], given by

Scheidegger (1957) as

[k xxk xyk]X
[k] k L k k (2-66)
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And the generalized torm of Bliot's equation in anisotropically

permeable medium can be expressed as

Of...•: "

T ' -n- r) w+ fui + qij wi (2-67)

where

[q] (k]- Yf (2-68)

Discretized Global Equilibrium Equation .. -.

Two global equilibrium equations are derived, first in
terms of field variables and then discretized by the nodal variables.

The first equation equates the total i.nternal stresses

plus the inertia forces to the applied boundary tractions. . -.

Letting the solid skeleton movement be the virtual displacement,
6u, the following global equilibrium equation for the bulk .

mixture is established,

f{60T ofdv {6u)T{T)ds - f 6 u)T p{f)dv
V• V

- ]v 6 uiT Pf{ W dv (2-69)

f0
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where 6c is the virtual strain corresponding to the virtual

displacement 6u.

The second equation equates the applied pore pressure on the

boundary to the internal pore pressure plus the flow resistance

force plus the inertia force on thi pore fluid. Taking the .

apparent relative fluid movement as the virtual displacement, 6w,

the internal virtual work done by the pore pressure should be

equal to the external virtual work. That is,

(6Wii) T.7 dv = fIw)T wds - f sw1T[q]{w}dv

V fV " V

- f{w)T pf{U)dv - { (I + r) fiw)dv (2-70)

Field variables can be discretized into nodal values within the

finite element.

{u) = [N] {u)e -

{F.) = [B] {-uie

{w) = [N] {w-e

w. = {1-[B {G1e (2-71)

where {1) = < 1 1 1 0 0 0 >

Replacing the field variables in Equations 2-69 and 2-70

by the discretized nodal variables using Equation 2-71 gives the S

following global equilibrium equations at time step n;
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M Un t + E E Lun--... .

TMf] Tn [ [mE E] 0 H-E"'"ELW

s RfFnR + .- ..
n n- n-i

fG n n-1

or •

MU +DU + K AU =P -R (2-72)M n n n-1

where

m Z N]T =p[N]dv

M = JvN]T Pf [Ndv

Kt -- v[] [Dep] ]v ..

vBd
E = f [B]T[ {IKm T[B]v

RnI= . fv[B]T{o~n~l1dv 0

n-i = fv[B]T {1)n-dv "
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L 
-- , .- • - .

= fN]T {Thds 1

Mf[Nf j T p( [N]dvMf n P 
.<:[[-

H - j[N]T(q] [N]dv

G Ef. N 1T ^ dsGn v n-•- 
"

Now introducing Newmark's B method and Wilson's 8

method for time integration, Equation 2-72 can be expressed in

the following form;

K t AU P n(2-73)

where

_ 1

K t=K"+ -M+ D (2-74)

t 2, -
i:?: !i

T0
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and

p =p Rr + u-pu uj

n n n-1 2 n-1 \2 / n-iBT2

+ •.Y.. D - + • -2 (fln1  (2-75)

with = 0 At (2-76)
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Figure 2. 1. Schematic view of fluid flow in a flat duct -
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Figure 2.2. Schematic view of fluid flow in a circular duct
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Figure 2.3. Force equilibrium in fluid flow through a flat duct
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SECTION 3 -

TWO PHASE DYNAMIC ANALYSIS -

SATURATED POROUS ELASTIC SKELErON

INTRODUCT ION

The next two sections present a series of parameter

studies in which saturated two phase porous materials are

subjected to dynamic uniaxial loadings. These parametric

calculations, using the TPDAP code, were arranged so that the

influence of the various material and loading parameters on the

overall response could be isolated and analyzed individually.

Three different soil skeletons were modeled. In this section a

linear elastic skeleton was studied. In the following section a

bilinear hysteretic skeleton was modeled, followed by

calculations on an actual sand from Enewetak Atoll.

In this section three different loadings are applied; a

step (or Heaviside) loading pulse, a triangular loading, and a

fifth order simple polynomial loading. All loadings applied a

peak stress of 5 ksi. other parameters investigated in the

elastic calculations include a comparison between two phase and

total stress (one phase) analysis, the influence of mass

discretization techniques, the influence of Biot's additional

inertia term, and the influence of permeability, numerical

damping, and surface drainaqe conditions.
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CALCULATIONAL AND MATERtAL PARAMETERS 0

Loading Functions

The three 5 ksi loading time histories used in this 0

section are shown in Figure 3.1. The rise time for all loadings -

was 0.1 msec. The triangular and polynomial loadings had a

positive phase duration of 20.1 msec. The pressure decay of

polynomial loading is given by •

(tt - t
0

) ) 5
p(t) = Po 1(t3-

tI

where po is the peak pressure, t the time, tr the rise time, and
to the decay time. The total impulse under the polynomial

loading is one third of the impulse under the triangular loading. .

P'inite Element Parameters

All the calculations throughout this study used the

finite element mesh shown in Figure 3.2. The mesh consists of

200 elements with a total depth of 100 ft. The elements increase "

in thickness with increasing depth, starting with a thickness of _

0.2 ft at the loading surface and expanding to 0.8 ft at the 100

ft depth. A constant time step of 0.05 msec was used in all

calculations.

A number of parameters were standardized for the

calculations in this section. These were held constant in most -

of the calculations, except when the influence of varying any one

of these parameters was examined. The most suitable value of
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each parameter was not known beforehand; thus, the sensitivity to

each was examined as part of this parametec study.

In most calculations, the loading pressure function was

partitioned on the ground surface in proportion to the areal
ratio of the solid and tluid constituents. In other words, n% of

the total force on the loading boundary was applied to the pore
water and the remaining (I - n)% was applied to the soil

skeleton. For the porosity of 35% and peak stress of

5 ksi, the peak stress applied to the pore water at the loading

boundary was 1750 psi while the peak effective stress applied to

the soil skeleton was 3250 psi.

In the discussion of Biot's equations of Section 2, an

additional inertia term (Equation 2-60) was added to TPDAP to

account for the increased friction forces which develop at higher

frequencies. In most of the calculations in this section, r is 0

given a value of zero; i.e. there is no added friction force due
to relative acceleration between the skeleton and pore fluid.

The ocily friction force between the two is proportional to the

relative velocity and is given by Darcy's law.

For high frequency loadings, such as used in this study,

oftentimes oscillations develop at the wavefront. To minimize
the potential for oscillations, numerical damping was introduced

into most calculations in this section. In this study Newmark's
method for time integration was selected, with y = 1.2, which

results in relatively heavy damping. The corresponding value of

0.7225 calculated from . 1

h + 0.5) 4 ~~~(3-2) .['-
4

was used. 7
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Archer (1963) demonstrated that the conventional lumped : . .

treatment of mass in finite element calculations can result in

large errors when significant inertial forces are present. More
accurate solutions can be obtained by use of the consistent mass

matrix technique described by Archer, in which the matrix is

consistent with the actual distribution of mass in the medium.

The use of the consistent mass technique results in a symmetric

mass matrix rather than the simple diagonal mass matrix of the

* lumped mass approach. In most of the calculations in this study

the consistent mass technique is used.

Material Parameters

The material properties used in the linear elastic

analysis are summarized in Table 3.1. The skeleton properties are

representative of a uniform medium dense uncemented quartz sand.

The elastic moduli, Prom Blouin and Kim (February, 1984) are the

secant moduli at 1.5% strain, obtained from laboratory data on 5

typical sands. The undrained bulk modulus of the soil water

mixture, Km, is obtained from the Wood equation and represents

the modulus of the soil water mixture with no stiffness

contribution from the soil skeleton (for further discussion see

blouin and Kim, February 1984 and Richart et al., 1970). Based

on the Wood equation, a compressional wavespeed of 5161 ft/sec is

computed.

The simplest model for the composite undrained

compressibility of the saturated soil is the decoupled model

(Blouin and Kim, February, 1984). The decoupled model assumes

that the stress is resisted by the stiffness of the soil skeleton

* acting in parallel with the stiffness of the soil-water mixture

from the Wood equation. The resultant bulk and constrained

* moduli, Kd and Md, are simply the sum of the mixture modulus and

the bulk and constrained moduli of the soil skeleton

"" respectively. In the undrained case, the TPDAP continuity
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equation comb ned with Terzaghli's effective stress law results in

the decoupled modulus equations.

Transmitting Boundar_

In order to psrolong the calculation time available with

the mesh ot Figure 3.2, a transmitting boundary was employed on

the base of the botcom element. In establishing this boundary,

it was assumed that there was no relative motion between the

pore fluid and solid skeleton at the boundary. This condition is
expressed as

w. =0 (-)

where wi is the apparent fluid displacement relative to the soil

skeleton at the boundary. Thus, the saturated soil is assumed to

have no drainage at the boundary and the equations for the

undrained decoupled modulus of Table 3.1 apply. This implies

that beneath the boundary one phase total stress analysis is

valid, where the compressional wavespeed

Cpd= N (3-.4)Cpd

from Table 3.1 is used.

The above assumptions permit use of the transmitting
boundary developed by Lysmer and Kuhlemeyer (1969) where the

stress wave energy on the boundary is absorbed by dashpotq at the
element nodes. The total normal stress on the boundary, on, is

given by

PdC U (3-5)
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where un is the absolute velocity of the skeleton normal to the

boundary. In order for the energy dissipated in the dashpots to
just equal the energy in the compressional wave, the dashpot

constants are proportional to the undrained impedence pCpC.

Because there is relative motion between the skeleton and

the pore fluid, the above assumptions do not entirely eliminate

reflections frcm the boundary. Development of truly

non-reflecting boundaries for two phase media is beyond the scope

of this work. However, use of the above assumptions in the
elastic two phase calculations greatly reduced reflections from

the boundary.

HEAVISIDE LOADING

The Heaviside loading from Figure 3.1 was used in the

initial series of parametric calculations because it represented
a simple loading and permitted study of pore pressure dissipation

toward the ground surface.

One Phase Calculations

Two conventional one phase calculations were performed

under the Heaviside loading with mass discretization using the

consistent and lumped techniques. These are compared in Figure

3.3 in the form of pore pressure profiles at times of 2, 6, and

10 msec. The material properties from Table 3.1 were used, with

the moduli given oy the undrained decoupled moduli, Kd and Md.
The results of the one phase total stress calculations were
converted to pore pressure for comparison to the pore pressure

profiles obtained in the later two phase calculations.
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The total vertical stress, a in uniaxial loading is given
V6

by

% M = EMd (3-6)

where Ev is the vertical strain and Md is the decoupled

constrained modulus from Table 3.1. As described by Blouin and
Kim (February, 1984), the effective stress, ov', in uniaxial

loading is given by

as

I + a (3-8)

Ov V _ .. '

wrre ratio of the pore pressure to the total vertical stress in an

undrained uniaxial loading is obtained by solving Equation 3-8

tor 1T and substituting the values of total and effective stress
front Equations 3-6 and 3-7 into the ratio to give

(3-9)

cv
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Using the values of Md and M. from Table 3.1 gives the ratio as

= 0.892 (3-10)
V

Thus, the pore pressure profiles of Figure 3.3 were obtained by .. i.... 'o:.

multiplying the total vertical stress from the one phase

calculations by the ratio of pore pressure to total stress given

in Equation 3-10.

As demonstrated in Figure 3.3, there is no signifLcant

differenct. between the one phase calculations using the lumped

mass technique and those using the consistent mass technique.

Because the mesh used in these calculations is so fine, the

errors introduced by the lump mass technique into the one phase

calculation are negligible.

TWO PHASE CALCULATIONS

Lumped Mass vs. Consistent Mass Calculations

The initial set of two phase calculations under the

Heaviside loading compared the computed response using the lumped

mass technique with that of the consistent mass technique. In

contrast to the one phase results, there was a significant

difference between the two techniques in the two phase

calculations. This difference is illustrated in the stress

profile comparisons at 2, 6, 10 and 14 r.sec shown in Figure 3.4.

As discussed previously, the 5 ksi Heaviside loading is

applied at the surface and is partitioned between the soil

skeleton and the pore water at the loading boundary. For the

assumed porosity, 35% or 1750 psi is applied to the pore water
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and the remaining 65% or 3250 psi is applied to the solid

skeleton. Despite this partitioning at the surface, Figure 3.4

shows that within several feet from the surface the load is

redistributed between the two phases so that the pore water

carries about 90% of the total load, as specified by Equation

3-10 for the undrained condition. Because of the fluid friction
between the pore water and the skeleton, the stress distribution 0

applied at the surface is very rapidly transformed to that which
would result from an undrained loading.

The permeability of the soil skeleton permits flow of

pore water toward the surface. This flow results from the pore

pressure gradient between the high pressure in the undrained

region behind the wavefront and the 1750 psi pore pressure

applied at the ground surface. The pore water migration from the

high pressure region toward the low pressure boundary region

causes dissipation of the pore pressure. As the pore pressure

decreases, the intergranular or effective stress increases as the

skeleton compresses and assumes an increasing portion of the

total stress. At all depths, the sum of the pore pressure and

the effective stress equals the total stress. The pore pressure

dissipation advances downward from the surface with increasing -

time. The rate of advancement is a function of the permeability

and the pore pressure gradient as in the usual consolidation

process. At 14 msec, the pore pressure dissipation front has

reached a depth of about 15 ft.

At the wavefront in Fiure 3.4, the profile computed using "

the lumped mass matrix is considerably more smeared tha.r that

computed from the consistent mass matrix. In Equation 2-72 the
first matrix multiplication term

* .- .* **** *%* ~ *-% . .-. -'-..-• ,.**LM c Mf w n.'iiii
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expresses the inertial resistance of the bulk mixture and the

pore water. The inertial force vector for the soil water mixture

(Im} is given by

[s = Mm]{Un + [Me] {w 1 (3-11)
Mm n c n

and the inertial force vector for the pore fluid {IfI is given by

{Ifl = [McT {ZnI + f]{w I (3-12)

The consistent mass matrix includes all the mass (M) terms in the

above matrix. However, the lumped mass matrix includes only the

M and M terms in the above matrix. In addition, the lumped
m Mf

mass matrices Mm and Mf are diagonalized, which introduces an

additional error. The effect of neglecting the coupling mass

matrix term, Mc, drops the second inertial force term out of

Equation 3-11 and the first inertial force term out of Equation

3-12. In most problems the acceleration of the skeleton, un, is

nmuch greater than the relative acceleration between the pore .--.- ,

fluid and the skeleton, wn. In Equat.on 3-11, the coupling mass
matrix, Mc, is also smaller than the iass matrix for the mixture,

Mm. Thus, the second inertial force term is of relatively minor

importance. However, in Equation 3-12 thb coupling mass matrix

is associated with the relatively large skeleton acceleration; and

the contribution of this term is substantial.

The first inertial force term in Equation 3-12

corresponds to the second inertial force term, pf~i' in the

governing differential equation of motion of the pore fluid,r ~Equation 2-60. Inspection of Equation 2-60 shows that neglecting
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this term will significantly increase the apparent relative

velocity and acceleration, wi and wi, for a given pore pressure
gradient. This increased relative motion will result in

unrealistically high energy dissipation and smearing of the

wavefront as shown in Figure 3.4. In general, the lumped mass

technique is inappropriate for use in two phase dynamic analysis.

Comparison of One and Two Phase Calculations

The pore pressure profiles from the one phase calculation

using the consistent mass matrix are compared to those from the

two phase calculation in Figure 3.5. The pore pressure

dissipation near the surface in the two phase calculation is

clearly evident. At the wavefront the two phase calculation is

smeared considerably; however, this is not a result of numerical

smearing but is due to the dissipation of energy near the front

resulting from the relative motions induced between the pore

watar and soil skeleton. The effect is similar to that caused by

numerical damping, but in this case is a real physical effect.

* Influence of Mass Increment Factor

The final parameter examined in the Heaviside loading

calculations was the influence of the mass increment factor, r,

included in Equation 2-60. As explained in Section 2, r is a

factor which attempts to accou~it for frictional resistance

betwee, the pore fluid and skeleton in excess of the resistance

accounted for by Darcy's law. For Biot's evaluation of the

circular and flat ducts, the factor r depends on the shape of

the duct but is independent of the size. The value of r for the

circular duct is 1/3 and the value for the flat duct is 1/5.

Figure 3.6 compares pore pressure and effective stress
profiles for two phase calculations with r equal to zero and

r equal to 1/3. For an r of 1/3 there is a slight reduction in
"- the smearing at the wavefront. The additional frictional
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A
resistance due to the r factor results in somewhat reduced
relative motion and energy dissipation; a trend toward less

smearing of the wavefront as seen in the undrained one phase
calculation. As noted in the discussion of Section 2, the actual
pore shapes are far more complicated than the simple models used

by Biot, so realistic values of r ma" he much greater than those -

he derived. This is an area requiring further research.

TRIANGULAR LOADING

One Phas( vs. Two Phase Calculations

The triangular loading function of Figure 3.1 was used in

a second series of parametric calculations. With a rise time of

0.1 msec and a positive phase duration of 20.1 msec, this
pressure function more nearly approximates certain airblast

loadings. The first series of calculations using the triangular
loading pulse compared the pore pressure response from one and

two phase calculations as shown in Figure 3.7. in the one phase
calculation, plotted as a dashed line, the pore pressure rises -
rapidly to a peak which is followed by a linear decay which
mirrors the linear decay of the loading waveform. As explained
in conjunction with the one phase calculation for the Heaviside

loading, the pore pressure is obtained by multiplying the total
stress by 0.892 given by Equation 3-9. The solid line shows the

profiles from the two phase calculation. At the wavefront, there

is significant smearing compared to the one phase calculation
and some attenuation of the peak stress. Both the smearing and
additional peak stress attenuation are primarily due to the

energy dissipation associated with the relative motion between the

pore fluid and the skeleton. Note that there is also somc

attenuation of the peak stress in the one phase profile as the

wave propagates downward. At the surface the applied peak stress

is 4460 psi. At 14 misec and a depth of 68 ft, the peak stress

has attenuated by 9% to about 4060 psi. This stress attenuation
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in the one phase calculation is due to the numerical damping. The

additional peak stress attenuation in the two phase calculation

is due to dissipation by fluid friction. At 14 msec in the two

phase calculation the peak stress has attenuated by an additional

9% to a value of 3660 psi at a depth of 64 ft.

In the near surface region the two phase calculation

shows a decrease in pore pressure resulting from partial drainage

toward the surface. At 14 msecs the pore pressure dissipation

front has reached a depth of 13 ft, slightly less than that

observed for the Heaviside loading. This slower dissipation

front is due to the smaller pore pressure gradients under the

triangular loading. 2

Influence of Permeability

The second parameter examined in the series of triangular

loading calculations was the influence of permeability on the

material response. Figure 3.8 compares the pore pressure and

effective stress profiles at various times between a soil having

the standard 0.1 in/sec permeability and a soil having a

permeability of 0.001 in/sec. The higher permeahility is typical

of a coarse uniform sand of high permeability while the lower

value is typical of well graded sands of medium permeability.

There are significant differences between the two calculations

both at the wavefront and in the near surface region. As

expected, pore pressure dissipation toward the surface is

severely curtailed in the lower permeability material. At 14 msec

the pore pressure dissipation front has reached a depth of less

than 2 ft, compared to about 13 ft in the more permeable soil.

The wavefront in the lower permeability soil is

significantly less smeared than that in the higher permeability

soil. The lower permeability inhibits relative motion between

the pore fluid and soil skeleton at the wavefront, thus,

lessening the energy dissipation cffects due to fluid friction.
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Comparing the profiles for the two phase calculation in the low

permeability soil to the one phase calculation plotted in Figure

3.7 shows that the two phase calculation is nearly identical to

the one phase undrained case. Under the one dimensional linear

elast..c assumptions of this set of calculations, the one phase

calculation adequately models the response of this medium

permeability soil to the dynamic loading. "

Influence of Mass Increment Factor

The third parameter investigated in this series of

calculations was the influence of the mass increment factor r.

Under the Heaviside loading, use of an r value of 1/3,

corresponding to Biot's circular pores, had only a small

influence on the response at the wavefront (see Figure 3.6).

figure 3.9 compares the effective stress and pore pressure

profiles for calculations using r values of zero and one. An r
value of one was picked to accentuate the influence of r. There

is less smearing of the wavefront for the calculation using an r

of one, the difference being considerably greater than in the

previous comparison using an r value of 1/3. As was mentioned

previously, increasing the r value results in effectively

increasing inertial resistance in the pore fluid while reducing

the relative fluid motions. However, it is not known whether an

r of one is a meaningful value for this parameter.

Influence of Damping

The next parameter studied in the triangular loading

series was the influence ot the Y damping on the response of the

two phase material. A rather heavy Y damping of 1.2 was used as

the standard throughout most of this study. Figure 3.10 compares -

the pore pressure and effective stress profiles calculated using -.- .

the standard damping and no y damping, i.e. y 0.5. Behind the
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peak stresses, the two solutions are identical.. At the

wavefront, the undamped profile exhibits a sharp jump in pote

pressure, as compared to the more smeared increase in pressure in .
the damped case. At early time, the undamped stresses exhibit

oscillations just behind the wavefront. Beyond 10 msec (below a

depth of 60 ft), these oscillations no longer occur. Finally,

the smearing around the peak stress in the damped calculation is

duplicated in the undamped calculation, indicating that it is
indeed caused by the dissipation resulting from relative motion

between the two phases near the wavefront and is not associated

with numerical damping. .

Another comparison of the influence of damping is

illustrated in Figure 3.11 where the standard damping with y --

1.2 is compared to the response for a damping of 0.85, midway S

between the previous comparisons. There is little difference

between these two calculations. The 0.85 damping exhibits

slightly less smearing at the wavefront. In retrospect, very

little damping would have been required in the linear elastic .
analysis. However, hysteretic materials normally exhibit more

severe oscillations due to changes in material properties. In

such calculations heavier damping may be preferable.

Influence of Mass Discretization Technique

The effect of using the lumped mass technique in a two

phase triangular loading calculation is demonstrated in Figure

3.12. The results are similar to those for the Heaviside loading

which were discussed in detail in conjunction with Figure 3.4.

Use of the lumped mass technique causes heavy smearing in the

vicinity of the wavefront and is not suitable for use in these

two phase calculations (refer to the previous discussion for more

details).
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Influence of Surface Drainage Conditions

S
The sixth and final parameter investigated using the

triangular loading function is the influence of the surface

drainage conditions on the stress profiles. In the first portion ;.-

of this phase of the study, the triangular loading function was

applied with no drainage allowed at the ground surface. This

calculation is compared to th. standard case in Figure 3.13 where

drainage is only partially inhibited by the specified pore

pressure loading (i.e. the pore pressure equals 35% of the total .

applied load). The profiles for the calculations with no surface

drainage are plotted as dashed lines. This calculation was

performed by prohibiting relative motion between the pore water

and skeleton at the loading surface while applying the total load

to the ground surface. At the ground surface, the pore pressure

at the impermeable boundary is much higher than that on the

partially drained boundaL-y. Though the pore pressure builds up

very rapidly as the wavefrcnt moves away from the partially

drained boundary, the buildup does not quite reach the magnitude

of the pore pressure developed beneath t..e impermeable boundary. .-

Thus, the pore pressures near the peak are slightly higher in the

case of the impermeable loading boundary. Because of the

impermeable boundary, there is no pore pressure dissipation in
the near surface region in that calculation.

Comparison of the two phase calculation on the impermeable

loading boundary of Figure 3.13 with the totally undrained one

phase calculation of Figure 3.7 shows that in the near surface

region the pore pressure response in both calculations is nearly

identical. At greater depths, however, the response of the two

phase calculation near the wavefront matches that of the drained
two phase calculations.

Figure 3.14 shows a comparison between the pore pressure

and effective stress profiles for partially drained and fully

*drained conditions at the loading boundary. In the partially
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drained standard calculation, 35% of the total load is applied to

the pore water. In the fully drained calculations, the total_-

load is applied on the soil skeleton, thus maintaining zero pore
pressure at the loading boundary. In both calculations, the pore

pressures increase very rapidly with depth and are nearly equal

at the wavefront at all the times shown.

It is concluded from the results of the calculations

shown in Figures 3.13 and 3.14 that wave propagation in two phase
media is quite independent of the loading and/or drainage

conditions assumed at the ground surface. This is a fortunate
effect because the actual partitioning of the loading pressure
between the pore water and the soil skeleton on the surface is

difficult to assess.

POLYNOMIAL LOADING

Two parametric calculations were performed using the

linear elastic properties of Table 3.1 and the simple fifth order .-..

polynomial pressure loading shown in Figure 3.1 The loading has
a 0.1 msec risetime and a decay described by

p(t) = 1 rt (3-13)

p 0

where the peak pressure, pot is 5 ksi, t is the time, t the rise
o r

time, the decay time, to, is 20 msec, and the decay exponent, m,.-

is 5. This loading function closely approximates many explosively

generated airblast loadings with their rapid early time pressure
decay. As noted previously, the impulse under the fifth order

loading is 1/3 of the impulse under the triangular loading used
in the previous set of parametric calculations.
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One Phase vs. Two Phase Calculations

Results of one and two phase calculations using the fifth

order polynomial loading are compared in Figure 3.15. As in the

previous studies, the one phase total stress is multiplied by 0.892

from Equation 3.10 to obtain the pore pressure under the------

assumption of no drainage. The two phase calculation used the

standard load partitioning, with 35% of the total pressure (1750

psi) applied to the pore water. Attenuation of the sharp peak in

the polynomial pressure loading function is more rapid than that

observed for the triangular loading. At 14 msec the peak pore

pressure from the one phase calculation has decayed from 4460 psi

at the surface to 3180 psi at the 70 ft depth, a decrease of

nearly 29%. This is much larger than the 9% drop observed in the

corresponding triancular loading calculation. The greater

attenuation is due to numerical damping of the much steeper

pressure decay from the peak. Use of less y damping would have

minimized this attenuation.

The two phase pore pressure profile, shown as a solid

line in Figure 3.15, is significantly more smeared and attenuated

than the one phase pore pressure profile. This is similar to the -

effects observed in both the Heaviside and triangular loading

cases. The peak pore pressure in the two phase calculation at 14

msec is only 2500 psi, 44% less than the surface peak pore

pressure. The additional 15% drop in pressure is due to the

fluid damping associated with the relative motion between the ...

pore water and the soil skeleton. In the triangular loading

calculations, the additional attenuation due to the fluid damping

was 9%. The diCference indicates that the fluid damping is

sensitive to the frequency of the loading function, being more

severe for steeper pressure gradientss.

50
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Polynomial vs. Triangular Loadings

Figure 3.16 compares the pore pressure and effective

stress profiles from the standard two phase calculations under

the polynomial and triangular loadings. The initial rises in

pore pressure and effective stress are identical in the two

calculations. However, the more severe numerical and fluid

damping cause both the pore pressure and effective stress under

the polynomial loading to attenuate more rapidly than those under

the triangular loading. The shape of the loading functions and

the attenuation characteristics result in an apparently more

rapid propagation of peak stress under the polynomial loading

than under the triangular loading. At 14 msec the peak stress is

at a depth of 70 ft under the polynomial loading but has reached

a depth of only 63 ft under the triangular loading.
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Table 3.1. Material parameter's used in linear elast.ic
calculations.

0

MATERIAL PROPERTIES

(typical values)

Porosity

n= 0.35

Specific gravity of solid grains (quartz) .6
G = 2.67

S

Permeability

k = 0.1 in/sec

Unit Weight

3
= I2. b/ft3Pore water oYw 3 24 

.".i
Bulk mixture yt = 130.1 lb/ft -

Modulus

Skeleton bulk modulus K = 50,111 psi
s

Skeleton shear modulus C = 30,067 psi
S

Skeleton constrained modulus M = 90,200 psi

Skeletcn Poisson's ratio = 0.25
S 6

Water bulk modulus K - 0.29 x 10 psi
W "6

Solid grain bulk modulus K = X 10 psi
g

Mixture undrained bulk K K 6
modulus (Wood equation) K K g K -- 0.748 x 10 psim K+n(Kg - Kw) .

w g w
Decoupled undrained bulk 6
modulus K K + K =0.798 x 10 psi

d m s
Decoupled undrained 6

constrained modulus Md K + M = 0.838 x 10 psi
52
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Table 3.1. Material parameters used in linear elastic
calculations (concluded).

P-wave Spee d

Water c - 4641 ft/sec 0pw -- .

Skeleton C 1583 ft/sec
Ps

14ixture (undrained) C = 5161 ft/sec 0

Decoupled (tzdrained) Cpd 56f/s

53
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Figure 3.2. Finite element mesh
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I SECTION 4

TWO PHASE DYNAMIC ANALYSIS-

Rischbieter et al., (1977) and other investigators

hypothesized that liquefaction could result from one dimensional

I ~loadings of saturated soils having hysteretic stress strain

*response. An analytic formulation of this hypothesis was

developed by Blouin and Shinin (1983) which illustrates the

*liquefaction mechanisms using simple hysteretic material models.

P ~The TPDAP code combines these mechanisms with the capability of S

* handling realistic material properties to model wave propagation

in continuous two phase media. TPDAP permits the study of

liquefaction using realistic loadings and in situ material

prof iles. 0

In this section, a brief description of the liquefaction

A mechanisms discussed above is presented, followed by application

- ~ of TPDAP in preliminary studies' of blast induced liquefaction in -

two material types. The first is a simple bilinear hysteretic

1.. 70 .
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LIQUEFACTION MECHANISMS

The analytic two phase model developed by Blouin and

Shinn (1983) treats the stresses and deformations in the soil

skeleton as separate entities during compression wave loadings

and unloadings. Since granular soil skeletons are hysteretic, .

expansion of the skeleton during unloading will generally involve

only a portion of the volume change which occurred during the

compressive wave loadings. During both loading and unloading,

however, the pore water behaves elastically. On unloading, the

pore water may continue to expand elastically after the skeleton

has reached zero effective stress. At this point the expanding

pore water will, begin to carry the soil particles into suspension

and the material will be in a state of liquefaction. Following

liquefaction, the soil will consolidate into a more dense state
than originally, with the excess pore water pushed upward into

overlying unsaturated layers or onto the ground surface. The

rate of consolidation will be governed by the amount of excess S

pore water (i.e. the extent of the zone of liquefaction and the

degree of liquefaction) and by the permeability of the liquefied

material itself and the permeability of any overlying non-

liquefied material. .

A crude model depicting both the soil skeleton and the

solid/water mixture during uniaxial strain loading and unloading

is shown in Figure 4.1. Loading of the soil skeleton occurs
along a hilinear path and unloading along a steeper linear path.

The initial portion of the loading curve, represented by the

loading modulus Ml, is assumed to be elastic and is limited by the

maximum strain cge' or the corresponding effective stress o' e In-.ge -e-
instances where the elastic limit is not exceeded, the skeleton

will unload along the loading path and there will be no inelastic

volume decrease in the soil skeleton. The elastic portion of

the loading curve can represent either a cemented soil or simply

a short elastic portion of the loading curve commonly evidenced

71
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during field tests known as the seismic or elastic toe. Beyond

the elastic strain limiit r ge' the skeleton is no longer elastic and
loads at a modulus M2 , and unloads at a much stiffer modulus Mu.

According to Terzaghi's effective stress law, the total

stress, a, applied to an increment of saturated soil will be

carried by the pore water pressure, Tr, and by the intergranular
stress, a'g, within the soil skeleton. The pore water pressures
may exceed the intergranular stresses by an order of magnitude.

In order for liquefaction to occur upon unloading, two conditions
must be met. The first is simply that the elastic strai-i limit
in the soil skeleton must be exceeded during loading to the peak

dynamically applied stress a0p Otherwise, both the soil skeleton
and pore water will unload elastically and no excess pore

pressures will be generated. Figure 4.1. depicts deformantion in
the skeleton and soil-water mixture at depth d where the initial

eftective overburden stress is a' gd and the initial pore pressure

is 7d Note that the in situ strain in each case is taken as
zero and that stresses are measured from the in sit u conditions.
The first condition for liquefaction is satisfied when the strain

in the soil skeleton exceeds the elastic limit c ge If no

relative flow between the pore water and skeleton is assumed,

then the strain in the solid/pore water mixture equals that in
the skeleton. Upon unloading, the stiff skeleton unloading

modulus results in a rapid drop in effective stress until it
reaches zero at the strain cgo" At this point, the skeleton
has lost all strength and reaches the liquefied state. Unloading

continues until the stress in the soil-water mixture reaches the

effective overburden stress a'gd at the strain £mr Between
strains £go and £mr, the expanding pore water tends to carry the
soil particles into suspension. Finally, as the particles 0

reconsolidate, the pore pressure gradually drops from a' back to
gd

its original value d""
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BILINEAR MODEL

The triangular loading pulse from Figure 3.1 was applied

to a saturated material having bilinear load-unload 0

characteristics. All properties of the skeleton are the same as

those used in the previous section, given in Table 3.1, exceot

the unloading moduli are taken as three times the corresponding

loading moduli. Thus, hysteresis is introduced into the material 0

skeleton with a strain recovery ratio of 1/3.

The results of this calculation are plotted as a solid

line in Figure 4.2. The effective stress and pore pressure

profiles at four times, from 2 to 14 msec, are compared to those

from the corresponding calculations using the linear elastic

model. At 2 msec there is no apparent difference between the

calculations. At later times, however, the different unloading

slopes affect the response behind the stress peaks. This effect

becomes more pronounced with increasing depth and time. As

explained in the previous subsection, during unloading the
bilinear skeleton will tend to recover only 1/3 of the loading

strain, and the skeleton stress will drop proportionately faster.

For a totally undrained loading using this set of bilinear

properties, the effective stress would be expected to drop to

S1P zero about 1/3 of the way into the unloading. At 14 msec the

effective stress in Figure 4.2 drops to zero at a depth of about

" 22 ft, at approximately 1/3 of the way into the unloading. At

this point, the soil particles would tend to begin separating and

a state of liquefaction would exist. In thig bilinear

calculation, however, tension is allowed to develop in the soil

skeleton, so the post-liquefaction process is not accurately

depicted.

73
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because of the hysteresis in the bilinear skeleton, the -

effective stress drops faster during unloading than the effective ':

stress in the elastic case. The pore pressure behind the

wavefront in the bilinear material drops less rapidly than the -'

pore pressures in the linear material, compensating for the more

rapid effective stress drop in the bilinear soil. The total

stresses are about equal in both calculations.

The inelastic behavior of the skeleton also causes -

additional energy attenuation due to the hysteretic material

damping. Careful examiration of the 14 msec profile in Figure

4.2 shows that the total stress behind the wavefront is lower in

the bilinear material than that in the elastic case. This 6

difference evidently results from the hysteretic damping.

Figure 4.3 is an expanded view of the bilinear effective

stress and pore pressure profiles at 15, 16 and 17 msec. A zone

of etfective tensile stress is developing at these later times.

This zone extends from a depth of about 14 ft to a depth of 40 ft

at a time of 17 msec. This developing tensile zone is indicative

of liquefaction, but because tensile stresses are allowed to

develop in the skeleton and because there are no gravitational

stresses in this calculation, it does not realistically model the

liquefaction process.

ENEWETAK SAND.

The final set of parametric calculations undertaken in

this study examines the response of saturated sand from Enewetak

Atoll. The skeleton properties are taken from laboratory data

reported in the second volunie of this study by Blouin, Martin and

McIntosh (1984). The sand is a uniform carbonate beach sand with

a mean grain diameter of about 0.5 mm and a porosity of 45%.
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Properties selected for this sand are shown in Figure 4.4. The

loading modulus is a stepwise approximation to the actual

constrained compression data from test 12. The unloading modulus ®R

is expressed as a function of peak stress according to

M= 3470 'am (0.651) (4-1)

where a' am is the maximum previous axial stress expressed in psi.

As indicated by the data, the unload modulus becomes continually B

stiffer with increasing peak stress. . . . -

Three uniaxial strain calculations were performed on the

saturated Enewetak sand. All used a triangular loading with

duration and risetime as specified in Figure 3.1. The peak

stress in the first two calculations was 50 ksi and the peak

stress in the last calculation was 5 ksi. Unlike the bilinear

calculations, tensile stress was not allowed to develop in the .

Enewetak sand. Whenever the effective stress dropped to zero,

the skeleton had no strength and the modulus dropped to zero.

50 ksi Peak Stress

The two 50 ksi calculations examined the influence of the

surface drainage conditions. Neither calculation included in

situ stresses due to gravity. In addition to the usual effective

stress and pore pressure profiles, motion and stress time

histories at selected depths are also presented. Figure 4.5

shows the stress profiles from the two calculations at 2, 6, 10

and 14 msec. Because the skeleton modulus of the Enewetak sand

was considerably lower than that of the previous skeletons

analyzed in this study, the effective stress profiles are

expanded by a factor of ten in Figure 4.5 to afford better

definition. The most significant feature of both sets of

75 0
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effective stress profiles is the development of a large zone of

liquefaction behind the wavefront. By 14 msec this zone extends

from the surface to a depth of 42 ft.

There is little difference between the profiles for the

two different surface drainage conditions. The partial surface

drainage condition was attained by partitioning the airblast 0

loading between the pore water and soil skeleton in proportion to

the porosity. Thus, 45% of the total load was applied to the

pore water and the remaining portion to the soil skeleton. In

the calculation with no surface drainage, relative 0

motion between the soil skeleton and pore water was prohibited at

the loading boundary. As was also observed in the linear
elastic analysis, the surface stress distribution is rapidly

repartitioned so that the undrained surface loading profile is s

approximated within a very short distance beneath the surface.

In other words, the surtace load partitioning/drainage conditions

affect only the very near surface response. The overall response

is insensitive to Lhe assumed surface drainage conditions.

Time histories of the response of the soil skeleton at a

depth of 10 ft are shown for both the partial surface drainag-

and no surface drainage calculations in Figure 4.6. The top time "

history compares the effective vertical and horizontal stresses

from the two calculations, and the remaining time histories

compare the displacement, velocities and accelerations. As
mentioned in the above discussion of the stress profiles, the

influence of surface drainage is small. According to the

effective stress time histories, liquefaction occucs at the 10 ft

depth shortly after 6 msec. The peak vertical effective stress

in the skeleton is approximately 1400 psi and the peak horizontal
effective stress, controlled by the Ko value of 0.5, is about 700

psi. Thus, the peak skeleton stress at this depth is only 2.8%

of the 5U ksi peak loading stress. Since so little stress is

carried in the skeleton, the influence of the liquefaction on the -

overall skeleton motions during the constrained dynamic loading

76

.. " -. o ... _ .



is negligible. However, it should be noted that the material in
the liquefied condition no longer has any shear strength. This

can result in very large mass movements at late times under

gravitational or other loadings whenever nonunifoum stress fields

exist.

The corresponding pore pressure time histories and

apparent relative fluid motions between the pore water and soil

skeleton at the 10 ft depth are plotted in Figure 4.7. As

described in the theoretical discussion of Section 2, the

apparent relative fluid motion equals n times the actual relative .

motion where n is the porosity. In the Enewetak sand, the actual

relative motions between the particles and pore water is 2.2

times the apparent values. The pore pressure time histories

resemble the triangular loading pulse. Peak pressures are about

43 ksi, over 30 times higher than the peak vertical stress in the

soil skeleton at this depth. The displacement time history . -

indicates that the pore water moves downward relative to the soil

skeleton during the dynamic loading. The peak magnitude of --o

apparent relative displacement is approximately 0.9 in and occurs

just after 6 msec, which also is the time at which liquefaction

occurs.

The velocity time histories indicate a sharp downward

velocity relative to the soil skeleton at the wavefront. The

peak apparent relative downwara velocity is about 47 ft/sec and

the actual peak relative velocity is about 103 ft/sec. This

occurs at 2.4 msec. It compares to a peak downward velocity in

the soil skeleton of approximately 325 ft/sec, though this peak

is reached somewhat later at about 4 msec. The apparent relative

velocity decays rapidly from its peak value and levels off at
about 4 ft/sec by 5 msec. Just after 6 msec, at the time of

liquefaction, the velocity suddenly reverses direction and

becomes stable in the upward direction with a magnitude of 5

ft/sec. This reversal is evidently associated with the
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liquefaction. The reversal in velocity controls the time of peak -

in the apparent relative displacement time history. .

The apparent relative acceleration is initially downward . -

wit-h a peak value of about 2700 gs. This compares to a peak

skeleton acceleration of 14000 gs. The apparent relative

acceleration quickly reverses at 2.4 msec and reaches a peak

deceleration of about 900 gs at 2.8 msec. It then tapers off to

near zero slightly after 5 msec and registers a small negative

value at the time of liquefaction.

Figures 4.8 and 4.9 present stress and motion time

histories for the 50 ksi triangular loading at a depth of 20 ft

for the undrained surface loading condition. These waveforms are 0

similar to those at the 10 ft depth of Figures 4.6 and 4.7. As

shown in the effective stress time histories of Figure 4.8,

liquefaction occurs at 8.4 msec at the 20 ft depth. The peak

apparent relative velocity between the pore water and the -

skeleton is 41 ft/sec at this depth and the peak apparent

relative acceleration is about 1700 gs. As was the case at the

10 ft depth, the relative velocity reverses at the time of'-

liquefaction indicating that the pore water begins to move upward

relative to the soil skeleton.

5 ksi Peak Stress

The effective stress and pore pressure profiles as

functions of time and depth for the final Enewetak sand

calculation are presented in Figure 4.10. The applied loading -

was the 5 ksi triangular pulse from Figure 3.1 with no surface

drainage permitted at the loading boundary. In this calculation

gravitational stresses were included on both the soil skeleton

and the pore water. The initial in situ effective stress is

apparent in all the profiles, where the effective stress .

increases linearly with depth and at 100 ft equals 43 psi.
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Coincidentally, the pore pressure under the gravitational loading

also is 43 psi at that depth. Because the effective stress

profiles are magnified by a factor of I0 compared to the pore

water pressures, the 43 psi pore pressure is barely noticeable in

the scale of Figure 4. 10.

Several differences are apparent between the 5 ksi .

loading profiles of Figure 4.10 and the 50 ksi loading profiles

of Figure 4. 5. At 10 msec the peak effective stress in the 5 ksi

case is only about 1.6% of the peak pore pressure. In the 50 ksi

loading at this time, the peak effective stress is about 3.6% of S

the peak pore pressure. The significantly greater portion of the

total stress carried in the pore skeleton under the 50 ksi

loading is due to the increase in skeleton modulus with

increasing strain indicated in the skeleton properties of Figure

4.4. Under the 50 ksi loading the skeleton strains are

proportionally higher than those under the 5 ksi loading; thus,

the increasingly stiff skeleton modulus at these higher strains

results in a relatively greater portion of the total stress

distributed to the skeleton.

Another difference observed in Figure 4.10 is the
increase in dynamic peak effective stress with increasing time

and depth. This is in contrast to the decreasing peak effective

stress in the 50 ksi loading. Here the difference is due to the

application of the gravitational effective stress in the 5 ksi
case. With increasing depth, the initial in situ effective

stress increases and the skeleton, in essence, becomes stiffer

with increasing depth. Thus, for a given peak total stress
level, the portion of the total stress carried in the skeleton I
would be less at shallow depths than it would be at deeper depths.

tiowever, because peak stress attenuates with increasing depth due

to hysteretic and tluid damping, the net change in peak effective

stress depends on the summation of these two effects. In this

case, the net result is an increase in effective stress with

increasing depth.
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In the 5 ksi loading calculations with gravitational

stresses, the soil also liquefied during unloading from the peak '

dynamic stress. As shown in Figure 4.10, at 14 msec the soil is

liquefied from the surface to a depth of ahout 36 ft. This is

somewhat less than the 42 ft depth of liquefaction shown in

Figure 4.5 for the 50 ksi load at 14 msec.

Effect- stress and skeleton motion time histories at

the I0 ft and 20 ft depths for the 5 ksi. loading are shown in

Figur'e 4,11 and 4.13 respectively. The pore pressure and

apparent relative motion time histories for the 10 ft and 20 ft

depths are shown in Figures 4.12 and 4.14. The waveforms in

these examples are similar i:o thiose preserif.eO ir. the

corresponding Figures 4.6 througn 4.9 for tn', 50 ksi loading.

The marnitudes are corresponlingly lcwer for the 5 ksi loading.

The only signifi::ant difference oppears to oe that the, apparent

relarive velocity of the pore water beco:nes negative relative to

the skeleton prior *o liquefaction in the 5 ksi case. Thus,

velocity reverses gradually during the initial unloading rather

than abruptly at the time oL liquefaction.
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SECTION 5 S

SUMMARY AND CUNCLUSIONS

The dynamic response of saturated porous media is

examined undel uniaxial loadings. The material models used in

this study become increasingly more sophisticated culminating .

with an actual saturated sand from Enewetak Atoll. In Section 2,

the theoretical background and numerical code, TPDAP, used in

this study are described. The governing differential equations

ot motion for the bulk soil-water mixture and the pore tluid are

derived. 13iot's fundamental analytic work describinc the

behavior of saturated porous media is reviewed and summarized.

His differential equation for relative fluid motion is
generalized by inclusion of the mass increment factor r of .

equation 2-60 which accounts for additional friction force

resulting from relative acceleration between the pore water and
soil skeleton. Riot derived values of r for two simple assumed
pore geometries but actual values of r for real soils have not .-- -

been determined. Values of r for soils should be obtained

through a combination of further analytical studies and

laboratory investigations. The latter portion of Section 2

presents the tinite element formulations used in the TPDAP two -

phase dynamic analysis program.

Section 3 presents the results of dynamic uniaxial

loadings of saturated porous media having a linear elastic ,

skeleton. An analysis of these results produced the following

conclu sions:

95
S .- i



Use of lumped mass discretization techniques are not 0

suitable for two phase dynamic analysis. Instead,

consistent mass techniques are recommended;

S Surface drainage conditions and/or partitioning •

of the applied load between the pore fluid and

soil skeleton only influence the dynamic response

in the immediate vicinity of the loaded boundary.

Below this zone, the dynamic response is .-

essentially independent of the assumed loading

distribution and boundary drainage conditions. To

avoid undesirable numerical oscillations caused

by large stress gradients, use of an impermeable

loading boundary is generally recommended;

* Relative motion between the pore fluid and soil

skeleton near the wavefront creates fluid 0

frictional dissipation which tends to smear the

wavefront and attenuate the peak stress. These

effects are a function of permeability and pore

geometry as represented by the mass increment .

factor, r. As permeability decreases, the dynamic

response approaches that obtained using an equiv-

alent one phase analysis. As r increases the rel-

ative motions decrease and the dynamic response 0

approaches that of an equivalent one phase loading.

Values of r of 1/3 and 1/5, derived for the

simplified cii-cular and flat pore genmetries,

had a negligible intluence on the overall dynamic 9

response in these calculations. Larger values

of r which may be representative of real soils

could have a significant influence on overall

response;
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Fluid damping results in more rapid stress

attenuation under loadings with more rapid

pressure decays;

* Artificial numerical y damping eliminated high

frequency oscillations, but smeared the wavefront

at the toe. Minimal artificial damping would have

been required in thesp elastic cal'ltions.

In Section 4, dynamic uniaxial loadings were applied to

saturated porous media having a bilinear hysteretic skeleton and

the skeleton properties of Enewetak sand. Principal con-

clusions and observations include:

Liquefaction occurred in the calcilations using both

the bilinear and Enewetak hysteretic soil .skeletons

during the unloading portion of the dynamic response. S ..

Liquefaction resulted from non-recoverable strains

induced in the skeleton during loading.

* The TPDAP two phase code provides a powerful tool for

studying wave propagation in two phase materials.

It permits detailed examination of dynamic material

response including pore pressure, effective stresses,

skeleton motions and relative fluid motions at specified

points in time and space. B~ased on the relative fluid

motions, pore water migration and flow rate can be

computed.

* Relationships between pore pressure, effective stress,

skeleton motion and relative motion between the pore

fluid and skeleton were examined in the calculations of

the Enewetak sand. During loading, motion of the pore

fluid relative to the skeleton is in th• 6irection of

97
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L

the wave propagation. During the unloading, the relative

velocity rapidly decreases and has reversed by the time

of liquefaction so that relative motion is opposite to 0

the direction of propagation.

In situ gravitational stresses can result in an '.
increase in dynamic effective stress during loading

with increasing depth and time. The occurrence

of such an increase is dependent on the stress

strain properties of the soil skeleton and the

attenuation characteristics of the soil.
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