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SECTION I
SUMMARY

1- INTRODUCTION

This is the final report on the work in *complexity. "
testability, and fault analysis of digital, analog, and 9
hybrid systems" carried out on ONR Contract
N00014-78-C-0311. This work was performed by Drs. R. C.
Gonzalez and M. G. Thomason at the University of
Tennessee. Knoxville- and by Dr. B.M.E. Moret initially at
the University of Tennessee, Knoxville, and subsequently at
the University of New Mexico, Albuquerque. Other pop
individuals were also involved for short periods of time-
The research has produced significant theoretical and
practical results which have appeared in technical journals
and technical reports.

The research was divided into two major areas: discrete
mathematical descriptions of aspects of digital, analog, and
hybrid systems useful in the study of complexity and fault
-analysis.; and techniques for measuring parameters to
characterize certain aspects of such systems. In this
summary section- we give an overview of the various results.
Sections II through VII contain compilations of the articles
and reports resulting from this work. The material in these --
sections is orqanized in the same order as the discussion in ..
this summary section.

0.:.:,:

S : :,

ft.>.::

...................................................



2

2. DECISION TREES

I

Early in this work, decision trees and equivalent
expressions were adopted as the discrete mathematical
representation of functions for detailed study. There is a
one-to-one correspondence between a tree for a discrete
function and an expression for the same function; hence,
one can select the representational form which is better
suited to the manipulation required in any specific case-
For instance- a fault tree for a digital. analog, or hybrid
system is -a concept widely used to represent the
interconnections of subsystems as a directed graph which
clearly illustrates the hierarchical decomposition into
major subsystems, then minor subsystems, then individual
components; but the equivalent fault expression is often
easier to manipulate when one wants to determine the
criticality of a subsystem or estimate the total system's
reliability as based on subsystem or component-level
calculations.

The initial work on decision trees was carried out as Dr.
eoret's PhD research at the University of Tennessee and has
continued with a focus on the area of fault trees. The
major results are these four contributions:

i a generalization of decision trees to simple
recursive functions through a process of composition which
allows functional as well as hierarchical decomposition of
systems, including systems with feedback;

ii) a characterization of the complexity of testing
certain classes of Boolean functions, which has implications
in logic design and programming;

ao iii) a study of the "activity" of a variable as a
generalization of Chow parameters with close connections to
Boolean differences, which is a useful tool in assessinq
subsystem importance and designing test sets l

( iv) an extension of Boolean difference techniques to
the analysis of time-dependent systems with applications to
common-cause analysis.

• ,- -S.

Decision trees are a natural model of the sequential
orevaluation of discrete functions where, at each node, a b

variable is evaluated and a decision (to output the
functional value or to look at another variable) is made.
Such a model is effective for Boolean functions as well as
more general, multivalued functions because it is a compact

C.6
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representation with an inherent ordering of variables for
evaluation.

Since the number of tree forms for a given discrete function
has an exponential dependence on the number of intrinsic
variables, the complexity of optimizing decision trees with
respect to several criteria was examined in detail and
reported in Moret [19801 and Moret et. al [1981a, 1981b].
A specific measure on discrete functions. called the
activity of a variable, was defined and shown to be closely
related to the evaluation cost of decision trees for the
function [Moret et al. 19801. The activity of a variable
is a generalization of concepts developed in the framework
of Boolean functions. such as Chow parameters and Boolean
differences (cf., Moret et al. (19801), all of which are
valuable analytical tools in studies of the importance of
subsystems in the overall system operation and the
suseptability of total istem failure to the failures of
individual subsystems.

The activity of a variable also finds application in system
testing. In particular. exercising those variables having
the hiqhest activities maximizes the probability of error
detection in systems with equally likely faults. Moreover. --

the concept can be extended to sequential functions by
considering the long-term, steady-state distribution of
system states. so that tests can be designed to reflect
average or normal operational modes. Finally, the activity
is similar to previously used measures of subsystem
criticality or importance; however, the activity measure
readily generalizes to multi-valued models--a significant . . -

advantage where analog and hybrid systems are concerned.

Some results were obtained for proper subsets of the Boolean
,functions. It was shown that all symmetric and threshold
Boolean functions have worst-case (i.e., total variable)
testing complexity. Since these functions are commonly
encountered in fault modeling, logic design. and pattern
recognition- this result provides information useful in
these fields. The result appears in Moret et al. [19831.

It should be noted that adopting decision trees rather than
more conventional forms of discrete functions led to a
unified framework in which several previously disconnected
results were seen to fit together. Dr. Moret's survey
article [Moret, 19821 has been used by practitioners in a
variety of fields, including engineering and scientific
disciplines, and has been cited frequently.

. .. ..
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3- FAULT TREES

The most recent work has concentrated on fault trees as a
special usaqe of decision trees as system models with
emphasis on reliability and testing. A digital, analog, or
hybrid system is modelled as a confiquration of basic
components. each of which is either working or faulty (as
defined by the value of a Boolean state variable); the 9
confiquration, in turn, is described by higher-level
subsystem functions. and ultimately by the overall system
function (the value of which is the "top event" state in
that it indicates usystem workingO or "system failed"). A
fault tree itself is a logic-operation realization of this
system function.

Such trees are widely used in areas in which very complex
systems must be analyzed, for example. in the aircraft and
nuclear power industries. However. as usually developed,
fault trees do not account for time-dependent system
reconfigurations or for non-binary component behavior (eg.,
partially working and satisfactory for some but not all.
configurations). In order to extend the applicability of
the fault tree concept, Moret and Thomason have extended an
idea of Thomason and Page [19763 in using time-dependent
Boolean differences for analysis of sequential fault
functions for systems which underqo a reconfiquration at
discrete points in time Initial work on the inclusion of
probabilities was also performed so that estimates of
long-run failure probabilities could be calculated for
appropriate assumptions of steady-state conditions and
independence of failure events.

This method also allows a study of arbitrary
subconfigurations in the total system. A characterization
of minimum and maximum test conditions has been developed
for the sensitization of the system to an arbitrary
combination of events in the subsystems. It is shown that
some fundamental results in stochastic process theory can be 0
applied to time-dependent systems with suitable transition
probabilities. These results provide a basis for the
qualitative and quantitative analysis of 'common-causes" of
simultaneous failures in several subsystems.

OA" ..,."*...°
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5

4. TESTING COMPLEXITY

The problem of developing test sets can be considered in two
stages: a stage in which potential tests are designed and
their results measured, and a stage in which the final set
of tests is selected. This second stage involves the
optimization of some criterion function and often reduces to
selecting the smallest possible number of tests in the final
collection, i.e., the "minimum test set problem.n This
computationally intractable problem is NP-hard, as a result
of which many researchers have have worked on suboptimal .:-

strategies in the form of heuristic search methods.

The objective of the study on this contract was a
theoretical and practical evaluation of various suboptimal
strategies. Several minimization routines were run under
different conditions for comparisons of their growth in
complexity predicted by theory with the difficulties V -.

actually encountered in solving real problems (Moret and
Shapiro [1982]).

Characterizing several aspects of the suboptimal algorithms
required" extensive experimentation. The outcome of over
three thousand test runs brought to liqht two encouraging
results. First- despite the theoretical prediction of 0
sharply increasing complexity, the coherence or
windividuality" of the real world problems caused their
complexity to increase only slowly with size. Second, the
experiments clearly showed that one of the algorithms was
far superior to the others for the range of problems
considered; this was in agreement with theoretical
predictions based on bounding methods that were developed in
the course of this contract.

Overall, this effort has contributed to a much better
understanding of the 'minimum test set problem" and its
various suboptimal solutions. In particular. the best
existing algorithm has been identified and characterized.
Well supported by intuition and empirical evidence, an exact
characterization of the best behavior of such algorithms has
been conjectured but as yet not proved; should it prove
true- the existing alogorithm would in fact be as good as
can be achieved.

................................ '%*.
. . . . . . . . . . . . . . . . . . . . . .. ... ... ... . . . . . . . . .. ... -. •

• iv'-.



.ws. ;,-..%

6
V.

5. OPTIMAL SOLUTION OF LINEAR INEOUALITIES
I..

Linear inequalities are applicable in digital systems in the
areas of threshold functions and pattern recognition-
Although the solution of consistent inequalities is
straightforward (e.g., by linear programming). relatively
little is known about the solution of inconsistent
inequalities. The first practical algorithm is this area
was reported by Warmack and Gonzalez in 1973. These resultswere generalized by Clark and Gonzalez [19811 as part of the

work on this contract. The Clark-Gonzalez algorithm is a
nonenumerative procedure guaranteed to find all optimal
solutions to a set of inconsistent inequalities. (Finding
the solutions of consistent inequalities is a special case
of this method.) Bounds on the search carried out by the
algorithm were developed, and the method was shown to be
computationally superior to other methods (including the
Warmack-Gonzalez algorithm) for finding minimum-error
solutions.

r
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6- MOMENTS OF THE INTERCLASS MAHALANOBIS DISTANCE
*!

The Mahalanobis distance is a measure of similarity between
multivariate Gaussian populations. In terms of the work in
this contract. the Mahalanobis distance offers a robust
descriptor for characterizing multivariate measurements
performed in an analog system. In this context, the problem
can be formulated as a pattern recognition task whose
objective is to detect deviations from a normal mode of
operation.

When treated as a random variable, the Mahalanobis distance
has a probability density function (PDF) that can be related
to the probability of error in classification (e.g.,.
classification of normal vs. abnormal operation). When the
covariance matrices are equal. obtaining this PDF is
straightforward; however- the more general (and practical)
case involving unequal covariance matrices requires
complicated numerical integration techniques for determining L
the PDF.

In many applications of multivariate data description, it is
of interest to compute the moments of the Mahalanobis
distance without having to estimate its underlying PDF as an
intermediate step. In a recent paper (Gonzalez and Wagner
[1983]) it was shown that the moments of the interclass
Mahalanobis distance between two multivariate groups of data
(also called classes) can be expressed in a simple
polynomial form. The nth moment is expressible as a
polynomial of order n whose variable depends upon the mean

* vectors and eigenvalues of the covariance matrices of the
two populations. A closed form solution is also given for
computing the coefficients of the expressions. The relative
simplicity of these results has important implications in
terms of implementation in a digital computer or dedicated
hardware.

C-
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7. SEMI-INVARIANTS OF THE INTERCLASS MAHALANOBIS DISTANCE

An alternative to the technique discussed in the previous
section is to compute the semi-invariants (which do not
require that the eiqenvectors be known) and then obtain the
moments from the semi-invariants. A new approach for
obtaining the semi-invariants was recently reported by
Gonzalez and Wagner [1984]. The semi-invariants are given
directly in terms of the mean vectors and inverse covariance
matrices. It is well known that the moments and
semi-invariants are related by expressions which, though
theoretically simple. are quite inefficient in terms of
computation. A new, iterative algorithm that is easily
implemented on a computer was also reported in the same
paper.

" S
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The Activity of a Variable and Its Relation
to Decision Trees

B. M. E. MORET, M. G. THOMASON, AND R. C. GONZALEZ
University of Tennessee

The construction of sequential testing procedures from functions of discrete arguments is a common
problem in switching theory, software engineering, pattern recognition, and management. The concept
of the activity of an argument is introduced, and a theorem is proved which relates it to the expected
testing cost of the most general type of decision trees. This result is then extended to trees constructed
from relations on finite sets and to decision procedures with cycles. These results are used, in turn. as
the basis for a fast heuristic selection rule for constructing testing procedures. Finally, some bounds -
on the performance of the selection rule are developed.

Key Words and Phrases: activity, decision diagrams, decision tables, decision trees, expected testing
cost, heuristic selection, identification procedure, pattern recognition, recursiveness, sequential testing
procedure, software engineering, switching theory
CR Categories: 3.63, 3.7. 4.33, 4.34, 4.6, 5.39, 6.1, 8.3

.0

.1. INTRODUCTION

A common problem in switching theory, software engineering, pattern recogni-
tion, and management is the construction of sequential testing procedures (also
called decision trees or decision programs) from a given function of discrete .
arguments [1, 5, 9, 11, 13, 16, 20]. The problem is to select from the numerous
available trees one which is an optimal tree representation with respect to some
criterion. In particular, it is often desired to select a tree which has the smallest
expected testing cost, that is, a tree such that the average cost of determining a
value of the function (by testing some of the variables) is minimal. Variants of
this problem have been studied by many researchers, who have provided search
algorithms to find the optimal tree(s) [4, 7, 10, 12, 15] or proposed heuristic rules
for constructing suboptimal trees [3, 5, 6, 14, 17, 19].

In this paper we introduce the concept of activity of a variable and prove a
theorem relating it to the expected testing cost of decision trees with costs and
probabilities. This result is then extended to trees constructed from relations on
finite sets and to decision procedures with cycles (corresponding to recursive .

Permission to copy without fee al or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by the Office of Naval Research under Contract N00014-78-C-031I. 1. -

Authors' addresses: B.M.E. Moret, Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131; M.G. Thomason, Department of Computer Science, University of Tennessee,
Knoxville, TN 37916; RLC. Gonxale, Department of Electrical Engineering, University of Tennessee,
Knoxville, TN 37916.
0 1960 ACM 0164-0925/80/1000-0580 500.75

ACM Transactions on Programming Languages and Systems. Vol. 2, No. 4. October 1990, Pages 5O0-595.
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Activity of a Variable and Its Relation to Decision Trees 581

functions). This provides the basis for a fast heuristic selection rule. which is a
generalization of criteria proposed in [4] and [15]. Finally, we examine certain
conditions under which the rule performs optimally and give some bounds on its
behavior.

2. PRELIMINARIES
We are given a (partial) function of n discrete-valued variables, f(xi, ... , x.);
each variable x, can take on exactly m, values, mi > 1, and the determination of
its value incurs cost c,. A discrete probability distribution is also specified on the
H ,.- m, points of the variables' space (combinations of variable values which do
not belong to the inverse image of f do not necessarily have zero probability); the
probability of a point is denoted p (x x .... x,). It is noted that the probability
p(x, - k) that variable x, will take on value k can be computed by

p(X, - ) = " "" p ,, x,-,, k. x,+,, .. . .). () ' :

Definition 1. If f(x, .... x,) - constant, then the decision tree for (is a leaf
labeled "constant"; otherwise, for each x,, f has decision tree(s) composed of a
root labeled "x," and m, decision subtrees, corresponding to the m, subfunctions L...
(4,.h,, 1 5-k m,. i:

If.variables xh, .... , x.,, in that order, are tested along path Ph, yielding values
v .., v., and leading to leaf Oh, then the probability of reaching leaf a, is the
sum of the probabilities of all combinations of variable values leading to that leaf.
Using (1) above, this can be written as

p (ah) - fi P(Xk, - V.).

In following path Ph. we test n variables for a total cost of

a-C(,) = c,,. -

Thus the expected testing cost of the tree T is the quantity

C(T) - jp(cu).C(P,),
A

where the sum is taken over all leaves ah of T.
Any internal node of a decision tree T is associated with a subfunction of T.

That subfunction itself has a probability which is the sum of the probabilities of
the combinations of variable values included in the subfunction. This is equal to
the probability of reaching the said internal node or, equivalently, to the sum of

c Cthe probabilities of the leaves of the subtree rooted at that internal node. In the
following section we shall be interested in the subfunction resulting from a
combination of n - 1 values, that is, the case in which the values of all variables
but, say, x, are fixed, resulting in the selection of an mi-tuple of possible combi-
nations-the m, values of the unspecified variable x,.

ACM Trarucuons an PropwamM LAngua and Syut nw Vol. 2. No. 4. Octol"r 1900.
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.25 P -3 v.1

pp4O 1 p.25 .=O 3.=1

P-0. I p-0.?2

Fig. 1. A sample decision tree for Example 1.

Example 1. Let f be a partial function of three binary variables, f: (0, 1) -3

(1, 2, 3), given by
(0,0,0)-3, (1,0,0)"2,(0, 1, 0) -1, (1, 0, 1) "*2," -- '"'

The costs are c, - 0.5, c2 - 0.68, and c3 - 0.25, and the probability distribution is
specified by

p(0, 0, 0) - 0.10, p(1, 0, 0) - 0.25, -
p(0, 0, 1) - 0.05, p(1, 0, 1) - 0.05,
p(O, 1, 0) - 0.20, p(1, 1, 0) - 0.15,
p(O, 1, 1) - 0.20, p(1, 1, 1) - 0.00.

A possible decision tree for this function is illustrated in Figure 1, together with
the probabilities of the leaves. The expected testing cost of that tree is

C(T) - 0.1.(0.5 + 0.25 + 0.68) + 0.2.(0.5 + 0.25 + 0.68)
+ 0.25.(0.5 + 0.25) + 0.3.(0.5 + 0.68) + 0.15.(0.5 + 0.68) - 1.1475. 0

3. THE ACTIVITY OF A VARIABLE

Considering the m,-tuple of combinations mentioned at the end of Section 2, we
distinguish two cases:

(i) two of the m, combinations are mapped to distinct values by f;
(ii) no such two combinations can be found.

In the first case, variable x, must be tested in order to distinguish all values of the
function; in the second case, this is not necessary, although it may be done in a -

particular tree, either as a redundant test or because at least one variable did not
belong to the inverse image of f and has been arbitrarily mapped to a value
distinct from the image of the other combinations. Thus, the a priori probability . -

pt(x,) that variable x, will be needed in testing all the values of f (i.e., the
probability that fwill be sensitized to x,) is equal to the sum of the probabilities
of all the m,-tuples satisfying case (i) above; conversely, the a priori probability
p7(x,) that x, will be useless is equal to the sum of the probabilities of the S
remaining m,-tuples, those satisfying case (ii).

ACM Tramactsons an Pfopamwnzn Lmn~p" and Syuuma.i Vol. 2. No 4. October 19M.
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Activity of a Variable and Its Relation to Decision Trees 583

The same reasoning is easily adapted to a subfunction ! by normalizing the

probabilities with the probability off. For any x, and f, p7 (x,) + pl(x,) - 1.

Definition 2. The activity of variable x, with respect to subfunction fis de-
fined as the quantity

at(x,) - c. -ptx.).

Definition 3. The loss of variable x, with respect to subfunctionf is defined
as the quantity

li(x,) =c, - ai(x,)..." _-

The activity of a var.able is a measure of how much influence a variable has on
the determination of a function's values. A related concept, known as Chow . .
parameter [18], is discussed in [2] and [4]; when all costs are unity and all variable
combinations equally likely, the activity of a variable with respect to a completely
specified Boolean function of n variables reduces to the Chow parameter of the
variable divided by 2" '.

The loss of a variable x is a measure of the wasted decision power associated
with the choice of x as the root of the decision tree. This is intuitively obvious, .
since such a choice results in testing the variable with probability 1, while the a
priori probability of needing x was p,(x).

Example 2. The various quantities defined above are computed for the
function of Example 1 and are listed below.

p7(xi) - 0.35, p(x2) = 0.7, p7(x3) - 0.4, ,

af(x,) -ff 0.175, a (x) -, 0.476, af(X) - 0.1,"" ". "

4t(xIa - 0.325, 1, (x2) = 0.204, 1&( 3) - 0.15.0 .-

The following theorem establishes the relationship between activity, loss, and
expected testing cost of decision trees. The proof technique is derived from [4],
where a simplified version of this theorem using Chow parameters was proved for
completely specified monotone Boolean functions of uniformly distributed vari-
ables with unity costs.

THEOREM 1. The expected testing cost C(T) of a decision tree T for the
function f(xi .... x.) can be expressed as

C(T) - a,(x,) + p(f).l 'fj(), (2) " -i-I *k" """

where the second sum is taken over all internal nodes 8* and refers to the
subfzuncton associated with /3.

Remark. This theorem says that the expected testing cost of a decision tree
is composed of a fixed "overhead" (the first sum) and a variable amount of "loss"
(the second sum) which depends on the structure of the tree.

PROOF. The proof is by induction on n, the number of variables. For n - 1,
the basis is easily verified: the variable space is just an m-tuple, and there are
only two possible tree structures. Assume that the theorem holds for all functions

ACM Tranmuctmn on Provammng Languages nd Systeua Vol. 2. No. 4. October 19M. S
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of up to and including n - 1 variables, and let f be a function of n variables.
Choose x, to be the root of T". This determines m, subfunctions, each of n - I
variables, so that the inductive hypothesis applies and for each subfunction f,,

-, .. , i,, we have

k-I_"

where the second sum is taken over all internal nodes P, of T. But C(T) c, +
£, ,p(ft).C(T), and after substituting and simplifying, we obtain

C(T) -c. - I(x,) + P(lD • (x,) + I plf(1l ,. (3)
o.. - ~ .,

where the last sum is taken over all internal nodes h, of T. But we know that

cj- If(x,) - a "(x)

and

.. aaf(x )=af(x,) + af(x*)

Substitution of these two equalities in (3) yields

C(T) af a(x.) + Zpf (A)

where the second sum is taken over all internal nodes /
3 of T. 0

COROLLAiRY 1. The expected testing cost of any decision tree T for the
function f(x' ... x.) having x, as root is bounded by

Sc, 2: C(T) a: If(x,) + i af(,)
:-I J-1

This corollary, in simplified form, was proved in [15] and is implicit in [4], Both
references use it as the basis for a branch-and-bound search algorithm to find a
tree that is optimal with respect to the expected testing cost. 0

These results stress the importance of the sum of the activities of the variables
of a function as a representation-independent measure of the cost incurred in
determining the values of that function. This motivates the following definition.

Definition 4. The intrinsic cost I(f) of the function f(x, .... x.) is defined as
the quantity a

'-A-lff) - ,afj,......-

Example 3. Using the values of activity computed in Example 2 for the
function of Example 1, we obtain the intrinsic cost of f,

I(f) - af(xI) + at (X2) + af(X3) - 0.175 + 0.476 + 0.1 - 0.751.
ACM Traamactior. on Prcpammim Languaee mnd Systima Vol. 2. No. 4, October 1960.
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-0..325

k :0.•061 t=.075
o0.55 p- 0'.45

" 0.061 t/ \ / 
• .

P-0.3 3 21

31

Fig. 2. The tree of Figure I with node loam and probabilities.

For the tree of Figure 1 we compute the loss and probability of each internal
node to obtain the values shown in Figure 2. The sum of these losses, weighted
by the node probabilities, and of the intrinsic cost is

(0.325.1) + (0.681.0.55) + (0.075.0.45) + (0.0.0.3) + 0.751 - 1.1475,

the computed expected testing cost of the tree. Corollary 1 indicates that any
tree for (having xi as root will have a minimum cost of 0.751 + 0.325 - 1.076.
similarly, any tree with root x2 will have a minimum cost of 0.751 + 0.204 - 0.955,

while trees rooted in X3 have a lower bound of 0.751 + 0.15 - 0.901. 0

4. EXTENSION TO RELATIONS
We extend the definitions of activity and loss to relations on finite sets. This is of
particular interest in the case of interdependent functions which must be repre-
sented by a single tree (as in [5]).

A relation R might specify no more than one output for each input combination.
in which case it is a (partial) function. R may, however, specify more than one
output, in which case we assume that we can arbitrarily decide to specify any
particular output or leave the choice open. It is also assumed that an unspecified
entry (a "don't care") is in fact related to the whole output set, so that any one
output value can be selected for such input combination. We then extend the
definitions of activity, loss, and intrinsic cost in the obvious way by noting that
a variable is needed to differentiate the values of an m,-tuple if and only if the
intersection of the output sets specified by R for the m, components is empty. It
is readily verified that all results previously stated for partial functions remain " •
valid for relations.

Examp/e 4. Consider the relation R from the input set (0, 1)2 x (0, 1, 2) to
the output set 11 - (a, b, c, d), where all three variables have unity cost and the
relation and the probability distribution are given in Figure 3. Since all variables
have unity costs, p*(x,) - af (xJ, so that af (xi) - 0.35, af (x2) - 0.2, and af (X3)
0.6. The intrinsic cost of R is I(R) - 0.35 + 0.2 + 0.6 - 1.15. Choosing x3 as the
root for a decision tree results in a lower bound on the cost of 1.15 + (1 - 0.6) -

1.55. A possible decision tree T rooted in x3 is shown in Figure 4, together with
. ACM Trauactions on Progammig Langusiag and Sytegm Vol. 2, No. 4. October I90.
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Relation Probabilities

00 01 I1 10 00 01 11 10

0 ~~ 0 I-~io~hi
I b . b a b.d I L0.1o10.06. m 0
2 b c c 2 0.00 0.05 1 0.0 0.05

Fig. 3. The relation and its probability distribution for Example 4.v- .

(=O~ 
,~ 

(n C 
o 46 -

Fig. 4. A decision tres with node losses for Example 4.

the losses of its nodes. Its expected testing cost is C(T) - 1.15 + (0.35. ) - 1.75,
and it is in fact one of the optimal trees for R. "3

5. EXTENSION TO RECURSIVE FUNCTIONS AND RELATIONS
As a further extension of the foregoing concepts, we consider the case of a
recursive function or relation, that is, a relation which, for certain input combi-
nations, does not specify output values but calls for the evaluation of some
relation, possibly itself. It is assumed that the same tree structure is used for all
evaluations of a given relation and that an unspecified entry is not replaced by a
call to a relation, but only by values.

The following discussion is restricted to immediate recursive relations, that is,
those which do not call for the evaluation of any other relation than themselves. 0
This does not diminish the generality of the development, as a hierarchy of
several different relations can be analyzed in parts by considering each relation
separately and then merging the results using the probabilities of each relation
and of the recursive calls. Such an analysis is demonstrated in Section 6 by an
example.

Given an immediate recursive relation, it is possible under the assumptions to
compute the probability e that an evaluation will be made without recursive calls.
If e is 1, the relation is not recursive; if e is 0, then the relation will never yield a
value but will keep issuing recursive calls ad infinitum.

A first question about such relations concerns an upper bound on their testing
cost. Such a bound is set by Corollary 1 for nonrecursive relations as the sum of
the testing costs of the variables, but can evidently be passed by recursive ,
relations. The following proposition provides the answer.
ACM Trautaios on Prousning Lanvuq and SyStems. Vol. 2. No. 4, October 1960.
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PROPOSITION 1. Let R be an immediate recursive relation on n variables
X,... x, with costs c .  cn, and let e be as above; then the expected testing
cost of R is no larger than (l/e). E, c,.

PROOF. The probability of a recursive call occurring in any evaluation is "
I - e. At worst, an evaluation results in the test of all variables, for a cost of
., c,; thus the total cost is no larger than

A decision procedure for a recursive relation is an infinite tree that can also be •
represented as a diagram with cycles, each cycle leading back to the root of a
subdiagrarn. In the case of immediate recursive relations, all cycles lead back to
the root of the diagram. We can compute the probability that the relation will
take on a specific value by solving a simple linear equation, subject to the
convention that entries for which several values are specified are set to the
specific value unde: consideration wherever possible.

The notion of activity of a variable is generalized to immediate recursive
relations as follows.

(i) If an m,-tuple does not include a recursive call, we count its contribution in

the usual way.
(ii) If one or more recursive calls are included, the contribution is the probability

of the m,-tuple times the testing cost of the unspecified variable times the
probability that the m,-tuple will be mapped to more than one value.

We call this quantity the tree activity; the corresponding loss, the tree loss, is the
testing cost minus the tree activity. The same quantities multiplied by Ile will be
referred to as diagram activity and diagram loss.

THEOREM 2. Let R be an immediate recursive relation, and let a decision
procedure for R be represented by a diagram D and an infinite tree T. The
expected testing cost of the procedure, C(D) = C(T), is equal to

(i) the sum of the diagram activities and of the diagram losses taken over all
internal nodes of the diagram, or

(ii) the sum, taken over the infinite tree, of the tree activities and of the tree
losses.

Remark. The sum of the diagram activities is called the intrinsic cost of the
relation, 1(R).

PROOF. The proof relies on the original theorem for nonrecursive functions - S
and on simple considerations on the series 1, 1 - e, (I - e)2, (1 - e)', ... and its
sum, Ile. If we replace all recursive calls in D by leaves, the cost of the resulting
tree is the sum of the tree activities and the tree losses taken over all internal
nodes of the tree. Introducing recursion results in a series of invocations, the
probabilities of which are described by the series (1 - e)*. 0

Corollary I is similarly extended. , "."

ACM Ttanmctjois on Proaamang LAnguaga owl SywAtmi Vol. 2. No. 4. October 1900
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R! R2

00 01 11 10 " 0~' 00 0 1 ! 10

0 R KR1 RR1R2,)0 1 ja a RRim . a I S I b b 2

2 b R2 n R2

Values

Xaj 00 01 11 10 00 01 11 10
3 Y' . .- .

0 0.70 .0 1~ 0.5 0.051 0 L2.J..210.10.j0.5
1 0.05 . 0.01 j~0.01 110.04 1 01 .500 .1
2 1 t 0 0.01

Probabilities

(z)-9, c(x2)-9. cix3)-4.5 e(y,) 50. c(y 2).4. ely3)-36
Costs

Fig. 5. The relations for the example with their probabilities.

6. AN EXAMPLE
As mentioned above, the results can be extended to recursive hierarchies of
relations, subject to our two restrictions. The following example shows how
systems of relations are analyzed part by part.

Consider a situation in which a monitoring program must periodically evaluate
several system variables. If the sampled values point to a satisfactory status, the
program waits for a specific period of time and examines the variables again;
otherwise, either a malfunction is identified and the program takes some action
and stops, or further analysis is required and some additional variables are
examined to determine whether the program should resume its normal cycle or
take some action and stop. The first part of the examination (the normal cycle)
is described by the relation RI, which includes calls both to itself and to the
second relation R2 (the exception cycle), which includes calls to RI. In this
example, RI is a relation between (0, 1)2 x (0, 1, 2) and the set of actions 12 -
(a, b), and R2 is a relation between (0, 1)3 and Q. as specified in Figure 5.

The analysis treats RI and R2 separately and considers a structure from which
all recursive calls have been eliminated. Once this structure has been analyzed by
the methods developed above, the results are put together using p (R2), the
probability that R2 is called from RI in a given evaluation. Recursion is then
taken into account by multiplying the results by lie, where e is the overall
probability that no recursion will be needed.

We have p(R2) - 0.01 + 0.01 + 0.01 - 0.03; similarly, p(RI), the probability
that RI will be called in an evaluation of R2, is 0.25 + 0.25 - 0.5. The probability
that no recursive call will be necessary is

e - 0.01 + 0.01 + 0.01 + p(R2).(0.l + 0.1 + 0.1 + 0.05 + 0.05 + 0.1) - 0.045,
so that Ile - 22.2. We can then compute the maximum probabilities of yielding
ACM TraWAtiong on P'ogsmminh Lariuqm and Systems. Vol. 2. No. 4, October 10 . .
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a or b as

p(R1 - a) - [0.01 + 0.01 +p(R2).(O.1 + 0.1 + 0.1 + 0.05)].(I/e) - 0.67, d
p(R1 - b) - [0.01 + 0.01 + p(R2).(0.1 + 0.05 + 0.05)).(1/e) - 0.57,
p(R2 - a) -0.1 + 0.1 + 0.1 + 0.05 +p(R1)-p(Rl - a) -_0.68,
p(R2 - b) -0.1 + 0.05 + 0.05 + p(R1).p(R1 - b) - 3.48

The tree activities are

aai(xi) - 9-(0 + 0 + 0.02.p(R2 0 b) + 0 + 0.02.p(R2 # a) + 0) - 0.148,

aRI(x2) - 9.(0 + 0.06.p(R1 # a) + 0.02 .p(R2 # b) + 0 + 0.05 + 0) - 0.716,
aR(x) - 4.5.(0.76.p(R1 0 b) + 0.07 + 0.07 + 0.1) - 2.524.

Similarly, we get ap(yj) - 10, aR2(y2) - 10.15, and aR2(y3) - 14.78. Thus I, the
intrinsic cost of the relations, is the sum of the tree activities of R1 and the tree
activities of R2 (weighted by p (R2)) times l/e:

I- [0.148 + 0.716 + 2.524 + p(R2).(10 + 10.15 + 14.78)]. (I/e) - 98.575.

The upper bound on the cost is

C.,, -[9 + 9 + 4.5 + p(R2).(50 + 45 + 36)].(1/e) = 587.3.

Figure 6 describes a possible decision diagram D for the relations; the diagram
losses and probabilities appear beside each internal node. The lower bound for
the cost of this diagram is the sum of the intrinsic cost and of the diagram loss
of X3:

Ib(D) - 98.575 + 43.9T - 142.486.

The cost of the diagram can be computed from Theorem 2(i):

C(D)- 98.575 + 1.43.91 + 0.11 -73.93 + 0.04.148.8

+ 0.02.137.7 + 0.02.97.7 + 0.02.200

+ 3.(0.01.471.5 + 0.007.677.7 + 0.003.370.370) - 197.

This can also be obtained by solving the diagram's cost equation:

C(D) - 1.4.5 + 0.85.C(D) + 0.11.9 + 0.04 -9

+ 0.09.C(D) + 0.02.9 + 0.02.9 + 0.02.9

+ 3.(0.01.36 + 0.007.45 + 0.003.50 + 0.005. C(D)),

yielding (1 - 0.955).C(D) - 8.865, so that C(D) - 8.865/0.045 - 197.

7. CONSTRUCTING DECISION PROCEDURES

The construction of decision procedures with minimal expected testing costs is,
in many cases, a search problem; that is, no algorithm has yet been devised that
does not exhibit an exponential behavior in at least some cases. In particular, in
the case of binary identification [7], the problem has been shown to be NP- '

complete [8]. This leads to a search for efficient rules for constructing suboptimal
procedures.

I As noted earlier, the loss li(x,) is an approximate measure of the importance of
not locating x, at the root of the subfunction ? Indeed, l(x,) satisfies all the

ACM Tratmetions on Proammrang Language. and Syten, Vol. 2. No. 4. October 1SO9 '".
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(al (bW

Fig. 7. la) The tree constructed by the nrle. (b The optina tree.

requirements set forth in [6] for a selection criterion; that is,

(i) if a variable is necessary to distinguish all of the m,-tuples it forms, then its
activity is equal to its cost, so that its loss is null and it will be tested first
(this is an optimal strategy, as can easily be shown (6]);

(ii) if a variable is never needed, that is, if the relation does not intrinsically
depend on that variable, then its activity is null and its loss equal to its cost;
this condition is easily detected and the variable discarded, unless all other
variables have the same status and the relation still specifies at least two
distinct values;

(iii) the loss is directly related to the number of m,-tuples with equal components
("dash" entries in the decision tables discussed in [6]).

This leads to the following rule for local optimization, a generalization of the
branch-and.bound criteria used in [4] and [15].

Rule. When developing the decision tree for the subfunction f, choose as the
root the variable with the lowest loss, li. In case of a tie, choose the variable with
the lowest cost. If a tie subsists, choose any of the variables.

In the example of Section 6, the application of the above rule would result in
the diagram of Figure 6, which is optimal in this case. However, the rule does not
always result in optimal diagrams. In Example 1 we had l(x,) - 0.325, If(X2) = P- -

0.204, lf(x3) = 0.15; thus x3 would be chosen as the root. Continuing in this
manner, we would get the tree of Figure 7a with an expected testing cost of 1.051,
but the optimal tree is that shown in Figure 7b, with an expected testing cost of
1.0425. Thus the tree constructed by the rule is 1.0425/1.051 = 0.99 optimal. A
conservative estimate can always be made by substituting the smallest lower
bound (as obtained from Corollary 1) for the unknown minimal cost. In the above .
example, this yields an estimate of 0.901/1.051 0.86.

8. DISCUSSION OF THE SELECTION RULE
An important advantage of the rule is its simplicity; compared to others [3, 6, 14,
17] it requires a minimum of computations. It is also more general, since it applies " -

to any simple recursive or nonrecursive hierarchy of relations with costs and
probabilities.

ACM Tranuctions on Propuimni Language. and System. Vol. 2. No. 4. October 1960
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Moreover, the rule is optimal in several cases. As previously noted, it will
always lead to the selection of a totally necessary variable if any such variable
exists; such a choice was seen to be optimal. We also have the following result.

PtOPOSTIOm N 2. For any recursive relation on two variables, the selection
rule constructs optimal diagrams.

PRooF. Follows immediately from the fact that the lower bound, as computed
from Corollary 1, is the exact cost of the diagram. 0

Our previous example showed that this result does not hold for functions of
three or more variables.

A more important question is how bad the selection can be. The following
example illustrates the worst case for completely specified Boolean functions with
unity costs.

Let f be the Boolean function f - x, + 9...2X,, where 9 denotes summation
modulo 2, and assume the following probability distribution:

(i) Each point satisfying x, -*,x, - 1 has probability y.e, for y'< 1, -f 1.
(ii) Each point satisfying x, - 0 has probability e.

(iii) All other points have probability a - 22 - (y + 2)-e.

Then we get af(x) - 2 -.(y + l).Eand a(x,) - 2-'.forn 2t it _2, sothat lf(x,)
< lf(xI). The two subfunctions resulting from the choice of some x,, i 0 1, as the
root are again of the form x, + 19x, so that the trees constructed by the rule test
x, last (on half the branches) and have cost C(7',) - n - 1 + 2n-2. (.y + 1) e, while
the optimal trees, rooted in x,, have a cost of C(To) - 1 + (n - 1).2"'.e. (The
case n - 4 is illustrated in Figure 8.) Thus, if e 4, 1 (e.g., if e - 2-*" for some
k > 1), the asymptotic ratio of costs becomes C(T,)/C(To) - n - 1. " ".,.-'

By letting every point satisfying '7. (.2X, I be mapped to a recursive call,
we obtain the worst case for recursive Boolean functions. The best diagram, U., _
has a cost of[1 + (n - 1) .2 -' .e]/(1 - 2"-.E), while the rule-constructed diagram,
D,, has a cost of n/(1- 2"-e); thus the asymptotic ratio C(D,)/C(Do) becomes
approximately n for small e. That both recursive and nonrecursive cases yield the
same worst case, O(n), is due to the fact that the recursive factor 1le is
independent of tree structure and is factored out.

The rule can construct arbitrarily bad trees; however, in the above example the O
lower bound on the cost of the trees is lb(f) - 1 + (n - 2).2"-'.e + 2-2 .(.y + 1).
e, so that C(To) - lb(f) - 2 -2.(l - y).e - 0. Therefore, we could have detected
at an early stage that the trees constructed by the rule were costing much more
than the original lower bound and revised the selection. This is not to say that
the lower bound as obtained from Corollary 1 remains arbitrarily close to the
cost of the optimal trees. It is easy to construct a binary identification problem
(71 with n variables of unity cost and 2 - ' equally likely objects, so that the lower
bound is always 1 while the optimal cost is n - 1; Figure 9 illustrates such a
problem for three variables.

The determination of a general upper bound for the worst trees constructed by
the heuristic rule, as well as for the lower bound obtained from Corollary 1, is an
object of present study.
ACM Tranusactions on Progammn Lanwage &M System. Vol. 2. No. 4. October 19M.)
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0" 01 11 10

Fig. 9. An identification problem with three variables and four objects.

9. CONCLUSION
We have introduced the concept of the activity of a variable, a global measure of
the relevance of a variable in determining the values of a relation on discrete
arguments. We have proved a theorem detailing the relationship of this measure
to the expected testing cost of the relation. Finally, we have used this result to
develop a heuristic procedure for the fast construction of suboptimal decision
diagrams and have indicated some bounds on its performance.

The applicability of these results to recursive functions and decision diagrams
with cycles should provide a basis for further developments in fault analysis by
allowing sequential testing of time-related processes, as well as by supplying a
new modeling tool. Other areas in which these results may find applications All-
include pattern recognition, database theory, and switching theory.
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Decision Trees and Diagrams

BERNARD M. E. MORET"
Dwa nmeug of Computer Scuice, The Universit of New Mexico, Albuquerque. New Mexico, 87131

Decmon trees and diagrams (aso known as sequential evaluation procedures) have
widespread applications in databases, decision table programming, concrete complexity ' "." -

theory. switching theory pattern recognition, and taxonomy-in ahort, wherever discrete
functions must be evaluated sequentially. In this tutorial survey a common framework of .
definitions and notation is established, the contributions from the main fields of
application m reviewed, recent results and extensions are presented, and area of
ongoing and future remrch ar discussed.

Categories and Subject Descriptors B.6.1 [Logic Deidgl. Design Styles; B.6.3 (Logic
Design]: Design Aids-wftchiq theory; D.im [Programming Techniquee l
Miscelianeous. F.22 [Analysis of Algorithms and Problem Complexity): .0.
Nonnumencal Algorithms and Problems--cosputima on discrete &bucture, G.2.2
(Discrete Mathematics): Graph Theory-tree, H2.4 [Database Management]:
Systems-queryproceasmn(, 1.2.8 [Artifici ntelligence): Problem Solvin& Control
Methods and Search; 1.5.1 [Pattern Recognition]: Models; 1.5.2 [Pattern Recognitionl:
Design Methodology, J.3 [Computer Application]: Life and Medical Sciences-
boog; health
General Terms Algorithms, Design, Theory

Additional Key Words and Phrases Atomic digraph, binary identification, Boolean graph,
decision program, decision table, diagnostic key, diagnostic table, evaluation, exhaustive
function. feature selection, heuristics,. hierarchical claifier, multiplexer network.
multistage testing, NP-complete problem, sequential evaluation procedure, table splitting,
taxonomy, test selection

INTRODUCTION ing theory [LIz59, THAY81a], and analysis
of algorithms [WE1D77]. More recently,

A decision tree or diagram is a model of the they have been proposed as implementa-
evaluation of a discrete function, wherein tion-independent models of discrete fimc-
the value of a variable is determined and tions with a view to the development of
the next action (to choose another variable new testing methods [AKER79, MoaR8la] -A
to evaluate or to output the value of the and complexity measures [MoRE80a].
function) is chosen accordingly. Decision Owing to this broad applicability, results ".-'.:
trees find many applications in decision about decision trees are dispersed through-
table programming (SILB71, Pooc74, out the literature in fields such as biology,
Mz=z77, databases [WoNC 76, HANA77], computer science, information theory, and
pattern recognition [HAus75, BELL78], tax- switching theory, moreover, there is no _ .
onomy and identification [JARD71, common notation or set of definitions.
MoRs71, GARE72a, PAYRS0, WILL80], ma. Therefore this article begins by establishing
chine diagnosis [KLET6, CHAN70], switch- a framework of notation and definitions
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CONTENTS particular, all necessary mathematical and •
other background is introduced in the first -'

section so that the paper should be acces- :.. -.

sible to any reader with a mathematical or
DMovuioN algorithmic bent. The intent is to cover the ..
L PRIAMAIES breadth of the field, unify terminology, con-

.1 Dicrete and Boalan Functins vey the import of the main results, and act 9.
1.2 Dea~m Tales
12 Dim as a guide to the literature, for which last

2. DEFINITIONS purpose a representative, rather than ex-
2. Deciuion Trees and Diarms haustive, reference list is provided. As such,
22 Meseur on Demon Trees nd Diagams this survey should be of interest to both
2.3 Biary Identii,, practitioners and researchers in the areas

& OPTM IZATION
&I Questionas of Comtibility mentioned above. -.
.2 Queio of Complezity

3.3 Qetons of Optimulity 1. PRELIMINARIES%
4. APPLICATIONS

4.1 Diswes Identification, and Pattern Since the evaluation of Boolean functions,
Reamution the programming of decision tables, and the

4J LisC fd Alg-i Du identification of unknown objects (biologi-
4.3Anaym of Algib, .s

& RECENT DEVELOPMENTS cal specimens, system faults, etc.) are
&I Cempoeihon and Ibcuwo among the most important applications of 0.
52 Appiication to Testing decision trees and diagrams, we provide a

6. CONCLUSION succinct review of the terminology and --
ACKNOWLMNN7SAEFFJMCES basic concepts of Boolean functions, deci-

sion tables, and identification problems.

Readers who feel comfortable with these
topics may wish to skip to Section 2.

that introduce decision trees and diagrams 1.1 Discrete and Boolean Functions
and the various measures associated with Only a very brief review is provided; for
them. Particular attention is paid to the more details, the reader is referred to
problem of constructing decision trees and DAVI8 on discrete functions and to
diagrams from function descriptions and HARR65 on Boolean functions.
evaluating their efficiency. The complexity By discrete function, we mean a (partial)
of such constructions is detailed, and reper- function of discrete variables, fix, X.),
cussions on circuit or program design ana- where each variable, x, takes exactly mi
lyzed. A survey of the main fields of appli- values, which we choose to denote
cation and related results follows. Recently 0, ... , m, -1. A discrete function is con-
proposed extensions (to include diagram stant if and only if (iff) it assumes the same
composition and recursion) and applica- value wherever it is defined; it is null if it is 0
tions (e.g., to system testing) are then dis- not defined in any point of its domain,
cussed. The article concludes with an as- completely specified if it is defined every-
sessment of known results and suggestions where. When a variable is evaluated, say
for future research. . x, - k, we are left with the restriction, i.,

The emphasis throughout this exposition .... X,-1, k, x,+, .... , x,), which we denote
is on Boolean functions, since they find f I..& A variable, xi, is redundant iff
many more applications and are more read-
ily understood than general discrete func- f - ... - ()
tions. The presentation alternates formal
exposition, examples, and discussion; com- where two functions are equal if they have
plex proofs are avoided (the reader will find the same domain and codomain and assume
them in the references), and the mathe- the same value wherever they are both
matical content is kept to the minimum defined; a function without redundant vari-
necessary for clarity and conciseness. In ables is called intrinsic. Finally, a variable,

Computing Survey, Vol. 14, No. 4. December 1962
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x, is termed indispensable iff it is not re- Table 1. Decision Table. Example 2
dundant in any restriction resulting from Raining? Yes No No
the evaluation of any subset of the variables Wind condition Breezy Calm Wind
Xi,..., x-, xi+i, .... x.). (This implies Y

that a function can never be evaluated at Clean basement X X
any point without knowledge of the values Spade garden X 0

of all indispensable variables.) Fly kite with chil- X
A Boolean function of n variables is a dren

discrete function, f: (0, I)" -- (0, 1), where
(0, 1W" denotes the n-fold Cartesian product It is easily verified that the function is
of (0, 1), that is, the set of all binary n- intrinsic; expanding it around x2 yields
tuples. Each n-tuple, (xi, ... , x.), mapped
to I by the function is a minterm of the _ -
function. A Boolean function can be speci- f-72 0 +x2 'I+X3). 0
fled by describing the mapping (giving its 1.2 Decision Tables
"truth table") or by listing its minterms and

those points at which it is not defined (so- The terminology used in the following is
called "don't care" conditions); it can also that of METz77; other general references
be represented by a Boolean formula, usu- are SILB71 and Pooc74. .4
ally in terms of the three operations of A decision table is an organizational or
disjunction (+), conjunction ( • ), and com- programming tool for the representation of
plementation (-). A Boolean function of n discrete functions. It can be viewed as a
variables can be expressed in terms of two matrix where the upper rows specify sets of
functions of n - 1 variables by means of conditions and the lower ones sets of ac-
Shannon's expansion theorem tions to be taken when the corresponding

conditions are satisfied; thus each column, _
(xLi ..... x ) - f.-o + Xi. ..- I (2) called a rule, describes a procedure of the

for each choice of x,. type "if conditions, then actions."

Example 2
Example I

Table I describes how to spend a Saturday
Consider the Boolean function of three afternoon in spring. It has two condition
variables, [(zz, x2, x), given by the mapping rows, three action rows, and four rules; the

first condition is a binary variable (taking
f: (0, 0, 0) - 0 (1,0,0) 0-* values "yes" or "no"), while the second is a

(0,0,1) -. 0 (1,0,1) -' 0 ternary variable (taking values "calm,"
(0, 1, 0) 1 1 (1, 1, 0) - 0 "breezy," or "windy"). According to normal
(0, 1, 1) - 1 1 (1, 1, 1) --. 1 practice [METz77], condition and action

Since every point in the domain is assigned names are used as labels on appropriate
a value, the function is completely specified. rows and a rule is specified by entering
Other representations for fare the list of its values in the condition rows (or blanks, for
minterms don't care conditions) and X's (meaning

"execute") in the action rows. The four
(0, 1, 0), (0, 1, l), (1, 1, 1)) rules can be read as

or a Boolean formula "if it is raining, then clean the basement";
"if it is breezy and not raining, then fly kite

XX2X3 + XIX2X3 + XIX2X3. with children";
"if it is calm and not raining, then spade

The latter formula is equivalent to the list the garden";
of minterms; it can be simplified to yield "if it is windy, then clean the basement." 0
the minimum expression A pair of rules overlaps if a combination

IX2 + X2X3. of condition values can be found that sat-

Computing Surveys, Vol. 14. No. 4, December 1902
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Table 2. Decision Table. Example 3 ond and third rules are inconsistent, since
Raining? Yes No No both could apparently apply when it is not
Calm? (No) Yes (No) raining and it is calm and breezy. It is noted
Braez? Yes (No) (No) that the specification of implied entries in

Clean basement X X the table is insufficient; while it identifies
Spade garden X the impossible condition set (no, yes, yes),
Fly kite with chil- X it fails to identify the equally impossible set -

dren (yes, yes, yes), which will be erroneously
included in the first rule. This suggests that
logical inconsistencies be separately listed

isfies the condition sets of both rules. If two [KiNG73]; for instance, the above table
overlapping rules specify different actions, would be supplemented by the logical
they are called inconsistent and the table expression NOT (breezy AND calm). 0
is said to be ambiguous; if they specify It should now be clear that an unambig- .
identical actions, they are termed redun- uous extended-entry decision table is a spe-
dant. uu xeddetydcso al saseDecision tables described so far are in so- cial case of a partial function of muhivaluedcalled extended-entyy form. Often, how- variables, where the conditions correspond

ever, it is required that all conditions be to the variables and the action sets to the

Boolean variables; this gives rise to limited- function values. In particular, a complete
entry decision tables. Although most such decision table (one which has an applicable

tables are set up in limited format from rule for every combination of conditions)
their conception, it may b.e necessary t corresponds to a completely specified func-

convert extended-entry tables to limited- tion, and a limited-entry decision table cor-

entry format; this is done by using one responds to a function of binary variables.

Boolean variable for each value (but one) An ambiguous decision table can be

of the multivalued variable to be replaced modeled by a relation, as discussed later. A
[Paxzs65I. This process results in tables sequential evaluation procedure for a deci-

wre eTis pocess resltin owales sion table is then of particular importance,
where entries in one condition row often snei orsod oa mlmnainsince it corresponds to an implementation, -- " '
imply (absent) entries in others; such un- usually in software, of the decision table;
plied entries can also be present in any indeed
decision table and give rise to apparent (but
nonexistent) ambiguity. Since the implica- format is in good part due to the ease of

tions result from purely semantic consid- programming binary decisions (by if-then-
erations, they cannot be detected by an else constructs) [METz77].

automatic processor, so that they must be
explicitly specified. The impossible combi- 1.3 Identification Problems

nations of conditions will then be treated as Consider the situation where an unknown
inputs with unspecified mapping. event or specimen is to be classified into

one of a finite number of known categories, 0
Example 3 based upon the outcome of a number of

tests. (This is a special case of the concept
In Table 1, Rules 1 and 4 overlap because of questionnaires [PIcA72].) Such identifi-
they are both applicable when it is raining cation problems arise in biology, medical
and windy. Since they specify the same diagnosis, machine trouble shooting, and
action set, they are redundant, and since no numerous pattern recognition applications.
other rules overlap, the table is unambigu- A binary identification problem includes
ous. Table 2 is the same table, converted to only binary tests.
limited-entry format. It still has three ac- As defined in GARE72a, a binary identi- -" "
tion rows and four rules, but now has three fication problem consists of a finite set of
condition rows. Implied entries are shown objects, (O, ... , 0), which represents the
in parentheses; their absence, while not universe of possible identifications, and a
confusing to a human, would induce an finite set of tests (T 1 ,..., T,,), each of
automatic processor to decide that the sec- which is a function from the set of objects

Compuung Surve), Vol. 14. No. 4, December 1982
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to the set (yes, no) (i.e., each test applied Table 3. Diagnostic Table, Example 4
to a specific object gives a specific yes/no T, , S' 
answer). In a simple binary identification a Yes Yes Ye Yes
problem, all tests are of the form "is the b No yes Yes Yes . "
unknown object of type iR"; that is, their C No No Yes yes
outcome is no for all but one object d No No No Yes
[GARE72b]. An optional probability distri- e No No No No S
bution can be specified on the set of objects,
giving the a priori probability that an un-
known object will be identified as each ob- test may take any of the possible values, as
ject in the set. In practical situations, the specified by a discrete probability function.number of tests and the number of objects The same problem arises in biology (where
are often in the same range (even though, it is known as probabilistic identification);
in theory, the number of tests ould be however, since the probability distribution
aritarlylarger than that of objects and is often unknown, a confidence threshold is
arbitrarily normally used, which dichotomizes test
the number of objects could grow as an outcomes as "known" (taking a specific
exponential function of the number of value) or "variable" (susceptible of taking
tests). any value). In the following, we shall first

In our terminology, the tests are binary look at Garey's model, then generalize re-
variables and the objcts are values of suts to include the probabilistic identifica-
partial bijective function from the var- i- nmdl
ables' space to the set of objects. In biology, tion model.
tests are also known as characters or con-ditions and objects as taxa or formae, while 2. DEFINITIONS
the specification of an identification prob- 2.1 Decision Trs and Diagrams
lem is known as a diagnostic table; in pat- d
tern recognition, tests would be known as A decision tree (or diagnostic key, as it is
features and objects as classes; in question- known in many identification applications)
naire theory, the tests are questions and can be regarded as a deterministic algo- rithm for deciding which variable to test .I IG
their outcomes are responses. next, based on the previously tested vari-

ables and the results of their evaluation,
Example 4 until the function's value can be deter-
Consider the identification problem given mined. Several constraints are placed upon
by a set of five objects, (a, b, c, d, e), a set such an algorithm; all are designed to pre-
of four tests, (TI - (a), T2 - (a, b), T, - vent clearly redundant testing. The follow-
(a, b, c), T4 - (a, b, c, d)). The same prob- ing formal definition of a decision tree is
lem can be represented as a diagnostic table taken from MoRE80b.
(see Table 3), in which the rows correspond
to objects and the columns to tests. In our Definition I
terminology, we have a partial bijective
function of four binary variables, defined in Let f(x1.... x,) be a (partial) function of
five points and given by the following map- discrete variables. If f is constant or null,

then the decision tree for f is composed of
Ping: a single leaf labeled by the constant value

(yes, yes, yes, yes) - a or by the null symbol. Otherwise, for each
(no, yes, yes, yes) -- b x,, 1 r i 4 n, such that at least two restric-
(no, no, yes, yes) -* c tions, say f I.,, and fit.,, are not null, f
(no, no, no, yes) --o d has one or more decision trees composed of
(no, no, no, no) -- e 0 a root labeled xi, and m. subtrees, which

are decision trees corresponding to the re-
This formulation provides a clean, but strictions fl,-o,... , f,',, in that

very much simplified model of the general order. 0
identification problem. In pattern recogni- S
tion applications, the test results are gen- This recursive definition closely parallels
erally not as clearly defined; instead, each the conventional definition of ordered trees, .'.

Computing Survey* Vol. 14. No. 4, December 1982
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found to be 0, the left subtree is next used, -.
thereby encountering a leaf and terminat-
ing the evaluation, having used only two of
the three variables; the label of the leaf is
the value of the function, that is, (I,0,0) Q
- 0. It is noted that a decision tree for a
Boolean function is an explicit illustration
of Shannon's expansion; the tree of Figure

FI1. The decision tee of Eample 5. 1 represents the expansion
fI,,x2, Xa) X.CX20 + x2-]

such as binary trees [KNUT73]; it defines +xX 30+X3 M 0+X,

decision trees as rooted, ordered, vertex. D

labeled trees, where each node has either We note that the same subtree may occur
m, children for some i, 1 G i • n, or none on several branches of the tree, in which
(and is a leaf). To an extent, this definition case it may be desirable to use only one
prevents redundant testing: a variable is copy of that subtree by transforming the
tested only once on any path; no variable decision tree (through a process known as
can be tested which would result in all reticulation [PAYR77]) into a simple deci-
restrictions but one being null; and no more sion diagram, which has the structure of a
testing can take place as soon as the func- rooted, directed, acyclic (hyper)graph. In
'ion has been reduced to a constant. the case of Boolean functions, further re-

The evaluation of a discrete function rep- quiring that there be only one leaf labeled
resented as a decision tree starts by ascer- 1 (the "finish" node) yields a free Boolean
aining the value of the variable associated graph. Of course, we can choose which

with the root of the tree. It then proceeds identical subtrees to merge, if any; in par-
by repeating the process on the kth subtree, ticular, every decision tree is a (simple)
where k is the value assumed by the root decision diagram. To every simple decision
variable, until a leaf is reached; the label of diagram there corresponds a unique dci-
the leaf gives the value of the function. sion tree; moreover, the paths in the dia.

gram are in one-to-one correspondence
Example 5 with those in the tree. Conversely, to every

Th Boea untono Eapl wsdecision tree for a completely specified. -

The Boolean function of Example 1 was function there corresponds a unique
given by the formula "minimal" diagram, that is, one in which

f(X,, X2, X3) - XIX2 + X2X3. every possible merge has been accom-
A possible decision tree for that function is plished. Reticulation sometimes also

shown in Figure 1 Since decision trees are merges nonidentical subtrees while preserv- 0

ordered, the left subtree of a node cone- ing the identity of the function; in such

sponds to the node's variable evaluating at cases, it may happen that a variable occurs.more than once along a path from the root.'-,.:..
0, the right subtree to the variable evalu- me a n.gphr eo
ating at 1. Thus the left subtree of the root to a leaf Such nonsimple decision diagrams
corresponds to the restriction may further decrease the total number ofnodes required; however, the second test of

fI j- - X2, a variable is redundant and thus detracts
from the diagram's "efficiency."and the right subtree corresponds to the Decision diagrams (and their correspond-

restriction ing trees) can easily be programmed. LEE59

f I,- - x~x . calls the result (simple) decision programs

Evaluation on the tree for the triple of and has suggested a universal instruction

values (1, 0, 0) starts by examining x; on type which implements the evaluation 0
finding it to be 1, it proceeds to the right process taking place at an internal node:

subtree, there to evaluate x3 . Since x3 is L: i,go, .. ,-,,.....

Computigt SurMys Vol. 14. No. 4. Decmber 1982
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"qP

Figro 3. The multiplexer network of Example 6.

Figure 2. The minimmi free Boolean graph of Ex-
ample 6. disnguish them from values)

Start 1,A,B
where L is a label, i identifies variable i, A: 2, 0, 1
and g,, used only when xj - k, is either a B: 3, 0, A
value (if the restriction for x, - k is a
constant) or a label. Such an instruction is Figure 3 depicts an equivalent multiplexer
executed by testing variable x, and upon network. We note that, as a consequence of
finding its value, say xi - k, taking the cor- our definitions, the number of multiplexers
responding action, g,, that is, either trans- used in a network is precisely the number
ferring control to the instruction labeled gh of instructions of an equivalent decision
or assigning to the function the value gA. program; similarly, the maximum delay
Thus to each node of the diagram there through a network is proportional to the

.corresponds one instruction in the program, maximum execution time of an equivalent
Cerny [CwN79b] has investigated a ~ program, both being dependent upon the

cial-purpose architecture for the execution length of the longest path through the dia-

of such programs. gram. 0

Decision trees and diagrams for Boolean 2D
functions find yet another implementation, 2.2 Measures on Decision Trees
this time in hardware as multiplexer trees and Diagrams

and networks [CERN79a, THAY81a]. In a Since the root of each subtree can be la-
multiplexer tree (network), each internal beled with any (up to the restrictions of
tree (diagram) node is represented as a 2-1 Definition 1) of the untested variables, the

l multiplexer controlled by the node variable number of possible decision trees for a given
and each leaf is implemented as a constant function is in general very large (and that
logical value (wired at 0 or wired at 1); the of possible decision diagrams even larger).
interconnection scheme is that of the deci- For instance, the function of Example 5 has
sion tree (diagram). The evaluation of a ten distinct decision trees, as shown in Fig-
function then proceeds from the "leaves" ure 4. In fact, a completely specified Boo.
(the constant values) to the "root" multi- lean function of n variables can have up to
plexer, the function variables, used as con-
trol variables, select a unique path from the N74n) - fI (n - 0 1' (3)
root to one leaf, and the value assigned to i-o
that leaf propagates along the path to the distinct decision trees. Indeed, n choices are--
output of the "root" multiplexer. possible for the root, followed by n - 1

choices on each of the two subtrees, or
'xamp/e 6 (n - 1)2 choices; in general, up to (n - A)"

Consider the tree of Example 5. It is itself choices are possible at depth k. This cor-
a diagram; merging the identical subtrees responds to the recurrence relation
rooted in nodes labeled x2 and the identical
leaves results in the minimal free Boolean N'.(.n1)
graph pictured in Figure 2. This diagram which shows that Nr(n) grows faster than
can be implemented by the decision pro- 2'. The first few values of N(n) are listed
gram (where letters are used for labels to in Table 4.

Computing Survey, VoL 14, No. 4, December 1M62
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TabO 4. The Number of Decision Trees for
Boolean Functions

A Nr(n) n Nr(n)

1 1 6 1.65.10"3
2 2 7 1.91- lop
3 12 a 2.91.10"&
4 576 9 7.64.1011, 025 C25
5 1658880 10 5.84. IO0'

005 015

Not all tree or diagram representations Figure S. The decision tree of Examiple 7.
of a function are equally desirable. Thus
several criteria have been developed in or- In the cas of unity costs and uniform prob- -

der to select an appropriate representation; alit distribution, the only datum needed
such criteria attempt to measure impor.tcopethfistremaues(oe
tant properties of decision trees and dia-t opt h is he esrs(hscli heir ~ 1japplicable to trees) is the number of leaves
ugm cstsipeen o at each level of the tree. Thus a decision

usag coss. . tree for a function of n variables can be
In the most general case, each variable characterized by an (n + I)-tuple, the leaf

has an associated testing cost, which mea- rfl M~~] 4 j hr .isures the expense (e.g., in time) incurred trhe [umrola vsat, ept, .. .whee afi
each time that variable is evaluated, and a thfe nue of levesgadphi Thdern lea
storage cost, which measures the expenseprflinuealxcoahcodrngn
(e.g., in memory) due to the presence of decision trees, thereby giving rise to two
each test node labeled by that variable. In diinlmesra 1 hemxmmpo
addition, a probability distribution is often fiewhcrak "sttatrewih

specfie onthevarable' sace whch is largest in lexicographic order (on the
be assumed uniform if not otherwisegrnsthteasshudbecotrd
known. These data allow the computation asonaspsbl)ad(2thmniu
of the following measures. (These and otherrerepofewchrksa"bt"httree which is smallest in reverse lexico-

critria are iscsse in ept in graphic order (on the grounds that the
Moaalb.)number of long paths should be minimized).

Definition 2
Example 7

(i) The worst case testing cost, h, is the
maximumn path testing cost. When all Assume storage coats a, testing costs t, and
testing costa are unity, h reduces to probability distribution A. for the function
the worst case number of tests, that is, of Example 5:
the height of the tree or diagram.

(ii) The expected testing cost, E, is the a: x,-I x2-e2 x3-.3
expected value of the path testing cost, t: x,- 1 x2- 2 x3 -o 6
where the probability of a path is the
sumn of the probabilities of all the comn- P: (0,0,0) -~0.10 (1, 0, 0) -~0.05

binations of variables' values that se (0,0, 1) 0.15 (1,0, 1) 40.05

lect that path. When all testing costs (0, 1,0) 0.05 (1, 1,0) -. 0.25
are unity, E reduces to the expected (0, 1, 1) *0.20 (1, 1, 1) 0.15
number of tests.

(iii) The tree storage cost, a, is the sum of Figure 5 shows the tree of Figure 1 with its
the storage costs of the internal nodes node probabilities. The expected testing

cost .E, oftetrei

of the tree. When all costs are unity,c
a reduces to the number of internal E-(.25+0.25) - (I+2)+0.3 (1+6)
nodes ofthe tree. + (005+ +0.15). (+6+2)

(iv) The diagram storage cost, P, is the sum E.4. 7
of the storage costs of the internal
nodes of the minimal diagram. 0 The tree's profile is (0,0, 3,2), and its var-
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a

FIgure . Two poesible decision trees
for the problem of Example 8. b

e d

ious measures are there can be no common subtrees, so that
decision diagrams for identification prob-

Measure Value lems are decision trees.

h (worst ce testing cost) 9 In the even simpler case of simple binary
Height (worst case number of tests) 3 identification, a yes answer immediately
E (expected testing cost) 5.4 identifies the object and so terminates the
Expected number of tests 2.2
a (storage cost) 8 evaluation, so that at most one path (that
Node count 4 0 corresponding to the "no" answer) leads

from a test to another, this corresponds to
Finally, when ascertaining the value of a a degenerate tree with a number of internal
variable requires a costly apparatus (or sub- nodes equal to its height. Only one optimi-
routine), it may be desirable to minimize zation criterion, the expected testing cost,
the total cost incurred through the acqui- is applicable, and the optimization can be
sition of such apparatus for each variable done step by step using a simple ordering
used in the tree; we call this criterion the of tests in terms of their cost to probability J0
total acquisition cost. Minimizing this cost ratio [JOHN56, RIEs63, SLAG64, GARE72b].
is a common problem in biological identifi- Similar conditions arise when a Boolean
cation [PAYR80, Wil]SO, where the num- function is evaluated in a linear (as opposed
ber of tests often exceeds the number of to tree-structured) sequence [HANA77].
taxa; the objective is to find the smallest
subset of tests that still separates all taxa,
which corresponds to minimizing the tota Example 8

.cquisition cost when all tests have unity Two possible decision trees for the binary
acquisition costs. Clearly, such a cost is identification problem of Example 4 are
fixed (and maximal) for intrinsic functions, illustrated in Figure 6. Both trees have a
since all variables must be tested, and thus storage cost of 4; their other measures are
evaluated at some point or other in the tree.
In fact, this cost is better associated with Expected

number of
the functions rather than the trees. Tree Lad profile Height taste

2.3 Binary Identification Left (0,0,3.2.0) 3 2.4

In the simplified model of binary identifi- Right (0.1,1,1,2) 4 2.8 0

cation expounded by GARE72a, there is ex-
actly one combination of test values asso- 3. OPTIMIZATION
ciated with each object. Therefore decision
trees for such problems have a fixed num- In most applications, decision trees and dia-
ber of leaves (one per object) and thus of grams must be constructed from function
internal nodes (since the number of internal descriptions. Since, as previously observed,
nodes of a binary tree is one less than the numerous tree representations can be built,
number of its leaves), so that their storage with varying usage costs, we naturally
cost is simply equal to one less than the strive to construct a decision tree which
number of objects when all costs are unity. optimizes a suitable measure. This en- -
Moreover, since no two leaves are identical, deavor raises several questions.
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(i) Since the choice of an optimization BRzt75b] and dynamic programming
criterion can be difficult, can a tree be [GAm72a, MIsR72, ME=s73, BAYE73,
constructed which simultaneously op- Scau76, PAYH77, MART78]. In the follow-
timizes several measures? ing, we review those and more specialized

(ii) How difficult is the optimization task techniques. Each method is first introduced
for each criterion? and its salient characteristics mentioned; a

(iii) If constructing an optimal tree is too more detailed explanation follows, which ; -

time consuming, are there fast heuris- the less mathematically inclined reader
tic methods that build acceptable sub- may wish to skip..optimal trees? If so, how good are
those methods? 3.2.1 The Dynamic Programming Method

In this section, each question is answered Dynamic programming is of particular in-
in turn and a survey of optimization meth- terest as all of our tree measures obey the
ods provided. "principle of optimality," that is, they are

such that an optimal solution can be built
3.1 Questions of Compatibility from optimal subsolutions. This is the case
In order to answer the first question, we because the building of a decision subtree
examine the relationships between mea- for each restriction is a separate problem
sures. We shall say that two optimization that can be optimally solved independently
criteria are compatible if, for every function of the others. This also tells us that our
in a given family, at least one tree can be sixth measure, the diagram cost, does not
constructed that satisfies both criteria, obey the principle of optimality, since sub-
Moret [MoRaE81b] has shown that, even if diagrams often overlap; the resulting inter-
we restrict our attention to the family of action destroys the independence of the
Boolean functions with uniform costs and subproblems.
probabilities (the case that is least condu- The general algorithm builds the optimal
cive to incompatibilities), all criteria are tree from the leaves up by identifying suc-
pairwise incompatible, with two exceptions: cessively larger optimal subtrees (one for
(1) the minimum height is a special case of each combination of tested and untested -..-the minimum reverse profile, and (2) the variables). This approach is embodied in an
exact relationship of the number of diagram algorithm designed to convert limited-entrynodes with the number of tree nodes is as decision tables to decision trees with mini-

yet unknown. (However, it is easily shown ral expected testing cost (BAYE73]. This
that the minimization of one does not nec- solution was independently discovered by -

" essarily result in the minimization of the ScHu76, who generalized it to extended- -

other.) In the more general case of discrete entry decision tables; a refined version, us-
functions with nonuniform costs and prob- ing some game tree heuristics, was recently
abilities, all criteria are pairwise incompat- published (MAuRT78]. A closely related pro-
ible [Moatx81b]. cedure was developed for use in pattern

Thus it appears that the six measures recognition to minimize the worst case or
defined on dcision trees and diagrams are the expected testing cost of binary decision

V essentially independent, so that we are in- trees [ME=S73, PAYH77]. The earliest ver-
deed faced with a problem of choice. in sion of the algorithm appears to be due to
order to gather more information about the GARE70 (see also GAi72a, MIsR72) in the
possible choices, we now address the second context of binary identification problems. -"

question. For a function of n k-ary variables, the
algorithm requires a number of operations

3.2 Questions of Complexity proportional to n . k. (k + l) . Since a
complete specification of the function re-

The problem of constructing optimal deci- quires S - V@ items of information, the
sion trees and diagrams has been addressed algorithm takes O(Sk( *+ • log S) time for
by many researchers using branch-and- completely specified k-ary functions and is
bound techniques [REiL66, REIL67, thus fairly efficient. For partial functions,

f.
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* in particular identification problems, how- of k-ary variables, each variable can be in
ever; the input size may be much smaller, any of (k + 1) conditions (k values and the
a binary identification problem with m tests untested state) so that there are (k + 1)"
and n objects requires the specification of distinct combinations; generating them
in items each of size n (the answer to each from the bottom V leaves (all variables
test for each object) for an input size of S tested) to the unique top node (all varia-
M- m n. In this case, the algorithm may bles untested) requires a number of steps
require time exponential in the input size, equal to
thereby being very inefficient. In fact, bi-

nnary identification problems appear to be i (n-&) • • k- -  - n. k. (k + l) - ,
intrinsically "hard," that is, there is consid. ":-(5)
erable evidence that no algorithm can be (5)
developed for them that would not require since a node with i untested variables has
exponential time.' n - i possible parents (each with one S

We now examine in more detail how the more untested variable) and can be chosen
dynamic programming method is applied in (?). -  ways. Therefore, using the
to the optimization of decision trees and "big Oh" notation of algorithm anal-
provide an example; the less mathemati- ysis [VJEID77], the algorithm takes O(n . k.
cally inclined reader may wish to skip to (k + I) - -,) time.
the beginning of the next section. A restriction with n - i untested vari-

If variable x., with testing cost t, and ables determines a subspace of k points, .
storage cost si, is tested at the root of a which we call an i-subcube. The algorithm
decision tree for the function f(xI, .... xn), starts by considering all O-subcubes (that
then the optimal values for the first three is, all points in the variables' space), then
measures of Definition 2 are forms all possible 1-subcubes by merging k

hmuu,(f) - t, + max(h(f ,-o)..., 0-subcubes, in effect letting one variable be
hmn(f 1..,0j), undetermined (so that a unique variable is

associated with each merging). This process
continues, forming all i-subcubes by merg-

E.f) - 4, + 2 p( x, =j) . Enuf[ ,) ing (i - 1)-subcubes, until the final n-sub-
j-o cube (the complete space) is formed. Each

subcube is identified by an n-tuple of val-
am[)a (fj.), (4) ues, (i1 .... ). 0, where ii is X if the jth

-0 variable is untested at that node, and is the
where p(z,-J) denotes the probability that variable's value otherwise. For instance, the
x, takes on the value j. Similarly, the leaf 0-subcubes identified by (0, 1,..., 1),
profile of this tree is obtained by summing, (1, ,.,l),...(k - 1,1,..1) can be
component by component, the leaf profiles merged into the 1-subcube given by (X,
of its subtrees, then introducing an addi- 1 ..... 1) by letting variable x, be untested.
tional first component, set to 0. In a decision Thus the process builds a lattice of (k + 1)..
diagram, however, the subdiagrams repre- nodes with n • k . (k + 1)'- ' edges. It is
senting the various restrictions usually noted that the same i-subcube can be
overlap, so that the storage cost of a func- formed by merging one of i distinct k-tuples
,ion is not directly related to the storage of (i - 1)-subcubes.
costs of its restrictions. This shows that five As the lattice is built, each node (i.e.,
of our six measures indeed obey the prin- each subcube) is assigned a cost and a
ciple of optimality. value; if we are interested in the expected ,

The algorithm will generate all possible testing cost, the probability of each node is
restrictions of the function. For a function also computed. The probability of .. i-sub-

cube is just the sum of the probauduies of
'Technically. they are NP-hard [GARE79] problems, the k merged (i - 1)-subcubes; the value of
as proved in HYAF76 and LOvz79; for a detailed dis- the function for an i-subcube is that of the
cuasion of the exact complexity, the reader is referred k merged (i - l)-subcubes, if their function
to MoR 8lb. values were identical, and is "" (a special
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XXX,

.~~ ^SS..-.

Figure 7. Tw dynami progrmming let-
tice of Fxample 9; &H initial costa zero.

.0 0l 1 0 0 0

symbol indicating that the value is a non- build a lattice of 3" nodes with n. 3' pairs
constant function) otherwise. One easily of edges, as shown in Figure 7. Since we are
verifies that these quantities are well de- interested in the expected testing cost, we
fined, that is, independent of the choice of keep track at each node of the function's
the merged subcubes. Finally, the cost as- value, the node's probability, and the merg-
signed to an i-subcube is the minimum cost ing costs, where the cost of merging two
of merging, where the merging of k (i - 1)- (i - l)-subcubes is 0 if both subcubes have
subcubes has cost 0 if all k subcubes have identical known values, and is equal to
identical known values, and is equal to one C - (Pi +P2) + C1 + C
of the equations (4) otherwise. Initial con-
ditions are given by 0-subcubes with values otherwise, where ci, pi (c2, p2) are the cost

and probabilities given by the problem. The and probability of the first (second) (i - 1)-

cost of the top node (the n-subcube) is just subcube, respectively, and c is the testing
the cost of the optimal tree for the fun ; cost of the variable used in merging. Since

the tree itself can be recovered by walking the cost of the least expensive merging .
down the lattice, choosing at each step to which produces the top node is 5.05, that is ...

test the variable that gave rise to the least the cost of the optimal tree for our problem.
costly merging, until nodes with a known The large arrows in Figure 7 show which

value (leaves) are reached. merging was least expensive at each step
and allow the recovery of the optimal de-

Example 9 cision tree, in this case, the linear testing .

We shall make use of the function of Ex- sequence xixoX (the fifth tree in Figure 7

ample 7 to show how the dynamic program. 4). 0
ming algorithm produces a decision tree
with minimal expected testing cost. With 3 3.2.2 The Branch-and-Bound Method
variables, the variables' space has 23 - 8 Our sixth measure, the diagram storage
points, each identified by a unique combi- cost, is not amenable to a solution by dy-
nation of the 3 variables. The algorithm will namic programming, since it supposes iden- S

Computin Survey VoL 14. No. 4. December 1982

- -

.-..-..-



39 ....-

606 • Bernard M. E. Moret

tification of common subtrees and thus a fled by using a one-level 'look-ahead"; if
global (as opposed to dynamic program- variable x, is chosen for the root of the tree
ming's local) view of the subproblems. Thus representing function f, then the lower
optimization of diagram storage cost is done bound is the sum of
by search techniques, principally branch-
and-bound [REIL67], a method which has (i) the storage cost of the chosen variable,
also been applied to the optimization of the A;
expected testing cost [REIL66, BRE175b]. (ii) the storage cost of each X,, ji i, times

Recall that a branch-and-bound algo- the number of restrictions, fI,- , for
rithm proceeds by always developing that which x, is nonredundant.
partial solution which is potentially less
expensive than any other (as determined For diagrams, the multiplicative factor in
by a lower bound function), often switching (i) is modified to take into account the fact
from one partial solution to another when that x, may play exactly the same role for .

lower bounds change, until one solution has some restrictions, that is, that for every
been completely developed [LAwL66]. The combination of values of the remaining
lower bound function used for the diagram variables, either all the restrictions are
and tree storage costs (RiL67] is based equal or at most one is not constant.
upon this simple fact: a nonredundant van- The lower bound on the expected testing
able must appear at least once in any dia- cost of a decision tree can be derived from
gram. Thus a rough lower bound can be first principles by considering the develop-
derived by simply summing the storage ment of a measure of the influence of a
costs of all the nonredundant variables. The variable on the expected testing cost of
lower bound used for the expected testing decision tree representations. Any such
cost can be derived in an analogous fashion measure should possess the following two
by considering the a priori probability that properties:
each variable will be tested in any decision (i) the measure is minimal (equal to zero)-
tree representation and modifying it to re- wn the m ari e i is redundant and -
flect the influence of the choice of a root[REIL6,, or it can be maximal (equal to the variable's testing

BRE75b MoE8O],cost) when the variable is indispens-
derived from first principles as a complexity able;
measure on decision trees [MORE80a].

The principal disadvantage of the (ii) the measure is compatible with the tree
branch-and-bound method is that it may structure, that is, if we denote such a

result in a near-exhaustive search of the measure for the variable xi by af(x,), it

possible trees and diagrams, a process that, must be the case that, for each j,' i,
in view of the dimension of the search space
(as previously discussed), leads to intolera- af(x) - p(x, - k) . af I,-(xJ.
bly long computations. In terms of algo- h-o
rithm analysis, the branch-and-bound tech-
nique is an exponential-time algorithm, re- Motet [MoRESa] has shown that only one
gardless of the input size. measure satisfies those two conditions: the

We now examine in more detail the activity of a variable, which is equal to the
bounding functions mentioned above and testing cost of the variable times the a priori
illustrate the use of branch-and-bound probability that it will be tested (a concept
methods by a simple example. Again, the related to the Boolean difference used in

* less mathematically inclined reader may Boolean algebra [THAY81b]). The a priori
wish to skip to the next section. probability that variable xy will be tested is

A lower bound on the storage cost of a just the probability that, with all its other
decision tree must incorporate the influence variables evaluated, the function still de-
of the choice of a given variable to be of use pends on x,; this is easily computed in linear
in the branch-and-bound process. To time. The lower bound used in REiL66 and
achieve this end, the lower bound is modi- BRE175b can then be defined as the sum of

Computing Survey.v, Vol. 14, No. 4. December 1982
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(a)

0 .0 0

4.8 5.05 6.2 7.7

5.A 5.1 8.4 8.4 5.05 6.2 7.7

Flowse S. The partial trees as devweloped by the branch-anid-bounDd method for the function of Example 10,
(a) after the first stage, (b) after the second stage. 4

the testing cost of the root variable and the The left subtree is then a leuf labeled 0 so
activities of the remxaining variables that only two possible partial trees arise,
[Monx8ob]. depending on the choice of the variable

tested at the root of the right subtree.
Example 10 Lower bounds are computed in turn for

these. We now have four partial subtrees,
Consider again the Boolean function of our pictured with their lower bounds in Figure
previous examples. The activities of the 8a. The alorithm willcos o eeo
three variables are found to be the first partial tree (rooted in xi), since it

q~(i)- 1.prob(x - 1 and x3 -0) is now the least expensive; this yields four
-0.3, partial trees for a total of seven partial

trees, pictured with their lower bounds in
a&2X) - 2.probWx - 1 or xi - 0) Figure 8b. Now the algorithm will return to

- 1.4, the fifth tree (rooted in x2) and complete it;

a,(xs) - 6.prob(xi - 1 and z2 - 1) since its final cost, 5.05, is lower than the
- 2.4. bound on any partial tree, the completed

Now the lower bound on the expected test- te sotml
ing cost of a decision tree for f with root x,, 33O* ehd
Lb,(x. can be computed for each variable 32.OteMthd

lb,(xt - f( xi) + a&(2) + of (x3) - 4.8, In the contest of logic-particularly Boo-
lean-functions, specialized methods have .

Lb,(x) - t(x2) + a,(x,) + a,(xa) - 4.7, been devised which attempt to use some of
+ a~x1) a1( 2 ) -7.7. the standard tools of logic (such as reduc-

Lb&( 3) - t (x3) +f x)+a 2-7.. tion to canonical or minimal formulas and
Thus the branch-and-bound algorithm decompositions) in order to construct de-
chooses to develop the tree rooted in xg. cision trees and diagrams with minimal
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storage or expected testing cost [MIcH78, lowest order (with h - 1 or h - 0) to the
TuAY78, CERN79a, THAY81a]. highest order (with g - 1). Again, only

The minimization of storage or expected prime P-functions are retained in building
testing cost for decision trees has been ap- the lattice. A search procedure generates
proached for Boolean [CERN79a] and mul- optimal decision diagrams from the lattice
tivalued [THAY78] logic functions by con- of prime P-functions. The generation of
sidering a special class of subfunctions, optimal decision trees, however, requires
which the authors call T-terms. Starting that prime P-functions be replaced by
with the terms of order 0, which are just prime P-cubes, that is, prime P-functions
logic cubes (in the sense of switching theory restricted so that they are logic cubes. Since
[HAm65]), terms of successively higher or- the lowest order P-cubes comprise the
der are constructed by consensus opera- prime implicants of the function and its
tions. (That is, for each variable, x,, one complement, we find anew the NP-hard . - .
takes the consensus of a T-term of order n subproblem, so that the synthesis of opti-
and one of order k n with respect to x,; mal decision trees by P-functions requires
the result is a T-term of order n + 1 if it is exponential time and is therefore of little . -

not already a T-term of lower order and if practical interest. (It must be noted that we
it is independent of x,.) Only the prime do not imply that finding prime implicants
terms are kept in the construction process is an unsurmountable task; in fact, several
(where a prime term is a term not contained algorithms for that purpose have been stud-
in any other term of the same order). A ied and shown to do well in practice
simple procedure is then used to derive a [SLAG70, HuLM75]. Our point is that the
tree optimal with respect to worst-case test- methods described above, which incorpo- .. -

ing cost, expected testing cost, or storage rate this NP-hard problem as only a small . -

cost. Although the algorithm sheds light on part of the complete work, cannot compare
the relationship between Boolean formulas with the dynamic programming method.) At-
and optimal decision trees, it is not of prac- On the other hand, the construction of op-
tical interest (expect for minimizing dia- timal diagrams, while exponential (no anal-
gram storage cost) since it contains a hard ysis is provided with the algorithm, but the
problem; the prime terms of order 0 are just generation of all prime P-functions may
the prime implicants of the function clearly require that much time), remains of
[HAmR65] and obtaining them, even from interest since no substantially better solu-
complete function descriptions, is known to tion is known.
be NP-hard [MASE82]. As a result, the pro- We now proceed to a closer examination
cedures proposed may require exponential of the composition of P-functions, followed
time under any input size. A similar draw- by an example. Once again, the less math-
back is present in the algorithm published ematically inclined reader may wish to skip
by MicH78, which converts extended-entry to the next section.
decision tables to decision trees with mini- If fhas n variables, it has up to2- 1 P- ._
ma] storage or expected testing cost, since functions on which a lattice structure can
the algorithm starts by establishing a main- be established, from the lowest to the high-
imal disjoint set cover for the function, a est order by means of the following non-
process known to be NP-hard [GARE79]. commutative composition law (designed to

An extension of T-terms was recently be compatible with Shannon's decomposi-
proposed by THA 31a for the design of tion). A P-function of order k + 1, (g, h),
decision trees and diagrams with minimal is obtained from two P-functions of lower
storage cost. This formulation is based on order (one of order k and the other of order
a class of functions called P-functions, no larger than k), (go, ho) and (g, hi), by
where a P-function for the Boolean function using, for each x,, the formula
fis a pair, (g, h), of functions such that f
and h are equal when restricted to the (g,h) - (goJ.,.o.gJ.,-,,F.-ho + x.h), (6)
points where g evaluates to 1. A composi-
tion operation is defined that allows the which we denote (go, ho) ®. (gl, hi). In a
building of a lattice of P-functions, from the sense, the resulting P-function of order
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k + 1 corresponds to our state of knowledge
prior to testing variable xi. Indeed, substi-
tutin xi- 0 into (g, h) yields t 2'1"" ";

and substituting xi -1 yields
(gol,-o-g -i,. h),

which shows how the second function in
the pair reflects our increased knowledge "
about the function f (until that second func-
tion is a constant, meaning that the evalu-
ation of f is complete), while the first func-
tion provides us with information about the
path of evaluation followed so far. B B,

Example 1I

Consider the Boolean function of our pre-
vious examples. The two prime P-functions
of order 0 are L

Ao-( 1) and Ai-(f, 0).

From those two functions, we can form six Figurem. The lattice of prime P-function of Ezam-
P-functions of order 1, three of which are Ple 11.prime:

prune: 1  through the lattice shows that the optimal
,diagrams have three nodes for a storage

B, - A, ( Ao - (!,' + x3, x2), cost of 6; the diagram of Figure 2 was one
B 2 - A 0 3Ao - (x lx 2, xa). ofthose, f

Using now the five prime P-functions of
order 0 and 1, we can form 54 P-functions 3.3 Questions of Optimality
of order 2 (not all distinct), four of which Since decision tree optimization is an NP-

• are prime: hard problem under polynomial-sie inputs

Co Ao E) B 2 = BO @3 AO [MoR8Ob], it is necessary to develop some
- (X2, X1 + X3), heuristics that will allow the fast construc-

C- A, 02 B - B, @2 Ao tion of good, albeit not optimal, solutions,
- ( + X3, X2), Indeed, some such heuristics have been

C2 - A, @3 B, - (xi + 72, x X3), proposed even before an optimal algorithm,
C3 - B, 01 Ai - (2 + Z xO). was developed; it appears that the so-called

"splitting" heuristic, discussed below, was
Finally, we can use our nine prime P-func-Aristoteles and Theophrastus
tions of orders 0, 1, and 2 in order to obtain know t52], and t e pr o,- - ,

the inge pime -fuctin ofordr 3at oss2], and many heuristics were pro-the singl e ie, Don of- ( 1, posed for the conversion of decision tables
the op f th latic, Dl 1,f) MoNT62, EGLE63, Poia5] before the pub-

lication of the branch-and-bound solution- C, , C 2 - B E, C2  -0 3 2 C, of RML66.
-C0C2 - ®, C- CAll published heuristics are of the so-

called greedy type, that is, they perform a

The corresponding lattice is shown in Fig- local, step-by-step optimization. Three -"

ure 9, where a number, i, in a circle has main types of criteria are used; the appar-
been used to denote a composition with ently large variety results from attempts
respect to the ith variable. A search to accommodate tests with variable out-
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comes (as in most biological applications size. Yet another aspect of the splitting

[Bnow77, GOWE75, PAYR81]), or from mi- heuristic is a criterion used for binary iden-
nor differences in preprocessing (such as tification problems [GYLL63, CHAN65],
attempts to put decision tables in a canon- which selects that variable which separates
ical form [SHwA75]), or in the extent of the largest number of pairs of values: if n is
look-ahead used (while most strategies use the total number of values and k the num-
no look-ahead at all, SETH80 has suggested ber of values put into one subset, then
a one-step look-ahead and MicH78 pro- k. (n - k) pairs are split. This criterion is
posed a range of look-aheads, from 0 to k optimized for k - n/2. (Choosing that vari-
step). These three criteria are discussed in able which separates the largest number of
some detail below. (Since the discussion of pairs could be described as the separation
the first-and most important-of these heuristic; this criterion also appears in a
criteria involves some mathematical ma- variety of forms, some of which attempt to
nipulations, we once again have organized include tests with variable outcomes
its discussion in two parts, grouping all [BRow77, PAYR80].)
mathematical concepts in the second.) Descriptions of the heuristic and its var-

iants abound [KLET60, REsc61, OsBoO3,
. The Information-Theoretic Criterion MAND64, GowE71, GANA73, SrwA74], but

it was not until later that the performance
In this strategy, commonly used for the of the information heuristic was analyzed. ..-

(near) minimization of the expected testing Garey [GARE74] studied its application to
cost, the problem is viewed as one of refin- identification problems and showed that,
ing an initial uncertainty about the func- although it is quasi-optimal when all pos-
tio's value into a certitude. At each step, sible tests are available (a result dating
the test of a variable diminishes the uni- from ZIMM59), there are problems for which
verse of possibilities, thereby removing a it can construct trees with an expected test-
certain amount of ambiguity. In informa- ing cost arbitrarily larger than the optimal.
tion-theoretic terms, the initial ambiguity This result disproved a long-standing con- ---

of a (partial) function is expressed by the jecture that the splitting algorithm was op-
entropy of the function (for a lucid exposi- timal for identification problems with
tion on the topic, see the original paper of equally likely objects [KLET60, OSBo63];
SHAN48). The ambiguity remaining after such a result is, of course, predictable now
testing a variable can be computed as the in view of the NP-hardness of the problem
average ambiguity among the restrictions, since an optimal polynomial algorithm
This allows the computation of the ambi- would disprove the widely held opinion that
guity removed (or, equivalently, the infor- NP-hard problems actually require expo-
mation gained) by testing that variable. nential solutions. However, HUNG74 proved
The information heuristic then chooses at that the heuristic is, on the average, asymp-
each step that variable which removes the totically optimal; that is, the ratio of the
most ambiguity per unit testing cost. average cost of trees built with the infor-

The previously mentioned splitting heu- mation heuristic to that of the optimal trees
ristic is a special case of the information converges to 1 as the problems get larger.
heuristic for identification problems. It is This result must be qualified by the obser-
well known [SHAN48I that the removed vation that most functions have an ex-
ambiguity is maximized by letting all re- pected testing cost fairly close to maximum,
strictions have equal probability; thus, so that the asymptotic ratio used in
when all variable costs are unity, the infor- HuNG74 is in general fairly small for any
mation heuristic chooses that variable heuristic. Indeed, MORE81b showed that
which "splits" the set of objects into subsets completely specified Boolean functions of
with most nearly equal probabilities. In the n variables with unity costs and uniform
case of binary identification problems with probability distribution have an asymptotic
equally likely objects and unity costs, this expected testing cost of n - 1, so that in
means selecting that test which splits the this case the asymptotic average ratio must
objects into subsets of most nearly equal be 1 for any heuristic. Recently, HART82
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presented a generalization of the informa- ing that variable x. such that the probabil.
tion heuristic which allows for more corn- ities p(xi -j) are most nearly equal to each
plex objective functions (including the a- other.
quisition cost) and offers a trade-off be-
tween the complexity of the construction Example 12
and the upper bounds that can be placed Let us use once more the function of Ex-
on the size of the resulting solution. ample 7. The entropy of the function is

The information heuristic is efficient for H
an input size of O(S), it takes time 0(8. H,- -[P(f- 0) - logap(f 0)
log S) which, while barely faster than + p(f- 1) • log2 p(f- 1)]
the optimal dynamic programming solution - -[0.6-1og20.6 + 0.4-logaO.4] a 0.971.

for exponential size inputs, compares very The ambiguity remaining after testing x, is
favorably indeed with the exponential-
time algorithms used for identification H1(xi) -p(x -O)Hfl,,o

problems. + P(xi - 1) -H,..i
We now examine the entropy computa- a 0.5.1 + 0.5.0.881 a 0.941.

tions in some detail; once again--and for Thus the information gain of x, per unit
the last time-the less mathematically in- testing cost is
lined reader may wish to skip to the next

section. I(x_) (0.971 - 0.941)
The expression for the entropy of a func- t(x 1 0.03.

tion (is [SNtAN4S] Similarly, we find

H,- -Zp(f- u).log2p(f- v), (7) 1(2 091-.2
V -0.173,

where p(f - v) is the probability that f t(Xz) 2
takes the value v and the sum is taken over I(x) 0.971 - 0.652
all the values v in the range off (values of t i  6 a 0.053,
p(f - V) are normalized so that their sum _.).a 6

over the values of v is equal to 1). After so that the heuristic will choose to test x2

testing variable xi, the remaining ambigu- first. Since the restriction for x2 - 0 is
ity, Hf(xi), is the average ambiguity among constant, only the restriction for x2 - 1
the restrictions: remains. The information gains per unit

cost of x, and x2 for that restriction are

0 H(x) - 2 [p(xi -j).H i.]. If6'i(X) (0.961 - 0.382)
- a__ _______ 0.579,-ot( x1 ) 1

Hence the ambiguity removed by testing x i (0.961- 0.195)
is the quantity Iale-(X) 0.128,

11 (x)-H-Hxj. (8) t(X3) 61&0~~ .- f. ... 8
so that x, is tested next. The completed ,

This quantity is computed for each vari- tree is in this case the optimal tree devel-
able; the information heuristic then chooses oped previously. 0
at each step that variable which has the
greatest ratio, It(x)/t. 3.3.2 The Activity Criterion...-

For identification problems, the expres- A class of simple heuristics can be obtained
sion for the removed ambiguity can be sire- for any problem by using the bounding
plifted to functions of branch-and-bound algorithms

C -,-- and doing local optimization on their basis,
I(x,)-- Z p(x, j).logap(xj), (9) in effect using branch-and-bound without

backtracking. This approach is of no partic-

which is seen to be of the same form as (7). ular interest for the minimization of storage
Thus maximizing the removed ambiguity cost (although it has been used for that
in an identification problem involves find- purpose [RAB171, YAsU71]) since the exist-

Computing Survey . Vol. 14, No. 4. December 1982

me d*- % -



45

612 *Bernard M. E. Moret

ing bounds are too loose; it is, however, cost, necessitates the generation of all
applicable to the minimization of the ex- prime inplicants for the function and its
pected testing cost, since the lower bound dual; the implicants are then ranked in 0
based on activity is in general tighter. terms of their probability to cost 2 ratio.

The activity heuristic has the same com- Variables which appear in both the best
putational requirements as the information implicant for the function and that for its
heuristic. Motet [MoRE80b] provided an dual are then selected (at least one such
analysis of its performance, showing that variable must exist). Halpern (HALP74]
the worst-case ratio for completely speci- proved that this strategy is optimal for sym-
fled Boolean functions with unity costs and metric functions (those that remain invar-
uniform probabilities is limited to 2, but iant under any permutation of the van-
can be arbitrarily large if nonuniform prob- ables), but offers no analysis of performance
abilities are allowed. This heuristic appears in the general case.
to be of less interest than the information Breitbart [BREI75a] presented a similar
heuristic, since it performs best for "dense" heuristic for monotone Boolean functions
problems, that is, those in which the func- with unity costs and uniform probability
tion is specified on most of its domain, distribution, which uses the minimal dis-
which are precisely those problems that can junctive form of the function (this form is
be efficiently solved by the optimal dy- unique for monotone functions [HAMt65]);
namic programming algorithm. in a later analysis [BREM78], it was shown

Finally, a similar approach has been that trees constructed by this rule can
taken by some authors for biological iden- have an expected number of tests at least
tification problems, using rough lower and (n/log n) times larger than the optimal
upper bounds on the number of tests trees for functions of n variables. .
needed to complete an identification (see Both heuristics apply only to completely
the thorough studies of BRow77 and specified Boolean functions and require ex-
PAYR8l). In one such approach, it is pos- ponential time since the generation of all
tulated that the subtree will be completed prime implicants and/or the minimization
optimally (i.e., following Huffman's proce- of the disjunctive form are NP-hard prob-
dure-even though only a small proportion lems [MASE82]. Since dynamic program-
of all tests is available); the resulting lower ming offers an O(S'.log S) optimal so-
bound is used for deriving a selection cri- lution to the same problem, these heuristics
terion [DALL74, BRow77]. Alternatively, it are of interest only when the function is
is assumed that the tree will be completed already specified by its prime implicants or
by a linear sequence of simple tests; the its minimal disjunctive form.
resulting estimate is an upper bound under
most conditions and allows the derivation 4. APPLICATIONS
of another selection criterion (PAYR81].
However, those criteria are based on rather In this section, we describe the main fields
simplistic bounds and thus susceptible to of application and review related results.
large errors; despite the lack of either the- We distinguish four fields: (1) decision table
oretical or practical results about their per- programming; (2) diagnosis, identification,
formance, one can safely predict that their and pattern recognition; (3) logic and pro-
average performance is worse than that of gram design; and (4) analysis of algorithms.
the other criteria examined so far. Of these, only the last three are treated,

since decision table programming is chiefly
3.3.3 Ad Hoc Criteria for Boolean Functions concerned with the construction of optimal

decision trees, a topic with which we dealt
Since Boolean functions are conveniently in the previous section.
expressed by formulas, special heuristics
can be developed that are based on char-_-_
acteristics of the formulas such as number,'':"
ac teristis of lthfomlsucasnberas 'T7he cost of an implicant is that of the optimal tree

for it; that tree is easily constructed [RiEs63, SLAG641
One such heuristic, proposed by HALP74 since tree representations of conjunctions of variables

for the minimization of the expected testing are just linear test sequences.
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4.1 Diagnosis, Identification, and Pattern distinct variables used (see the review of
Recognition PAYRSO, pp. 261-263).

Garey [GAx72aI argues that most ideniti- Since decision trees model multistageGare [GIRE2a]arges tat ostideti-branching decision processes, they find a .i
fication problems of human origin include b g oe y
a large number of simple tests (of the type, particularly important application in e-
"Is the unknown object of type i?") plus a quential, or more precisely, hierarchical,
smaller number of "well-splitting" tests. In. pattern recognition (see KANA79 for some
deed, this is how most of us approach the general considerations about the advan-
typical identification problem of "twenty tages of hierarchical approaches). In the
questions," starting with general, well-split- simplest case, a pattern recognition prob-
ting questions (e.g., "Is it mineral?") and lem is deterministic and reduces to an iden-

the game with simple questions (e.. tification problem. In general, however, a
"Is it an aardvark?"). Several large identi- type (called a class) of objects is not abso-

"Isit n ardvrk?). eveal arg idn~ hiltely characterized by selected combmna-
fication problems approximate this descrip- lu te s values (caled 
tion, notably in botanical and biological tionsoftestvalues(called/eatures); rather,
classification [MoLL62, PANK70, MOS71, the problem is of a statistical nature such
WiLLS0]. Garey [GA 72a] has described a that each combination of features is distrib-dnamic prgammi agorihs despciey uted among all the classes. (This model of
dynamic programming algorithm especially probabilistic identification also corresponds
designed for this type of problems that con-
structs identification trees with minimum to the fuzzy decision tables discussed in
exected testifgciost e wKAND0.) If the set of features has suffi-eceIn most identification problems, m cient power of discrimination, the probabil-

more tests are present than are needed for ity distribution of each combination of fea-
the identification of all objects. In conse- tures will exhibit one strong peak for some
quence, several researchers have studied class, so that an object possessing this com-
the problem of obtaining a minimal set of bination of features can be classified in that
tests; we recognize in this problem the Mi*- class with a low probability of error. At
imization of the total acquisition cost. Such times, however, it may be advantageous to
an optimization is important when individ- trade accuracy for speed and allow an ob-

ual tests are time consuming and prompt- ject to be classified in a patently wrong
ness in identification essential (as in medi- class in order to gain on response time. As
cal diagnosis [PAYR80, Wn.LL0]), so that a consequence of this additional freedom,
parallel, rather than sequential, testing is decision trees for pattern recognition pur-
used. Unfortunately, the minimum test set poses are subject to yet another optimiza-

problem, as it is known, is itself NP-hard tion criterion: minimum overall probability

[GARE79]. As a result, splitting heuristics of misclassification.
based on the number of split pairs have
been proposed for the construction of sub-
optimal solutions [GYLL63, CHAN65]; how- Consider the following simplified pattern
ever, no performance analysis was supplied, recognition problem with three classes, C1,
(The general analysis of the splitting algo- C2, C3, and three binary features, x1, X2, X.-
rithm presented in the previous section The testing costs of the three variables
does not apply here since the goals are quite (features) are
distinct.) Some preliminary analytical re-
sults as well as extensive experimental data t - 1 x2 2 x3 -- 3,
can be found in MoRE82. This problem is and the probability distribution on the vari-
closely related to that of finding prime im- ables' space is given by
plicants for functions of Boolean variables, ( 0 0 (0) .
since each minimal set of prime implicants p,: (0, 0, 0) -- 0.10 (1, 0, 0) -. 0.20
determines an irredundant set of tests for (0, 1, 0) - 0.10 (1, 0, 0) -- 0.10
the problem. Hence methods have been (0, 1, 0) 0.10 MIA 0.10

proposed that first find all prime implicants (0,1,1) -- 0.05 (1,1,1) -- 0.15
and then attempt to find a set of prime The distribution of each combination ofimplicants that minimizes the number of features among the classes is given below,

Computir4 Surveys, Vol. 14, No. 4, December 1962
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where the probability that a given combi-
nation corresponds to class i is given by the
ith value of the triple: 3

pc: (0, 0, 0) .. (0.10, 0.85, 0.05) 04

(0, 0, 1) - (0.01, 0.98, 0.01) 2 1-'."
(0, 1,0) -- (0.20,0.10,0.70) 03 03
(0, 1, 1) -- (0.80, 0.10, 0.10) 1 3
(1,0,0) -, (0.80, 0.10, 0.10) 005 015

(1,0, 1) -- (0.90, 0.05, 0.05)
(1, 1, 0) -- (0.05, 0.05, 0.90) (a) (b)
(1, 1, 1) -. (0.I0, 0.00, 0.90) "'

Figure 10. The two decision trees for the pattern
The two distributions aflow us to compute recognition problem of Example 13: (a) with minimumth e a priori pro bability of each class, th at p sblt of e or ( ) wih t d -o orm ore effi- | . .-

is, the probablity that a unknown object ciency.

belongs to that class- of only 2.6, and its overall probability of :.
p(C) - 0.342 misclassification is found to be 0.164, barelyp(C2) - 0.326 larger than optimal. Thus it is a diffictt".

p(Ca) -0.332 task to decide which tree is best; other

Since each combination of features must be criteria must be used, such as penalties due .
classified in some class, the strategy that to misclassification or maximum permissi-
minimizes the probability of misclassifica- ble response time. 0
tion is obviously to classify a combination Faced with such a variety of design cri-
of features in the class for which it shows teria, researchers in the field have explored
the largest probability, thus we get the as- different routes. A tree is often synthesized
signment directly from the problem without attempt

f: (0, 0, 0) -- C2 (1, 0, 0) -- C1  to optimize its testing cost, but using heu-

(0, 0, 1) - C2 (1, 0, 1) -- C ristics designed to minimize the probability
(0, 1, 0) -- C3 (1, 1, 0) - c 3  of misclassification [You76, RoUN79].
(0, 1, 1) -. C (1, 1, 1) -C Hauska [HAus75] and Wu [Wu75] de-

scribed a local optimization algorithm,
Hence the probability of misclassification based on measures of interclass separation,
of an object with the combination of fea. for the semiautomatic design of a decision
tures (0, 0, 0) is 0.10 + 0.05 - 0.15; since tree from a known set of features. When
that combination of features occurs with a the features are known in advance, a pro-
probability of 0.10, it contributes a total of cedure based on dynamic programming due
0.10.0.15 - 0.015 to the overall minimal to DATr81 can be used to build a decision
probability of misclassification. Working tree with minimal cost, in which the coat
similarly with the other combinations criterion includes the expected testing cost
of features, the latter probability is found and the cost of misclassification; a similar
to be approach based on game theory was de-

p.. - 0.134. scribed in SLAG71 and a third in KULK76.
When the class assignments are made (and

A decision tree with that overall probability the probability of misclassification there-
of misclassification is shown in Figure 10a, fore fixed), the pattern recognition problem
together with the probability of its leaves; reduces to the description of a (partial)
this tree has an expected testing cost of 4. function; BELL78 models this case by deci-
A different tree is pictured in Figure 10b; sion tables and discusses their conversion
this tree classifies the combination (0, 1, 1) to sequential testing procedures (although
in class C3 -clearly not an optimal choice the optimal algorithm of BAYE73, PAYH77

I C in terms of classification accuracy. How- is not mentioned). The accuracy of decision
ever, this tree has an expected testing cost tree classifiers depends upon such consid-
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erations as sample statistics (e.g., sample vestigated the use of binary decision dia- "
size) and the number and intercorrelation grams (with a slightly different definition)
of features; KULx78 studied the problem in testing digital systems.
under simplified assumptions and con- In conjunction with the evaluation of
cluded that hierarchical classifiers, as their Boolean functions, it must be noted that
single-stage counterparts, may suffer from almost all Boolean functions have a pessi-

* the "dimensionality" problem, that is, show mal worst-case testing cost (Le., all vari-
decreasing performance if the number of ables are tested on at least one path). This
features is increased beyond a certain result, due to RrvE76a, was later comple-
threshold (which depends on the sample mented by Mopz8lb, who proved that all
size). symmetric and all linearly separable (also

called threshold) Boolean functions possess
* 4.2 Logic and Program Design this property. An important consequence of

We mentioned previously that decision these results is that synchronous multi-

trees and diagrams for Boolean functions plexer implementations of Boolean func-

naturally give rise to multiplexer imple- tions in most cases cannot be optimized
mentations. Such implementations are at- with respect to their propagation delay,
tractive since the resulting circuits have few since this delay is determined by the longestt r c i e s n e t e r s l i g c r u t a e f w p a th th ro u g h th e n e tw o rk . -- -,
interconnections and lend themselves well Finally decision diagrams can be used to
to large-scale integration (for instance, bi- F di se
nary trees form an efficient interconnection model the control structure of a program
pattern [Hoso81]). Moreover, multiplexer (as advocated in PIAT78, where they are

networks can be used as universal logic called "atomic digraphs"), in particular, inmodules (ULMs) [TABL76, VOLT77], there- relation in Ianov's schemata [IANo6O]. It

by reducing the number of basic compo- then becomes important to recognize iden-

* nents needed for logic design. tical structures, that is, to decide whether

Decision tree representations of Boolean or not two decision diagrams are equiva-lent. This problem is known to be NP-hard--
functions exhibit several advantages over let.This p ow n to be ad
Boolean formulas. Lee [LEE59] showed

efficient algorithm that solves the equiva- :-.that at m ost 0(2 /n) diagram nodes are l n ep o l m p o a ii tcly(~ . h c
required to represent any Boolean function lence problem probabilistically (i.e., which
of n variables, which compares very favor- provides an answer crrect within a given-
ably with the 0(2'/og n) operators th and refinable--percentage of error).
may be needed by an unfactored Boolean
formula [SAVA76]. Moreover, every opera- 4.3 Analysis of Algorithms
tor of the Boolean formula must be carried
out in order to evaluate the formula, so that The worst-case number of tests (the height)
up to O(2/log n) operations may be per- of a decision tree indicates a minimum
formed, while a decision diagram will never number of argument evaluations that must
require more than n variable evaluations, be performed in order to compute a func-
Thus decision diagrams express Boolean tion. As such, finding the minimum height
functions at least as compactly as Boolean of any tree representation of a function is
formulas and are greatly more efficient as a useful technique for deriving bounds to ..

an evaluation tool. (The latter property is be used in the worst-case analysis of algo-
used, e.g., for the repeated evaluation of rithms. The previously mentioned results
Boolean queries in a large database of RIvE76a and MoRE81b, showing that
[WONG76].) Finally, decision diagrams lend large classes of Boolean functions require
themselves to composition and recursion, any decision tree representation to have
as are shown in the next section, while the maximal height, are an example of such
same operations are very difficult to carry analysis; indeed, Rivz76b built upon these -.-

out using formulas. Some of those advan- results to prove some lower bounds on the '.
tages were rediscovered and some pointed complexity of graph algorithms based upon
out for the first time by AKER78, who in- a matrix representation.
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The worst-case number of evaluations the subsets of values assigned to all the p
must be at least equal to the ratio of the combinations of its variables is not empty
initial ambiguity of the function to the up- (for one can choose to use any of the values
per bound on the information supplied by present in the intersection for each of the -.

each evaluation. Since the evaluation of a combinations of variables, thereby effec-
* -ary variable provides at most log2 k bits tively transforming the relation into a con-

of information, the height of any tree for a stant function). Under such assumptions,
function, f, or k-ary variables, must obey all of the results discussed so far apply to
the relation the representation and evaluation of rela-

tions (MoRE80b].hffi. at H//log2 k. (10) A particularly important tool in the anal-
* This relation has been used to provide ysis of problems is decomposition, which

lower bounds on the complexity of several tries to simplify a problem by partitioning
combinational problems, such as sorting it into smaller parts (the rationale being
[KNu'rT71] and various set operations that the complexity of the whole is more
[RxE72]. The decision tree approach has than the sum of the complexities of its
recently been generalized to handle proba- parts); "divide and conquer" is a time-hon-
bilistic, nondeterministic, and alternating ored aspect of decomposition. Conversely,
models of complexity [MANB82]. composition is an important tool in synthe-

sis. We have seen that decision trees induce
5. RECENT DEVELOPMENTS a natural decomposition-Shannon's de-

composition; thus it remains to demon-
*.1 Composition and Recursion strate how to compose decision trees and
The decision diagram model of representa- diagrams. Two such compositions can be
tion as described so far is limited to (partial) distinguished: leaf composition and node
functions. Several extensions have recently composition.
been proposed to include composition of Leaf composition stems from the simple
diagrams [AERt78, MoRE80b] and model- hierarchical idea of a "tree of trees." As an L
ing of relations and simple recursion example, consider a pattern recognition
[MORE80b]. problem such as bird identification. To

Whereas a function assigns at most one most of us, identifying a bird as a "sparrow"
value to each combin'teon of variables, a or a "dove" is sufficient; to a bird watcher
relation may assign any number of values, or an ornithologist, however, this is a vague
that is, any subset of the set of values, classification that must be greatly refined
Thus, in particular, a relation accurately to include species and subspecies. This sug-
models an ambiguous decision table, where gests a two-step identification, in which a
the same rule (the same combination of rough classification is first made, followed
variables) may specify more than one set of by a highly specialized procedure for fur-
actions. In accordance with KING73, we ther refinements. This offers several advan-
assume that, when inconsistent rules apply, tages: (1) it is practical since it can be of
any of the assigned action sets may actually use to both uninitiated and specialists; (2)
be chosen for execution. In terms of rela- it is efficient since the evaluation can be
tions, a decision tree implementation can profitably (for the uninitiated) stopped
choose to specify for each combination of after the first stage; and (3) it can be greatly
variables any (or some, or all) of the values optimized in the second stage since it is
from the subset assigned to that combina- then possible to design highly specialized
tion by the relation. Since combinations of tests. The first step in such a design consists
variables for which the function (relation) of a single decision tree; most of the leaves
is not defined are usually allowed to take of the tree, however, do not give a value,
any convenient value, we may assume that but rather designate another decision tree
such -ombinations are in fact related to the to be used in the second step. Thus one can
whole set of values. Another consequence stop the evaluation upon reaching a leaf of
of our assumptions is that a relation is the first tree, taking the "name" of the
constant exactly when the intersection of second tree as the result of the evaluation,
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or continue evaluation by proceeding to the ()x(w
second tree. The latter choice results in the
composition of the two trees, and it is called
leaf composition since it replaces a leaf by
another tree.

Formally, then, leaf composition of two
trees is the process of attaching the second W "
tree in place of appropriate leaves in the
first tree. (The analog in the software world "
is a transfer of control between modules
without transfer of information, such as .1 -

chaining.) Clearly, the second tree cannot - -

share variables with the first lest the com- .
posed tree test the same variable twice on
some-path.Aspecialca ofinterestis the (C) xZ
composition of decision trees for Boolean
functions, where the second tree is attached 0 0 -

in place of every leaf with the same label in 0. .
the first tree. One easily verifies that such
a composition results in a logical OR of the 0 1 0"
two functions when the leaves labeled "0"
are replaced, and in a logical AND when Irwe 11. An example of leaf compoition- (a) the
the leaves labeled "1" are used instead, two functions (b) left and right OR compowioam ()

Moreover, the composition is then com- --d aht AND compaitio";-,
mutative (in terms of the function it yields),
just as the logical operation that it imple- S
ments. Figure 11a shows two trees, which Whereas the rationale behind the leaf
are OR composed in Figure lib and AND composition was the progressive refinement
composed in Figure 11c. of function values, node composition intro-

The behavior of the various optimization duces a refinement of the values of the
criteria under leaf composition is simple. variables. Thus the former is associated
The storage cost of the composition is the with an explicit tree hierarchy, while the
sum of the cost of the first tree and, for latter induces a functional hierarchy. In a .
each replaced leaf, of the cost of the second node composition, a k-ary variable is re-
tree. This can be simplified for diagrams; placed by a tree with at least one leaf la- . .-
since only one leaf of each label can exist, beled with each value from 0 to k - 1; this
the storage cost of the composed diagram tree specifies how to evaluate the variable
is just the sum of the costs of the compo- it replaces. (Thus the software analog is the
nent diagrams. The expected testing cost of use of an auxiliary procedure that returns
the composition is the sum of the cost of a value, i.e., a subroutine call.) The effect
the first tree and of the cost of the second of node composition on functions expressed
tree, the latter being multiplied by the by formulas is just the substitution in the
probability that one of the replaced leaves first function's formula of the second func-
will be reached. Thus all the techniques tion's formula for each appearance of the
used for the optimization of decision trees node variable. In terms of trees, the corn-
are applicable to the optimization of com- posed tree is obtained by using the follow- 0
posed trees (see MoRE80b). In connection ing procedure for each occurrence of the
with the composition of Boolean decision specified node: replace the node by the
trees mentioned above, PERL76 proved second tree and attach the jth subtree of
that, on the average, the order of composi- the node to each leaf labeledj in the second
tion is irrelevant to the expected testing tree. As for leaf composition, the trees used
cost of the composed tree. (Notice, how- in node composition must not share any
ever, that this is clearly not the case for the variable. Figure 12 illustrates a node com-
OR compositions illustrated in Figure lb.) position. Akers [AKER78] proposed this
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0 (a) for identification are specified by node com- p

In discussing both modes of composition,
we have purposefully avoided a delicate
problem: What if a tree is composed with

0 f1 0itself? In such a case, the leaves or nodes of
0 t~w~x~y~z) ~the first tree are replaced by the identical

f (W, ~Z) X-0o.5 tree, so that more replacements are possi-
ble, and so on. This creates an infinite re-

(b) cursion, giving rise to an infinite tree (or a
diagram with cycles). Although composing

a a tree with itself may appear contrived,
4 recursion is a sufficiently fundamental phe-

nomenon that a study of its effects on de-
cision trees is warranted. Unfortunately,

0 1 Z 0 1 very little work has been done in this area.

1 0 Moret [MoRab] studied the recursion
due to a single leaf composition and showed

g(abw.y,z) = f(wca.y,z) that the concepts of expected testing cost,
diagram storage cost, and activity can be

FIgure 12. An esample of node composition: (a) the extended to such simple recursive trees.
trees for the function (left) and the variable (right); Although the tree storage cost is clearly
(b) the composed tree. infinite, as is the worst case testing cost,

the expected testing cost is generally finite.
This stems from the fact that there usuallycomposition and studied its use in the de- is a nonzero probability, call it e, of reaching -0 ~~~~~~~sign and analysis of logic functions. .annelcal efi h opnn

o p tree, so that the probability of recursing
mization criteria under node composition is one olele leai th e. opone
somewhat complex. While the diagram level, 1 - e, is less than one. Now, theprobability of recursing k levels is just r.storage cost of a composition is simply the ( - e), so that the average number of
sum of the cost of the first diagram and, for recursion levels used before termination is
each replaced node, of the cost of the sec-

0 ond diagram, the other costs depend on "1
exact structure of the second tree. In par- r.,- (1-e)' --

k-0 e
ticular, it is necessary to know how many
leaves of the second tree share the same This factor can be used for transforming
label, say label j, since the jth subtree of the expected testing cost of a single, non-
the replaced node will be attached to each recursive copy of the tree into the expected
of these leaves. However, the optimization testing cost of the recursive tree; the activ-
methods described in this article can be ities of the variables can be computed sim-
applied with suitable modifications. ilarly.

Both modes of composition can be used 52 Applications to Testing
at once. Recent research on the problem of
bacteriological identification in a clinical Decision trees have long been used for pur-
environment [SHAP81] suggests as the ini- poses of fault diagnosis, as previously seen.

C" tial model a user-specified identification Such uses, however, apply decision trees to
tree that simply describes a hierarchy of the analysis of a discrete function which is
classes and subclasses of bacteria (as deter- not that which they represent. Akers
mined by local factors such as common [AKER78, AKER79] proposed that binary
mode of treatment in initial stages, like- decision diagrams be used as the basis for
lihood of occurrence in the geographical developing tests for the Boolean function
area, etc.). The hierarchy involves leaf corn- which they represent. Some of the reasons

( position, while the actual tests to be used given have been discussed above, such as

Computing survey. Vol. 14. No. 4, D mber 19 2
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The use of activity in testing digital and analog systems.*

• ... , -. "-

Bernard M.E. MoretT, Michael G. Thomason', and Rafael C. Gonzalez"

Abstract

With the advent of large scale integration, testing methods must be developed 0

which rely solely on the input-output behavior of systems, thereby requiring an

implementation-independent model of system behavior. Such a model, the decision

tree, which has proved of great use in many areas of Computer Science, is briefly

presented. Using this model, a measure of the complexity of multivalued discrete

functions is developed, as well as a measure..of the contribution of individual

variables to the overall complexity. The latter concept, the activity of a variable, _

Is shown to have considerable potential for the design of incomplete testing proce-

dures. In particular, exercising those variables which have the largest activity

maximizes the probability of error detection in systems with equally likely faults.

Finally, activity is shown to be a powerful tool for the analysis of multivalued

fault-trees, thereby allowing the application of some digital testing techniques to

analog systems modelled by multivalued functions.

• This research is sponsored by the Office of Naval Research, Arlington, Va, under
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Introduction

As the size and complexity of new integrated systems increase, the need arises

for methods of analysis, testing, and design which are implementation-independent,

using only input-output specifications. Of particular importance is the ability to

evaluate the complexity of a problem, as well as how individual variables contri-

bute to it, in order to select an appropriate set of analytical tools and establish

guidelines for testing and design procedures.

One implementation-independent model of discrete function evaluation, the de-

cision tree, has long been used in Computer Science for establishing lower bounds

on the complexity of problems (e.g., Knuth 71), designing switching circuits (e.g.,

Cerny 79), or establishing classification procedures for pattern recognition (Bell

78) and machine diagnosis (Chang 70). A decision tree is essentially a sequential

evaluation procedure, whereby the value of a variable (test) is determined and the

next action (to select another variable to evaluate or to output the value of the

system's function) is chosen accordingly. In particular, decision trees can be used L

to determine the state of a system (Halpern 74); Figure la shows a possible decision

tree for the state of the simple system pictured in Figure lb.

In a previous investigation (Moret, Thomason, and Gonzalez 80, 81), the authors

generalized the decision tree model to include composition and simple recursion, thus

allowing the modelling of hierarchical systems with simple feedback. They also de-

Cveloped a new complexity measure for discrete functions, the intrinsic cost, as well

as a measure of the contribution of a variable to the complexity of the function,

and showed the close relationship existing between these measures and the decision

tree model. As detailed below, the concept of activity shows considerable potential

as a tool for system testing.

Activity and Incomolete testino

In an input-output system, a failure is characterized by a deviation from the

expected output signal (that is, a different value for discrete systems and a value

~~~~~~~~~~~.................... ..-...... ...,........-......... ... . ', - - .
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out of tolerance for analog systemsl. This approach is known as signal reliability

(Koren 79), in contrast with the conventional functional reliability, which considers

all internal (and possibly non-critical) system faults. Signal reliability is thus

more accurate and better suited to large integrated systems. -

The thorough testing of a system can only be done by exhaustion; such an approach,.-_-%-..-

however, is unfeasible for all but the simplest systems. Thus one Is forced to use

some methods of incomplete testing. In the case of combinational (i.e., memoryless)

discrete circuits, (Losq 78) has shown that random compact testing, a method which

applies a sequence of random input vectors to a system and compares some output sta-

tistics with those gathered from a perfect ("gold") unit, can yield very reliable

estimates at only a small fraction of the cost of exhaustive testing. Often, how-

ever, such a method is inapplicable, because not all inputs are controllable; in a

system with memory (feedback), for instance, the values of the feedback variable

often cannot be either examined or modified (as illustrated in Figure 2)..

When only a fraction of the variables is accessible or when only the most "im-

portant" variables must be tested, exhaustive testing can be used with a selected"

subset of variables. Such a subset must be chosen such that the probability of de-

tecting a malfunction is maximized. The authors have shown that when all malfunc-

tions are equally likely, such a subset must consist of these variables which have

the largest activity (Moret 80). Thus the activity of a variable measures, in some

sense, how important a variable is to the correct functioning of a system.

Activity and fault trees.

A complex system is rarely specified as a whole, but is conceived as a structure

of simpler subsystems which interact by communicating the values of variables. Reli-

ability aralysis is then carried out on the structural relationships by representing

each subsystem by a single variable qualifying its operating state; when such vari-

ables are binary, taking the values "works" or "fails", this leads to the fault tree

model, which, has found widespread use in industry (.Fussell 79, Reactor Safety Study

75, Lapp 77). -

.. . . . . . . . . . .. ..... ... .... . .. . . - .. . . .. .- %''
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A fault tree is essentially a Boolean function describing the set of conditions

(on the subsystems) necessary to make a complete system fail. Figure 3 shows a possi-

ble fault tree for the system of Figure lb. Obviously, each subsystem can in turn

be decomposed and modelled in the same way. Fault trees are used to determine the

probability of failure of a system as well as for the study of the role of individual

subsystems. A tool commonly used for the latter purpose is the Boolean differential

calculus (Bennetts 75, Thomason and Page 76). The Boolean difference of a Boolean

function, , with respect to one of its variables, x, is the function:

df/dx fJ.= 0  f xo

where e denotes summation modulo 2. It Is well known that df/dx-l exactly when

critically depends on x, so that the probability that a system represented by f

fails due to the failure of subsystem x is

p,wb(df/dx-l). piwb(x fails).

The Boolean difference is closely related to the activity of a variable (Moret,

Thomason, and Gonzalez 80): when all probabilities are equal, the activity of vari-

* able x reduces to pw6(df/dx-l).

Thus the activity of a variable is a natural extension to Boolean difference

analysis; unlike the latter, It is applicable to arbitrary multivalued functions

(as opposed to multi-valued logic (.Bell, Page, and Thomason 72)), which makes it the

tool of choice for the analysis of multivalued fault trees.

Apolications to Analog Systems

* In analog systems, it is often difficult to decompose a system so that its Comn-

r ponents can. be characterized as either perfect or faulty. Rather, the observed out-

put signal deviates in some measure from the ideal output. Small deviations are

potentially acceptable and large ones probably not, but there is an intermediate zone

in which a signal can be just above tolerance without falling in either category.

This situation is summarized in Figure 4.

It is conceivable that a cascade of two subsystems, each of which is above

....................--......-.... •.•..-.......... -.. -_ . ....-...., ,.',: '.'.::.''.'...'.'; ,''.',.." ". _ . .. . .• . .,. • ... . ,. _ . . . .. . . . . ..
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tolerance but not faulty, results in a faulty system. In order to model this situa-

tion, a subsystem must be described not by a binary variable, but by a multivated

variable, taking for instance the values "fault", "below tolerance", "above toler-

ance", and "perfect." Then the failure function is not a Boolean function but a

general discrete function; fault tree models must be generalized and Boolean calculus

is no longer applicable, so that activity becomes the main tool for analysis.

Conclusion-

The activity of a variable, a new concept which measures the contribution of a

variable to the (testing) complexity of a discrete function, has been introduced.

It has been shown to be of great potential as a tool for the analysis and the testing

of both discrete and analog systems.

r&

References

(1) Bell, D.A. Decision trees, tables, and lattices. In Batchelor, B.G. Pattern
Recognition: Ideas in Practice. Plenum Press, NY 1978.

(2) Bell, N.J., Page, E.W., and Thomason, M.G. Extension of the Boolean difference
concept to multivalued logic systems. Proc. Symp. on Theory and Applica-
tions of Multiple-Valued Logic Design, Buffalo 1972.

(3) Bennetts, R.G. On the analysis of fault trees. IEEE Trans. Rel. R-24, 3(1975),
* 175-185.

(.4- -Cerny, E., Mange, D., and Sanchez, E. Synthesis of minimal binary decision trees.
IEEE Trans. Comp. TC-28, 7C19791, 472-482.

(5) Chang, H.Y., Manning, E., and Metze, G. Fault Diagnosis of Digital Systems.
Wiley & Sons, NY 1970.

* (6) Fussell, J.B., Powers, G.J., and Bennetts, R.G. Fault trees - a state of the
art discussion. IEEE Trans. Rel. R-23, 1(1979), 51-55.

(7) Halpern, J. A sequential testing procedure for a system's state identification.
IEEE Trans. Rel. R-23, 4(1974)., 267-272.

(8) Knuth, D.E. Mathematical analysis of algorithms. Proc. IFIP Congress 71, Vol.
IC1971), 135-143.

(9) Koren, I., and Kohavi, Z. Sequential fault diagnosis in combinational networks.
rEEE-. Trans. Comp. TC-26, 4.10977), 334-342.

. . o°
. ......

* - . . . *. ~ * ~ *. . . * .. * . ** ° . . . . . . .



62

(10) Koren, I. Analysis of the signal reliability measure and an evaluation pro- P.
cedure. IEEE Trans. Camp. TC-28, 3(1979), 244-249.

(11) Lapp, S.A., and Powers, G.J. Computer-aided synthesis of fault trees. IEEE
Trans. Rel. R-26(1977), 2-13.

(12) Losg, J. Efficiency of random compact testing. IEEE Trans. Camp. TC-27, .
6(1978), 516-525.

(13) Moret, B.M.E. The representation of discrete functions by decision trees:
aspects of complexity and problems of testing. Ph.D. thesis, University
of Tennessee, Knoxville 1980.

(14) Moret, B.M.E., Thomason, M.G., and Gonzalez, R.C. The activity of a variable
and its relation to decision trees. ACM Trans. Progr. Lang. & Syst.
TOPLAS 2, 4(1980), 580-595.

(15) Moret, B.M.E., Thomason, M.G., and Gonzalez, R.C. Optimization criteria for p.
decision trees. To appear.

(16) Reactor Safety Study - An Assessment of Accident Risks in U.S. Conmercial
Nuclear Power Plants. WASH-1400. .*NUREG-75/014. U.S. Nuclear Regulatory
Commission, Washington, D.C., 1975.

(17) Thomason, M.G., and Page, E.W. Boolean difference techniques in fault ree
analysis. Int'l J. Comp. & Inf. Sc. 5, 1(1976), 81-88.

C

17(.
......................................................... .-...

...................................................

. .5 *.- 5.5 .... -55*5* . . .~ 5~5* *5 *S..55,-.. . .

I.. . . . . . . . . . . . . . . . . . . . . . .



- - 63

works f ails

B Isystem fails',.0

works fails
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works fails
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Figture 1. A possible decision tree (a) for a simple system (b).

XI combinational

Figure 2. A sestem with memory (feedback) showing inaccessible internal
variables.
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FI~ure 3. A fault tree for the system of Figure lb.
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tolerance tolerance

Figure 4. Subdivisions of the range of an analog signal.
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OPTIMIZATION CRITERIA FOR DECISION TREES
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ABSTRACT

Decision trees are a model of the sequential evaluation of discrete functions that
* 0 have widespread applications in pattern recognition, taxonomy, decision table program-

ming, databases, switching theory, and concrete complexity theory. Since a function in
general has numerous decision tree representations, it is necessary to adopt some selec-
tion criterion in order to obtain the most appropriate representation. Several such
optimization criteria have been proposed in the literature, but few have been studied
together and the choice of a criterion has not often been directly addressed. B.

This paper regroups those criteria into a common, generalized framework, and exam-
ines their interrelationships. It is shown that, even in the simplest cases, most criteria
cannot be optimized simultaneously, thereby disproving some conjectures found in the
literature. Two new results are presented concerning the worst-case number of argument
evaluations for Boolean functions. On the basis of the accumulated results, it is argued
that two optimization criteria have widespread relevance; the computational complexity
of these criteria.is examined in detail.

Key Words and Phrases: computational complexity, decision diagram, decision tree,
exhaustive Boolean function, identification tree, optimization criterion, sequential
evaluation procedure, storage cost, testing cost.
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1. Introduction

A decision tree is a model of the evaluation of a discrete function, wherein the value of a
variable is determined and the next action (to choose another variable to evaluate or to
output the value of the function) is chosen accordingly. Decision trees have many appli-
cations in pattern recognition [20,251, taxonomy and identification [5,6,111, decision
table programming [1,15,16,21,22,24,26,28], switching theory [2,3,4,131, and analysis of
algorithms [23,271. More recently, they have been proposed as implementation-

4 independent models of discrete functions with a view to the development of new com-
plexity measures [181.

L: a Since variables can be tested in arbitrary order during the sequential evaluation pro-
cedure, a given discrete function has, in general, numerous decision tree representations.

*- Thus, it is necessary to develop some criterion for the selection of an appropriate tree, -

* Qthat is, to develop some measure on decision trees. Several mesures have been proposed
in the literature [8,13,21,221, and the multiplicity of criteria presents the user with a
problem of choice.

This article discusses several of these measures within a common framework of
definitions and notation. After providing a formal definition of decision trees and -

expressing the various proposed criteria in the established framework, we briefly review
the published optimization algorithms to place the optimization problem in perspective. "," -
The relationships between measures are then studied, beginning with the simplified case
of Boolean functions (the case that is least conducive to incompatibilities). It is shown
that, even in this case, almost all criteria are pairwise incompatible, that is, they cannot

*@ be simultaneously optimized for all functions. This disproves some conjectures found in
* the literature [2,28]. The special case of binary identification is then separately exam-

* ined. Finally, we discuss each criterion in turn and examine its computational complex-
ity. Several criteria are found to have limited applicability due to their specific behavior;

* in particular, we extend a result of Rivest [23] by showing that all symmetric and all
linearly separable Boolean functions are exhaustive, i.e., have maximal worst-case test-
ing cost. We conclude by suggesting that two specific measures, related to run-time cost
and -retention cost of trees, are the most generally useful optimization criteria at this
time.

2. Preliminaries

* The following formal definition of a decision tree appears in [18,19."

Definition 1. Let f be a (partial) function of discrete variables, z, ... , x,, where vari-
able ;. takes on mi values (denoted 0, ... , mi-1). If f is a constant, then the decision
tree for f consists of a single leaf labelled by that constant; otherwise, for each
ri, 1 < i < n, f has decision tree(s) composed of a root labelled zi and mi subtrees

! corresponding to the restrictions (hereafter called subfunctions) f 181, ... I
f I ,,-.-1, in that order. C)

C

-(

dt ., -.. . S ... .
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It is noted that the same subtree may occur on several branches of the tree, in which
case it may be desirable to use only one copy of that subtree by transforming the deci-
sion tree into a decision diagram with a rooted directed acyclic graph structure. To
every decision diagram there corresponds a unique decision tree with a one-to-one S
correspondence between its paths and those in the tree.

Two costs are usually associated with each variable of a function: a testing cost
*measures the expense (in time or any resource associated with evaluation of that vari-

able) incurred each time that variable is evaluated; and a storage cost measures the k
expense (in storage or any resouice associated with the presence of that test) due to the
presence of each test node labelled by that variable. In addition, a probability distribu-
tion is often specified on the variables' space and can be assumed uniform if not other-
wise known. These data allow the computation of the following six measures.

Definition .

i) The total testing cost, q, Lq the sum, taken over all the paths from the root to the
leaves, of the path testing costs, where the testing cost of a path is the sum of the
testing costs of the variables evaluated on that path. When all testing costs are
unity, 9 reduces to the external path length [121, itself a special case of the tree

path entropy defined in [8).

ii) The normalized testing cost, H, is the total testing cost divided by the number of
paths. When all testing costs are unity, H reduces to the average path length,
itself a special case of the normalized tree path entropy [8].

* iii) The worst-case testing cost, h, is the maximum path testing cost. When all testing
costs are unity, h reduces to the worst-case number of tests, that is, the height of
the tree or diagram..".-

iv) The expected testing cost, E, is the expected value of the path testing cost, where
* the probability of a path is the sum of the probabilities of all the combinations of

variables' values that select that path.

v) The tree storage cost, a, is the sum, taken over all the internal nodes of the tree,
of the storage costs of the associated variables. When all storage costs are unity, a
is the total number of internal nodes of the tree.

vi) The diagram storage cost, fl, is the same sum as in (v) taken over all the internal
nodes of the diagram. 0

It is noted that, in the case of unity testing and storage costs and uniform probability
distribution, the only datum needed to compute the first five measures is the number of

(" leaves at each level of the tree. Thus, a decision tree for a function of n variables can be
entirely characterized by an (n+l)-tuple, (NO, . , X.), where Xj is the number of leaves
at level i. This notation is called the leaf profle [18 by analogy with a similar notation
defined in [17]. The leaf profile induces a lexicographic ordering of decision trees, which
in turn gives rise to two additional measures: the maximum profle, which ranks as best

C that tree which is largest in lexicographic order (on the grounds that leaves should be

%'(
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encountered as soon as possible); and the minimum reverse profle, which ranks as best
that tree which is smallest in reverse lexicographic order (on the grounds that the
number of long paths should be minimized).

As an example of the above concepts, consider the Boolean function of four variables
given by the formula,

f(z,z2,Z3,X4) - Z2 + Z14 + Z33

Figure I shows a decision diagram and its corresponding decision tree for f; the various
measures are as follows:

external path length, q = 17;
average path length, H = 2.83;
expected number of tests, E = 2.375;
tree node count, a = 5;
diagram node count, 6 = 4;
leaf profile = (0,0,3,1,2).

In [18,19], decision trees and diagrams are extended to include composition and recur-
siveness, and it is shown that the measures defined above can be applied to this general-
ized case.

An interesting application of discrete functions is that of binary identification. As
defined in [6], an identification problem consists of a set of objects, a set of binary ques-
tions, and an injective map from the set of objects to the power set of the set of ques-
tions; the image of an object is then the unique combination of positively answered
questions which identifies that object. In the context of this paper, the questions are
binary variables and the objects are values of a bijective partial function from the vari-
ables' space to the set of objects. It is readily seen that all decision trees for such a func-
tion have exactly one leaf for each object and thus have all the same number of nodes.
Moreover, the fact that no two leaves have the same label means that there cannot exist
common subtrees, so that all decision diagrams are in fact trees and, for each diagram,
6= a. By reason of these and other peculiarities, the case of binary identification will be
treated independently in Section 5.

3. The Construction Of Optimal Decision Trees And Diagrams ..... 4

The problem of constructing decision trees and diagrams that are optimal with respect
to the various criteria has been addressed by numerous researchers using branch-and-
bound techniques, dynamic programming, and various heuristics. A survey of their
efforts can be found in [18].

Dynamic programming is of particular interest because several measures obey the
"principle of optimality," that is, they have the property that an optimal solution can
be built from optimal subsolutions. Indeed, if variable xi, with testing cost ti and
storage cost 8i, is tested at the root of a decision tree for the functionf (ZI,..., ), then
the optimal values for such a tree for three of the measures are

-I d . . . . . ...
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n = I, + mm {min(I ,- ,
i-it

Ein(J) tj + p(Xi=j)-Emn(f l,.ib)
"g-i

am(f= si + a I,,f I -,

where p(;.-=j) denotes the probability that . takes on the value j. Similarly, the leaf
-* * profile of this tree is the sum, component by component, of the leaf profiles of its sub-

* trees. Hence, five out of the eight proposed measures obey the principle of optimality.

This approach is embodied in an algorithm designed to convert limited-entry deci-
ion tables into decision trees with minimal expected testing cost [11, later rediscovered
[241 and refined 1151; a closely related procedure appears in (201. This algorithm is easily
adapted to any of the five possible criteria and to the most general type of decision tree
[18J. For a function of n k-ary variables, the algorithm requires O(n -(k+1)0- 1) steps;
since a complete specification of the function necessitates an input of size O(),
the time complexity is 0(s loglh+1) log a). Dynamic programming offers an efficient

C solution to the optimization problem for those measures in the case of completely
specified functions.

In the case of binary identification (and, more generally, of partial functions), how-
ever, a similar dynamic programming algorithm [6] is of exponential complexity because
the specification of the problem is very much shorter than for complete functions, result-
ing in a much smaller input. Indeed, it has been proved [10,14] that the problem of con-
structing binary identification trees with minimal expected testing cost is NP-hard.

The remaining three measures, 8, q, and H, are not easily optimized. Branch-and-
bound techniques, used for the optimization of E [3,21], have also been applied to the
minimization of storage cost [22] for both trees and diagrams; however, such procedures
are of exponential complexity. Little work appears to have been done on the optimiza-
tion of q and H.

4. Compatibility Between Optimization Criteria

In this section, attention is focused on relationships between existing optimizaion criteria
for the construction of decision trees.

4.1 Definitions

Given a function, f, and an optimization criterion, w, let TfJ denote the set of all tree
representations for f which optimize w.

Definition 8. Let F be a class of functions and , w two optimization criteria. Then we
* say that, for that class of functions:

i) € and &j are equivalent, denoted 0.k>w, if VI EF, T? T= .

( "-
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ii) 0 is a special case of w, denoted 0 <= w, if VfEF, Tt D) T.-

iii) 0 and w are compatible if VI EF, T tn T) .00

* Moreover, we shall say that 0 and w are strictly equivalent if they are equivalent and the
ordering of all the tree representations for any function in F is the same under both cri-

" ~teria. -"'

-" It can now be shown that, in almost all cases, criteria are pairwise incompatible even
in severely restricted classes of functions.

4.2 Results

a We first examine the case that is least conducive to incompatibilities, namely that of
completely specified Boolean functions with uniform probability distribution and unity

40 costs. Figure 2 summarizes the findings for that class of functions (a 0 entry means that
the respective criteria are incompatible and a blank entry indicates that the exact rela-
tionship is unknown). Thus, most criteria are pairwise incompatible. In particular, a is

" not a special case of E; this can be seen by examining the trees for the Boolean function
of four variables given by the formula .

f (--1,2,Z3,X0 ---- 2 + 71--3 + --2F34,

and thereby disproves conjectures found in [2, p.115 and 28, p.104].

We proceed *to prove some of the relationships; other relationships appearing in Fig-

ure 2, but not explicitly proved in the text, are easily established by similarly con-
* structed counterexamples.

Proposition 1. The maximum profile is incompatible with any other measure.
Proof. Two counterexamples will be used. First, let f. be the Boolean function of four
variables given by the formula

* -1z,za2,:s,2'4) 13+Z1Z24+X*34

The trees with maximum profile have as the first test either x, or X3 and also have
minimal expected testing cost; the optimal tree for all other measures, however, tests z4 -
first and is unique (except for the minimum diagram storage cost, which can also be
attained by testing 2, or x3 first, but with a structure different from that of the max-
imum profile trees). The various measures for the three types of trees are listed in
Table 1. The maximum profile (and, incidentally, the minimum expected testing cost) is
thus incompatible with the minimum reverse profile, the diagram storage cost, and the
total, normalized, and worst-case testing costs. Secondly, let f6 be the Boolean function
of five variables given by the formula

h (Z1,2,23,24,za) = 2125+ 71275 + ?225(32- + T374) + (22 + 5)(7374+ 2324).

• The trees with the maximum profile test z first, while those optimal with respect to all
". other measures test x, first, with the results shown in Table 2. Hence the maximum ..-.

profile is also incompatible with the minimum tree storage and expected testing costs. 0
The function f. above also shows that minimizing the tree or diagram storage costs

% .
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Table 1. First counterexample for Proposition 1.

First test leaf profile im , ln H;%n hm;, E,,;,
X4  (0,0,0,8,0) 7 6 24 3. 3 3.

z 1 or S3  (0,0,1,4,4) 8 6 30 3.3 4 3.
1 or 3 (0,0,2,2,4) 7 7 26 3.25 4 2.75

does not optimize any other criterion, while f& yields the same conclusion for the
minimum worst-case testing cost.

Proposition 2. The normalized testing cost is incompatible with any other measure
(except, possibly, the worst-case testing cost); moreover, minimizing the normalized test-
ing cost may involve the introduction of redundant tests.
Proof: Let f, be the Boolean function of five variables given by the formula

M I. (:1,:2,:s:4,:) - 1Z2 + T2o3&•4•5

where S stands for summation modulo 2. The optimal trees for all measures except H
test x, or X2 first and use no redundant test, while the trees with minimum normalized
testing cost may test any variable first and, in case x, or z2 is chosen, use a redundant
test. Two diagrams rooted in z, are shown in Figure 3, the left being optimal with
respect to all criteria but H, and the right being optimal for H; the corresponding meas-
ures are listed in Table 3. It is noted that the test of x6 as the right child of the root is
totally redundant. 0

It is conjectured that, among the relationships with unknown status, several implica-
tions hold, most particularly q => a. Clearly, however, the introduction of non-
uniform probability distributions or non-unity costs renders all measures pairwise incom-
patible.

Be'.,re discussing the class of all discrete functions with arbitrary probability distri-

butiQns and costs, we note the results for the class of partial Boolean functions with
unity costs and uniform probability distribution on the domain, which are shown in Fig-
ure 4. Except for the obvious case of tree height and minimum reverse profile, no meas-
ure is a special case of any other; in fact, almost all measures are pairwise incompatible.
The three counterexamples used to establish results beyond those of Figure 2 are omit-
ted here for the sake of conciseness.

In the general case, it is easily seen that all measures are pairwise incompatible. In
other words, one must face the problem of the choice of a criterion since, even for the
simplest types of functions, it is not generally possible to optimize two criteria simul-
taneously.

C
.. * . .. 'a. ______________________
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Table 2. Second counterexample for Proposition 1.

First test leaf profile Gm,,n #,no,-- iw,; Hi n; h ,,, E,,,;..

(0,0,1,1,8,4) 13 8 57 4.07 5 3.5
(0,0,1,2,2,12) 16 9 76 4.47 5 3.625

b 5. The Case Of Binary Identification

The various applicable measures will be examined first under the assumption of unity
b costs and uniform probability distribution of objects. Under these conditions, the

storage cost of a tree reduces to its number of nodes (which is fixed, as noted in Section
2), and its expected testing cost is equal to its normalized testing cost, of which the path
length is a fixed multiple. Hence it follows that only four criteria are applicable,
namely, the height, the external path length, and the minimum reverse and maximum
leaf profiles. The known relationships between the four measures are summarized in
Figure 5 and can be established with a single couterexample as follows. Consider the
identification problem with five objects, (a,b,c,d,e}, and four tests, Tl={a), T2 ={a,b),
T3={a,b,c), and T4=(a,b,c,d). The trees with maximum profile test T, or T 4 first; .
those with minimum reverse profile and minimum path length test T2 or T3 first; and
those with minimum height use any test first (but with different results if the chosen
test is T1 or T4). The resulting measures are listed in Table 4. The exact relationship
between the reverse profile and the path length criteria is not known; it is a simple
matter, however, to construct an example which shows that they are not strictly
equivalent. The introduction of non-uniform probabilities results in further incompatibil-
ities and one more measure, the expected testing cost. In fact, the only two measures
that are not incompatible are, trivially, the reverse profile and the height. Storage and
testing costs impair the usefulness of leaf profiles (which do not reflect such data), but
give rise to another criterion, the storage cost; all measures are then pairwise incompati-
ble.

Even with unity costs and uniform distribution, the decision problem for the path
length measure is known to be NP-complete [101. The construction in [101 is a straight-
forward reduction from the exact cover by three sets (cf. [7, p. 531) and can be used to
show that the decision problems for the reverse profile and the worst-case testing costs
are also NP-complete. Finally, the decision problem for the maximum profile is clearly
in NP, but it is not known to be NP-complete. Using standard extension and search
techniques as developed in [7], one can show that the optimization problems for the
storage cost and the total, expected, and worst-case testing costs are all NP-equivalent.
The optimization problems for the profiles are both NP-easy since, although no
polynomial-time algorithm is known for ranking profiles, one can simply use successive
binary searches (one for each tree level) in order to establish the optimal profile. (In-
such a process, only the number of nodes at the searched level is important, so that one
may set arbitrary values at the unknown levels.) Table 5 summarizes the known results
about the complexity of decision tree optimization in binary identification problems.

(%

. . * . . . . . . .. . . _ .o
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Table 3. Counterexample for Proposition 2.

Tree leaf profile a.;. mp g,,;n Hmin hmin Em;,,"

left (0,0,2,0,0,16) 17 8 84 4. 5 3.5
right (0,0,0,4,0,16) 1g g o2 4.6 5 4.

I . * 6. An As=ment Of Optimization Criteria

Since the optimization problem for binary identification is NP-hard for most criteria, it
a follows that the general problem of optimization for (partial) functions is also NP-hard.

However, there are large classes of functions for which the optimization problem is well-
solved by the dynamic programming algorithm mentioned in Section 3, namely those
functions, the specification of which requires an input of length exponential in the
number of variables. Table 6 shows the complexity of optimization of each criterion in
both cases of exponential- and polynomial-length inputs. It is noted that the optimiza-
tion of normalized and expected testing costs under polynomial-length inputs is not
known to be NP-easy: the arbitrary probability distribution and number of test out-
comes enormously increases the number of possible values, to the point where even a
binary search requires exponential time.

The difficulty of optimizing the normalized testing cost and its erratic behavior (as
exemplified in Proposition 2, where the addition of a redundant test actually lowers the
normalized testing cost), make it an undesirable criterion. Both leaf profile criteria lack
generality, in that they cannot easily take into account arbitrary costs or probability
distributions; therefore, they too are inappropriate measures, except in special situa-
tion. Finally, the tree storage cost is not an accurate reflection of actual memory or
hardware requirements, because the diagram storage cost is never larger and often much
smaller. For instance, a modulo 2 sum of n binary variables requires 0(21) tree nodes,
but only O(n) diagram nodes. The diagram storage cost is a more relevant measure of
implementation problems.

Of the three measures of testing cost, only h and E are concerned with the perfor-
mance of a tree representation. The total testing cost, q, does not make use of the pro-
bability distribution, nor does it measure a worst-case extreme. Although it is of
interest for binary identification problems as a measure of the cost incurred in producing
each output of the function exactly once, it does not generally correspond to practical
concerns that one has about a function. The worst-case testing cost, h, can be
efficiently minimized and is certainly relevant in practical problems; however, it lacks..-
discrimination power. Rivest (231 has shown that almost all (in the asymptotic sense)
Boolean functions are exhaustive, i.e., have maximal worst-case testing cost, a result

. that we strengthen in the Appendix by proving that all symmetric and all linearly separ-
able Boolean functions are exhaustive. Thus the worst-case testing cost does not

*. discriminate between most Boolean functions and, within the sets of symmetric and
(C threshold functions, it does not discriminate between any functions.
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Table 4. The counterexample for binary identification.

First test Leaf profile Height Path length
T, or T 4  (0,1,1,1,2) 4 14
T2 or T3 (0,0,3,2,0) 3 12
T, or T 4  (0,1,0,4,0) 3 13

The preceding considerations indicate that the expected testing cost, E, is the more gen-
erally useful measure of decision tree performance, while the diagram storage cost, 8, is

* a relevant measure of decision tree implementation costs. These measures are examined
in further detail in the following section.

6.1 The expected testing cost E

Given an intrinsic function of n variables, f(xi...,z.), for which testing variable ;
incurs cost ci, the expected testing cost of any tree representation, T, of f is bounded by

min {(c I 1<i<n) E(T) < tc

These rather loose bounds can be tightened [19] to the following.

11) + min (If () I1<i<n) < E(T) < 5 c; - max {l/(z) I 1<i<n),

where l(f) is the intrinsic cost of the function and If(;z,) is the loss of variable i with
respect to the function [191.

In fact, Boolean functions with unity costs and uniform probability distributions
require an expected number of tests that converges to n; this can be shown as follows.
Let B(n) be the number of Boolean functions of n variables and let I(n) be the number
of those that are intrinsic; then

F(n) - 22 and J(n) -
i-o

But almost all Boolean functions are intrinsic, so that we have

Um J(n)/F(n) - 1
£ -""

with rapid convergence. Now, the expected value of E for a function of n variables,
E(n), must be at least as large as
E(n-1) for non-intrinsic functions and equal to 1+E(n-l) otherwise; hence, we have the

& recurrence

E(n) [(F(n)-J(n)).E(n-1) + J(n)(I+E(n-1))/F(n) - E(n-1) + J(n)/F(n).

Since J(n)/F(n) rapidly converges to 1, the expected value of E is essentially equal to n •
for large values of n.

......... ,
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Table 5. The complexity of optimal binary identification.

Criterion &min q, H., E,, h,,. reverse maximum -
profile profile

Complexity NP- NP- NP- NP- NP- NP-
eqvlnt eqvlnt eqvlnt eqvlnt eqvlnt easy

This result, however, does not indicate that minimizing the expected testing cost is use-
less, because the presence of non-uniform costs and probabilities results in the large
range of values described by the bounds given above. Moreover, the expected testing
cost can be efficiently minimized, as indicated in Table 6.

The expected testing cost is the most frequently used criterion in the literature. In 4* •

software applications, in particular, it is often of more interest to optimize the running
time of a routine than to minimize its memory requirements. More generally,. one . "
expects to find this criterion useful whenever a premium is placed on performance as -

opposed to acquisition cost.

8.2 The diagram storage cost -

The number of internal nodes of a binary decision diagram has been extensively studied
in [13], where diagrams are called programs. It is shown that O(2*/n) nodes are-
sufficient to represent any Boolean function of n variables as compared with 0(2") for
trees. This result is easily extended to show that O(k*/n) nodes are sufficient to
represent any function of n k-ary variables (versus O(k) for trees) [181. Thus, in partic-
ular, a decision diagram is as succinct a representation of Boolean functions as is a
simplified and factored Boolean formula.

The minimization of the diagram storage co-t, however, is a difficult task. It cannot
be done on a leaves-to-root scan because it requires that all subtrees be examined simul-
taneously. This precludes the use of dynamic programming and necessitates some form
of top-down, backtracking method. Hence it must be suspected that the problem, which
is clearly NP-easy, is also NP-hard (and thus NP-equivalent) even under exponential-
length inputs. Indeed, the only existing algorithm, a branch-and-bound procedure [221,
may exhibit exponential behavior by searching through almost all possible diagrams for --7
a function.

The diagram storage cost has mostly been used in connection with hardware imple-
mentation of decision trees, such as multiplexer networks for Boolean functions [4,131. 'n

general, one expects to use this criterion whenever a premium is placed on acquisition or
construction costs or when special constraints decrease the value of other measures. (An
example of the latter is a synchronicity constraint, which requires all evaluations to take
the same time and thus reduces the expected testing cost to the worst-case testing cost,
h. When h is known to be maximal, as is the case with most Boolean functions, perfor-
mance measures become altogether irrelevant.)

.7. -~~~~~.. ....... . ..... .......... ...... . . . .. -.- . .o. .. % . '
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Table 6. Complexity of optimization criteria.

Input size in function of nuuber of variables
Criterion

exponential polynomial
am/n low polynomial NP-equivalent -.

18min ?NP-equivalent
fmin ? NP-equivalent .
Hmin ? NP-hard
hmin  low polynomial NP-equivalent
Em low polynomial NP-hard

mi. rev. profile low polynomial NP-equivalent
maximum profile low polynomial NP-easy ..

7. Summary

Several measures used for the assessment of decision trees have been reviewed. It has
been shown that they are pairwise incompatible in aE but a few cases. This disproves .0
some conjectures regarding the simultaneous optimization of those measures. Promising
measures have been individually examined and tw new results proved concerning the
behavior of one measure in classes of Boolean functions. Based on the results presented,
two measures, one concerning the run-time cost and the other the retention cost of
trees, appear to be the most generally applicable at this time. The complexity of deci-
sion tree optimization under these two criteria was examined in detail.
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Figure 4. Known relationships between the eight measures applicable
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This result has implications in logic design, fault analysis, pattern
recognition, and analysis of algorithms.

II. PRELIMINARIES
Letf(xi,. • • , x.) be a Boolean function of n variables (arguments). .

A variable, xj off, is redundant if the function is independent of the
value of that variable, i.e.,Jj,.o - Jjx-t. A function without re-
dundant variables is said to be intrinsic. A binary decision tree is a
model of the sequential evaluation of a Boolean function, wherein the
value of a variable is determined and the next action (to choose an-
other variable to evaluate or to emit the value of the function) is
chosen accordingly. Decision trees have found numerous applications
in pattern recognition, taxonomy, logic design, decision table pro-
gramming, fault detection, and analysis of algorithms (see [4) for
further definitions and references).

From the definition, we see that the height of a decision tree cor-
responds to the maximum number of variables that had to be evalu-
ated in order to determine the value of the function. The argument
complexity of a function is then defined as the minimum height over
all decision tree representations of that function. Thus, the argument
complexity of a function is the minimum number of variables that
must, in the worst case, be examined before the value of the function
can be determined. A function is said to be exhaustie if its argument
complexity is maximal (equal to the total number of variables). Rivest
and Vuillemin [51 have used an elegant counting method to show that
almost all Boolean functions are exhaustive. In the following we prove
that all intrinsic' symmetric and linearly separable Boolean functions
are exhaustive, using the specific properties of those classes.

III. THE MAIN RESULTS
A Boolean function of n variables.f(x, , x.), is said to be

symmetric if and only if (iff.), for each permutation, a, over n let-
ters,

Symmetric and Threshold Boolean Functions Are Exhaustivef(x , ,X()) f(x ",
Equivalently, a function is symmetric if there exists a set of k

BERNARD M. E. MORET, MICHAEL G. THOMASON, numbers (k<-n),{a1,'",ak .whereO-aI <-"'<ak Sn, suchthat '-
AND RAFAEL C. GONZALEZ the function is equal to I exactly when a of its variables are equal to

Abstract-Te worst-case number of variable evaluations (testing cost) of I, for any i, 1 -- i S k 131. Such a function has a single decision tree
B Doolean functions is examined. Following up on a result by Rivest and Vuillemin. structure; in particular, whenever n - a, variables have been found

we show that all symmetric as well as all linearly separable Boolean functions equal to 0, the remaining a variables must all be tested, since the

are exhaustive. that is, have a pessimal worst-case testing cost. function will be equal to I if all are equal to I. This proves the fol-
a lowing result.

Inmex Terms-Argument complexity, decislo. tree, multiplexer tree, Theorem 1: All (intrinsic) symmetric Boolean functions are ex-
threshold functim, worst-case testing cost. haustive. 1

Now let P be the defining property of a class of functions such that,

1. INTRODUCTION if possesses P, then bothAl 4.,o and.],,. I possess P. for any choice
of x,; in other words, P is preserved by Shannon's decomposition. We

Rivest and Vuillemin (51 have shown that almost all (in the as- then have the following characterization of exhaustiveness.
ymptotic sense) Boolean functions are exhaustive, that is, require in Proposition: All intrinsic functions in the class defined by P are
at least some cases that all of their variables be evaluated in order to exhaustive iff, in any Shannon's decomposition, at least one of their
find the function's value. Thus it is natural to suspect that there exist two subfunctions is intrinsic.
significant classes of Boolean functions in which every function is Proof- The only if part follows immediately from the definition
exhaustive. In this correspondence, we identify two such classes: of exhaustive: iff is a function of n variables and neither of its re-

C symmetric functions and linearly separable (also known as threshold) strictions with respect to some variable x is intrinsic, then each of the
functions. restrictions has a decision tree of height no greater than n - 2, so that

fhas a decision tree of height n - I rooted in x and hence, is not cx-
Manuscript received July 27. 1982: revised January 3. 1983. This work was haustive. For the if part, we use induction on the number of variables

supported by the Office of Naval Research, Arlington, VA, under Contract of the functions. All intrinsic functions of one variable are trivially
001.4-78.C-031 1. exhaustive. Assume then that all intrinsic functions of n - I variables

B. M. E. Moret is with the Department of Computer Science. University or less that answer the theorem's hypotheses are exhaustive. Consider
C of New Mexico, Albuquerque N M 8713 1. a functionfofn variables that answers the theorem's hypotheses. Any

M. G. Thomason is with the Department of Computer Science, University
of Tennessee. Knoxville TN 37916.

R. C. Gonzalez is with the Department of Electrical Engineering, University 1In the asymptotic sense again, almost all Boolean functions are in- '.' -
of Tennessee. Knoxville TN 37916. trinsic.
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decision tree forf starts by testing one of the n variables. By as- threshold function) iffthcrccxistsasctof wcightsI,..--,) %,,). and

sumption, for any variable x tested at the root, one of the restrictions a threshold, T, such that the function evaluates to I exactly when

j,,o andAj.,.i is intrinsic. By inductive hypothesis, that restriction
is also exhaustive, since it is a function of n - I variables that answers E wIxi 2- T.
the theorem's hypotheses. Thus all decision trees for that restriction i-_

have height n - I; but then the decision tree forf rooted in x has Again, it is easily seen that linear separability is preserved under
height n. Since this holds for any choice ofx,fis exhaustive. 13 Shannon decomposition. Since unate functions can be taken to be

We first consider the class of unate functions-those functions positive, weights and threshold are assumed positive without loss of
representable by a Boolean formula where no variable appears in both generality. Let !w stand for (w4,'", w,) and x' for the transpose of
complemented and uncomplemented form. Since decision trees are x; substituting weights into the four pairs of function points yields
invariant under complementation of variables, it can be assumed
without loss ofgenerality that all variables are uncomplemented; this (a) (wI + W2 + !X .' W, + W2 + W3 + _W'X_1),
defines the class of positive unate functions, which are monotone (b) (wI + W X1; wI + w3 + W. x),
increasing [3]. Both properties are easily seen to be preserved by (c) (w3 + _w x1; w2 + w3 + ,_% X-9,
Shannon's decomposition. (d) (w- x'; w, + _w. xa),

Letf(xI,-.. , x,) be an intrinsic positive unate function; thenf is where any weight sum in (a) is no smaller than any weight sun in (b),
exhaustive iff, for each xi, eitherflx,.o orjA,, I is intrinsic, that is, and so on. As seen above, a function will not be exhaustive iffx' >
there cannot be found Xj. xk(j, k # i) such thatflx-o does not de- X' can be found such thatf(xIX2, X3, L) is partitioned as (abc)d)
pend on xj andfjA,=. does not depend on xk. Without loss of gener- andf(xi, X2, x3, ,) as (a)(bcd). Thus, the smallest sums of weights .
ality, let i = l,j - 2, and k - 3, and let L stand for (x4,"-, x.). Then in any of (a), (b), and (c) must be larger than the largest sums of
fis not exhaustive iff weights in (d) when ' is chosen (since the first are above the threshold

fiO, 0, X3, x) - f(O, I, x3, x) andf(, x2, O, ) =f(i, x2, I, X) while the second are below); similarly, the smallest sums of weights
in (a) must be larger than the largest sums of weights in any of (b),

Sincefis monotone increasing, it must be the case that (c), or (d) when x' is chosen. Vsing only the extremal sums-those
closest to the threshold value, this implies, for the first partition,J0,~~~~~~ X2 1, &)2.O 0 3)

(abc)(d),
so that, by topological sorting, the following relations are obtained w + w + _ .

'
> w, + w3 + w

(1, 1, l, x) -f(l, I, ,) 2_ and for the second, (a)(bcd),

: f(I, Oi~x_) =/(, 0, 1, x-) 2- W3 + W_ -xA" > W2 + LV __'

0f. l1, I1) =f(O, 0, I, ) The first inequality yields w, > w3 while the second implies w2 < w3,

f(0, 1, 0, x) -f(O, 0, 0, .). a contradiction. Hence, I' and x' cannot be found, and we have the
following result.

* Let the four pairs of points above be denoted a.b, c, and din that Theorem 2: All (intrinsic) linearly separable Boolean functions
order. For any choice of x, these four pairs can be mapped to the same are exhaustive. El
value or to two distinct values (0 and 1), with the following parti-
tions. IV. CONCLUSION

i) (abcd) mapped to the same value; then x1, x2, and x3 are re-
dundant for that choice of x. Since the argument complexity of a function determines the

ii) (abc) mapped to I and (d) to O; then x2 is redundant for that worst-case performance of a sequential evaluation algorithm, our
* choice of x. results show that no optimization is possible for symmetric and

iii) (ab) mapped to I and (cd) mapped to 0; then x2 and x3 are threshold Boolean functions. In particular, the total delay of a mul-

redundant for that choice of x. tiplexer (or sequential lookup) implementation of such functions [2]

iv) 4a) mapped to I and (bcd) to 0; then x3 is redundant for that is fixed by the number of variables only. Similar remarks hold for

choice of g. sequential evaluations of linear decision functions in pattern recog-
The monotone property excludes any other choice. This shows that nition [6], longest paths through fault-trees (which usually describe

all unate functions of no more than three variables are exhaustive, unate-and often linearly separable--functions) [ I ], and software

since then there is no choice for x and one of the four partitions above implementations of decision tables [4].

must exist, contradicting the assumption of intrinsicalness. At the
same time, it shows how to construct a nonexhaustive unate function REFERENCES

of four variables; specifically, it is sufficient to find X,' > x' such that [I] R.E. Barlow, .. B. Fussell, and N. D. Singpurwalla Eds., Reliability and
" ftxM , x2, x3, x') is partitioned according to ii) andf(x1, X2- XX~, X) Fault Tree Analysis. Philadelphia, PA: SIAM Press, 1975.

according to iv), since then x2 is redundant in one case and X3 in the 121 E. Cerny, D. Mange, and E. Sanchez, "SynthesiS of minimal binary de-
other, but both are necessary overall. One such function is given by cision trees," IEEE Trans. Comput., vol. C-28, pp. 472-482, July
the formula 1979.

13 M.A. Harrison. Introduction to Switching and Automata Theory. New
f(xI, X2, X3, X4) = XIX 2 + XIX4 + X3X4 •  York: McGraw-Hill, 1965.

(41 B. M. E. Moret. "Decision trees and diagrams," Comput. Sur'eys, vol.
It is easily verified that this function has decision tree representations 14, Dec. 1982.
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Boolean difference techniques for time-sequence and common-cause analysis

of fault-trees.t

B. M. E. Moret and M. G. Thomason.

ABSTRACT

Fault trees are a major model for the analysis of system reliability. In
particular, Boolean difference methods applied to fault trees provide a
widely used measure of subsystem criticality. This paper considers the gen-
eralization of the fault-tree model to time-varying systems and how time-
dependent Boolean differences can be used for the analysis of such systems.
In particular, rxitable partial Boolean differences are shown to provide
maximal and minimal solution sets for sensitization conditions. A method
of common-cause failure analysis based on partial time-dependent Boolean
differences is developed, which allows the study of failures due to repeated
occurrences, at different times, of the same phenomenon. Finally, the
application of those methods to systems with repair is studied; it is shown
how, under certain assumptions of independence, steady-state distributions
can be used for the anaiysis of system faults.
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1. Introduction

*Fault tree analysis is a method of major importance in reliability and safety stu-

dies 12,7,10,141. A fault tree is a representation (using logic operations) of a Boolean

function, the structure function of the system, which describes the set of elementary

* events (subsystem failures) necessary to make the system fail. When the structure func-

* tion is monotone non-decreasing, that is, when a -system is such that a failure of an

additional subsystem cannot improve the system's status, the structure function is

called a-coherent 12J.. In this article, we restrict ourselves to such functions.

Of particular importance in system reliability studies is the determination of a

0 component's criticality, that is, of a component's influence on the behavior of the sys-

tem. Among several criticality measures [81, the most commonly used is Birnbaum's

importance measure, which is simply the probability that the system is in a state in

which the functioning of the component completely determines that of the system.

(That is, the system fails if the component fails, works if the component works.) This

measure can be obtained by using the Boolean difference operator 1121, a powerful

analytical tool for combinational logic expressions, in particular when a large number of

variables is involved. Recall that the Boolean difference of a Boolean function, f, with

A . respect to one of its variables, z, is the function

* where G stands for exclusive-or and fI i ,o denotes the restriction of f to that part of

its domain where z takes the value 0.

There is interest in fault tree analysis also in systems in which the configuration of

components required to cause iailure changes at a finite number of discrete points dur-

ing the interval in which the system is in operation. The term of phased mission [61 has

been used to describe such time-varying systems. In effect, variations with time force

one to consider sequential rather than combinational logic functions as the structure

functions for the system's description. In such systems, the importance of a component

can only be measured in each separate phase by conventional methods, since the meas-

ure is itself time-dependent. However, it is important to evaluate the effects of indivi-

dual components over the system's operation time, as well to attempt to identify under-

lying causes (known as common causes (5,151) for time-dependent failures.

C

• .......................... .. .... ,.'
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In the following, we show how the concept of time-dependent Boolean differences

191 can be used to develop methods for the analysis of sequential (rather than combina-
tional) structure functions. Methods for the determination of sensitization conditions, AP

path dependences, and measures of importance are illustrated. We show that partial
Boolean differences, taken with respect to suitable subfunctions, allow the determination
of maximum and minimum sets of conditions for sensitization and criticality measure-
ments. We then develop a new method for common cause analysis using partial Boolean

differences and illustrate it on a phased mission example. We conclude by showing how

the above methods can be applied to systems with repair, using steady-state distribu-
tions under mild assumptions of independence.

2. Time-dependent Boolean differences, sequential functions, and phased missions

Time-dependent Boolean differences were introduced in [9) as a tool for the
analysis of sequential logic functions. A time superscript is used on switching expressions Me.
(single variables or more complex expressions) to denote their value during a specific

time interval relative to some reference starting point. In effect, the superscripts create

distinct variables for each time reference.

To illustrate these concepts briefly in the original context of sequential digital net-
works, we consider the circuit of Figure 1, composed of an AND gate, an OR gate, and

two D-type (delay) flip-flops. The value of the primary output, Z, at time t, Z , is given

by the sequential Boolean function:

Z' A, + X'I- 2 x-
To determine the conditions which make Zt dependent upon Xt (that is, such that "

is critical), we compute the Boolean difference of Z' with respect to Xt:

dZt = ?1-2 + .

The solutions of dZ /d - I give the necessary and sufficient conditions, both in logi-

cal value and timing, for Xt to be critical for Z, namely X 1=0 or X2'=O at time t-2.

For dependence of Z' on X - , we compute

dZt = t '-2
-- 1"-

thus establishing the conditions X 1=0 at t and X,=1 at t-2. Note that dZ/dX=O for
4 "°o

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* .. .i.. r
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rt and rQ-2, reflecting the fact that X1 can only influence Z at times t-2 and t.

Specific path dependencies can be isolated by partial Boolean differences. For
example, if the dependence of Z on X1 via the path X- A B--. C-. Z is

desired, we compute the chain of derivatives:

We4 dBt" d4 dZO Mrs

wherein the linking of the time sequence reqsirements is reflected in the time super-

scripts. Computing these derivatives at actual time intervals yields:
d t. dj~t+l ....

d 2 dA t

d (7 =+ l dZ t+ 2 + .•
dBt+l d=t+

Thus the chain yields:
dZt +2 -.T , .:: --

- = ytjjX+dxt+2

in accordance with our earlier computation of dZt/dXl- 2 .

As noted above, the concept of a system's requirements changing at a finite
number of points over an interval of interest essentially converts its structure function

into a sequential logic function, so that the appropriate analytical method becomes the
time-dependent Boolean difference. In each time interval, the structure function is s-
coherent. We illustrate these concepts by a plying them to a simplified example of
phased mission, due to Esary and Ziehms [6].C

The example considers the interaction of a fire department, which operates three
vehicles, a large fire engine (M), a tanker (T), and a light truck (L), with a chemical
plant, the safety equipment of which consists of a sprinkler system (S), a hydrant (H),

and a special chemical fire extinguisher system (F). A fire at the plant can be decom-
posed in three phases. In the initial stage, the large engine or the light truck combined
with the sprinkler system will allow time for evacuation. In the second stage, the special

chemical extinguisher system is needed to contain the fire, together with either the large

C engine or the light truck; the needed water can be supplied by the hydrant or, if neces-
sary, by the tanker through the large engine's pumps. In the last phase, the fire is

C"
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brought under control by the special system or by the large engine; again, the needed

water can come from :.he hydrant or the tanker.

Thus we have a six component, three phase system, described by the block

diagram of Figure 2. The whole system works iff each succeeding phase works in turn.

Thus the system's success function is the product of the three phases' success functions.

The three phases are described by the functions

P, S'L' + Mt,

P2 = F- T'M t + Ht(MI + L'))

P 3 = F1 ' + Mt'(T +H') HI

Hence the system's success function is, at time t:

SUCC p t-2 -

. . . .

This is a sequential logic function. (Note that it is a particularly simple type of phased

mission, since the several phases do not mix or interact.) We can analyze each phase

separately, suchr as by finding under which conditions the availability of the large fire

engine, M, is critical in phase 1:
dPA d(SL+M)_ 1 + $ oiL fail.

& f =1 < dM v -. ,
S• or L-fails.

However, we can use time differences to find under which conditions the availability of

the same component in phase 1 is critical to the success of the mission:

dSucc' = 1 '

+ V- 2).Ft-,.( T'-M'- + H'-(M'-1 + L-)) *tFeH' + M'.(T' + H')) = 1,

which says, of course, that those conditions are that either S or L fails in phase 1 while

phases 2 and 3 are successful.

Yet of more interest is the criticality of the same component throughout the mis-

sion, under the assumption that a failure at time r implies that the component stays

faulty for t> r (no repair).

d3SUeet - 1 < St 2 F'-E-'I~H + T' + ....

dt-f 2 dAf-dAf' + P + 171...

This triple Boolean difference gives the conditions under which the functioning of

'I, °,

• is-- '
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component M is critical in every phase of the mission; that is, under these conditions,
each phase of the system reduces to component M. Other conditions of interest include -

those under which the status of a component in some phase is critical, or those under
which specific combinations of components become critical; the next section develops a

general approach to the derivation of such conditions with Boolean differences.

3. Some properties of Boolean differences

When analyzing a system, it is often desired to determine its sensitivity to various

modes of failure of its components. While standard (multiple) Boolean differences allow
the determination of a system's sensitivity to a particular sequence of component .

failures, they cannot provide the answer to such questions as: "If one of two components
fails, under which conditions will the system certainly fail? possibly fail?"

In order to answer such questions, we turn to Boolean differences with respect to

subfunctions, a generalization of the conventional Boolean differences with respect to
variables. The Boolean difference of the function, f(XI, ... , X.) with respect to the
subfunction g(X-, ,Xih), where k<n and 1<ii<n, is defined as

* "'" --I-- -- ' .

which definition exactly parallels that of standard Boolean differences (indeed, a single

variable is a-very simple-subfunction). In the definition, we have

f Il-.- U f Ix,...,x,,),

where the union (inclusive-or) is taken over all k-tuples which are minterms of g (i.e.,
which make g take the value of 1). For instance, with f(A,B,C), g(A,B)=A+B, and

C h(A,B)'A "B, we have

f fA+Y-1DfIA+B-odg

- (fAI IA- -- + fIA-O,0B-I+ flA-1,B-O) flA-B-O,

- -f A.B-9 f I A.-O

-f A-B- (f I A---O+ f A-O,B-I+ fl A-I,B.-O -
BoBecause of the symmetric definition of Boolean differences and since XG Y = XkDY, we i

. .
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clearly have

dL f d _ i_ dT
dg d d9 dg-

In particular, let S be the success function of a system, F=.7 its failure function, and

* $1, F, the success and failure functions of a subsystem; we then have

dS d dF:

djdSj L'
It follows that whatever results are developed for success functions remain unchanged

for failure functions; thus, without loss of generality, we shall from now on use only suc-
S cess functions. .

Given a system, S, and two components, X and Y, we wish to know how the
failure of one or both of the components will affect the system's behavior. There are
three failure modes to consider:

i. both X and Y originally work and they fail simultaneously;

ii. at least one of X and Y originally works and both eventually fail;

iii. both X and Y originally work and at least one of them fails.

The first mode corresponds to a change from (X, Y)=(I,1) to (X,Y)=(O,O); the second
corresponds to a change in the value of the function g=X+Y; and the third

corresponds to a change in the value of the function h =X. Y. This leads us to consider

the functions:

i. $ I x-Y-Oe S Ix-Y'-1;"--'.

dS
dg
dS

The following result defines the relationship (illustrated in Figure 3) between these and

other Boolean differences.

Theorem 1: Let S be the success function of a system, X, Y the success functions of

C two of its components. Then

-. .. .,. . . ... .-.-.-.-.................................-.-.. .. .... .- ,.- -2,-.,-...< .. '..; -. ',..,'.v .
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d( dS )2 d S ]--- S I X-Y-O(D S I X-. , .Y..1;
d(d -Y)) -' - d(X+Y)

where {f) denotes the set of minterms of f. 0

Notice that the conditions expressed by d(X"SY) are such that the failure of

either X or Y will precipitate that of S, while those expressed by d(X+ Y) are such

that the failure of both X and Y may be necessary to cause that of S. This is formal-

ized in the following result.

Corollary 1: dX'Y) and d(X+ y)J are the minimum, respectively maximum,

solution sets for the sensitization of S to the subsystems X and Y. 0

The inclusions stated in the theorem are in general proper, however, one or both

may degenerate into an equality. In this case, we have the following results.

Corollary 2.:

* dS _ d2S I , ~ J .
d(X. Y) - dXdY = V XiY.o = [sixu.. Yu.. fl ('I:in ,r

that is, if the system works equally with only one subsystem or the other function-
ing, it will work without either subsystem.

ii• A. -- dS l {Slx.o.....

CU Id-dY d(X+Y) ISXIY0

that is, the system's success function is symmetric in X and Y.

... dS dS _ dS
il dl(X. Y) dXdY d(X+Y) "

{S X-.Y..i =S x....,Y.O) {SX.O,Yml)

that is, the system only depends on whether or not X and Y both work (only the

C ' value of the function X" Y need be known, rather than the individual status of X

t .* . . . *. . * ..... ... .,. . j. . .~. , . : .. * * . ..4 4 : . . . .. . .i . ... . .
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and Y). 0

As an example, consider again the phased mission example presented above. If we

need to find under which circumstances an initial failure of either the light truck or the

tanker will precipitate the failure of the mission, we need to consider the partial Boolean

difference

d 3SucCI
(dL, -2dL I-dV t)'( dT -2dT -ldV)'

whereas, if we are concerned with the influence of the simultaneous failure of both sub-

systems in the last phase, then we must consider the partial Boolean difference

dSucct
d(L+T')

4. Common cause failure analysis

A common cause may be defined as an event which precipitates the failure of one . "

or more components of a system, yet is not explicitly described in the system [5,14,151.

For instance, in a fault-tree describing how an integrated circuit could fail, primary

events may include cracked die, loose bondings, input and output short-circuits, all

events which could be have been caused by excessive mechanical or thermal stresses.

Thus vibrations and temperature, although not explicitly mentioned in the fault tree,

could be a major factor in that circuit's reliability analysis.

Several approaches have been proposed for common-cause analysis (see [141 for a

brie( survey), using probabilistic or logic methods, and trying to identify common causes

or to assess their consequences. We outline below a method based on partial Boolean

differences, which is more flexible than most methods proposed to date and lends itself
to both qualitative and quantitative analysis.

A common cause may have more complex direct consequences than the simple

failure of a number of components; in particular, the failure of a component may pro-

tect another from the common event's effects. Thus, common cause analysis cannot

proceed in a general manner by substituting specific component failures for the common

event. Rather, the common cause must be represented as a (not necessarily s-coherent) . ",

Boolean function, call it C, and the effects of {(C} must be investigated. This can be

easily done with partial Boolean differences. Specifically, the common cause event, C,

...........................................-.
******* ....... q- .. . .. ... * .. . . . . .. . ...-
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will precipitate the failure of the system, S, exactly when

dS
d C ; ; - .

Examining the cut sets for dS/dC allows a qualitative analysis of the common

event's effects, while the probability of its being fatal to the system is directly obtained

by computing the probability of the set (dS/dC). Furthermore, the use of time- .

dependent Boolean differences allows us to consider the time-sequence effects of common

causes.

Thus a complete common cause analysis would proceed by first determining com-

mon causes of interest and expressing their effects on the system's components as a .

(time-dependent) Boolean function, then computing the Boolean differences, and finally

extracting minterms, cut sets, etc., as needed for the analysis. It is noted that all of the

Boolean operations involved in computing Boolean differences are elementary and can be

easily carried out by an automatic system (such as the SETS program [131).

Returning, to our phased-mission example, consider the influence of the common

cause event that results in cutting the water supply at the site. As a result, both the

hydrant and the sprinkler system will fail, so that the common event can be written as

If that event occurs during the second phase of the mission, then the cdntinuing success .--

of the mission will depend on the event if the following Boolean difference evaluates

to 1:

d2 SUCCt .- .-.d~ t 'd' - p[-:.Ft-.(MVt-1Tl + L'X(tn+ A1-')) . Ft(T' + A'f) + Mt T') ;:;:;;
dC'_ZdC -;. ...

5. Simple steady-state systems with repair

Allowing for the possibility of repair of faulty subsystems results in a much more

complex system. A steady-state condition can be established within each phase, how-
ever, and analyzed with standard modelling techniques, such as queueing theory (see,

e.g. [l)

A common assumption in such analyses is that of time-independence; both the

failure and the repair processes are treated as Poisson processes, so that the behavior of

the system in a phase can be derived from the knowledge of just the failure and repair

-A,"--
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rates. In a phased mission, the time analysis is complicated by the presence of phase

transitions, which may result in a phase being initiated with previous failures still

present or already repaired, depending on the interaction of the phase transitions and

the failure and repair processes. However, the assumption of time-independence allows

us to complete the analysis on a phase-by-phase basis, which also allows for the possibil-

* ity of phase-dependent failure and repair rates. Moreover, and more importantly, the

Boolean difference methods developed above are'still applicable. (Since the success func-

tions of the various subsystems are unchanged, the difference is just in the probability

computations.) Finally, queueing methods permit the analysis of phased missions where

the change of phase is itself a random process (e.g., because it is triggered by external
0 events). In fact, if the phase transitions are themselves time-independent processes, the

analysis can be done by superposing two finite-state models, with resulting states

describing the functioning of all subsystems as well the present phase.

Since the number of states in the final model grows exponentially as a function of

the number of system components, we present a very simple example. Our system has

three phases and two distinct components, as shown in Figure 4. We let \A,.\B be the

failure rates of components A and B, respectively, and PA,P n their repair rates; the

phase dependence of the the rates is indicated by a superscript, according to our time

notation; finally, the rate of a transition from phase i to phase j is indicated by 6i.

The resulting model has 22-3 - 12 states, as shown in Figure 5, where each state is

labelled by three digits, denoting, in that order, the functioning of component A (1 for
* working, 0 for failing), that of component B, and the phase number. (Note that transi-

tions represent only a single change in the system, since simultaneous changes have zero

probability.)

The steady-state equations (which we can write a a homogeneous linear system by

using the Markov transition rate matrix) describe a balanced flow in and out of each

state; together with the binding equation stating that the system must be in one of the

12 states, they allow us to solve for the probability of occupation of any state. Since

each state is also a unique point in the space of the time-dependent structure functions,

we can find the probability of any set of minters by summing the probabilities of

occupation of the corresponding states (again, all of this is easily expressed in matrix

form).

Co- .

L- p. * ._ ._ ' .'_
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8. Conclusion

We have investigated the use of Boolean difference methods for time-sequence and

common cause analysis of coherent systems, as represented by fault-trees. In particular, -.
• ..- ':.:

we have shown how specific partial, time-dependent, Boolean differences can be used for

the derivation of minimum and maximum sensitization conditions and for the analysis

of complex common causes. We have also shown that such methods generalize without

changes to systems with repairs, as long as events are assumed to be time-independent.

We conclude that Boolean difference methods, which have been and still are widely used

for fault detection, have considerable potential in reliability and sensitivity analysis

applications.
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Appendix

Proof of Theorem 1: By definition, we have

dS
d(X.S SI X.YMEI9 (S I XmlY..O+ S1 XamOYmI+ S1 XmY-O) .

Since S is s-coherent and (0,0) < (0,1), SI X-.yo is absorbed in SI x.O,y., (since,

whenever the first term has value 1, the second must have value 1 to maintain s-

coherence); thus we get

dS_
d(XY S -SX..ym 1  (S IX..O'Y..+ St .. I'Y...).

Similarly,

d(X(DY) -(S Ix..y-O+ S X..Y...S) ($XoY.-I+ S X...I'Y..4,

but S Ix-y-. gets absorbed in S y-iy.1, so that we get

dS _ dS
d(X- Y) d(XeY)'

whence our first equality. Again, by definition,

dS
d(X+ Y) =~Sx.oy.1

'but both S I -O,y., and S Ixrnl,y. get absorbed in S x-i'-1' so that we get

* dS
d(X+ Y)=SI Y. SX.Yu,

whence our second equality.

Finally, we have

d2S
EI~dd

= S SI xY.DS I X.1 Y -9 S X. 9.. S X.1)Y.l

Now we establish the inequalities simply by remarking that2

(f) 9 (g} j h) : geDh} ( f(h) and (gef) (M (hf).

Thus, since



Si-.- .y -+Six.. .-..o+S.x-.. l-Y- ..--..-
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Sj XmOY.1 S1 X.,Yu.0 S X.Y-O)

C (SX.O' Ym+ SIXI, YmO+ S .Y0 {SIX.YmI)

(the latter because of s-coherence), we get our first inequality by composition with

S I x-y-. Similarly, since

S x.Y,.0) S Ix,..,y.,(D S ix.1,y,9 S Ix.Y.1..--

I c jS.S X.o,Y-..+ SI X.I,Y.-O+ S Ix-Y-i1 -

(the former because of s-coherence), we get our second inequality by composition -with

S. XY'.O. 0

C,

C 

.
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* Figure 2. A phased firefighting mission (from Esary & Ziehms [71).
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On minimizing a set of tests . :

* Bernard M.E. Moret t and Henry D. Shapiro
S1

Department of Computer ScienceThe University of New Mexico, Albuquerque, NM 87131

ABSTRACT

Minimizing the size or cost of a set of tests without losing any discrimina-
tion power is a common problem in fault testing and diagnosis, pattern
recognition, and biological identification. This problem, known as the .
minimum test set problem, is known to be NP-hard, so that determining
an optimal solution is not always computationally feasible. Accordingly,
researchers have proposed a number of heuristics for building approxi-
mate solutions, without, however, providing an analysis of their perfor-
mance. In this paper, we-take an in-depth look at the main heuristics
and at the optimal solution methods, both from a theoretical and an
experimental standpoint. We conjecture that the heuristics will yield
solutions that stay within of factor of two of the optimal cost and present
generic examples where this factor is reached by any greedy heuristic. We
then present the results of extensive experimentation with randomly gen-

* ~ erated problems. While the exponential explosion suggested by the
problem's NP-hardness is apparent, our results suggest that real world
testing problems of large sizes can be solved quickly at the expense of
large storage requirements.

C
7
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1. Introduction

Identification problems arise in almost all fields of scientific research. We are concerned

here with a special type of deterministic identification, where an unknown (system state,

animal species, location of a fault) must be classified in one of a given set of categories,

based on the outcome of a set of tests. Each category is characterized by a vector of

test outcomes, and an unknown object is classified in that category if its vector of test

outcomes matches the category's characteristic vector. The collection of all categories

together with their characteristic vectors is known as a diagnostic table. A diagnostic

table with m categories and n tests can be represented as an m X n matrix, where the

(i,j) entry is the result of test Tj applied to the unknown object 0i. Such formulation

is common in testing and fault analysis [2,4,111, biology [15,22,231 and pattern recogni-

tion [5,13].

Given a diagnostic table, it is often the case that some tests are redundant. In

such a case, it is of interest to find the smallest suitable subset in order to minimize the

P cost of identification. The minimum test set (also known as the test of minimum

length) is the smallest subset of tests which discriminates between all categories dis-

tinguished by the full set of tests. Knowledge of the minimal test set can reduce costs

in applications where a rapid identification is needed, that is, in situations where all the

tests will be applied in parallel. Cost reduction will also occur in applications where the -
C. .

capital costs (procurement of the test equipment) far exceed the running costs, regard-

less of whether the actual testing is done in a parallel or sequential manner. (This is the

minimization of the acquisition cost in decision trees [121.) Applications of the second

type are to be found in most fields of human endeavor, including some that do not

explicitly include testing: servicing equipment under poor access conditions (military

( equipment in the field, oil rigs at sea), where the cost of delivering service personnel and

apparatus must be minimized; remote sensing missions, where the cost of the apparatus

-. .. .- . .. .. .. * . ... .. .. .. - . .. . . .. ., .- . -. .. .- ..- .. .. - .. , .. .. -..% -... * * .- . - ... . . ... . . -
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must be minimized subject to performing all the required tasks; and fault diagnosis and

design for testability, where, for instance, the number of checkpoints added to a circuit

must be minimized subject to retaining a prescribed level of testability.

Unfortunately, the minimization problem is known to be NP-hard [61. Accord-

ingly, researchers have developed a number of heuristics for building suboptimal test

collections by using variants of. a greedy algorithm where, at each step, the locally

optimal test is added to the partial solution. However, no analysis of those methods is -- -

offered in the literature.

In this paper, we take an in-depth look at existing heuristics and how they can be

applied to develop optimal solutions. We conjecture that existing selection heuristics

will not exceed the optimal by more than a factor of 2 and provide generic examples

where this factor is asymptotically reached for all existing heuristics. We then present

and discuss the results of extensive experiments with both artificial (randomly gen-

erated) and real-world problems. While the exponential explosion suggested by the

'. problem's NP-hardness is quite apparent in the artificial examples, our results suggest

that real-world problems of large sizes can be solved in reasonable time.

2. An Analysis of Proposed Heuristics

Almost all proposed heuristics belong to the class of greedy algorithms, in that they .

perform local, step-by-step optimization, using a suitable selection criterion. Very few

analytical results are available about the minimum test set problem in general and the

behavior of the proposed heuristics in particular. A number of Russian researchers

[8,0,211 have studied the expected size of the minimum test set for randomly constructed

tables; the analyses of the main two heuristics discussed in [121 in the context of

identification trees do not extend to the minimum test set problem. In the following, we

**.~.. °..'.. .
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briefly define the four main heuristics proposed in the literature and offer a partial

analysis of their worst-case behavior.

2.1 Definitions

When a pair of categories is distinguished by only one test (that is, the categories' 4_1

characteristic vectors differ in exactly one component), that test is called esentlal and

must be included in any complete set of tests. Thus, in a step-by-step method, pre-

including all essential tests is an optimal policy; all proposed methods [2,3,18,201 make

use of this policy.

When all essential tests have been included, one can either attempt to extend the

notion of essentiality or resort to a measure of a test's local optimality. The first L

approach has been used by researchers in microbiology [16,18,201: since a test is essential

when it is the only test to separate a pair of categories, a test is "nearly essential" if it

* $ is one of only two (or a few) tests to separate a pair of categories. This extension res- -.

tricts the choice of the next test to one of those that separate that pair of categories

which is separated by the least number of of tests - the least-separated pair. An algo-

rithm using this criterion will thus focus on category pairs; ties between tests and/or

between equally poorly separated pairs are broken by the use of a "second-level" heuris-

tic - one of the measures of local optimality described below. We shall call this the

C least-separated pair criterion.

The second approach attempts to measure how well a new test will complement

those already chosen; in such an approach, all as yet unincluded tests are considered for

inclusion. An obvious choice is to count how many as yet unseparated pairs the new

test will distinguish and choose a test which maximizes this count: we shall call this the

separation criterion. This heuristic has been extensively used in fault analysis [3,4]

and microbiology [16,201. The contribution of a test can also be measured in terms of

Z" ,.
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entropy (or, equivalently, of information), in which case the initial state - a single

homogeneous group - corresponds to an entropy of 0 and the final state - m distinct

groups of one category each - to an entropy of log2m; it can also be measured in terms

of permutations, where the initial state corresponds to a value of I - for there is only

one way to assign a label to the single initial set - and the final state corresponds to a

value of m!, the number of ways in which m distinct items can be labelled. The infor-

mation theory approach is found early in the literature and used extensively for both

the minimum test set and the related minimum identification tree problems [4,12,16.

Formally, the entropy of collection C of k clusters, of sizes 81, sk, comprising m

elements in all, is defined as

H(C) " log2m - ai'log2se. .

Applying a test to a collection of clusters yields a new collection, with larger (or equal)

entropy; the difference is the amount of information contributed by that test. The test

which brings about the largest increase will be selected. We shall call this approach the

Information criterion. The combinatorial approach, described in [171 and used in [141,

considers how many possible distinct partitions of the size used could exist; the loga-

rithm of this quantity is used as a measure, called repartment [171. However, the

repartment of a partition of m objects is equal to m times the entropy of the partition

(within an additive factor 6f log2 m), so that the two approaches are essentially

equivalent.

Thus, we have four main heuristics: least separated pairs with separation used to

choose among the candidate tests (at the "second level"); least separated pairs with

information used at the second level;, separation alone; and information alone. The first
two restrict the choice of tests before applying a local measure of optimality, while the

last two apply such a measure to all remaining tests.

- -. .. .. . . . .. . . . . . . . . . . . . . . .
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22 Analysis

Examples are easily constructed that show that no heuristic is uniformly better than the

' * other three. The four heuristics are rather similar: the effect of restricting the choice to

those tests separating the least separated pair does affect the order in which the tests

are selected - which is of no consequence with regard to the final subset selected; it I

also affects the composition of the final subset, since a different order or selection may

modify the local measures of optimality of the remaining tests. Typically, we found

that these indirect effects are minor. Morover, the measures of local optimality are.all ..

convex functions, the minima and maxima of which all occur at the same points.

It is easily shown that, in the worst-case, none of these heuristics will yield a

solution with a cost that is at most a constant away from the the optimal. Indeed, stay-

ing within a fiiid constant around the optimal is itself an NP-hard problem (our proof

0 's uses a technique that has become standard in the field: see [6, pp. 138-1391). We show.

that this problem is NP-hard by showing that, if a heuristic existed that produced a

solution that had at most k more tests than the optimal, then we could use it to con-

struct the optimal solution (and thus solve an NP-hard problem). The idea is to scale

our problem up, solve it with the heuristic, and then scale it down, so that the error

margin will shrink to zero by rounding. Specifically, given a problem, we "multiply" it

by k+1 by making k+1 copies of each object (regard each copy as a coordinate in a

k+1-tuple) and thus k+1 copies of each test (one copy for each coordinate). Notice

that the optimal solution for this problem has exactly k+1 times the number of tests of

the optimal solution for the original problem. The heuristic solution will fall within k of

the optimal for the larger problem; now pick as solution for the original problem the

smallest of the test sets obtained by retaining from the heuristic solution only those

tests that apply to the same coordinate. That set has no more than 1/(k+1) the

number of tests of the heuristic solution; thus it has at most k/(k+l) more tests than

(..;
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the optimal solution; but all quantities must be integer, so that we have in fact obtained

the optimal solution. 0

Furthermore, another standard technique can be used to show that staying "'-

within an arbitrarily small ratio of the optimal is also NP-hard (i.e., no fully polynomial -" - "

time approximation scheme [6] exists for the problem): it is an immediate consequence of

the corollary on page 141 of [6] and of the fact that our problem is strongly NP-hard.

Thus the best possible algorithm is one that produces solutions, the size of which stays

within a fixed ratio of the optimal.

We conjecture that all four heuristics discussed above exhibit the same worst-case

behavior, yielding a test set that is, for binary tests, at most twice larger than the

optimal - which, in view of the preceding proof, is about as good as can be expected.

The main rati6nale behind our conjecture can be stated as follows. For the ratio to

grow large, the optimal solution must remain small, thereby requiring tests with good

discriminating power; however, those tests that the heuristic erroneously selects must be

even better locally. Now, the discriminating power of a test is always measured on the

whole partition, so that a test cannot be good locally without being fairly good overall.

Therefore, the worst-case behavior should occur when the tests comprising the optimal

solution are quite good for the most part, although marginally less good at each step

than those selected by the heuristics. As to the heuristics, after selecting those locally

good tests, they must complete their solution set with locally poor tests, so that they

yield a large solution set.

Pushing this to the extreme, we present below a generic example where any of o

the proposed step-by-step heuristics will select what appear to be "perfect" t tests (in the

f i.e., even-splitting and such that each successive test divides exactly in two each of
the clusters determined by the previous tests.

- •
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sense that they produce successive partitions where all subsets are of equal size), only to

be forced to include tests which, although initially good, are poor at this point, each

effecting only a few discriminations. All apparently perfect tests are in fact redundant

in the final solution, because the heuristics had to complete their partial set with those

tests which alone would comprise the optimal solution. Since the example yields an

asymptotic ratio of 2, and in view of the above arguments, we conjecture that the

worst-case performance ratio of any of the proposed heuristics never exceeds 2.

We first construct the example for heuristics based on local optimality, then show .

how to modify it by dropping a few tests to make it applicable to least separated pairs

heuristics as well. The example has 2' objects and 2'+2n-I tests (where n>3), in

three groups. The collection comprises all 2" simple tests, (81, ... S2.@, where test si  -

asks "does this object belong to category i?". Then there are n-1 "perfect" tests,

(Pl, . . ., po-}, which by themselves determine a partition of 2 - subsets of 2 objects

* ," each; they are most easily constructed by filling the table with, for each object, the most

significant (n-1) bits of its index in the table. Finally, there are n "almost perfect"

tests, (ti, .. .t,}, each of which splits the categories 2"+1 vs. 2 -1-1; we construct

*them by filling the table, for each object, with its binary Gray code modified only by

repeating the first code (all Os) and omitting the code consisting of all Is - this guaran- .--.

tees the appropriate split by tilting the balance of is and Os for each of those tests. Fol-

C lowing is the diagnostic table for n=4.

Now, any heuristic based on local optimality will first select all p tests, since they

produce a perfectly balanced partition at each step. Indeed, any k-step heuristic (that

is, one which selects tests k at a time, for some fixed k, rather than one at a time) will

also select the p tests, whenever k divides n-1. After that, the heuristic will select all

of the ti tests, which are always preferable to the simple tests, and complete the test set

by picking either s, or $2, to yield a solution of 2n tests. The optimal test set, --

.*.*..%*:,.-V-.•.-.- o.%o °.o-. ,
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tests :. ...

objects
0 t 80

0 000 0000 1000000000000000
4.-1 000 0000 0100000000000000

2 001 0001 001000000000000
3 001 0011 0001000000000000 . ..-. -

4 010 0010 0000100000000000 - -
5 010 0110 0000010000000000
6 011 0111 0000001000000000
7 011 0101 0000000100000000
8 100 0100 0000000010000000
9 100 1100 0000000001000000
10 101 1101 0000000000100000
11 101. 1110 0000000000010000
12 110 1010 0000000000001000
13 110 1011 0000000000000100
14 111 1001 0000000000000010
15 111 1000 0000000000000001 A_

however, comprises all t i tests and either the si or the s. simple test, for a total of n +1

tests. Thus the ratio is 2n/(n+l) for any heuristic that uses step-by-step optimization

with a local measure of discriminating power.

To make this example work for the least separated pair heuristics with a second-

level selection criterion of the type described above, we need to modify it so that one of

the least separated pairs always includes the next "perfect" test, thereby ensuring that

test's selection. In the example as built, the least separated pairs are separated by two

tests. Therefore, for each p test, we shall remove selected s tests to give least separated

"status" to a pair separated by that p test. In doing that, we cannot remove both s2i-.

and a-2i" since then the (2i-1,2i) pair would be separated only by the remaining t test,

making it essential; nor can we remove either s or a,, since removing one makes the .9

other essential. Hence we pick suitable pairs separated by four tests (two s, one t, and

one p), and remove the two s tests in order to guarantee the selection of the p test.

. . . . . . . . . . . . . . . . .-.- |
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Specifically, we remove the following two a tests for each p test. For Pl, we

remove tests Sa-,+1 and 82@-+2-0+1; for P.-I, we remove tests 824 and 82'; finally, for ..

pi, 2 i<n-1, we remove tests *2Ia.-.+1 and 82"-+2-Y,+2. It is easily verified that no

two of those removed tests are of the form 2i-1,2i and that the pairs chosen are

separated only by the appropriate p test. The end result is a problem on which any of . -

the proposed step-by-step heuristics - including those that select more than one test at

a time - will produce a set of 2n tests as opposed to the optimal's n+l."

A different approach yields another example for which the separation-based

heuristics will exhibit an asymptotic ratio of 2. The idea is to transform known worst- -

case examples for the related set covering problem 11,6,101 into minimum test set prob-

lems. Recall that a set covering problem is given by a family of sets, the goal being to

find the smallest number of sets in that family that cover the family, i.e., such that

their union is equal to the union of all sets in the family.. Let m be the number of ele-

ments in that union. The transformation creates a pair of categories for each of the m

distinct set elements; each set in the family gives rise to a test, which takes values of 1

for the first of the pair of categories for each element in that set and values of 0 every-
where else. The problem is completed by adding flog2ml tests to distinguish the m

pairs of categories. After selecting all. these tests, the separation heuristics will have to

select those tests that correspond to the sets selected in the set covering problem by the

standard greedy method. Johnson [71 has shown that the latter selection can be arbi-

trarily far from optimal, by a factor of logrm; specifically, he provides a generic example

with m=3"2k where the optimal cover uses 3 sets and the greedy solution requires k+1.

t One could apply a backwards elimination procedure on the result of the forward
selection procedure (see [51) in order to eliminate some of the redundant tests.
However, the elimination of redundant tests is itself a minimum test set problem and
thus not amenable to optimal solution. Although a greedy-based backwards
elimination procedure would indeed improve the greedy solution in this example,
cases remain where the ratio of 2 would still be reached, as our next example shows.

% .
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This translates in our problem to an optimal solution of [log2 ml +3 and a greedy solu-

tion of log2 m1 +k+l. Since k=logm-log23, our worst-case ratio is

r2og m1 +log 2m-(1og 23--) .- v '

Pog 2ml +3 .

which is always smaller than 2 and reaches 2 asymptotically. (In this example, the 0

greedy solution has no redundant tests, so that it cannot be improved through the appli-

cation of a backwards elimination procedure.) This example can also be transformed to .

make it work for the information-based heuristics.

3. Bounding Methods

Non-exhaustive search algorithms that find the optimal solution - such as branch-and-

bound or depth-first search - require both upper and lower bounds on the size of the

optimal solution. The bounds are used in pruning, i.e., in eliminating fruitless directions

of search (pruning occurs whenever .the local lower bound reaches or exceeds the global

upper bound); they can also be used in guiding the selection. A global upper bound is

trivially provided by the size of the best solution found so far; our conjecture of the pre-

vious section, if true, would imply that this bound is fairly tight. (Indeed, a proof of

our Zonjecture would also provide a lower bound: the optimal solution must be at least .

half as large as the easily computed greedy solution.)

Any measure of a test's discriminating power that gauges distances on the way

from the initial to the final partition can also be used to derive lower bounds. At any ....

step, we compute the distance from the partition determined by our partial solution to ,

the final partition, as well as the local contribution of each available - i.e., not yet

chosen nor eliminated - test. We then sort the available tests' contributions in

decreasing order and, assuming no interaction between tests, find by repeated summing

how many tests are needed to complete the partial solution. Since the contribution of a

- .' • ' .. °..
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test does not increase as the partial solution is expanded, this gives us a safe lower

bound.

The separation-derived function gives us a lower bound on the number of addi-

tional tests needed to distinguish the remaining unseparated pairs, assuming that no two

tests separate the same pair - a very unlikely event. The information-derived function

finds a lower bound on the number of additional tests needed to increase thc entropy to

the final partition's value, assuming no cross-informationt between tests - an unlikely

assumption, but one that can be closely approximated. We note that, whenever there is

cross-information between two tests, there will be some pairs that they both distinguish,

but that the converse is false. For instance, if m is a power of 2 and log 2m of the tests

perfectly complement each other, then those tests have no cross-information, yet any

two of them distinguish m2/8 common pairs. Thus we expect the separation bound to

be much looser than the information bound.

A simple example will illustrate our point. Consider a problem with m (an even

'- number) categories, where all tests effect an even split, m/2 yv. m/2. The tightest pos-

sible lower bound on the size of the optimal solution is Dlog 2ml, an achievable size.

Now, each test separates (rn/2)(m/2)= m2/4 pairs and brings an increase in entropy

of 1 bit, so that the separation-derived bound is

m'-(m - 1)[2- ] 2,

while the information-derived bound is
[---m = og2 m1. -

t There is cross-information between two tests if the amount of information which
they contribute together is less than the sum of the amounts which they contribute
individually.

.5,,
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The information-derived bound is as tight as possible; the separation-derived bound is

off by an unbounded factor.

S "The better the tests are, the poorer the separation-derived lower bounds become;

in fact, the case illustrated above is essentially the average case in random tables with

large numbers of tests, since well-splitting tests are far more likely than others. Thus

the separation-derived bounds will be practically useless in problems that have a large

number of tests relative to their number of categories (a "wide" diagnostic table). Even

for "square" or "tall" diagnostic tables, those bounds will be effective only if the tests

are rather poor.'

In fact, the information-derived bound can also be arbitrarily smaller than the

size of the optimal solution, although the factor cannot grow as large as for the

separation-deried bound. Clearly, the worst possible behavior for the information-

0 , derived bound is to indicate the need for a logarithmic number of tests (close to the

theoretical minimum) while the problem in fact requires a linear number of tests Iclose

to the theoretical maximum). Such a behavior can be observed in a square diagnostic

table where the 1 entries are disposed so as to make the table into a lower triangular

matrix. Thus, for m object categories, the information-derived bound can be off by at

most a factor of O(m/log2 m), while the separation-derived bound can be off by a factor

of O(m).

4. Experimental Results and Discussion

4.1 Goals and methodology

The goals of experimentation were three-fold: to verify our deductions about the selec-
- tion criteria and bounding functions; to determine how much work was expended on

finding the optimal solution (as opposed to verifying its optimality); and to obtain an

N.°.•
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estimate of the size of the largest problems that could be solved in a reasonable amount

of time by these techniques.

Faced with a problem of subset search, the algorithm designer usually has a

choice of four techniques: dynamic programming, cutting plane techniques, branch-and-

bound, and depth-first search. The minimum test set problem has no apparent formula-

tion in the framework of dynamic programming. Integer programming, through the

solution of its linear programming subproblem and the use of cutting planes, has proved
.

very effective with the related (also NP-hard) problem of set covering [1]. Unfor-

tunately, the linear programming formulation of the minimum test set problem requires

a number of equations that grows as a quadratic function of the problem's size (as

opposed to a linear function for the set covering problem), thereby producing an exces-

sively large system. The last two methods are more attractive for our purposes since

they both perform an explicit search of the state space as guided by selection criteria

and bounding functions. An estimate of the amount of storage needed for the inter-

mediate solutions in a straightforward implementation of branch-and-bound techniques

shows that memory requirements are too large to allow the solution of problems of use-

ful size.

Therefore we chose the depth-first search technique (also known as single branch

enumeration). It has the advantage of requiring only the storage of a single path in the

search space (whereas branch-and-bound techniques may require an exponential

number). Also, since the first solution produced by the depth-first search algorithm is

the greedy solution, the chosen algorithm has the added advantage of allowing immedi-

ate comparisons between selection criteria. Finally, the two methods based on the

least-separated pair should work very well in most cases, as the restriction on the choice

of candidate tests should drastically diminish the size of the search space. We wrote

four PASCAL programs, each implementing one of the four selection heuristics with its

..-..-. '-..-.'."..."-...

. . . . . . . . . . . . . . . .. . . . . . . . . . .
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matching bounding function. The global upper bound is provided by the size of the

best solution found so far; our conjecture implies that this bound is fairly tight. The

lower bounds can be derived from the local contributions of each remaining test and the

distance to the solution: we assume that the tests do not interact and find by repeated

summing of the tests' contributions (sorted in decreasing order) how many tests are

needed to complete the partial solution. .9

All four programs pre-include essential tests whenever such are to be found. It is

noted that, although only those tests that are essential with the initial partition must

appear in any solution, the backtracking process may give rise to "locally essential"

tests, since the process of removing a test from consideration in the subtree may make

other tests essential in that region of the state space. As a result, an efficient implemen-

tation requires, a pair-oriented data structure, keeping track of which available tests dis-

tinguish each unseparated pair, so that the search for essential tests can proceed in

. " nearly constant time. This data structure can grow very large and its memory require-

ments turned out to be the main limiting factor in real world examples.

All four programs were run on randomly generated problems and those two pro-

grams based on the separation measure were also run on real world examples excerpted

from the microbiology literature (in which test sets are regularly published). Nearly all

real world examples included variable outcomes (i.e., undefined test values) and a few

had multiple-valued (as opposed to binary) tests. All artificial examples had binary . :

tests only and the random generator was set so that the two possible outcomes would be

exactly balanced over the whole table. (Such problems are harder than those where one

outcome is favored, because the even balance introduces a bias in favor of well-splitting

tests. We also ran a number of experiments with various skews; all proved noticeably •- .*-"

easier to solve than their evenly balanced counterparts.) When the number of tests was
. t

small for the number of objects, the randomly generated table often did not distinguish'..-.-.

°. •4
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between all objects; in such a case, a solution is a subset of tests that effects as much

discrimination as the full set of tests. The data collected included the size of the greedy

solution and of the optimal solution, the initial lower bounds, the number of backtracks,

needed to reach the solution, and the total number of backtracks used.

4.2 Artificial examples

In order to study the influence of the number of categories and that of the number of

* tests on the behavior of the algorithms, four series of experiments were run. In two of .-

the series, the number of categories was kept constant while the number of tests was

varied; in one series, the process was reversed; and in the last series, all problems were

square with increasing sizes. The sizes varied from 6 to 64, with varying resolution. .

Twenty-five examples were generated for each size in each series and their results aver-

aged; in all, near'ly 2500 examples were run.

* "e The results are presented in graphical form in Figures 1-6. Each of the first four

figures displays the data collected in one series of experiments in the form of four

graphs: the top two show the average total number of backtracks required (the most

accurate measure of work) as well as the average size of the solution, while the bottom

two show the percentage of work that was devoted to finding the optimal solution (as

opposed to verifying it). The two graphs on the left display the data obtained with the

least separated heuristics and those on the right are concerned with the other two

heuristics. In all graphs, data points marked with a triangle correspond to results

obtained with the information-derived bounding and selection functions; those marked

with a square correspond to results obtained with the separation-derived bounding and

selection functions; and those marked with a circle indicate the average size of the solu-

tion. Figure 5 illustrates the performance of the greedy methods (it displays the average

and largest values of the ratio of the size of the greedy solution to that of the optimal

- .................................. . ... ... ...
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solution) while Figure 6 illustrates the performance of the bounding methods (it shows

the average and largest values of the ratio of the initial lower bound to the size of the

optimal solution). Finally, curves were passed through the points in order to make the

graphs more legible. (Those curves should not be taken as an accurate depiction of the

heuristics' behavior: the data are intrinsically discrete.)

In the first series, all problems had 16 categories, while the number of tests varied

from 8 to 64 in steps of 2. Since 16 is a power of 2, it is a transition point for the size

of the best possible test set: although problems of that size could admit a solution of 4

tests, such a solution would be hard to find, since it must be composed of 4 perfect tests

with no cross-information. For such a solution to exist, a rather large choice of tests

must be provided; therefore we expect the average size of a solution to stay above 5

until the number of tests is large, then to decrease slowly. Since a solution of 5 tests is

optimal in most cases, we expect that a good bounding function will stop the search

0 algorithm shortly after the solution is found. Moreover, until a solution of 4 tests is

feasible, there will be a number of optimal solutions of size 5, so that one such solution

will be found almost immediately by all heuristics. Figure 1 shows the experimental

* results, which confirm our expectations. While the information-based bdunding did very

well, the separation-based one did very poorly - because many of the tests are well-

splitting. Since the information bounds were tight, the reduced branching factor associ-

ated with the least separated pair heuristics did not play a significant role, while that -

role is clearly exemplified by the two programs using the separation bounds. "::"

In the second series, all problems had 22 categories; other parameters were as in

the first series. With 22 categories, the best possible test set has size 5. Such a solution

is not as difficult to realize as in the first series, since it is well above 1og 222 - 4.46. On

the other hand, the bounding can be decisive only if a solution of 5 tests is reached; the

test interactions that make a 6-test set optimal will not be reflected strongly enough in

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . ... 
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the bounds. As a result, we expect the programs to perform a nearly exhaustive search

of the first few levels of the search tree when the optimal solution has 6 tests. Of

course, such solutions abound, so that all heuristics will find one almost instantly, while

solutions of 5 tests will be considerably more difficult to find until the choice of tests

becomes sufficiently large. As that choice grows, all four heuristics will find a solution

of 5 tests very early; the information-bounded programs will then stop shortly, while the

separation-bounded ones will go on and explore nearly the full tree. The role of the

reduced branching factor of the least separated pair heuristics will be as in the first

series, minor for the information-bounded programs and major for the other two.

Experimental results are shown in Figure 2.

In the third series, the number of tests was kept at 16, while the number of

categories was varied from 8 to 64 in steps of 2. As the number of categories increases,

so does the size of the theoretically minimal solution; the size of the best realizable solu-

"' tion increases even faster, since the choice of tests becomes relatively small. With a

large number of objects, the tests will interact significantly, so that we expect bounds to

be rather loose and play only a minor role. On the other hand, the probability that a

pair is separated by only one or two tests significantly increases, so that we expect the

least separated pair heuristics to perform considerably better than the other two.

Finally, the selection heuristics will do rather well because the tests, with so many

entries in each column, are well differentiated. For small to medium numbers of -

categories, the situation is more complex. The selection heuristics will perform rather

poorly for a number of categories just above the number of tests, because the optimal

solution is likely to be nearly unique. At the same time, the number of categories is not

large enough that good bounding can take place; thus the overall work should increase ...

dramatically. However, the bounding and selection will improve as the number of

categories and of optimal solutions increases, so that the work done will level out. As

4.. ...4... o.
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the number of categories further increases, it becomes more difficult again to find the

optimal solution and we expect the total amount of work to increase once more. The

results are shown in Figure 3. Notice how closely the curves for the information-

bounded programs follow those for the separation-bounded ones, demonstrating the rela-

tive lack of success of the bounding functions.

The fourth series had square problems, with a size increasing from 6 to 60. (Only

the best of the four heuristics was used for the larger sizes; indeed, 40x40 appeared to be

the practical limit for the separation-bounded heuristics.) Since, in a square problem,

the choice of tests is relatively restricted, we can expect a behavior similar to that exhi-

bited in the first half of Figure 3. Least separated pair heuristics will hold a slight edge

over the other two and the information-guided heuristics will vary in performance. -

between much. better than the separation-guided - when the solutions become harder :':"
•. -.- 9.

to find and thus provide for better bounding - and almost as poor - when the solu- . .

tions become easier to find and thus cause much looser bounds. Experimental results

are shown in Figure 4. They dramatically illustrate the trade-off between tight bound-.e', ,-,,-T -.

ing and ease in finding solutions: the harder a solution is to find, the easier it will be to

prune the remaining branches, yet, if the solution is too hard to find, mhost of the tree

will be explored just looking for it.

The data collected about the size of the greedy solutions confirmed that all four

heuristics are good selection criteria. No greedy solution ever exceeded the optimal by

more than 501; on the average, greedy solutions were only 6% to 7% larger than

optimal. As expected from our discussion of the separation and information measures,

the two performed equally well (the average ratios were always within one percent of

each other, which is not a statistically significant difference over 25 experiments); the

two methods relying on the least-separated pair heuristic showed a slight advantage,

presumably due to the narrower focus they impart on selection. Figure 5 presents the

< :'~~~~~~~~~~~~~~~~~~~~~~~~~.'.......'.' .............. ..... ... .'....."........ ..................._........'..."'..-
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results (the average ratios of the size of the greedy solution to the size of the optimal

solution) in the form of four graphs (one for each series of experiments); in each graph,

data points marked with a cross (X) correspond to the least-separated pair heuristics

while those marked with a plus (+) correspond to the first-level heuristics.

We chose to illustrate the behavior of the bounding methods by collecting statis-

tics on the ratio of the size of the optimal solution to the initial lower bound (as derived

by using separation or information measures). The average and worst-case values of

this ratio are plotted in Figure 6 in four graphs (one for each series of experiments); in

each graph, data points marked with a triangle correspond to information-based bounds,

while those marked with a square correspond to separation-based bounds. As expected

r from our discussion, the lower bounds based on information are consistently better that

those base on separation. In particular, while the separation-derived bounds worsen
with increasing number of objects, no such trend is apparent for the information-derive

" ~ bounds.

Overall, the experimental results confirmed our evaluation of the selection criteria

and the bounding functions. All four selection criteria appear equal. .Least separated

heuristics are vastly superior to the other two when efficient bounding is not possible (as

when the number of categories grows large with respect to the number of tests), due to

their small branching factor. Information-bounded heuristics are much better than the

other two when the optimal solution is found early and efficient bounding can be done

(as when the number of tests grows large with respect to the number of categories). In

* all cases, the most efficient program used the least separated pair heuristic with

information-based bounding. The largest solvable problems had sizes of around 40 by

40, although a single parameter could be increased well beyond that.

., - . .. . . .. , .. - .. .. . . . - .. .- . .- . . ..... ........ .. . , . .. .. .. .. ... . .. - .. , ... ........ ~. . .- '... .... * . .-. . -. .. i.: . .... ,*
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4-3 Real world examples

* In view of the results obtained with artificial examples, a certain optimism is justified as

regards real world problems. Such problems tend to have many essential tests; more- . ..

over, they are often composed of a small number of well-splitting tests and a large

* ° number of rather poor (possibly simple) tests. With such a structure, selection criteria

should perform well, as several microbiology researchers have found 116,191. Moreover,

many pairs will be be separated by only a few tests, so that the least separated pair ._

heuristics should keep the branching factor quite low.

We used the separation criterion only, as the information criterion is not easily

adapted to problems with variable test outcomes. (Being based on clusters, it requires

that the size of all clusters established by the inclusion of tests be recorded. In turn,

this requires that all clusters be kept track of explicitly, since common sets and subsets

must be eliminated. All of this adds up to excessive bookkeeping and enormous storage L

requirements.) The table below presents a synopsis of the results on eight examples

from the- microbiology literature; in that table, LSP stands for the least separated pair

heuristic with separation bounding while SEP stands for separation as the "first-level"

heuristic. The data presented include the size of the problem, the size of the optimal

solution and that of the greedy solutions found by each heuristic, the number of essen-

tial tests, the total number of backtracks used by each heuristic in obtaining the

optimal solution, and the percentage of work used to discover (as opposed to verify) the

optimal solution. Several remarks are in order. First, many of the tests incorporated in

an optimal solution were essential, showing how important it is for an algorithm to

include essential tests whenever possible. Secondly, the optimal solution was almost

always found immediately, confirming the power of the greedy heuristics in real world

examples. Third, some of the problems run were four times larger than the largest

artificial examples attempted, yet ran almost a hundred times faster. Finally, the

e -.e
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Problem Size Solution Number Backtracks % Work to Sol.
Isolates Categories Tests Opt. LSP SEP Ess.Tests LSP SEP LSP SEP

Actinomadura 11 32 5 5 7 1 7 20 0.0 67.2
Cyanobacteria 2  106 19 16 16 16 15 16 16 0.0 0.0
Eaterobacteria 3  7 20 7 7 7 4 7- 7 0.0 0.0
Pseudomonas 1141 27 21 8 9 8 2 16 21 21.7 0.0
SMA12 kit3  142 12 12 12 12 12 12 10 0.0 0.0
Streptococci$  36 32 25 25 25 25 25 25 0.0 0.0
Streptococci 1181 s0 122 36 36 36 31 43 43 0.0 0.0
Yeasts4  98 56 16 16 17 5 144 1556 0.0 0.2

1 Goodfellow, M., et . Numerical tazonomy of Actinomadura and related Actinomycetes. J. Gen. Micro-

biol. 112 (1979). pp 95-111.
2 Rippka, R., et at. Generic asignments, strain histories and properties of pure cultures of cyanobacteria.
J. Gen. Microbiol. Ill (1979). pp. 1-61.

Rypka, E.W. Private communication. Lovelace Medical Center, Albuquerque, 1981.
4 Belin, J.M. Identification of yeasts and yeast-like fungi I: tazonomy and characteristics of new species
described since 1979. Can. J. Microbiol. 27 (1981)). pp. 1235-1251. .

program using the least separated pair heuristic with separation bounding never used

more than a minute of CPU time running on a VAX11/780 computer. (For comparison,p

" ' the greedy heuristic used in 1141 on the Pseudomonas example took 2.8 minutes on an _

1BM360/50, while our program took 1.9 seconds to guarantee an optimal solution for the

same problem - an enormous difference that we attribute mostly to our careful choice

of data structures.)

Overall our results confirmed our optimism about real-world problems and justify

an even more positive attitude: with a judicious trade-off between time and space, it will

be possible to solve even larger examples without major modifications. If some better

bounding method can be developed - and preliminary research indicates that this is

within reach, using linear programming with merged constraints, then the time traded

off will easily be regained. In fact, this indicates that a hybrid algorithm, partaking of

both depth-first search and branch-and-bound techniques, may be best.

( L___.
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P..
S. Conclusion

We have reviewed the methods proposed in the literature for dealing with the minimum

test set problem. We have evaluated the proposed selection heuristics and conjectured

that their worst-case behavior never produces solutions larger than twice the optimal,

providing two examples where this ratio is asymptotically reached. We have presented

the results of extensive experimentation with four backtracking algorithms. Our results

confirm that existing selection heuristics are quite satisfactory; they also indicate that

the best backtracking method involves a heuristic which uses the information criterion

for selecting tests and deriving bounds and relies on the least separated pair heuristic to

keep branching factors low. Experimentation with real world problems showed the

importance of pre-inclusion of essential tests; it also gave grounds for optimism since,

despite the known NP-hardness of the general problem, an inferior version of our pro-

grams solved large problems in a very short time.

Much work remains to be done. Better bounding methods must be sought, which

,' apply even when variable outcomes are present. An extension of the information cri-

terion is the obvious first step. Beyond that, the use of the linear programming sub-

problem for deriving bounds (as used for the set covering problem in [101) appears

promising; although the size of the linear programming problem grows faster than that

of the original problem, one can diminish it by merging some conditions, thereby relax-

ing the constraints (indeed, merging all conditions into one gives us the separation cri-

terion). In addition, the integer programming approach with cutting plane methods is

worth investigating, despite the size of its formulation. Most importantly, ways of

incorporating measured amounts of redundancy into the solution must be sought: the

minimum test set is, by definition, a fragile entity. While redundancy can easily be

incorporated through simple methods (such as insisting that each pair be separated by

at least two tests, whenever possible), the more complete risk model of pattern

S.
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recognition [5] provides a suitable framework for more sophisticated methods.

I
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Optimal Solution of Linear Inequalities with
Applications to Pattern Recognition

D. C. CLARK AND R. C. GONZALEZ, SENIOR MEMBER, IEEE

Abreraet-An algorithm ft the optimal solution of conistent and In- error decision functions. The most noteworthy efforts in this
consistent linenr inequalities is presented, where the optimality crite- area are the algorithms proposed by lbaraki and Muroga [41.
don is the maximization of the number of constaints satisfied. In the Warmack and Gonzalez [5 1, Miyake and Shinmura [61, [7),
terminololy of pattern recognition, the algorithm finds a linear decision
function which minimizes the number of patterns misclassified. The and Miyake [8]. Other schemes which "tend" to minimize ' . "

algorithm Is developed as a nonenumerative search procedure bed o, the number of errors have been proposed by Mengert [91 and ... -

several new results established in this paper. Bounds on the search are Smith 1101 (see also the comment by Grinold [Il]). Finally, .6
also developed and the method is experimentally evaluated and shown we mention the stochastic optimization techniques by Wassel
Io be computationally superior to other techniques for finding mini- 1171 and by Do-Tu and lnstalle [18] for minimizing the error
mum-error solutions. 1a1

rate.
Index Termnr-Agofthm, decision function, discriminant function, in- A two-class linear decision problem may be expressed as a

equalities, linear, minimum error, optimal, pattern recognition. system of linear inequalities [ 1, [5 . In this paper, we de-

velop an algorithm for finding an optimal solution of consis-

I. INTRODUCTION tent (corresponding to separable pattern classes) and inconsis-
•tent (corresponding to inseparable classes) linear inequalities,

ORMAL APPROACHES to pattern recognition may be where the optimality criterion is the maximization of the num-

divided into two principal categories: syntactic and deci. ber of constraints satisfied by the solution. This criterion is di-
sion-theoretic [11, [2]. The syntactic approach is based on rectly analogous to minimizing the number of misclassified
the use of automata and language theory to process patterns patterns. The algorithm is developed as a nonenumerative
that have been expressed in terms of structural primitives. The search procedure based on several new results established in
decision-theoretic approach, on the other hand, deals with this paper. Bounds on the search are also developed and the • .- -

techniques for obtaining decision functions capable of parti- procedure is experimentally evaluated and shown to be cor-
tioning sets of pattern vectors whose components are real, nu- putationally superior to other published techniques for finding

merical measurements or features. minimum-error solutions.
Central to the decision-theoretic approach are methods for

finding decision functions that are optimal in some sense. In II. FOUNDATION

statistical formulations, the approaches due to Fisher [31 and Consider the system of homogeneous linear inequalities
Bayes [1 are the most commonly used in pattern recognition.
Fisher's classic paper establishes a procedure for finding a lin- Aw>0 (2.1)

ear discriminant function with the maximum ratio of interclass where A is an m X (n + 1) matrix with m > (n + 1), and w
to intraclass scatter. Bayes' decision rule yields the minimum is an (n + 1)-vector in R" ". It will be assumed throughout

expected loss and, in the Gaussian case, reduces to a quadratic the following discussions that A satisfies the Haar condition
function determined by the mean vectors and covariance ma- [111; that is, every (n + 1) X (n + I) submatrix of A is of rank
trices of the classes under consideration.

A criterion of optimality that has been receiving increased n t teiIn the terminology of pattern recognition, w is a weight Pec- -'- .";

attention in recent years is based on finding decision functions tor, each row of,4 corresponds to an aupnented pattern vec-
which minimize the number of errors between two pattern tor so that ai,n, = ±1, and (2.1) is the statement of a two- .

classes. Unlike the formulations mentioned above, Oie ap- class, m-pattern probleni in which the augmented patterns of

proaches that have been proposed in this area are procedures one class have been multiplied by - 1. The Haar condition im-
which employ the training patterns directly to find minimum- plies that the patterns are in general position [l .

Two pattern classes are said to be linearly separable if there . .
Manuscript received April 3. 1980; revised February 4, 1981. This exists a w with the property thatA w > 0. (As indicated below

work was supported in part by the Office of Naval Research under Con-
tract N00014-78-C-0311. a w that satisfies (2.1) can be displaced so that it also satisfies

D. C. Clark was with the Department of Computer Science, Univer- the strict inequalities Aw > 0). There exist a number of well-
sity of Tennessee. Knoxville, TN 37916. He is now with the Pattern known algorithms for finding a solution weight vector when -:.

Analysis and Recognition Corporation, Los Angeles, CA 90045.
R. C. Gonzalez is with the Department of Electrical Engineering, Uni- the classes are separable I I I. in the inseparable case, we are

versity of Tennessee, Knoxville, TN 37916. interested in finding a weight vector that is optimal in the
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sense that it satisfies the largest possible number of row in-
equalities in (2.1). and thus minimizes the number of patterns
hat are misclassified.

Each row vector a, of A determines a hyperplane in R" *: .

"l,=weRm"t ,-w 0) (2.2)

,,dsupporting hyperplane

, .- as E a/wl. (2.3)
1 -.i n

Each hyperplane Hj is an n-dimensional subspace of R"*'
passing through the origin, and (2.2) also indicates that H, is
the n-dimensional orthogonal complement of &I.

Since H, bifurcates R"*t, there is a quartet of open and --
dosed half-spaces corresponding to each hyperplane. They are IV

0 denoted by Ugo-

S.- (wGR"'lfr, w>O}
It. w -R" le -w<O

Fjg 1. Illustration of a three-dimensional convex polyhedral cone, its

Sic - {w ER"" lei: w > 01 image, frontier, and edges.

S = {w* (ER"*' - w<0}. (2.4) then the number of inequalities satisfied by the image of w
(i.e., w = -w) is greater than or equal to kn.

It is easily demonstrated that each of these half-spaces is con- III. DEVELOPMENT OF THE ALGORITHM

vex, and that the intersection of an arbitrary collection of con-
vex sets is itself convex. It is also noted that Hi is the bound-
y (or f'ontier) of each of the half-spaces defined in (2.4). dex set 1(w) of a vector win R" whichis defined as the set

A convex polyhedral set is defined as the intersection of a of integer values between 1 and m such that i is in 1(w) if
finite number of closed half-spaces. Furthermore, because a .w <0, where a, is the ith row vector of A. The error of w,

they are closed under addition and nonnegative scalar multipli- denoted by err(w), is defined as the cardinality of 1(w); in
"cation, the partitions of R generated by the closed half- other words, the number of values of i for which a," w < 0. Incacein (2)alsoatisf the dearnition of convde cloes alf- order to simplify the notation, and since we are interestedO spaces in (2.4) also satisfy the definition of convex cones

1131-[15J. Therefore, the partitioning of R by {HIli = 1, only in optimal solutions, it will be assumed throughout that

2, -.. m) establishes a finite set of convex polyhedral cone& a vector w will be replaced by -w iferr(-w)<err(w). We be-

Each of these cones, generated by a finite number of support- gin the development with the following lemmas.
bg hyperp/anes, contains the origin, is nonempty, closed, and A. Two Basic Lemmas
unbounded along its principal axis. The boundary of a cone, Lemma 1: Let w be a nonzero vector in R" .Then either
formed by sections of its supporting hyperplanes, is called the w is an optimal solution of (2.1) or one of the hyperplanes H,.
frontier of the cone. The intersection of n hyperplanes define i 1(w), contains an optimal solution of(2.1).
an edge on the frontier of a cone. Proof. Let: by any optimal solution of (2.1) and let L be -1

The concepts introduced in the above discussion are illus- a straight line segment extending from w to z. We will show

trated in Fig. 1. it is noted that a vector w contained in the in- that either w is an optimal solution of (2.1) or L r) Hi is an op.
terior of a cone would yield strict inequalities, while a vector timal solution for some i C (w), which is sufficient to prove
contained in an edge would yield a zero inner product with all the lemma.
the hyperplanes that define that edge. It is shown in [5) that If w = cz for some c < 0 then -w is an optimal solution and
displacing an edge vector into the interior of a cone without we replace -w by w. If w * cz for c < 0, then L does not pass
changing the sense of the strict inequalities is a simple matter through the origin. In this case the set of optimal solutions ly-
when A satisfies the Haar condition. It is also illustrated in ing on L consists of a series of one or more subsegments of L,
Fig. I that every cone C in R has an image, denoted by C-, on each of which the same number of inequalities of (2.1) is
about the origin. If the number of inequalities satisfied by a satisfied by each vector on that subsegment. Consider the sub-
vector w in C is less than or equal to k, where segment containing z. One endpoint of this subsegment is s.

m/2 for m even Let the other endpoint be denoted by w, which is not 0 since
k, m +)/2 for m odd, (2.5) L does not pass through the origin and is optimal because it ison the subsegment containing r. If w v, then w is an optimal

or . . ............ ,...---......-----------------...-.-........--...,-.,................:::
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solution. Since v is an optimal solution and it is also the end- wM1)
point of an optimal subsegment it follows that, if w 0 v, then
for somei, v EL rH, and a,- w < O; that isw is on the other -

sde of the hyperplane defining the end of the optimal subseg.
ment. Since aI w < 0, then we have i -1(w). This concludes
the proof. 0

In the following discussion it will be useful to consider the
notion of a minimum-error solution relative to a subspace S of w(2). - .- 
R". By this we mean a nonzero vector v contained in S and
with the property err(v) < err(w) for all nonzero w ES. It is is
noted that a minimum-error solution of (2.1) is a minimum.
error solution relative to R" +

Lemma 2: Let w be a nonzero vector in S, a subspace of Fig. 2. A simple search tree after computation of two edge vectors.
RN . Then either w is an optimal solution of (2.1) relative to
S, or at least one of the subspaces S A H,, i E 1(w), contains an
optimal solution of (2.1) relative to S. and assume, for example, that I [w(2)] = {11, 151. Then, . .

froof. The proof is analogous to that of Lemma 1. We Lemma 2 indicates that the search for an optimal solution rela-

let z be any optimal solution relative to S and L the straight tive to H4 may be reduced to that of searching the subspaces
line segment extending from z to w. Then L is contained in S H4 A H, and H.4 AHl. The status of the search is summa-

and the proof proceeds as before, but with the words "optimal rized in Fig. 2. It is noted that the dimensionality of the sub-
solution" replaced by "optimal solution relative to S." o3 spaces to be searched has been reduced by one; in other words,

Given a nonzero vector w in R m' and a hyperplane Hi, i E we started searching H4 (an n-dimensional subspace) and the
1(w), if z is an optimal solution of (2.1) that lies in Hi, then problem now is one of searching the subspaces H r) H, a and

z is also optimal relative to H1. Hence, Lemma I implies that H 4 n Hs which are (n - 1)-dimensional.

if a set of vectorsi contains w and at least one relative opti- In order to find an edge on H4 AH,, we can replace H2 to

mal vector for each hyperplane H,, 15 1(w), then B contains at obtain w(3) E H,. A H,I A H3 . Suppose that! [w(3)] = {6, K . .

least an optimal vector relative to R + 1. Thus, the search for 12). According to Lemma 2, the search for an optimal solu-

an optimal vector can be reduced to a search for relative opti- tion relative to H4 A H,, is reduced to that of searching the

mal vectors for each of the subspaces H, iE1(w). This search sbpcsH RA 6 adH HA,.I u x .-

for relative optimal vectors will be guided by the concepts es- ample, these are one-dimensional subspaces since n + 1 = 4. '2
tablished in Lemma 2. Thus, the problem at this point is simply that of finding a vec-

tor inH 4 rH, A H6 and a vector inH, AH,, nH,2 .Let us
B. Search Trees denote these vectors by ot and U2.

The search for an optimal vector may be expressed in terms In order to continue the search, we find w(4) 6 H4 A His A

of a tree diagram. In order to illustrate this, assume that n + H3. Suppose that I[w(4)] = {5, 7, 10}. Following an argu.
I = 4 and that we begin the search with a vector w(l) lying in mient identical to the one just given for w(3), we would find
the intersection of hyperplanes H,, H2 , H 3 ; that is, w(l) E the problem reduced to that of finding three vectors lying in -"

H, R 2 HR 3 . If, upon performing the products a,-w(l), H. r His A n Hs, H4 n HA s n H.;, and H4 H s r H 0 , re-
I= 1,2, - - - ,m, we find that w(l) lies on the negative side of spectively. Let us denote these vectors by V3 ,v 4 ,and 6 . The
hyperplanes H4 , H6 , He, andH,, then /[w(l)] = {4,6,8,9}. initial problem of finding an optimal solution relative to H 4

This information is summarized in the following tree diagram. has now been reduced to that of selecting from among the vec-
tors u, through vs the one with the lowest error. The search

(1,2,3) up to this point is summarized in Fig. 3. It is noted that this
completes the examination of subspace H 4 and that no other
vectors contained in this subspace can yield a lower error than

4 6 8 9 the best vector in the set v, through vs. Thus, at this point in
the search, an optimal solution relative to H4 has been found.

where (1, 2, 3) specifies the hyperplanes determining the start- In order to continue the search, we would next consider
ing edge and each labeled branch represents a subspace (hyper- another hyperplane from the set {H6 , Hs, H, } and repeat the
plane) to be searched for a relative optimal solution. Once rel- procedure discussed above for obtaining a relative optimal solu-
ative optimal solutions are found for H 4 , H6 , Hs, and H,, tion. When all these hyperplanes have been considered, either
Lemma 2 guarantees that either w(l), or at least one of these w(l) or at least one of the optimal solutions relative to H 4 ,
relative optimal solutions, is an optimal solution of (2.1). H6 , Hg, or H,, would be an optimal solution to (2.1). It is

In order to search H 4 we apply Lemma 2, which requires noted that the number of levels traversed in the tree in order
that we find a vector lying on the subspace S = H 4 . This can to examine each hyperplane for a relative optimal solution is
easily be achieved by exchanging H, for H4 so that the vector n + I. In the following discussion we formally define the con-
will lie in H4 AH 2 R 3 . Let us denote this vector by w(2) cept of a search tree and prove (in Theorem 1) that a search

o *.• o• *.- - - - - - - - - - - - - - - -. .o • % " , • . . .-. . .o - . o ,• , o . . % _
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(1 2(3)

I V9

v(2) (42.3) 1

is Its

and 7lD 1

jI& 3. Srha re aftgr 4.p Scemt4 dhas bee aegxerlmeaned.ee

tree les to Han opia solutio of (3.1). leasture one rpe- etr eaiet R ' h e

ducigteize of a search treear dicsedhindecinseac TM-C)k=,,., 33

et astevosw(l), w(2), . , w(p) rvetogers i thend

fllo11- wi t) susacs fo-1.2,- -P.Asumetht or 2 3

~~ho Cosdrtefollowing subspaces:fo -1.2--* n

H,,1,6,,(1,*1), , U (HijilI 611, 131)

H,, llH1 , 1 612, (12 1~'2)Q2 H, 'Ij6112*1
HIS nH,2 nH13  13 613' (13 13)

OP U {Hit n ... nHip_ I nHiplip e P) (3.4)
His nHj3 .. r)Hp _I nHip 1,6CE , (3.2) where, in the last expression, inclusion of the "^" means that

The above set of vectors and subspaces can be represented 1p is allowed to equal 1. It then follows from the statement 7 _

schematically by the diagram shown in Fig. 4. We may think of the theorem that
of w(l). w(2). --. ,w(p) as "starting vectors" for examining a
series of subspaces for relative optimal solutions. Thus, w(l) TP = Q U Q2 U . U OQ - (3-5)

Is the starting vector for R" ' w(2) the starting vector for For p = 1, T, = U {Hit I' 6!,) I and the theorem reduces to
Hj,. w(3) the starting vector for H,, IA HI,,and so on. These Lemma 1. For p > I we use Lemma 2 and induction on p.
vectors play the role of w in Lemmnas I and 2. The top-level Assume that the theorem is true for p = q; we then with to
branches in Fig. 4 represent the subspaces H1, 16! ,, the prove that it is also true for p = q + 1. In other words, we as-
second-level branches the subspaces H1, A) Hj, 1612, and so sume that
on. According to Lemmas I and 2, these are the subspaces
that must be examined for their relative optimal solutions in Tq U {w(l), w(2), -. - , w(q)) (3.6)

order to obtain relative optimal solutions for Rne', H,,, contains at least one optimal solution and we wish to prove
Hit A Hi,,- --. For clarity we have not labeled all the that this is also true for
branches in the diagramn of Fig. 4, but have instead indicated T, wlw2,. wqwq*1) 37
the index sets from which these labels would come. T wlw2,--- ~) ~ 37

The following theorem generalizes Lemma 2 and establishes From the above use of the symbol MAwe have that
tat a search tree leads to an optimal solution of (2.1).

Theoewm 1: Let w(l), w(2), - , w(p) satisfy (3.1) and let 0 q Qq U (H,, A) H12 A... AH~j A ( HjI 19 1q)

7, be the union of ail the subspaces in(3.2). Then, thereis at WQq US (3.8)

........................................
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W(M) In order to finish the proof, we only need to show that either
of the subspaces [(Tq - S) U {w(1), w(2),' ", w(q)] or

Q1 U w(q + 1)] contains an optimal solution relative to ..2
R '. Letting z represent an optimal solution relative to S, ,
we know from Lemma 2 thateitherz=w(q+ 1)orzE 1;
that is, Qq U w(q + 1) contains an optimal solution relative

02 to S. If z is also an optimal solution relative to R' we are
finished with the proof. If this is not the case, then S does not
contain an optimal solution relative to R' and it may be de-
leted from further consideration in the proof, leaving the sub- 9
space Tq U {w(1), w(2),.-. , .(q)). However, we know

WM from the induction hypothesis that this subspace contains at
least one optimal solution relative to R". This concludes
the proof. 0

w(q) C Reduced Search Trees

The number of branches that are investigated in a search tree
Oq can be reduced by keeping a record of the subspaces that have

already been searched. This will eliminate computation of the
w(q+l) same information more than once and thus reduce the time re-

quired to complete the search for an optimal solution. In this
section we consider techniques for reducing search trees and .....

t q.1 prove that a reduced search tree will lead to an optimal solu-
ton of (2.1).

Fig. S. Search tree-diagram used in the proof of Theorem I. The cir- Let w(l), w(2),. -- , w(p) be nonzero vectors in Rn ,and
cled branches in each level represent the subspaces (hyperplanes) used let 11, 12, I and J1 , J2," "., Jp be sets of integers be-
in forming the set Q at that level tween I and m satisfying the following conditions:

where ;CI1. i 1,2,--.,p (3.13) .

S=H 3  r)... Hi '""A H, H. (3.9) .-- ';
j= 1,2,"",i (3.14)The situation is shown in Fig. 5,in which Q, Q 2,", are

the subspaces formed by the union of hyperplanes represented ht C (1 U Ja)
by the circled branches. To form Qq we simply include hyper- r, C (12 U., Uj (.15)
plane Haq in the union of the hyperplanes forming Qq.

It is Inoted in Fig. 5 that w(q+l) H, 2 ...
nHq-,H1,q. In other words, w(q+l)6S. It thenfol- IC(I U AU...U J).
lows from Lemma 2 that either w(q + 1) is an optimal solution A reduced search tree is defined as a set of vectors w(k), k - 1, .-.
relative to S or there is at least one optimal solution relative to 2,'". . p satisfying (3.1) for some values 1 E ,1; 12 E 1,..,
S in the subspaces SHiq,, , 1i 6 1 q. . Representing E6., 1 together with subspaces of the form
these subspaces by U (S r) HA q u1q, I E1q I, we note that

H,, 11 el; UJ,,i, Vill
U (S n Hiq.,Iq i 4Eq,,}Qq,," (3.10) H h nH, 21 UJ,,12  l- .

Since

Tq 1,UQ U"'U02, HU, Q'"HH, 2.H.,., Hip.)f

and( Qq - S (where ... represents set subtraction) it fol- H1 A . rAHp nHip ip61;UJ. (3.16)

lows that where !k and Jk,k 1,2, • •,p, satisfy (3.13)-(3.15).

Tq ,(Tq - S) UQe + a (3.11) The diagram of the search tree just defined is shown in Fig.
6. The interpretation given to the sets !k and J4 is that ele.
ments of 'k indicate subspaces (shown as dashed branches)

Tq U (w(l), w(2),... ,w(q), w(q+ I+})) already examined for a relative optimal solution, while ele-
= - 3")Uw(I), w(2), n l ", q)ments of ! indicate subspaces yet to be examined, or in the . -"A process of being examined. These subspaces are denoted by

U [0t. U w(q + 1)]. (3.12) Solid branches in Fig. 6. Condition (3.13) indicates that In.

.... ..... • -~~~~~~~~~~~~~~~...-..--............. -.. .. ........ ......-....... -s....' '. _-
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-(1) the index sets of subspaces to be investigated (i.e., 11 and 1')

do not contain the indexes of subspaces already searched at, or
above the second level of the tree, as indicated in condition

*,; (3.14). Suppose now that a new vector, u = w(3), lying in
H4 r) H, has been computed and its index set is 3 = f1, 8, -

2) 10}, as shown in Fig. 7(b). In order to continue the search
using this new vector, we have the three possibilities shown in

- - . -Fig. 7(c)-(e). In Fig. 7(c) we simply leave w(3) in position
/ and delete the branches labeled 1 and 8 because they represent

J2 - /2 subspaces that were already investigated at a higher level in the
" itree. In Fig. 7(d), w(2) and its descendants were replaced by u

w(3) and its descendants, deleting at this level any dashed branches
- - : that appear at a higher level (i.e., the branch labeled 1 in this

case). It is noted that any dashed branches that do not satisfy
,(P) this condition (i.e., the branch labeled 3) are retained to show

later in the search that they have been investigated at that level
,; a *p of the tree. Finally, Fig. 7(e) shows the entire tree replaced by

Itp a u and its descendants. At this level only H has been investi-

gated so the dashed branch labeled 1 is retained and the
' Ibranches labeled 8 and 10 are solid, indicating that they still

Fig. 6. Diagram of a reduced search tree. have to be searched for a relative optimal solution. It is noted

d that all three possibilities in Fig. 7(c)-(e) satisfy the condi-
dexes corresponding to subspaces to be examined are elements tions of Theorem 1 and its corollary; thus, either of the three
of a valid index set. Condition (3.14) indicates that we need choices to continue the search will lead to an optimal solution.
not examine any subspace of a subspace already examined. Our goal is to choose the candidate with the most potential for
Condition (3.15) is a requirement that we examine each of the reducing the search. The criterion we will use is to place u at
subspaces corresponding to the index set 1j that have not al- the highest possible level in the tree such that the number of
ready been examined. It is noted that the set , (which gives solid branches at that level is less than before. This criterion
the indexes of hyperplanes to be considered at the ith level) is seeks to reduce the search by trimming off, at the highest pos-
formed by deleting from i any indexes contained in JI, J = sible level, subspaces that would have been investigated in the
1,2,-. - . original tree. We are thus lead to the following rule.

Corollary 1: Let w(l), w(2), --- , w(p) satisfy (3.1) for Replacement and Deletion Rule: Let u = w(r) with original
It El;, I1 EI1,"-*,l1 ,, where 1 , l1,..., , satisfy index set 1(u) be a vector computed at the bottom level r of a

(3.13), and let Yp be the union of all the sets in (3.16), where search tree. For values q = 1,2,-" , r - 1, we let

1 , .i....1" , 1,, J2, .. Jp, satisfy (3.14) and (3.15).
Then, there is at least one optimal solution vector in the set Jq (u) 1(U) - J, U 2 IU U J ) (3.18)

VpU {w(k)k = 1, 2,.. (3.17) and

?rOof" The proof follows from Theorem I by noting that Jq (u) = J (3.19)

11 C(/1 U J1),-..,C (/, '-. U g)and that TpC where "-" indicates set subtraction. We then choose the small.
pp. 1- est value of q, if any, for which cardinality f[/ (u)] < cardinal-
Another important property of search trees that leads to ity [1/], and replace w(q) and its index sets by u and the in.

further reductions in computation is that any of the starting dex sets given in (3.18) and (3.19), deleting all descendants of

vectors and its index set may be replaced by a bottom-level w(q). If no such value of q exists, no replacement takes place
starting vector and its index set. The result will still be a and the index sets at the rth level are given by
search tree that satisfies Theorem I and its corollary.

In order to illustrate how the condition given in (3.14), =l(u)- fJ, U J U ...U J,,) (3.20)
along with the above replacement procedure, can be used to
reduce the search for an optimal solution, consider Fig. 7(a) and
which shows a tree at some stage of a hypothetical search. J, = 0. (3.21)
The branches taken from left to right and top to bottom repre- It is noted that any indexes of subspaces already investigated
sent, respectively, at a higher level in the tree are deleted from l(u) to form l, (u)

HI,H,,Hs and that Jq (u) retains all indexes of subspaces already investi-
gated at level q. In (3.21), J, =  because r is at the bottom

H4 A) H, 14 A) Hf. 14 A) H7, HA H. level of the search tree and no subspaces have yet been investi-

and the dashed branches represent subspaces that have already gated at that level.
been investigated for relative optimal vectors. It is noted that Returning to the example in Fig. 7, we see that the above

~..................................... ..... ........................................... ;
,.,- . .. .. . ,",/ ." . .-.- . .- .- .-. , -.. .- , - .-.. ,".. .-. .- , ..- ? .- -_. . .-.- .,, , -" -,.,. , ,- • ..,,,.. .,,.. .,.
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the intersection of n hyperplanes. As shown in Fig. 8, avector \ ' (I..(

at the kth level in the tree satisfies the requirementIk

w(k)r=H, nH n ... nHk, r)Hk'Hk... k

(3.22)
where I<k~n and il4,!i 1.2,--- k- 1. As indicated
in Section Ill-B, we compute a vector wr(k+ 1) at the next ()Hi1 ri rl- rim(I1  N (
level by replacing H,4 by a hyperplane H(,, with ik 6 Jk. In or- (k )cH it2( . Itk-1 k k+1
der to stress the dependence of w(k + 1) on ik we will, in this rig. 8. Illustration of a vector w(k) at level kc of a search tree and the
section, represent these vectors by w(k + 1, 1,). Then, computation of w(k + 1) by replacing Hik by H ik 'kC_.i

w~k + ,1 4 )EH,1 AH,2 r HI~IHowever, since we are seeking a minimum-error solution, it____

r) H. r)Hik+ n H. (323)would be advantageous to be able to select the w(k + 1. 4k)
A II~ A ak i ~.. A ,,,(3.2) jwith the smallest error as the next candidate in the search.

for soni e, Ik. There are as many of these vectors as there ThVe brute-force method of computing all w(k + 1. 1k) and
are elements in It. In order to continue the search we may choosing the best one would be in general unacceptable in
take any of these, obtain Il,,, compute w(k + 2), and so on. 'view of the fact that the replacement and deletion rid will in

%- a - - - - .
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tgk)

Vk 
Hik lVk

/

k k

S. /. .

Fig. 9. Example of subspace Vk .  . -

many cases eliminate the consideration of some of these vec- Based on the foregoing concepts, we define the following
tors in the first place. In this section we develop a technique ordering Me.

for obtaining the errors of all w(k + 1, ik), ik E Ik, without 1) Let D be the set of indexes of the hyperplanes determin- .
actually having to obtain these vectors directly. These error ing w(k); that is, from (3.22), D = fil, 1,""- In}. A vector""-

i .c -k,19

low, the method is very economical from a computational fine k. :
point of view. 2) Let b (k) be given by __

Vk = H11 n H12 n... n Hikl nlHik+.N' b(k)=zk <0.. I if l (k )

(32) 3) For each i, E Ik, let :!i':

Is two-dimensional and it contains both w(k), which is known, M~ik) = number of hyperplanes Hi for which -f(/) < (ik),
and w(k + 1, ik) , i k E I, which are unknown. Let z(k) be a. 1 4 m -.U
vector contained in Vk and orthogonal to w(k). (The vector I•/•m kUD -.-.
s(k) may be found, for example, by Gaussian elimination.) It N(ik) = number of hyperplanes H. for which 7I(q) <y 7(ik), i'
then follows that each w(k + 1, ik) may be expressed as a lin. q E 1 k .  ..-..
car combination of w(k) and z(k). - .-

Fig. 9 illustrates a typical geometrical configuration within 4) For each ik E Ik, compute the error of w(k + 1, ik), as ... :

the two-dimensional subspace Fk. A vector w(k + 1, ik) lies in follows:
the intersection (shown as a dashed line) of Hik with Fk, and err [w(k + 1,ik)] = err [w(k)] + M(ik) - (N(ik) + 1) + b(k). i!

w(k) lies in the intersection of Hlk with Vk. The projection of
the orml t Ha (se Sctin II ono te V plne s sown 5) Rearrange the elements ofl1; in order of increasing error.

with coordinates (f, , a2 ), where akis the row vector of A de-Elmnswttesaerorrerdedrbrriy-.'":
terind y hevaue f .Frm le emtiakosd As an illustration of the ordering rule, consider a problem in"-:'""'

teraion e bhe thau ofi Fo ipegoerclcni-Which n: = 10, n = 4, and suppose that we are at the second
level in the search tree with w(2) = H. n H4 n H. n Hio, .'-

(01,,.)= (.,i. w(k)/Ow(k)JJ10, .Z(k)IJJZ(k)JJ) (3.25) 12 = {3. 5, 6), and 12' = {5, 6Q. In this case V,2= :H, r) H. nl::-.:.
and Hm~~Ri, D = {2, 4, 8, 101, and suppose that a4 • z(2) > 0. The...."""

situation is shown in Fig. 10, where the hyperplanes with in-...,.'
-- = - co O (3.26) dexes in/,; are circled. Note that H2, Hsi, and H10 are not"'.-'

012 shown because they define V2. By definition, w(2) lies on the
whreG s heanlefrm hew~) xi cunerlokwseto negative side of the hyperplanes with indexes in 12 and on the

ther da she ane Finlywo fn the qaxscuntitylockwise to positive side of all other hyperplanes with indexes not in D. :'::'
the ashd haf~lne. inalywe dfin thequatity7(j as Since a'- (2) > 0, z (2) lies on the positive side of H4 r) V2. :.

y (j) e -/ w (k)/l" z (k) The error of w(2) is 3 because 12 contains three elements. We
also note that, since - cot O is an increasing function of El for-'-'

( = cte 3.2) 0<19<v, y(!)<,y(5)<-1(9)<,y(3)<,y(6)<,y(7 ). Thus,
where C- Jlwe)JJ/ll=()JJ, to compute err lw(3, )] we first compute M(5)= -Iand : "

% - .• •
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.
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3

- .- o" .
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Fig. 10. Illustration of the ordering rule

N(5) = 0. Then, since b(2) = 0, it follows from step 4) that Hi (3 Vk faces the half space just mentioned and H1. does not
en [w(3, 5)] =3. Similarly, M(6) = 2,N(6) = 2, and err [w(3, contribute to err[w(k + 1, ik)l; that is, b(k) = 0. Otherwise, .
6)] = 2. Thus, the ordered index set becomes 12 = f6, 5). the error is increased by one by letting b(k) = 1. In the pres-

The key to the above procedure lies in the fact that -C cot 9 ent example Ik =4 and we have that b(2) = 0 because it was
is an increasing function of e for 0 < e < i and, thus, can be assumed that a4" z(2)> 0.
used to determine the positive and negative side of any hyper. With reference to step 4) of the ordering nile, and based
plane with respect to a vector contained in the one-dimensional on foregoing discussion, it is seen that all contributions to
subspace Hik n Vk and oriented in the 0 < 9 < it direction, err [w(k + 1, ik)l have been taken into account. The hyper- -
For instance, in the example just described, it is noted that planes with indexes in D were not considered because, with
M(5) gives the number of hyperplanes for which 1)(j) < -f (5), the exception of H , they combine with Hgt to form the edge
] Ik U D; that is, M(5) is the number of hyperplanes whose containing w(k + 1, Ik), as shown in (3.23). As indicated in
intersection with V2 are to the right of a vector contained in Section 11, w(k + 1, ik) can be displaced so that it yields a
H. r) V2, excluding hyperplanes with indexes in 12 and D. positive product with all the edge hyperplanes, so they would
Since these exclusions guarantee that all hyperplanes used in not contribute to the error of this vector.
the computation of M(5) have their positive side facing w(2), E. Statement of the Algorithm
it follows that the intersection of any of these hyperplaaes The
which is to the right of a vector contained in Hs r V2 will The concepts developed in Sections III-A-D lead to the fol- -7. -
yield an error (negative product) with respect to a vector lowing algorithm for finding an optimal solution of (2.1).
w(k + 1, ik), k = 2, It = 5, contained in that one-dimensional Notation:
subspace and oriented in the 0<e< r direction. In the w* an optimal solution of (2.1) at the termination of the 0
above example only one hyperplane, H1, satisfies the condi- algorithm
tions necessary for use in the computation of M(5), yielding k level in the search tree : 1
M(5) = 1. Similarly, N(ik) is the number ofhyperplaneswhose Ek set of indexes of n hyperplanes used to compute an

intersections with Vk are to the right of a vector w(k + I, ik) edge vector at the kth level; this vector can be com-
in Hi n V, but whose indexes are in Ik and, therefore, have puted by Gaussian elimination or by using the method
their negative sides facing w(k). Since err [w(k)] gives the discussed in [51 •
total number of these hyperplanes, it follows that the quantity w(k) edge vector computed at level k
err[w(k)] - N(it) - I is the error with respect to w(k + 1, ik) 'k index set of w(k) :- .>

of all hyperplanes with indexes in ik. (The - I is included to Jr index set of subspaces already examined at level k
reduce err[w(k)] by one because H contributed to this error It index set of subspaces to be examined at level k
since ik E Ik; however, Hik contains w(k + I, Ik) and, there- 0 empty set
fore, does not contribute to err[w(k + I,ik)I). In the present So
example with k - 2 and 1k = 5 we have that .V(5) = 0.

At this point all hyperplane intersections with Vk, except a) w* = arbitrary starting vector
HI, AV (k = 4), have been taken into account. In order to b) Ji = 0, i = 1,2,.., n - 1; .-.-

establish the contribution of H1. to errlw(k + 1), ik)], it is t An alternative is to start with a quasi-optimal vector determined, for
only necessary to determine the positive side of HiA A) Vk with example, by a procedure such as Fisher's 131. We have found, however,that progress toward an optimal solution is at frst rapid, thus partially
respect to the half space 0 <9O <ir. This is easily accom- negating any advantage that may be gained by using additional (and -
plished by using z(k). If elk- z(k) > 0, the positive side of more complex) techniques to estimate a "better" starting vector.

2........ .- .• ., . . . .......-... .. .. .. ..... ....-,.,... .. .. .. .. ..-.... ... .....-. ,... .. .. . -... ... ...-. . .... .... ..... ....._ ._
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) E, f 1,2, n}; that is, select the first n hyper- concept of an index set to reduce the search, it has been
planes to compute w(l); shown [51 that the ratio WmnICr'R is s'aictly less than 1,

d) k -1. where Wm.n is the number of edge vectors computed under
Step 2: worst case conditions at each step in the search. Experimental

p 2: results [51 indicate that the actual number of vectors corn-
. o t ui h e ewputed in a search can be expected to be considerably less than " " "
b) Compute It. the theoretical upper bound.
c) If err [w(k)] <err(w*), let w* =w(k). The theoretical upper bound derived in [51 would apply to
d) If err[w(k)] = 0r~ 4 ), le t tep 9 . the algorithm developed in Section III (since it too is based on
d) If err [w(k)] 0, go to Step 9.
e) f n t kn and go to Step 8. the use of an index set) in the case when the search is neverIfk= ,set Srestarted and none of the index sets are ordered. When use is 0

Step 3. Apply the replacement and deletion rule, denoting made of restarting and ordering we would expect the number
by q the level at which replacement took place. The index sets of vectors that need to be investigated to be significantly re-
I, and Jq are given by (3.18) and (3.19). duced, and the results presented in the next section bear this

Step 4: out. Aside from the fact that a th oretical upper bound can
a) Let p =k, k q, I -I and = Jq. be established under worst case conditions, derivation of an

b) Let Ji = 0 for ally > k. upper bound that takes into account restarting and ordering
c) If It 0, go to Step 7. Otherwise, rotate the elements does not appear feasible because the advantages derived from

in Ep starting in the kth position so that the element in the these procedures are data dependent. It is possible, however,
pth position goes into the kth position. The elements to the to obtain an expression for the lower bound (as a function of
left of the kth position are not disturbed. Replace the ele- the error of an optimal solution) on the number of vectors
ments in Ek by the elements in Ep after rotation? that must be investigated by the algorithm. This result, given

as a corollary of the following theorem, is quite useful because
Step 5: It establishes a guideline for the minimum amount of computa-

a) Rearrange the elements of IA in order of increasing er- tional work required to find an optimal solution of (2.1).
ror by applying the ordering rule. Let emin be the minimum Theorem 2: Let e = err(w*) be the number of errors in.
error found. cufred by an optimal solution, w*, of (2.1). Suppose that the

b) Let-1. algorithm commences searching a subspace H of dimension " "
Step 6: p ;0 2 when r subspaces of dimension > p have already been #.....

a) If k = n and emin > err(w*), go to Step 8. Otherwise, searched, where r 4 e. Then, in order to complete the search
continue. of H, the algorithm must compute at least C;:2*P - 2 edge

b) Let Ek.a =Ek and then replace the kth element of vectors contained in H.
Ek by the jth element of l. Proof: The proof is by induction on p. When p = 2, the

c) Increment k and/by 1. theorem asserts that the algorithm computes at least one edge
d) Go to Step 2. in H to complete the search of H. This assertion is obviously

Step 7: If k 1, go to Step 9. Otherwise, set Jk 0 and true. Suppose the assertion of the theorem is true for p = k;
continue, we wish to prove that it is true for p = k + 1, where 2 < p <.

n+ !.
Step 8: When the algorithm commences searching H^, it first com-

a) Decrement k by 1. putes an edge vector w EH and the set 1(w). The cardinality
b) Transfer the /th element of / to Jk to indicate that of 1(w) is at least e, since the minimum error of any edge vec-

another subspace has been searched at level k. tor in Rn I is e. According to the induction hypothesis, r
c) If the jth element was the last element of I4, go to Step subspaces of dimension > k + I have already been searched,

7. Otherwise, go to Step 6. where r < e.

Step 9: Stop with edge vector w* as an optimal solution of If r = e, it is possible that all of the subspaces of the form
(2.1). Displace w* into the interior of the optimal cone by H 0l H,, iE I(w), are subspaces of the r subspaces which have
using the procedure described in [5] already been searched, in which case the algorithm has already

completed the search of H, having computed one edge w in 1.
IV. BOUNDS ON THE NUMBER OF EDGES The assertion of the lemma is that the algorithm must com-

INVESTIGATED BY THE ALGORITHM pute at least

An exhaustive search for an optimal solution carried out by Cp-_ P-2 2

obtaining one vector in each cone edge would require the com- 2  =CP 2 (4.1)
putation of C.' such vectors. For algorithms employing the edges inAH; hence, it is a true assertion in this case.

If r < e, then the algorithm must search some subspaces of2ror example, suppose k - 2, p -"4. and F4 - fel , e2, e3, e4, es }. tefr H.Cnie is h aeweetruhu "."
we rotate the elements starting in the second position so that the le. the form H ) H-. Consider first the case where throughout
ment in the fourth position goes into the second position. The de- the search there is no replacement of the initial vector w and
ments to the left of the second position are not disturbed. After rota- index set 1(w). Then the algorithm must search at least e - r
lion and letting E2 aE 4 we then have E, - (eI, e4, es. e2, e3). This
step updates the hyperplane indexes at level k by taking into account of the subspaces of the form H r) H,, I E 1(w), each of which
the fact that a vector at level p was brought up to level k. is of dimension k. Upon commencing to search the first of .

.............. . ......................... . ...... . . . . . . . ...'.. .-'- ...' p,' '...'":.-.':'., ..--. - -" - -..,-:',. . :':...'."-. .-- .- . .."."..-.. . . . . ".. : .'. " -- ; :' -' - : "- -- -
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these subspaces, there are r subspaces of dimension > k already TABLE I

searched. Upon commencing the search of the qth of these LOWER BOUND ON THE NUMBER OF EDGES COMPUTED BY THE ALGoRITHM

subspaces, I < q < e -r, there are r + q -I subspaces of di. e 2 3 4 5 6 7 s 9 10
mension > k already searched. Therefore, by use of the induc- -

tion hypothesis, we see that to search the qth of the subspaces 1 2 3 4 5 6 7 a 9 10

N H , requires the computation of at least C2 31- q 0 I 2 8 34k-5

edges, and that the search of H requires at least

+ k23 4 10 20 35 56 84 120 165 220
I - C; -  -  s 2(4.2)
q0l 4 S 15 35 70 126 210 330 49S 71S

edge computations. By letting= e- r- q + 1, this quantity S 6 21 56 126 2S2 462 792 1.287 2.002
can also be expressed as

6 7 28 84 210 462 924 1.716 3.003 S.O,
I + Cj" -"/k-2 •(4 ) ":'

k=-21 7 8 36 120 330 792 1,716 3.432 6,435 11,440

*t is easy to show that (43) is equal to 9 9 45 165 495 1.287 3.003 6.435 12.870 24.310

ck:r k-s (4.4) 9 10 SS 220 715 2.002 S,00 11.440 24.310 48,620

Hence the lower bound of Theorem 2 has been verified for 1o 11 66 286 1.001 3.003 8.008 19,448 43,758 92.378

P = k + 1 in the case where there is no replacement of the ini.sia vector w.

In the case where w is replaced, it can be seen that the RTABLE R DATA C,.

same lower bound is still valid because the algorithm must -_______ ________ _OHEIRS _ATCASE

still search at least e - r subspaces of the form H r H1, and Classes discriminated: Versicolor, Virginica
the qth subspace searched requires the computation of at least
C;-;-qk 'Wedges, asibefore. This concludes the proof. - ,eightvector: 0.0038 0.0070 -0.0208 -0.0251 1.0000

Corollary 2: Let e =err(w*) be the number of errors in. Error: 1

curred by an optimal solution, w*, of (2.1). Then the lower Lower bound: 4

bound on the number of edge vectors computed during execu- __ o eges
tion of the algorithm is given by the binomial coefficient .p .ed: 49

CPU time: 1.61 sec. ':" -
,... (e + n- 1)(e + n - 2)' ...(e + 45 -•

(n - l)y"'- Classes discriminated: Virginica. Setosa

Proof: The proof follows from Theorem 2 with I? = R n 1, Weight vector: -0.0087 0.0131 0.0257 -0.0033 -1.0000
pnl+ l,andr=0. 0 Error: 0

The lower bound given by (4.5) is shown in Table I for vari- .o.ee.!o. St e dges....
ous values of e and n. These values are compared in the next c .d: 10
section against the number of edge vectors actually computed CPU time: 0.34 sec.

by the algorithm in a number of examples.

V. EXPERIMENTAL RESULTS Classes discrimnfated: Setosa. Versicolor

The algorithm developed in Section III was programmed in e vector: 0.0378 -0.0118 -0.0164 -0.0355 -1.0000

Fortran IV and run on an IBM 370/3031. The following re- Error: 0
sults illustrate the performance of the procedure in separable No. of edges

and inseparable situations. cospued: 19

Experiment 1: The first example is based on the measure- CPU t fe: 0.59 sec.
ments performed by Fisher [31 on three types of iris flowers:
Iris Versicolor, Iris Virginica, and Iris Setosa. For each type of
flower, four measurements (petal length and width and sepal
length and width) were taken on 50 specimens. This leads us the minimum number of edges that the algorithm must com-
to consider three two-class discrimination problems with m = pute is, of course, I.
100 and n = 4. The results summarized in Table i agree with Experiment 2: In this experiment we compared the perfor- . -

the well-known fact that two of the pairs are separable, and mance of the algorithm against the procedure developed by
one pair is inseparable with the optimal solution yielding one Warmack and Gonzalez 151 which is also based on the use of - - i
error. It is of interest to compare the lower bound given in an index set. Two four-dimensional Gaussian classes of 50 -.-
Table I with the actual number of edge vectors computed by patterns each were generated using a program developed by

( the algorithm in the inseparable case. In the separable case, Bryan and Tebbe 1161. The two pattern populations were

.. - . . . . -. ,., ,. - - . .. . •. . •. . . . .... . .... . ...- . . .. . .. . .. , .. ..- .'. .. , '. '. ..-..-- . ,_. . '. '
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TABLE III The results are summarized in Table V, which shows that 82RsuLT oF ExpasrMimT~ WIT FOU1-DimEUNsiONAL, INSEPARABLEI" "-RAUSSIAN DATA edges were investigated, requiring 3.80 & of CPU time. Miyake

reported CPU times of 10-25 min (depending on the starting
1eight vector: -0.4903 -0.2100 -0.39 -0.2276 1.0=0 weight vector) on a data set generated with the same parame-
Error: 4 tere. He used a FACOM 230-45S, which is approximately four
Lower bond: 35 times slower than the IBM 370/3031. Taking into account the

difference between the two machines, and using the lower 10
c0.ofte: 35 min figure to allow for programming and other variations in
cuu ti.: 68 sec. implementation between the two experiments, it appears that

the procedure reported in [81 is, conservatively, on the order
of 40 times slower than ours.

VI. CONCLUSIONS

TABLE IV
REULT Or ExpliRimcr" wrIT Six-DMENsiONAt, SEPARABLE The computational advantage of the algorithm developed in

GAUSSIAN DATA Section III over other direct procedures for finding an optimal
solution of (2.1) is based on two principal factors: the replace-

Vatght vector: -. 1933 -9.6779 1.5035 -2.7608 -4.2783 ment and deletion nule discussed in Section Il-C, and the
-3.6190 1.0000 ordering rle developed in Section III-D. The first rule reduces

Error: 0 the size of the search tree by trimming branches at the highest

fo.of e possible level and by keeping an account at each level of the
j , ..eT- 36 subspaces that have been previously searched at that level. W_

Scpu tm: 1.67 sec. The ordering rule arranges subspaces in order of increasing er-

ror. This procedure enhances the computational efficiency of
the algorithm by increasing the frequency with which lower-
error edges are encountered during the search. As indicated in

TABLE V Section III-D, the use of an ordering procedure is made feasi-
RESULT Op EXPERIMENT wITH Two FIvE-DIMENSIONAL PATrrtERN CLASSES ble by the fact that we are able to obtain the error of an edge

SEPARATED BY T E BOUNDARY X1 + X2 + x1 + X, + Xs - 1.5 0 vector without actually having to compute that vector.
The lower bound developed in Section IV for the minimum

11oh1 ,ector: .0.725s -0.212 -0.695 -0.620 -0.6328 1.0000 number of edges that must be computed by the algorithm pro.
* ,,ror 0 vides a useful measure of the minimum amount of computa-
N" 2 * e tional work required to find an optimal solution of (2.1). As .. .

ciu t: 180 sec. in any search procedure, the number of edges investigated
should be expected to grow rapidly as a function of the num-
ber and dimensionality of the patterns, as well as the error
rate. Although no theoretical bound involving these parame-
ters appears feasible, we have found in practice that the num. '.-.

generated by specifying an identity covariance matrix for each ber of edges actually computed in inseparable cases in typi.
class with mean vectors (0, 0, 0, 0) and (I.5, 1.5, 1.5, 1.5), re- cally on the order of 10 to 30 times the lower bound. In
spectively. The results are summarized in Table III, which separable situations, the algorithm has cQnsistently found an
shows that 235 edges were investigated, requiring 8.85 s of optimal solution after computing a fraction of the number of
CPU time. By contrast, the Warmack-Gonzalez algorithm in- edges required by the other direct procedures against which it
vestigated 15 854 edges requiring a total of 206 s of CPU time. has been compared.

In another experiment we generated two groups of six- Finally, we point out that although all discussions have been
dimensional patterns with unity covariance matrices and mean limited to a linear-discriminant function formulation, the con.
vectors with components equal to -0.75 and 0.75,respectively. cepts and procedures developed in this paper are also applica.
In this case the classes were linearly separable, and the results ble to nonlinear discriminant functions by the standard pre.
as summarized in Table IV, which shows that 36 edges, requir- processing technique of using the nonlinear functions to map
Ing 1.67 s, were investigated by our algorithm. By contrast, the patterns onto another space [1.
the Warmack-Gonzalez algorithm computed 51 826 edges, re-
quiring approximately 13 min of CPU time. REFERENCES
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Abstract-it Is shown that the Moments Of the iIttrdass Mahalnobs
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expressed in a simple polynomial fonm. The nth moment is expressible as a and covariance matrices
Pol'nomia of order n whomse variAle depends on the mean vectors and
skeavalues of the covartame matrices. A closedfom shotion is given for C- 4C , r  (9)

omut,,g te coeff.icints of the polyot expression. C CA. (10) -.

L INTRODUCTION It is also easily shown that .

Pattern recognition and image processing techniques based on X (r, i,) - R(x, md (11)
the Mahalanobis distance have found wide applicability, ranging ""-'":)(
from nuclear reactor surveillance and automated analysis of and
image texture data to discrimination problems in biomedical R(s,m,)- R(y,m,). (12)
observations [11, [2), [3]. "')"M.(

The importance of the Mahalanobis distance classifier lies in Furthermore, as described in [61 and (161, the transformation
the fact that, under a Gaussian assumption, it is an optimal matrix A can be chosen so that P
discriminant in the Bayes sense [4]. The estimation of the proba- T

bility density function (pdl) of the interclass Mahalanobis dis- C, - ACAT -1! (13)
tance has been a topic of active interest for a number of years and
because of its direct relation to the probability of error of Bayes
classifier (5]. For Gaussian data with equal covariance matrices, C - AC.A r - D, (14)
the solution of this problem is straightforward [6]. When the .
covariance matrices are not equal, however, the problem becomes where I is the identity matrix and D is a diagonal matrix with .
considerably more complicated, requiring the use of numerical elements -r(i), i - 1,2,-. ,d, along the main diagonal. The ele-
integration techniques for computing the pdf [7]. ments y(i) are the eigenvalues of C- 'C From (13), it is noted

In many applications (e.g.. cluster seeking, texture analysis, that the elements of r are uncorrelateJ which, in view of our
and measuring spatial stationarity of multivariate data) it is often Gaussian assumption, implies statistical independence. The same
of interest to compute the moments of the interclass Mahalanobis holds true for the elements of s.
distance without having to estimate its underlying pdf as an Using (3), (11), and (14), it follows that
intermediate step. It is shown in this paper that these moments R(X, my) A(r,m)

.(~ can be expressed directly in terms of a polynomial whose coeffi-
cients are given by a straightforward closed-form expression. The . (r - m )r D -I(r - m,)
relative simplicity of these results has important implications in
terms of implementation in a digital computer. - (r, - m,) 2y - (i), (1S)

II. BACKGROUND 5-.

Consider two d-dimensional Gaussian vector populations (x) where r, and m,,, i - 1, 2,..-,d, are the components of vectors r
and ( y I with mean vectors and covariance matrices m, m,., C,, and m,, respectively. Since r is a Gaussian random vector and
and C.. respectively. The intraclass Mahalanobis distance" be- C, - 1. we have that the variable z, - (r, - m,,) is Gaussian with
tween any member of (x) and m, is given by the familiar mean (M,, - m,,) and unit variance. It then follows 191 that
equation I1] w - Z,? - (r, - m,,)' (16)

R(x, t") - (x - m,)rTC"I(x - ms), (1) is a noncentral chi-square variable with density

and, similarly, AkW A f, ,%/2e-W,/2
p•w - o e '", (17) '''-

R(Y,M,) -(Y -m,),c(y m). (2) pkw) -0. k,2Iklvr (I + 2k) 17
where "T" indicates the transpose.

As indicated in the previous section, (1) and (2) have been and moment generating function
applied extensively in pattern recognition. In this paper, we are
interested in characterizing the interclass Mahalanobis distance e( - E - (I - 2 t)-_0 + 2()/2
between members of x and the mean m., which is given by k,

R(x,m,) - (x x - in) (3) where

and similarly, A, - -(, - r,,)2 . (19)

R(y,m,)- (y-m,)r"t(Y-,). (4) Since r,,, i- 1,2,-- ,d, are statistically independent, it follows

For any nonsingular, real transformation matrix A it is easily that the w, defined in (16) are also statistically independent.
shown that if A similar development can be carried out for R(y, i,):

1.-Ax (5) R(y ., m,) - R,(s,,,)
and " (s - m,)rt-I(s - M,)

s- Ay, (6) d

then r and s are Gaussian random variables with mean vectors - (s, - M,,)0 2 . (20)

a, - Am 2  (7) The variable z, (s, - m,,)/ is Gaussian with mean

-Am, (8) (, 1 - m,,)/ ry) and unit variance. As above, the variable "'

Thi% k in reality a sqmurWd distance. However. it has become customary to W, " " (sm,,)2 (21)
f his nwaur simply a the Mutuluntlhs ujmcr.

• .-C
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has the density and moment generating function given in (17) where V0f(x) - f(x), Alf(x)- Af(x) f(x + 1)- f(x), and

and (18), but A, is now given by A'f(x) - A(A'-f(x)) (32)

- (m.f - rn,,). (22) r- (r~()f (x~k, (3

k -0

III. MOMENTS OF THE INTERCLASS MAHALANOBIS for r ; 2.
DISTANCE. Since r. 1(2x + 2s - 1) is a polynomial in x of degree n, it

It is shown in this section that the moments about zero of w, follows that b(n, r) - 0 if r > n, and hence from (30) that
can be expressed in terms of A,. Once these moments have been
obtained, they will be used to obtain the moments of the inter- a(w)- c(n, r)AW, (34) --
dass Mahalanobis distance. ,-0

A. Moments about Zero of w, where

We begin the development of noting that the nth moment c(n, r) - b(n, r)/r!. (35)
about zero of w, is given by Now

a.(w,) - E(w) ," (O) (23) 2 ) ))J(2x+2s-l) 2 - + . n- -

where #1"1(0) is the nth derivative of (18) with respect to , S-1 2- +'-).

evaluated at t - 0[101. Evaluating (23) with the moment generat- (36)
ig function given in (18) leads to the following theorem. -2"u(u- 1)-"..(u - n + 1) (37) ": .

Theorem 1: Let a.(w) denote the nth moment about zero of
w,. Then where•u -x +(2. - )/2. (38) '

a.(w,) - i c(n, r)Ai (24) u " x

It follows easily by induction from (33) that

where A'2"u(u- 1)...(u-n+ 1)- 2"n(n- 1)-.
St (n - r+ l)u(u -1) ... (u -n+ r+l1) (39) ....

c(n, r)- 2'( n ) .(2j + 1) (25) whenr<nandthat

j-F

* !"u(u -1)'..(u- n + 1)- 2"n! (40)
for all n at I and 0 4 r 4 n - 1. and

Hence. (31). (37). (38). and (39) yield
c(n, n) 2" (26) .- "

for alln > O. b(n.r) - 2'n(n - 1)...(n-r+ 1) (2j+1) (41)

Proof. From (18) and (23), if n > 1 and 0 4 r < n, and (31), (37), (38), and (40) yield

S.(w)- (o) b(nn) - 2"n! (42)

*, - e-A ,o .! (1- 2t)+2)1 -0) Dividing(41) byr and (42) by n! yields (25) and (26), as desired.
k -k! In particular. with c(0,0) - 1,

e -  c(I,0) - 1 (2 j + 1) - (2n - 1)c(n - 1,0) (43)F_ -E 1(2k+2s-1) (28) j-0
k-Ok s-I

for n ; 1. and
00 A A2(n - r+ 1)

- ! ' I (2k + 2s - 1) (29) c(n. r) c(nr-1) (44)
J0 ,-,0 r(2r - 1)
- A' ( 1).-v for n, I land 1 4 r < n. The recurrence relations (43) and (44)W1 -' r (2m + 2., - 1),

enable one to generate the triangular array of numbers c(n, r)
with case. Hence one may easily calculate the polynomials a,,(w,),

(30) which arc listed below for 0 4 ii < 5:

where (30) follows from (29) by the standard rule for multiplying a0 ( w,) = 1
Taylor series. I + 2A,

By a well-known formula from the calculus of finite differences
(151 a,(.,) -3 + 12A, + 4A,

F 3 3(t,15+ 90A, +60A',+ 8A'(-,),- r),.r (2m + 2s -1) o(,-5+ +:.:.
M-0 in S-1 !a4(w,) - 105 + 840A, + 840X , + 224A, + 16e,

'')(31) as(w,) - 945+9450X, + 12600 , + 5040 , + 720D, + 32,."
-fi (2x + 2s - 1) (45)

-. .. . ; -%
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B. Moments about Zero ofRX yields

7From (15) and (16), d* Rxi)]- ( !e"C d!)I[ce,/( i)J

R (X,m') - m wy'(i). (46) le! A -
i-1 (53)

The nth moment about zero of Ais then and

a. [R (x,nm,)] E( R"(x, n,)) - E([ Wi/v(i)]} a.[(R(y, m.)] E(ei1e 2 !"i. Cd!) [

(47) (54)I.The coefficients of a sum raised to the nth power are given by the
multinomial theorem [131; that is, Equal Mean Vectors and Covariance Matinces (Intraclass

d Mahalanobis Distance)

-.RX F1 w/Y~l W When m, -n.m and C -C, - C, we have only one
ale!.. d i- population and th problem reduces to computing the moments

(48) of the intraclass Mahalanobis distance. It follows from (52) and
(53) and the fact that each y(i) - 1 (see the remarks above on

where the summation is taken over all nonnegative values of equal covariance matrices) that
ell e 2 ,, ed such that el +e2 + "+edf-l-.R

In view of the independence of the w,'s, it follows that d.4 R (x, In.))

aLRe2mi .. ed!)T-1 rl(2i-l)--- [J (2i -1)

(49) i-1 i-1 _

*where the a, (w,), i - 1, 2,. - -d, are given by (24), using values - [ (d + 2j). (55)
of A, given by (19). 0

Sicewhere the summation in (54) is over all e, ;1 0 such that el + e

d2 + *.. + ej - n. and (55) follows from (54) by the following
R (y. m.) - (s, - m.,)' argument. By the extended binomial theorem

d (I - 2.) 1

- W70i). (50) e-0

where wv, is given by (21), it follows using a similar development L 1 (2ai- ). (56)
* that -

0 (a~ i~~~raj '(e~ez!'.. dlaw(~) Raising (56) to the dth power yields

(1 -l t . d

where the a,,(w,). i 1,2,- -,d, are given by (24) using values of
* ~A, as given in (22). (7

ELIV. SPECIAL CASES On the other hand, dhe extended binomial theorem yields
In this section we consider special cases involving various

arrangements of mean vectors and covariance matrices of two (1 - 2xdfl -/)-2)

pattern populations. aO

When4-C- C folowsfro (13 an (1) tht -~ )-00
Equal Covariance Matrices - (d)(d +2) ... (d+2n-2) x.(58)

1 . Consequently. y(i) - 1, i - 1,,. .,d. and both forms of X, Cmaio ftecefcet fx n(7 n 5)yed h
((19) and (2.22)) become the same. This lcads to equal moments demrsire f reut ecefcet fx n(7 n 5)yed h

* via(49)and Si).One observes from (55) that the moment in question depends

Equal Mean Vectors only on the order of the moment and the dimension of the

When ,, - mj' it follows from (7) and (8) that ma, - m, and. atr vcos
consequently, A, -0 in (19) and (22). Then from (24) and (25) V. CONCLUSION

a3 (,) -c( n.0)The expressions given in (24), (25), (26), (49), and (51) ]cad to a

- fl 2s -(52) straightforward algorithm for computing the moments about zero
I of the interclass Mahalanobis distance. If desired. the central %~*

forbos poulaion. Sbsttuionof 52)int (4) ad (1) moments can be obtained from these results by means of a
fl bth opultios. ubsttuton f (5) ito 49) nd 51) well-known transformation (101.

C7
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The importance of these results is that they allow direct com-
putation of the moments without having to resort to the inter-
mediate step of obtaining the pdf which, as indicated in Section 1,
is not a trivial problem in the case of unequal covariance matrices.

The expressions for the moments were considerably simplified
in the special cases discussed in Section IV. In particular, the
intraclass Mahalanobis distance was shown to lead to expressions
which depend only on the order of the moments and the dimen-
sion of the vector populations.
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Semi-invariants of the Interclass Mahalanobis
Distance
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Abstra-A new dosed-form expression for the semi-invtlants of the
Interclass Mahtaanobis distance is derived. Typically, in the analysis of two
multivariate Gaussian populations with different covariance matrices,
simultaneous diagonalization of these matrices is required. The semi-in-
variants are given directly in terms of the mean vectors and Inverse

covartance matrices by the results established in this correspondence. In
addition, a new iterative algorithm is derived for computing the moments of
the intercassi Mahalanobis distance from the seni-invariants.
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L INTRODUCTION and
Pattern recognition and image processing techniques based on -,4 (6) " "

the Mahalanobis distance have found wide applicability, ranging ("

from nuclear reactor surveillance and automated analysis of then r and s are Gaussian random variables with mean vectors
image texture data to discrimination problems in biomedical m, - Am, (7)
observations [11, [21,13]. . •A

The importance of the Mahalanobis distance classifier lies in YAm (8)
the fact that under a Gaussian assumption it is an optimal
discriminant in the Bayes sense [41. The estimation of the proba- and covariance matrices
bility density function (pdf) of the interclass Mahalanobis dis- C- A A (9)
tance has been a topic of active interest for a number of years
because of its direct relation to the probability of error of the C, - AC Ar. (10)
Bayes classifier 151 For Gaussian data with equal covariace
matrices, the solution of this problem is straightforward (6]. It is also easily shown that
When the covariance matrices are not equal, however, the prob- R(r,mj R (zmy) (11)
km becomes considerably more complicated, requiring the use of R:,i, :x -)(1
numerical integration techniques for computing the pdf [7]. and

In many applications (e.g., cluster seeking, texture analysis, R(s,m,)- R(y,m,). (12)
and measuring spatial stationarity of multivariate data) it is often .,m .
of interest to compute descriptors based on the interclass Furthermore, as described in [6] and [16], the transformation
Mahalanobis distance. Two such descriptors are the moments matrix A can be chosen so that
and semi-invariants. In an earlier paper, we established that the C; ACZA !-1 (13)
nth moment could be expressed as a polynomial of degree n and ,Ar - (13)
gave a closed-form solution for computing the coefficients [171. and
This procedure, however, requires that the covariance matrices of
the two populations be simultaneously diagonalized. C, - AC Ar ,D (14)

The present work deals with the derivation of a closed-form
expression for the semi-invariants of the Mahalanobis distance, where I is the identity matrix and D is a diagonal matrix with J.
This expression involves the mean vectors and inverse covariance elements y(i), i - 1,2, . ., d, along the main diagonal.' The
matrices directly and does not require the diagonalization of elements y(i) are the eigenvalues of C,'C. From (13), it is
these matrices. It is well known that the moments and semi-in- noted that the elements of r ale uncorrelated which, in view of
variants are related 'by expressions that, though theoretically our Gaussian assumption, implies statistical independence. The
simple, are quite inefficient in terms of computer implementation same holds true for the elements of s.
[111. A new, iterative algorithm that is easily implementable in a Using (3), (11), and (14), it follows that
digital computer is presented in Section IV for computing the R(x,my) - R(r,m,)
moments from a given set of semi-invariants.

(a- m,)TD-I(r - n,).
II. BACKGROUND d

Consider two d-dimensional Gaussian vector populations (x) - (r, - mY 1(i), (15)
and (y) with mean vectors and covariance matrices m, m.
C,, and C,, respectively. The intraclass Mahalanobis distancet where r and m,,, i - 1,2,. . .,d, are the components of vectors r
between any member of (x) and m. is given by the familiar and m,, respectively. Since r is a Gaussian random vector and
equation [1] C - I, we have that the variable z, - (r - m,,) is Gatssian

R(X,m.)-_ (x-_m.)r t(x-_m.) ()with mean (m, - m,,) and unit variance. It then follows [9] that

and similarly, W, - Z? (i, - M,) 2  (16)

R(y,#a,) - (y - m.)rC-n(y - in), (2) is a non-central chi-square variable with density

where T indicates the transpose. 00 Mw P+Z)/2e-',/2
As indicated in the previous section, (1) and (2) have been p(w) - e- ' (17) . .- -

applied extensively in pattern recognition. In this work, we are t=0 k!2(r+2k)/2l(l+2k.
interested in characterizing the interclass Mahalanobis distance\ 2
between members of x and the mean mr, which is given by and moment generating function

R(xmv.) - (x - ',)TC~t(x - m (3) *(t) - • •' - 2 )( )/2 (18) ." Y
and similarly, k-0

R(y,m,) - (y- m,)rC't(y - ) (4) where

For any nonsingular, real transformation matrix A, it is easily 2 - - rn,) . (19)
shown that if

Since r,, i - 1, 2,.. , d, are statistically independent, it follows %P - Ax (5) that the w, defined in (16) are also statistically independent.

'This is in reaJity a squaed distance However. it has become custonuuy to AIthough diaoualization is not required in our final results, (13) and (14)
refer to this measure simply as the Mneaknoas ddsance, ae used in proving the theorem siven in tie next section.

* *-.* * ~*.** '% ~ .,~ ~ . . ~.aO_ .
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A similar development can be carried out for R y, mi): As an illustration, the first five semi-invariants of w, are
R y, III.) R e(s,,.) X,(w,) - 1 + 2A,

- (s - m,)TU'(s - in,) X2(w,) - 2 + 8A,
d X3(w,) - 8 + 48A,E(3i,-Mj,2.  (20) J -.(s, - rn,1)2. (20)X 4 (w,) - 48 + 384A,

The variable z- (si - m,)/" is Gaussian with mean X(w,)- 384 + 3840A,. (26)
(m, - m,,)/l y/(7 and unit variance. As above, the variable

A. Semi-invariants of R
w,- ,Z 1 (s' -Mj2 (21) The semi-invariants of the interclass Mahalanobis distance - .

R(x, M) are given by the following theorem. 0
has the density and moment generating function given in (17) Theorem: The nth semi-invariants of R(x, my) and R(y, m ,-
and (18), but X, is now given by are given, respectively, by

A, 2y(l) (2) X [R(, y]- -'n )

M. S eSb-IW,'JiANs oFTmE INTEtcL&ssM^ItANOBis +n(m, - My)Tc;(CC;,)-'(m. - ,)] 2
DISTANCE (27)

One of the most important properties of the semi-invariants is and
that the nth semi-invariant of a sum of independent random
variables is equal to the sum of the n semi-invariants of the X,,[R(y,m) ] - 2"-'(n - 1)!ir {("'CY,)"}
individual variables [10, [11). As will be seen in the following
discussion, this property leads to a straightforward procedure for n m.)rc (C )-(m, - M,
computing the semi-invariants of the interclass Mahalanobis dis n(MY -•-.
tance, using only the original mean vectors and inverse covari- (28;
ance matrices of the given populations. (28",

Proof. From (15) and (16)
.A. Semi-invariants of wi.

We first obtain the semi-invariants of w and then extend the R(x,m,) E- wm-I(i).
results to the general case involving R. The nth semi-invariant of
a random variable w, with moment generating function 0,(t) is t s n of d d
defined 114] as Since the nth semi-invariant of a sum of independent random .-.

a" variables is the sum of the semi-invariants, and Xjwyf- (i)j -
X8(w,) . -J[ln .. () o. (23) X.(w,)y-"(i) [10]. we have

d
Use of (18) in this definition leads to the following result involv- X,[R(x,m,)] - X.(w,)y-f(i). (29)
ing As.

Lemma: The nth semi-invariant of wj is given by the expres-sion Then, from the lemma in Section 111-A,

X,(w,) - 2"-'(n - 1)![l + 2nAj. (24) d n-1[.AJ i.,, Proof." From (18)x.,e(x,,.)] - 2 -1(n - 1)![l + 2nlkj]--"(i )  . :'.:.
SProof. From (18)

t - d d
(:L(I - 2t)-'- 2"-'(n - 1)! y-"(i) + 2"n! E A,-"(i).k-ok i- -i......

e-,(t(1 -- 2t) / 1 2t) -k (30)
k-0 " "'

k Since y(i), i - 1,2,. .,d are the eigenvalues of C;C,,, the
Ol ( A_12 sum of the eigenvalues y - (i) for i - 1,2,.. ,d, is the trace of

e- ( 1  I 2t)-t / 2  - (C- C ) ". Modifying (30) by this observation, and using the
"- definition of A,, given in (19), yields "": "

The infinite summation is recognized as the Taylor expansion of d' of A i e
e sg/(l-2f; thereforX.e [ R(x,m.)] - 2"-'(n - 1)! tr ((C_'C,)") . .-

+,()-e-'(1 - 2t)- /e '/ - .  (25) d 2m+-m) ""

Use of (23) yields +2"-'n! E r,) (31)

85~ ~ neA In (I1 2t)-1/2 +h umto n(1 'i
Xn(w,) - ne + - 2t)- o The summation in (31) may be expressed as

-d In( - 2t)-'/21i,.o [1- 2J,o ( -r - (n, - u,)T(D-Y)(m,- in). (32) a" "+'

- 2"1-(n - 1)! + 2"n!A - ."-'.-
- 2"-'(n - t)t[l + 2nA,. However, from (7) and (8),

This concludes the proof. (m, - mj A (m, - my) (33)

• , . -',,. ...

I. ... .. .,. .. , . . .... ,.. . . ..- .- ,, ..- ,. -,.,.._. .___'..,.. .. :..,..-'_.,,., . . ... . .
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and, from (14), Equal Mean Vectors: When m. - m, we have from (27) and ..

(D-')" - [(AC )-' (28) that
[(A T - I -1-

-, [(AT)c1A-I ".and X.x) 2__..[{."
Expansion of the right side of this equation yields (

[(,r)_,C;iA_ -jx.[Jt(y,m.)] -2m-'(n- 1): tr ((c.-C,) ). (43) ;"

Equal Mean Vectors and Covariance Matrices (Intraclais Maha-
(AT)-IC;A -(AT)-¢C;IA -1 ... (AT)-'C;TA 

-1 anobi Distance): In this case we are considering the same ,.
Gaussian population and obtain the semi-invariants by letting

But from (13),A -(A r) -C,, so that , C- ieieXu r ) , -m,,.C-, in either (27) or (28). This results in

- (Ar)-,C;'(CC;-)'-) A-1* (34) the simple expression .

By substituting (33) and (34) into (31) we obtain X[R(x,m,)] - 2"-(n - 1)!d (44)
which depends only on the order of the semi-invariant and the

(,- 1 (m. - .,),C;,(C.c;,)'-( m ,). dimensionality of the vectors.

" (35) IV. OBTAINING THE MOMENTS FROM TIE

Finally, substituting this result into (31) completes the proof of SEB-INvAIUANrs

(27) The nth moment a, of the interclass Mahalanobis distance can
The proof of (28) follows essentially the same line of reasonin be obtained directly from the semi-invariants X1, X2,. -- , by

with the exception that it involves j"(i) instead of 1-4(i), and using the expression
the definitions of w, and A, are different, as given in (21) and n!
(22). From (20) and (21) and the distributive properties of the "" a" - (4 a5ta 2 '..()
semi-invariants stated earlier, a - ....

d where the sum is taken over values of a, such that a, + 2a 2
xw i) + -.- + na, - n [Ill. Equation (45) can be used to obtain the

moments of either w, or R, given the semi-invariants correspond-
and, from the lemma in Section III-A, ing to one of these two variables (11]. A similar relationship exists

d for computing the semi-invariants given the moments [11).
X.,[R(y,mj)] - , 2" (n - 1)![1 + 2n Iy"(i). (37) As an illustration of the above relationship we have

a,@ - -

The validity of the trace portion of (28) follows directly from
the fact that y'(i) are eigenvalues of (C-C,)". To prove the 02 - X2 + X1'

validity of the second term on the right side of (28), we note that a3 - X3 + 3XIX2 + X""
d d

2"n! E A,"(i) " 2" 1 n! E (m,, - m,) 2y'(i). (38) a4 - X4 + 4XX3 + 3X2 + 6XX2 + X1. .-.-

t-1 i-1 A direct implementation of (45) in a digital computer is
The summation term can be expressed as inherently inefficient, involving, among other things, the de-

termination of all n tuples of nonnegative integers (a,'.., -. aj
d i 1 - n) satisfying a, + 2a 2 + na, - it. Fortunately, there is a veryE(, - m,i) 2y"(i)- m, )rATD-1A(m, m'). efficient recursive algorithm, described below, for computing

I-i these moments.
(39) Let

Expansion of the matrix D"- (see (14)) gives Z. - X./n!2" (46)

DR-' -ACATAC.AT ... AC.Ar.  (40) where X. is given by (27) or (28), as determined by the relevant

However, from (13), ATA - CZ1. Using this fact in (40) and (39) semi-invariant. Under this change of variables (45) become.
completes the proof. n! .

It is important to note that the semi-invariants in (27) and (28) a, - a a (2'Z,)"
are given directly in terms of the original population parameters " a"..'-
S,, M,, C, and C, and, therefore, do not require computation -' "l"","4)
of the transformation matrix A. n!2R" f (Z,/a,!) (47)

C. Special Cares taken over all n tuples of nonnegative integers (a,,..., a,)
In this section we consider special cases involving various satisfying a, + 2a2 + " + na., - n. If we define a rectangular

arrangements of mean vectors and covariance matrices of two array P(n, k) by
populations. "

Equal Covariance Matrices: For equal covariance matrices, P(n, k) - " H (Z;'/a,!), n ), 0, k , 1 (48)
C - C, - C, it is easily shown that (27) and (28) reduce to ,- .

X.[IR( X,[R(ym.j - 2 1(n - 1)! taken over all k tuples of nonnegative integers (a,,...,ak)
. X,, .l., ,-satisfying a, + 2a2 + '". +kak - n, then by (47)

•[d + n(m, - m,)rc-'(m, - ',)]. a, " n!2*"(n,n), n o 1, (49)

(41) so that the quantities a., may easily be computed from the

. . . ........ . . . " ..
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00 k) .nr 3, 1 e. k 4 3 11 R. C. Gonzalez. and L C. Howington. " Machine recognition of abnormal

2behavior in nuclear reactors." IEEE Trans. Syst., Man, Cybern., vol.
1 2 3 SMC-7, no. 10. pp. 717-728. 1977.121 S. Y. Hus, "The Mahalanobis classifier with the generalized inverse

0 1 1 1 approach for automated analysis of imagery texture data," Contpu.
I Z, Z ZI  Graph. Image Proc., vol. 9. no. 2, pp. 117-134. 1979.
2 Z2/2 + V/ Z2  2 13+ PZ. E. Pogue. "Some investigations of multivariate discrimination proc-
3 Zlt/6 Z,/6 + ZtZ Z  Z1/6 + ZtZ2 + Z3 dures with applications to diagnosis clinical electrocardiography," Ph.D.

dissertation, Univ. Minnesota, Minneapolis, 1966.
14l J. T. Tou, and R. C. Gonzalez, Pattern Recognmon Principles. Reading

MA: Addison-Wesley. 1974.
1I G. T. Toussaint. "Bibliography on estimation of misclassification," IEEE

elements lying just below the main diagonal (the main diagonal Trans. Inform. Theory, vol. IT-20. no. 4. pp. 472-479, 1974. " "
elements of P (n, k) are 8$(n - 1, n), since n > 0 and k 1) of [6] T. W. Anderson. An Introduction to Multivanate Statistical Analysis.
the arrays P(n, k). New York: Wiley. 1962.

It is cear from (48) that 171 K. Fukunaga. and T. F. Krile. "Calculation of Bayes' recognition eror -
for two multivariate Gaussian distributions," IEEE Tram. Compu., vol.
C-18, no. 3. pp. 220-229.

P(O, k)- 1, k; 1 (50) 181 R. Bellman. lnroduction to Matrix Anal lis. New York: McGraw-Hill,
1970.

that 19] F. A. Graybill. An Introduction to Linear Statistical Models, vol. 1. New
York: McGraw-Hill. 1961.

n,1) - Zlm/n!, n > 0 (51) [101 H. Cramer. Mathemarical Methods of Statistics. New Jersey: Princeton
Univ. Press, 1946.and that 11) C. Jordan. Calculus of Finite Differences. New York: Chelsea, 1947.

1121 C. Berge. Principles of Combinatoncs. New York: Academic. 1971.
P(, k) P(n, n), k > n > 0. (52) 1131 G. Berman and K. D. Fryer, Introduction to Combinatorna. New York:

Academic. 1972.
The remaining elements of the array P(n, k) are generated by the 1141 B. V. Gnedenko. The Theory of Probabiliry. New York: Chelsea 1967.
recurrence relation 1151 D. M. Young and R. T. Gregory. SureyofNunerical Matheinatics, vol.

1, Reading, MA: Addison-Wesley. 1972.
[n/kl (161 K. Fukunaga. Introduction to Statistical Pattern Raognition. New York: .
1nIL) Academic, 1972.

P(n,k)- P#(n -jk,k - I)Zkj! (53) 17) R. C. Gonzalez and C. G. Wagner, "Moments of the interclass Maha-
J-O lanobis distance." IEEE Trans. Syst.. Man, Cybern., vol. SMC-13, no. 6,

pp. 1135-1139. 1983.

Where [n/kJ denotes the greatest integer 4 n/k. Hence the
elements in column k of the array P(n, k) are just linear combi-
nations of certain elements in column k - 1. Equation (53) is
justified by observing that the nonnegative integral solutions of
a, + 2a 2 + -. +kak - n may be partitioned according to the
possible values j - 0, 1,' '-,(n/kl of ak, the terms in (53) corre-
sponding to those [n/k] + I possible values of at . Values of
fi(n,k) for 0 4 n 4 3 and 1 4 k 4 3 are listed in Table I.

V. CONCLUSION

The expressions given in (27) and (28) provide a straight-for-
ward solution to the problem of computing the semi-invariants of
the interclass Mahalanobis distance. As indicated in Section I,
the semi-invariants are useful descriptions of the underlying
interclass distance pdf.

Although the semi-invariants do not in general have the familiar
"physical" interpretation possessed by the moments (e.g., spread,
skew, and curtosis), the distributive property of the semi-in- T,
variants resulted in a computational procedure involving only the
mean vectors and inverse covariance matrices of two populations,
without the need for the simultaneous diagonalization required to
obtain the moments [17]. The algorithm given in Section IV
provides a rather simple iterative technique for computing the
moments once the semi-invariants have been obtained via (27)
and (28).

C" The semi-invariants were considerably simplified in the special
cases discussed in Section III-C. In particular, the semi-invariants
of the intraclass Mahalanobis distance was shown to be depen-
dent only on the order of the semi-invariants and on the dimen-
sionality of the vector populations.
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