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SECTION I
SUMMARY

1. INTRODUCTION

This is the final report on the work in “complexity.
testability, and fault analysis of digital, analog, and
hybrid systems"” carried out on ONR Contract
N00014-78-C-0311. This work was performed by Drs. R. C.
Gonzalez and M. G. Thomason at the University of
Tennessee. Knoxville- and by Dr. B.M.E. Moret initially at
the University of Tennessee, Knoxville, and subsequently at
the University of New Mexico, Albuquerque, Other
individuals were also involved for short periods of time.
The research has produced significant theoretical and
practical results which have appeared in technical journals
and technical reports.

The research was divided into two major areas: discrete
mathematical descriptions of aspects of digital, analog, and
hybrid systems useful in the study of complexity and fault

-analysis; and techniques for measuring parameters to

...........

characterize certain aspects of such systemns. In this
summary section- we give an overview of the various results.
Sections II through VII contain compilations of the articles
and reports resulting from this work. The material in these
sections is organized in the same order as the discussion in
this summary section,

.......




2. DECISION TREES

Barly in this work, decision trees and equivalent
expressions were adopted as the discrete mathematical
representation of functions for detailed study. There is a
one~-to-one correspondence between a tree for a discrete
function and an expression for the same function; hence,

D one can select the representational form which is better
suited to the manipulation required in any specific case-
Por instance- a fault tree for a digital. analog, or hybrid
system is "a concept widely wused to represent the
interconnections of subsystems as a directed graph which
clearly illustrates the hierarchical decomposition into

® major subsystems, then minor subsystems, then individual
components; but the equivalent fault expression is often
easier to manipulate when one wants to determine the
criticality of a subsystem or estimate the total system's
reliability as based on subsystem or component-level
calculations.

The initial work on decision trees was carried out as Dr.
Moret's PhD research at the University of Tennessee and has
continued with a focus on the area of fault trees. The
major results are these four contributions:

i) a generalization of decision trees to simple
recursive functions through a process of composition which
allows functional as well as hierarchical decomposition of
systems, including systems with feedback;

ii) a characterization of the complexity of testing
certain classes of Boolean functions, which has implications
in logic design and programming;

C 1ii) a study of the "activity" of a variable as a
generalization of Chow parameters with close connections to
Boolean differences, which is a useful tool in assessing
subsystem importance and designing test sets;

< iv) an extension of Boolean difference techniques to
the analysis of time-dependent systems with applications to
common-cause analysis.
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Decision trees are a natural model of the sequential
C evaluation of discrete functions where, at each node, a
variable is evaluated and a decision (to output the
functional value or to look at another variable) is made.
Such a model is effective for Boolean functions ags well as
more general, multivalued functions because it is a compact
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representation with an inherent ordering of variables for
evaluation.

Since the number of tree forms for a given discrete function
has an exponential dependence on the number of intrinsic
variables. the complexity of optimizing decision trees with
respect to several criteria was examined in detail and
reported in Moret [1980] and Moret et. al [198la, 1981bl.
A specific measure on discrete functions. called the
activity of a variable. was defined and shown to be closely
related to the evaluation cost of decision trees for the
function [Moret et al. 1980]. The activity of a variable
is a generalization of concepts developed in the framework
of Boolean functions. such as Chow parameters and Boolean
differences (cf., Moret et al, [1980])), all of which are
valuable analytical tools in studies of the importance of
subsystems in the overall system operation and the
suseptability of total system failure to the failures of
individual subsystems.

The activity of a variable also finds application in system
testing. In particular. exercising those variables having
. the highest activities maximizes the probability of error
detection in systems with equally likely faults. Moreover.
the concept can be extended to sequential functions by
considering the 1long-term, steady-state distribution of
system states. 8o that tests can be designed to reflect
average or normal operational modes. Finally, the activity
is similar to previously used measures of subsystem
criticality or importance; however, the activity measure
readily generalizes to multi-valued models--a significant
advantage where analog and hybrid systems are concerned.

Some results were obtained for proper subsets of the Boolean
.ofunctions. It was shown that all symmetric and threshold
Boolean functions have worst-case (i.e., total variable)
testing complexity. Since these functions are commonly
encountered in fault modeling, 1logic design. and pattern
recognition- this result provides information useful in
these fields. The result appears in Moret et al, [1983]).

It should be noted that adopting decision trees rather than
more conventional forms of discrete functions led to a
unified framework in which several previously disconnected
results were seen to fit together. Dr. Moret's survey
article [Moret, 1982] has been used by practitioners in a
variety of fields, including engineering and scientific
disciplines, and has been cited frequently.
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3. PAULT TREES

The most recent work has concentrated on fault trees as a
special usaqe of decision trees as system models with
emphasis on reliability and testing. A digital. analog, or
hybrid system is modelled as a confiquration of basic
components. each of which is either working or faulty (as
defined by the value of a Boolean state variable): the
confiquration, in turn, is described by higher~level
subsystem functions. and ultimately by the overall system
function (the value of which is the "top event™ state in
that it indicates "system working®” or "system failed"). A
fault tree itself is a logic-operation realization of this
system function.

Such trees are widely used in areas in which very complex
systems must be analyzed, for example. in the aircraft and
nuclear power industries. However. as usually developed,
fault trees do not account for time-dependent system
reconfigurations or for non-binary component behavior (egq.,
partially working and satisfactory for some but not all,
configurations). 1In order to extend the applicability of
the fault tree concept, Moret and Thomason have extended an
idea of Thomason and Page [1976] in using time-dependent
Boolean differences for analysis of sequential fault
functions for systems which undergo a reconfiquration at
discrete points in time Initial work on the inclusion of
probabjlities was also performed so that estimates "of
long-run failure probabilities could be calculated for
appropriate assumptions of steady-state conditions and
independence of failure events.

This method also allows a study of arbitrary
subconfigurations in the total system. A characterization
of minimum and maximum test conditions has been developed
for the sensitization of the system to an arbitrary
combination of events in the subsystems. It is shown that
some fundamental results in stochastic process theory can be
applied to time-dependent systems with suitable transition
probabilities, These results provide a basis for the
qualitative and quantitative analysis of "common-causes" of
simultaneous failures in several subsystems.
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4. TESTING COMPLEXITY

The problem of developing test sets can be considered in two
stages: a stage in which potential tests are designed and
their results measured, and a stage in which the final set
of tests 1is selected. This second stage involves the
optimization of some criterion function and often reduces to
selecting the smallest possible number of tests in the final
collection, i.e., the "minimum test set problem." This
computationally intractable problem is NP-hard, as a result
of which manv researchers have have worked on suboptimal
strategies in the form of heuristic search methods.

The objective of the study on this contract was a
theoretical and practical evaluation of various suboptimal
strategies. Several minimization routines were run under
different conditions for comparisons of their growth in
complexity predicted by theory with the difficulties
actually encountered in solving real problems (Moret and
Shapiro [1982]).

.Characterizing several aspects of the suboptimal algorithms
required ' extensive experimentation. The outcome of over
three thousand test runs brought to 1light two encouraging
results. First- despite the theoretical prediction of
sharply increasing complexity., the coherence or
*individuality® of the real world problems caused their
complexity to increase only slowly with size. Second, the
experiments clearly showed that one of the algorithms was
far superior to the others for the range of problems
considered; this was in agreement with theoretical
predictions based on bounding methods that were developed in
the course of this contract,

Overall, this effort has contributed to a much better
understanding of the ™minimum test set problem" and its
various suboptimal solutions. In particular. the best
existing algorithm has been identified and characterized.
Well supported by intuition and empirical evidence. an exact
characterization of the best behavior of such algorithms has
been conjectured but as yet not proved; should it prove
true- the existing alogorithm would in fact be as good as
can be achieved.

—— T AT




E S. OPTIMAL SOLUTION OF LINEAR INEOUALITIES

Linear inequalities are applicable in digital systems in the
. areas of threshold functions and pattern recognition.
- Although the solution of consistent inequalities is
; straightforward (e.g., by linear programming). relatively
i. little is known about the solution of inconsistent

inequalities. The f£first practical algorithm is this area
E was reported by Warmack and Gonzalez in 1973. These results
3 were generalized by Clark and Gonzalez [1981] as part of the
; work on this contract. The Clark-Gonzalez algorithm is a
: nonenumerative procedure guaranteed to £find all optimal
‘" o solutions to a set of inconsistent inequalities. (Finding

the solutions of consistent inequalities is a special case

of this method.) Bounds on the search carried out by the

algorithm were developed, and the method was shown to be

computationally superior to other methods (including the
, Warmack-Gonzalez algorithm) for finding minimum-error
c solutions.
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[ 6. MOMENTS OF THE INTERCLASS MAHALANOBIS DISTANCE

The Mahalanobis distance is a measure of similarity between
multivariate Gaussian populations. In terms of the work in
this contract. the Mahalanobis distance offers a robust
descriptor for characterizing multivariate measurements
performed in an analog system. In this context, the problem
can be formulated as a pattern recognition task whose
objective is to detect deviations from a normal mode of
operation. .

When treated as a random variable. the Mahalanobis distance
has a probability density function (PDF) that can be related
to the probability of error in classification (e.g..,
classification of normal vs. abnormal operation). When the
covariance matrices are equal. obtaining this PDF is
straightforward; however - the more general (and practical)
case involving unequal covariance matrices requires
complicated numerical integration techniques for determining
the PDF.

In many applications of multivariate data description. it is
of interest to compute the moments of the Mahalanobis
distance without having to estimate its underlying PDF as an
intermediate step. In a recent paper (Gonzalez and Wagner
{1983]) it was shown that the moments of the interclass
Mahalanobis distance between two multivariate groups of data
(also called classes) can be expressed in a simple
polynomial form. The nth moment is expressible as a
polynomial of order n whose variable depends upon the mean
vectors and eigenvalues of the covariance matrices of the
two populations. A closed form solution is also given for
computing the coefficients of the expressions. The relative

» simplicity of these results has important implications in
terms of implementation in a digital computer or dedicated
hardware-




7. SEMI-INVARIANTS OF THE INTERCLASS MAHALANOBIS DISTANCE

An alternative to the technique discussed in the previous
section 1is to compute the semi-invariants (which do not
require that the eigenvectors be known) and then obtain the
moments from the semi-invariants. A new approach for
obtaining the semi-invariants was recently reported by

4 Gonzalez and Wagner [1984]. The semi-invariants are given
directly in terms of the mean vectors and inverse covariance
matrices. It is well known that the moments and
semi-invariants are related by expressions which, though
theoretically simple. are quite inefficient in terms of
computation. A new, iterative algorithm that is easily
implemented on a computer was also reported in the same
paper.

P --.--.-.."_. AP A4
S LN AT



REFERENCES

Clark, D.C. and Gonzalez, R.C. [1981]. "Optimal solution
of linear inequalities with applicat..as to pattern
recognition®, IEEE Trans. PAMI. vol. PAMI-3, no-. 6. pp.
643-655.

Gonzalez. R-(., and wWagner, C.G. [1983]. "Moments of the
interclass Mahalanobis distance®, IEEE Trans. SMC. vol.
SMC-13. no. 6- pp. 1135-1139.

—— [19841]. *Semi-invariants of the interclass
Mahalanobis distance", IEEE Trans SMC. vol. SMC-14.
no-. 3. pp. 534-538.

Moret. B.M.E. [1982]. *"pecision trees and diagrams®, ACM

Comp. Survevs., vol. 14, no. 4. pp. 593-623.

-—==, [1980]. ™The representation of discrete functions by
decision trees: aspects of complexity and problems
of testing", PhD dissertation. University of

Tennessec. Knoxville.

Moret. B.M.E., and Shapiro- H.D. [1982]. "Experience with

the minimum test set problem"™, UNM CS Tech. Rept-
CsS82-4. 32 pp. (Accepted by SIAM J. Stat. and Sci.
Comp. as "On minimizing a set of tests".)

Moret. B.M.E. and Thomason. M.G. [19831]. "Boolean
difference techniques for time-dependent and

common-cause analysis of fault trees", UNM CS Tech. Rept.-
Cs83-6, 18 pp. (Submitted to IEEE Trans. Reliability.)

Moret., B.M.E., Thomason. M.G., and Gonzalez, R.C. [198l1al.
*Optimization criteria for decision trees", UNM CS Tech.
Rept CS82-6. 17 pp.

—— (1983]. *symmetric and threshold functions are
exhaustive®, IEEE Trans. Comp., VoOl. C-32. no. 12.
PpP. 1211-1212,

===, [1980]. "The activity of a variable and its relation

to decision trees”, ACM TOPLS. vol. 2, no. 4, pp.
580-595.

-=—==, [1981b]. "The use of activity in testing digital and
analog systems"”, Proc. IEEE Workshop on Automatic
Test Program Generation. Philadelphia, pp. 120-127

(Invited paper).

Thomason. M.G. and Page. E-W. [19761. "Boolean
difference techniques in fault tree analysis®", 1Int'l. J.
Comp. Info. Sci., vol. 5. no. 1. pp. 81-88.




SECTION N
DECISION TREES

e e T e e e e
'."' AL APIE AL A AL A

-
»’
PN GO REN A

P Tt At et
AR A SRR .;,\.

—

SRS S SR S
el SN




‘The Activity of a Variable and Its Relation
to Decision Trees

B. M. E. MORET, M. G. THOMASON, AND R. C. GONZALEZ
University of Tennessee

The construction of sequential testing procedures from functions of discrete arguments is a common
problem in switching theory, software engineering, pattern recognition, and management. The concept
of the activity of an argument is introduced, and a theorem is proved which relates it to the expected
testing cost of the most general type of decision trees. This resuit is then extended to trees constructed
from relations on finite sets and to decision procedures with cycles. These results are used, in turn, as
the basis for a fast heuristic selection rule for constructing testing procedures. Finally, some bounds
on the performance of the selection rule are developed.

Key Words and Phrases: activity, decision diagrams, decision tables, decision trees, expected testing
cost, heuristic selection, identification procedure, pattern recognition, recursiveness, sequential testing
procedure, software engineering, switching theory

CR Categories: 3.63, 3.7, 4.33, 4.34, 4.6, 5.39, 6.1, 8.3

--1. INTRODUCTION

A common problem in switching theory, software engineering, pattern recogni-
tion, and management is the construction of sequential testing procedures (also
called decision trees or decision programs) from a given function of discrete
arguments [1, 5, 9, 11, 13, 16, 20]. The problem is to select from the numerous
available trees one which is an optimal tree representation with respect to some
criterion. In particular, it is often desired to select a tree which has the smallest
expected testing cost, that is, a tree such that the average cost of determining a
value of the function (by testing some of the variables) is minimal. Variants of
this problem have been studied by many researchers, who have provided search
algorithms to find the optimal tree(s) [4, 7, 10, 12, 15] or proposed heuristic rules
for constructing suboptimal trees [3, 5, 6, 14, 17, 19].

In this paper we introduce the concept of activity of a variable and prove a
theorem relating it to the expected testing cost of decision trees with costs and
probabilities. This result is then extended to trees constructed from relations on
finite sets and to decision procedures with cycles (corresponding to recursive

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by the Office of Naval Research under Contract N00014-78-C-0311.
Authors’ addresses: B.M.E. Moret, Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131; M.G. Thomason, Department of Computer Science, University of Tennessee,
" Knoxville, TN 37916; R.C. Gonzalez, Department of Electrical Engineering, University of Tennessee,
Knoxville, TN 37916.
© 1980 ACM 0164-0925/80/1000-0580 $00.75
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Activity of a Variable and its Relation to Decision Trees . 581

functions). This provides the basis for a fast heuristic selection rule, which is a
generalization of criteria proposed in (4] and [15]. Finally, we examine certain
conditions under which the rule performs optimally and give some bounds on its
behavior. :

2. PRELIMINARIES

We are given a (partial) function of n discrete-valued variables, f(x,, ..., X.);
each variable x, can take on exactly m; values, m; > 1, and the determination of
its value incurs cost ¢,. A discrete probability distribution is also specified on the
[1 ™1 m. points of the variables’ space (combinations of variable values which do
not belong to the inverse image of fdo not necessarily have zero probability); the
probability of a point is denoted p(x,, ..., x,). It is noted that the probability
p(x, = k) that variable x; will take on value & can be computed by

plx.=k) = Zl--- f‘ f fp(xu.....x.-n,k.x...,..-.x.). (3)]
ne o=t By =1 L)

Definition 1. If f(x,, ..., xa) = constant, then the decision tree for fis a leaf
labeled “constant”; otherwise, for each x;, f has decision tree(s) composed of a
root labeled “x,” and m; decision subtrees, corresponding to the m, subfunctions
ﬂx‘-h, 1= k =m,.

If variables xa,, . . ., xa,, in that order, are tested along path P., yielding values
U1, .., Un, and leading to leaf as, then the probability of reaching leaf a. is the
sum of the probabilities of all combinations of variable values leading to that leaf.
Using (1) above, this can be written as

plax) = [] p(xa, = v).

In following path P, we test n. variables for a total cost of

CPy =73 cn

-l
Thus the expected testing cost of the tree T is the quantity
C(T) = ¥ plas)-C(Ps),

[
where the sum is taken over all leaves ax of T
Any internal node of a decision tree T is associated with a subfunction of T.
That subfunction itself has a probability which is the sum of the probabilities of
the combinations of variable values included in the subfunction. This is equal to
the probability of reaching the said internal node or, equivalently, to the sum of
the probabilities of the leaves of the subtree rooted at that internal node. In the
following section we shall be interested in the subfunction resulting from a
combination of n — 1 values, that is, the case in which the values of all variables
but, say, x, are fixed, resulting in the selection of an m;-tuple of possible combi-
nations—the m, values of the unspecified variable x,.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 4, October 1980.
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582 . B. M. E. Moret, M. G. Thomason, and R. C. Gonzalez

p=0.25 p=0.3 p=0.15

p=0.1 p=0.2 o ]
Fig. 1. A sample decision tree for Example 1. LI

Example 1. Let f be a partial function of three binary variables, f: {0, 1}* —
(1, 2, 3), given by
0,0,0) — 3, (1,0,0) = 2,
0,1,00—1, 1,0,1) - 2,
0,1,1) — 3, (1,1,0) = 1.

The costs are ¢; = 0.5, c; = 0.68, and c; = 0.25, and the probability distribution is
specified by

p(0,0,0) =010, p(1,0,0) = 0.25,
p(0,0,1) =005  p(l,0,1) = 0.05,
p(0,1,0) =020, p(l,1,0)=0.15,
p(0,1,1) =020, p(1,1,1) =0.00.

A possible decision tree for this function is illustrated in Figure 1, together with
the probabilities of the leaves. The expected testing cost of that tree is

C(T) =0.1.(0.5 + 0.25 + 0.68) + 0.2.(0.5 + 0.25 + 0.68)
+0.25-(0.5 + 0.25) + 0.3-(0.5 + 0.68) + 0.15-(0.5 + 0.68) = 1.1475. O

3. THE ACTIVITY OF A VARIABLE

Considering the m,-tuple of combinations mentioned at the end of Section 2, we
distinguish two cases: .

(i) two of the m, combinations are mapped to distinct values by f;
(ii) no such two combinations can be found.

In the first case, variable x, must be tested in order to distinguish all values of the
function; in the second case, this is not necessary, although it may be done in a
particular tree, either as a redundant test or because at least one variable did not
belong to the inverse image of f and has been arbitrarily mapped to a value
distinct from the image of the other combinations. Thus, the a priori probability
p/ (x,) that variable x, will be needed in testing all the values of f (i.e., the
probability that f will be sensitized to x,) is equal to the sum of the probabilities
of all the m,-tuples satisfying case (i) above; conversely, the a priori probability
pr(x,) that x, will be useless is equal to the sum of the probabilities of the
remaining m.-tuples, those satisfying case (ii).
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. The same reasoning is easily adapted to a subfunction f by normalizing the
probabilities with the probability of /. For any x, and /, pj (x)) + p;(x) = 1.

Definition 2. The activity of variable x, with respect to subfunction fis de-
fined as the quantity

) aj(x,) = ¢, -p}(x). e

Definition 3. The loss of variable x, with respect to subfunction f is defined
as the quantity

l;(x:) = - af(x,).

b The activity of a var.able is a measure of how much influence a variable has on
the determination of a function’s values. A related concept, known as Chow
parameter [18], is discussed in [2] and [4]; when all costs are unity and all variable
combinations equally likely, the activity of a variable with respect to a completely
specified Boolean function of n variables reduces to the Chow parameter of the
variable divided by 2",
4 The loss of a variable x is a8 measure of the wasted decision power associated
with the choice of x as the root of the decision tree. This is intuitively obvious,
since such a choice results in testing the variable with probability 1, while the a
priori probability of needing x was p; (x).

Example 2. The various quantities defined above are computed for the
function of Example 1 and are listed below.

Pr(x1) = 0.35, P/ (x2) = Q.7, P/ (xs) = 0.4,
as(x,) = 0.175, ar(x;) = 0.476, ar{x;) = 0.1,
I (x;) = 0.325, l(x2) =0.204, I(x;) = 0.15. O

The following theorem establishes the relationship between activity, loss, and
expected testing cost of decision trees. The proof technique is derived from [4],
where a simplified version of this theorem using Chow parameters was proved for
completely specified monotone Boolean functions of uniformly distributed vari-
ables with unity costs.

THEOREM 1. The expected testing cost C(T) of a decision tree T for the
function f(x., ... X.) can be expressed as

C(T) = z‘ a(x,) + ;:p(fwﬂﬁ.). 2

where the second sum is taken over all internal nodes B and f refers to the
subfunction associated with Ba.
Remark. This theorem says that the expected testing cost of a decision tree

is composed of a fixed “overhead” (the first sum) and a variable amount of “loss”
(the second sum) which depends on the structure of the tree.

- PRooF. The proof is by induction on n, the number of variables. For n = 1,
the basis is easily verified: the variable space is just an m-tuple, and there are
only two possible tree structures. Assume that the theorem holds for all functions
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of up to and including n — 1 variables, and let f be a function of n variables.
Choose x, to be the root of T. This determines m, subfunctions, each of n — 1
variables, so that the inductive hypothesis applies and for each subfunction f,
J=1,..., m, we have o

C(T)) = T a(x) +3 FIFARAT: AR
A

where the second sum is taken over all internal nodes 8, of T,. But C(T) = ¢, +
Y= p(f)-C(T;), and after substituting and simplifying, we obtain

~, L] -
CT=ci—llx)+ Y (P(f}) . .}_: af,(xn)) + ;p(f)-li(ﬂn). 3)

ots
where the last sum is taken over all internal nodes 8 of T. But we know that
i = l(xi) = as(x:)

and

,i, ar(x;) = as(x)) + ,.E, (p(l})- é. a/,(x.)).
Substitution of these two equalities in (3) yields
C(T) = § artx) + Lot -4(B),
where the second sum is taken over all internal nodes 8, of 7. O

COROLLARY 1. The expected testing cost of any decision tree T for the
function f(x,, . .. xx) having x, as root is bounded by

Yo=C(M=hx)+ T aix).
1 /1

This corollary, in simplified form, was proved in [15] and is implicit in [4]: Both
references use it as the basis for a branch-and-bound search algorithm to find a
tree that is optimal with respect to the expected testing cost.

These results stress the importance of the sum of the activities of the variables
of a function as a representation-independent measure of the cost incurred in
determining the values of that function. This motivates the following definition.

Definition 4. The intrinsic cost I( f) of the function f(x,, . .. x.) is defined as
the quantity
I(f)= 21 ar(x,).
Example 3. Using the values of activity computed in Example 2 for the
function of Example 1, we obtain the intrinsic cost of f,

I(f) = as(x,) + as(x2) + ar(x3) = 0.175 + 0.476 + 0.1 = 0.751.
ACM Tr: jons on Progr: ing Languages and Systems, Vol. 2, No. 4, October 1980.
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»
L =0.0681
0=0.55 |
\20.0
» p=0.3
[ ] Fig. 2. The tree of Figure 1 with node losses and probabilities.

For the tree of Figure 1 we compute the loss and probability of each internal
node to obtain the values shown in Figure 2. The sum of these losses, weighted
by the node probabilities, and of the intrinsic cost is

4 (0.325-1) + (0.681.0.55) + (0.075-0.45) + (0.0-0.3) + 0.751 = 1.1475,

the computed expected testing cost of the tree. Corollary 1 indicates that any
tree for f having x, as root will have a minimum cost of 0.751 + 0.325 = 1.076;
similarly, any tree with root x; will have a minimum cost of 0.751 + 0.204 = 0.955,
while trees rooted in x; have a lower bound of 0.751 + 0.15 = 0.901. O

® 4. EXTENSION TO RELATIONS

We extend the definitions of activity and loss to relations on finite sets. This is of
particular interest in the case of interdependent functions which must be repre-
sented by a single tree (as in [5]).
A relation R might specify no more than one output for each input combination,
in which case it is a (partial) function. R may, however, specify more than one
o output, in which case we assume that we can arbitrarily decide to specify any
particular output or leave the choice open. It is also assumed that an unspecified
entry (a “don’t care”) is in fact related to the whole output set, so that any one
output value can be selected for such input combination. We then extend the
definitions of activity, loss, and intrinsic cost in the obvious way by noting that
a variable is needed to differentiate the values of an m.-tuple if and only if the
< intersection of the output sets specified by R for the m: components is empty. It
is readily verified that all results previously stated for partial functions remain
valid for relations.

Example 4. Consider the relation R from the input set {0, 1)* x {0, 1, 2) to

the output set & = (a, b, ¢, d), where all three variables have unity cost and the

< relation and the probability distribution are given in Figure 3. Since all variables
have unity costs, p;(x,) = as(x,), so that a,(x;) = 0.35, a;(x;) = 0.2, and a,(x;) =

0.6. The intrinsic cost of R is I(R) = 0.35 + 0.2 + 0.6 = 1.15. Choosing x, as the

. root for a decision tree results in a lower bound on the cost of 1.15 + (1 — 0.6) =

1.55. A possible decision tree T rooted in x; is shown in Figure 4, together with

ACM Transactions on Programming Languages and Systema. Vol. 2, No. 4, October 1980.
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Relation Probabilities

nxe 0 o1 n 10 i 0 o 1 10
X3 X3

0 Q | ajal abe 0 |o005({ 010 { 020 0.10

1 [ bdl b bed 1 [o010] 010 005! 0.10

2 [ d blel ¢ 2 [000] 00s | 010] 005

Fig. 3. The relation and its probability distribution for Example 4.

Fig. 4. A decision tree with node losses for Example 4.

the losses of its nodes. Its expected testing cost is C(T) = 1.15 + (0.35-9) = 1.75,
and it is in fact one of the optimal trees for R. O

5. EXTENSION TO RECURSIVE FUNCTIONS AND RELATIONS

As a further extension of the foregoing concepts, we consider the case of a
recursive function or relation, that is, a relation which, for certain input combi-
nations, does not specify output values but calls for the evaluation of some
relation, possibly itself. It is assumed that the same tree structure is used for all
evaluations of a given relation and that an unspecified entry is not replaced by a
call to a relation, but only by values.

The following discussion is restricted to immediate recursive relations, that is,
those which do not call for the evaluation of any other relation than themselves.
This does not diminish the generality of the development, as a hierarchy of
several different relations can be analyzed in parts by considering each relation
separately and then merging the results using the probabilities of each relation
and of the recursive calls. Such an analysis is demonstrated in Section 6 by an
example.

Given an immediate recursive relation, it is possible under the assumptions to
compute the probability e that an evaluation will be made without recursive calls.
If e is 1, the relation is not recursive; if e is 0, then the relation will never yield a
value but will keep issuing recursive calls ad infinitum.

A first question about such relations concerns an upper bound on their testing
cost. Such a bound is set by Corollary 1 for nonrecursive relations as the sum of
the testing costs of the variables, but can evidently be passed by recursive
relations. The following proposition provides the answer.

ACM Transactions on Programming Languages and Systema, Vol. 2, No. 4, October 1980.




Activity of a Variable and its Relation to Decision Trees . 587

PRrOPOSITION 1. Let R be an immediate recursive relation on n variables
T X1y ..oy Xa Witk cOSIS 1, . . ., Ca, and let e be as above; then the expected !esting
cost of R is no larger than (1/e)- Y., c..

ProoF. The probability of a recursive call occurring in any evaluation is
1 — e. At worst, an evaluation results in the test of all variables, for a cost of
Y1 ¢.; thus the votal cost is no larger than

h £ (0mm5e)-(0) e .

A decision procedure for a recursive relation is an infinite tree that can also be
represented as a diagram with cycles, each cycle leading back to the root of a
subdiagram. In the case of immediate recursive relations, all cycles lead back to
the root of the diagram. We can compute the probability that the relation will
take on a specific value by solving a simple linear equation, subject to the
convention that entries for which several values are specified are set to the
specific value under consideration wherever possible.

The notion of activity of a variable is generalized to immediate recursive
relations as follows.

(i) If an m,-tuple does not include a recursive call, we count its contribution in
the usual way.

(ii) If one or more recursive calls are included, the contribution is the probability
of the m.-tuple times the testing cost of the unspecified variable times the
probability that the m,-tuple will be mapped to more than one value.

We call this quantity the tree activity; the corresponding loss, the tree loss, is the
testing cost minus the tree activity. The same quantities multiplied by 1/e will be
referred to as diagram activity and diagram loss.

THEOREM 2. Let R be an immediate recursive relation, and let a decision
procedure for R be represented by a diagram D and an infinite tree T. The
expected testing cost of the procedure, C(D) = C(T), is equal to

(i) the sum of the diagram activities and of the diagram losses taken over all
internal nodes of the diagram, or

(ii) the sum, taken over the infinite tree, of the tree activities and of the tree
losses.

Remark. The sum of the diagram activities is called the intrinsic cost of the
relation, I(R).

ProoF. The proof relies on the original theorem for nonrecursive functions
and on simple considerations on the series 1, 1 — e, (1 — e)?, (1 — ¢)°, ... and its
sum, 1/e. If we replace all recursive calls in D by leaves, the cost of the resulting
tree is the sum of the tree activities and the tree losses taken over all internal
nodes of the tree. Introducing recursion results in a series of invocations, the
probabilities of which are described by the series (1 — e)*. O

Corollary 1 is similarly extended.
ACM Transactions on Progr ing Lang and Sy Vol. 2, No. 4. October 1980
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Fig. 5. The relations for the example with their probabilities.

6. AN EXAMPLE

As mentioned above, the results can be extended to recursive hierarchies of
relations, subject to our two restrictions. The following example shows how
systems of relations are analvzed part by part.

Consider a situation in which a monitoring program must periodically evaluate
several system variables. If the sampled values point to a satisfactory status, the
program waits for a specific period of time and examines the variables again;
otherwise, either a malfunction is identified and the program takes some action
and stops, or further analysis is required and some additional variables are
examined to determine whether the program should resume its normal cycle or
take some action and stop. The first part of the examination (the normal cycle)
is described by the relation R1, which includes calls both to itself and to the
second relation R2 (the exception cycle), which includes calls to R1. In this
example, R1 is a relation between (0, 1)? x {0, 1, 2} and the set of actions =
{a, b}, and R2 is a relation between {0, 1)* and £, as specified in Figure 5.

The analysis treats R1 and R2 separately and considers a structure from which
all recursive calls have been eliminated. Once this structure has been analyzed by
the methods developed above, the results are put together using p(R2), the
probability that R2 is called from R1 in a given evaluation. Recursion is then
taken into account by multiplying the results by 1/e, where e is the overall
probability that no recursion will be needed.

We have p(R2) = 0.01 + 0.01 + 0.01 = 0.03; similarly, p(R1), the probability
that R1 will be called in an evaluation of R2, is 0.25 + 0.25 = 0.5. The probability
that no recursive call will be necessary is

e =001 + 0.01 + 0.01 + p(R2)-(0.1 + 0.1 + 0.1 + 0.05 + 0.05 + 0.1) = 0.045,
80 that 1/e = 22.2. We can then compute the maximum probabilities of yielding
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 4, October 1980
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aorbas

p(R1 = a) = [001 + 001 + p(R2)-(0.1 + 0.1 + 0.1 + 0.05)]- (1/e) = 067,
P(R1 = b) = [0.01 + 0.01 + p(R2)-(0.1 + 0.05 + 0.05)]-(1/e) = 0.57,
’ p(R2=a) = 0.1 + 0.1 + 0.1+ 005 + p(R1)-p(R1 = a) = 0.68,
p(R2=5) = 0.1 + 0.05 + 0.05 + p(R1)-p(R1 = b) = 0.48.

The tree activities are

api(x;) = 9-(0 + 0+ 0.02-p(R2 % b) + 0 + 0.02.p(R2 » a) + 0) = 0.148,
ari(xz) = 9-(0 + 0.06.p(R1 % a) + 0.02-p(R2 % b) + 0 + 0.05 + 0) = 0.716,
] ari (x3) = 4.5-(0.76-p(R1 % ) + 0.07 + 0.07 + 0.1) = 2.524,

Similarly, we get ar2(y;) = 10, ar2(yz) = 10.15, and arz(ys) = 14.78. Thus I, the

intrinsic ‘cost of the relations, is the sum of the tree activities of R1 and the tree

activities of R2 (weighted by p(R2)) times 1/e: _
I={0.148 + 0.716 + 2.524 + p(R2)-(10 + 10.15 + 14.78)]-(1/e} = 98.575 .

4 The upper bound on the cost is
Conax = [9 + 9 + 4.5 + p(R2)-(50 + 45 + 36)]-(1/e) = 587.3.

Figure 6 describes a possible decision diagram D for the relations; the diagram
losses and probabilities appear beside each internal node. The lower bound for

the cost of this diagram is the sum of the intrinsic cost and of the diagram loss
@ of x3:

Ib(D) = 98.575 + 43.91 = 142.486.
The cost of the diagram can be computed from Theorem 2(i):
C(D) = 98.575 + 1.43.91 + 0.11-73.93 + 0.04.148.8
o | +0.02.137.7 + 0.02.97.7 + 0.02.200
+ 3.(0.01-471.5 + 0.007.677.7 + 0.003.370.370) = 197.
This can also be obtained by solving the diagram’s cost equation:
C(D) = 1.4.5 + 0.85-C(D) + 0.11.9 + 0.04-9
c +0.09-C(D) + 0.02-9 + 0.02-9 + 0.02.9
+ 3.(0.01.36 + 0.007-45 + 0.003-50 + 0.005-C(D)),
yielding (1 ~ 0.955). C(D) = 8.865, so that C(D) = 8.865/0.045 = 197.

7. CONSTRUCTING DECISION PROCEDURES

The construction of decision procedures with minimal expected testing costs is,

in many cases, a search problem; that is, no algorithm has yet been devised that

does not exhibit an exponential behavior in at least some cases. In particular, in

- the case of binary identification [7], the problem has been shown to be NP-

" complete [8]. This leads to a search for efficient rules for constructing suboptimal
procedures.

As noted earlier, the loss /;(x,) is an approximate measure of the importance of

not locating x, at the root of the subfunction £ Indeed, /i(x,) satisfies all the
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(b)

7 Fig. 7. (a) The tree constructed by the rule. (b} The optimal tree.

requirements set forth in [6] for a selection criterion; that is,

(i) if a variable is necessary to distinguish all of the m,-tuples it forms, then its
activity is equal to its cost, so that its loss is null and it will be tested first
(this is an optimal strategy, as can easily be shown [6]);

(ii) if a variable is never needed, that is, if the relation does not intrinsically
depend on that variable, then its activity is null and its loss equal to its cost;
this condition is easily detected and the variable discarded, unless all other
variables have the same status and the relation still specifies at least two
distinct values;

(iii) the loss is directly related to the number of m,-tuples with equal components
(“dash” entries in the decision tables discussed in [6]).

This leads to the following rule for local optimization, a generalization of the
branch-and-bound criteria used in [4] and [15].

Rule. When developing the decision tree for the subfunction £, choose as the
root the variable with the lowest loss, /;. In case of a tie, choose the variable with
the lowest cost. If a tie subsists, choose any of the variables.

In the example of Section 6, the application of the above rule would result in
the diagram of Figure 6, which is optimal in this case. However, the rule does not
always result in optimal diagrams. In Example 1 we had //(x,) = 0.325, l;(x;) =
0.204, I;(xa) = 0.15; thus x; would be chosen as the root. Continuing in this
manner, we would get the tree of Figure 7a with an expected testing cost of 1.051,
but the optimal tree is that shown in Figure 7b, with an expected testing cost of
1.0425. Thus the tree constructed by the rule is 1.0425/1.051 = 0.99 optimal. A
conservative estimate can always be made by substituting the smallest lower
bound (as obtained from Corollary 1) for the unknown minimal cost. In the above
S example, this yields an estimate of 0.901/1.051 = 0.86.

8. DISCUSSION OF THE SELECTION RULE

An important advantage of the rule is its simplicity; compared to others [3, 6, 14,
17] it requires a minimum of computations. It is also more general, since it applies
to any simple recursive or nonrecursive hierarchy of relations with costs and
¢ probabilities.

ACM Transactions on Programmung Languages and Systems, Vol. 2, No. 4, October 1980
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Moreover, the rule is optimal in several cases. As previously noted, it will
always lead to the selection of a totally necessary variable if any such variable
exists; such a choice was seen to be optimal. We also have the following result.

ProrosITION 2. For any recursive relation on two variables, the selection
rule constructs optimal diagrams.

Proor. Follows immediately from the fact that the lower bound, as computed
from Corollary 1, is the exact cost of the diagram. O

~ Our previous example showed that this result does not hold for functions of
three or more variables.

A more important question is how bad the selection can be. The following
example illustrates the worst case for completely specified Boolean functions with
unity costs. )

Let f be the Boolean function f = x, + ®.;x,, where & denotes summation
modulo 2, and assume the following probability distribution:

" (i) Each point satisfying x,- ®-2x, = 1 has probability v-¢, for y<ly=1l
(ii) Each point satisfying x, = 0 has probability ¢.
(iii) All other points have probability a = 2’ — (y + 2)-¢.

Then we get as(x1) = 2"*.(y + 1)-eand a/(x,) = 2""'.¢ for n = i = 2, so that /(x,)
< l;(x,). The two subfunctions resulting from the choice of some x,, i % 1, as the
root are again of the form x, + ©x,, so that the trees constructed by the rule test
x; last (on half the branches) and have cost C(T,) = n — 1 + 2""%.(y + 1) .¢, while
the optimal trees, rooted in x;, have a cost of C(T,) =1 + (n ~ 1):2"'.¢. (The
case n = 4 is illustrated in Figure 8.) Thus, if € « 1 (e.g., if € = 27*" for some
k > 1), the asymptotic ratio of costs becomes C(T,)/C(T,) = n — 1.

By letting every point satisfying ¥7-@;.,x, = 1 be mapped to a recursive call,
we obtain the worst case for recursive Boolean functions. The best diagram, D.,
has a cost of [1 + (n —~ 1)-2""".¢€]/(1 — 2""%.¢), while the rule-constructed diagram,
D, has a cost of n/(1 — 2"~*.¢); thus the asymptotic ratio C(D,)/C(D,) becomes
approximately n for small e. That both recursive and nonrecursive cases yield the
same worst case, O(n), is due to the fact that the recursive factor 1/e is
independent of tree structure and is factored out.

The rule can construct arbitrarily bad trees; however, in the above example the
lower bound on the cost of the treesislb(f) = 1 + (n — 2).2" e + 2" %.(y + 1)-
€, 50 that C(To) = Ib(f) = 2""%.(1 — y).€ = 0. Therefore, we could have detected
at an early stage that the trees constructed by the rule were costing much more
than the original lower bound and revised the selection. This is not to say that
the lower bound as obtained from Corollary 1 remains arbitrarily close to the
cost of the optimal trees. It is easy to construct a binary identification problem
(7] with n variables of unity cost and 2"~ equally likely objects, so that the lower
bound is always 1 while the optimal cost is n —~ 1; Figure 9 illustrates such a
problem for three variables.

The determination of a general upper bound for the worst trees constructed by
the heuristic rule, as well as for the lower bound obtained from Corollary 1, is an
object of present study.
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(b)

probabilities: (a) The optimal tree, 7T..

{b) The tree constructed by the rule, 7,.

()

Fig. 8. The two trees for the case n = 4, with their leaf
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XX
X3

0 0 1 10

0 1 2
1 3 4

Fig. 9. An identification problem with three variables and four objects.

9. CONCLUSION

We have introduced the concept of the activity of a variable, a global measure of
the relevance of a variable in determining the values of a relation on discrete
arguments. We have proved a theorem detailing the relationship of this measure
to the expected testing cost of the relation. Finally, we have used this result to
develop a heuristic procedure for the fast construction of suboptimal decision
diagrams and have indicated some bounds on its performance.

The applicability of these results to recursive functions and decision diagrams
with cycles should provide a basis for further developments in fault analysis by
allowing sequential testing of time-related processes, as well as by supplying a
new modeling tool. Other areas in which these results may find applications
include pattern recognition, database theory, and switching theory.
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Decision Trees and Diagrams

BERNARD M. E. MORET
Department of Computer Science, The University of New Mexico, Albuquerque, New Mexico, 87131

Decision trees and diagrams (also known as sequential evaluation procedures) have
widespread applications in databases, decision table programming, concrete complexity
theory. switching theory, pattern recognition, and taxonomy—in short, wherever discrete
functions must be evaluated sequentially. In this tutorial survey a common framework of
definitions and notation is established, the contributions from the main fields of
application are reviewed, recent results and extensions are presented, and areas of
ongoing and future research are discussed.

Categories and Subject Descriptors: B.6.1 [Logic Design}: Design Styles; B.6.3 [Logic
Design): Design Aids—switching theory; D.1.m [Programming Techniques]:
Miscellaneous; F.2.2 [Analysis of Algorithms and Problem Complexity):
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2
[Discrete Mathematics]: Graph Theory—trees; H.2.4 [Database Management]:
Systems—query processing, 1.2.8 [ Artificial Intelligence]: Problem Solving, Control
Methods and Search; 1.5.1 [Pattern Recognition]: Models; 1.5.2 [Pattern Recognition}:
Design Methodology; J.3 [Computer Applications]: Life and Medical Sciences—
biology; health

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Atomic digraph, binary identification, Boolean graph,
decision program, decision table, diagnostic key, diagnostic table, evaluation, exhaustive
function, feature selection, heuristics, hierarchical classifier, multiplexer network,
multistage testing, NP-complete problem, sequential evaluation procedure, table splitting,
taxonomy, test selection

INTRODUCTION ing theory [LEES9, THAYS1a], and analysis

of algorithms [WEID77]. More recently,

---------
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A decision tree or diagram is a model of the
evaluation of a discrete function, wherein
the value of a variable is determined and
the next action (to choose another variable
to evaluate or to output the value of the
function) is chosen accordingly. Decision
trees find many applications in decision
table programming (SiLB71, Pooc74,
ME71277], databases {[WoNG76, HANA7T7),
pattern recognition [Haus75, BELL78), tax-
onomy and identification [JARD71,
Mors71, GARE72a, PAYRS80, WILL80), ma-
chine diagnosis [KLET60, CHAN70), switch-

they have been proposed as implementa-
tion-independent models of discrete func-
tions with a view to the development of
new testing methods [AXER79, MORES1a)
and complexity measures [MORES0a].
Owing to this broad applicability, results
about decision trees are dispersed through-
out the literature in fields such as biology,
computer science, information theory, and
switching theory; moreover, there is no
common notation or set of definitions.
Therefore this article begins by establishing
a framework of notation and definitions
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date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
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that introduce decision trees and diagrams
and the various measures associated with
them. Particular attention is paid to the
problem of constructing decision trees and
diagrams from function descriptions and
evaluating their efficiency. The complexity
of such constructions is detailed, and reper-
cussions on circuit or program design ana-
lyzed. A survey of the main fields of appli-
cation and related results follows. Recently
proposed extensions (to include diagram
composition and recursion) and applica-
tions (e.g., to system testing) are then dis-
cussed. The article concludes with an as-
sessment of known results and suggestions
for future research.

The emphasis throughout this exposition
is on Boolean functions, since they find
many more applications and are more read-
ily understood than general discrete func-
tions. The presentation alternates formal
exposition, examples, and discussion; com-
plex proofs are avoided (the reader will find
them in the references), and the mathe-
matical content is kept to the minimum
necessary for clarity and conciseness. In
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particular, all necessary mathematical and
other background is introduced in the first
section so that the paper should be acces-
sible to any reader with a mathematical or
algorithmic bent. The intent is to cover the
breadth of the field, unify terminology, con-
vey the import of the main results, and act
as a guide to the literature, for which last
purpose a representative, rather than ex-
haustive, reference list is provided. As such,
this survey should be of interest to both
practitioners and researchers in the areas
mentioned above.

1. PRELIMINARIES

Since the evaluation of Boolean functions,
the programming of decision tables, and the
identification of unknown objects (biologi-
cal specimens, system faults, etc.) are
among the most important applications of
decision trees and diagrams, we provide a
succinct review of the terminology and
basic concepts of Boolean functions, deci-
sion tables, and identification problems.
Readers who feel comfortable with these
topics may wish to skip to Section 2.

1.1 Discrete and Boolean Functions

Only a very brief review is provided; for
more details, the reader is referred to
DAvi80 on discrete functions and to
HARRG65 on Boolean functions.

By discrete function, we mean a (partial)
function of discrete variables, f{ixy, ..., Xa),
where each variable, x;, takes exactly m;
values, which we choose to denote
0, ...,mi— 1. A discrete function is con-
stant if and only if (iff) it assumes the same
value wherever it is defined; it is null if it is
not defined in any point of its domain,
completely specified if it is defined every-
where. When a variable is evaluated, say
x; = k, we are left with the restriction, f(x:,

evey Xizly B, Xis1, . .., Xa), which we denote
f |1~» A variable, x;, is redundant iff
flaco= o o = flsome1, (1

where two functions are equal if they have
the same domain and codomain and assume
the same value wherever they are both
defined; a function without redundant vari-
ables is called intrinsic. Finally, a variable,
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x;, is termed indispensable iff it is not re-
dundant in any restriction resulting from
the evaluation of any subset of the variables
[I], coeygXi=ly Xitlg s o0y 3.}. (Tlns implies
that a function can never be evaluated at
any point without knowledge of the values
of all indispenssable variables.)

A Boolean function of n variables is a
discrete function, f: {0, 1}" — {0, 1}, where
{0, 1}" denotes the n-fold Cartesian product
of {0,1)}, that is, the set of all binary n-
tuples. Each n-tuple, (xy,..., x,), mapped
to 1 by the function is a minterm