
..

ai 'I

0 TR-180 S

HYBRID STATE ESTIMATION APPROACH TO KULTIOBJECT
TRACKING FOR AIRBORNE SURVEILLANCE RADARS

S

"~~~~-,ELEC-r'-",. C7 "

IALPHAiAECH,
2 BURLINGTON EXECUTIVE CENTER T

111 MIDDLESEX TURNPIKE IN,
BURLINGTON, MA 01803

617.273-3388

v • ° • * . . . . . . S . oX -. • - --.-. - . - _ _ _ _ _ - - . . . . . . . . . . . . .__• .__ .

laid ~~Od3

*.* * . x m d N A 0 1 W W W W " M



ALPHATECH, INC.

Acoession For
JITIS GRA &I
DTIC TAB"
Unannwounced

Distribution/

A~l- iw/or
S M |bpecilt

TR-180

HYBRID STATE ESTIMATION APPROACH TO NULTIOBJECT
TRACKING FOR AIRBORNE SURVEILLANCE RADARS

By

Dr. R.B. Washburn

Dr. T. Kurien
Dr. A.L. Blitz ->
Dr. A.S. Willsky

October 1984

Submitted to:

Department of the Navy S
Naval Air System Command
Washington, D.C. 20360 MUMl It Pu3 si m.
Contract Number N00019-82-C-0456

-9-

ALPHATECH, Inc.
2 Burlington Executive Center

111 Middlesex Turnpike "TIC
Burlington, Massachusetts 01803 ELCTE

(617) 273-3388 DE S8

- . °', .
-**-*.-*.



.. ~ a- a s *. a-.

SECuRITY CLASIFICATIONi of YM# PAGE f%%r D@* U sa."od

REPORT DOCUMENTATION PAGE READ COUCPTI¢NG -O
BEFREnl COMPLETYING FORMd

I. OWPOaT Nuu*4 ji8. GOVT ACCESSION 66 0- ECsPiENV$ S CATA&COG 6SUDSEn

TR-1I8s

4. TITLE food SubEo) S YyPg of U POUi v pcfoo CovEcaO
Hybrid State Estimation Approach to Multiobject
Tracking for Airborne Surveillance Radars

4, PDEUOmaaG60G. NEPOUTV .u~esIgm

T. AUTNOfe) S. COMTACT 00 GRANT NIuuSE@J-

R. B. Washburn, T. Kurien, A. L. Blitz, a
A. S. Willsky N0019-82-C-0456

9. PERPORMING OGANIZATION NAME AND AOESS I*. PlVQlAM EL9MEMT. PiOJECT. TAl K

A LHATECH. Inc. A6A WORKUsiNUM0 gR5

Burlington, HA 01803

II. CONTROLLING OFirICE NAME AND ADOESS It. REPORT DATE

Naval Air Systems Command October, 1984
Washington, DC 20361 it. NUu@VPcof Pcs

14. MONITORING AGENCY NAMIE 6 AOOUESSIUI 4/Ifoea mw Cmov4elikil Offigo IS. SECURITY CL ASS. (of IN e-*poor)

Unclassified

Is*. MC&SISLICATIon owsn AbeN0

I. OISTRIBUTION STATEMENT (of ths Report)

Approved for public release; distribution unlimited

17. OISTRISUTION STATEMENT (of A. obsieci entered in Bloek , It diffeent bes Rpot)

.1S. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continuo on revoe side It necesa.ry nd Ident ly by block number)

HultiobJect Tracking
Hybrid State Estimation
Airborne Surveillance

20. ABSTRACT (Continue oa rerse side It nocos.sty and Identify by block number)

This report describes the application of hybrid state estimation theory to
develop a unified theory of airborne surveillance. Hybrid state estimation
.provides a framework for treating estimation problems in which both continuous,
numerical-valued variables and discrete, logical-valued variables occur. This
framework allows one to model many different surveillance problems (such as
multiple maneuvering targets, formation flying, missile launch and interception) - 9
and to construct the cbrresponding tracking algroithm. This report examines such
models and investigates the resulting optimal and subootimal trackng n1onrthmc I

DD I 1473 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (07en De. En eeed)

..- o •



AIPHATECH, INC.

ABSTRACT

>This report describes the application of hybrid state estimation theory

to develop a unified theory of airborne surveillance. Hybrid state estimation

provides a framework for treating estimation problems in which both contin-

uous, numerical-valued variables and discrete, logical-valued variables occur.

This framework allows one to model many different surveillance problems (such

as multiple maneuvering targets, formation flying, missile launch and inter-

ception) and to construct the corresponding tracking algorithm. This report -

examines such models and Investigates the resulting optimal and suboptimal

tracking algorithms.
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SECTION I

OVERVIEWl

1.1 INTRODUCTION

Keeping track of the positions and identities of multiple objects is an

essential part of naval airborne command and control. In response to the gen-

eral need for such capabilities in air surveillance, many different multitar-

get tracking algorithms have been proposed over the past two decades. Some of

these are based on well-established principles of statistical estimation

theory. Such an algorithm usually addresses a precisely defined mathematical

problem having a precisely defined mathematical solution, although feasible

implementation forces the algorithm only to approximate the theoretically

optimal solution. Many more algorithms, especially those currently In actual

operation, are based on ad hoc methods, that is, on experience and intuition

applied to specific features of the particular operational situation, but

without the essential guidance of a precisely formulated statistical theory.

Theoretically-based methods clearly point out that optimal algorithms are

not feasible in realistic environments (with Aay imaginable computational

hardware), and that a large number of suboptimal approximations are possible.

It is also clear that there is a great variety of operational situations

(types of targets, types of sensors, signal environment, etc.), and that there

must be a corresponding variety of nultitarget tracking algorithms suitably

tuned to their applications. Thus, the requirement of feasible implementation
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and the need for operational specificity both encourage the development of

many different types of mulcttarget cracking algorithms. There is presently a

significant need to categorize these different types of algorithms and to unt- 0

fy the methods used to develop them. Our research on tracking algorithms for

airborne surveillance is motivated by this need. Our overall objective is to

develop a unified theory of multttarget tracking that indicates which sub- •

optimal approximations sacrifice the least performance for a given model of

the operating environment.

Our approach to developing such a unified theory has been to formulate

the multitarget tracking problem as a hybrid state estimation problem (i.e., a

problem with both continuous and discrete states to estimate), to implement

the optimal solution of the hybrid state estimation problem, and to study

methodically approximations of the optimal algorithm and the resulting per-

formance loss. We have applied this approach to study problems with a single

position sensor (approximating a single active radar) with measurement errors,

an unknown number of maneuvering targets which can appear and disappear at

unknown times, missed detections, and false detections.

We have also applied this approach to study more complex surveillance

problems such as the detection and tracking of aircraft flying in formation,

aircraft launching missiles, and missile interceptions. The approach and

results are described in detail in this report. In this section we give an

overview of the report and summarize our work.

1.2 HYBRID STATE MODEL

We have found it useful to view multitarget tracking in terms of a

stochastic dynamic system whose state consists of a continuous part x and a

2
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discrete part z. The generic hybrid state model we use has the fore (state

and observation equations)

x(t+l) -f(t'x(t),z(t),w(t)) . ."

y(t) -h(t,x(t),z(t),v(t))""" "

where w(t).v(t) are process and measurement noises. We have assumed that z is

a discrete (denumerable) state 1arkov chain that is not influenced by the con-

tinuous state x. To date we have used mainly the linear Gaussian hybrid state

model in which f,h are linear functions of x,v, and v. Note chat in multitar-

get tracking models it is convenient to allow the dimensions of x(t) and y(t)

to change in time and the number of discrete states to be infinite in order to

model new targets appearing at random times.

In our formulation the continuous state consists of positions and veloc-

ities for each existing target, and the discrete state consists of target dy-

nasic modes (for maneuvers), target status (birch or death), false and missed

detection indicators, number of returns at time t, and association of targets

with returns at time t. The measurements consist of noisy position observa-

tions and number of returns per scan.

The hybrid state model provides a very general and convenient representa-

tion of stochastic dynamic systems. This approach allows us to represent con- -* -

tinuous, numerical-valued variables and discrete, logical-valued variables in 0

a systematic, unified framework. We feel that this ability to treat contin-

uous and discrete variables together in a systematic way makes the hybrid

state approach a powerful technique for modeling surveillance problems, and

ultimately, for designing surveillance systems.

3
9 . -- '-
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1.3 TRACK-ORIECTED ALGORITHM

The optimal hybrid state estimation algorithm computes the posterior

probability of each discrete hypothesis and the corresponding conditional 0.

expectation of the continuous state variables. The mathematical structure of.

the optimal algorithm is well-known, as are its severe computational require-

ments. Despite the exponentially (or faster) growing number of computations, 0 •

we nevertheless found it enlightening to construct a computer implementation

both as a starting point for designing practical suboptimal algorithms and as

a performance benchmark to compare algorithms in carefully selected test situ- 0.

ations.

The optimal algorithm was constructed using the concept of hypothesis

trees. In this approach every possible combination of measurements with

existing tracks, new targets and false alarms is created at every stage. Each

such combination is referred to as a global hypothesis. It is constructed

sequentially based on the global hypotheses in the previous scan and the meas-

urements in the current scan. There are several ways in which the set of new

global hypotheses can be created. Techniques that have been used in the past

are based on the creation of a global hypothesis tree which grows with each

scan. The terminal branches (leaves) of the tree represent all the global hy-

potheses at the end of the current scan. The expansion of the global hypothe-

sis tree is based on either a target-oriented approach or a measurement- -

oriented approach. Neither method can represent the growth of the hypothesis

tree in a clear manner to reflect all aspects (track initiation, track termin- -:

ation, false alarms, missed detections, etc.) of multiobject tracking. The .

approach that we have adopted, the track-oriented approach described in this

report, is unique in that we do not contruct a global hypothesis tree.

4 .
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Rather, we maintain a list of global hypotheses and a set of target trees. The

root of each target tree represents the birth of the target and the branches

represent the different associations of this target with measurements avail- 9

able in subsequent scans. A trace of successive branches from a leaf to the

root of the tree corresponds to a potential track of the target. The leaf of

each such trace is unique and it is referred to as a track node of the target

tree. Each element of the global hypothesis list contains a set of pointers

which point to track nodes. In essence, they represent the combination of

target tracks postulated in that global hypothesis. S

Suboptimal techniques for managing hypotheses in the general hybrid state

estimation algorithm are straightforward extensions of gating, pruning, merg-

9
ing, and clustering. These fit naturally into the track-oriented structure.

* However, the quantitative value of these different suboptimal techniques is

still unclear. We have performed numerical simulations which give some

qualitative picture of the effectiveness of a technique, but much remains

to be done in determining quantitative effectiveness.

The track-oriented data structure described above is a very efficient

structure for representing the type of hybrid state systems arising in multi-

object tracking problems. This structure is convenient both for new hypothesis

generation and for likelihood and filter computations. Furthermore, although

we have not studied this aspect in depth, the track-oriented data structure

provides a natural parallel computational structure for array processing.

1.4 HANEUVERING TARGETS

We show in this report that the hybrid state multiobject tracking algo-

rithm can easily incorporate the tracking of multiple, maneuvering targets.

5
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The hybrid state framework to flexible enough to formulate the problem of mul-

tiple targets which are "born" (i.e., appear) and "die' (i.e.. disappear) at

unknown times, and which can maneuver between straight and accelerated motion

during the Interval In which they are "alive." The model also Includes the

possibility of missed detections of a present target, false detections of

clutter, and the unknown association of returns in any one scan with targets

In track. We also consider the effect of nonlinear radar measurements (i.e.,

range and azimuth) on the tracking of multiple maneuvering targets.

The additional hypotheses generated to account for the possibility of 04

maneuvers makes it impractical to run the optimal algorithm for more than two

or three scans. Thus, we use gating, pruning, and a simple form of merging to

reduce the number of hypotheses generated. Two approximations are particular-

ly useful to deal with multiple maneuvering targets. The first approximation

Is to prevent initiation of maneuvers until the target's velocity error is

sufficiently small. This screening technique prevents the inclusion of tracks

which postulate maneuvers as a consequence of the large gate sizes at the time

of track initiation. The other useful approximation is to prevent hypothesiz-

Ing several different maneuvers in succession. Note that both of these tech-

niques for practical implementation can be thought of as resulting from speci-

fic hybrid state modeling assumptions. For example, the first results from

ssuptions about the number of detections one expects before the target can -

transition to a maneuver state, and the second approximation corresponds to

restrictions on the transitions between different maneuver states. This sug-

gests more generally that we can associate particular hybrid state models with

many practical algorithms which have been designed using intelligent heuristics */

and which are not based on any well-defined model. This association can help

6



AIPHATECH, INC.

clarify the assumptions on which a given practical algorithm is based and thus

help to categorize different algorithms.

1.5 MULTIPLE FORMATIONS

We further demonstrate the power of the hybrid state approach by general-

izing the multiobject tracking problem to include the problem of tracking

multiple formations. Multiple formations arise naturally in surveillance

problems and can be used to model such phenomena as aircraft flying in forma-

tion, aircraft launching missiles, and missiles Intercepting aircraft to other

-D missiles. The problem of tracking formations Is generally more difficult than

tracking individual targets because several returns in a single scan may be

asociated with one formation and because 
the dynamics of objects within a

* formation are correlated with each other.

The track-oriented data structure can be generalized to deal with multi-

pie formations. This extension results in a three-level hierarchical struc-

ture consisting of global hypotheses at the highest level, local formation

hypotheses at the intermediate level, and individual target hypotheses at the

lowest level.

* In the mltiobject tracking algorithm without formations, the sufficient

statistical information concerning discrete and continuous states can be

computed and stored at the target local hypothesis (i.e., target track trees)

level. This is no longer true in the formation tracking algorithm. In the

formation tracking problem some discrete states (such as those Indicating when

targets separate or merge) are associated only with a formation and not with

any individual target within a formation. Complications arise because the

statistics of target continuous and discrete states depend on formation

7
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hypothesis as well as the target hypotheses. Thus, the statistics of a

specified target's continuous states and discrete states cannot be computed

from knowing only the local target hypotheses. One also needs to know the .

local formation hypothesis.

These problems make the principal suboptimal methods difficult to apply -.

to multiple formation problems. In conventional multiobject tracking one can

apply screening at the target local hypothesis level during the creation of

new target track nodes from measurement associations. In formation tracking

this is not generally possible because the continuous state statistics neces-

sary to define a measurement gate are computed and stored at the formation hy-

pothesis level and not at the target level. Because targets may belong to

more than one formation, there may be several measurement gates associated

with each target track node. Thus, gating becomes more complicated. Diffi-

culties also arise in pruning because the likelihood statistics used for prun-

ing must be computed and stored at the formation level of the data structure

and not at the target track level.

1.6 ORGANIZATION OF REPORT

This report is organized into two major technical sections and three

appendices. Section 2 describes our approach to multiple maneuvering targets

and some test cases of the algorithm we developed. Section 3 describes the

abstract hybrid state model and shows how to treat multiple formations within

this framework. It also describes the main features of the tracking algorithm

needed for multiple formations. Section 4 concludes the report. Appendix A

reviews several mathematical models of maneuvering targets, and Appendix B

8 . .° . o.-'
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reviews existing approaches to maneuver detection and tracking of single

maneuvering targets. Appendix C describes the track-oriented approach and its

relationship to other approaches in detail.

9S



* ' .. -,

ALPHATECH, INC.

j-|

SECTION 2

MULTIOBJECT TRACKING OF MANEUVERING TARGETS

2.1 INTRODUCTION

For the multiobject tracking problem, if we assume that the dynamics of

the Individual targets and the measurement processes are linear and the noise

processes are Gaussian, then the conditional density function of the state can

be obtained by computing its sufficient statistics using a bank of Kalman fil-
S

ters. The essential difficulty for constructing the optimal algorithm then

lies in forming all the possible discrete states and computing their probabil-

ities. These discrete states correspond to the different possible combina-

tions of targets with measurements. The combinatorial problem is especially

severe since the algorithm has to also account for:

1. changes in number of targets due to births and deaths,

2. changes In dynamic models of targets due to maneuvers,*
and

3. changes in measurement characteristics due to clutter or
missed measurements.

Two approaches recommended in the past (21 have attempted to represent

the hypotheses in the form of a matrix. In one of these approaches, referred

,.... . "_.4

*There are several ways in which a maneuver can be modeled. Appendix A sum-
marizes some of these models.

100
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to as the target-oriented approach (31, the postulated targets define the

columns of the matrix and the postulated hypotheses define the rows. The

indices of the matrix represent measurements. Then for a given row (hypoth-

esis). the column numbers and the measurements in the associated columns

specify the target-measurement pair postulated by that hypothesis. A typical

* hypotheses matrix is shown in Fig. 2-1. The "0" entries indicate that the

target is not detected.

TARGET NUMBER

1 2 3

LU 2 1 2 0
* 31 0 3

V) 4 10 0
'-4
W 5 0 2 3
C) 6 0 2 0

S 7 0 0 3
8 0 00

Figure 2-1. Hypotheses Hatrix for Target-Oriented Approach.

In the alternate approach, referred to as the "measurement-oriented

approach," the roles of the targets and measurements are interchanged. A

* typical hypotheses matrix using this approach is shown in Fig. 2-2. Here the

"0" entries denote that the measurements heading those columns are assumed to

be false alarms.
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MEASUREMENT NUMBER

1 2 30

1 12 3
S 2 12 0
S 3 10 3
S 4 1 0 0

WU 5 0 2 3

R 60 2 0

7 0 0 3
*8 0 0 0

* R-1512

Figure 2-2. Hypotheses Matrix for Measurement-Oriented Approach.

Both approaches have drawbacks. For example, in the target-oriented

approach, measurements not included in a row could correspond to either new.

targets or false alarms; this cannot be shown explicitly. Similarly, in the

measurement-oriented approach, targets not included in a row could have died

or were not detected. The hypotheses matrix cannot display it. Furthermore,

* neither of the approaches can account for target maneuvers. *The problem of

maneuver detection has been studied mostly from the perspective of a single

target. A survey of maneuver detection schemes for single targets is included

in Appendix B.

* 2.2 TRACK-ORIENTED APPROACH FOR OPTIMAL HYPOTHESES REPRESENTATION

To overcome these problems, we have chosen to create the hypotheses at

any scan in a novel fashion which is also intuitively appealing. Rather than

representing the hypotheses in the form of a matrix, this approach maintains a

12
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set of target trees and a list of global hypotheses. The root of each target

tree represents the birth of the target and the branches represent the differ-

ent dynamics that the target can assume and the various measurements it can be

associated with in subsequent scans. A trace of successive branches from a

leaf to the root of the tree corresponds to a potential track of the target.

The leaf of each such trace Is unique and is referred to as a track node of

the target tree.

Each element of the global hypotheses list contains a set of pointers

which point to track nodes. They repre'-ent the combination of track nodes

postulated by the global hypothesis which that element represents. By assump-

tion the collection of pointers in any one such global hypothesis cannot point

to two track nodes within the same target tree. This Implies that there is at

most one return per target per scan.

The creation of the global hypotheses using target trees and global

hypotheses list enables the decomposition of the process of associating tar-

gets with measurements into that of associating measurements with each of the

targets and then forming combinations of the resulting tracks. As such, we

refer to this as a track-oriented approach.* The expansion of the individual

tracks at any scan can, in turn, be done in two stages. First the tracks are

split for different possible dynamics and next these tracks are associated

with the measurements. By assuming that the target dynamics are independent

of the measurement characteristics, the transition diagrams for each of the

targets and the measurements will have the simple form described below.

*The track-oriented approach and its relation to other approaches is described
more fully in Appendix C.

13
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The discrete states and the associated transition diagram for a single

maneuvering target is considered first. The target starts off in an unborn

state (I), is born at some scan and can then die (X) at some later scan. A

target that is in the born state can have a constant velocity (nonmaneuver

state S) or be accelerating (maneuver state M). To allow for different accel-

erations that the target can undergo, there could be several maneuver states

Ni (i-Ina). This is depicted in Fig. 2-3 where we have considered the case

where n-2. For convenience in representing the transition diagrams, we have

made the following assumptions:

1. the target is always born into the nonmaneuver state, and

2. the probability of transitioning to any of the born states
or X is independent of the current born state of the
target.

The transition diagram associated with the meaurement process is shown in Fig.

2-4. Observe that the probability of transitioning to either state is inde-

pendent of the prior state. To prevent the existence of targets that have

never been detected, we assume that a target that is born in the current scan

will be detected. An alternate way of defining this requirement is to define

the number of births parameter (in the distribution assumed for births) con-

ditioned on the event that it will be detected. This also implies that the

'- number of births conditioned on the event that it will not be detected is

assumed to be zero.

Now we can depict the construction of the global hypotheses in any scan.

As mentioned, the track nodes of all target trees are extended in two steps.

In Step I the track node is split into several branches - to account for each

of the several dynamic states that the target can be in. This is shown in ''"

14
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Fig. 2-5. A parent track node that corresponds to a dead track is not split;

only a continuation of the dead status is shown in this case.
S

In Step 2, the extended track nodes (excluding those that correspond to

dead tracks) are associated with the measurements received in that scan. New

track nodes are also generated to account for the possibility of a missed

detection. Hence if there are nr returns in the scan, then each of the track

nodes will have (l+nr) descendents. We have extended the tree in Fig. 2-5 to

illustrate the effect that Step 2 has on the track splitting process for the

case where nr-2 (Fig. 2-6). It is easy to see that for the general case, the

number of track descendents for maneuvering targets is

[1 + (l+nm)(l+nr)J . (2-1)

S

1 DESCENDENT

TRACK NODES
PARENT WHICH
TRACK ACCOUNT FOR
NODE POSSIBLE

TARGET
M 2  DYNAMICS

R-273

Figure 2-5. Track Splitting to Account for Different Target Dynamics.

16
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r2

r2

M , r2

PARENT D O"

TRACK
NODE r

r2

I1x 9

1-2

Figure 2-6. Track Splitting to Account for Different Target Dynamics "
and Different easurement Associations.

Now we form all combinations of track nodes, which are descendents of

parent track nodes included in the parent global hypothesis list, with the

restriction that no two track nodes included in a new global hypothesis list

should have the same parent node or use the same measurement-from the current

scan. We can show that for a parent global hypothesis which postulates the

existence of nt tracks, the number of descendent global hypotheses is

n i
min(nt ,nr) n i nrnt!

+ (I+nm) 2(nr+nt-2i) ---------- (2-2)
1-iO (nt-i)! (nr-i) !i!

where nm = number of possible maneuvers, and

nr - number of returns in current scan.

17
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2.2.1 Likelihood Computation

The likelihood of any descendent global hypothesis has been shown to be

Pjqkjzkj [P(qk)lqk-I zk-I)p(z(k)lqkzk-)p(qk-l zk-I)I (2-3)

where k denotes scan number, z denotes measurements, q denotes discrete 0

states, and the subscript i denotes the specific hypothesis. Since the like-

lihoods are used as a basis for comparing the various global hypotheses, we

can ignore the denominator - it being the same for all. The first term in the

numerator represents probabilities of transitioning from the parent global

hypothesis to each of the descendent global hypotheses. Posterior likelihoods

of these tracks after associating them with the different measurements avail-

able in the scan are represented by the second term. Finally, the last term

is the likelihood of the parent global hypotheses.

If the likelihood of a false alarm is normalized to unity, the remaining .

measurement association likelihoods can be scaled accordingly. In such a case,

we need only consider the likelihoods for the track nodes shown in Fig. 2-6 for

each of the targets. This makes it possible to compute the likelihood of a

descendent global hypothesis following the same steps used for constructing it.

The state transition diagram for the target dynamics (Fig. 2-5) defines

the transition probabilities between different target states. The posterior

likelihoods of the measurement associations can be obtained from a Kalman fil-

ter after being premultiplied by PD, the probability of detection in one scan.

The tracks which are postulated as being missed are multipled by (-PD). Thus,

the likelihoods of each of the descendent track nodes can be computed. Then, .

18 "
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after the proper descendent track nodes have been selected, the likelihood of

the descendent global hypothesis can be computed as a product of the likeli-

hood of the parent global hypothesis and the likelihoods of all the descendent

track nodes included in it.

2.3 SUBOPTIMAL TECHNIQUES 4

*The main purpose for designing suboptimal techniques is to reduce the

* computational burden associated with the optimal algorithm. Within the con-

text of the optimal algorithm that we have constructed above, the computa-

tional burden can be reduced by either discarding some of the unlikely global

hypotheses or using some computationally simpler algorithms for estimating the

continuous-valued states. We will discuss only the former; several standard

* suboptimal techniques for the latter can be found in the literature (e.g., ar-B

tracker, constant gain Kalman filter).

Techniques available for reducing the number of global hypotheses can be

grouped Into one of the following:

1. screening,

2. pruning,

3. merging, or

4. clustering.

Both screening and pruning use the likelihoods to determine whether hypotheses

*should be discarded. Merging corresponds to the process of combining similar

hypotheses. Grouping hypotheses in order to process the group as a unit

* independent of other groups is referred to as clustering. Since the optimal

algorithm constructs global hypotheses in two stages, the hypotheses reducing

techniques can be applied during either the track expansion stage or the global

hypotheses building stage. 4

19
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Screening techniques prevent less likely hypotheses from being formed or

discard them after they are partially formed. We have incorporated several

such options in the optimal algorithm. The first one is that of creating 0

gates around track nodes and testing whether a measurement falls within this

gate prior to forming a new descendent track node. Since not much screening

can be achieved at the time of track initiation, an additional screening op- 0

tion has been provided. This is to prevent initiation of maneuvers in target

dynamics until its track is "well established." By well established tracks we

mean tracks for which the velocity uncertainty is below a certain threshold. ,

This screening technique will prevent the inclusion of tracks which postulate

- maneuvers as a consequence of the large gate sizes at the time of track ini-

tiation. If a target were to maneuver at the time of birth, it will be picked

up as a new target with little loss of information caused by dropping the pre-

vious track.

Two other screening options that we have introduced are based on the

physical limitations of the target. One takes into account the finite veloc-

ities that a target can have; the initial uncertainty of velocity states can

be chosen to reflect this. The other option takes into account the finite

accelerations that are feasible for a target; we restrict the target from

executing several different maneuvers in succession. In terms of the transi-

- tion diagram shown in Fig. 2-3, this restriction implies that once a target 0

enters a maneuver state, it can either remain in that state or return to the

constant velocity state.

Pruning techniques discard hypotheses after they are formed. It can be

effected in two ways: either deleting hypotheses which have a likelihood

below a certain threshold or by limiting the global hypotheses at any stage to

20
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a fixed number. The former is difficult to design since the threshold will,

in general, be time varying. The latter technique is simpler to implement

since there are no thresholds to be designed. We have incorporated the second

option into our algorithm.

Gating is a powerful screening technique which drastically reduces the

computational requirements with minimal increase in the probability of error.

However, in the case where several targets are in close proximity for some

-: period of time (crossing targets) or when the clutter density is high, then

several measurements will fall within the gate giving rise to several descen-

dant tracks.

To illustrate the problems that this could give rise to, let us consider

the case of two targets that cross paths as shown in Fig. 2-7. For simplicity

we have assumed that the probability of detection is I for both targets. At

the time the targets cross, the measurement gates for either target will in-

clude the measurements from both targets. Hence, the tracks for both targets

have to be split to accommodate the two measurements. Due to the close prox-

imity of the measurements, the likelihoods for the split tracks will almost be

the same. This will prevent the pruning algorithm from discarding either track

so that the tracking algorithm will propagate the tracks with both associations.

Again, due to the close proximity of the measurements, the estimated

- states carried by the two tracks will have only small differences; in succes-

sive scans these differences become even smaller. By Scan 5, in Fig. 2-7, for

example, the state estimates in the two tracks will become insensitive to the
-.9

measurement association used in Scan 3. It might then be appropriate to

either drop one of the tracks or combine them. This line of argument can be

* extended to the concept of dropping or combining global hypotheses.

21
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Figure 2-7. Measurements For Crossing Targets.

The general procedure for merging global hypotheses ([11,(41) is to

resolve target-measurement ambiguities in a particular scan n-scans later.

This is referred to as the n-scan procedure. In this approach, however,

defining and computing the similarity of tracks will not be straightforward.

A computationally simpler approach is to resolve target-measurement ambigu-

ities in a particular scan in the same scan. This is referred to as the zero-

scan procedure. Obviously such a procedure will not have the benefit of using

the measurements in later scans for resolving the ambiguity.

Again since the data structure used in our algorithm constructs the

global hypotheses in two steps, our approach then has been to use a zero-scan 0

pruning (or merging) technique at the track level. This implies that each

track is associated with only a limited number (minimum one) of measurements

lying within the measurement gate. Notice that the track in the previous scan -

would have already been split to accommodate maneuvers. Furthermore, there is

no pruning (or merging) at the global hypotheses level indicating that at this

22
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level it is an n-scan procedure. This retains the robustness of the algo-

rithm. Since the heuristic is introduced at the track-measurement association

level, it is most effective in reducing computational requirements when either

the clutter density is large or when targets get close together.

2.4 SIMULATION RESULTS

Due to the large computational requirements of the optimal algorithm, it

." is not feasible to run any test scenario for more than 2 or 3 scans. Hence,

we have run the algorithm with both screening and pruning options, discussed

in subsection 3.2, in effect. Two test cases that were simulated are

described below.

2.4.1 Test Case 1 

We have considered the simple case of a single target having the trajec-

tory shown (indicated by the continuous line) in Fig. 2-8. The target starts

with a heading of 30% At Scan 5, it executes a maneuver (-30* turn) and

" thereafter maintains a heading of 00. We have generated clutter at every scan

represented by squares). Figure 2-8 indicates the location of clutter at each

scan.

We have summarized the simulation parameters in Table 2-1 and the track-

" ing algorithm parameters in Table 2-2. The heuristics that have been used to "

1P reduce the computational requirements are given in Table 2-3. Using the mea-

surement noise specified in Table 2-1, it can be shown that the uncertainty in

the velocity estimates will be reduced to less than 10 m/sec after five scans.

This ensures that the heuristic that initiates maneuver hypotheses only after

tracks are well established, will postulate maneuvers for the target prior to

the actual maneuver at Scan 5. .

. 23
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Figure 2-8. Test Case 1, Rank I Global Hypothesis.

TABLE 2-1. SIMULATION PARAMETERS

Scan time T: 10 sec

Number of scans: 9

Surveillance area: -15,000 m < x < 15,000 m.
-15,000 m 4 y 4 15,000 m.

Measurement noise: ax - 30 m-
y - 300 m

Initial velocity of target: (Speed: 300 m/s, 30 ° heading)

Target velocity after fifth scan: (Speed: 300 m/s, 00 heading)

Clutter: I per scan

Uniform between .7 .

(xt(k)-1500) and (xt(k)+1500)

(yt(k)-l5,000) and (yt(k)+15,000)

24
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TABLE 2-2. PARAMETERS USED IN TRACKING ALGORITHM

Initial filter covariance: Diag~p1,Vp22,P33,p441

p1 11 2 2: Set based on position measurement uncertainty

- p1/ 200 a/sec

Model uncertainty: Diag~q 1 q 2 q 3 q4 4

q11{
2 .q1/ 2  0

q -5 m/sec

Measurement noise uncertainty

M 300 a

Dynamic model of target

1 0 T 0

0 01 0 TA.

0 0 am cos 6m am sin 8m

0 0 -am sin Om am cos Om

am 6 1

Om c (-30,00,+3001

Temporal distribution for births: Poisson with XB-10-5

Temporal distribution for false alarms: Poisson with AFA-4.5 x 10-10

Probability of detection: 0.998 .

_ Probability of death: 2.0 x 0

Probability of no maneuver: 0.8

Probability of maneuver: 02n

25
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TABLE 2-3. HEURISTICS USED

1. Gating: 10

2. Number of global hypotheses retained at each scan: 10

3. Maximum number of missed detections permitted for a track: 2

4. Maneuver hypotheses initiated only for well-established tracks for which:

p1/2 < 15 m/sec

p1/2 < 15 m/sec
P44

5. After maneuver is initiated, only transitions permitted are either
straight-line or same maneuver state.

6. A Priori information about target position at birth is ignored, i.e.,
target position is initialized based on measurement data only.

1/2 -:xm

1/2 x1(O) --

22

Figure 2-8 also shows the trajectories postulated by the global hypoth-

esis with the highest likelihood (highest rank). It can be seen that it iden-

tifies the correct target trajectory (dotted line through the triangles).

However, it postulates the existence of another target (dotted line through

the squares) that is born, detected, not detected, and dead in successive
..--......

scans starting with the fourth scan. This is a consequence of the large gates

associated with the targets that are just born. At Scan 9 such a track is

insignificant and hence can be ignored.

We have shown in Figs. 2-9 and 2-10 the trajectories postulated by the

global hypotheses with Ranks 2 and 3. It can be seen that the Rank 2 global

26
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Figure 2-9. Test Case 1, Rank 2 Global Hypothesis.

15 ---- ________
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-90
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-5.9 -3 3 9 Is

Figure 2-10. Test Case 1, Rank 3 Global Hypothesis.
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hypothesis is the correct one - it postulates only the correct trajectory.

The Rank 3 global hypothesis is almost identical to the Rank I hypothesis.

The difference is that the incorrect track is postulated to die at Scan 6. S

On examining the remaining global hypotheses which are retained by the

algorithm (which are not shown here), we have observed they all postulate the

correct trajectory for the target. Due to the modeling of the target dynamics .

in discrete time, however, some of them postulate a maneuver initiated at Scan

9. Since the position of the target will be influenced by a maneuver only in

the next scan, it is only then that the algorithm will reject such incorrect

hypotheses. As in the case of global hypotheses with Ranks I and 3, we have

-.
observed that some of the remaining global hypotheses postulate incorrect

tracks for short periods of time. Since they are ephemeral, they do not have

any adverse effect on the correct target trajectory. This feature of the

algorithm, wherein most of the hypotheses that are retained postulate the

correct trajectory with some minor differences, illustrates one aspect of the

robustness of the suboptimal algorithm.

2.4.2 Test Case 2

In this test scenario, we simulated two crossing targets along with

clutter. The targets cross at the same point in time. At that time one of

the targets executes a maneuver too. As in the last scenario, clutter is

generated close to targets. The true target trajectories are indicated by

continuous lines and the clutter is indicated by squares. This is shown in

Fig. 2-11. The parameters for the simulation and the algorithm are the same--

as in Test Case I with the following addition.

28
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* Target 2- Initial Position (-9657 m, -5264 m)

- Speed and Heading (200 m/s, -45 °)

It can be observed that the conditions are particularly severe for the

tracking algorithm at the target crossing point where Target I executes the

maneuver. Figure 2-11 traces the trajectories postulated by the global

hypothesis with the highest likelihood (Rank 1). Despite the exacting S

requirements of the scenario, the algorithm identifies the correct hypothesis

by the ninth scan. From these two test cases, we see that the algorithm per-

forms very well in spite of the heuristics that have been introduced.

Is ,

-1 -9,•'3.
.9 .':" ....--- .

92 .9 - .. .

-15 -9 -3 3 9 15
--- x(Kvi) ,.,,0

Figure 2-11. Test Case 2, Rank I Global Hypothesis. -'-'---
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2.5 MULTIOBJECT TRACKING WITH NONLINEAR RADAR MEASUREMENTS

Our simulation model hitherto provided rectangular position (x and y)

measurements to the tracking algorithm. As such, a Kalman filter included in

the tracking algorithm provided the optimum (minimum-variance) estimate of

position and velocity of the targets.

In reality radars provide range and azimuth measurements of targets.

This will require a nonlinear estimation algorithm in place of the linear

(Kalman) filter to estimate the continuous-valued states of position and

velocity for each target. Computationally feasible optimum nonlinear filters

are not available. Suboptimal techniques use some form of linearization [51-

(7]. It has been shown that the extended Kalman filter, EKF, or (which uses . .

the first two terms of a Taylor series expansion about the estimated state)

has a performance close to the Cramer-Rao lower bound (8].

There are several choices for the state variables. If the position and

velocity are expressed in polar coordinates, then the measurement equations

are linear but the dynamic equations are nonlinear. The converse is true for

the case where the states are chosen in the rectangular frame. Again, in [8],

it has been shown that the filter with states in the polar frame is prone to

divergence. Hence, we have chosen to implement the EKF in the rectangular

frame.

It should be pointed out that depending on mission requirements, other

suboptimal techniques such as an a-B tracking algorithm can be used. A

complete discussion of such approaches and their shortcomings is given in (9].

The potential problems associated with limited precision of the computations

on the EKF are also discussed there; here we assume that sufficient precision

in the computations is available.

30
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We have considered the case of two crossing targets having the trajec-

tories indicated by the continuous line in Fig. 2-12. The location of clutter

is indicated by squares. The parameters used in the simulation are summarized0

in Table 2-4.

00

-IS
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TABLE 2-4. SIMULATION PARAMETERS

Scan time T: 10 seconds

Number of scans: 9

Surveillance area: -15,000 m C x .15,000 a
-15,000 a 4 y 4 15,000 a

O
Measurement noise: OR - 8.2 a

08 - 0.9 deg

Target 1: Initial position (-10,000 a, -10,000 m)

Speed 300 m/s, Heading -30'

Target 2: Initial position (-9657 a, -5264 m)

Speed 200 m/s, Heading -45*

Clutter: I per scan, uniform density over surveillance area

The tracking algorithm uses an EKF to estimate the continuous-valued

states of position and velocity. The parameters used by the filter are given

in Table 2-5. Both screening and pruning options discussed earlier are used

to cut down the computational requirements. These are summarized in Table

2-6.

The tracks postulated by the global hypothesis of highest rank are shown

in Fig. 2-13. The broken line through the triangles represents the estimated

track of Target I and the broken line through the diamonds represents the

estimated track of Target 2. On examining the associations of the estimated

tracks and the measurements (this cannot be seen in the figure), it is seen

that they are incorrect at Scan 5. This is due to the fact that the targets

cross at Scan 5 and so the returns from the two targets lie in close proxim-

Ity. The incorrect association, however, does not alter the estimated tracks

from the ones obtained with the right associations.

32
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TABLE 2-5.* FILTER PARAMETERS

Initial filter covariance:

P(O) - [ ~

* Position uncertainty matrix Pp: Set based on Option B of heuristics

Velocity uncertainty matrix Pv: Diag[P 33 9P441

p 1/2  p p1/2 -200 rn/sec

Model uncertainty: Diag~g,1 992211g33*944

9 gf 2  5 rn/sec

Measurement noise uncertainty:

Range: qR 8.2 m

Bearing: ve -0.7 deg
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TABLE 2-6. HEURISTICS USED

1. Gating: 3

2. Number of global hypothesis retained at each scan: 10

3. Naximum number of missed detections permitted for a track: 2

4. Target position is initialized based on measurement data only:

x (0) R cos Om x2(O) -Rm sin om

(Ru,8m - measured range and bearing) --

- p11  p121
P p12  P2 2

I2 P22 2 2
p11 -R moB*R si0

2 202 C02p2  -a sin em+Ra cO
22 R M 0

2 2 2 2
- os + sin2  M(- -R a )

122 R m 0

0-
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eliminate one of these two hypotheses, thereby reducing the computational

requirements. This has been verified in a simulation run.

*In this section we will consider a generalization of the multiobject

*tracking problems considered in Section 2 and in our earlier works [12]. The

problem of tracking multiple formations arises in many realistic surveillance

missions. This section will demonstrate the power of the hybrid state

approach by formulating such problems in concise mathematical terms and

analyzing the structure of the resulting tracking algorithm.
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SECTION 3

HULTIOBJECT TRACKING OF FORMATIONS

3.1 INTRODUCTION

In this section we will consider a generalization of the multiobject

tracking problems considered in Section 2 and in our earlier work [12]. The

problem of tracking multiple formations arises in many realistic surveillance

*" missions. This section will demonstrate the power of the hybrid state approach

by formulating such problems in concise mathematical terms and analyzing the 6

* structure of the resulting tracking algorithm. We will use the term formations

* generally to refer to multiple targets whose dynamics are correlated. This

term arises from the particular example in which several aircraft purposely

* fly in close proximity to each other, i.e., fly in a formation. We also use

the term formations to describe more general situations of correlated motion

* such as when one target splits into several targets (e.g., when an aircraft

launches a missile), or when several targets merge into one target (e.g.,,

when one missile intercepts another). The essential feature of each of these

examples is that the motions of several different objects are dependent on 6

other. One can use knowledge of these dependences to improve tracking sim-

ilarly to the way one uses knowledge of maneuvers to improve tracking. Con-

versely, one can use knowledge of target motion estimates to detect dependences 6

(e.g., detect missile launches or verify interception) similarly to the way

one uses target motion estimates to detect maneuvers. In either case, we
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have a coupled detection-estimation problem analogous to the maneuvering

target problem we discussed earlier.

Conceptually, it is convenient to think of a group of correlated targets .

as a single entity, which we will call a formation. Thus, the overall sur-

veillance environment consists of a number of formations, and each formation ..-

contains a number of targets. Note that a formation may contain only oneO

target in some cases.

From this point of view, different formations have independent dynamics,

and these dynamics can be efficiently modeled by independent hybrid state sys-

tems. In this respect, the modeling and treatment of a single formation is

completely analogous to the modeling and treatment of a single maneuvering

target. What makes tracking formations a more difficult problem is that the .

independent dynamic objects (that is, each formation) can have more than one

return associated with them in each scan period. In addition, the number of

targets within a formation may vary with time. Thus, each formation presents

* a multiobject tracking problem in microcosm.

This section is organized as follows. In subsection 5.2 we formulate

formation tracking in terms of hybrid state systems. We do this both for the 6

.- general formation tracking problem and for several specific examples. Subsec-

* tion 5.3 describes the optimal Bayesian algorithm for solving the formation

tracking problem; it also discusses suboptimal approximations required to *

implement a practical tracking algorithm.

3.2 HYBRID STATE MODEL OF FORMATION TRACKING

We have found it useful to view multiobject tracking in terms of a

partially observed Markov chain whose state and observation each consist of a

37
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continuous part and a discrete part (11, [10]-[14]. In this subsection we

briefly describe this approach in general and then show how it specializes to

the problem of tracking formations. 0

3.2.1 Hybrid State Systems

Let x be the continuous component of the Harkov state process and let q

be the discrete component. The joint state process s(t)=(x(t),q(t)) is Markov 0

in the usual sense that given s(t), the probability distribution of s(t+l) is

independent of the past process s(t-1), s(t-2), etc. We denote the probabil-

ity of transition from x(t)-x1 , q(t)=ql, to x(t+l)-x2, q(t+1)-q2 by the -

expression

P(x 2 1q2 ,xl,ql)P(q 2 1x,q 1 ) . (3-1)

Because x is continuous-valued, the continuous transition probability p of Eq.

3-1 is in fact a probability density in x2. The discrete transition probabil-

ity of P is an honest probability in q2" In our work we have assumed that p

is a Gaussian density in the variable x2 with mean m and covariance E given by -.

m = A(q 2 1q1 )x 1 + b(q 2 jq) , (3-2)

E - B(q 2 jq1 )Q(q2fq1 )B(q2 lq.)T , (3-3)

where T denotes the matrix transposition. If the continuous state has dimen-

slion n, then A(q21qj) is an nxn matrix, and the vector b(q21qj) has dimension

also. We assume that Q(q2 1qj) is a kxk positive definite matrix. In this

case B(q21q1 ) is a matrix of dimension nxk. Note that one could also model
1. 

4

time dependent n and k by putting this dimensional information in the discrete - S

state. This could be used to model a changing number of targets. In the next

subsection we will show how to model a changing number of targets using fixed

dimensions.
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The observations in a hybrid state problem consists of a continuous part

y and a discrete part z. The Joint probability distribution of y(t) and z(t)

depends only on x(t) and q(t). This probability distribution is given by an 0

expression similar to Eq. 3-1, namely

h(y I [Xl, q 1 H(z l lxlqd1 (3-4) ""0' -'"'

which is the probability (density) of observing y(t)=y I and z(t)=z I given

x(t)-x I and q(t)-ql. As with p, we will assume that h is a Gaussian density ,
,0

in y1 with mean m and covariance E given by

m - C(q1)x1 + d(x 1 ,ql) , (3-5)

E R(ql) (3-6)

where R(qj) is positive semidefinite. If the continuous observation has

dimension J, then C(qj) is a jxn matrix, R(q,) is jxj, and d(x,,q,) is a j

dimensional vector. Note that d(xl,ql) depends on x1 only if we wish to con-

sider nonlinear measurements (such as radar range and azimuth measurements

treated earlier).

We can express the continuous state transition model and the continuous

observation model more transparently in terms of the following stochastic .

difference equations. The continuous state transition density described by

Eqs. 3-2 and 3-3 can be described by

x(t+l) - A(q(t+l)lq(t))x(t) + B(q(t+l)jq(t))w(q(t+1)jq(t),t) + b(q(t+l)lq(t))

(3-7)
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where w(q21qlt) is a zero-mean, Gaussian random vector with covariance

Q(q2 Jq1), and the random vectors w(q2 Jq1 ,t) are independent for different t.

Similarly, the continuous observation density described by Eqs. 3-5 and 3-6 6

can be described by -

y(t) C(q(t))x(t) + d(x(t),q(t)) + v(q(t),t) (3-8)

where v(ql,t) is a zero-mean Gaussian random vector of covariance R(ql), and

the random vectors v(ql,t) are independent for different t.

3.2.2 Features of Multiobject Tracking Models

In the previous subsection we described a general hybrid state system cap-

able of modeling most multiobject tracking situations, including formations. In

this section we discuss some of the structural features which the multiobject

tracking problem imposes on this general hybrid state model. In particular, we

will discuss how multiple hybrid state subsystems are combined into one hybrid -

state systems in order to model multiple targets or more generally, multiple

formations. We also discuss how the multiobject tracking problem is reflected

In the structure of the continuous state x(t) and the discrete state q(t).

Let us now develop a hybrid state model of N multiple independent dynamic .

objects (targets or formations). Let k-1,2,...,N denote a unique object label

(i.e., object k). Model each dynamic object k using a hybrid state model of

the type described in the previous subsection. Let xk(t), qk(t), yk(t), and

zk(t) denote the continuous and discrete states, and the continuous and dis-

crete observations associated with object k.
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The appearance and disappearance of different objects is determined by

the discrete states qk(t). That is, there is a special discrete state B

(not born (12J) such that qk(t)-B means that object k has not appeared up to

time t, and there is a special discrete state X (dead [121) such that qk(t)-X

means that object k has disappeared by time t. By adjusting N, the individual

transition probabilities from I, and the transition probabilities to X, one .

can model the random inflow and outflow of objects and the average number of

targets present in a surveillance region (see [121, Section 2 for further

details). However, note that the maximum number of targets appearing at any

time is bounded by N. Thus, the continuous dimension of the hybrid state

model of the combined system will be finite. If N is large, this dimension

will also be large, but this does not necessarily imply a large dimensional

implementation of the tracking algorithm. The dimensionality of the imple-

mented algorithm depends on the number of targets that have actually appeared

up to a given time rather than on N.

The continuous state x(t) for the combined system of multiple objects is

simply the Cartesian product of the N possible individual states xk(t). We

write

x(t) (x ((t) , x2(t , .. ,xn(t)) (3-9)

to express this. That is, xk(t) is the k-th component of x(t). However, note 7

that each component may itself be a vector.

The discrete state q(t) for the combined system consists of two parts.

One part q1(t) is the Cartesian product of the individual qk(t), namely
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=1t q~),q .. (t)) (3-10)ql~) (l~t' 2(t)' "'qn"

The other part q2(t) describes how received measurements are randomly asso-

ciated with targets. We will define q2(t) below. The discrete state q(t) is

then the Cartesian product

q(t) " q 1(t) x q2 (t) . (3-11)

Let yt) and z(t) denote the continuous and discrete observations of the com-

bined system. These are related to the individual measurements yk(t) and

Zk(t) In the following way. Define y(t) and z(t) as

y(t) a(yl(t), y2(t) ... y (t))

Z(t) -(z (t), za(t) , .. ,z (0)) (3-13) J --.

I." " ".0o

Then ;t) and z(t) are given by ,. .;.£'

Y t) W c(q (t))y(t) (3-14 ) -" --. . .

Z'(t) wd(q2(t)) (t) (3-15) '"""

where We(q2) and wd(q2) are permutation matrices. That is, for each value q2

... .. of-q2(t), the matrices wc(q2) and wd(q 2) consist of all 1's and O's, and each

row and each column contain exactly one 1. For each different value of q2(t),
.9

the permutation matrices represent different associations of received mea-

surements with individual measurements Yk(t),zk(t), and hence represent
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associations of received measurements with objects k. If each object k can

give at most Nk returns in one scan period t, then there are

M (E N k) (3-16)

possible different associations, and hence M possible values of q2. We assume

each value is equiprobable so that

Pr(q 2(t)-q 2} - . (3-17) _
H

We also assume that q2(t) is a process of independent discrete-valued random

variables which are also independent of q1 (t). This completes our description S

of the discrete state q(t) of the combined system of multiple targets. We

have also described the continuous state and the discrete and continuous mea-

surements of the combined system.

It is not hard to see that x(t), q(t), y(t), and z(t) satisfy hybrid

state system equations of the type we described in the previous subsection.

Thus, we have shown how to model multiple objects (targets or more general

objects such as formations) in terms of a combination of individual hybrid

state systems modeling each object. In the next subsection we give examples

of such models for different types of formations.

3.2.3 Examples of Formations

In the first two subsections we described a general hybrid state model of

multiple, independent dynamic objects. In this subsection we will describe
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specific models of different types of formations. These models give the

hybrid state subsystems that make up the overall hybrid state system model for

a aultiobject tracking problem. 0

EXAMPLE 1: FLYING IN FORMATION

The simplest example of formations consists of a number of targets flying

parallel to each other in close proximity i.e., flying in formation. We will

assume that the targets are too close to resolve accurately, but that multiple

returns in the form of position measurements are possible. The continuous

states are the position and velocity of the center of the formation. The dis-

crete states model the number of targets and the number of radar returns from

the formation in each scan period. The continuous observations model the

scatter of target position measurements around the formation center. The con-

tinuous state model is given by

SoTO 0 0 -

o 1 0 T 0 0
x(t+l) = x(t) + w(t) (3-18)

0 0 1 0 1 0

0 0 0 i0 0 1

where x(t) is the four-dimensional vector of formation center position and

velocity, and w(t) is a two-dimensional zero-mean Gaussian white noise 7.th

covariance

a2  0 ]""--'"

Q = 0  :21 (3-19) . .
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Note that in this simple model the continuous state does not depend on the

discrete state. The discrete state q(t) consists of two components, qW(t) and

q (t). The first component q1tW is constant for all t and gives the number

of targets in the formation. The second component q2(t)-l,2,...,qj(t) indi-

cates how many returns are reflected by the formation. We assume that the
0

process q2(t) is independent for different t and binomially distributed as

Pr(q 2 (t)qk(q 1(t)) =pk(-PD) (3-20)
k ) D

where PD is the probability that one target of the formation will give a

return in any one scan period.

The continuous observations for this example can be modeled either as a

variable dimension observation vector or fixed (large) dimension observation

vector. We will describe both here to illustrate the two approaches. In the

variable dimension approach y(t) is given by

y(t) - C(q2(t))x(t) + v(q2(t)t) (3-21)

where C(q2) is the 2q2 x four-dimensional matrix

1 0 0

C(q2) - (3-22)
.. ...-.-

°.%' , .

The zero-mean Gaussian white noise v(q2 ,t) has dimension 2q2 and a 2q 2x2q 2-

dimensional covariance of the block diagonal form
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R(q2 ) - diag[Rv,Rv,...] (3-23)

where Rv is the 2x2 diagonal block. O

The fixed dimensional observation model assumes a maximum possible number

N of targets in the formation. Thus, q1(t) and q2(t) are bounded above by N.

Equation 3-21 still holds, but C(q2) is a 2N x four-dimensional matrix of the •

form

1 0 0 O-0.. .
0 1 0 0 •

.12q2

C(q2) - ---- (3-24)

0 0 0 0 2N-2q2

The zero-mean Gaussian white noise v(q2,t) has dimension 2N and a 2Nx2N-

dimensional covariance matrix of the block diagonal form

2q 2  2N-2q 2

R(q2) - diag[Rv,Rv,...,Rv ( 0,0,...,01 (3-25)

In this second approach 0 components in the observation vector y(t) signal the -0-

absence of any return. Note that in actual implementation it would not be

necessary to deal with the entire 2N-dimensional matrices C(q2) and R(q2), but

-,just the nonzero parts.

Note that we have omitted the discrete state that randomizes the asso-

ciation of returns as they are actually received. In the examples of this
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subsection the models will only describe the subsystems discussed in subsec-

tion 3.2.2. Randomization of associations is carried out at the combined sys-

ten level as discussed also in subsection 3.2.2.

Finally, note that if av=O and the velocity component of x(t) is 0, then

this model is the same as our model of clutter distributed around the static

position given by the first tvo components of x(t). Thus, in this example we

have modeled a flying formation as pseudo-clutter tightly distributed around a

constant velocity center.
,•

EXAMPLE 2: NISSILE LAUNCH

The second example of formations is the case of a missile-carrying air-

craft which may launch its missiles at an unpredictable time. For simplicity

we will consider the case of an aircraft carrying a single missile. The con-

tinuous states are the positions and velocities of the aircraft and its mis-

sile. The discrete states model the random launch time. The continuous

observations are the position of the aircraft and (after launch) the position

of the missile.

The discrete state model is the simple two-state Markov chain shown in

Fig. 3-1. We denote the states L (launched) and L not launched). The trans-

ition probabilities are defined in terms of the probability that the missile

remains unlaunched, i.e., the probability P(Clj) of the transition from L to

L as shown in Fig. 3-1. This simple discrete state model gives a geometrically

distributed random launch time. The continuous state for this example obeys a

linear Gaussian hybrid state difference equation such as Eq. 3-7 where A, B,

and Q are given as follows.
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1O0OT 0~

A(LIL) -(3-26)

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

A(L L----------------------(3-27)
1 0 0 0
0 1 0 0
0 0 a cos 0 a sin e
0 0 -a uin 0 a cos 6

1 0 T 0j

A(LIL) - - - - - - -I- - - -- -(3-28)

1 0 10 T

PRIE)P(LJL)=l

*NOT LAUNCHED LAUNCHED
R-1505

Figure 3-1. Discrete State Transitions for Missile Launch Example.
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The blank spaces in A(LIL) are filled with zeros.

0 0

0 0
B(TIL) -(3-29)

1 0

0 1

0 0
0 0

*~ 01
B(LI-L-) (3-30)

0 0
100
1 0

101

0 o0
0 0-
1 0J_ _

0 1

B(LIL) -(3-31)
0 0

too
1 0
0 1

The covariance matrices QgLIL), Q(LIL), and Q(LIL) are all diagonal matrices

of dimensions Wx, 6x6, and 4 x4, respectively.

*2 2* QLIL =diag[o ,a 1(3-32)
WI Wi

2 2 2 2

Q(LIL) =diagi a ao ao ao I (3-34)
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These matrices give a continuous state model with the following interpreta-

tion. While q(t) L, the continuous state x(t) has four dimensions which model

the aircraft's state according to constant velocity flight. When q(t) first -

equals L (so q(t-l)-t), then the continuous state x(t) becomes eight-

dimensional in order to model the aircraft and missile states. The transition

matrix A(LIL) in Eq. 3-27 gives the missile an initial position equal to the

aircraft's current position, and it gives the missile an initial course which

turned e radians from the aircraft's course and an initial speed equal to a

constant a times the aircraft's speed. In addition, the missile's velocity is

given a Gaussian random component with covariance given by the diagonal matrix

diag[ 2 ,2 a . (3-35)
w 2 w 3

We assume here that a,6 are known. One could also consider possible random

choices of a and 0 by increasing the discrete state just as we have done to

model maneuvering targets in our earlier work.

The continuous observations are modeled by Eq. 3-8 where

C(L) = (3-36)0 0 0l ii

10 0 0- - -

C(L) - -- - - - - (3-37)
1 0 0 0"" -'-::0 1 0 0

and where R is diagonal as given by

R(U) = diag[o ,o2 a (3-38)
V I V1
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2 2 2 2

R(L) diag[ ,a a , ] (3-39)
V1 v1 v2 v 2

Note that we have only modeled this example using variable dimension con- -

tinuous states and observations. One can also used a fixed dimension approach

as in Example I. furthermore, we have not modeled missed detections in this

example to clarify the presentation. One could easily include this phenomenon

by augmenting the discrete state as we did in our earlier work on maneuvers

[141 and in[121.

EXAMPLE 3: MISSILE INTERCEPTION

The last example we will present is the case of one missile intercepting

another. The two targets in this example of a formation interact (i.e., col-

lide) if the targets are sufficiently close to each other. This interaction

results in one or both targets being destroyed according to a probabilistic

law (i.e., probability of kill).

There are four discrete states in this example: I (no interception), I

(int rception), K (kill), and K (no kill). The transitions and transition

probabilities are shown in Fig. 3-2. Note that the transitions from I to I

*' and from I to I depend on the continuous state x. This is necessary in order
to model the dependence of the interception probability on the proximity of

the two targets. We will describe this dependence below after we discuss the

continuous state model. Note that P(KII) is the probability of a kill given

that there was an interception.
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P(KjK) =1

1-P(KII1)

R-1506

Figure 3-2. Discrete State Transitions for Missile Interception Example.

The continuous state model is given by the hybrid state equation (Eq.7

3-7) where the different matrices take on values we give below. The discrete

*transition f to Y corresponds to the two targets flying independently of each

other. Thus, we have

1 0 T 0j

0 01 0(

A(IT) - --- ------ ---------- (3-40)
op 1 0 TO0
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0 0
0 0
1l0
0 1

B(fjl) =(3-41)

0 0
100
1 0

0 1 _0

Q(fly) diaglo 2o a o ,o 'a 2 (3-42)
W 1  'W1 W2 W'2

If the targets intercept, so that there is a transition from f to 1, then we-

assume that one target (the interceptor missile) is destroyed, and the other

target (the intercepted missile) is not destroyed unless the discrete state

transitions to K. Thus, we have

1 0 T 0l

0 10 Tj
A(I IT) 0 o (3-43)

0 0

0 0%
B(IIT) -(3-44)

1 0

0 1

2 2Q(Iff) =diag(a ao 1 (3-45)

N4ote that the continuous state dimension decreases from eight to four when the

discrete state transitions from I to I. In our example the probability of -

this transition depends on the eight-dimensional continuous state x. In our

01
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representation, x1 and x2 are the two position coordinates of the intercepted

missile and x5 and x6 are the position coordinates of the interceptor. The

transition probability P(IIi,x) should be chosen to be a function of the

distance

d [(xI-x 5 ) 2+(x2 X6
2 11/2 (3-46)

so that P(IIY,x)=O if d is greater than some interception distance d o and so

that P(IIY,x)-= if d~do .

If the discrete state is ever I, it will become either K or K in the next

time period. The transition I to K implies that the intercepted missile was

not killed, and in this case the continuous state mcdel remains unchanged.

That is, we have

A(K,I) = A(IIY) (3-47)

B(KII) B(IfT) (3-48)

Q(KI) Q(IIi) . (3-49)

Note that we could identify K with I, or we could eliminate I and allow trans-

itions directly from I to K or K. We have included the redundant discrete

state in order to make our model somewhat clearer. •

Finally, if the discrete state transitions from I to K, then the inter-

cepted missile is destroyed and the continuous state dimension goes from 4 to

0. That is, K plays the same role as the death state, X, we used to model .

target disappearance in our earlier work [12]. For this transition there is

no need to specify A(KjI), B(KII), or Q(KJI). .- ,.
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The continuous observation models corresponding to the discrete states I,

IK, K1 are given by C, R, and Eq. 3-8. In discrete state I there are two

targets observed, in state I and K only the intercepted target is observed. -

Thus, we have

0 1 0 0 ..

c(T) - I - - - (3-50)
1 00 01
0 1 00

C(I) C( L) 1 0(3-51)0 1 0 0 /;

and we need not specify C(K) since nothing is observed. Similarly, we have

R(I) -diagfo 2 ,2 02 ,2 (3-52)
V1 v1 v2 V 2

2 2!

R(I) R(K) diagja ,o2  ] (3-53)
vi vi

and we need not specify R(K).

At this point several comments are in order. We have presented the sim-

pleat hybrid state model of missile interception. More complex and more

realistic models are possible. For example, one easily includes missed detec-

tions as before. An additional feature of more practical interest is to

expand the discrete state K to model a clutter formation centered at the

interception position. This formation disappears in a few time periods after

interception, and it can be used to model the observed wreckage of a success-

fully intercepted missile. In the example presented above, the two missiles

are modeled as completely independent moving objects before interception.
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However, it is more realistic to model the interceptor missile as following

the intercepted missile. This feature can be added by changing A(TI1) in Eq.

2-40 to something like 0

1 0 T 0-

0 1 0 T*'-
0 0 1 00 0 0 1

A(TIT) - ------------- (3-54)
0 0 00 1 0 T o
0 0 0 0 0 1 0 T
k 0 0 0 -k 0 1 0
0 k 0 0 0 -k 0 1_j

where k is a constant.

We could use an approach similar to this example to model the merging of

aircraft to form a formation of the type described in Example 1. In this case

we would have discrete states M (merge) and H (no merge), and we would have

transitions as shown in Fig. 3-3. Note that H plays the role of Y, 1, K, and

M plays the role of K. In this case, however, the model corresponding to M 0

would be the same as in Example 1. Note that the probability of the transi-

tion 1 to H depends on the continuous state in the same way that P(ITx)

does. This dependence of discrete state transitions on continuous states

makes the hybrid state estimation problem more complicated. The optimal

Bayesian algorithm no longer has the simple form it has when there are no such

dependences. Nevertheless, straightforward suboptimal solutions do exist.

3.3 MULTIOBJECT TRACKING ALGORITHMS FOR FORMATION TRACKING

In this subsection we will discuss multiobject tracking algorithms for

the formation tracking problems formulated in the previous section. The basic

structure of the algorithm, as described earlier in Section 2, remains the
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same, and therefore, we will limit our discussion to those features of the

algorithm which are unique to formation tracking.

..

1-P(MI ,x) P(MIM)

P. (M.•. X)MS

I-P(M M)

R.1507

Figure 3-3. Discrete State Transitions for Merging Aircraft.

3.3.1 Optimal Algorithm Structure

The general form of the optimal Bayesian estimation algorithm for the

linear Gaussian hybrid state estimation problem (in which discrete state

transitions are independent of continuous states) is well known [11,[10]-[141

and was described earlier in Section 2. This algorithm computes the suffi-

cient statistics needed to describe the conditional probability distribution

of discrete and continuous states at specified times, given measurements up to

that time. The sufficient statistics consist of the probability distribution

JJ

*....-ofth ifferen 3-.discrete ypotees (ira .,theseecs ofr disncrete ..ta,--s),.

- - °- .°

and the conditional mepans and covariances of the continuous states based on
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individual discrete hypotheses. The continuous state statistics are computed

using conventional recursive linear estimators (i.e., Kalman filters). What

is always difficult in hybrid state estimation problems is organizing the

increasing number of discrete hypotheses in an efficient manner. We accom-

plished this in our earlier work [121, [14] using the track-oriented data

structure described earlier in Section 2. In this subsection we describe the

optimal multiple formation tracking algorithm in terms of the same track-

oriented data structure. We will describe only the structure of the algorithm

and not the details of computation in this subsection since the computations

(i.e., likelihood and filter computations) are similar to those in our earlier

work [12]. The general approach was also reviewed in Section 2.

A . -

Formations complicate the mulciobject tracking problem in two ways: (1)

multiple returns per scan per formation, and (2) correlated dynamics within a

formation. We first discuss the effect of I on the optimal tracking algorithm

structure. Note that the ultiobject tracking problems presented in our

previous work [121, and in Section 2 do contain one formation, namely the

formation consisting of all the false returns or clutter (see Example 1 in the

previous subsection). Each target track (or local hypothesis)* associates I

0 or measurements per scan. Each clutter formation track (or local hypothesis)

associates 0,1,2,..., or m(t) measurements per scan where m(t) is the total

number of measurements in scan period t. Each global hypothesis contains a

complete, consistent set of local hypotheses. It is consistent in that no two

local hypotheses contain the same measurement; and it is complete in that the

total number of measurements in the set of local hypotheses is m(t).

*The concept of track and local hypothesis is explained in Appendix C.
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The situation is essentially the same for multiple formations. At the

top of the data structure hierarchy is the list of global hypotheses. Each

global hypothesis is a complete set of consistent local hypotheses. Each 0

local hypothesis corresponds to an individual formation and determines a

sequence of discrete states relevant to a specific formation. In particular,

the local hypothesis specifies the measurements associated with the corres- .

ponding formation.

If a formation is more complicated than a clutter formation (and thus

contains two or more targets) then the local hypothesis must also indicate how .

the multiple measurements are associated with targets within the formation.

One can represent these different hypotheses efficiently in our track-oriented

data structure by extending the track-oriented structure from a two-level to a

three-level hierarchy. The hierarchy (shown in Fig. 3-4) consists of global

hypotheses at the highest level, local formation hypotheses at the inter-

mediate level, and local target hypotheses at the lowest level. Note that we

must include clutter formations (such as Example 1) at the lowest level of the

hierarchy together with targets. In this structure each global hypothesis is

in fact a set of pointers that link together a consistent set of formation

hypotheses. Each formation hypothesis is also in fact a set of pointers that

link together a consistent set of target and clutter hypotheses. It is only

at the target level that the hypotheses describe the association of measure-

ments with targets or clutter formations.

We have now described how the problem of multiple returns per formation -.-

per scan can be incorporated into the track-oriented data structure. Let us 9

now discuss the impact of correlated motion within the formation on the struc-

ture of the tracking algorithm. Recall that in the multiobject tracking
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algorithm without formations (see Section 2), the sufficient statistical in-

formation concerning discrete and continuous states can be stored at the tar-

get local hypothesis level. This is no longer true in the formation tracking ..

problem. In the formation tracking problem some discrete states (such as

those indicating when targets separate or merge) are associated only with a

formation and not with any individual target within a formation. The statis-

tics (i.e., likelihoods) of these states must be stored at the formation local

hypothesis level, but this presents no difficulty. Complications arise in

formation track ing because the statistics of target continuous and discrete

states depend on formation hypotheses as well as the target hypotheses. In

other words, the statistics of a specific target's continuous states and dis-

crete states cannot be computed from knowing only the local target hypothesis

(such as the association of measurements with the target). One also needs to

know the local formation hypothesis. Consequently, in formation tracking

problems statistical information concerning target states must be stored and

updated at the formation local hypothesis level. This complicates the algor-

ithm, but it is unavoidable in the optimal algorithm.

GLOBAL HYPOTHESES GHl [ 0 0 _

LOCAL FORMATION HYPOTHESES F * * "

LOCAL TARGET HYPOTHESES I TH2 * * L

R- o °W8

Figure 3-4. Three-Level Track-Oriented Hierarchy.
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To better understand the problems involved, consider Example 2 in which

an aircraft launches a missile. For simplicity we will assume that targets

0
can appear randomly but do not disappear, that there are no false alarms or

missed detections, and that all aircraft carry missiles. Suppose that one

measurement (HI) was received at scan t=l and two measurements (M2 and H3)

were received at t-2. Figure 3-5 shows the targets and formations, the 0

corresponding local hypotheses, and the global hypotheses at t-1. Figure 3-5

also explains the notation we use to label the various types of hypotheses.

At t-1 there is only one global hypothesis which is that there is one missile- .

carrying aircraft and the missile is unlaunched. Figure 3-6 shows how the

local and global hypotheses change at t-2. Now there are two targets (TI and

T2), two formations (Fl and F2), and four global hypotheses. The formation Fl

corresponds to the aircraft-missile formation of t-1. The formation F2

corresponds to a new aircraft-missile formation appearing for the first time

at t2. Thus, at t-2 the global hypotheses GHI[21 and GH2[21 correspond to

having two aircraft and no missiles. The global hypotheses GH3[2] and GH4[2]

correspond to having one aircraft which has just fired a missile. In partic-

ular, note that global hypot .eses GH3[2] and GH4[2] say that the new target T2

is a missile, but GHI[2] and GH12[2] say that T2 is an aircraft. Now we can

see why the statistics of continuous states, such as the positions of TI and

T2, have to be stored and computed at the formation hypothesis level and not

at the target level. In this example, one computes the continuous state

estimate of T2 differently depending on whether T2 is postulated to be a new

aircraft appearing at random in the surveillance area or a missile just

launched by TI.
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HYPOTHESES

TARGETS

T1 T111 (M1)

FORMAT IONS

Fi1 FiHi1l] (TiHiri])

GLOBAL HYPOTHESES

G [.GH1IC] =(FlHi[iJ)

HYPOTHESIS NOTATION

TI Hi1 1 (M1)

OBJECT HYPOTHESIS SCAN CONSTITUENTS
LABEL NUMBER TIME OF HYPOTHESIS

Figure 3-5. Targets, Formations, and Global Hypotheses at t-1l.
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TARGETSHYPOTHESES

T1JI1[1J TlHl[2] = (M1,M2)

Ti T1H2[2] = (M1,M3)

T2H1[2] = (M42)

T2 T2H2[2J = (M43)

FORMATIONS F1H1[23 (TI12])

FLH(1]FlH2[2] (T1H2[2])

Fl1 FlH3[2] (T1H1[2],T2H2(2])

FlH4[2] (T1H2(2j,T2H1[21)

F2H1[2] = (T2H1(2])

F2 F2H2(2] = (T2H2[2])

GLOBAL HYPOTHESES GH1[2] (F1H1(21.F2H2f21)

GH1 [1] GH2(21 =(F1H2r2J,F2H1r2])

G GH3(2] (F1H3[21)

GH4(2] (F1H4[2])

Figure 3-6. Targets, Formations and Global Hypotheses at t-2.
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In this subsection we have discussed the structure of the optimal

algorithm. This structure has two important features. First, one can use a
0

three-level track-oriented data structure to associate measurements with

objects in an efficient manner. Second, one can no longer update the

statistics of continuous and discrete states at the target level; it is neces-

sary to do this at the formation level. It is this second feature that makes

formation tracking problems considerably more complicated than conventional

multiobject tracking problems. In the next subsection we will see that a

similar complication arises when we try to apply suboptimal hypothesis manage-

ment techniques such as screening, pruning, or merging.

3.3.2 Suboptimal Algorithm Structure .

In this subsection we will study the structure of suboptimal multiobject

tracking algorithms for formation tracking problems. As before we will

discuss this structure in terms of the three-level track-oriented data 0

structure described in the last subsection.

Suboptimal multiobject tracking algorithms trade performance for computa-

tional feasibility by applying various techniques to reduce the number of

hypotheses one creates and stores. The principal methods of hypothesis reduc-

tion are screening and pruning (see Section 2). In conventional multiobject

tracking without formations one can apply screening at the target local .

hypothesis level during the creation of new target track nodes from measure-

ment associations. However, in formation tracking this is not generally pos-

sible because the continuous state statistics necessary to define a measure-

ment gate are computed and stored at the formation local hypothesis level

and not at the target level. Because a target may belong to more than one
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formation, there may be several measurement gates associated with each target

track node (i.e., each target local hypothesis). It is necessary to compute

the measurement gate parameters at the formation local hypothesis level, but*0

it may be more efficient to store these parameters at the target local hypoth- -

esis level where new measurements are being associated with targets. In .

general, a specific target local hypothesis may have several gates and one-

associates a new measurement with this hypothesis if the measurement falls

within any of these gates. In some cases it may be possible to identify one

measurement gate that contains all others and use this to screen new

measurements.

In conventional mltiobject tracking problems without formations one can

apply pruning techniques at the target hypothesis level or at the global hypo- -

* thesis level after the likelihoods of each local or global hypothesis has been

computed. In the case of formation tracking these likelihoods are not com-

puted at the target hypothesis level but at the formation and global hypothesis

levels. Thus, in the case of formation tracking pruning takes place at the

formation or global hypothesis levels but not at the target hypothesis level.

However, note that target local hypotheses can be dropped if all formation

hypotheses to which they belong have been pruned. Similarly, formation

hypotheses can be dropped if all global hypotheses to which they belong have .

been pruned.

In this subsection we have discussed the structure of suboptimal algo-

*rithms based on screening and pruning. Suboptimal algorithms for formation

tracking are similar to those for conventional multiobject tracking with one9-

significant difference. Because continuous and discrete state statistics.
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(i.e., conditional means, error covariances, and likelihoods) are computed

only at the formation hypothesis level, it is necessary to perform suboptimal

approximations such as screening and pruning at that level also. 0.
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SECTION 4

CONCLUSIONS

4.1 MULTIPLE, MANEUVERING TARGETS

We showed in Section 2 that the hybrid state multiobject tracking

algorithm can easily incorporate the tracking of multiple, maneuvering

targets. The hybrid state framework was flexible enough to formulate the

problem of multiple targets which are "born" (i.e., appear) and "die" (i.e.,

disappear) at unknown times, and which can maneuver between straight and

accelerated flight during the interval in which they are "alive." The model

also included the possibility of missed detections of a present target, false

detections of clutter, and the unknown association of returns in any one scan

with targets in track. We also considered the effect of nonlinear radar

measurements (i.e., range and azimuth) on the tracking of multiple maneuvering

targets.

Although we constructed the optimal hybrid state estimation algorithm for

this problem, we found that the additional hypotheses generated to account for

the possibility of maneuvers makes it impossible to run the optimal algorithm

for more than two or three scans. Thus, we used gating, pruning, and a simple

form of merging to reduce the number of hypotheses generated to a manageable -

number. Two approximations were particularly useful to deal with multiple

maneuvering targets. The first approximation was to prevent initiation of

maneuvers until the target's velocity error is sufficiently small (as defined
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by a prespecified threshold). This screening technique prevented the

inclusion of tracks which postulate maneuvers as a consequence of the large

gate sizes at the time of track initiation. If a target maneuvers at the time

of birth, it is picked up as a new target with little loss of information

caused by dropping the previous track. The other useful approximation is to

prevent hypothesizing several different maneuvers in succession. Note that -

both of these techniques for practical implementation can be thought of as

resulting from specific hybrid state modeling assumptions. For example, the

first results from assumptions about the number of detections one expects "

before the target can transition to a maneuver state, and the second

approximation corresponds to restrictions on the transitions between different

maneuver states. This suggests more generally that we can associate

particular hybrid state models with many practical algorithms which have been

designed using intelligent heuristics and which were not originally based on

any well-defined model. This association could clarify the assumptions on

which a given practical algorithm is based and thus help to distinguish . -....

between different algorithms.

4.2 MULTIPLE FORMATIONS

In Section 3 we further demonstrated the power of the hybrid state

approach by generalizing the multiobject tracking problem to include the

problem of tracking multiple formations. Multiple formations arise naturally

in real surveillance problems and can be used to model such phenomena as

aircraft flying in formation, aircraft launching missiles, and missiles

intercepting aircraft or other missiles. The problem of tracking formations

is generally more difficult than tracking individual targets because several
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returns in a single scan may be associated with one formation and because the

dynamics of objects within a formation are correlated with each other.

We found that the track-oriented data structure developed in our previous -

work [121 and clarified in this report can be generalized to deal with
51

multiple formations. This extension resulted in a three-level hierarchical

structure consisting of global hypotheses at the highest level, local .

formation hypothesis at the intermediate level, and individual target and

clutter hypotheses at the lowest level. It is only at the lowest level that

hypotheses describe the association of measurements.

In the multiobject tracking algorithm without formations, the sufficient

-i statistical information concerning discrete and continuous states could be

computed and stored at the target local hypothesis (i.e., target track) level.

4 We found that this is no longer true in the formation tracking algorithm. In

* the formation tracking problem some discrete states (such as those indicating

when targets separate or merge) are associated only with a formation and not

with any individual target within a formation. Complications arise because ."'

the statistics of target continuous and discrete states depend on formation

hypothesis as well as the target hypotheses. Thus, the statistics of a

specified target'. continuous states and discrete states cannot be computed

from knowing only the local target hypothesis (such as the association of

measurements with the target). One also needs to know the local formation

hypothesis.

These issues make the principal suboptimal methods, gating and pruning,

difficult to apply to multiple formation problems. In conventional multi-

object tracking one can apply screening at the target local hypothesis level

during the creation of new target track nodes from measurement associations.
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In formation tracking this is not generally possible because the continuous

state statistics necessary to define a measurement gate are computed and

stored at the formation local hypothesis level and not at the target level.

Because targets may belong to more than one formation, there may be several

measurement gates associated with each target track node. Difficulties also .. .

arise in pruning because the likelihood statistics used for pruning must be •

computed and stored at the formation level of the data structure and not at

the target track level.

4.3 HYBRID STATE APPROACH

In this report we have sought to illustrate the effectiveness of the

hybrid state approach in formulating multiobject tracking problems in

particular and airborne surveillance problems in general. The hybrid state

formulation provided a useful framework both for modeling many different

surveillance problems (e.g., maneuvering targets, formation flying, etc.)

and also for constructing theoretically optimal and efficient suboptimal

algorithms.

In terms of modeling, the hybrid state approach provides a very general

and convenient representation of stochastic dynamic systems. This approach

allows us to represent continuous, numerical-valued variables and discrete, -.

logical-valued variables in a systematic, unified framework. We showed the

power of this framework to represent both conventional (multiple targets) and

novel (multiple formations) surveillance problems. We feel that this ability

to treat continuous and discrete variables together in a systematic way makes

the hybrid state approach a powerful technique for modeling surveillance

problems, and ultimately, for designing surveillance systems.

70
7-

-"-F " 'i



ALPHATECH, INC.

Once the hybrid state model is specified, optimal arnd suboptimal estima-

tion algorithms can be derived systematically. Computationally, this

algorithm consists of simple likelihood calculations and linear Gaussian esti-

mation computations. All of the complexity of the algorithm lies in the

rapidly growing dimensionality of the computations as new discrete hypotheses

are generated. The main problem of the algorithm designer is to determine an S

efficient structure for representing and generating the myriad hypotheses and

to find effective techniques for managing the growth of these hypotheses. In

S
this report we have defined the track-oriented data structure which is a very

efficient structure for representing the type of hybrid state systems arising

in multiobject tracking problems. This structure is convenient both for new

hypothesis generation and for likelihood and filter computations. Further-

more, although we have not studied this aspect in depth, the track-oriented

data structure provides a natural parallel computational structure for array

processing.

Suboptimal techniques for managing hypotheses in the general hybrid state .- ..

estimation algorithm are straightforward extensions of gating, pruning, merg-

ing, and clustering. These fit naturally into the track-oriented structure.

However, the quantitative value of these different suboptimal techniques is

still unclear. We have performed numerical simulations which give some quali-

tative picture of the effectiveness of a technique, but much remains to be

done in determining quantitative effectiveness.
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APPENDIX A

SOME MATHEMATICAL MODELS FOR MANEUVERS

A nonmaneuvering target is modeled simply in terms of constant velocity

motion with small, white-noise accelerations. The state x consists of two

position coordinates, px and py, and two velocity coordinates, vx and vy.

Thus,

Px

Py
(A-I)

vx

y -

The state transition matrix from scan number k to k+t is expressed as follows-;':-

in terms of the time per scan, T

1 0 T 0 I ..

6(k+1,k) - (A-2)
0 0 1 0

L0 0 0 1 J'- -

,:...--.-

The Gaussian white noise accounts for small perturbations in target veloc- -

ity. We assume that the sequence of _1(k) is Gaussian, uncorrelated, zero-

mean, and has a diagonal covariance matrix given by
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Edi(k)Cl(k)T}-diag[O 0 ql q21 . (A-3)

The resulting state equation for a nonmaneuvering target is

x(k+l) = 9(k+l,k)x(k) + (k) (A-4)

There are two basic types of models of maneuvering targets: those which

have only well-defined maneuvers and those which have only random maneuvers.

One may consider more general maneuver models as combinations of these two ,

basic types. Let e denote the onset time of the maneuver. The parameter 8

may be modeled as a random variable or as an unknown parameter. Define the

function s(k,e) as follows ..O

1 k>8
s(k,e) = . (A-5)

0 k<O

The well-defined maneuver is modeled in terms of an acceleration vector

ax" 
"" - -"'

u(k, ) = s(k, ) (A-6) _ay 
-" -'.,

and a control matrix

T 2/2 0

0 T 2/2
B -(A-7)

T 0

0 T
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In Eq. A-6 the acceleration components ax and ay may be able to assume several

possible values. The resulting maneuver model is given by

x(k+l) f (k+l,k)x(k) + Bu(k,e) + W(k) .(A-8)

The random maneuver model Is expressed in terms of a second zero-mean0

white-noise C2 with diagonal covariance

E{%(k).j2(k)T} diag[O 0 q 2  q 2] (A-9)

vhere q >q,. The resulting model is given by

xM(k+l) f(k+I,k)x(k) + S k)+ (92(k)-9 1(k)]s(k,8) . (A-10) .

* Figures A-1 through A-3 illustrate the velocity component of target motion for

each of the three types of maneuvers. Note that well-defined maneuvers model

* maneuvers due to normal course changes, while random maneuvers may model rapid

velocity changes such as occur in jinking.

0
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VELOCITY
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SCAN TIME k
ft-1o9s

Figure A-1. Nonmaneuvering Target Motion.

VELOCITY -.-

-, V

e
SCAN TIME k

Figure A-2. Well-Defined Maneuver Target Motion.

VELOCITY

V

6 e

SCAN TIME k
ft-1100

Figure A-3. Random Maneuver Target Motion.
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APPENDIX B.-

..1

SURVEY OF MANEUVER DETECTION AND ESTIMATION
ALGORITHMS FOR A SINGLE TARGET

In this appendix we will describe briefly four types of suboptimal

approaches to maneuver detection and estimation for single targets. The four

approaches are: (1) multiple model adaptive estimation, (2) generalized like-

lihood ratio, (3) variable state dimension, and (4) minimal-time detection.

B.1 MULTIPLE MODEL ADAPTIVE ESTIMATION

The multiple model adaptive estimation (MMAE) was originally due to

Magill (15] where further references are given. This method provides an opti-

mal solution for the hybrid-state estimation problem in which the discrete S

states do not change with time. In terms of the problem formulation this .

means that q(k)-q(1) for all k. Such an assumption does not appear to be .

realistic in maneuver models, but it is still possible to apply the MHAE

method by making other realistic, simplifying assumptions. This is the

approach taken by (16].

Two assumptions are required to apply the MMAE method to maneuver detec- 0

tion and estimation problems [161: (1) the probability of a maneuver in any

one scan is very small, and (2) the expected time spent in one discrete state

before maneuvering to another one Is longer than the dynamic response time of

the Kalman filter for the continuous states. These assumptions are realistic ...
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for many problems and lead to a feasible implementation. The algorithm con-

sists of the following elements (refer to [161): (1) a bank of parallel

0
linear filters, one for each discrete state (i.e., type of maneuver); (2) a

linear equation to update the posterior discrete state probabilities (the

order of this equation is the number of discrete states); and (3) the state

estimate is the weighted sum of the filter estimates from I using weights from

2. Note that this method provides a single, weighted average state estimate

and does not detect the onset time of a maneuver.

B.2 GENERALIZED LIKELIHOOD RATIO

The generalized likelihood ratio (GLR) method was developed by Willsky

and Jones [17] to do detection and estimation in systems subject to abrupt J. ..

changes. A maneuvering target is an example of such a system. This method

provides a suboptimal solution of the hybrid state estimation problem in which

the discrete states change only once at an unknown or random maneuver time.

In term of the problem formulation this means that

q(k) - k-0 (B-1)
q 'k>e

In Eq. B-1 the maneuver onset time is denoted by 8. The type of maneuver,

which is determined by the discrete states q, and q2, is a random state. Note

that GCL also permits one to treat continuous random parameters in the maneu-

ver model (e.g., unknown maneuver size).

The assumption of only one maneuver, at an unknown time, is realistic

when maneuvers are infrequent. However, even given this assumption, the

optimal maneuver detection and estimation algorithm is computationally
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infeasible. The GLR method is a suboptimal algorithm that operates as follows

(171: (1) a maneuver is detected, and the maneuver onset time and type are

0
estimated using a likelihood ratio method which does not require knowing the

magnitude of the maneuver; (2) the maneuver size is estimated optimally given

the onset time and maneuver type; and (3) the tracking algorithm is compen-

sated using maneuver time, type, and size. Note that Step I is a reasonable

but suboptimal approach to detecting a maneuver and estimating the maneuver
4 . -. " .o

onset time.

B.3 VARIABLE STATE DIMENSION

By adding acceleration components to the target state it is possible to

design a filter that will track maneuvering targets [18). However, this

.4 state-augmented filter tracks more poorly than the original reduced state fil-

ter when the target is not maneuvering and has constant velocity. Bar-Shalom

and Birmiwal [191 developed a variable state dimension method to deal with

this problem.

The variable state dimension method does not rely on statistical models

of the maneuver process. In terms of the problem formulation this means that

the discrete state q(k) is a deterministic, but unknown, parameter. Moreover, -

q(k) takes only two values (maneuver or nonmaneuver) and the corresponding

state equation has two different dimensions (6 or 4).

The variable state dimension approach is not based on an optimal crite-

rion (i.e., it is not a Bayesian approach) but employs a reasonable, if ad

hoe, statistical approach to detect and estimate maneuvers. The algorithm 0

works as follows [191: (1) use a chi-square test on the innovations of the

four-state constant-velocity filter to detect maneuvers; (2) if a maneuver is
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detected, switch to the six-state acceleration filter; (3) if the estimated

accelerations are not significant compared to their standard deviation, return

to the nonmaneuver state. Note that the computational requirements of this

approach are very low. A Monte-Carlo statistical analysis of this method is

presented in [191.

B.4 MINIMAL-TIME DETECTION

Under special simplifying assumptions concerning the maneuver process, it

is possible to determine an algorithm to detect a maneuver with minimum .6

expected delay for a given false alarm rate. This method is based on the

classical quickest detection problem of statistics and is developed by

Balikrishnan (201.

The minimal-time detection approach assumes that there are only two dis-

crete states, maneuver and nonmaneuver, and the transition from nonmaneuver to

maneuver occurs at a random time. In terms of the problem formulation the

maneuver process is similar to that used by the GLR method except that there

are only two discrete states. That is,

nonmaneuver , k<e

q(k) - . (B-2)
maneuver ,k),

Let T denote the time at which the maneuver is detected. Define a function S

x(s) as

0 s0
X(s) " (B-3) -

s s>O -_t":

The objective of the minimal-time detection method is to minimize the expected

time delay,
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E(X(r-e) (B-4)

for a given false alarm probability. Note that a false alarm occurs when T<e.

The optimal detection strategy compares the conditional probability of a
.. '..

maneuver, .

p(MEkzk) (B-5)

to a fixed threshold, depending on the desired false alarm rate. One

declares a maneuver has occurred when the probability in Eq. B-5 exceeds ,

this threshold.

In order to obtain an implementable solution, one makes a further simpli-

fying assumption concerning the maneuver onset time e. That is, one assumes

that it is geometrically distributed as follows

pk 0 P k-I (B-6)

p(l-p)kl1(I-p) k>1

Even with this assumption the computational effort Involved in computing the

conditional probability in Eq. B-5 is considerable.

In principle one may formulate a minimal-time detection problem for more

complex maneuver processes. For example, one could allow more than one type

of maneuver as in the GLR approach. However, in such a case the optimal

detection strategy is not generally a threshold test as it was in the case of

one kind of maneuver. At the present time such optimal strategies are com-

putationally infeasible and little is known about what are good suboptimal

strategies.
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APPENDIX C

DATA STRUCTURES IN MULTIOBJECT TRACKING ALGORITHMS

This appendix is to clarify the distinction between target- and

measurement-oriented data structures which are used in multiobject tracking.

Efficient implementation of either approach suggests a third type of data

'.5

* structure which we call track-oLiented.

C.1 DEFINITION OF BASIC DATA STRUCTURES

Both target- and measurement-oriented data structures serve to associate-

measurements and targets in a single h-pothesis tree. Figure C-i, taken from

Keverian and Sandell (2], illustrates the tree structures corresponding to

these two approaches. In each structure a branch of the tree corresponds to a

single hypothesis. However, the levels of the tree correspond to targets in --..

the target-oriented data structure and to measurements in the measurement-

oriented approach. Correspondingly, the nodes in the tree correspond to

measurements in the target-oriented approach and to targets in the measurement-

oriented approach. Table C-1 summarizes these differences.

We can represent the two data structures described above conveniently in

terms of arrays which express the functional relationship between targets,

measurements, and hypotheses. One can view a tree as a relationship between

branches, levels, and nodes. For a given branch and level there corresponds a

unique node in a tree. Thus, we can represent the tree as a function whose
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TARGET ORIENTED MEASUREMENT ORIENTED

TARGET LEVELS MEASUREMENT LEVELS

1 2 3 0 m

m2
m3-x Ml

00

FISTSCNx- (m2,m3) AFE0IRTSA

VARIABLES IN NODES REPRESENT NUMBERS IN NODES REPRESENT
MEASUREMENTS. "X" INDICATES TARGETS. "0" IS A FALSE
THAT NO MEASUREMENT IS ASSO- ALARM.
CIATED WITH THE TARGET, 10s6

* IS A FALSE ALARM.

0,_
6m6

.44

__I__ IR-.
*TREE STRUCTURE AFTER SECOND SCAN TREE STRUCTURE AFTER SECOND SCAN 7

R-1513

Z(a) Target-Oriented Hypotheses (b) Measurement-Oriented Hypotheses

Figure C-1. Target- and Measurement-Oriented Data Structures.
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independent variables are branch label and level label and whose dependent

variable is node label. Let us write this in the following way:

0

NODE - NODE(BRANCH,LEVEL) . (C-I)

The functional description is equivalent to representing the tree by an array

whose elements are node labels and whose indices are branch and level labels.

TABLE C-I. TARGET- AND MEASUREMENT-ORIENTED TREE
STRUCTURE COMPARISON

Branches Hypothesis Hypothesis

Levels Target Measurement

Nodes Measurement Target

In terms of the tree representation described above, target-oriented data

structures correspond to arrays

MEAS (HYP, SCAN, TARG) (C-2)

and measurement-oriented data structures correspond to arrays

TARG(HYP,SCAN,MEAS) . (C-3)

In Eqs. C-2 and C-3 the variable HYP denotes hypothesis laoel, SCAN denotes "

scan label (i.e., scan number), TARG denotes target label, and MEAS denotes

measurement label. Note that the pair SCAN, TARG in Eq. C-2 are needed to

define a unique level label in the target-oriented tree. Similarly, if MEAS

is the label of a return within a scan, the pair SCAN, MEAS are needed to

define a unique level label in the measurement-oriented tree. ,
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C.2 TARGET-ORIENTED DATA STRUCTURE

The target-oriented data structure corresponds to the array of measure-

ment labels shown in Eq. C-2. What hypotheses can the target-oriented

approach describe conveniently? Let MEAS0 be the label for a no-information

measurement (i.e., missed detection). In the target-oriented approach,

hypotheses correspond to measurements associated with different targets. The

representation implicitly assumes that only one measurement corresponds to a

target in a single scan for a given hypothesis. For this reason it is diffi-

cult to represent false alarms. To do so requires adding many target labels s

corresponding to false alarms (no-target target labelsl). Let TARG-01, 02,

etc. be these false alarm labels. We need several of them in order to pre-

serve the functional form of Eq. C-2, i.e., so that only one measurement label

corresponds to a target label in a single scan for a given hypothesis. Having

to introduce many false alarm labels is a disadvantage of the target-oriented

data structure because one ordinarily cares only whether a measurement is a

false alarm or not, but not whether a measurement is a particular false alarm.

Hypothesizing target births is not difficult by itself in the target--

oriented approach. To represent such births one needs only to permit a poten-

tially infinite number of target labels, realizing that one will have to store

an array whose dimension increases with time but is never infinite dimen-

sional. Target-oriented approaches have difficulty initiating targets because

practical problems have target births and false alarms, and because it is

necessary to distinguish one from the other. As noted above, the target- -.

oriented data structure can represent both births and false alarms, but false

alarms are handled inefficiently and thus realistic target initiation is

* difficult.
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C.3 MEASUREMENT-ORIENTED DATA STRUCTURES

The measurement-oriented data structure is the dual of the target-

oriented structure, obtained by interchanging the role of target and measure-

sent labels. Thus, the remarks above for target-oriented structures also

hold, interchanging target and measurement, for the measurement-oriented data

structure. In particular, let TARG-O correspond to a nonexisting target -

(i.e., false alarm). In the measurement-oriented approach, hypotheses corres-

pond to targets associated with different measurements. This representation

,.; implicitly assumes that only one target corresponds to a measurement in a

single scan for a given hypothesis. For this reason it is difficult to repre-

sent missed detections. To do so requires adding measurement labils corres-

ponding to missed detections (no-information measurements). Let MEAS-Ol, 02,

etc. be such labels. We need several of these labels to preserve the func-

tional form of Eq. C-3. This is a disadvantage of the measurement-oriented

data structure because one cares only whether a target's detection was missed

or not, but not whether the no-detection was a particular miss.

Hypothesizing target deaths is not difficult by itself in the-

measurement-oriented approach. To represent such deaths one needs a poten-

tially infinite number of measurement labels of the form OH to represent

missed detections for a given target which may have died. Note that one will

never have to store an infinite dimensional array. Measurement-oriented •

approaches have difficulty terminating targets because practical problems have

target deaths and missed detections, and because it is necessary to distin-

guish one from the other. Although the measurement-oriented approach can _

represent both deaths and missed detections, it handles missed detections

inefficiently and thus realistic target termination is difficult.
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C4 TRACK-ORIENTED DATA STRUCTURES

In the previous subsections we saw that the target- and measurement-

oriented data structures are dually related to each other, and each approach .

has its corresponding advantages and disadvantages in terms of the efficiency

with which the approach can represent certain types of hypotheses. In this

subsection we will see that both data structures suggest a third data struc- 4

ture which is more efficient and combines the advantages of the target and

measurement-oriented approaches. To begin, consider the target-oriented data

structure represented by the array in Eq. C-2. In situations with several S

targets there will be several different hypotheses which associate the same

sequence of measurements with a particular target. For this reason it is

possible to represent these hypotheses more efficiently by defining the con-

cept of a local hypotheses for each target. Thus, let us say that two hypoth-

eses, IIYP 1 and HYP are equivalent with respect to target label n at scan

number t, if

MEAS(HYP1 ,s,n) IfEAS(HYP2,s,n) (C-4) ........

for all s, 14s4t. In this case we write

HYP! -= (n,t) (C-5)

Let LOCHYP(n,t) denote the equivalence class of hypotheses under the equiva-

lence relation defined in Eqs. C-4 and C-5. The pair TARG-n, LOCHYP(n,t)

define a target track up to scan t. That is, this pair defines a unique .

sequence of measurements (one return for each scan) with the target label n.

The collection of all LOCHYP(n,t) for a given n defines the target track tree
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for target label n (see Fig. C-2). For each association of a measurement

sequence with target n there corresponds a unique local hypothesis. .

SCAN =1 SCAN= 2

2 LOCHYP =1

1 LOCHYP 2

0 LOCHYP =3

TAG 12 LOCHYP =4

1: LOCHYP =5

0 LOCHYP 6

THERE IS ONE MEASUREMENT IN THE FIRST SCAN,
TWO IN THE SECOND. HENCE, THERE ARE SIX LOCAL
HYPOTHESES FOR THIS TARGET AFTER TWO SCANS.

R-1467

Figure C-2. Target Track Tree for Target 1 After Two Scans. -.

We can now define a new type of data structure, called a track-oriented

data structure, which is equivalent to the target-oriented data structure.

Consider a new measurement label array, not to be confused with Eq. C-2, which

we denote by .

MEAS(LOCHYPSCANTARG) .(C-5)

Given a target label TARGET-n, Eq. C-5 specifies a tree with branches LOCHYP, J9

levels SCAN, and nodes MEAS. That is, Eq. C-5 represents the collection of

different target track trees. In addition to these track trees, one needs the

S.
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relationship that associates a pair TARG, LOCHYP with a hypothesis HYP. For

example, we can represent this relationship by a collection of pointers which

link HYP with associated pairs TARG, LOCHYP. Let us represent the relation- "

ship by an array

I(HYP,SCAN,TARG,LOCHYP) (C-6)

which is I if HYP is in the equivalence class LOCHYP(TARG,SCAN) and is 0

otherwise. In other words, I- if a target track TARG, LOCHYP belongs to the

hypothesis IIYP and 1-0 otherwise. Note that one need not store Eq. C-6 as an

array. Since many entries are going to be 0, one can efficiently store loca-

A tions of nonzero entries of the array. This is equivalent to defining data

pointers (either from hypotheses to tracks, or tracks to hypotheses).

Thus, the track-oriented data structure so far consists of the two arrays

in Eqs. C-5 and C-6. Is this new data structure equivalent to the track-

oriented structure? Let us consider how false alarms are represented in this

new data structure. The target-oriented approach postulates a set of special

targets labeled 01, 02, etc. which correspond to false alarms. The construc-

tion above of the track-oriented data structure will associate a target track

tree with each such label. It should be clear that the different false alarm

levels 01, 02, etc. have no real meaning - there are not different types of

false alarms. Therefore, define one target track tree corresponding to false

alarm (TAAG-0). The branches of this tree are hypothesis labels, the levels

are scan, measurement pairs, and the nodes are 0 if the measurement if a false

alarm for a given scan and hypothesis, otherwise it is 1. This information

can be represented by an array

90- ..'.* ,
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I(HYP,SCAN,MEAS) (C-7)

which contains only 0 or I entries. Note that the array in Eq. C-7 could also

be represented by pointers that associate each hypothesis HYP with the collec-

tion of measurements (SCANoEAS) that are false alarms.

Thus, the track-oriented data structure consists of the arrays in Eqs.

C-5, C-6, and C-7. That is, this data structure consists of a collection of

target-oriented data structures (the target track trees), a set of links asso-

ciating hypotheses and tracks, and a measurement-oriented data structure asso-

ciating measurements with false alarms for each hypothesis. Note that this

track-oriented data structure is a combination of target- and measurement-

oriented structures. For this reason it can represent both missed detections

and false alarms in an efficient manner. The data structure described in Eqs.

C-5, C-6, and C-7 contains all information needed to represent all hypotheses

at a given scan. Note that in many cases it will be possible to simplify this

data structure even further (e.g., one may only need to know the number of

false alarms in a scan without having to know the measurements associated with

false alarms; in this case the array in Eq. C-7 can be simplified).

C.5 RELATIONSHIP OF MEASUREMENT- AND TRACK-ORIENTED DATA STRUCTURES

In subsection C.4Awe constructed a track-oriented data structure and at

the same time showed its equivalence to a target-oriented data structure. One .

can carry out a similar construction starting from a measurement-oriented data

structure. We begin by defining local hypothesis (i.e., target tracks) in

terms of equivalence classes of hypothesis. Let us say that two hypotheses,

II!P I and KYP 2 , are equivalent with respect to target label n and scan number

t, if there exist two measurement label sequences ink(s), 14s~t, k-1,2, such
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that either both *1(s) and m2(s) are missed detections (perhaps with different

labels) or both are the same measurement label, for each s, I-s~t, and for

each s

n = TARG(HYP l,s,m (s)) = TARG(HYP2,s,m2 (s)) (C-8)

Equation C-8 defines the same equivalence relation as in Eq. 6-4, although the

presence of missed detections makes the construction more difficult in this

case. Now we can define the arrays in Eqs. C-5 and C-6 just as before. We

can construct the array in Eq. 6-7 more easily than before because the

measurement-oriented approach treats false alarms more efficiently. Define

I(HYP,SCAN,MAS) to be 0 if TARG(HYP,SCAN,MEAS)=O, otherwise let it be I.

C.6 CONCLUDING REMARKS

This appendix has shown that target- and measurement-oriented data struc-

tures are dually related to each other, and each can be used to represent all

hypotheses in iultiobject tracking. However, each approach handles some

aspects of multiobject tracking more efficiently and other aspects less effi-

ciently (e.g., target-oriented approaches can treat target deaths and missed

detections more efficiently than target births and false alarms; measurement-

oriented approaches are opposite in these regards). Finally, we showed that

both data structures are mathematically equivalent (in the sense of repre- .

senting the same information) to a third data structure which we described as

track-oriented. The track-oriented combines the advantages of both target and

measurement-oriented data structures in a more efficient representation of 9,

hypotheses in multiobject tracking problems.
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