"AD-A148 458

SPADE: SERIES-PARALLEL DIRECTED ACYCLIC GRAPH EYALUATOR
(U) WISCONSIN UNIY-MADISON MOTOR BEHAYIOR LAB

R SAHNER ET AL. NOY 84 CS5-1984-15 AFOSR-TR- 84 1896
UNCLASSIFIED HFOSR 84-08132 G 9/2

w1 X

END

FuneD

one

it \ONG

CAONGNING

B e gy # e o

1.6
o

EFEE

5 EEEETTIN,

m
m
m
L2
1.4
=

NATIONAL SUREAU OF STANDARDS - 1963 - A

125

MICROCOPY RESOLUTION TEST CHART

————— g e~ BT ans ¢ DY e A

-u e

¥

L -

«

Crs
.

——y P
XN el A
e eT AT Y, Y

vy

Y v, v,
OO

P4

* S e e, - LT e e e TS T Ea e i O
L R o e T L I A T e I Tt T L P L RSN - MR N

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE h
REPORT DOCUMENTATION PAGE
ts REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED]
26 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
20. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.
3 ry psgnfsgu NG ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBE R(S)
T CS-1984-1 o o)
y AFOSR-TR- $34-.1086
00 [o5 Name OF PERFORMING ORGANIZATION b. OFFICE SYMBOL |7s. NAME OF MONITORING ORGANIZATION
. Duke University (If applicable)
- m Air Force Office of Scientific Research
; v 6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code) °
Department of Computer Science Directorate of Mathematical & Information
g Durham NC 27706 Sciences, Bolling AFB DC 20332-6448
" U™ ga. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL]9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
- ORGANIZATION (I applicabie)
: <L AFOSE M AFOSR-84-0132
- i 8c. ADORESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
p Q PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
"L Bolling AFB DC 20332-6448 61102F 2304 A5

11. TITLE (include Security Classification)
SPADE: SERIES-PARALLEL DIRECTED ACYCLIC GRAPH EVALUATOR

12. PERSONAL AUTHORI(S)
Robin Sahner and Kishor S. Trivedi

L MNCEAACIE g Mt Sk S T Latet S Jhas Sasc anoe duts S e g duor sbe timne et — T T o W W O o v ww w v - .~

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Technical EROM T0 NOV 84 29
18. SUPPLEMENTARY NOTATION

COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR.

. ABSTRACT (Continue on reverse if necessary end identify by diock number)
model for the stochastic analysis of directed acyclic graphs is developed. These graphs
represent node-activity networks where the distribution function associated with a node is
assumed to be a mixture of Erlangs. The distribution function of the graph execution time
is computed in a semi-symbolic form. Applications of the model for the evaluation of con-

current program execution time and to the reliability analysis of fault~tolerant systems _

are d:lscussed.Q -

T
FILE COPY L CTE

E

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
uncLASSIFIED/UNLIMTED K same as aetr. O otic users O UNCLASSIFIED
220. NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER 22c. OFFICE SYMBOL
{Inciude Area Code)
MAJ Brian W. Woodruff (202) 767- 5027 NM
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

L P At e P Ve e e et
@t ow et . % .
ettt PRIEF AR IS AP IP AP SO

o Wy IR A TR AL N ISR SR RO AT I S Y

« >

AFOSR-TR- 54 -1096 < o

C5-1984-15

. SPADE: Series-Parallel Directed
Acyclic Graph Evaluator

Robin Sahner
Kishor S. Trivedi
Department of Computer Science
Duke University
Durham, N. C. 27706

l Accession For !

FrrTs emasl ‘—E

| reve T3

T PR LY O

i . :ificatioiZ:::: :: ‘
7 L

}hPistribvtion/

. . /v1lability Codes
3 ' Avail and/or
‘Tizt | Special

Approvedforpublicret:aso;
distributionunlimite . .-

€ 8 Go0 & 1

PGE 5)

ad X
'4-.

13
[

)
T e O
l'.l' N

»
h)
20 le

.
'y
)

;". '\;, \:_'u. e 'b:,"-. AN e %, \’.‘n’,‘ n.';'-. S NKRER '-..“f'!-.\-‘-'i'-,‘... . :' ..:‘- .:‘-': o

SPADE: Series-Parallel Directed Acyclic Graph Evaluator

Robin Sahner and Kishor S. Trivedi

Department of Computer Science
Duke University
Durham, N. C. 27708

was g .an asds s
v .

—

.

3
]
14

]

VR

AR PORCE opFr mo o .’-\:'.‘-.'r".
CRGR QrTI pa ;

ROTICE 0P vy - - yw}' fff € FESTAROY (ArSC) fii
This tagiens e o S [
apuroe. | - ' ' ‘«.:n Cowdls L———-
Diastevil. | o :
MATTUE J, jo. o
Chief, Technical Information Division :

- hE0dFe-03

This work was supported in part by the Air Force Office of Scientific Research under grant AFOSR-84~
the Repearch Office under contract DAAG29-84-0045 and by the National Science Foundation

g4 12 03 24§

P SR VI S . UL S S
\.:'! » q'\.\.".' '...‘-.‘ sy '\'.'v..'-’ 'o.\..n’ LN [y

. ;’\:.n_:’-.}o':. A .‘..\.‘-. A ‘..'.." DAL SRR

LML IO ORI B b A DAty iy Yy ping=nty "ol MUl V8 . vy
Ly
-

& . N -,

Abstract

A model for the stochastic analysis of directed acyclic graphs is developed. These
graphs represent node-activity networks where the distribution function associated
with a node is assumed to be a mixture of Erlangs. The distribution function of the
graph execution time is computed in a semi-symbolic form. Applications of the model
for the evaluation of concurrent program execution time and to the reliability analysis
of fault-tolerant systems are discussed.

' "
s hat e e

1. INTRODUCTION

The demand for computing capacity has sustained a high growth rate. Coupled
with technological advances, this demand has implied an increased interest in muitiple

and distributed processing systems.

Many interesting problems in the design and analysis of such systems need to be
solved in order to provide their designers and users with insights and tools for system
evaluation. Besides the need to be able to derive measures of system effectiveness for
a given system and its associated parameters, there is a need to provide techniques for
selecting a set of parameter values in order to optimize system effectiveness in a given
setting.

Both simulation and analytic models have been used for system effectiveness
evaluation and optimization. Simulation models tend to be more credible but more
expensive than analytic models. In order to improve the credibility of analytic models,
there is a need to consider more complex models. Most current work on performance
analysis of parallel and distributed systems by means of analytic rnodéls may be
classified as either program-centered (transaction-centered) or resource-centered
analysis.

In resource-centered analysis, system resources are modeled in grea‘(detail while
a relatively simple model of transaction behavior is assumed. Product-form queueing
networks have been used to analyze computer systems [1,20], communication net-
works, and computer-communication networks [10]. The existence of a product-form
solution implies a relatively efficient numerical procedure to obtain the solution. How-
ever, real system behavior rarely satisfles the necessary assumptions of a product-
form network. For example, transactions with internal concurrency will violate

product-form [7.6,19]. Many authors have studied approximate and exact solution

techniques for solving queueing models where programs are allowed to overlap their

computation with their own input-output operations [7]). We have recently generalized
and studied more general types of concurrency in transactions sharing system

resources [8].

In program-centered analysis, a relatively simple model of system resources is
assumed while the characteristics of transactions are modeled in great detail. Assum-
ing that transactions possess internal concurrency and randomness, the problem is
that of analyzing a stochastic activity network [5,8]. At least three approaches to the
analysis of such networks can be identifled: path analysis, Markov chain technique, and
stochastic Petri net technique.

The path analysis technique first computes the distribution of time to traverse
each path. From these path times, the overall execution time can be obtained exactly
for certain special types of graphs [18]. But in the general case, overlapping paths
exist and hence one can only obtain an approximation (or bounds) for the overall exe-
cution time [8]. In any case, for complex graphs the number of paths can be rather

large, making the technique computationally expensive.

The second approach is to convert the given graph into a continuous-time Markov
chain [11,12]. Besides the restriction imposed by the exponentially distributed node
times, this approach quickly leads to an explosion in the state-space of the Markov
chain.

The third approach constructs a Petri net equivalent of the given graph.
Ramamoorthy and Ho use this approach in the case that node times are deterministic
[15). Molloy considers exponentially distributed node times and converts the Petri net
into a Markov chain for analysis [13). We have allowed the node times to be generally
distributed in our Extended Stochastic Petri Net (ESPN) Model [3]. Whenever possible,
the ESPN is automatically converted into a Markov chain or a semi-Markov process. If

neither of these approaches succeeds then the ESPN is evaluated using Monte-Carlo

simulation. The first two approaches for the solution of an ESPN can lead to large state

« a2

[R PLPASS S MY PR

g | | S L 5t AR

ARV 2 SRR S

e

.

O
\-
Lo

5"‘

0 P A A 0 A " " ol At i, et e it S e e e et Gt et ey s s Jncs G0 6 SRS S s SRR NS

AR DA IAFAIR DA

92

r.

spaces, while the third approach can be time consuming due to the inherent speed lim-

itations of a simulation model.

- The approach developed in this paper falls into the path analysis category. It
avoids the pitfalls of the large state space, enumeration of paths, and restrictive distri-
butional assumptions. This freedom is gained at the expense of considering a res-
tricted class of graphs and a relatively mild restriction on the distribution of node
times.

In this paper we consider the analysis of node activity networks which are series-
parallel graphs [4]. With each node in the graph is associated a distribution which is a
mixture of Erlangs. The distribution function of the total time to traverse the graph is
studied. A program called SPADE (Series-Pdarallel Directed acyclic graph Fvaluator)
has been written to compute this distribution. Applications of the use of our model
include performance analysis of concurrent programs and reliability analysis of non-

repaira’ le fault-tolerant systems.

Robinson [16] and Kleinoder [9] have considered similar graphs for the perfor-
mance analysis of concurrent programs. Kleinoder’s approach differs from ours in that
bhe performs numerical convolutions and other such operations on empirical distribu-
tions. Thus his approach avoids any distributional assumptions. However, our
approach yields results in semi-symbolic form and is much faster. In addition, our

graphs allow for probabilistic branching and minimum node exit types.

After introducing the model in the next section, we give several examples illustrat-

ing the use of our approach in section 3. ‘
2 THE BASIC MODEL

This section presents a deflnition of "series-parallel” graphs, describes how such graphs

are interpreted as representing tasks and presents an algorithm for computing the

probability distribution for the time needed to complete all of the tasks. —

Y

AR A
"

B G A Y LA R

2.1 Series-Parallel Graphs

A series of tasks can be represented by an acyclic directed graph where the nodes
represent tasks, each of which has a specified cumulative distribution function (CDF),
and the arcs represent task precedence. We restrict our attention to a set of graphs
called series-parallel graphs. The literature contains a plethora of deflnitions for the
term "series-parallel”; we define the term as follows.

A finite linear graph is an ordered quadruple G=(N,A.S.T) where

a) Nis a finite set of elements called nodes

b) Ais a subset of N x N, called the set of arcs

¢) S is the subset of N containing those nodes which are not the second member

of any arc in A (these are the entrance nodes).

d) T is the subset of N containing those nodes which are not the first member of

any arc in A (these are the exit nodes).

Suppose G'=(N',A'.S",T') and G"=(N",A",S",T") are nonintersecting graphs.

A graph G=(N,A,S,T) is the series connection of G' and G iff
a) N=N'UN"

b) A=A'VA"U(T'ZS")

c) §=5.T=T"

A graph G is the parallel connection of G' and G" ift
a) N=N'UN"

B o

b) A=A'VA"

c) S=SuS".T=TuT"

............
.....

L& « - oEEm ¢ L LT e

AR ES

, RS

The class of series-parallel graphs is the smallest class of graphs containing the
unit graphs (graphs consisting of one node) and having the property that whenever G is

the series or parallel connection of two graphs in the class, then G is in the class.

If the nodes in a series-parallel graph represent tasks and the arcs represent an
ordering of the tasks, then the graph can be interpreted in the following manner. If
the graph was formed by the series combination of graphs G' and G", then all of the
tasks in G’ must be finished before the first tasks in G may begin. If the graph was

formed by a parallel combination then there are three possible interpretations.

maximum
The two subgraphs are executed in parallel. Execution of the graph is over when

execution of both subgroups is over.

minimum
The two subgraphs are executed in parallel. Execution of the graph is over when

execution of either subgroup is over.

probabilistic
Only one of the subgroups G' and G" is executed. Each subgroup has associated
with it a probability of execution.

Figure 1 shows several examples of series-parallel graphs.

One application of these graphs is to model program execution. If we only con-
sider graphs with probabilistic output nodes then such graphs will model flowcharts of
loop-free sequential programs. If we only allow maximum output nodes then the l
graphs will correspond to the task precedence graphs considered in [2). Finally, ifa
graph contains only minimum output nodes then the graph will model the parallel exe-
cution of a non-deterministic algorithm [18] in which the verification of all guessed

solutions is attempted concurrently, and the first guess to be verified provides a solu- P

tion to the whole problem. B

v s’ & A T v 4 Sl S A VA IO A A S E A R AT SRR LA AR R E P ELPR M AR R AR g et
- . b 6

&) .
) -, -

i The graphs can also be used to model the lifetime of closed {non-repairable) fault-
X tolerant systems with permanent faults. Such systems are defined in [14], where they
are analyzed by Markov chain techniques. A system consisting of a series combination
I . of components is modeled by parailel graph nodes with type minimum; a parallel com-
bination is modeled by parallel graph nodes with type maximum. We should note that
our graphs do allow more general distributions of subsystem or component lifetimes

than those allowed by the Markov chain techniques used in [14].

For modeling the lifetime of a k out of n type system, we will appeal to the stage-
type lifetime derived in [20; figure 3.30)]. Similarly, for hybrid NMR system with imper-
fect coverage we will use the Coxian phase type expansion derived in [20; figure 5.12].

2.2 Evaluation of Graphs

Any series-parallel graph can be decomposed into a binary tree, where the inter-
nal podes are of type "series” or "parallel”, according to the rule which was used to
form the graph, and the leaves are the nodes of the graph. The parallel nodes are
divided into three types: "maximum"”, "minimum”, and "probabilistic". For the proba-

bilistic nodes, each subtree has associated with it the probability that it will be exe-

3 DLRRSONT I

cuted. Figure 2 shows a series-parallel graph and the binary tree associated with it.

“ s
(X

The decomposition is not necessarily unique, but all possible decompositions of a

graph are equivalent in the sense that the probability distributions as computed by all

of the possible binary trees are the ﬁame. This is true because "maximum" and

"minimum"” are associative, and for the probabilistic nodes, multiplication is distribu- &

tive over addition. ‘
Given the binary tree representation of a series-parallel graph and a CDF for the

finish time of each node, one can theoretically calculate the CDF of the finish time for

the entire graph. Suppose we have a node A in the tree. If A is a leaf, then A

represents a node in the graph, and the CDF of A is the CDF of the node. Now suppose A

R P RPN o SE R et IR IAPM Y g U0

AP S 0w e I I D D A IV e, I n e AU hel e S e o el e e n e B VI b TS £

Poe -

is not a leaf, and that its subtrees are B and C. Let F, be the CDF for the subtree B and
Fy be the CDF for the subtree C. The calculation for Fg, the CDF of the subtree rooted
at A, depends on what kind of node A is.
1. If Ais a "series” node, then it represents the execution of the subtree B followed by
the subtree C. Fy is given by:

Fo(t) = ,Z' ,z' Fy(z)F, (s -2)dsdz

2 If A is a "maximuri” node, then it represents the maximum of the execution times

of subtrees B and C; hence:
Fo(t) = Fu(t)Fe(t)

3. If A is a "minimum"” node, then it represents the minimum of the execution times

of subtrees B and C; therefore:
Fo(t) = Fy(t) + Fo(t) - Fy(8)F(¢)

4. If A is a "probabilistic” node, only one subtree of A will be executed. Suppose the
probability that subtree B is executed is p, and the probability that subtree C is
executed is p,. Then Fj is given by:

Fa(t) =poFo(t) + peFo(t)

It would be poasible, given any series-parallel graph, to compute numerically the
value of the CDF of the entire associated tree given any value of t. If the type of the
CDF's is restricted to be of exponential polynomial form and the parameters are given,
it is relatively easy to compute the overall CDF.

An exponential polynomial is defined to be an expression of the form

z‘: az e’
Exponential polynomials can be easily shown to be closed under the operations of addi-
tion, subtraction, multiplication, differentiation and integration. Because exponential
polynomials are closed under these operations, a series-parallel graph whose nodes

have exponential polynomials for CDF's will have an overall CDF and pdf which are also

ST S s e e PENCT IS AR S b At A el Sl el e L A OAE TR PSS PSR FIUBS S R LI L TN SO 0N

! 5 “ l ‘:.: .:.'

exponential polynomials. In particular, the CDF of each node can be exponential,
hyperexponential, Erlang, or a mixture of Erlang dist..ributions.

The process of finding the overall CDF of a series-parallel graph whose nodes have
CDF's which are exponential polynomials is easily automated. The program SPADE
accepts a specification of such a graph and produces the overall CDF, pdf, mean and

variance, and computes the overall CDF for a given range of values.

The input to SPADE consists of any number of of ordered pairs of nodes, which

must form a series-parallel graph, an exit type for each node which has more than one

immediate successor, and a CDF for each node.

E The user has three choices for exit type: maximurn, minimum or probabilistic. If
the exit type is probabilistic, the user must specify the probabilities. For the user’s
: ' convenience, SPADE allows the user to specify a distribution type for each node; the

types allowed are exponential, general, and “zero”.

If the distribution type is exponential, the user need only provide the parameter A.
If the distribution type is general, the user must supply the three parameters a;, &
and b, for each term in the exponential polynomial. Zero nodes represent tasks which
take no time. They are included as a matter of convenience. The examples in section 3

include instances where zero nodes are used.

SPADE allows a specified graph to have any number of entrance and exit nodes. If
the graph has more than one entrance node, SPADE will implicitly supply a single
"zero".entrance node which branches ofl to each of the specified entrance nodes.
SPADE will prompt for the exit type of the added zero node. If the graph has more than
one exit node, SPADE will supply a single "“zero” exit node which acts as a collector
node for all of the specified exit nodes. In the examples below, SPADE-supplied nodes

are indicated with dashed lines.

Once all information about the graph has been obtained, the program forms a

binary tree corresponding to the series-parallel graph. The graph decomposition

h results in a preorder representation of the tree. The program then backs up the

e) preorder representation (traversing the tree in "reverse pre-order"), computing the
CDF and pdf of each subtree. Once the CDF is known, the program prompts the user

for ranges and increments of time for which the CDF is to be computed.

3. APPLICATIONS

This section presents examples of applications of the task graphs defined in sec-
tion 2. The applications are of two kinds: analysis of concurrent task execution and

reliability analysis.
3.1. Concurrent Program Execution Time

Example 1. Suppose a program has two phases that are executed sequentially. The
graph of the program is shown in Figure 3. The execution time distribution of the first
phase execution time is two-stage Erlang with parameter A=1 (the CDF is 1—e~* -te~t).

The second phase time distribution is exponential, also with parameter A=1.

Our first input to SPADE is the single ordered pair (A,B). Since there are no paral-
lel nodes in the graph, SPADE does not need to be told any exit types. SPADE prompts
for the CDF's of the two nodes. In order to specify the distribution for node A, we tell
SPADE that the distribution is of type “general” and input a line corresponding to each
term in the CDF:

1{ 1.00 00 ,
2| -1.0 0 -1.0
3| -1.0 1 -1.0

I

We tell SPADE that the distribution for node B is of type "exponential”’, and need only

input the value 1 (the parameter of the distribution). -

4 . e
Yalele’ee’e v
.
..va‘c';',‘)_.'

SPADE computes the CDF, pdf, mean and variance of time needed for both phases to

complete:

LS S S R S SR R N T
L'.-.'.L..:..:A_.. n..‘-:'.:" o 'L.' ° o

S
O
‘. CDF(t)=1-et—te~t —1/2t%* -_“-:
3 paf () = 1/ 2t%]
variance = 3 ""“'J
> It we ask SPADE to compute CDF (t) for x between 2 and 10, in increments of 2,
‘_:.‘.: the results are s
B t COFE) o
5 o Jw
o 2.0 0.3233]
40 07619
. 80 0.9380

8.0 0.9882
: 100 0.9972
' Example 2. Next we consider another sequential program which consists of two phases.
, In this case, the outcome of the first phase determines which of two alternative tasks is
- executed as the second phase. Thus, the node rebresenting the first phase has a pro-
' babilistic exit. This program is illustrated in Figure 4.

The execution time of task 1 (the first phase) is exponentially distributed with
mean 1. The execution time of task 2 is 2-stage Erlang distributed with parameter 1 '
and the execution time of task 3 is exponentially distributed with mean 1. The proba- .'

- bility that task 2 will be executed is input as 0.9 while the corresponding probability for EES
g task 3 is 0.1. The overall program execution time distribution, as computed by SPADE, { e
is given by: *

_ CDF(t)=1—e~t —~ta~* — .45t% ¢ ———
pdf(t) =.1te~* + 45t% .
: Mean:2.9 | R

=
A \-:.j-‘
:'_:.:\‘.' e e e e e e e N e e e e N T N '.:,,'-:.'-;,'.:.'-:.‘-'.'-'.'-'.\':‘::;‘

Variance :2.99
Values for CDF(t) are
t CDF(t)
2.0 0.3504
4.0 0.7785
8.0 0.8425
a.0 0.8873

10.0 0.9975
Ezample 3. We evaluate one iteration of the program with CPU-1/0 overlap considered
by Towsley, Chandy and Browne [19] and shown in Figure 5. Note the use of a "zero”
node, which allows us to have one branch of the CPU1 node be a single node, while the
other branch leads to a group of nodes to be executed in parallel. SPADE allows the
specification of graphs which have multiple exit nodes.

Assuming u,=0.125, 14,=0.0376, A=0.0217, and p=0.8, the results from SPADE are:

CDF(t) = 1.0 — 1.21¢ 00217 _ 0 g581¢ ~0.0378

+ 1.1414¢ 009 _ g (733 ~0-1%%¢
The mean and variance of the program execution time are 59.938 and 2124.3147,

respectively. Note that, in SPADE, we can specify more general distributions for the

nodes.

Example 4. In this example we consider the process communication graph from Kung's
thesis [12], and shown in Figure 8. Tasks 1 and 2 are executed on one processor and
tasks 3 and 4 on another processor. Communication time between tasks 1 and 3 and
tasks 2 and 4 is modeled by the nodes S;3 and S, Assuming that x=0.125 and =10,
the distribution function and the mean and variance of the overall execution time com-

puted by SPADE are:

..........
.............
.....

. T
"' T
——
i
b ame 20l
«te
el
-

)
D)
"
-,

.
)
»

]
Py

-
-
3

CDF(t) = 1.0 - 2.2349¢ ~01%5¢ 4 0 0204¢e¢ ~0.12%

- 0.0174¢2¢0125¢ 4 | 2348 —0-20¢

+ 0.0027¢ "1 B¢ — 0,0025¢ ~1-37%
The mean and variance are: 28.8364 and 208.1388, respectively.

3.2. Reliability Analysis

We now consider a sequence of examples of the use of SPADE for reliability analysis.

Example 5 Consider a series system with two independent components. If either com-
ponent fails, the entire system has failed. The "task graph” for modeling the lifetime of

this system is shown in figure 7.

Node 1: distribution type - ZERO; exit type: minimum

Node 2: distribution type - EXP; parameter A, = 0.0002
Node 3: distribution type - EXP; parameter Az = 0.0001
The CDF and reliability functions from SPADE are

CDF(t) = 1—~¢ 00003

R(t) = .0003¢ ~0.c003¢
The MTTF is 3333.3333, with variance 11111111.1.

Ezample 8 Consider a parallel redundant system with unequal failure rates. The sys-
tem fails only if both components fail. The “task graph” that models the lifetime of this

syster is shown in figure 8.

Node 1 has distribution type zero, and exit type maximum. Nodes 2 and 3 are as in
Example 5 above.
The solution from SPADE is

CDF(t) =]—g 00001 _g -0.0002¢ , g ~0.0003¢

R(t) = .0001¢ ~09003¢ 4 0002¢ ~0-0002 _ 003e ~0-000S¢
The MTTF is 116888.6667.

DAACAMES S-S AT A AT I A O AE A S M

-

Exampls 7. We consider a triple modular redundant (TMR) system. A task graph for
the lifetime of this system can be derived based on example 3.24 of [20] and is shown in
figure Sa.

Node Z1: distribution type - ZERO; exit type - minimum
Nodes 2,3 and 4: distribution type - EXP; parameter A = 0.0001
Node 25: distribution type - ZERQ; exit type - minimum
Nodes 8,7: distribution type - EXP; parameter A = 0.0001
'l'he solution from SPADE is

CDF(t) = 1 — 3¢~0.000 . 3¢ -0.000%

MTTF = 8333.3333
It is possible to simplify the task graph for this example as shown in figure 9b (based on

example 3.26 of [20]).

Example 8. We now consider a TMR system with one spare unit. We allow the spare
failure rate u to be different from the failure rate A of the active unit. We also allow for
imperfect coverage. The coverage for an active unit is ¢ , while the coverage for the
spare is C, .

An uncovered failure in an active unit immediately leads to a system failure while
an uncovered failure in the spare will lead to a system failure after a subsequent active
unit failure. If the failure of either an active or spare unit is covered, the system con-

tinues to operate as long as any two of the remaining three units are operating.

A “task graph” for this system is shown in figure 10. l

Node Z1: distribution type - ZERC;
exit type - minimum
Nodes M7, M11, M15, M19, M22: distribution type - ZERO;
exit type - minimum

Node 5: distribution type - EXP;

M..‘.G.'.\..'-‘L\I\? RN R S ALY AN MO ARR LSRRG

"
e

LY

LR

/STAIA

.. 4,
.

.'... ..'.-.": u"n "- .

-
.,
..
t.'/
4

s

8

[N T TR SR N Sl A o
AT AT I PPN AP A

parameter 4 = 0.0001
exit type - probabilistic,

coverage (arc from 5 to M15) = .98

Nods P1: distribution type - ZERD;
exit type- probabilistic

coverage (arc from P1 to M7) = .99
Node El4: distribution type -ZERO;
remaining nodes: distribution type - EXP;

parameter x4 = 0.0002
SPADE computes the CDF to be:

CDF(t)=1 — .0233¢ ~0%% 4 (009B8e ~9%0% 4 4 72829 ~00™
— .0039¢ —%008¢ _ g 3043¢ %00 _ 3 9108e ~00I%
+ 5.0032¢ 001 _ | 5385¢ 014 _ 0015¢g ~-0007

+ .0012te ~®1%¢ _ 0QQ5te —0012
The MTTF is 3121.1882. Some values for the CDF are as follows.

t CDF(t)

2000.0 0.3853
4000.0 0.7037
6000.0 0.8813
8000.0 0.9577
A10000.0 0.9859

4. CONCLUSIONS

We have developed a model for the semi-symbolic computation of the execution
time distribution a precedence graph. The distribution function of individual node time

is assumed to be a mixture of Erlangs. Several applications of the use of our model are

LR Yy -.J..-f.. ‘--.."-."\ \,

. Py

. cat o B e - e v . C Lt
v s Sy L N T

YK

v ..
§
Y
. .
.
Pyl

© e
.

Lo . .
PRE
v
G
)
o ad .

X

()
1".

—

AR EANREA

SRS

-"..-'-"",',
FCA LN SN SV DD

]

P EN .
e e e
LN PRy

1

. aeb e e s

. A
PR R R
Lot

. RERAREREAE

A DAV
Ll A T

DDA

given.

REFERENCES
[1] Chandy, KM., Howard, J.H., and Towsley, D.F., "Product Form and Local Balance in
Queueing Networks,” JACN, Vol. 24, pp. 250-283.
[2] Coffman, E.G., Computer and Job /Shop Scheduling, John Wiley & Sons, NY., 1976.

[3] Dugan, I.B., Trivedi, K.S., Geist, RM. and Nicola, V.F., "Extended Stochastic Petri

Nets: Analysis and Applications”, accepted, PERFORMANCE '84, Paris, December
1984.

[4] Elgot, C.C. and Wright, J.B., "Series-Parallel Graphs and Lattices”, Duke Mathemat-
ics Journal, vol. 26 (1959), pp. 325-338.

[5] Fix, W. and Neumann, K., "Project Scheduling by Special GERT Networks,” Comput-
ing 23 (1979), pp. 299-308.

(6] Gaul, W., "On Stochastic Analysis of Project Networks,” in M.A.H. Dempter et al.
(eds.), Daterministic and Stochastic Scheduling, D. Reidel Publishing Co., 1982.

[7] Heidelberger, P. and Trivedi, KS., "Queueing Network Models for Parallel Process-
ing with Asynchronous Tasks,” IEEE Trans. on Computers, Novemnber 1982,

(8] Heidelberger, P. and Trivedi, K.S., "Analytic Queueing Models for Programs with
Internal Concurrency,” IEEE Trans. on Computers, January 1983.

R
LA A
.

[9] Kleinoder, W., "Evaluation of Task Structures for a Hierarchical Multiprocessor Sys-

tem”, Proc. Int. Oonf. on Modeling Techniques and Tools for Performance R
Analysis, Paris, France, May 1984, ey |

- . A A .l._.a..

[10] Keinrock, L, Qusueing Systems, Vol. II: Computer Applications, John Wiley &
Sons, 1978.

[11] Kulkarni, V. and Adlakha, W., “Markov and Markov-Regenerative PERT Networks",

Tech. Report, Operations Research and Systems Analysis, Univ. of North Carolina
at Chapel Hill, 1964.

[12] Kung, K.C.-Y., “Concurrency in Parallel Processing Systems”, Ph.D. Dissertation,
UCLA Computer Science Department, 1984.

.t r.vTT._‘-‘J

[13] Molloy, M., "On the Integration of Delay and Throughput Measures in Distributed
Processing Models”, Ph.D. dissertation, Computer Science Department, UCLA,
1881.

PO ¢ oA

[14] Ng, Y.-W. and Avizienis, A., "A Model for Transient and Permanent Fault Recovery in
Closed Fault-Tolerant Systems,” Proc. 1978 Int. Symp. on Fault-Tolerant Comput-
ing, June 1976.

[15] Ramamoorthy, C.V., and Ho, G.S., "Performance Analysis of Asynchronous Con-
current Systems Using Petri Nets", IEFE Transactions on Software Fngineering,
Vol. SE-8, No. 5, pp. 440-449, September 1980.

[18] Robinson, J.T., "Some Analysis Techniques for Asynchronous Multiprocessor Algo- _
rithms,” JEEE Transactions on Software Engineering, Vol. SE-5, No. 1, January ~—
1979. <

{17] Sauer, C.H. and Chandy, K.M., “The Impact of Distributions and Disciplines on Mul-
tiprocessor Systems,” CACM, Vol. 22, pp. 25-34.

[18] Sedgewick, R., Algorithms, Addison-Wesley, Reading, Mass., 1983.

[19] Towsley, D.F., Browne, J.C. and Chandy, K.M., "Models for Parallel Processing

LAY

IR A

§
: §
¥
: 3
s, Wm
g !
&sw
> 5y
£ 83
3 § 2
N £
P 1
§ <3
ik
s 4
i1}
- 8 :

R 7 YURARALID " SO & NP LY XX L = ARRS,

SR e g AR NG S A S A A A A P i A MDA e i T e R B fine i S0 Sle S

Figure 2a ~ A Series-Parallel Graph

88 s

R
TNV

2
..A

[
s
,

AN A A A LI A 252 S-S A Wit e Whe St~y b el AV W ol e et W T A A, S AL I B i e e~ i e e S e S S

A gV AN LI

LS I PRARTREERTIENT N4

N S LR eas

et

e %

Figure 2b - Binary Tree Decomposition of a S-P Graph

MR L 28

AL BN LN S N

- e . . %e e % - . Co T T N R T L PP T €, e e
':l'i,. " _.-o..:', .{ ..:0..‘-'.‘ EREN _.\.. '-"J"I. ..\'_\'\r P -'_.-'.. o *'.',‘-._\“ﬁ'f's’\ \'d'\." N .-.\..\..\“\- - ._-_ AARES

PR RS R R

Figure 3 - Tasks Executed in Series

Figure 4 - Series Tasks with a Probabilistic Branch

g——— e I e e B AP B e A IS S AR »i - FRaU IS S St st I e S SN i gt S Y bR T
A T A e A e A LRt ot g S Sinn IR S AR R Pl PR
[4

Figure 5 - CPU / I0 Overlap

Figure 6 - Example from Kung's Thesis

EXP (%) EXP ()

Figure 7 - Components in Series

- Y
Figure 8 - Components in Parallel i;fﬁ

- > - g St g P o~
Tt T L T M Nt S T I e At S gl N P M O N A A A A SRR e e e T T e ERA I TR A R i e Aty - 2o ‘-'-'_-".

EXP ()

% e

Figure 9a - TMR System

EXP (3R)

B 1 EXP (22) "

Figure 9b - Simplified TMR Graph

M11 ZERO

min

‘ P
2 Tt .

P . . .

ST o e e]

. o e N e

. AR U
D N

.o R R

EXP ()
12

Figure 10a - TMR System with Spare

...

RIS

" o oV Y p—
AT NG RCAGASAY - A A A A i e TS PR S TR T R T,

e

i [

[SESER

Figure 10b - Simplified Graph for TMR System with Spare

