
7 D-fH148458 SPDE: SERIE-PARALLEL DIRECTED
CYCLIC GRPH EALUATOR

ini
(U) WISCONSIN UNIV-MADISON MOTOR BEHAVIOR LAB

U RS RSAHNER ET AL. NOV 84 CS-1984-15 RFOSR-TR-84-1896
UNCLASSIFIEDA4-01322F/G 9/2 N

EEMhE~hE

Eu'..,

IIII1.0 W .8 .25

6 6 16 J&.

11IL2 111.4 i

MICROCOPY RESOLUTION TEST CHART
NjATIOM. WK5J V ITASOI -163 -A

4.

* UNCLASSIFIED-
* MCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
to REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

* UNCLASSIFIED
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAILABILITY OF REPORT

___________________________________Approved for public release; distribution
2b. OCCLASSIF ICATION/OOWNGRAOING SCHEDULE unlimited.
4,ffgrIN%ORGANI ZAT ION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

4-_______
___ AFOSR -TR' 34 -100'6

~'.NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

uke UAvrsi r Force Office of Scientific Research

6' c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. Stotw and ZIP Code)
Department of Computer Science Directorate of Mathematical &Information

00 Durham NC 27706 Sciences, Boiling AFB DC 20332-6448

Ga~Ur. NAME Of FUNOING/SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANI1ZATION I (Iopp~cebdi)

: ~AFOSR NM______ AFOSR-84-0132
Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELE ME NT NO. NO. NO. NO.

SBoiling AFB DC 20332-6448 61102F 2304 A5
* 11. TITLE (include Security Classification)

SPADE: SERIES-PARALLEL DIRECTED ACYCLIC GRAPH EVALUATOR
12. PERSONAL AUTHORIS)
Robin Sahner and Kishor S. Trivedi

13& TYPE OF REPORT 13b. TIME COVERED 1.DT FRPR Y. o.Dy 15. PAGE COUNT

Technical FRMTO NOV 84 77 29
10. SUPPLEMENTARY NOTATION

17. COSATI CODES 13. SUBJECT TERMS (Continue on reverse ifnecesary and identify by block number)
FIELD GROUP SUB. GR.

A STR A CT Con tinue on uvuerse if nce sary and identify by bl ck num ber) T e e g a h
* model for the stochastic analysis of directed acyclic graphs is developed. Teegah

represent node-activity networks where the distribution function associated with a node is
assumed to be a mixture of Erlangs. The distribution function of the graph execution time
is computed in a semi-symbolic form. Applications of the model for the evaluation of con-
current program execution time and to the reliability analysis of fault-tolerant systems
are discussed.

D.111984

20. DISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDIUNLIMITEO E SAME AS AIPT. 0 OTIC USERS 03 UNCLASSIFIED
22. NAE O REPONIBL INIVIUAL22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
228.NAMEOF ESPOSIBL INIVIDALtinclude Area Code)

MAJ Brian W. Woodruff(2)76-57

DO FORM 1473.83 APR I DITION OF I JAN 3 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

..............................f .1 *. *,.-...**--

..aos S.----1096 " • - • at.... .,.,
°.'.,. .'-.,

AFOSR-TRN 8 4~1

CS-1984-15

SPADE: Series-Parallel Directed

Acycllc Graph Evaluator

Robin Sahner
Kishor S. Trivedi

Department of Computer Science
Duke University

Durham, N. C. 27706
,

Accesslon For

'TTS C-A&I

7? T 3
-. . . . '." E. ..

Di ftri" 7tion/
,

'" ilObility Codes
!Avail and/or

Ti zt iSpecial

Approved for publC j rela
";S

distribution uilimitea*

'-.

$ -. hy

4 *'~~,*'.%:.p*.j.'. -~:-:.~ *:~*:;~~* ;, .-.....*'o-

-~a~J, * ' .. O'~s.' - -. -. - ..' '. *A St-'. ~ e *A*P, .A A *

• .- - -

SPADE: Series-Parallel Directed Acyclic Graph Evaluator

Robin Sahner and Kishor S. Trivedi

Department of Computer Science
Duke University

Durham. N. C. 27708

AIR YO~RC Oprrr C7, ~(,Tj yc~A,~
NOTICTCpTI 'C

Thisj ".. ,

Di~tr..-:.?.di

MA T T, i- -j J. it:

Cb.,!O'Chlval Inforwatlon Divis lou

Ti wwk was su.pported in part by the Air orce Office of Scientifc Research ."er grant AFOSR-64-
olbyhrmy Research Office under contract DAAG,840048 and by the Mationa a Science Foundatio

84 1 03 24V

__ .,' -'.

Abstract

A model for the stochastic analysis of directed acyclic graphs is developed. These
graphs represent node-activity networks where the distribution function associated
with a node Is assumed to be a mixture of Erlangs. The distribution function of the
graph execution time is computed in a semi-symbolic form Applications of the model
for the evaluation of concurrent program execution time and to the reliability analysis
of fault-tolerant systems are discussed.

L. INTRODUCTION

The demand for computing capacity has sustained a high growth rate. Coupled

with technological advances, this demand has implied an increased interest in multiple

and distributed processing systems.

* Many interestirg problems in the design and analysis of such systems need to be

solved in order to provide their designers and users with insights and tools for system

evaluation. Besides the need to be able to derive measures of system effectiveness for

a given system and its associated parameters, there is a need to provide techniques for

selecting a set of parameter values in order to optimize system effectiveness in a given

setting.

* Both simulation and analytic models have been used foir system effectiveness

evaluation and optimization. Simulation models tend to be more credible hut more

expensive than analytic models. In order to improve the credibility of analytic models,

there is a need to consider more complex models. Most current work on performance

* analysis of parallel and distributed systems by means of analytic models may be

classified as either program-centered (transaction-centered) or resource-c entered

* analysis.

* In resource-centered analysis, system resources are modeled in great detail while

a relatively simple model of transaction behavior is assumed. Product-form queueing

* networks have been used to analyze computer systems [1.20], communication net-

*works, and computer-communication networks [10]. The existence of a product-form

*solution implies a relatively efficient numerical procedure to obtain the solution. How-

* ever, real system behavior rarely satisfies the necessary assumptions of a product-

-form network. For example, transactions with internal concurrency will violate

* prroduct-form [7.8,19]. Many authors have studied approximate and exact solution -

techniques for solving queueing models where programs are allowed to overlap their

computation with their own input-output operations [7]. We have recently generalized

and studied more general types of concurrency in transactions sharing system

resources [8].

In program-centered analysis, a relatively simple model of system resources is

assumed while the characteristics of transactions are modeled in great detail. Assum-

ing that transactions possess internal concurrency and randomness, the problem is

that of analyzing a stochastic activity network [5.5]. At least three approaches to the

analysis of such networks can be identified path analysis, Markov chain technique, and

stochastic Petri net technique.

The path analysis technique first computes the distribution of time to traverse

each path. From these path times, the overall execution time can be obtained exactly

. for certain special types of graphs [16]. But in the general case, overlapping paths

exist and hence one can only obtain an approximation (or bounds) for the overall exe-

cution time []. In any case, for complex graphs the number of paths can be rather

large, making the technique computationally expensive.

The second approach is to convert the given graph into a continuous-time Markov

chain [11,12]. Besides the restriction imposed by the exponentially distributed node

times, this approach quickly leads to an explosion in the state-space of the Markov

chain.

The third approach constructs a Petri net equivalent of the given graph.

Ramamoorthy and Ho use this approach in the case that node times are deterministic

[15]. Molloy considers exponentially distributed node times and converts the Petri net

into a Markov chain for analysis [13]. We have allowed the node times to be generally

distributed in our Extended Stochastic Petri Net (ESPN) Model [3]. Whenever possible,

the ESPN is automatically converted into a Markov chain or a semi-Markov process. If

neither of these approaches succeeds then the ESPN is evaluated using Monte-Carlo

simulation. The first two approaches for the solution of an ESPN can lead to large state

..~%** . . .-. . .-...*-

7 ;F

spaces, while the third approach can be time consuming due to the inherent speed lir-

itations of a simulation model.

The approach developed in this paper falls into the path analysis category. It

avoids the pitfalls of the large state space, enumeration of paths, and restrictive distri-

butional assumptions. This freedom is gained at the expense of considering a res-

tricted class of graphs and a relatively mild restriction on the distribution of node

times.

In this paper we consider the analysis of node activity networks which are series-.

parallel graphs [4]. Writh each node in the graph is associated a distribution which is a

mixture of Erlangs. The distribution function of the total time to traverse the graph is
studiedL A program called SPADE (feries-EjzueL Qirected acyclic graph A-wator)

-E ~ ~ ~ ~ ~ ~ ~ ~ o: -.e ~ce cclcgah&hdr

has been written to compute this distribution. Applications of the use of our model

include performance analysis of concurrent programs and reliability analysis of non-

repaira, le fault-tolerant systems.

Robinson [16] and KIleinoder [9] have considered similar graphs for the perfor-

mance analysis of concurrent programs. Kleinoder's approach differs from ours in that

he performs numerical convolutions and other such operations on empirical distribu-

tions. Thus his approach avoids any distributional assumptions. However, our

approach yields results in semi-symbolic form and is much faster. In addition, our

graphs allow for probabilistic branching and minimum node exit types.

After introducing the model in the next section, we give several examples illustrat-

ing the use of our approach in section 3.

2. THE BASIC MODEL

This section presents a definition of "series-parallel" graphs, describes how such graphs
--

are interpreted as representing tasks and presents an algorithm for computing the

probability distribution for the time needed to complete all of the tasks.

~.-* -. . %~ % ~ % (, . % % % ~ % % % % . % ~ % *'~, % * % * '** ,='. *** ~ .. * .*...:.-.. ...

2.1 Series-Parallel Graphs

A veries of tasks can be represented by an acyclic directed graph where the nodes

represent tasks, each of which has a specified cumulative distribution function (CDF).

and the arcs represent task precedence. We restrict our attention to a set of graphs

called series-parallel graphs. The literature contains a plethora of definitions for the

term "series-parallel"; we define the term as follows.

A finite linear graph in an ordered quadruple G=(N.A.S. T) where

a) N is a finite set of elements called nodes

b) A is asubset of N xN, called the set of arcs

c) S is the subset of N containing those nodes which are not the second member

of any arc in A (these are the entrance nodes).

d) T is the subset of N containing those nodes which are not the first member of

any arc In A (these are the eit nodes).

Suppose G'=(N'.A'.S'.T') and G"=(N".A",S". T') are nonintersecting graphs.

A graph G=(N.A.S. T) is the series connection of a and a' iff

a) N=N'uN'

b) A=AvA'u(TzS')

cS5'.T=T'

A graph G is the parallel connection of G' and G" iff

* a) N=N'vN"

* b) A=AuA"

a) SSjS", T=rTv T"

7-~~ To 7 7%

.

The class of series-parallel graphs is the smallest class of graphs containing the

unit graphs (graphs consisting of one node) and having the property that whenever C is

the series or parallel connection of two graphs in the class, then C is in the class.

If the nodes in a series-parallel graph represent tasks and the arcs represent an

ordering of the tasks, then the graph can be interpreted in the following manner. If

the graph was formed by the series combination of graphs G' and G", then all of the

tasks in G' must be finished before the first tasks in G" may begin. If the graph was

formed by a parallel combination then there are three possible interpretations.

maurmnum

The two subgraphs are executed in parallel. Execution of the graph is over when

execution of both subgroups is over.

minimum

The two subgraphs are executed in parallel. Execution of the graph is over when

execution of either subgroup is over.

probabilistic

Only one of the subgroups G' and a' is executed. Each subgroup has associated

with it a probability of execution.

Fgure 1 shows several examples of series-parallel graphs.

One application of these graphs is to model program execution. If we only con-

sider graphs with probabilistic output nodes then such graphs will model flowcharts of

loop-free sequential programs. If we only allow maximum output nodes then the "

graphs will correspond to the task precedence graphs considered in [2]. Finally, if a

graph contains only minimum output nodes then the graph will model the parallel exe-

cution of a non-deterministic algorithm [10] in which the verification of all guessed .7

solutions is attempted concurrently, and the first guess to be verified provides a solu-

tion to the whole problem.

% • *. .. % %* % -. . . *** ** "*. % % *.' " . * ". *% - % % % "- .% ."% - ' . '.%s .

The graphs can also be used to model the lifetime of closed (non-repairable) fault-

tolerant systems with permanent faults. Such systems are defined in [14], where they

are analyzed by Markov chain techniques. A system consisting of a series combination

of components Is modeled by parallel graph nodes with type minimum; a parallel com-

bination is modeled by parallel graph nodes with type maximum. We should note that

our graphs do allow more general distributions of subsystem or component lifetimes

than those allowed by the Markov chain techniques used in [14].

For modeling the lifetime of a k out of n type system, we will appeal to the stage-

type lifetime derived in [20; figure 3.30]. Similarly, for hybrid NMR system with imper-

fect coverage we will use the Coxian phase type expansion derived in [20; figure 5.12].

2.2 Evaluation of Graphs

Any series-parallel graph can be decomposed into a binary tree, where the inter-

nl nodes are of type "series" or "parallel", according to the rule which was used to

form the graph, and the leaves are the nodes of the graph. The parallel nodes are

divided into three types: "maximum", "minimum", and "probabilistic". For the proba-

bilistic nodes, each subtree has associated with it the probability that it will be exe-

cuted, Figure 2 shows a series-parallel graph and the binary tree associated with it.

The decomposition is not necessarily unique, but all possible decompositions of a

graph are equivalent in the sense that the probability distributions as computed by all

of the possible binary trees are the same. This is true because "maximum" and

"minimum" are associative, and for the probabilistic nodes, multiplication is distribu-

tive over addition.

Given the binary tree representation of a series-parallel graph and a CDF for the

finish time of each node, one can theoretically calculate the CF of the finish time for

the entire graph. Suppose we have a node A in the tree. If A is a leaf, then A

L represents a node in the graph, and the CDF of A is the CDF of the node. Now suppose A

L : .:"

is not a lea. and that its subtrees are B and C. Let F be the CF for the subtree B and

F, be the CDF for the subtree C. The calculation for F, the CDF of the subtree rooted

at A. depends on what kind of node A is.

L If A Is a "series" node. then it represents the execution of the subtree B followed by

the subtree C. F, is given by:

FG(t) = [f r(xf)Fo (s-zf)d.s dris::

2. If A is a '"naximurX"' node, then it represents the naximum of the execution times -

of subtrees B and C; hence:

F.(t) = Fj(t)F.(t)
3. If A is a 'n=inimnum' node, then it represents the minimum of the execution times

of subtrees B and C; therefore:

Fs.(t) = F (t) + F(t) - F6 (t)F,(t)
4. If A is a "probabilistic" node, only one subtree of A will be executed. Suppose the

probability that subtree B is executed is p. and the probability that subtree C is

excuted isp.. Then F, is given by:

Fe(t) = F ,F(t) + p.,F(t)

It would be possible, given any series-parallel graph, to compute numerically the

value of the CDF of the entire associated tree given any value of t. If the type of the

CDs is restricted to be of exponential polynomial form and the parameters are given.

It Is relatively easy to compute the overall CDF.

An exponential polynomial is defined to be an expression of the form

Exponential polynomials can be easily shown to be closed under the operations of addi-

tion. subtraction, multiplication differentiation and integration. Because exponential

polynomials are closed under these operations, a series-parallel graph whose nodes

have exponential polynomials for CD)Fs will have an overall CDF and pdf which are also

r%..e • d. .r , .d € . • .- . * ..".'e' " . % . .. *., % . %. ., . - - , . • "'.% ''.' " ." .% % " .% %

U - 72- 7.7 7 _a-

exponential polynomials. In particular, the CDF of each node can be exponential,

hyperexponential, Erlang. or a mixture of Erlang distributions.

The process of finding the overall CDF of a series-parallel graph whose nodes have

CDF's which are exponential polynomials is easily automated. The program SPADE

accepts a specification of such a graph and produces the overall CDF, pdf, mean and

variance, and computes the overall CDF for a given range of values.

The input to SPADE consists of any number of of ordered pairs of nodes, which

must form a series-parallel graph, an exit type for each node which has more than one

immediate successor, and a CDF for each node.

The user has three choices for exit type: maximum, minimum or probabilistic. If

the exit type is probabilistic, the user must specify the probabilities. For the user's

convenience. SPADE allows the user to specify a distribution type for each node; the

types allowed are exponential, general, and "zero".

If the distribution type is exponential, the user need only provide the parameter X.

If the distribution type is general. the user must supply the three parameters at, k,

and bi for each term in the exponential polynomial. Zero nodes represent tasks which

take no time. They are included as a matter of convenience. The examples in section 3

include instances where zero nodes are used.

SPADE allows a specified graph to have any number of entrance and exit nodes. If

the graph has more than one entrance node, SPADE will implicitly supply a single

"zero" entrance node which branches off to each of the specified entrance nodes.

SPADE will prompt for the exit type of the added zero node. If the graph has more than

one exit node, SPADE will supply a single "zero" exit node which acts as a collector

node for all of the specified exit nodes. In the examples below, SPADE-supplied nodes

are indicated with dashed lines.

Once all information about the graph has been obtained, the program forms a

binary tree corresponding to the series-parallel graph. The graph decomposition

~ ~ - * .- ~ ** .. .- , .-

results in a preorder representation of the tree. The program then backs up the

preorder representation (traversing the tree in "reverse pre-order"), computing the

-- CDF and pdf of each subtree. Once the CDF is known, the program prompts the user

for ranges and increments of time for which the CDF is to be computed.

3. APPLICATIONS

This section presents examples of applications of the task graphs defined in see-

tion 2. The applications are of two kinds: analysis of concurrent task execution and

reliability analysis.

3.1. Concurrent Program Execution Time

Zwnaple 1. Suppose a program has two phases that are executed sequentially. The

graph of the program is shown in Figure 3. The execution time distribution of the first

phase execution time is two-stage Erlang with parameter X=1 (the CDF is 1-e -to-).

The second phase time distribution is exponential, also with parameter ,- 1.

Our first input to SPADE is the single ordered pair (A.B). Since there are no paral-
lel nodes in the graph. SPADE does not need to be told any exit types. SPADE prompts

for the CDFrs of the two nodes. In order to specify the distribution for node A. we tell

SPADE that the distribution is of type "general" and input a line corresponding to each

term in the CDF:

i at k bt

1 1.0 0 0.0
2 -1.0 0 -1.0
3 -1.0 1 -1.0

We tell SPADE that the distribution for node B is of type "exponential". and need only

Input the value I (the parameter of the distribution). .
:..::.

SPADE computes the CDF, pdf, mean and variance of time needed for both phases to

complete:

77,

.
a-a •. %.ta ~ * . ~ a " e

CDF(t) =1 -a -4 - to- - 1/2tee - I

pdf (t) = 1/t'e--

MoWI. = 3

vaiwww. = 3

If we ask SPADE to compute CDP (t) for x between 2 and 10, in increments of 2,

the results are

t CDF(t)

2.0 0.3233

4.0 0.7519

6.0 0.9380

8.0 0.9862

- 10.0 0.9972

Ez-npk 2 Next we consider another sequential program which consists of two phases.

In this case, the outcome of the first phase determines which of two alternative tasks is

' executed as the second phase. Thus, the node representing the first phase has a pro-

babilistic exit. This program is illustrated in Figure 4.

* The execution time of task 1 (the first phase) is exponentially distributed with

mean 1. The execution time of task 2 is 2-stage Erlang distributed with parameter 1

and the execution time of task 3 is exponentially distributed with mean 1. The proba-

bility that task 2 will be executed is input as 0.9 while the corresponding probability for

task 3 is 0.1. The overall program execution time distribution, as computed by SPADE, "

is given by:

CDF(L) = 1- - to- -. 45

pdf (t) =t -lt 4 5a -C

Mean:2.9

* .:

* Values for CDF(t) wre

t Cft),-.

2.0 0.3504

4.0 0.775

8.0 0.9425

8.0 0.9873

10.0 0.9975

ExampLe 3. We evaluate one iteration of the program with CPU-I/O overlap considered

by Towley. Chandy and Browne [19] and shown in Figure 5. Note the use of a "zero"

node. which allows us to have one branch of the CPU1 node be a single node, while the

other branch leads to a group of nodes to be executed in parallel. SPADE allows the

* specification of graphs which have multiple exit nodes.

Assuming Aj=O0.125, pg,.0 3 ?6, X=0.0217, and p =0.8, the results from SPADE are:

CDF(t) 1.0 - 1 "2 l.-'"0179 - 0.8581-.9m

+.1.144e - 0.073a-
The mean and variance of the program execution time are 59.938 and 2124.3147,

* respectively. Note that, in SPADE, we can specify more general distributions for the

nodes.

* Exampge 4. In this example we consider the process communication graph from Kung's

thesis [12, and shown in Figure S. Tasks 1 and 2 are executed on one processor and

tasks 3 and 4 on another processor. Communication time between tasks 1 and 3 and

tasks 2 and 4 is modeled by the nodes S 13 and S. Assuming that /A=0.125 and a=10,

the distribution function and the mean and variance of the overall execution time com-

puted by SPADE are:

......... ~ *. *. .

....................... ~~~~

CDF(t) =1.0 - 2.2349e-410 + O.O 2 9 4 t -&I

- 0.0 17teo-25 + 1.2346e -'* * -

+ 0.0027 '-2m - 0.0025 -13m
The mean and variance are: 28.8384 and 208.1388. respectively.

&Z. Reliability Analysis

We now consider a sequence of examples of the use of SPADE for reliability analysis.-

Akawaple 5 Consider a series system with two independent components. If either com-

ponent fails, the entire system has failed. The "task graph" for modeling the lifetime of

this system is shown in figure 7.

Node 1: distribution type - ZERO; exit type: minimum

Node 2: distribution type - EXP; parameter X, = 0.0002

Node 3: distribution type - !ECP; parameter Ag 0.0001

The CDF and reliability functions from SPADE are

CDF(t) = 1-e-u 03

R (t) = .0003 -cOM
The MTTF is 3333.3333, with variance 11111111. 1.

Exazmple 8. Consider a parallel redundant system with unequal failure rates. The sys-

tem fails only if both components fail. The "task graph" that models the lifetime of this

systemi is shown in figure B.

Node 1 has distribution type zero, and exit type maximum. Nodes 2 and 3 are as in

Example 5 above.

The solution from SPADE is

CDF(t) =---W*e-.=e00

R(t) = .0001e.001 + .0002e -..0 0003anu

The MTTF is 11868.6867.

bZump 7. We consider a triple modular redundant (TMR) system. A task graph for

the lifetime of this system can be derived based on example 3.24 of [20] and is shown in

figure 9.

Node ZI: distribution type - ZERO; exit type - minimum

Nodes 2,3 and 4: distribution type - EXP; parameter A = 0.0001

Node Z5. distribution type - ZERO; exit type - minimum

Nodes 6,7: distribution type - EXP; parameter A = 0.0001 ...

The solution from SPADE is

CDF(t) = 1 - 3s'°'° + -. :':'

M7TF = 333.3333

It is possible to simplify the task graph for this example as shown in figure 9b (based on

example 3.26 of [20]).

AEwnple 8. We now consider a TMR system with one spare unit. We allow the spare

failure rate 1to be different from the failure rate X of the active unit. We also allow for

imperfect coverage. The coverage for an active unit is c. * while the coverage for the

spare is c..

An uncovered failure in an active unit immediately leads to a system failure while

an uncovered failure in the spare will lead to a system failure after a subsequent active

unit failure. If the failure of either an active or spare unit is covered, the system con-

Unues to operate as long as any two of the remaining three units are operating.

. A "task graph" for this system is shown in figure 10.

- Node ZI: distribution type - ZERO;

exit type - minimum

* Nodes U7. MII1. M15, M19, M22: distribution type - ZERO;

exit type - minimum

Node 5: distribution type - EXP; -

!a:.:--.:.-,........',. -.:-- .:-'..-... :...--.........-...-.--...'.--...*-','- -' .. -,*'-* * -. '

parameter - 0.0001

exit type - probabilistic.

coverage (are from 5 to M15) =.98

Node PI: distribution type - ZERO;

exit type- probabilistic

coverage (ar from P1 to M7) = .99

Node E14: distribution type -ZERO;

remaining nodes: distribution type - EP;

parameter j= 0.0002

SPADE computes the CDP to be:

CDF(t)=1 - .0233.-m + .0098e - '0 * + 4.7282e-'°-'

- .0039e - 6.3043 -M - 2.9106a -0010'

+ 5.0-32ag l - 1.5365e-'014 _. 00l ---.oO-'

+.012te.oo 0 01
-. 0005te-.00 2.

The [TTF is 3121.1882. Some values for the CDF are as follows.

t CDF(t)

2000.0 0.3853

4000.0 0.7037

6000.0 0.8813

8000.0 0.9577

.10000.0 0.9859

* 4. CONCLUSIONS

We have developed a model for the semi-symbolic computation of the execution

time distribution a precedence graph. The distribution function of individual node time

Is assumed to be a mixture of Erlangs. Several applications of the use of our model are

{ • o '- -7.

-1..4'

given-

REFERENCES

[1] Chandy, KM.. Howard. J.H., and Towsley. D.F., "Product Form and Local Balance in

Queueing Networks," JACM, Vol. 24, pp. 250-283.

[2] Coffman, E.G.. Cbmputer and Job Sop Scheduling., John Wiley & Sons, NY.. 1976.

[3] Dugan, LB., Trivedi, KS., Geist. R.M. and Nicola. V.F.. 'Extended Stochastic Petri

Nets: Analysis and Applications", accepted. PERFORMANCE '84. Paris, December

* 1984.

[4] Elgot, C.C. and Wright, J.B.. "Series-Parallel Graphs and Lattices", Duke Mthemat-

ics JoawnaL, vol. 26 (1959), pp. 325-338.

[5] Fix. W. and Neumann. K. "Project Scheduling by Special GERT Networks," Cbmput-

4m 23 (1979), pp. 299-308.

S[6] Gaul, W.. "On Stochastic Analysis of Project Networks." in M.A.H. Dempter et al.

(eds.), Deteinabdtic and Stochastic Scheduling, D. Reidel Publishing Co., 1982.

[7] Heidelberger, P. and Trivedi, KS.. "Queueing Network Models for Parallel Process-

ing with Asynchronous Tasks," IEEE 7ras. on Computers, November 1982.

[8] Heidelberger, P. and Trivedi, KS., "Analytic Queueing Models for Programs with

Internal Concurrency." IEEE Trans. on Cbmputers, January 1983.

[9] Kieinoder, W.. "Evaluation of Task Structures for a Hierarchical Multiprocessor Sys-

tem", RPoc. Int. Cb f. on Modeling Techniques and Tools for Petrformance

Malysi, Paris, France, May 1984.

* %

:: ... ~...
@ -.. _, : <,--. .--- -- ,-. . .- .-.. -. -. , . . ,* .*.* .- . *. .. * .-.... .. ,-..: ,?.... 2 _,..

W%-. -. .*.

(10] Kleinrock, L.. Quuug~ systent, ML. H: Computte" ,pltctoims. John Wiley &

Sons. 197&

[11] Kulkarni, V. and Adlakha, W., "Markov and Markov-Regenerative PERT Networks".

Tech. Report, Operations Research and Systems Analysis. Univ. of North Carolina

at Chapel Hill, 1964.

[12] Kung, KC.-Y.. "Concurrency in Parallel Processing Systems", Ph.D. Dissertation,

UCIA Computer Science Department, 1964.

[13] Molloy, M., "On the Integration of Delay and Throughput Measures in Distributed

Processing Models", Ph.D. dissertation, Computer Science Department, UCLA,

1981.

[14] Ng. Y.-W. and Avizienis, A., "A Model for Transient and Permanent Fault Recovery in
Closed Fault-Tolerant Systems," Proc. 1976 It. Symp. on Fndat-ToLerart Cbmput-

*ing, June 1976.

[15] Ramamoorthy, C.V., and Ho, G.S., "Performance Analysis of Asynchronous Con-

current Systems Using Petri Nets", IEEE 71ransactions an Softwir Bhgtrtiaung,

VoL SE-8, No. 5, pp. 440-449, September 1980.

[16] Robinson, J.T., "Some Analysis Techniques for Asynchronous Multiprocessor Algo-

rithms," IEEE 71'owactiao on Softura EhgineerLng, Vol. SE-5, No. 1, January

1979.

[17] Sauer, C.H. and Chandy, KM., "'he Impact of Distributions and Disciplines on Mul-

tiprocessor Systems," CACM Vol. 22, pp. 25-34.

(18] Sedgewick, R., AgorithUms, Addison-Wesley, Reading, Mass., 1983.

[19] Towsley, D.F., Browne, J.C. and Chandy, KM., "Models for Parallel Processing

within Program. CACM. October 1978

(2D] Trivedi, XS., robabilit wind Statistics with Re liabiityz, qtuaiL and Cbmputer

Saiutwe 4pplicins~, Prentlce-Hall. Englewood ClIMf, N.J., 1962.

Ire

004

A A3

max
(B, C D

B C

max
mi

0 E)

F

B

FGH

.4 .6

max

Fi gure 1-Examples of Series-Parallel Graphs

max-

B/

Figue 2 - ASeres-aralel rap

..6r~r .. * ~*~ * . . ~%**. .* *.* * % * -......

.... 'A A;., *- i -

B (series Ciseries

prob Gmin

*.46

I ~se ries' F
se ri'es

-prob L'

.25
.7$

D E

Fi gure 2b -Binary Tree Decomposition of a S-P Graph

A Erlang

-e -x xe-x

B EXP

Fi gure 3 - Tasks Executed in Series

A EXP

.9 ~ .

Erlang Bc EXP

Figure 4 - Series Tasks with a Probabilistic Branch

ION

ZERO 10 X

max
E XP (X

CP L2 102/

S 13

1X EXP(M.

S24

EXP AA-.)

Figure 6 -Example from Kung's Thesis

EPE XP (~

Figure 7 -Comonents in Series

Z IER

Figure 8 -Components in Parallel

/ I

A EXP (3 E)

B EXP(,)

Figure 9b -Simplified TMR Graph

ZM2 ZERO

mmi n

20. EX()I i,

EX 13 4 1X

Figur I~ - c tmwt pr

Z1 ZERO

mi n

EXP (3% 2EXP d)

C \~i~ Ca CS p rob 1 CS

EXP ()8El16 EXP (~)23 XP (~

\ZE RO

EXP 2\X 20

101'

* Figure 10b -Simplified Graph for TMR System with Spare

FILMED

DTIC

