AD-R148 452 ASYNCHRONOUS DISTRIBUTED FLOW CONTROL RLGORITHMSCU) /3 . =
MASSACHUSETTS INST OF TECH CRHBRIDGE LAB FOR §
INFORMATION AND DECISION SYSTEMS J MOSELY OCT 84
UNCLRSSIFIED LIDS-TH-1415 NO8@14-84-K~0357

.

=,

A DD

v

ICIPREIACRA A St

-

o

et

g_ — e — -
) R

3

.n- 5 o

g _ d I

| E 2_ 2._ @

. — ==

B EE)

E EEEETTTN

R
R Y WP YR

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

B,

W~ - —_ |. ——_

2 —

¢

!

'~]

X »

1

‘ J
2 5
r g
Y- .L
‘- .-- “-.A
Il .- . \ . A
1

) :
- u
¢ % .m
& Ly
.w .\-'J

~

— ——— SR S e e S S Sa T L T T A Y a . . S
e
5]
OCTOBER 1984 LIDS-TH-1415 1
o]
Research Supported By: -
Defense Advanced Research S
Projects

Contract NOOO 14-84-K-0357

National Science Foundation
Contract NSF-ECS-8310698 _
L
4
1
- ‘l
]
ASYNCHRONOUS DISTRIBUTED L bi
FLOW CONTROL ALGORITHMS B
- 4
Jeannine Mosely : ﬁ:

DTIC_
ELECTE o
DEC 1 01984

E =

Laboratory for Information and Decision Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

..
...
..........

LIDS-TH-1415

ASYNCHRONOUS DISTRIBUTED FLOW CONTROL ALGORITHMS

by

Jeannine Mosely

in June 1984.

This repors is based on the unaltered thesis of Jeannine Mosely
submitted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy at the Massachusetts Institute of Technology
This research was conducted at the M.I.T. Laboratory
for Information and Decision Systems with partial support provided by
the Defense Advanced Research Projects Agency under Contract N00014-84-
K-0357 and by the National Science Foundation under Contract NSF ECS-

Laboratory for Information and Decision Systems
Massachusetts Institute of Technouiogy
Cambridge, Massachusetts 02139

.....

- ’A {A

XXX

i

.....
.........

------ e w

kU i SRe S s 20 grs

REPORT DOCUMENTATION PAGE UNCLASSIFIHL

D READ INSTRUCTIONS

BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO |

D-41¢L ¢

3. RECIPIENT'S CATALOG NUMBER

4.

TITLE (and Subtitle)

ASYNCHRONOUS DISTRIBUTED FLOW CONTROL ALGORITHMS

S. TYPE OF REPORT & PERIOD COVERED

K) Thesis

6. PERFORMING ORG. REPOAT NUMBER
LIDS-TH-1415

7.

AUTHOR(s)

Jeannine Mosely

®. CONTRACT OR GRANT NUMBER(s)
DARPA Order No. 3045/2-2-84

Amendment #11
0NR/N00014-84-K-035?/

PERFORMING ORGANIZATION NAME AND AODRESS
Massachusetts Institute of Technology
Laboratory for Information and Decision Systems
Cambridge, Massachusetts 02139 :

10. PROGRAM ELEMENT. PREJECT, TASK
AREA & WORK UNIT NUMBERS

Program Code No. 5T10
ONR Identifying No.049-383

CONTROLLING OFFICE NAME AND ADDRESS .
Defense Advanced Research Projects Agency

12. REPORT DATE
October 1984

1400 Wilson Boulevard

13. NUMBER OF PAGES

Arlington, Virginia 22209 193
b 14. MONITORING AGENCY NAME & ADDRESS(If diiferent from Controlling Otfice) _|5- SECURITY CLASS. (of thie report)
F Office of Naval Research UNCLASSIFIED
a Information Systems Program
¢ Code 437 - Se. gg&sgtngucunou/oownsnomc

Arlington, Virginia 22217

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i1 different from Report)

18. SUPPLEMENTARY NOTES

-, 19. KEY WORDS (Continue on reverse aside if neceasary and identily by block number)

20. ABSTRACT (Continue on reverse aide il necessary and Identity by block number)
We consider algorithms for flow control in computer networks with fixed rout-

ing. The goal is to establish input rates, for each source-destination pair,
e that satisfy a particular fairness criterion. We describe several algorithms in
- which the input rates are calculated based on controls established by the links

of the network. These controls are updated iteratively, using feedback
information from the network. We show that the rates thus calculated converge
to the desired values when the links are assumed to update synchronously, and
without feedback delay. A model for asyvnchronous operation with delay is given,

bo , 1473

FORM
JAN 73

EOITION OF ! NOV 63 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

 m——— e

e .. .
e e e e e e e e e
‘. KN .-. -I‘ .l. -‘- \.. ‘!.:‘. .1. -‘. -~ to

e T R A S
MR E T TR EA D O LA LA L MEA T LR AR NSRS SR RS A REEARS SRS B R
* - * . s - " - P N T - te - - ‘-

20. (Continued).) . | .

and we demonstrate for this model that the input rates calculated by the
synchronous algorithms may fail to converge. We show how to modify the algo-
rithms, by the introduction of an update protocol and by using more of the
available feedback information, so that convergence of the rates is guaranteed.

We extend the model for asynchronous computation developed by Bertsekas
[14] to get some results relating to general -asynchronous distributed algo-
rithms with update protocols. These results are used to give an alternate -
proof of the correct operation of one of the flow control algorithms.

We develop a computer program te simulate the flow control algorithms - -
for a voice packet network. The simulation results indicate that the algo-
rithms behave as expected for a network with static loads. However, when
input loads change in imitation of real conversations, the control algorithms
do not adapt. fast enough-to..control the flows-effectively. -

» _'1
Accession For d
! NTIS GRA&I g
DTIC TAB . .- .
Unannounced (M

Justificatien . |

By el
| Distribution/ . :-',"l:"
Availnbility Codes

Avail and/or i
Dist Special .

A-!

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) -

i IS P N S
-’.-'z".‘f.:.- '.“J e - .

o "..u "0 ‘-‘l "r ',‘; '.'-,'A'.t

ASYNCHRONOUS DISTRIBUTED
FLOW CONTROL ALGORITHMS
by
Jeannine Mosely
B.A. University of Illinois, Urbana IL (1974)
B.S. University of Illinois, Urbana IL (1977)
S.M. Massachusetts Institute of Technology (1979)
E.E. Massachusetts Institute of Technology (1980).

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1984

¢ Massachusetts Institute of Technology 1984

Signature of Author QLZﬂkoobévvC«' fZﬂZz¢¢26H4%

Department of Elec. Eng. and p. Science
28 May 1984

Certified by

Prof. Pierre A, Humblet, Thesis Supervisor

Accepted by

Prof. Joel Moses, Cnairman Dept. of E.E.C.S.

A
2 :

P G TN
."._1..- 2t
[R TR

YA I AT
S S S I P AP

ASYNCHRONOUS DISTRIBUTED

FLOW CONTROL ALGORITHMS
by

Jeannine Mosely

Submitted to the Department of Electrical Engineering S
and Computer Science, 29 May 1984 in partial fulfillment C A
o of the requirements for the Degree of Doctor of Philosophy

~ at the Massachusetts Institute of Technology

- ___ Abstract
. 7 77/: :/.u:““"b —
ot MWe- considers, algorithms for flow control in computer s
- networks with fixed routing. The goal is to establish input -
rates, for each source-destination pair, ,that satisfy a S
. particular fairness criterion.,” We describe{several algorithms TR
- in which the input rates are calculated based on controls RO
i: established by the links of the network. These controls are Lo |
updated 1;tg;ative1y, using feedback information from the .
network. ~-We- showr,that the rates thus calculated converge to L
the desired values when the 1links are assumed to update Qﬁﬁj
synchronously, and without feedback delay. A model for R
asynchronous operation with delay is given, and we demonstrate
for this model that the input rates calculated by the —
synchronous algorithms may fail to converge. We show how to 511
modify the algorithms, by the introduction of an update "
protocol and by using more of the available feedback
information, so that convergence of the rates is guaranteed.

I A

-We extend , the model _ _for asynchronous computation FS
developed by Bertsekas”fTi]‘to get some results relating to A
general asynchronous distributed algorithms with update e
protocols. These results are used to give an alternate proof ey

of the correct operation of one of the flow control S
algorithms, o

. "l-
Js v i

~We develop a computer program, to s&mulate the flow
control algorithms for a voice packet network. The simulation
results indicate that the algorithms behave as expected for a

network with static loads. However, when input 1loads change
in imitation of real conversations, the control algorithms do
not adapt fast enough to control the flows effectively. (
Thesis supervisor: Prof. Pierre A. Humblet Title: Associate i&b
Professor of Electrical Engineering =)
KSR
-2 - ::'::'_.\
wro]
Qiﬁ
SRR N L e L e R R e D R R)

. Tal" PR AP R Pt D A i A A S o v TN oAt Mt A A S Shoss Sas s —~—w——
el A AN -7 L R A e [P R A T o LA AU RS LT A I MR oA A el R A S A s R S e 71

i Table of Contents
; Title Page 1
i Abstract 2
Table or Contents 3
: List of Figures 5 b
i Table of Tables 7 &f%i
Acknowledgements 8 R
Chapter 1 Introduction 9 .Ezt
= 1.1 Background 9 ;:QJ
} -
1.2 Problem Model 12 'j§§
: 1.3 Previous Work 14 A
i 1.4 Overview 23
3 Chapter 2 Generalized Synchronous Flow Control Algorithms 26

2.1 Options for Algorithm Design 26
2.2 The Fixed Points of the Rate and 29

0 R e

Control Update Equations
2.3 The Rate and Control Fixed Points 32

are Fair Allocations

T, LA™ 0,

2.4 The Flow Control Algorithm 36

2.5 An Example 40

< Chapter 3 Asynchronous Flow Control Algorithms 42
- 3.1 Feedback Delays 42 iff;
p 3.2 The Asynchronous System Model 47 }fﬁ
f . 3.3 Update Protocols for Asynchronous 50 }3,“
2 Flow Control Algorithms i
5 ‘ RN
o RN
- -3- R
) ok
e
e N e N]

E 3.4 An Asynchronous Flow Control Algorithm 55

: 3.5 Asynchronous Algorithms for More 68

! General Feasible Sets

é Chapter 4 General Asynchronous Distributed Algorithms 80

- 4.1 A General Convergence Theorem 80

! 4.2 Algorithms with Partial Processor Estimates 85
4.3 General Asynchronous Algorithms 87

with Update Protocols

4.4 Update Protocols for Synchronous Algorithms 95

:5 4.5 The Flow Control Algorithm as an Example 98

i Chapter 5 Simulation and Results 110
: 5.1 The Simulation Model 110 T
5.2 The Simulation Program 115) ?ii
5.3 The Network Model 121 ;iﬁ
I 5.4 Simulation Results 123 ;:;
5.4.1 Static Results 123 ~4
5.4.2 Dynamic Results 129 i:i
! Chapter 6 Suggestion for Further Research 165 :ﬁ?
Appendix A 168 .~
_ Appendix B 169 s
E Appendix C 170 E::
Appendix D 172 E?.J
Appendix E 177 ;'_{3
; Biographical Note 191 -
: References 192 ;;;:
E L
) =
.:':'.:1:::4:15:;5 N N N e e N N e S N s

?nz-umu:;uﬁ;gc:qqq«cqqqqx-uqcﬂ-‘\wmmgxnxﬁx RO Sl
: .
; =
- o
I . List of Figures S
- Fig. 2.1 The Fixed Point of gy(c;- by~ 1(x)) 31 \1

Fig. 3.1 Link Control as a Function of Time 51 35;
- Fig. 5.0 The Network Model 122 Lo
N Fig. 5.1 Link 2 Control vs. Time/Hayden/static 135 ?E#
R Fig. 5.2 Link 2 Control vs. Time/Jaffe/static 136 T
? Fig. 5.3 Link 2 Control vs. Time/Mosely/static 137 ffi
Ef Fig. 5.4 Link 5 Control vs, Time/Hayden/static 138 o
5 Fig. 5.5 Link 5 Control vs. Time/Jaffe/static 139
5 Fig. 5.6 Link 5 Control vs. Time/Mosely/static 140

Fig. 5.7 Link 2 Control vs. Time/Mosely/static 141

Fig. 5.8 Link 5 Control vs. Time/Mosely/static 142
! . Fig. 5.9 Link 2 Control vs. Time/Three/protocol 143 T
ég Fig. 5.10 Link 2 Control vs. Time/Three/no protocol 144 '?5
- Fig. 5.11 Link 5 Control vs. Time/Three/protocol 145 :f?
! Fig. 5.12 Link 5 Control vs. Time/Three/no protocol 146 ;;;
E4 Fig. 5.13 Link 2 Control vs. Time/Hayden/Four runs 147 ;;S
i Fig. 5.14 Link 2 Control vs. Time/Mosely/Four runs 148 ;g%
B Fig. 5.15 Link 2 Flow/# Users/Max Queue H/N/S 149 =
Fig. 5.16 Link 8 Flow/# Users/Max Queue H/N/S 150
ﬁ Fig. 5.17 Link 2 Flow/# Users/Max Queue H/P/S 151 : i
= Fig. 5.18 Link 8 Flow/# Users/Max Queue H/P/S 152 ;{;
Fig. 5.19 Link 2 Flow/# Users/Max Queue J/N/S 153 B
Fig. 5.20 Link 8 Flow/# Users/Max Queue J/N/S 154 .'
:. . Fig. 5.21 Link 2 Flow/# Users/Max Queue J/P/S 155 T
- 0
, -5- o3
_ ~
: =
AR L e e e e e e e e e

»

: Fig. 5.22 Link 8 Flow/# Users/Max Queue J/P/S 156
Fig. 5.23 Link 2 Flow/# Users/Max Queue M/N/F 157

I Fig. 5.24 Link 8 Flow/# Users/Max Queue M/N/F 158

o Fig. 5.25 Link 2 Flow/# Users/Max Queue M/P/F 159

&; Fig. 5.26 Link 8 Flow/# Users/Max Queue M/P/F 160

. Fig. 5.27 Link 2 Flow/# Users/Max Queue Hybrid 161
Fig. 5.28 Link 8 Flow/# Users/Max Queue Hybrid 162
Fig. 5.29 Link 2 Average Delay vs. Average Flow 163

l- Fig. 5.30 Link 8 Average Delay vs. Average Flow 164

-

b

A

. -‘..." "}ﬁ.“?"-"

RSP R O N A R A b A A A A A A W NS Ca RS T ACASTAACASIA S et at i G RTINS S

Table of Tables

Table 3.1 Divergent Example for Hayden's Algorithm 46

Table 3.2 Divergent Example for Gafni's Algorithm 46

Table 5.1 Network Constants 124

N e e W e e e e e N R TS S S Sy L e T T
R A S R O T A T N T T P T N LI RNE AT NE o LR L SPLAC
P LA P L P e OPEE WAL VAP AP L RPN W DR W M P T WL WA P W SR WAL SRE W W W RS S W AR WS

14 T

Acknowledgemeats
I would like to thank Prof. Pierre Humblet, my thesis

:S supervisor for all the assistance he has provided during the
:{ ' course of this work, and for bringing this problem to my
o attention in the first place. I would also like to thank my

thesis readers, Prof. Bertsekas and Prof. Gallager, for all
their attention, and especially their promptness when the
deadline approached. I am especially grateful to Prof.
Bertsekas for his suggestions leading to the results in
Chapter 4. Prof. Gallager I thank, not only for his careful
reading, which uncovered many errors that must otherwise have
gone unnoticed, but also for his patience and continued
support over the years.

- To Allan Wechsler, my friend and help-mate, go special
- thanks: for assisting me with the simulation program in
- Chapter 5, for listening to my nonsense at all hours of the
- day and night, and for believing in me.

I would 1ike to thank my advisor Prof. Al Drake, whose
advice, encouragement and friendship have been invaluable,

I would also like to thank Symbolics, 1Inc., on whose
machines the simulation was developed, and the M.I.T.
Artificial Intelligence Lab, where the simulation was run.
Thanks are due to the hackers and wizards of OZ for help
rendered in generating the graphical output from the
simulation data. Special thanks go to MARG, GUMBY and DLW of
the "Dover Express", who arranged for the graphs to Dbe
delivered from Stanford at the last minute when M,I.T.'s own
Dover broke.

I would also like to thank my Dad, who has encouraged me
throughout my life to pursue my technical interests.

od - o R S e bt o e B iew e e Ak e S et S v St s g Jatt Jas Jae fnet] A At e S e 4 o
PO A T R R A LA AT A PRCHREA A S AP AR RC IS A e it A Tt s S A i S St i

- Chapter 1
Introduction

1.1 Background

Advances in packet switching techniques make packet
switching a cost effective method for handling sporadic or
bursty comminications traffic. The sporadic nature of voice
and the desire to integrate voice and data in computer
communication networks [1], (2], makes the idea of packet
voice attractive. In this thesis, we consider the problem of

limiting traffic flow in such integrated networks.

In a traditional circuit switched voice communication
network, a given 2-way conversation is allotted two dedicated
channels. But wusually a user spends 502 of his time
listening. In addition, pauses between words and phrases in
the speech of the active user represent a source of wasted
channel resources. These smaller units of uninterrupted voice
are called "talk-spurts", The random nature of talk-spurts
has long been exploited by the Bell System in their TASI
algorithm, used on intercontinental 1lines [3]. Digital
variations on TASI include Digital Speech Interpolation and
Speech Predictive Encoding [4], [5].

g ST LN
LR RSN

In an integrated voice and data communication network, it

is necessary to adopt flow control measures to 1limit the
amount of information entering the network, and prevent
congestion, While flow control techniques for data-only
networks have reached a high 1level of sophistica.lon [6],
little is known about flow control for voice. The different
delivery requirements of voice and data demand a different
approach to the problem of {low control for each. While
considerable delay may be acceptable in a data packet, the
same delay would cause a voice packet to be discarded by the
receiver as "too late". Conversely, voice may suffer
considerable degradation due to errors and still be
intelligible, while the same errors in a data packet make it

worthless.

Traditional methods of flow <control for voice simply
block the initiation of new calls. TASI type systems may even
block new talk-spurts, resulting in clipping of the received
signal. Loss of more than about .5% of the signal by clipping

has proved unacceptable.

The idea of embedded coding, first proposed at the Naval
Research Laboratory [7], provides a new approach to voice flow
control [8]. In embedded coding, speech 1is encoded into
priority ranked packets. The lower priority packets can be
discarded as needed, while the remaining packets still provide

an intelligible, though degraded, signal, Hence, we have

- 10 -

(S PRIV EY TR

i

- A
.=

T T T TR T T I T T I T

hY

...........................

AN A A N YN Y NN N AP S Sttt SR il I i I i i A B 0 i Sk S v o i =ty

traded clipping for distortion. The 1level of network
congestion that results in unacceptable clipping for a call
blocking scheme is much lower than that required to render

embedded coding speech unintelligible.

Low priority packets can be discarded at their point of
entry into the network, as well as at the point of congestion,
resulting in a variable rate encoding scheme. Clearly, it is
better to discard entering packets when possible, to prevent

unnecessary waste of network resources.

An algorithm for voice flow control using embedded coding
has been studied by a group at Lincoln Laboratories, using a
computer simulation [8]. In their model, conversations are
conducted over fixed routes, Low priority packets are
discarded at congested nodes, and terminals report the
received rates to senders, which reduce their input rates
accordingly. Provisions are included for allowing the senders

to increase their rates when the network is lightly loaded.

The primary objectives of this scheme are to maintain
stable operation of the network, while preventing excessive
delays due to congestion and providing the highest 1level of

service possible to each user,

This last criterion gives rise to the question of how to

allocate network resources in a "fair" manner, while giving

- 11 =

................

Dutic gl gl gmh SN

Tt

L'}

L% g
.

'''''

R | Cetey

JwmEE,
Lol

T

Y.y COMMAOADS e
;o RERRS - R

everyone the best possible service. Hayden [9] and Jaffe [10]
simultaneously and independently arrived at a concept of
"fair® rate allocation, which was generalized by Gafni and

Bertsekas [11), [12], and is defined in the next section.

1.2 Problem Model

We will use the following model to study the problem of
voice flow control. Consider a network 7Z which consists of a
set of 1links ;f and sessions z; s, Where a session is a
source-destination pair between which a conversation is taking
place. Each link j has an associated capacity ¢j, where cj20.
Each session is assigned a path through the network, which 1is
fixed for the duration of the conversation. We denote byc;fi,
the set of links in the path of session i. We denote by'éij,

the set of sessions whose path contains link j.

Let ry(t) be the input rate of session i at time t. For

now, wWe assume instantaneous propogation of data through the
network, so that the component of flow on link j at time t,
due to session i, is ry(t). (This assumption will be dropped
later, in favor of a more realistic model.) Then we define

the flow on link j at time t as

fj(f-)= 2 ri(t). (1.1)
2686’
We control the flow only by limiting inputs rates, and not by

discarding packets when the links are congested. We wish to

- 12 -

g e

e
o
.‘_'.'.'
'

oL

» (]

control the input rate for each session i and the flow on each
link j so that the steady state rate ri= lim rj(t) and steady
H->oo

state flow f.. 1im fi(t) exist, and satisfy the constraints -
J;t-wo‘] ’

for a fair allocation, as outlined below.

We would 1like for a fair rate allocation to be
o indifferent to the geographical separation of the
?;i source-destination pair. While priorities may be established
i:ﬂ for certain sessions, it should not be on the basis of T
distance. Furthermore, two sessions of the same priority E
E?i should be assigned the same rate, if the rate of one can be S
‘if traded for the other, without reducing the rate of any other .
. session or violating other system constraints. This will make tff
the network transparent to the session, in the sense that he :;:
cannot tell the length of the assigned path by the assigned —
rate. Eéi
We also require that each user be assigned the highest ::
possible rate, while guaranteeing that the steady state flow i
on each link does not exceed a given function of the 1link ;
capacity. ;5
With this motivation, we give the definition of a fair \
allocation, first presented by Gafni [11]). First we need the .
following two definitions. ?i
A vector x=(x, ., ,,x,) is said to be lexicographically s
- 13 - | %

..

oo . T o : Te MmN

------------------------- -t " N N - s Tttt -t

RSN R e TS A I A SR T T I N S R A DO O
"t - A R -

less than or equal to y=(y;,...,yn) if xi>yj implies the
existence of j<i such that XJ<yJ' We write this as x £ y.

Given a vector x& RP, let X denote a vector whose
coordinates are some permutation of the coordinates of x. If
the coordinates of‘?lhave the property that X1$x2&. . . £Xp, we

call Q’ the increasing permutation of x, and we denote this

vector by X. (Note that ¥ < X, for any permutation X of x.)

Definition. Let X be any subset of RD, We say that xe X is a

fair allocation over X, if for all yeX, Y L X,
A

We may think of X as a "feasible" set, The fair
allocation vector solves the following set of nested problems.
The first problem is to find a subset x1 of X, such that the
minimum coordinate of a vector x&)(1 is greater than or equal
to the minimum coordinate of any vector in X. Next we find a
subset X, of Xq, such that the second smallest coordinate of

x€X, is maximized over X,, and so on.

o
- _7
B

S

ey

BN

Hayden [9] gives a distributed algorithm which produces a Y

rate vector r=(...,r;, .,.) that is a fair allocation over the j f

set defined by g

A

. -

fJ(ajej VJCI, (1.2) 1

where a is some constant, 0<af1. The rationale behind (1.2) ;f:?
NSNS

- 14 - <

ACH,

RN

S

... D N T N T N S L N N RS N R
...................... Rt OO .- 3 e !. N ‘_‘...~.:,..’. .-,’.“- o _,-,;_‘.A.._L. W -..\-\-\q DN _.-.-‘-5_.‘_1_’-.*

..........

is simple: we restrict the steady state flow on each link to

some fixed fraction of link capacity, reserving the unused

5§) capacity as a buffer against transient fluctuations in flow.

= We call ajc; the effective capacity, and henceforth, when we
refer to a 1link's capacity it is assumed that we mean the

effective capacity.

Jaffe [10] gives an algorithm such that the vector

(ceesbypy,...) is a fair allocation over the set defined by

bi"iscj-f_j Vied, VieLs, (1.3)

where b; is some positive constant associated with session i.

Hayden offers a distributed algorithm for achieving Jaffe's

desired rate vector.

The rationale behind (1.3) is more subtle than for (1.2).
First, it allows us to establish different priorities among
sessions, as characterized by the constant bi- Second, it
provides a buffer against transient flows which is sufficient
to allow session i on link j to increase its rate by a factor
of (1+4by) while still guaranteeing that figej.
Alternatively, it permits a new session to be added to the
link, provided its rate is no greater than that of the most

privileged session already using the link.

Gafni [11] further generalizes the feasible set

% . considered by Jaffe. For each link j €Y and session ie,g, he
§ introduces functions gj;RtJyR* and b, :g*—>R*. His objective)
- 15 - o

..
PRSIV T PN S I oL AL O S e SR .
\'d") -..-f"- BUCR ..I.-.‘...‘_-.._.‘_ .'\.'_ RN

Y F% PR AU R RS RN L R A

o T AR A AR A e e e e (e 0r 2ot e Sra g b s SeasLeanay SueceaCEE S AL AP AC Rk c T <
T ———— e S R N S T T N e s e R N R

is to generate a rate vector r such that the vector

(evesdi(ryg),...) is a fair allocation over the set defined by

by(ry)<estcy-£y) Vied,Viey; (1.4.1) o
and fg

ri>o0 Vie& (1.4.2) i
and

figej Vieg (1.4.3)

We will refer to the functions gj(-) and b,(+) as the link -
constraint functions and session constraint functions,

respectively. For convenience, we will denote the vector

(eevsdi(ry),...) by bir).

In order to guarantee the existence of a unique fair
allocation vector over this set, the following assumption is

needed [12]: -

Assumption 1.1: For all j€f, g5() is monotonically
non-decreasing, and for all iegd, bj(*) 1is continuous,

monotonically increasing and maps R* onto R*.

We note that this assumption also implies the existence of
b=1(-). Unless otherwise noted, when discussing functions

gj(~) and bi(-), we assume that Assuption 1.1 holds.

Gafni gives an algorithm that produces the desired rate) ﬂ;i
vector, provided that an additional assumption about the link . RO

and session contraint functions is satisfied. : 51;

e v v—v> Y S SO o e A § A S S e 3 Py - -
S At et e m g e g e R YO IR e RN RN S DN P O 4 AU IR A DR e i S e A At dan~ o i Sar e
...... A g e .

. ERETT

< .

g

L)
a‘ss

b B

s 9
'i '-. .l

LR at SN

& RN et e e e e - R e e e e ERERERS
- O R N P A N P R A St N SN R Y A R

Assumption 1,2: For each i€J, J€XL,, the function hyj(*)
defined by h13<f)=b1'1(83(f))v is convex and differentiable on
R*, and satisfies hij(°)=°‘

By allowing the function bi(-) to be non-linear, we gain
flexibility in making priority assignments. Gafni also
provides some examples where it is desirable for gj(-) to be

non-linear as well. We summarize one such argument below,

Assume that the bit rate for each session i 1is a
stochastic process with mean rjy and standard deviation djrj,
where d;50. For each link j, define Dj= max dj. For a given

, Acdg
link j, let k be the session inxS-j with the maximum mean rate

ri. If we assume that fi<cj, then by the independence of the
rates of different sessions, the standard deviation (Tij) of

<Diyejrk - (1.5)

If we choose

bi(r)zr (1.6.1)

and

SJ(f)sz/(cJDJZ), (1.6.2)

- 17 =

et e

.........

-

P T T Ty oy e

AC ST I SO S B e S Y e S-S L RIS Sl - At At -SedC]

............. .

then from (1.4) and (1.5), we have
T) <D NeIri
! Pnejejles-£y)
: =¢j_fj. (1.7)

Hence, proper selection of the function 53(') can guarantee

. sufficient reserve capacity on each 1link to accomodate
fluctuations in flow at least as great as the standard

deviation of the flow.

We note that, while the class of feasible sets considered
by Gafni is more general than the class of feasible sets
. considered by Hayden, the two classes are disjoint, because of

Assumption 1.2.

I In addition to seeking fair allocations over different
. feasible sets, Hayden and Gafni also use different me-.nods of

controlling the session input rates. Both algorithms are
! designed for synchronous operation, such that at each unit
interval of time n, each session calculates a new input rate
ry(n). For both algorithms, the rate vectors r(n) can be
shown to converge as n goes to infinity, and the limit vector

r is a fair allocation over the specified set.

In Hayden's algorithm, each link j calculates a control
value Pj(n+1) at time n+1, according to the equation

Pj(n+1)=pJ(n)+(aJcJ-fJ(n))/WJ, (1.8.1)

- 18 =

AT K S A A oA e e A A R A e i B i e A S AR S TR IO d-a s S A et Sl

: where Wj is the number of sessions on (or "weight" of) link Jj,

i and a; is some constant satisfying 0<aj<1. Each session then
- adjusts its rate so that 15%
: ry(n)= min ps(n). (1.8.2) T
i . S
je i
I Hayden's algorithm can also be modified to give Jaffe's L

desired rate vector by changing the control update equation to

Pj(ne1)zpj(n)+(ajcj-£j(n)~pj(n))/(Wj+1). (1.9)

While it has been shown that the rates r,(n) for Hayden's

algorithm converge to the desired fair allocation, the control

- values for the links do not necessarily converge. If there e
exists a 1link such that all its sessions are controlled by ~.}
other links, then the flow on that link will converge to some __i

!) constant 1less than the capacity. 1In the attempt to bring the .;f

: flow up to capacity, the link will increase its control at 'fg

: each update by (c,_f;(n))/Wj, and the control will grow to E

. infinity. This can create serious problems when a new session —

f joins the network. fi

- ,4

- Even though it has been shown that Hayden's algorithm e

é converges to the desired rate vector, computer simulations of ;2%

% his algorithm exhibit distressing oscillations in the 1link E&ﬁ

: flows when inputs are changing. We suspect this is caused by ;::
the failure of Hayden's model to accurately reflect delays in ;ﬁ?

the network: the delay between the time that a link updates ﬁf

= its control and its sessions learn the new value, and the

5

N

o

v

N - 19 -

A

e et o e

A T A N N LN s N TN L e T T e

Pt S S i e A A e I e e N T T e S T N e A

delay between the time that a session changes its rate and the

flow on any of its links reflects that change.

In Gafni's algorithm, at time n, each link J calculates

for each of its sessions i, a control value pij(n) given by

Pij(n)=aj(n)(hjj(ej=fj(n))-ri(n)) (1.10.1)
where
3j(n)= 1/(1+Z hyj'(cy-£3(n)) (1.10.2)
Ke3,

and hij(') is defined as in Assumption 1.2, and h'ij(') is the
derivative of hij(-). Each session then finds its new rate

according to

Fi(n+1)=ri(n)+ min pjy(n). (1.10.3)
18K
If we define b, (r)zr and gj(f)=f, then the rate vector as

given by (1.4) is the same as Jaffe's, and (1.10.3) becomes

Fi(n+l)zrj(n)+ min (cj-f3(n)-rg(n))/(Wjel1). (1.11)
: &L
| Note the similarity of (1.11) and (1.9).

The essential difference between these two techniques 1is
) that, 1in Hayden's algorithm, memory of the past state resides
v with the links, while in Gafni's, past state information is
stored by the sessions. In Hayden's algorithm the links
calculate their new control values in terms of the the past
. control values and the past flows (rates), while the sessions
find their rates in terms of the present controls. In Gafni's

) algorithm, the sessions calculate their new rates in terms of

;' - 20 -

..........................

the past rates and the past controls, while the links find

their controls in terms of the present flows (rates).

It is because new rates are calculated in terms of old,
that Gafni's algorithm has the important property that the
flows on the links are always less than or equal to the 1link
capacities, provided that the flows were less than or equal to
the capacities initially. Hayden's algorithm can only
guarantee that flows are less than or equal to capacities in

the steady state.

While this appears to be a serious flaw in Hayden's
algorithm, it may provide certain advantages. Assume that the
network in question is an integrated voice and data network,

- and that the stated capacity of a link cj is not the 1link's
true capacity but the portion of its capacity allocated for
carrying voice packets. If the voice and data packets are
queued separately, with voice being given priority, the
algorithm could produce a rate assignment which would generate
flows f, in excess of cj, without actually causing any yoice
packets to be queued. At the next iteration of the control
update, the control for such a link would be greatly reduced
and the voice flow f; yould drop below cj, providing the extra
capacity needed to transmit the data packets that were queued
at the last step. Hence, the time average rate assignment for
@ given session is likely to be higher for Hayden's algorithm
than for Gafni's.

i - 21 -

:‘. . -‘.-:-. .J'.'-P -'.;):..:’_ LIPS I
>

) %) A AN SRS

N L e W e et e e
ORISR SR AN

..

...........................

Furthermore, Gafni's algorithm has not been shown to
converge 1if the initial rates are chosen outside the feasible
set. Hence, if random fluctuations in the session rates, or
the initiation of a new session, cause flows to exceed
capacity, there is no guarantee that the rates will return to
values 1inside the feasible set. In the example above, where
gj(°) is given by (1.6.2), when the flows exceed capacity,
the 1link constraint function does not even satisfy Assumption
1.1. Because Hayden's algorithm has been shown to converge
from any 1initial control vector, it must eventually recover

from such disturbances, if they are sufficiently infrequent.

Gafni's algorithm also has the disadvantage that each
link must know the function bi(') for all of its sessions.

This is not a serious drawback, though, since in practice

there will probably be only a small number of different
priority classes in use. The function bi(~) will be the same

for all members of a given priority class, so that the link

only needs to calculate Pjj(n) for each priority class.

As noted previously, both Hayden's and Gafni's algorithms
are designed for synchronous operation, with 2all sessions
updating their rates simultaneously, making actual
implementation impractical. However, Gafni and Bertsekas [12]
were able to show that Gafni's algorithm will produce a .

sequence of rate vectors that converge to the desired fair

- 22 -

....................

caN e
PRI I T TSI I S SR S R N S Y Y
.............

R R P SRR et et
N A Y N I B N N R N NN I N NENENE NN,

rate allocation, even under certain asynchronous conditions.

-y

Specifically, they consider an algorithm where a single
session rate r; js updated according to (1.10), and the flows
are then updated to reflect the change in r;y. This process is

repeated indefinitely, with each session updating in a fixed

T YEENT Y

cyclic order.
. 1.4 Overview

In Chapter 1 of this thesis, we introduce the problem of
; flow control for packetized voice and introduce the idea of a
fair rate allocation over a given feasible set. We describe

previous work by Hayden and Gafni, each of whom developed

distributed flow control algorithms for achieving fair rate
assignments. We identify some problems associated with their

algorithms.

In Chapter 2, we describe a method of categorizing flow
control algorithms 1like Gafni's and Hayden's. We show how
their two approaches can be merged to unite some of the
advantages of each. In particular, we propose two algorithms
which produce a fair rate vector for sets in Gafnit's class of
feasible sets (1.4), but without the need for the links to
calculate separate controls for each priority class. We

analyze one of these algorithms in detail.

In Chapter 3, we consider how the model of Chapter 1

- 23 -

.....................................

fails to account for network delays, and describe some

resulting difficulties. We then give an extended model which

not only considers delay, but also asynchronous operation of
the flow control algorithms. We introduce the 1idea of an

update protocol, which permits a link to update its control

only when the protocol is satisfied. We use update protocols ;;J
to construct some asynchronous flow control algorithms: one o
that gives a fair rate vector over Hayden's feasible set and o
two that give fair rate vectors over sets in Gafni's class of T}j
feasible sets. For two of these algorithms, we prove that the ;ﬁf
generated control sequences converge to produce the ;ﬁﬁ

——

appropriate fair rate vectors, given the assumptions of the]

asynchronous model.

In Chapter 4, we build on the work of Bertsekas, et. -

al., [13]1, [14], who have developed results that apply to

general asynchronous algorithms. Bertsekas considers a system i@ﬁ

in which N processors find an element of a given solution set

by iteratively computing estimates of the solution. Each

processor receives feedback measurements from the system, and
uses these measurements to update its current estimate. In
Bertsekas' model, a processor may update its estimate at any
time, asynchronously with respect to the other processors. We
extend the model to include algorithms where updates times are

restricted by update protocols, We give a theorem similar to

Bertsekas', describing a class of such algorithms for which

the estimate sequences converge. We use this result to give DOOES

- 24 - " 1_::3}_5:'-2

o e

~— . d WY T e T T WY T v T v —v— e v W e e - - A
A ALHE RLAG L SRS SETMEAL iR R R A RSOOSR SR BN RTINS S-SR AT RS G SR G S T R SN PR 4

cx .y ..

an alternate proof of the correct operation of one of the flow
control algorithms given in Chapter 3. We also give a theorem
that shows how a synchronous algorithm, taken from a given
class of algorithms, can be implemented asynchronously by the

addition of an appropriate update protocol.

In Chapter 5, we describe a computer program written to
Simulate the flow control algorithms of Chapter 3. The
program simulates a network carrying voice traffic only, where
each source-destination pair represents a voice conversation.
At any given time, one member of each such pair is talking,
and the other silent. We study the steady state behavior of
the network by setting the average talk-spurt duration to
infinity. For the static network, the algorithms behave much
as predicted, We also set the average talk-spurt duration to
a value representative of actual speech, to study how the
network behaves under real-life conditions. The results of
these simulations are inconclusive, and indicate that our
model 1is not detailed enough to let us accurately predict the

behavior of our algorithms in dynamic operation.,

In Chapter 6, we summarize our results and give

suggestions for further research.

- 25 -

LTI T R S T TP T 2t . P O T o T S PO -
'y -.' -.‘ .-t -_' ..' . "\4‘. '.\ . . -.' ., \,‘. e " .'-.". e e -\ S '... -.'.-.'...‘ - '.1 '_.\ ,"’(" - " -.’ o .“ L R
8 °a ’s ‘e’ "0 a’s "aava 4 ISRRPSP RO S S PO RN UG S BT BT AT Nl O G N Wl Gl W IR S, (50PN,

Chapter 2

Gepneralized Synchronous Flow Control Algorithms

2.1 Qptions for Algorithm Design

As mentioned in section 1.3, the essential difference

between Hayden's algorithm, given by (1.8) and Gafni's in o
(1.10), is that in Hayden's, state is stored by the links and iﬁﬁ
in Gafni's, state is stored by the sessions. In addition to ?fi
choosing where state memory resides, the algorithm designer ::j
E. must also consider how to allocate the burden of calculation. ‘
X If the feasible set over which a fair allocation is sought is
of the form given in (1.4), both the constraint functions . :::
sj(-) and bi(-) must appear somewhere in the update equations ﬁgé
for the 1link controls or the session rates, Responsibility Eé?
for calculations involving gj(-) may be given to either the i;:
- sessions or the links, and the same applies to bi(-). fﬁf
As an example of what this means, consider the following i:;
algorithm. Let i#ﬁ

Pj(ne1)=py(n)eajin)(ej-£5(n)-ps(n)) Viel (2.1.1)
and o
ri(n)= min b7 (85(ps(n))) Vied (2.1.2)
J€Z;

.......................

where {aj(n)l is some T"appropriately"™ chosen seguence,

designed to ensure the algorithm's convergence, This
algorithm is the reverse of Gafni's: where his algorithm
assigns memory to the sessions and calculation to the links,
this algorithm assigns memory to the links and calculation to

the sessions,

Of the eight possible ways to assign responsibilty for
memory and calculation, two are clearly undesirable. An
algorithm where calculations 1involving the 1link constraint
functions are performed by the sessions, with the links doing
the calculations involving the session constraint functions,

obviously entails excessive overhead.

Ideally, we would like for a given link j to need to know
only its own constraint function gj(-), and for a given
session 1 to need to know only its own constraint function
bi(-). Such an algorithm, with state memory assigned to the
links, is given by

Pj(n+1)=pj(n)+ajln)(gjles-£3(n))-p3(n)) Vi€t (2.2.1)
and

ri(n)= min b~'(py(n)) Vied (2.2.2)
165
where the sequence {aj(“)} is chosen according to criteria

discussed in section 2.4. We call this the generalized 1link

memory algorithm,

- 27 -

Lr_-.*—:*.**.:-.‘.‘v T T T T e T T T e TRT T T TN e |
- N
[R
L Another such algorithm, with state memory assigned to the y“j
2 sessions, is given by ﬁ;;
P . ORI
o Pj(n)=gj(cj-fj(n)) Vel (2.3.1) &
- and 4
- Fi(n+1)=ry(n)+min ai(n)(bi'1(PJ(n))-ri(n)) V&éél (2.3.2) 2]
I€Ls 5
where {a ;(n)} is some appropriately chosen sequence.]
ot For both these algorithms, it is easy to see that if the 'ff
: rates and controls converge, they converge to values that ;
3 satisfy (1.4.1). The problem remains to choose the sequences
) {aj(n)} or {aj(n)} in a manner that guarantees that the rates :::
Sg converge to a unique point, and further to show that that ﬂ;@
73 unique point is fair over the set defined by (1.4) f@f
... —h—“-.:..
- e |
L
In general, it 1is not always possible to select a v;i;
Eﬁ sequence that guarantees rate convergence. The choice of such Efﬁ
a Ssequence depends on the 1link and the session constraint —
functions, and on which algorithm is being used. :ﬁ’
In section 2.4, we give a definition for a5(n) and -5a
3 conditions on gy(+) and by(-), such that the rates produced by if?
5: the generalized 1link memory algorithm (2.2) can be shown to
3 converge, We have not yet investigated this problem for the)
i algorithm proposed in (2.3). B
3 Before showing how to select the sequences {aj(n)} for -
% o
N By
¢ .

- 28 -

....................
hY

A A 2 —————— o v —p——— e
ENEG RN LN AL ANE Ol A A A A A A A i S S S BRI T R A b A O S e a2l s B o vy avee 2
X R
v’

T
3

the generalized link memory algorithm, we pause to discuss the

A aas asa o o

nature of the limit points of the rate and control sequences,

PRI P S
A R
. YN
de PR
. P T TR
oS e et
A AR

and to prove some theorems about the limit points. rood

:]
. 2.2 The Fixed Points of the Rate and Control Update Equations 1
g

Before trying to prove that the control and rate
sequences given by generalized link memory algorithm converge,
we consider whether or not there exist control and rate ..
vectors that are "fixed points" of (2.2), that is, we want p*¥
and r®* such that if p(n)zp®* and r(n)=r%*, then p(n+1)=p* and

r(n+1)=r®, 1In this section, we give a centralized algorithm

for finding the fixed points p* and r* of (2.2), and show that

they are unique.

We will also see that the fixed rate vector r#%* is the
same for the algorithms given by (1.10), (2.1), (2.2) and

(2.3). Since each of these algorithms was proposed to find

the fair rate allocations over the same set, it is not fﬁf

surprising that they have the same r%. l}

PN

A S
N In the next section, we show that p#* and b(r®) are fair g
':\‘ .‘:-.";!
i allocations over the appropriate sets for the generalized link jig
memory algorithm. f;f

: o

- .
f If there exist vectors p* and r®* that are fixed points of ijﬁ

(2.2), then

Pi#=gjley-ry") Viex (2.4.1)

i and

:%fl ri®= min by~ (Py®) Vie (2.4.2)
- J€XL,

i‘ where

. fy0= 5 rys, (2.4.3)

iedy

Combining these three equations, we get -

ri%= min by" 1 (E5(cs- S ri")) (2.5)
Jed4 kedy

It is easy to see that similar manipulations of (1.10), (2.1)
and (2.3), all yield equation (2.5).

We now show how to uniquely construct p%*., For each 1link
J define X, such that
Xjzgjley- S by~ (X)), (2.6)

Ae&i
Assumption 1.1 guarantees that (2.6) has a wunique solution.
See Figure 2.1. Let pl= @%;.xj, 1et X be the set of links j
46
for which xj=p1, and let 1 be the set of all sessions on

links in J:‘.

Suppose p* exists. By (2.4) we have

P ':gJ(c - b1-1(min p,#)), (2.7)
’ J,ﬁ- Ke s
Therefore, by Assumption 1.1,
Pje2g5(ey- > bs~1(py®)). (2.8)
“Y
- 30 -

..

4 L L . LPURY S ST P
SRS R ST

o~
O
A’ M
S
g
'
—
P o3
~—
~

X

b, (x))

The Fixed Point of 8j(cj

Figure 2.1

'-‘ N ’ FRCR OO FI ..'-q'. -'~.\A.'-..':.'-'.\'.‘. c
AR A A S R A Y IR A R WO

and so, from Figure 2.1, we see that Pj®2Xj, for all j&f.

. Bounding Py®* by Xy in (2.7), we have,
f Pytseylej- T by™ € BIn X))
: €4 €l
' for j€x1, and so
Pji_ggj(cj-z b1'1(xj))
;.c-,z,;
=xj. (2.9)

Thus if p* exists, Py#s "jén Xg=p! for all jexl.

Now we may rewrite (2.7) as

' Py*=gjlcj- 5 by=1(PV)= Z_ bi=1(min pey), (2.10)
~ Aegngt ~e%\g1 ket
Equation (2.10) suggests the following procedure. To find the

‘ next smallest p;# construct the reduced network

ﬂ':(i',X'), where X '=Z\ 21, 2_':3_\2_}, and the

capacities of the links are defined by

I cj'=cj-.z' bi-1(p1)- (2.11)
; efndt

Now find xj' for each link X', and p!'= min X Repeat this
X~

]
J‘ .
procedure until all the coordinates of p¥* have been found.

! Thus, by construction, p®* exists and is unique. ~iT

2.3 Ine Bate and Control Fixed Points are Fair Allocations 2

i 3j.

i In this section, we show that p* and r#®, as found in Ei- |

: section 2.2, are fair allocations over the sets specified Eﬁiii
below. This and the results of the 1last section imply the . !tff“

- 32 -]

ST W F o s ivEEe v
s

existence and uniqueness of a fair allocation rate over the

set given by (1.4), This last result was also shown in [12].

Ibeorem 2.1 If p* and r* are the unique fixed points of. RS

TN

. (2.2), then p* is a fair allocation over the set defined by :;E&
l Pj<gj(cj- 2 min by~ 1(Py)) VJGX (2.12.1) S
wedy keX, S

and b(r#*) is fair over the set defined by

i bycrydgeleg-ry) Vied, Vi€, (2.12.2) o

Proof. As described in chapter 1, the fair allocation vector fi;

over a set X solves a nested hierarchy of problems. The first L;Lg

™~

problem is to maximize the minimum coordinate of vectors in X.

. Next, we maximize the second minimum coordinate over all fxiﬁ
i vectors which solve the first problem, and so on. Our :;2
=~

algorithm for finding p¥* and r® solves for these vectors by
Just such a nested procedure, finding the minimum coordinate
of each vector, then finding the next smallest coordinates,
and so on., Hence, it is sufficient to show that the first
iteration of the algorithm maximizes the minimum coordinates

of p* and h(r%). The ‘"correctness" of the subsequent

L
DU e

iterations follows by induction. -
:
% We claim that p!, the minimum coordinate of p% is the ‘
). - ..
. maximum minimal coordinate of any vector p in the set given by ' ﬁ7
- (2.12.1). Suppose otherwise. Then there must exist g in the Z;}:
. Sl d
;; feasible set with minimum coordinate q1>p1. If that were so, f
!. -l
“ . o]
: - 33 - 7
. .
- e e e e e e e T e e T e T T T L et e T RN .-;:-.:1
N A et e T T e e T T N T N T e T e e e DT e ey

...........
--

we would have, for each link j,
p1(q1
L9,

: L8i(cy= Z by~ min qu))
: yrss kefL
I <gj(ey- T by~'Ca!))
: + €8y

$Bj(cj- S bi-‘(p1)). (2.13)
: iedy
i But this is a contradiction, since, for each jefl,
,_} P1=8j(cj- S by=t(P1)). (2.14)
" ‘ieiL{

e

E Now, since bi-1(-) is strictly increasing, (2.2.2)
;; implies bi(ri') = ‘%1q Pt Because p1 is the minimum
- €Sl
- coordinate of p®, the mi;imum coordinate(s) of b(r%*) must be

bi(ry#)=p's for each 1egl. We claim that this choice
maximizes the minimum coordinate of b(r#®*), since, if it did
not, there must exist b(s) in the set given by (2.11.2) with

minimum coordinate bm(sm)>p1. But if that were so, we would

- have for each session i, for each link j€X,,

: 1 ‘:

"__ p <b|n(’m)

B Sbi(si)

" SBJ(CJ- Z Sk)

" xel,

j £By(ej- = b= PN), (2.15)

- k%ﬂé

k which is a contradiction. This completes the proof of Theorem DA

: 2.1. o

] =T
- 34 - TR

4 AR

. . - - L P, T T P T SO T o . - - .- - . L * - - ", """ ST \ s S \ .-‘
O e T T e T I VS A R I S T A P R S T N DU S)
A L L S e e e e e N e e Sl

s HPTETY 8-

PLILAY PR
. ‘

Notice that we have not yet shown that b(r®*) is fair over

Gafni's feasible set (1.4), as desired. We cannot show this

without making further restrictions on bi(°) and gj(-), since

F;®* might be negative for some i, and b(r*) might not even be

an element of the set given by (1.4)., This cannot happen when

Assumption 1.2 holds. We give the following corollary.

Corollary 2.1. For each iel, jéﬁfi,

define

hij(x)=b1‘1(83(x)). If hj;(0)=0, then p* is fair over the set
defined by

i Pigylej- = min by~ (Py)) Vied (2.16.1)
Aé&«“ ket

: by=1(p4)20 Viey, Viets (2.16.2)

P and

.) " .

i 2 min b=V (py)¢e; Vied, Vief,, (2.16.3)

% Legg wed:

and b(r*) is fair over the set defined by (1.4).

N In order to prove the corollary, we invoke the following

ii lemma. The lemma is stated without proof, since it follows

i trivially from the definition of fair allocation.

)

i Lemma 2.1 If a vector x is fair over a set X, and Y is a

li subset of X, then x is fair over Y, if and only if xe Y.

)

.; Proof of Corollary. By the lemma, we need only show that p#*

f; and r® are elements of the appropriate sets.

‘:‘ .

¥ - 35 -

e NN o D I e 2 T i e e T

A e e Bt e 5

AR
RS

N
S

ESL TSR P PR Y .
..... et Y
A3 P SO I FER

e i ey s B J0en Avel e armar el gt et S oy b atnlh Bedh Sl doulh et o T T T YW
A A N R Lt T T e T T LT MRS SN e e e e L T Teae e e T R T G, RO

Recalling (2.5), r®* is the solution to
r;s- s
i*= min hyj(cj=f ;%) (2.17)
GZJJJ'
and hence

fj.z‘:z_ min hjg(ck-fi%)
4683 VG;;:

£ 2. hyjles-£3%). (2.18)

Legﬂ;
Now suppose fj'>c320. Then

£ 2 hj;(0)
Aé£i
=0, (2.19)

which is a contradiction. Hence fj|$¢j’ for all j. Since

fj'scj, (2.17) gives wus r;¥*>0. That p%* satisfies (2.16)
follows trivially from (2.4) and the fact that r%* satisfies

(1.4). This completes our proof.

Note that the condition hij(0)=° is sufficient to show
that r* is in the set defined by (1.4), but it is not

necessary.

These theorems allows us to concentrate on finding a fair

control vector, rather than a fair rate vector. f“f

2.4 The Flow Control Algorithm

The genralized link memory algorithm is not completely 3
specified until we describe how the sequences {aj(n)} are ﬁijﬁ

chosen, One obvious way to choose the sequences is to let NS

- 36 - A S
: O

PR A ar i e ok Ri-gs o

COMCAAE RN =S R A I ST A ST AN AT IS Ava Beg i g v DT — v N A s e ausm seum Jedh e e v
'~ L R T A AR Y A N AN AP L S grae e sy

v

]
3;(n)=Aj(pj(n)), where Aj(*) is some real valued function. -”7j
4

In order to establish some conditions that AJ(-) should
satisfy to guarantee the convergence of the controls, we
consider a network consisting of a single link j. For such a
network, (2.2) becomes

P(n+1)=p(n)+A(p(n))(g(e= = b;=1(p(n)))-p(n)). (2.20)

yu-3's
For convenience, define

- G(x)zgle= = by=1(x)) (2.21)
ied '

and

;-
*; H(x)=x+A(x)(G(x)-x). (2.22) e
Then (2.20) becomes =

p(n+1)=H(p(n)). (2.23) T

L .'~;

It is well know that a sequence defined as in (2.23) will e
converge for any intial p(0), if :?&;
.’--:;1

HY(x) <1 Vx (2.24) T

R

and there exists x® such that H(x¥)zx#, -

While the condition in (2.24) guarantees that the

1

controls converge for a single link network, we are not able N
to show that (2.24) guarantees convergence for a more general ;ﬁb

network. We can, however, prove convergence for a multi-link fﬁ@

S, O
A A ARiababis L

network for which similar, but more restrictive, conditions -

o

hold.

Iheorem 2.2 Let 77:(2 L) be any network. Let gj(°) and ?ﬁ%
- 37 - ' N
R AT A AR EA L LV

=", o ANAS

.
il lind ool B

S — — —. ——— R S R I R R i e S AT A 200 S°E 208 il R e i T i B i T e e . B T
E_.“: AL N NS A W N, TR ACRNL SN SN A% SN A AR AR S) At S T
-

E%

!
)
b

0
.

.

.

)

i)
e Tl B T N R T ST T T

by(+) satisfy Assumption 1.1. For each j&y, S_C_'—XJ, define

Gy(x,c,8)=g5(e- Z by~1(x)) (2.25)
2683'
and
Hi(x,c,8)=x+A35(x)(Gj(x,¢c,S)~x), (2.26)

where A;(x)is a continuous function such that O0<A;(x)<1 for
all x. Suppose, for each Jj, gJ(-) is uniformly continuous,

and

0< (%('HJ‘(X,C,S)C‘, (2.27)

for all x, for any &;Jij and ¢, 0{c{cj. Then, for any initijal
control vector p(0), the controls p(n) and rates r(n) given by

(2.2), with aj(ﬂ):Aj(Pj(n)), converge to fair allocations over
the sets given by (2.11).

The proof of Theorem 2.2 is deferred to Chapter 3, where
we will see that it is a special case of a more general

theorem relating to asynchronous flow control algorithms,

The conditions of Theorem 2.2 are somewhat restrictive
and we believe that the controls and rates will converge for
algorithms where AJ(°), sj(-) and ri(-) are less coi.strained.
Specifically, we conjecture that condition (2.27) can be
replaced by

%HJ(x,c,S) <1, (2.28)

but we have been unable to prove so.

L |

v . ,v.... _
AP
LI et Ty
AARS S e
vt L e Te e
A [

,,-.1.‘.
P '" l'. r" .
2ot

Let us consider the restrictions that (2.27) places on 5};

AJ(-), gj(') and bi(')' While it is difficult to describe the ;ii

entire class of functions Hj(-,-) such that AJ(-) may be ;gj

chosen to satisfy (2.27), at least one sub-class is easily :

identifiable. _3_-_

. Consider the class of functions Hj("') such that Aj(-) i;?
i= may be chosen to be a constant, that is, Aj(x)zAj, and such ;;;
?i that (2.27) is satisfied., We assume that 0<Aj<1. Then (2.27) S
;k becomes s
F '1$Aj(éa;(—0j(x,c,8)-1)<0. (2.29) e
é{ By Assumption 1.1, é%ﬁj(x,c,S) is negative for all x, ¢ and S, 'Ei
g and hence the right inequality of (2.29) is always satisfied. 3?;
Rearranging the left inequality, we get :if

1=1/45¢ Sojexsens. (2.30)

Hence, for those functions Gj(x,c,S) whose partial derivatives i;i

with respect to x are bounded below, the conditions of (2.27) ;ﬁj

can always be met for small enough Aj. ;?'

While (2.30) may seem a bit restrictive, we make the =

following observation. Suppose that we are given two sets of zﬁ

functions gj(-) and gjc(-) that satisfy Assumption 1.1, and w7

- such that Bj(x)z=gj'(x) for x&l[0,cj). Then regardless of how e
3' the functions may differ outside that interval, the fair rate fgé
kj] allocation over the set defined by (1.4) and gJ(') is the same E&
ﬁ; as the fair rate allocation defined by (1.4) and gjv(-). N

R 42000

Hence, we may "tailor" the functions gj(-) any way we like

outside [°o°J], in order to satisfy (2.30), without affecting -

» g

the point to which the algorithm converges. Even so, there

LY
P
PLI

may be some functions b,(-) and g;(*) for which (2.30) will ji?

A

not hold. R

c

2.5 An Example

In the last section we described how the functions gj(-)

'r

may be tailored outside the interval [O,cj] to give a function
which will satisfy the constraints of Theorem 2.2. In this —

o~

section, we give an example of this technique.

Suppose we are interested in finding a fair allocation ;;:

N BESEAIES AN
,'I

over the set given by (1.4), using functions bi(') and gj(-)
as defined by (1.6). Recall that such a fair allocation has

the property that the excess capacity on any 1link is iﬁ;
sufficient to handle a fluctuation in flow as great as the T
standard deviation of the flow. For convenience define ;
kJ=1/(chJZ)- Then gj(f)gkjfz. This choice of gj(*) 1is :L!
clearly unsatisfactory, since it is neither monotonically
non-decreasing, nor uniformly continuous. We propose,

instead, that gJ(-) be defined as

iy g5(£)=10 when <0 .
% k2 when 0<f<c; (2.31) -
ZchJf-kijZ when f>cj, y

...

Hi(x,c,8)=x+A3(gj(c-Wsx)-x), (2.32)

where Wg is the number of sessions in S. So,

g;ﬂj(x,c,3)=1-Aj(wscj'(c-wsx)+1). (2.33)

Since
gjl(f)g 4] when £<0
2ka when 0<f<c; (2.34)

J
2kj¢j when f>cJ

we have, for all x,
0<g;j'(x)<2kjc;. (2.35)
Combining (2.33) and (2.35), we get

1-RB5(142kje W5 Hj(x,c,8)<1. (2.36)

"
Hence, we choose

Ryj=17C142k5e5u5) (2.37)

and the conditions of Theorem 2.2 are satisfied.

CAPSL PSR BT IR PR T R S T ot A o m™ e Tt T 1"’ et " et Tt tat At e e el e . - - B

PN 0 R, R e I T B R N e I A A i L Yo T T S TR P I IR

NN o P o et Tt T TN TN T e e e Nl S L T T T T S AT P ST P P S T e L SN SN
e T L S AL KR UV S SR S R S K I i T T e AT Sl T har Y 2 LSO AL P LN

Chapter 3

Asynchronous Flow Control Algorithms

As mentioned earlier, the system model given in Chapter 1
fails to accurately describe the operation of flow control
algorithms by ignoring communication delays. 1In this chapter,

we describe in detail how the model fails, and then give an

improved model which allows for feedback delays and
asynchronous operation. We introduce the idea of an update s
protocol and give some examples. We give an improved flow
control algorithm, together with a proof that the rates and
controls it produces converge to the fair allocation over ;;;ﬁ
Hayden's feasible set, under the assumptions of the T
asynchronous model. Finally, we modify the algorithm to ;i?
produce fair rates and controls over the more general feasible ;;;i

set defined by (2.11).
3.1 Eeedback Delays -

In section 1.2 we made the assumption that data

propagates instantaneously through the network, allowing us to
define the flow on a link at time t as
fyt): S_ryt) Vel (3.1)

L€8 i . DA%

- 42 -

T —— i i At i St e s dra it Jlinee g o 2s

We also assumed that at time t, each session 1 knows the RN
current value of ;isf
oy
_min pJ (t) S
j€de R
-‘-__...4
or NI
=Ty
min p,.(t)
jess o
as required for the calculation of ry(t). }f{f
*I In practice, however, the concepts of instantaneous flow ;rfﬁ
: R
s and rate are not well defined. The presence of queues ;i§1
distorts the input rates of the sessions as seen by the links, :E%ﬁ
ii S
and even in the absence of queues, propagation delays prevent & e
the 1links from knowing the sessions' current input rates.

Hence, we cannot expect these relations to hold at all times

t. However, for the flow control algorithms previously

discussed, where rate and control updates take place at tn'

n=0,1,..., we require only that D

fj(tn)= 2> rilty) VJ Gf, (3.2)
L&y

and that each session i knows at time t tpne current value of

min py(ty,) A

1€ S

o oS
mi0 Py y(ty). S;S
v -
We outline below a method for guaranteeing that (3.2) holds. fEﬁ
The other condition can be met only by careful synchronization _izg
of the links and sessions, when selecting the update times th. :i::

- 43 =

K ;-_-' ".\...“.'!., N _ .
Cr vy e

In order to guarantee that (3.2) holds for all t, ye
assume that the 1links calculate their flows by summing the
rates of their sessions, where the rates are communicated to
the 1links by the sessions, While this eliminates the problem
of rate distortion, there will still be delays. Communicating
the rates requires transmitting additional data between 1links
and sessions, but guarantees that (3.2) holds, provided that

the interval between updates is long enough to allow the

necessary exchange of information.

An alternative to this would be for each link to observe
the amount of traffic it carried over some recent interval of
time, and use that as its flow., Observing the flow has the
advantages of simplicity and 1low overhead, but makes it
impossible to enforce the condition (3.2), because of rate

distortion by the queues.

Hayden's [9] simulation of a network using his flow
control algorithm assumed that flows were observed. We
believe that this contributed to the oscillations in flow that
his simulation displayed. Another contributing factor is the
delay between the time that a link updates its control, and

its sessions learn the new control value,. To see how such

oscillations might arise, we consider the following examples.

Suppose we have a network consisting of a single 1link, e

...........

with capacity c¢=1, serving a single session. If we seek a
fair allocation over the set given in (1.2) with a=1, the
update equations for Hayden's algorithm are
~ P(n+1)=p(n)+c-f(n) (3.3.1)

and

r(n)=p(n). (3.3.2)
Suppose that the delays are such that f(n)=p(n-1), instead of
f(n)=p(n). Then

P(n+1)=p(n)-p(n-1)+1, (3.4)
For p(0)=0 and p(1)=1, the subsequent controls are given in
Table 3.1. Obviously, the controls cycle forever, and do not

converge.

For the same network, suppose we want a fair allocation
over the set in (1.4), with g(f)=f and b(r)=r. Using Gafni's
algorithm, the update equations are

p(n)=z .5(e=f(n)=r(n)) (3.5.1)
and

r(n+1)=r(n)+p(n). (3.5.2)
If the flow is communicated, f(n)=r(n). However, feedback
delay can cause the session to learn the link control value
late, so that

r(n+1)=r(n)+p(n-1)

zr(n)+ .5(1-2r(n-1))
=r(n)~-r(n-1)+ .5 . (3.6)
For r(0)=0 and r(1)=.5, the subsequent rates are given in

Table 3.2. Again we see that the rates cycle, and do not

- 45 -

oln) n r(n) -

<]

:.'_ . 1

-~ oo =& w N

O O = NN

=N OO0 O = W N
o

] .5 i

Table 3.1

Table 3.2

- Divergent Example for Divergent Example for ;
- Hayden's Algorithm Gafni's Algorithm -

.
I R -.‘ ‘. V.
ih- CREINE
)
~

LA
T
et

JOT:

AL D SN

s v -
S o
*etets

converge.

These simple examples show how important it is to account

for feedback delay in our system model.

3.2 The Asynchronous System Model

In this section, we give a model for studying systems
with feedback delay which wuse asynchronous flow control
algorithms. The model assumes that flows are communicated and

that state memory is assigned to the links. The model can be

FY TRMEREY - e s,

easily changed to allow algorithms with link memory.

i At a given time t, each link j has a control value Pj(t)

and a flow fi(t), and each session i has rate rj(t). We

assume that the system begins operation at t=0, that is,

PJ(t)zo and r;(t)=0 for t<0. At t=0, the links and sessions

choose some arbitrary initial controls PJ(O) and rates r;(0).

; For each link Js session lefJ has an apparent rate

rjj(t), which is the most recent rate communicated to link j

by session i at time t. The apparent rate rij(t) may differ

from F;j(t) because of communication delays. Hence we have

Fi3(t)=rij(t-a45(t)), (3.7)
where dij(t) is the delay described above. We will call
. dij(t) the propagation delay. With this definition of rate,
flow is defined as

- 47 -

. W e W e et et T Tt et T Tt et e e Tt et TR W e ok et a” @ 0" 2® 4" ' B L e e e e e m o m e e e e e

C A A A s B St B i e A R S N S S YL T ST TS ST - .
i S SR R A SRR RN R O I SO RN SO ST A TN A R ST R T o S U R S St L3 N L AT S P T o
W 2P I IFIERERT 2T T RPN, WA IR -'.‘-_'\-' AP .l.‘\l\ '-‘\.' -‘-}].:.Q...l.:.,.:.(:.q.:.h.:n...(\l.\. -':‘-'::'3 q':f:.!':.‘f }p.:-':‘ -":.‘ _*\ v

—z.'-l.“-. R “ N-'m._ T T T N o =rm s o —w

- ()= 2 ryj(e). (3.8)

- Aegi

': When the system has been running long enough for a
session i to have received feedback from each of the links in

! its path, the rate r;(t) at which a session sends is chosen as

the minimum of the control values of the 1links. Again,

because of communication delays, the most recent values of the

l control for 1link j known by session i may not be current.

Hence,
_ Fi(t)=min pj(t-Dsj(t)) when t2D;j(t) VijeYs
L AR
z ri(0) when O0<t<Djj(t) for some jé;(i
: 0 when t<0. (3.9)
I We will call D;,(t) the feedback delay.
f We make two assumptions about the processes dij(t) and ff{?
° Svoatingg
' Dij(t). First, for tito 1
: B1-djj(t1)8t2-d1j(t2) (3.10.1) B
ﬁ and
)
- L1-Djj(1)St2=Dsj(t2). (3.10.2)
;é This guarantees that new information is not replaced by old.

Second, for any times tijo and Tijo, there must exist
tiJ12tij° and T1512T13° such that BRI,
Ocy. 1. 1

Ly Sty -dygltyy) (3.11.1) S

R and e

- 48 - | S

r(:

'

7
2

..

.l

.
e A e

"y o IR !
DO A ™ S "t B Ml S

EE B YRR L PO

L iR S e,

Tijosrij1'DiJ(Tij1)' (3.11.2)
This assumption guarantees that the links and sessions wili
never stop receiving new information about the rates and
controls current in the network. That is, if a 1link j has
control Pj(t) at some time t, then each of its sessions will
eventually learn the value of the link's control at t or some
later time. Similarly, the apparent rate of session i on link
J must eventually reflect the changes in the session's input

rate ry(y),

Together, these two assumptions guarantee that the system
eventually changes from its initial conditions. If we let
TiJO=o, then (3.11.2) guarantees the existence of a time t;>p
such that D, (tg)<tg. Furthermore, by (3.10.2),

oﬁto-DiJ(to)

£e-Dy 4(t) (3.12)
for all t2t;, Hence Djj(t)<t for t2tg. Thus, for large

enough t, (3.9) becomes

ri(t)= miq Pj(t-Dij(t)) (3.13)
jes
and (3.7) becomes
Fij(t)= min py(t-d;j;(t)-Dj,(t-dj;(t))). (3.14)
keiL

The controls for the links are updated as follows. For
each 1link Jj, we are given a monotonic increasing sequence
{tyn} for n20, with tJOzo. We define pyP=py(t;P) and

fjnzfj(tjn). We assume that pj(t)=pj(o)=pj° for 0<t$tj°.

AR A

Then tjﬂ is the time of (n+1)st control update for link j, and

Pj*1=Py(p M lryj(t M) :1€8 5} 05,0) (3.15)

where Pj is the control update function for 1link j,
23n=(PJ",PJ"'1:---:PJO), Cj and Wj are the capacity and weight
of 1link Jj, respectively. The control for link j at time t,
for tjn-1<t$tjn, is pj(t)=psP. See Figure 3.1.

Note that Hayden's algorithm is a special case of this

model, obtained by 1letting dij(t)=Dij(t)=° for all t, and

tjnzn for all n, for each j, and defining

Pj(ﬂjn’ {riJ(tJn):iGX—J}’CJ,wj)=pjn+(cj_‘Z rlJ(tjn))/wj
AES?

=p Pele g PI/W;, (3.16)

Since, in general, d;;(t)#0 and Djj(t)#0, and because it
is difficult to synchronize 1links such that tjn:n, it is

useful to ask for what values of dij(t): Dij(t) and tjn we can

expect the rates r;(t) to converge to some desired set of

values.

3.3 Update Protocols for Asynchronous Flow Control Algorithms

In this section we consider asynchronous flow control
algorithms such that the system can select the times tjn
according to some established criteria, Such a set of
criteria is <called an update protocol. We examine some

possible update protocols, in conjunction with different

[EEREN S JFarird -‘3

:

AL St e e Cut i S Tt Bt S AR A SCME Bt Rt SISt Baor St Shse Bnon Mgt Bge Jhox Bl snommmon agec i og

i [

l

n-1 n
'j 'j

Link Control as a Function of Time

Figure 3.1

- 5] -

iy ¢ P
........................
. . e

Y

g

update functions.
! Let us consider an algorithm using Hayden's control
& update function, but with dij(t);o, Dij(tklo and tJQ;n. If

upper bounds are known for dij(t) and Dij(t)' it might be
possible to eliminate the effects of these delays on the
controls and rates by waiting "long enough"™ between control

updates. That is, we would like to choose tjn such that o]

rij(tjn)=ri(tjn)= min pk(tjﬂ), (3-17) 'f:‘

k é Al - . '~~

In this case, the rates and controls would be identical to ffﬁd
.. ."

those for a system in which dij(t)=Dij(t)=0-

Since the proof of convergence for Hayden's algorithm

relies very 1little on the synchronous properties of his

algorithm, his proof is easily modified to show convergence

for an asynchronous algorithm where (3.17) holds.

Unfortunately, the condition given in (3.17) is difficult

to meet, since it requires that

rij(tjn)zri(tjn-dij(tjn)) 3
= min pk(tjn-dij(tjn)-Dik(tjn-dij(tjn)))

kcf&'
= min p (¢ :0). (3.18) S
: LR e
keds i
Necessary conditions for (3.18) to hold are complicated, but S
it is clearly sufficient that 3&;:

- 52 -

‘d

oo
e

.
T’
I‘.
ot

for each k€, I we choose tj" such that

AN AR & AP NEN
.
.

- t,

then (3.19) is satisfied for k=zj. But to guarantee (3.19) for

kfZj, it is necessary that there be no updates to the control

for 1link Kk between the time that session i learns the latest
value of pkn and the time that the flow on link j reflects any
possible change in r,(¢) due to a change in p,". This could
be accomplished by making the links and sessions update during mm
alternating intervals, That is, during a link update interval

all 1links will update their controls, while sessions may not

update their rates. The reverse is true for a session update P
interval. This scheme has the disadvantages of being slow and ﬁ?;
requiring additional communications to inform sessions and :E}
links of the ends of the update intervals. :::

Another approach would be to perform updates only when o
all the sessions on a 1link are either aware of the link's :::
current control, or are being controlled by another link whose Eﬁig
contrel is smaller. That is, choose tjn such that ;Ef

ryg(tsM<Py(e ;). (3.21) ,
If the links are able to observe the rates of their individual @;f
sessions, then the condition of (3.21) is easy to enforce, Efg

provided that a sequence of times {tjn} satisfying (3.21) -
actually exists., Fortunately, the delay conditions (3.10) and

(3.11) guarantee the existence of such a sequence.

- 53 -

We want to show that for each link j and any time t1,

there exists ty>tq such that ryj(tp)<pj(t2), for each i€ ;. - EE
We will need the following theorem:

Theorem 3.1. If d;;(t) and Djj(t) satisfy (3.10) and (3.11), sl
then for any tO there exists t1>t0 such that for all t>t!, L
E{ t‘dij(t)-Dik(t-dij(t))-lto- (3.22) e
B for all j&f, iéﬁj, kKELy. S

The proof of Theorem 3.1 is given in Appendix A.

Now suppose that no such t, eyxisted. Then no link T
updates could take place after t1. Now pj(t1)=pjn for some n,
and S0 py(¢)zps" for all t>t; But by Theorem 3.1, there must ;:;
exist t'2t; such that for all t2t' ??;
t=dy j(£)-Djj(t~dsj(t)))2t. (3.23) i

By (3.14), for large enough ¢,

Fij(t)= min pr(t-djij(t)=-Dik(t-dij(t)))

ke

£ Pj(t-djj(t)=Djj(t-djj(t))) i

e -

= P, (3.24)

which is a contradiction. Hence, an infinite sequence of 35?
times {t;n) must exist such that (3.21) is satisfied. Eﬁ;
R

Unfortunately, it is not possible to guarantee E;g
convergence of the rates for a network using the control ::E
T | e

AP SUPRIT "L RT SR N S AT e N STt e e e e e ST e et eaT e et
.”:.ft.'\.’:'-’- & ' \:"\{‘:'4' '-:."‘-'.'.- ke’ -'.' ‘.“'-“'-"‘:"-".‘“‘."'-{'-‘E" ARSI AP AA AR L WA A A SRR

AT, A .
Py P |

o A

RN

. ———r
DA S A

update function in (3.16) and the update protocol in (3.21).
A counter example is easily constructed using the following

argument. Suppose that for some link j at time t.n, (3.21) is

J
isfi .n<c n+l o .n gD n,
satisfied and f <¢j. Then pj Pj +(cJ__fJ)/wj > pj
Now at t nre, pjn+1>pjn, and if e is taken small enough, the

rates will not have had sufficient time to change and
'ij(tj“*e)= rij(tjn)< pjn< pjn+1. Hence the link may update
again "immediately?". By wupdating the control arbitrarily

often, the control can be increased to any desired value.

An obvious approach to fixing this problem is to require
that

tjn+1 - t0 2 x (3.25)
for some positive x, for all j€gf, for all n. Another
approach would be to put an upper bound on the value of pj".
While it seems likely that either of these conditions would

guarantee convergence of the rates, we have not been able to

prove this.

3.4 An Asynchronous Flow Control Algorithm

Fortunately, it is possible to prove convergence of the

rates for a network using this update function:
n+l - n o N)/W,
Py l.nax‘rij(tJ) + (CJ_fJ)/WJ (3.26)
Aéxé
along with the update protocol given in (3.21), but without

any additional requirements.

- 55 =

....................

-~

PRISEIL
AR

The new update function has the further advantage over
Hayden's that it guarantees convergence of the controls as
well as the rates. For Hayden's algorithm the controls may
diverge, since the algorithm finds the fair control allocation

over the set defined by

S min p .27.
23, kg Peses V. (3.27.1)
Thus, if a link controls none of its session, the fair control
for that link is infinity. OQur algorithm finds the fair

allocation over the set defined by

,-_ez-;; ,ﬁ‘jﬁpmwj(pj- max min pylLcj ;. (3.27.2)

It is easy to see that the fair rate vector produced by either
(3.27.1) or (3.27.2) is the same, for if a link j controls any
of its sessions, Pjzmax min py, and the two conditions are
equivalent. Otherwise, it does not matter what control link j

is assigned, since it does not affect the rates.

We can find the fair control vector over the set defined
by (3.27.2) by a global procedure almost identical to
Hayden's. We begin by finding the bottleneck 1link Jy

assigning it Pj#=cj/Wj and assigning its sessions rates equal

to Pj'. We then form a reduced network by deleting that 1link

and 1its sessions from the original network, and reducing the
capacity of the remaining links by the appropriate amount. We
repeat this procedure, finding the new bottleneck 1link and
reducing the network, until all links have controls assigned.

However, we may eventually find that our reduced network

- 56 =

o -

contains a 1link that has no users. The fair allocation over
(3.27.1) sets the control for such a link to infinity, whereas
the fair allocation over (3.27.2) sets it to

pj'=‘}2§’f 2:} pk+(0j-‘z f-i')/wj. (3.27.3)
4 A 4.633

We may interpret (3.26) as follows. Hayden's algorithm
fails to produce controls that converge for two reasons. In
. the absence of any update protocol a 1link may update its
control before all of its sessions have learned the current
control value, thereby producing oscillations in the control.
Furthermore, when a 1link controls none of its sessions, it
increases its control without bound. The wupdate protocol
overcomes the first problem by letting the link pretend that
all its sessions know its most recent value. The link simply
assumes that those sessions that are sending at a lower rate

are being controlled by some other link. The update function

overcomes the second problem by making the link pretend that
its current control is actually the rate of 1its fastest
session. Thus, whenever an update takes place, the 1link is

effectively controlling at least one of its sessions.

Next we prove that the algorithm given by (3.21) and

(3.26) produces input rates and link controls that converge to

the desired values. We give the following theorem:

Theorem 3.2. Let %:(J'x) be any network. Let Pi(t),
fj(t), ri(t), ryjt), pjn and fjn be given according to the

- 57 -

TN AT e T e e e e e W N
SR RTRICR IR SRR

asynchronous flow control model, where the control update
function is given by (3.26), the control update times tjn
satisfy (3.21), and the delay functions dij(t) and Djj(t)
satisfy (3.10) and (3.11). Then, for any initial control
vector pO and initial rate vector 0, 1im p(t)=p* and
APoo

lim r(t)=r®*, where p%* is the fair allocation over the set
A >0

defined by (3.27.2) and r* is fair over the set defined by

(1.2).

In order to prove Theorem 3.2, we will need the
following lemma. The lemma says that the control for a
"bottle-neck" 1ink j€Z¢ converges to Pj®, in a network where
the flows are perturbed from their true values, provided that
the perturbations eventually go to zero. This implies that
the control for jEZ! of a network with no perturbations must
converge, and the rates of its sessions must also converge.
To the other links, this network is indistinguishable from a
reduced network obtained by deleting 1link j and all its

sessions from the original network, decreasing the capacity of

each remaining link k by'éEEQ':i" and perturbing the flow
A 3
fe(t) by::E:r (ry*-rj(t)). Since the perturbations in the
%1 e

flows go to 2zero, by the lemma, the controls for the
bottle-neck links of the reduced network must also converge.
By induction, we may then show that the controls for all the

links converge.

Lemma 3.,2. Let 74:(8 ,f) be any network. For each J‘(-_t, let

- 58 -

A
wj be some constant satisfying wjawj, let {ej"} be some
sequence that converges to 0, and let {tjﬂ} be a sequence that
A
satisfies the conditions given below. Let 3(t)=g and r(t)=0
A

for t<0 and choose any initial vectors '3(0) and r(0). Let
A

Pj(t)=$3(0)=§3° for 0<t$tj0 and define

Bonels max P (g M)elc. pnoe)/
Py =R ijleyiieicryi=e; j (3.28)

A A 3' A
where fj“v rij(t), ri(t) are defined as in (3.7) - (3.9), and
A\ A
Pj(t)=pj(tjn) for tjn-1<t5tjn. Assume that djj(t) and Djj(t)
satisfy (3.10) and (3.11). Further suppose that the sequence

{t.n} is chosen so that

J
~ A ~ . .
rij(tjn)fpj(tjn) VJéf: Y1‘5~£3, n20, (3.29.1)
and that the sequence {ejn} is chosen so that
Bym0 Vn21, Vief. (3.29.2)

Let pl= min ¢;/W;, Define X1 and &1 in the obvious
&~ A A
manfer. Then ‘iigij(t)=p1 and ,éi:crij(t)=p1 for all jE€L£1,
1€X1, Furthermore,

A
lim inf p. &
st Pj(t)2z; (3.29.3)
and
A
{iqai:f rij(t)2 gggk?k* (3.29.4)
for all jeZ, i€&;, wnere
z.02ple(c. /Wapt IW./ (20
go=pleleg/ns-ptI¥y/(2Ny). (3.29.5)

Proof of Lemma 3.2.

We begin by showing that 1lim inf aj(t)zzj' and

A~> o0

- 59 -

............
L " .t oo [R S ..
. - & " m Ve T s e m e 4T Y a6 e *a .t n - . . . - . - - - . - -
PR SAD R » R AP AP T R W w AP URY P P a PRI T I RBRIP A S LIPS LSO BT T St G P (I i Ut Wl P Y S

6y e e T TR T T N e e e

¥

: A

2 lim inf ryi(t)2 min zy®. We do this by constructing monotonic

- L Poa J K@.&A

E increasing sequences of lower bounds zjna,zjl for each link j,

i and a single monotonic increasing sequence of times {TN}, such

. A .
R that for all t>Th, 63(t)>23" and rij(t)> min zkn' for each

% . k &f;

. jekl, 162&3. We invoke the following lemma. ~

Lemma 3.2,1. For each j€Y, let zJO=o and define
z. .+l = (1-W /éﬁ) min z, 0 + c./gﬁ-_ (3.30)
e J J7re%y kex k J7EAI
’ Then z 0.5z 8 and z;"<¢;/W; for all n.

The proof is given in Appendix B.

Let zjn be defined as in (3.30). We now show how to

construct the sequence {T"}. By Theorem 3.1, we may choose TO

so that for all t2T0 .
min(t,t-d, (£)=Dy(t-dy;(t))]> max t,0 (3.31)
‘ Le
for all jey, icd 0, then Pi(g)ep:d f
S or a JeL, J» kefi. Now if taT"» en pj(f.):pj or
F‘ some n21. Hence, by (3.29.2),'33(t)>zj0=0. Furthermore,
o A A
- Fij(t)= min pr(t-djj(t)-Dik(t-dij(t)))
KEXy
2 min zko. (3.32)
We 2,
Now suppose there exists TR such that for all t2Th, W

A A .
Pj(t)>z4" and ru(t))}&né;ﬂ_zk", for all j¢f, 168—3, Since

ZJ“<¢J/WJ, we may choose M large enough such that, for all
m>M, leJmI((cJ-szJ“)IZ and tjm>T“, for each Jéji, Now choose

- 60 -) ‘:\‘.1
Y

..............

Tn+1 such that, for all tTn+1,

min[t't'dij(t)-nik(t-dij(t))]> max tiM (3.33)
et

for all Jéz. 1(‘3-3, ke‘gfi. i t)'l‘““' then ﬁj(thajm“ for
some m2M. Hence,
A
I 3jm"’1= l.llax {'\ij(tjm) + (cj- Z ?iJ(tJm)_ejm)/uJ
« €84 Kedy
d . ~
] > max ’1J(tjm) + (°j-Wj max Pij(tjm)'ejm)/wj

: J.‘ej- Aé‘j
= (=W, 0 D oeam) + m) /W,
= j/¥Wj) max rjj(t +Ccy _ e i
J) ! Jitj J J J
\ A.ES'
: A ¢ A o
: > (1-W3/43) min z™*C5/Wy=(cj-Wyz M)/ (2W;)
: KEX
i = (1'wj/2ﬁ3) min zi" + °j/2ﬁ}
: ke L
% = zjn*1. (3.34)

A
Thus, Pj(t)>zj"*1o Furthermore

A
rij(t)= min ﬁk(t-dij(t)-bik(t-dij(t)))
Héizx

2 min z n+1, (3.35)
ke Xt

By 1induction, we have constructed the sequence {TR} as

desired.

Next we show that, for each e>0, there exists T such that
for all t2T, '3J(t)<p1¥ﬁé and ?ij(t)<p1+ﬁé for all jegﬁ1,
1€8Y, where W= max W., Since we already have

A 4‘;11 J A
lim inf PJ(t)2p1 and lim inf T, .(t)ap! for jexl, 131, this
> oo L - J A A
will complete the proof that Pj(t)—9p1 and rij(t)4>p1 for

jegl, 1e§l.

DO
. .= - .o P N R A
L S S SR A NN T MR A DR S .« . - - . N A

.....................

Let j be a link in Qi1 end let i be a session on J.

Choose N 1large enough that ?;j(tjn)>p1-e and ejn<(ﬁ;w3+1)e/2
! for all n2N. Suppose that max f}j(tjn)2p1¥ﬁé for some n2N.
:-- 4€g'
A Then d
- A A
" £.02(W._1)(pl-e)+ max T s(t4")
J J A S AR
3 ‘Lﬁéé
Z(Wj-1)(p1-e)+p1+We
: =wjp1+(w-wj+1)e. (3.36)
: Hence,
’ A A —_ A
pjn*1§ max rij(tjn)+(cj-(wjp1+(w-wj+1)e)_ej")le
.4('-84'
3 A Y
L =3 grile/Ng-e3 3
Spy-(W-W;41)e/(2VW5)
<pn, (3.37)
ii where the first step follows from the update protocol (3.29.1) —
33 and the fact that p1=cj/uJ for jex1. So as long as 5%;
. max ?T.(t.n)>p1;§;, 6.0 must decrease by at least DS
iy AES AR J RS
L — A -
-7 (W-wj+1)e/(2wj) until max ;-‘ij(tjn)<p1+we for some tjn. —
s AER> Y
3 3 T
'-'; A — ...-
t' Now suppose Pi;-rij(tjn)<p1+we. Then T
a A€ y -
. A A A A v
E: Pj"*‘ima{ rij(tj")*[cj-(Wj-1)(p1'°)'!"ax rij(tj")'ej"]/wj]
- AES: LE8,;)
,:... é A A 1 A :_'-
:L“: <(1-1/w) max r -(t.n) + (p‘*(w -1)e-e n)/w- N
- i 13¢t5 J 3
e AP W
53 A — — A
_i.‘ <(1-1/WJ)(p1+We) + (P1+(wj-1)e+("-“i+1)e/?)/"i

A —_— —
<(1-1/HJ)(p1¢He) + (p1+(H+WJ-1)e/2)/a3

t
L N
LI te'
et ataal A w K

<(1-Y{:‘J)(p1+t7e) " (p‘*‘ﬁe)/{l\j
zpleve. (3.38)

- essyFw T

— A
So once max T;i(t;N) falls below pl+We, so does p.n+l, and
A €3; i3t%5 J

hence both must remain below pl+We.

So for each e>0, there exists N such that for all n2N

A — —_— .
P1-e<Pj(tJn)<p1+We and p1-e<pij(tjn)<p1+We for all jey1,
iE§L1. Hence, there must also exist T such that for all t2T,

A — A ~ . e
P1-e<Pj(t)<p1+We and p1-e<rij(t)<p1+We for all jef1, i 31,
This completes the proof of Lemma 3.2.

We are now ready to prove Theorem 3.2.

Proof. Partition the 1links in Z into sets X 1,
L2 - .. y XL, with the property that for each set J K there
exists pK such that pjc=pk for each jéf K and pj'fpk for
jqjik. Define,_g‘k as the set of sessions i such that rilgpk.
Number the sets so that p1<p2<...<pL. The proof is by
induction on the sets of the partition, First we show that
the sequences {p;(n)} for each j in X! and {ry(n)} for each i
in 2;_1 converge to pl. Then we show that if the sequences
{PJ(n)l for j in)ﬂk and {r;(n)} for i in g{} converge to pK
for all k<K, then the sequences {pj(n)} for j in 21F+1 and

{ri(n)} for i in éL§+1 converge to pK+1,

In order to prove the induction step, we will also need
to show that if

lim inf ry (e)opK (3.39)
o0

- 63 -

3

: for jéj};’gﬁ’-h- ié%/‘zg— hmﬁj. then (3.39) holds for JC—/ L' £h,
: : . 1> Kk}

- e V.5 MWL,

I 4> Kt)

E First note that pl= %gg Pi#z= min cj/W;j. Now, 1let
. A A o € X o

= p(0)=p(0) and T(0)=r(0). For each jef, 1et Wy and let

A A
. ej“zo for all n. Then Pj(t)=p;j(t) and rjj(t)=rij(t) for all
t. Therefore, by the lemma, lim pj(t)=p1=p.l and
: J

lim rij(t)=p1=ril for jél’h iétgj.
A7

We must also show that (3.39) holds for K=1. Now for
icU41, r;#5p! and hence kg X1 for each kéji. Therefore

£>1 e
lim Inf ry5(t) 2 min z,® S
P Rz i

> pl, (3.40.1) T

s

since, by definition, z, s5p! for kcfﬂ s
Next we show that if the controls and rates converge to zﬂ?i

. NP

pk for the links and sessions in X K and élk, k<K, and (3.39) ——t
holds for K, then the controls and rates converge to pK+1 for ~i§§
the 1links and sessions in K+l and AK+1, and (3.39) holds X
for Kel. |

We begin by defining a new network 77':(‘g',>i') where
R

. - do)
X'zéngi and A '=j (./’;.} . Assign the links in I'
>

capacities cjrzcj- Z_ . ry#, Let the weights of the links in .
ey

)1f be denoted by WJ', Define pj'(t), f£3'(t), r;i'(t),
ryj'(e), pjﬂ' and fjn' in the obvious manner. Note that

- 64 -

N X REALI AP RINER - T RR

IS (W WAL NIE S e

pK+1:- %é;,cj'/wj'=91" Define Y 1* and 41' in the obvious

2 - Y -3
manner. Note that0\1'-)fx*1 and 3—1"éL§+1'

For each j€{', either Wy1=0, or W5'>0. If W;'=0, then
each of link j's sessions is in gik, for some k<K. So, by the
induction hypothesis,

lim p.n+1z 1lim [max r, D+(e,. S p (L D)W)

N9 J N> LG%‘ 13 J,{%Xa‘i\] J]

= max min Pr¥+(c - f’r %) /W
9. j= <. ri J
=pj'. (3.40.2)

The last step follows from the construction of the fair

control vector (3.27.3).

For each jéjif such that wj.>o, 1et‘a3'=WJ and define

ej"" Z_ (rij(tjn)-ri!)
\g;/
€SN
+wj(max riJ(tJ‘n) - !nax riJ(tJn)). (3.41)
Ae%/ Aési
If .X i= g.' the sum is empty and e;N=0, Let
A J J? J
A
Pj'(0)=Pj'(0)=pj(0) for each jéﬁﬁj and r;*(0)=r;'(0)=r;(0) for
. A A
each i€J'. Define pyr(t), £j'(t), Fitie), FEJ'(t): $3nv and
A
fjn' as described in Lemma 3.2, We will show that ?%n':pjn

and';'\ijn'zrijn for all n. We will then show that (3.29.1) and
(3.29.2) are satisfied and that ejn—ao. We may then apply the

lemma.

A A
Nizp.N nes n
We show that pJ '.pj and rij '..rij by induction. First

note that if j is the.first link to perform a control update,

- 65 -

..............

.............
..........

A A
then for tStJO, Pt (t)=pg(t) and ryg'(t)=rix(t) for each
kéi', iég'k"

Now suppose there exists some tkn such that, for

t<t,n,
A .
Pjr(t)=pj(t) and ﬁkj'(t)zrij(t) for each j&X°, iéﬂij'. Let

tlm be the time of the next control tk“.

update after For

A A
J#k, Pj'(tlm) = PJ'(tkn) = pj(tk") = Pj(tlm)- Furthermore,
for j=k,
A
pk.(tlm)=§Ln+1t

A A,
= max Pikl(tkn)+(ck!-fk" -ekﬂ)/wkn
&égkl
= max Fig(t®)+le o, P)/W,
A €3k
=pk(tlm)o

The second step follows from the

(3.42)
defintion of ek". Hence,
A
pj'(t)gpj<t) for each jg;ﬁv, when tStlm- This last remark

A _ -
also implies that rij'(t)=rij(t) for jé;il, iéé&j', when
tge, o,

A
Because ryji(t)=ryj(t), (3.29.1) is satisfied.
QJn+1-=pJ
> max rys(gsM+lc,o L(tsD)I/W e
= iJ(tq ey WJ(yaf riJ(tJ) j ﬁﬁﬂ
Aéé§ '\.ead‘ ,.:..-.‘4
S TAE -
>0,

Since
n+t

(3.43)
(3.29.1) is also satisfied.

- 66 - | i

Now we show that ejn,yo. By the induction hypothesis :
Fij(t)-ryt=0 for jé'x\df ', 1C—Xj\$_j'. Also by hypothesis, "“‘j
! lil?’f’:f rij(t)>PK for Jey', 1€% 1., Hence, there exists some
X N such that for n2N PN
- ey
. .n)>pk il
. rlj(tJ)>p (3.““) - 4
F for jex', iC’Xj'. Therefore, for n2N, el
max rjj(g;0)opK T
(ES; ¥
s d e
h 2 max rjs s
2 SEkS s
3 = lim max r, . (g 0)) (3.45) B
: Now CEGALS O s
for J€Y¥ '. Thus, for large enough n, vy
max r;:(t:M)> max r,.cg:n) (3.46) R
Bax Tig(egh)> max ry (e i
AC%/ Aﬁyh%/ T
and : i
‘max rij(tjn)= max rij(tjn)' (3.47)
LES: AEL. 1 i
)) o
So i
lim [max r,. (¢ M)=- max r;.(¢:R)1=0 (3.48) —
. i AR ¢ _
Nn=2e0 G&j' o ,(&aa' 3 <
and e;N>0, as desired. N

Now, by Lemma 3.2 we have ?J-(t)9p1' for jeZl'. But
?J-(thpj(f,) and X' is the set of links j with pjn=p1'=pl\'*1.

So ps(t)->p;* for jexX+1. similarly, rij(t)ry por j€4Kel,

Finally, to complete the induction, we must show that

(3.39) holds for K+1. But for iGDU.S.l, ric>pK and hence,
k4

k ¢ VL1 for each kei;. Therefore, by the lemma, o
ALK NN

- 67 =

A
lim inf r = f .
500 ij(t) .i}m inf rjj'(t)

2o -
2 min Z 4
K€ X, :
> pl
- pK+1’ (3049)

as desired. This completes the proof of Theorem 3.2.

3.5 Asynchronous Algorithms for More General Feasible Sets

In this section we give two asynchronous algorithms that
produce fair controls and rates over the more general feasible
sets defined by (2.11). The algorithms are obtained by
modifying the synchronous algorithm given by (2.2) in much the .
same way that Hayden's algorithm is modified to give the

asynchronous algorithm of the preceeding section.

First we change the asynchronous system model so that

ri(t)=f@ein .bi-1 (pj(t-Dij(t))) when t2Dj ;(t) VJ G.ii

Jede
Tij(0) when 0£t<Djj(t) for some jEI 4
0 when t<0. (3.50)

The new update protocol requires that link j performs updates

only when

bi(rij(tjn))fpj(tjn) \: ié.sj. (3.51)

Unfortunately, when the flows are observed this update

protocol 1is not as easy to implement as the one given by

- 68 -

URE B TRSRTET
.t PRI " S
N B T
P Yo fe e 2T 0

'l-o;\;’g"'.
e ey
PPLELHL T

<1

(3.21). Since the link enforces (3.51) by monitoring its

U
-
R
. K|
et
e
N 1
AR
D)

i‘ . sessions' rates, it must know how to calculate bi(rij(t)) for

;j each of its sessions. But this defeats the intent of the -;g;
= _,:.'
o original algorithm to distribute <calculation reasonably D
7 i
I. between the 1links and the sessions. When flows are e
L;Z communicated, this is not a problem, since the sessions can '{f

L - :
. simply inform the links of both rij(t) and bi(rij(t)). R
The update function (3.26) was obtained by replacing all %3

occurences of p.M in (1.8.1) with max r,.(¢;"). Hence, =
J /(eé. -~ lJ J P]
(2.2.1) suggests the new update function 4 ~

n+1z(1-a, (ks . e |
pya+t=(1 aJn)~Za}‘bi(rlJ(tJn))+a3ﬂsj(c3_f3") (3.52.1)

A 33 S
where -
3;P=Aj(max bj(rij(t;"))) (3.52.2) E";ﬁ:_;;‘;
< €3y Sl
where AJ(-) is some appropriately chosen function. This new jﬁ?
update function does produce an algorithm that behaves as =

desired, but in fact, with the update protocol, it is not 1;

necessary to modify the update function of (2.2.1) at alll :;
T
To see why this is so, consider the case where Ej(x)zx, ;;?
bij(x)=x and aJ"=1/(WJ+1) for each jégf, 16:&- Then (2.2.1) f?
becomes _—

n+l-p.n _f.Nap.n . -
This algorithm gives Jaffe's fair rate vector [10]. We -
interpret this update function as follows, Consider Hayden's -
algorithm in the case where each 1link Jj has a "phantom" ;ﬁ
- 69 =

.......................... J - '_- R '_~ - '.' ‘,' Tat " '-"'.‘ '..' '." .o’_:?_:- * _‘ -‘-‘ '-
e e e T T R AT S A AT AR P AT A A T A A

gt Tk e el

R Pel i Al el Ny

AN N A e e S A A AN -

..........

NS it IR

session that experiences no feedback or propagation delays,

i and whose path consists only of link j. Let fjﬂ denote the y¢¢
- aggregate flow of all other sessions and let WJ be the number . 1;%
= of all other sessions on j. Then at all times, each 1link is ;Eﬁ
: NSy

'. controlling at least one of its sessions. But the reason for :

replacing pjn in (1.8.1) with max rij(tJn) in (3.26) was so

that each 1link could pretend to be controlling one of its

sessions, and thereby prevent unlimited increases in its LR
control value. Since each 1link 1is already controlling a %}S
"phantom" session, it is not necessary to modify the update Eﬁf

equation at all.
We give the following theorem.

Iheorem 3.3. Let 77:(25,91) be any network. Let gy(+) and

b1(°) satisfy Assumption 1.1. Let fj(t), ri(t), and rij(t) be
given according to (3.7), (3.8) and (3.50). Let pjn=pj(tjn)

and fjn=fj(tjn) where the control update times tjn satisfy
(3.51), and the delay functions dij(t) and Djj(t) satisfy
(3.10) and (3.11). Let the control update function be given

Hj(x,c,S) be as in Theorem 2.2. Then, for any initial control Eﬁs
vector 90 and initial rate vector ;0, lim p(t)=p* and :_~
X300 T

:gim r(t)zr*, where p* and r* are the fair allocations over S
PoC e
the set det'ined by (2.12). i
~

Before proceeding with the proof of this theorem, we NN

- 70 - ::-::'

o _ e e e emn % e et ey e e e e e e T Lt -_.\'f_;.r,:.'_._-_'.-._-:.‘_ . .
B A AN, 26 St AV VS RS SRS i oo tttonditic

f; prove the following useful lemma,

Lemma 3,3. Let 7/ =((§7 ») be any network. Let by(-), gj(-) PN
and As(x) be as in Theorem 2.2. For each j, let {ej"} be any Eﬁg
sequence that converges to 0, and let {tjn} be a sequence that i
A R

satisfies the conditions given below. Let 3(t)=Q and T(t)=Q
7 A t':.::..
for t<0 and choose any intial vectors 3(0) and r(0). Let s
g;(t)=33(0)=33° for 0<t$tJ° and define ‘*:
A A A A Hi
N+l1-(1ega.N)p.Nea .Ng.r.. =.Nae.N . N
p,j\ (/\1 aj)PJ +aJ gJ(cJ'fJ eJ) (3.54)
/, s B
where 0, ry;(¢), Ti(t) are defired as in (3.7), (3.8) and o
N\ - A N\ A - S
= Assume that dy(t) and Djj(t) satisfy (3.10) and (3.11).]
ff Further suppose that the sequence {tjn} is chosen so that o
..: , - :.'-:.’4
by (Fy(tyMIP (™ VIES, nxo (3.55.1) i
- 1(ryg(ey" 2P (ty j» 020, 3 e
- and that the sequence {ejﬂ} is chosen so that pJ-n is bounded R
" o
o below. That is, et
e A . ' . e
p.n>z.0 Vn21, Vi€, (3.55.2) i
J 77 R et
o for some zjo. e
7 Let pl= ﬂig-pj!, Define ;ﬁ’ and ¥ 1 in the obvious i
A e
-) _1 A 1
-f manner, Then }é:opJ(t)'p and ,%é:obi(ri?(t))'p for all :?ﬁ
o ex ief1, Furthermore lim inf | . s
o Jell, A.L , im inf Py(t)z; and i
i lim inf bi(rij(t))z min z, %, for all J(‘f, i(’,gj, where =
£>% 1 KeLe N
.-: ZJ'=HJ(P 903,&3). .
o Proof of Lemma 1.3.
3 -7 - S

- - S p e g * s A i Rl Sl R R e TACTR N
Nl S A A AW e T T T I N T T TR T T TR U TR T T R A A I d

~
B

g

"

"
.
e

)
~ -
,
K

..
5l

A
First, we will show lim inf Pj(t)zzj' and
A =D 0
lim inf b . ., Th that for each e>0
iy i(rij(t))2 Eéggzk en we show ’
there exists T such that for all t2T, pj(t)<p1+EJ(e) for each
jexl, where

EJ(G):Z(GJ(p1‘e)Cj+e,'&J)-p1)- (3.56)

This is sufficient to show the convergence of the controls, ti
since Xj=p1 for jégj, and because EJ(-) has the properties ;};
that it is monotonically non-decreasing, and Ej(0)=0. The L]
convergence of the rates follows directly from the convergence ?;ﬂ
of the controls. -ﬁﬁ}
;".“':_'5
A Lo——
We show lim inf p, - ® ; 4 i ™ T
> ox j(t)2z;* and 1;5;.2{ bi(rij(t))2 c?el}l,,;zk R
by constructing monotonic increasing sequences of lower bounds S
an_?zjg and a single monotonic increasing sequence of times ;;2
, {Tn}, such that for all t2Th, 3j(t)>zjn and T
= bi('/‘\ij(t)» }l(lég,‘zkn! for each jéf7 i(—i,j. Let ZJO be as in _":
(3.55.2) and define 20 by S
:.-.. ket o
%j First we show how to construct the sequence (Tnh}, Then we ﬁ:ﬁ*
n
show that ZR>z 48, -
;‘.;‘;‘.'_i
By Theorem 3.1, we may choose TO such that for all t2TO ivé
minlt,t-d; ;(£)-Dyy(t-dyj(t))]I> max t;0 (3.58) v
) fe Ll ;
Bd ~ . A
. for all jé&f, 16.§.j, k€X . Now if taT10, then pj(t)=ﬁjﬂ for
? some n>1. Hence, by (3.55.2), pJ(c)>zj°. Furthermore,

by (F15(t))= min Py(t-dj(t)-Dyy(t=d;j(£)))

kcx‘

-72 -

.......
. Cam et
v RAN

OGN

- * .
PRI

> min zj?- (3.59)
j kE‘fA

Now suppose there exists TN such that for all t2Th,

N A R
Pj(t)>z;» and bi(rij(t))>kg§9 zx"» for all ieX, i€ . Dy
A S
Choose M large enough such that, for all m2M, lejmi<3ejnl and S
SRS
t;@>TR, for each JE€L. Now choose Tn+1 such that, for all "
' n+1 I
t2T ' '-,r-#ﬂ
mi“[t’t'dij(t)-Dik(t-dij(t))]) max tlnv (3.60) B
. Ley
! for all j€T, iégij, k€XLi., If tarh*!, then 'aﬁ(t)£33m*1 for
' some m>M. The update protocol (3.55.1) guarantees that
3
A
4 fjms > bi-1(pjm). (3.61)
“ (&g
Hence, we have
A A A A — A
m+1 -3 .0 m Mg . (a- -1 (p.M)-te . .N!
pJ 21 aJ)pj +aJ SJ(QJ- Z‘_, bi (PJ) Iej i)
Aézé

Hj(.l?)\jmvcj-}ejning—\j)

T3¢ pin i eymiegTh &3
= zjn+1, (3.62)

v

where the next to 1last step follows from (2.27). Thus,

A
PJ(t)>zJ"*1- Furthermore

By (Fyj(t))= min (Fy(t-dyj(t)=Dyj(t=dsj(t))))

keLa
2 min z, 0+, (3.63)
k€ZLy :
By induction, we have constructed the sequence (TP} as lifﬁ
desired.
-3 - S
S

'f\"-‘q"'-\ﬁ"n_r‘-‘ DN R ey
»

Sl Tl 2k 1
»
a

PR

Now we show that ZJ“#?ZJ*. To do this we invoke the

following theorem.

Iheorem 3.4. Let S be a linear space with norm |}}-{]| such
that {x: |ixii<e} is compact for all c. Let f:S?S and
fn:S—-‘?S be functions such that f,—>f uniformly, and such that
HIf(x) = £(y)1iciix = yii for all x,y€S. Suppose there

exists x* such that x":=f(x*). Define x__i.f (xn). Then

xn?)(*'
The proof of this theorem in given in Appendix C.

Let an(E)=Hj(méP zk,cj-ej"rz.j) and
Fj(*)zﬂj(mtn ZK,CJ,A‘,J). Let Fn(1)=(ooo’an(z)’o-o) and
F(z)=(...,Fy(2),...). Since ej(n}>0, F"(2)->F(2).

Let lizii=max lzj), Then, since gj(*) is uniformly
continuous, for any € >0, we can find g such that

1IFR(Z)-F(2) 1}

=max {Hi(min zp,ci-le i, A i)-Hi(min ZkyCiy A49)1
p J‘ J=i€j JI-RJ J;eQ-J
=max A.(mi)

j(min zy

1
. IGJ(m}(n z"’cj'lein}";ﬁ'cj(mﬁ" zkvc,jvé“j”

<max 1gj(cy-ley(n) - ;% bi’1(mi3 zy))
g PN
‘BJ(CJ-Z b1-1(min RN
4'64: k-

DR P

< 8) (3.64)

whenever le;(n)|<E. Hence, the convergence of Fn(z) to F(z)

is uniform.

Furthermore, by (2.27)

1IF(x)=F(y){i= max =HJ(m‘in xk,cj,gij)-ﬂj(ifn Yk;cjvgij)l

< mgx }mi'n xk-min yk{

poN Tk
= {min X -min ¢
K k < Yk
< max Iy,
= [iX=Xii. (3.65)

Finally we show that z% is a fixed point of F(-) Let h
satisfy z #: mi? zx*. Then

Zp*=Hp(zp*,cp, 8 n)

=X (3.66)

h*
where X, is defined by (2.6). Now for any j, 2z;¥>z,%=X; and

80
2 92H3(Xp, 05,4 5)
2Xn. (3.67)
Therefore
"
Xh-HJ(xh,cj,g_J)so
=xJ-HJ(xj,CJ,é-j), (3.68)
which implies xhsxj. Hence Xp=min Xk=p1 and SIS
k. -
- 75 - <
"1
T i B e e L T S S N N T

Pl el

)0
i)
~
L
-
.

cari e ard avi s S RN AT ANAE AR R A S SR S
.......

FJ(I')=HJ(p1n¢J,§j)=Z'-
Hence, by Theorem 2.3, 205 2%,

Next we show that, for each e>0, there exists T such that

for all 2T, Sj(t)<p1+53(e) and bi(?ij(t))<p1+ﬁj(e) for all

yef, 1€,

Let j be a link in X1 and let i be a session on j.
Choose N 1large enough that bi(?ij(tjn))2p1-e and :ejn}<e for
all n>N. Now suppose that pjn3p1+Ej(e) for some n>N. Since

A

£40> 3> by-(pl-e), (3.69)

LEZ:

(]

we have
?.n+1$‘g n+§.n(g (cimesD=S b.-1(p1_e));3.n)
J J T3 CPITRITS Rt J
,(..3,
AA
ipjn+ajn(gj(cj+91§§ bi-1(p1-e))-(p1+EJ(e)))

A .
‘PJ"*QJ"(Gj(p1-ev°3+e,iLJ)-(p1*53(e)))
A

<p 0. (3.70)

S 1 P.nopl+E A0+ will be 1 han p.n

o as long as pj 2p '+ J(e), Pj . W e ess than pj .
Furthermore, the amount by which pjn decreases is at least

(1/2)E4(e) min {Aj(x):x€ [p'+Egle), 3"}, (3.71)

where M is any time for which 33M2p1+EJ(e), The minimum in

(3.71) must exist because Aj(x) is continuous and positive for

all x. Therefore, f%n must eventually be less than P’*EJ(e).

-76-

AP/ A P g gt e At s e et e | St S S e et N i S S il et Sl el Al N G e toh A Al Eel btk Rl Sl Al sl Rt Rl Rl Pl SR SE R S

.....................

Now suppose ejn<p1+FJ(e). Then
P,r+1<p nea R(G, (pT-e,cimesM &)-pyM)
jheSpyTea NG (pTmerc oyt S 5)-py
i(‘-@:jn)ﬁjn"'a\jncj(p1+e’cj-e,é"‘,)
SO0 (P1+Ej(e))+a P (p1+(1/2)E ()
<p1+E4(e). (3.72)

Hence, the controls ﬁ.n converge to p‘, for j€;11.

J

So for each e>0, there exists N such that for all n2N

1 A 1 1 A 1
p -e<pj(tjn)<P +Ej(e) and p -e(bi(rij(taﬂ))<p *EJ(e) for all
j€LV, 1€81, Hence, there must also exist T such that for

A
all tT, 91’e<95(t)<p1*53(e) and p1-e<b1(?ij(t))<p1+53(e) for
all jef', i€451. This completes the proof of Lemma 3.3.

We are now ready to prove Theorem 3.3.

Proof. Partition the links in Qﬁ as described in the proof of

Theorem 3.2, The proof is by induction on the sets of the

partition, and is analogous to the proof of Theorem 3.2. ifﬁk

Let 3(0):2(0),‘2(0)=£(0). and ej n-0 for each jé€f, for

all n. Then 63(t)=pj(t) and rij(t)=rij(t) for all ¢t.

Therefore, by the lemma, lim pj(t)=p1=p.! and
1im by (ry5(e))=pl=ry® for jeLt, 1€41. i
A>oo T
RS
T
. Next we show that if the controls and rates converge to R
T
pk for the links and sessions in X K and \ K, k<K, and (3.72) $\£
T
- v
1

L T TP NP T AN SR SIS
3y \ l-. ..' .o I " - - b . - . .
ORI .t -{\ - .\ ‘e .‘p -‘Q-A-i’L{ “i':: SN \". L,

Py T T yrwe e W W Taewss v -
Ty - ¥ - v v v Wl hdnaid

T

....................

holds for K, then the controls and rates converge to pK+1 for
the links and sessions in)X K+! and‘éL¥*1, and (3.72) holds
for K+1. We begin by defining a new network M '=(d ',YX')
exactly as described in the proof of Theorem 3.2.

For each jé}i', let
ejf= = (ryj(eyM-rye), (3.73)
g

If gJ.:gJ..,let eJ.nzo. By the induction hypothesis, ejnﬁo.

Let 1%'(0)=Pj'(0)=93(0) for each j€X_' and ?}'(0)=ri'(0)=r1(0)
for each 1€'. Define 9y(t>, ’r\j'(t). FiTCE), /r\ij'(t). é\j“'
and f}n' as described in Lemma 3.2. By an argument analogous '_1;1
to that given in the proof of Theorem 3.2, we claim that

A R

Next we show that (3.54) is satisfied. Because

A
rij(t)=ryj(t), (3.54.1) is satisfied.

Let z23¢min(min p;0,P1) and let t,0 be the time of the
'Ci J

J
first 1link update. Then Py(t)>zg for t<t1°- Now suppose

Pj(t)>zg for t<tj". Then
pJnHzHJ(P,jn’c,jv‘g.‘j)

>HJ(zo,cj,éLj)

>z, - (3.74)
The last step follows because ZO<P15XJ-

Therefore, pj(t)>zp
for t<tkm, where tkm is the time of the next link update after

tJ“. So, by induction, PJ(t)>zo for all t. Hence (3.54.2) is

satisfied,

Now, by Lemma 3.2 we have pyi(t)»p!' for J€L V. But
Pj'(t)=pj(t) and K1’ is the set of links j with pju=p1'=pK+1.

So Pj(t)>pj* for jexK+l. similarly, rij(ty>>ri* for
iGS K+1, This completes the proof of Theorem 3.3.

A similar theorem can be proved for an algorithm using
the update equation (3.52). The proof is essentially the same

as for Theorem 3.4, except that in the lemma we define pjn+1

by
P.n+12(1-2.0) (max b, (2 . (s.N))+E.N)
j =ti-a; max i(rij(tj +Ej
AEL:
A J N
+ ajngj(cj'fjn-ejn) (3.75)

where {Ejn} is any sequence that converges to 0, and Ejnzo for

all n.
Note that Theorem 2.2 follows directly from Theorem 3.4,

by letting d;;(t)=D;;(t)=0 and choosing t;P=n for each j&Z,
ic k.,

- 179 -

',-'L?li'-'-"','

| AR RN

- . s,
“e Wt . LA IR M
KON AR SN L S SIS 7SI ST IT N

Chapter 4

Gepneral Asynchronous DRistributed Algorithms

Bertsekas and others [13]) have developed some broadly
applicable results pertaining to general asynchronous
distributed algorithms. In this chapter, we discuss these
results and show how they can be modified to include the

algorithms presented in Chapter 3.

4.1 A General Convergence Theorem

In this section we present Bertsekas' main result,

slightly reformulated to match our model.

For a given feasible set XCRD, we are interested in
finding an element o£ the solution set X#<C X, Such an element
is called a solution. We consider a system in which a network
of N processors iteratively computes estimates of the
solution. Each processor {1 maintains at -all times t an
estimate of the solution Xx,;(t)€X, and a vector of mj
measurements zi(t)=(zi1(t),...,zimi(t)), as communicated to
the processor by the network., The estimates and measurements

are updated as follows.

Without loss of generality, we index the times at which

- 80 -

. e e p e e e e
e e e e e '{'-‘, _-.,..‘..__':‘."\ .".., .--..,\.:._.:-'.-'_.. '.‘-.,-..

the events of interest take place (such as a processor
updating its estimate or receiving a measurement) by an
integer variable t. We also assume that for any integer t
only one event of interest occurs in the system. Suppose
processor 1 receives at time t a new value of the measurement
Qij(t). We call the received value Q}j(t) to distinguish it
from the value Z33(t) currently stored by the processor. Then
' zij(t+1)=gaj(t). Furthermore, the processor updates its

estimate according to

N\
xl(t+1)=H1J(Xi(t),211(t),o- "ziJ(t)""’zlmi(t)) (4.1)

where Mij(') is a given function. We call this a measurement
update. If no new measurement is received then

Z33(t+1)=235(t). Each processor also updates x;(t) from time

to time, according to

Xg(t+1)=F3(x4(t),24(t)) (4.2)

where F,(-) is a given function. We call this a

self-generated update. When no new measurement is received,
and the processor does not update its estimate, X;(t+1)=x43(t).
The measurement'?ij(t) received by processsor i at time t is
related to the processor estimates X1,X2,e00,Xy by

21508256 5 Cxq(Ty5 (62D4 e y(1y N CEID). (4.3)
(Bertsekas also includes as an argument to Gij(') a random
variable . We omit this for simplicity, since the systems
we are studying are deterministic.) We make the following
assumptions about the times at which measurements are received

or updates take place.

- 81 -

e ——— Ty R T YT T T T T T T T T S Y ST e e
Y
: Assumption 4.0. For all 1<14N, 1<3dmy, 1<keN, Ty %(8)<t.

Assumption 4.1. If t,5t,, then
Ty Kt 2Ty 5K(Ey) (.4
for all 1<i<N, 1<i<m, 1<k<N.

Assumption #4.2. For each i and j, and any to, there exists
t1>to at which processor i receives a measurement zij(t1) of
the form (4.3), with Tijk(t1)2to for each 1<kgN. Also, for

each 1 and any t;, ghere exists ty>tg at which processor i

updates its estimate according to (4.2). iiﬁ

Assumption 4.0 says that delays must be positive, that :::
is, we cannot predict the future. We call this the causality &Eﬁ
assumption, Assumption 4.1 is essentially -equivalent ¢to Eiﬁ

(3.10). Assumption 4.2 is equivalent to the result of Theorem
3.1, the consequence of (3.10) and (3.11). Bertsekas calls it
the continuing wupdate assumption, The new assumptions are

required because we no longer assume that the measurements

Z;j(t) are updated continuously.

Bertsekas gives the following theorem, o
Theorem 4,]1. Let Assumptions 4.0 - 4.2 hold. Suppose there R
exists a sequence of sets {X(k)} with the following L E
properties: ;5;
- 82 - S
""" R R A TR AT i i MO IR IR SR I -\-‘-:\-::-
T A g A A AP Y V¥ et Y DY

XECX(k+1)S X(K)C ... <X
and
OO
x*= 1 xw).
K=\
For 1<i<N, 1<j<my, and k20, define
Z;5(k)=1G15(x1,...,xN) IxpeX(k) for 1<hN}
Xi(k)={Fi(xji,21) ixjeX(k),24€Z5(k)}
23 3(k)={G5(x1,...,xy) ixpeXp(k) for 1<ngND,

and Mij(°) are such that, for all i, j, k,

(4.5.1)

(4.5.2)

(4.6.1)

(4.6.2)
(4.6.3)

where Zi(k)=Z1j(k)x...xZimi(k). Let 'z'i(k);z',j(k)x...x?imi(k).

Suppose that the sets X(k) and the mappings Fi(')’ Gij(')

X (k)< X(k) (4.7.1)
Mij(xi,24)€X(k) when xjeX(k), z4GZ;i(k) (4.7.2)
Mij(xi,25)€X;(k) when x3EX;j(k), zjeZi(k) (4.7.3)
Mij(x3i,25)eX(ke1) when x3eXi(k), 23€Z3(k) (4.7.4)
Fi(xj,2{)eX(k+1). when xsX(k+1), 24€Z;(k) (4.7.5)

Then, if all initial processor estimates xi(O) are in X(0),

and all initial measurements z;(0) are in Z4(0), the limit

points of {x,;(t)} are solutions for each i=1,...,N.

We interpret the theorem as follows. Condition (4.7) i,
ensures that if all estimates X;(t) are in Xy(k) and all Fff“
measurements z;(t) are in Zj(t), then eventually, xij(t) and l;iﬁ
z;(t) will enter X (k+1) and Z4(k+1), respectively, and remain ;%f:

) there. So for any k>0, x(t)EX(k) for large enough t. Thus, !%j;?
. e

Lo AR AR

.......

.........................

,
as k increases, x(t)eX(k) gets arbitrarily close to the
i solution set. To see how (4.7) guarantees this, consider the
:z following argument.
%
I Let us assume that x,(¢)EX;(k) and z3(t)eZi(k) for all i.
' Condition (4,.,7.1) says that after processor i performs a
self-generated update, the new estimate will still be in
- x1(1(). Similarly, (4.7.2) says that after a measurement

update, the estimate is still in X, (k).

After a self-generated update, processor i's estimate is

in X (k). We may regard the membership of x;(t) in X (k) as
i i i

progress toward the goal that X;(t) eventually be in Xj(k+1).

Condition (4.7.3) says that that progress is not undone by any

subsequent measurement updates.

- Condition (4.7.4) says that after all the processors have
X made self-generated updates, and enough time has passed for

the measurements to relfect this, then processor i's next

measurement update will drive Xj(t) into Xi(ke1). Finally,

(4.7.5) ensures that after Xx;(t) is in Xi(k+1), additional
self-generated updates will not push X,(t) out of Xi(k+1).

Theorem 4.1 is sufficiently general that we are tempted

to try to reformulate the asynchronous flow control algorithms E;g
in terms that would allow us to apply the theorem. The ;;;
theorem as given, however, does not apply to the algorithms fﬁ&
~ N

-.':-."

- 84 - et

.
o .
D)
o et
o 2
.
% %

described in Chapter 3 for two reasons.

Theorem 4.1 states that if an asynchronous algorithm
meets certain conditions, the sequence of processor estimates
it generates must converge to a solution, regardless of the
manner in which the estimates are updated. But the flow
control algorithms in Chapter 3 require that updates only
occur at specified times, that is, when the update protocol is

satisfied.

Furthermore, Theorem 4.1 states that each processor i
computes a complete estimate of a solution x#*, whereas the
flow control algorithms only require each link j to compute an

estimate of the jth coordinate of the solution pt%.

Both of these difficulties can be overcome by slight
reformulations of the theorem, as described in the following

S

sect;ons.

4.2 Algorithms with Partial Processor Estimates

In this section we show how to modify Bertsekas' model to
describe algorithms in which each processor estimates only a
partial solution. In an earlier paper, Bertsekas [14] gives a
result similar to Theorem 4.1 for algorithms where processors
compute only partial solutions, but that result is 1less

general than Theorem 4.1, in that the form of the measurements

L S Tt YN T

is more constrained.

In general, the dimensionality of the solution may exceed
the number of processors. In that case we would need some
processors to calculate estimates of several solution
coordinates. However, we may consider the Ny coordinates that
processor 1 estimates as an njy_vector, and then consider that
vector as a single coordinate of an N-vector. So, without
loss of generality, we assume that each processor i calculates
only the ith coordinate of the solution. Indeed, we may
consider that 1in the general algorithm of section 4.1, the
limit points that each processor i calculates are the

(n=-dimensional) ith coordinates of solutions in

(X®#)NC XN RN,

We may still describe the algorithm using (4.1) - (4.3)
by simply reinterpreting x;(t) as processor i's estimate at t
of the ith coordinate of the solution, We write
x“")=("1(1:),...,xN(t.)), where x;(t)cX; for each i=1,...,N and
x(£)€X=X,y,, ., xXy. We call x(t) the complete estimate and
X;(t) the ith partial estimate.

We might now state a theorem similar to Theorem 4.1 for
this model, but for one remaining difficulty. Even when the
processor estimates converge, Theorem 4.1 does not promise
that the different processor estimates converge to the same

solution. An algorithm where the processors each calculate

- 86 =

. /':{-:'.\‘li'.l';"-'."." ..5-:':." AN

PPRF LA s A

. .
o 4 .
o . " Y
(Y
ot
; ot s
oW LY

Lalala

et

.,.

TS I 20
LN PN .
S ot 2.2

SN eTale e 8

e N N R T e A e R T T e I T TS T T
-

X

E

t one coordinate of different solutions is of dubious value.
For example, we might have X1(t)->x1¥%X1*% and x2(t)->xp¥:X ¥,
but (31',x2l)¢X'. Additional restrictions are needed to
guarantee that if the partial estimates converge, they
converge to coordinates of the same solution. While more
general results may be possible, we choose to avoid the

problem by assuming that the solution set X®* is the Cartesian

product of sets xi-, iz1,...,N

x'=x1'X...XXN*. (uoa)

Rather than restate Theorem 4.1 for this model, we expand
the model in the following section to include update

protocols, and so get a more general result.
’ 4.3 General Asynchronous Algorithms with Update Protocols

In Chapter 3, we introduced the 1idea of an update

protocol as a way of restricting when the processors could

2 update their estimates. In this section, we revise our

interpretation of an update protocol so that the processors
may update at any time, but only when the protocol |is

3 satisfied does the update actually affect the estimate.

An update protocol for processor i can be expressed 1in

[terms of a protocol function Py:X;xZ;~»{0,1}, where Z; is the

set of all possible measurements zy. If Pj(xy,z4)=1, we say

g that the measurements z; are consistent with the estimate X;.

- - 87 -

2
g
4
)'J'-',.d:..- T e L AT L R A

W PRI A R AR A

Py

ANENES

1 s a s e A . LT T e

L

. S

-\' 0T

-y

"t
TN

M

Thus, P,;(+) is the indicator fuction of some subset of Xix24,

and we call this set the consistent set Ci. Define

A
Fi(xi,21)={Fi(xq,21) when Pj(xj,zj)=1
Xy otherwise (4.9)
and
A
M13(x1,24)= M5 5(xq,24) when Pj(xj,2z3)=1
X4 otherwise. (4.10)

A
We call Fi(') and ﬁlj(') the constrained update functions, and

Fi(-) and Mij(') the unconstrained update functions. We
rewrite (4,1) and (4.2) as

N A
xi(t*I):Mij(xi(t),zi1(t),...,zij(t),...,zimi(t)) (4.11)
and
A
Xj(t+1)=Fi(x3(t),z5(t)). (4.12)
Hence, we restrain the processor from changing its estimate
unless the processor's current measurements are consistent

with its estimate.

We make the following assumption about the update

protocol.

Assumption 4.3. For each processor i, there exists an
infinite sequence of times for which Pi(xi(t)’zi(t))=1 and the

processor updates according to (4.12).

One way to ensure that Assumption 4.3 holds is to require

m
Py (xg, (Gyq(x")yeresCyp (x SPPEY (4.13)
- 88 -
R R R B S RS A S RS S

1

ST,
RO
.

.. .
o .
-, ¥
3

" L
- I
e,
{.. et

S ——

e
"o

* .

X

v
Pl
’

LASASR
S5
el
Ty
b
S
. .::;::::

"

for all *i5x1x...{xi}...xXN, 1{j$mj, for all xj Xj.
Essentially, (4.13) says that if each of the measurements 243

could have been generated using the current estimate Xy, then

they are consistent with that estimate.

To see how (4.13) implies Assumption 4.3, suppose there

exists some time t; such that Py(xy(t),z4(t))=0 for all tltg.
Then x;(t)=x;(tg) for all tXtp. But by Assumption (4.2),
there exists t1>t0 such that
zij(t1)=Gij(X1(Tijl(t)):-°-vxi(to),...,
xN(TijN(t))). (4.14)
for each 15j5mi_ But (4.13) and (4.14) imply
Pi(xj(tq),2z5(t)q)=1 (4.15)

which 1is a contradiction. Hence (4.13) guarantees the

existence of an infinite sequence of times for which

Pi(xg(t),z5(t))=1.

We give the folléwing theoren.

Iheorem 4.2. Let Assumptions (4.0) - (4.3) hold and let X# be
of the form (4.8). Let the processor estimates x;(t) be
updated according to (4.11) and (4.12). Suppose there exist

sequences of sets {xi(k)} for 1<iKN with the following

properties:
X®*CX(kel) X(K)< ... CX (4.16.1)
) and oo
x*=) X0, (4.16.2)
L=y :
R e N A e e e e A R TN N N N N L N LN I LN N T e

.....
...........................

..............................
................

T TN L T T T T S T T ST S T e T L
‘i Sl W Sl Ao A i vl Ml un SN R R Nl L jait-megrin 4Oy (eSO SR ARSI SYEME N

Fs |

LRY gl P AP

’
.

where X(k)=X,(k)x...xXy(k).

B v §
20 5 2

v

For 1<1<N, 14j4m; and k20, define

'

233(k)=1G3 j(x) ixeX(k)} (4.17.1)

. (]

.i;(k)={F1(xi,zi)!xiexi(k),ziezi(k),Pi(xi,zi)=1} (4.17.2)

Ty 5(k)=16y 5¢x) 1x<KCK)), (4.17.3)
i where Z,(k) and X(k) are defined in the obvious manner.

Suppose that the sets X(k) and the mappings Fi(e), Gij(‘)
and Hij(') are such that, for all i, j, k,

X (k)< X5 (k) (4.18.1)

Mij(x1,21)eXi(k) when xjeXi(k), zg&Z1(k), Pi(xi,z4)=1

(4.18.2)

Mij(xi,zi)éxi(k) when xj¢Xj(k), zjeZi(k), Pj(xj,zi)=1
. _ (4.18.3)

- “1J(xi,zi)exi(k+1) when xjeXj(k), z§€Z3(k), Pj(xj,z4)=1
N (4.18.4)
" Fi(xy,24)eXi(k+1) when xi<Xi (k+1), z3eZi(k), Pi(xj,24)=1
i (4.18.5)
ﬁ Then, if all initial processor estimates X;(0) are in X4(0),

and all 1initial measurements 2;(0) are in Z4(0), the limit

points of {x(t)} are solutions.

Proof. We will show, by induction, that there exists a

monotonic increasing sequence of times {tk} such that f :iﬁf
X4 (t)eXy (k) for 1<igN (4.19) RS
for all t2t,, Therefore, by (4.16) and (4.8), the 1limit L

- 90 -

D A N S R I P I I A T S A
e e e e AN N

.:J'.:-‘ .:-‘

points of {x(t)} are solutions,

We begin by showing that

X5 (£)EX4(0) for 1<igN (4.20)
for all t>t,-0. By assumption, (4.20) holds for t=0, Now
suppose there exists t'20 such that (4.20) holds for all

0<t<Lt'. Our model assumes there is exactly one processor i
that performs an update according to either (4.11) or (4.12)
at time t'., So for each processor j=i, Xj(tr+1)=x;5(t"). If
Pi(xi(t*),24(t'))=0, then xj(t'+1)=x;(t') and (4.20) holds for

t'+1. If Pi(x;(t'),24(t'))=1, we consider two cases,

Suppose processor i receives a measurement'?ij(tc) at t!
and updates according to (4.11). By the causality assumption,
Xp(TysP(E')I€X (0) for each 1<hSN. Thus (4.3) and (4.17.1)
imply that 2z,,(t')eZ;j(0). Similarly, 2zjp(t')eZjp(0) for
1<h<m;, Hence, by (4.18.2), xi(t'+1)eX{(0).

Now suppose processor i updates according to (4.12) at

t'. As above, we argue that 2z;,(t')e2;,(0) for 1<h<nm;.
Hence, by (4.17.2) and (4.18.1), x,;(t'+1)€X;(0)<X;(0).

Thus, (4.20) is satisfied for t'+1, and by induction,
(4.20) holds for all t20.

Now suppose there exists k and tk such that (4.19) holds

for all t2t, ., We will show that there exists t . i>t, such

- 91 -

...............

- e w Lt “"
:'..-’.\.. “ ey AR _‘.. e
'y e W e .,

L] . .« ™
'.J'..-‘_..' >

,
L

S
e s
s

2l
SAP
b & v}

7,

.
)

L r'.
R P PUA

v

R Y T e, ra—_—~ ——— —— Y L Bt o A Aty dug]

BRARARA AL RN - N - - - woN ht AT N u'f‘."""-'-"-"-'n"',-‘-.~',-'-.~'s‘~,'_-A'.r'

that (4.19) holds for all t_)_tk+1. We do this by constructing,

for each i, an intermediate sequence of times, zi

Ce< T i<ttt < 2yi ' <tpi'<ty'', such that ‘

24(t)X24(k) for >y (4.21.1)

X4 (£)€X; (k) for t>t, (4.21.2) __

X5(t)EX;(k) for tdty', for all j (4.21.3) "

2, ()24 (k) for £>2 " (4.21.4)

X (£)EX (k+1) for totyy! (4.21.5) EE

Xj(t)eXj(k+1) for t>ty'', for all j (4.21.6) LS

By the induction hypothesis and the causality assumption, éz

there exists Qkki for each processor i such that (4.21.1) fﬁ

holds.

- We claim that (4.21.2) holds when tyy 1is the time of ;;
§§ processor i's first update after’?’ki according to (4.12) with Sg
:; Pi(x4(t),z4(t))=1. Clearly (4.21.2) holds for tzt, ;+1. Now ;3
Q suppose (4.21.2) holds for some t>t, .41, If processor i does SE
E not update at t, or Py(x;j(t),zj(t))=0, then xj(t+1)=xi(t) and Ei
:. (4.21.2) holds for t+1. If processor i updates by (4.11) with gi
E Pi(xy(t),zj(t))=1, then by (4.18.3), x3(t+1)EX;(k). If :-:
Eﬁ processor i wupdates by (4.12) with P;(xg(t),z4(t))=1, then &E
:? xi(t+1)é§;(k) by (4.17.2). Hence, (4.21.2) holds for all g;
E t>t,,. __
4 p

Now choose tytzmax tyy and (4.21.3) is satisfied. L]
ra - F

- — e
AD-A148 452 ASYNCHRONOUS DISTRIBUTED FLOW CONTROL ALGORITHMSCU) /3
MASSACHUSETTS INST OF TECH CHHBRIDGE LAB FOR
INFORMATION AND DECISION SVSTEHS J MOSELY OCT 94
UNCLASSIFIED LIDS TH-1415 N80014-84-K-0357

N

1.0

FEECEEE
N
o

EEEE

er
E
fe

=
=

»
o

= i

I
il

——

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963~ A

By the induction hypothesis and the causality assumption,

there exists Qrki' for each processor i such that (4.21.4)
holds.

By the continuing update assumption and (4.18.4) there

exists ty;v such that (4.21.5) holds for tztpy'+1. Now
suppose (4.21.5) holds for some t2t, '+1. If processor i does

not update at t, or Py(x;(t),z3(t))=0, then xy(t+1)=x4(t) and
(4.21.5) holds for t+1. If processor i updates by (4.11) with

Pi(xi(t),zi(t))=1, then by (4.18.4), xj(t+1)E€Xj(k+1). If
processor i updates by (4.12) with Pi(xi(t),zi(t))=1, then

Xy(t+1)eX1(k+1) by (4.18.5). Hence, (4.21.5) holds for all

ki'-

Hence, we may choose tk"=§2x tri' and tp q=ty't+l. We
have constructed the sequence {tk} as desired. This completes
the proof of Theorem 4.2.

~

Note that Theorem 4.1 can be considered a special case of

Theorem 4.2, by using the protocol functions Pi(xivzi)=1 for

all x;eXy, zy€Z;, and by letting Xj(k) in (4.16) equal X(k) in
(4.5), for each i.

While we could use Theorem 4.2 to prove the results of
Chapter 3, it is more convenient to apply the following
corollary. The corollary is just a simplified form of Theorem

4,2, for the case where there are no measurement updates, only

- 93 -

self-generated updates.

Corollary 4.1. Let the processor estimates X{(t) be updated
according to (4.11) and (4.12) with Mij(xivzi)=xi' Let
Assumptions 4.0 - 4.3 hold and let X%, ({X(k)}, {X(k)},
{zij(k)} and {Z}j(k)} be as in the statement of Theorem 4.2.
Suppose

X(KIC X(ke1). (4.22)
Then, if x;(0)€X;(0) and z3(0)Z;(0) for all i, the 1limit

points of {x(t)} are solutions.

Proof. We prove the corollary by the application of Theorem
4.2. Since My(x;,z3)=xy, the conditions (4.18.2) and (4.18.3)
are trivially satisfied. The condition (4.22) implies
(4.18.4) and (4.18.1). Furthermore, (4.18.1) implies
Z;5(k)={G33(x) IxeX(K)}
16y 5(x) ixex(k)}
=24 5(k) (4.23)
and so
{F(x4,24) | X4€X{ (k+1),2€Z3(k),Pi(x5,21)=1}
SE{Fi(xi,zi)EXfExi(k),ziézi(k),Pi(xi,zi)=1}
=X (k)
SX;(ke1). (4.24)
Hence (4.18.5) is satisfied.

We have shown that the conditions of Theorem 4.2 are

satisfied and therefore, the 1limit points of ({x(t)} are

- 94 -

DI D Iy

LAY

"""" AR AL D NGRSO Rt el At I NN U e SRR i g R

such update protocols work.

- t.::.»‘
is solutions. This completes the proof of Corollary 4.1. j?g
' b g

= In the next section, we use this corollary to obtain a R
~*, :-'.'::;
ﬁ. result that shows how some synchronous algorithms can be made }Q@
to work asynchronously. :ﬁf

8 ol
4.4 Update Protocols for Synchronous Algorithms f

DA

.‘r‘1

In this section we describe how, starting with a ~

synchronous distributed algorithm taken from a given class of o

i

algorithms, we can design an update protocol that allows us to e

2 implement the algorithm in an asynchronous manner. fﬁf
Unfortunately, it is not always possible to implement the ﬁi;

pia desired protocol, and so, the result has limited application. :::
% We present it mainly for the insight it provides about why]
:--

vtwmuing
We model a synchronous algorithm as follows. As in i?}

jj section 4.2, each processor 1 at time ¢t has an estimate

X;(t)€X; of the ith coordinate of a solution x%€X®, where X* -
is of the form (4.8). All the processors update their

estimate simultaneously at each t, according to e

X, (t+1)=F; (x4(t),24(t)) (4.25)

where

2y 4(t)=Gy3(x(t)) (4.26.1) o

- and

zi(t)=(..-,21j(t),c-o)a (u.26.2)

- 95 - R

.t
“~ R RN S g

et tat, et e Attt e m et RSP
.-,_J'_'f\(._f.'a: a:,'l' ,J-.'I Aot S S : ., X

——T
PANITAGSS SR

Note that there are no measurement updates, since all
measurements are "received" simultaneously. Combining (4.25)

and (4.26) we get

x(t+1):(H1(x(t)),...,HN(x(t)))
SH(x(t)) (4.27)

where Hi(x)gfi(xi,ci(x)).

We give the following theorem.

Iheorem 4,3. For each i, let {X(k)} be a sequence such that

X®ECX(k+1) X(K)C ... CX (4.28.1)
%)
x*=) x(k) (4.28.3)
=y
and
H(X(k)) < X(k+1), (4.28.3)

where X(k)=x1(k)x...xXN(k) and H(X(k)) is the image of X(k)
under the mapping H(.).

Let {x(t)} be generated by (4.3) and (4.9) - (4.12) with
x(0)eXx(0) and 25(0)eZ5(0) for each i. Let Assumptions 4.1 and
4.2 hold. If it is possible to define Pi(xivzi) such that

{Fi(xi,zi)Ixiéxi(k),ziézi(k),Pi(xi,zi)=1}

CUF(xg,G4(x)))ix X(k)}, (4.29)
and such that Assumption 4.3 holds, then the limit points of

{x(t)} are solutions.
Proaf. We prove Theorem 4.3 by the application of Corollary

- 96 =

4.1, Since there are no measurement updates, we take

"1J(x1,zi)=x1. Combining (4.17.1), (4.17.2) and (4.29) we get
Y}(k)={F1(xi,zi)Ixy%xi(k),ziézi(k),Pi(xi,zi)=1}
ClFy (x4,G5(x)) IxeX(k)}
={H; (x) Ixex(k))
=H; (x(k))

gxi(k+1). (4.30)
Hence, (4.22) holds and the conditions of Corollary 4.2 are

satisfied. This completes the proof Theorem 4,3.

The first part of the theorem simply states conditions on
the manner of convergence of the estimates generated by the
synchronous algorithm. Clearly, if x(0)eX(0), the sequence
{x(t)]} generated by the synchronous algorithm (4.27) is such
that x(k)E€X(k) for all k, and hence its limit points are

solutions.

Now consider an " asynchronous algorithm that satisfies

Corbllary 4.1, The estimate sequence {xi(t)} behaves as

desired because (4,22) guarantees that, with X;(t)€X (k) and
Z2;(t)eZi(k), updating will never cause x;(t) to go back to
X;(k-1), and because Assumption 4.3 guarantees that x;(t) will

eventually enter X;(k+1). Now take an algorithm for which
(4.22) does not hold. If wWwe choose a protocol such that

updating is forbidden whenever updating would cause X;(t) to
go back to X;(k-1), then (4.22) will be satisfied.

Equation (4.29) tells us how to design that update
protocol. We do this by comparing the image of xi(k)*zi(k)

~

under F;(+) with the image of X, (k)xGs(X(k)) under Fs(*). The

set X, (k)xGy(X(k)) consists of all estimate and measurement

pairs for processor i such that each of the measurements could

. PP
. a4 e Te e Ta .
R ARARARE

have been generated from the same element x€X(k). Hence,

Xj(k)xGi(X(k)) is a subset of Xs(k)xZj(k). Now choose the
consistent set C; such that Fy(°) maps X;(k)xZi(k)Ci to the
image of X,(k)xGji(X(k)) under Fi(*). Then, with the protocol
function equal to the indicator function on Ci, (4.29) holds.
The idea behind (4.29) is that updates are permitted only when

% JEESSRES

updating will not push x;(t)€X;(k) back into Xj(k-1).
: While we can always select the consistent set so that
ii (4.29) holds for any given k, it may not be possible to choose
F? the set so that (4.29) holds for all k. Even if (4.,29) holds

for all k, the update protocol may not satisfy Assumption 4.3.
Furthermore, it may not be possible to implement the resulting
update protocol, since doing so might require the processors

to know the exact form of the measurement generation functions

Gij(')o

Though these limitations restrict the usefulness of
Theorem 4.3, it still provides a starting point for someone

trying to design an update protocol.

4.5 Ihe Flow Control Algorithm as an Example

- 98 -

In this section, we give an alternate proof of Theorem

3.2, wusing Corollary 4.1, In fact, we prove a somewhat
stronger result than Theorem 3.2, since we will show that the
update protocol 1is not needed for the controls to converge.
We note, however, than in order to apply Corollary 4.1, we
must make the causality assumption, which was not required for
the proof of Theorem 3.2. The update protocol is required,
even with causality, for the algorithm of Theorem 3.3, as a

simple example will show.

We begin by showing how the elements of the flow control
model fit the general model of sections 4.2 and 4.3. The
feasible set X is taken to be RN, where N is the number of
links in the network, and the solution set is X¥#z{p#}, where
p* is the fair allocation over Hayden's feasible set (3.27.1).
The processors are the links and the estimates they compute
are the coordinates of the control vector p. The measurements
zji received by link j are just the rates rij of its sessions.
Since the links receive new measurements continuously, but do
not update each time new measurements are received, the only
events of interest are the control updates which take place at

times tj", for jéz:, n20., In the notation of Chapter 4, we

have
My3(pgoryd=py (4.31.1)
Fy(pj,ry)=max ryjele =S rij)/y (4.31.2)
et 0,
and A€ § A€ 3

A il O

LI e IR

baglV MNP SSRNE S

G,:(p)= min p for 1641-. ‘ (4.31.3)
ij Kex: k J

The original protocol function is given by

Pj(pj,rj)z 1 if max rijspJ
4664
0 otherwise. (4.32)

However, we will show that the conditions of Corollary 4.1 can

be met using Pj(pj,rj)=1 for all pj,rjéh.

To apply the corollary, we must construct the sequences

{xj(n)} such that

Xj(n+1) SX5(n)E ... €X5(0). (4.33.1)

0

h{z Xy(n)={py¥} (4.33.2)
and

FJ(pJ,rJ)éXj(n+1) (4.33.3)

when Pj€Xj(n), rjezj(n).

Even though we have shown in Chapter 3 that the controls
of the flow control algorithm converge for any initial
controls P;(0XR and rates rjj(0)ER, there exist networks for
which it is not possible to construct a chain of sets X(n) as
in (4.33) with X(0)=RN. This is because, with X(0)=RN,
X(0)=RN which implies X(1)=RN, So, by induction X(n)=RN for
all n. Instead, for any initial pj(o) and 'ij(O)v we take

X4(0)=[~A3,B5], (4.34)
for suitably large Aj, Bj-

- 100 -

Now partition the links <~ into sets Z 1,..., YL and the
sessions _éi into sets 2&1,...,‘iL as in the proof of Theorem
3.2. We will construct {X(n)} by finding sequences {ek(n)}
and {EK(n)} for each k=1,...,L, such that

X;i(n)=[pK-ek(n), pkeEK(n)] for jeZk (4.35)

and {Xj(n)} satisfies (4.33).

Before defining {eK(n)} and {EK(n)}, we describe the idea
behind their construction. We begin by taking el(n)=0 for n21
and finding {E'(n)} that is monotonically decreasing and
converges to O. As long as EV(n) is greater than some
threshold less than p2, we keep EK(n) fixed at some large
nunber E and let pK-eK(n)zpl-el(n), for all k22. When EV(n)
drops below the threshold at some time N, , we let p2-e2(n)
rise above pl and E2(n) begins to fall. We still keep EK(n)
fixed at E and let pk-ek(n)zp2-e2(n) for k23. This process is

repeated until {eK(n)} and {EK(n)} have been found for all k.

We formally construct the sequences {eX(n)}, {(EK(n)} as
follows., First define, for k=1,...,L,

ek(0)= aE (4.36.1)
and

EK(0)= E (4.36.2)
where a= min 1/wj and E is some suitably large constant such
that E2pl/a. Now let

el(n)=0 (4.37.1)

and

- 101 -

"y e e e cen ouy s aacaef sk e aee et Sese Arse A SR E S S

j
.................

El(n+1)=(1-a)E (4.37.2)

for all n21i. Suppose that we are given a sequence

Ny<Np<...<Np such that Nyz=1 and, for k>1,

ek=1(n)+Ek-1(n)<(pk-pk=1)a/(1-a) (4.38)
for all n>N,. Now define, for n2Nj
eK(n+1)=(1-a)(ek(n)+EK-1(n)) (4.39.1)
EK(n+1)=(1-a)(ek(n)+EK(n)) (4.39.2) A
| and for N ¢ndNy,q, K>k, 5?f
eK(n+1)= pK-pkeek(n+1) (4.,40.1)
EK(n+1):=E. (4.40.2)

N In Appendix D, we show by induction that the sequence

Ni<N2<...<Np satisfying (4.38) exists, and that the sequences

{ekK(n)} and {EK(n)} are monotonically non-increasing and

converge to O, for all k. Hence, (4.33.1) and (4.33.2) are

satisfied. ;{:
N
i Furthermore, we show that the sequences have the o
- properties that for k<K, for all n, .
pk-ek(n)gpK-eK(n) (4.41.1) :
| ek(n)geK(n) (4.41.2) -
)
j and B
: EK(n)<EK(n). (4.41.3)
? These properties will be needed to show that (4.33.3) holds. :
) -
We show that (4.33.3) is satisfied for nz0. Note that ;i?&
: (HJ-1)(pk"aX)" m:x ri;< Zﬂrij Wy max Fij» (4.42) . -
! £ .Bﬁ Le.Sj lG.,_.sa' -.:
o
- 102 - ok
) e
SR
N e > LS e T N S R N

AR AR LA AR A PRI

for Fj€24(0). Therefore,
Fj(pj,rj)z max rij+(cj-Wj max rjj)/wj
«€8: LEN.
¢ 3
265/
2p1 (4.153)
Also,
Fj(Pj,rj)S max rij+(cj_(wj_1)(pk-ax)-_max_rij)/wj
L-'. "'68.
5(1-1/"J)(‘ma.x‘ rlJ_pk*aX)+cJ/wj
A€

f(1'1/wj)(5+aE)+cj/WJ

<(1-a)(1+a)E+pkK
<pk+E. (4.44)
Hence,
Fitpy,rydelpl PkeEl=X (1), (4.45)

as desired.

Before showing that (4.33) holds for n21, we make the
following observations. If session i on link j is in 5.k,
then every link in its path is in‘;iK for some K2k. Thus,
(4.31.3) and (4.41.1) imply

K_eK
r.:> min p~-e~(n)
1] k>4

=pk-ek(n) (4.46)

for iGSLk, rijézij(n). Furthermore,
PiJ‘pk*Ek(") (4.47)

for 1€ 3k, ryjezsy(n).

Now we show that (4.33) holds for n1. First we show

- 103 -

Fy(py,ry)<pK+ER(ns1) (4.48)
for jéZiK- PjeXj(n), rjéZJ(n). We consider two cases: n<Ng
and n2N,, If n<Ng, by (4.4d)

Fj(pj,rj)<pK+E=pK+EK(n+1). (4.49)
Now suppose nzNK, Let wjk be the number of sessions on link j
in £ K, Then, by (4.46)

K
rijgzzjwjk(pk—ek(n))+max rij_(pk-ek(n))

k=) ‘ Zéég
=cJ_;i_wjkek(n) +i:x rij_(pk-ek(n)). (4.50)
=) S5

v

Therefore,

=
Fitpyirgdsmax rije [wykeknd- max ryy ph-ekin)l/u,
,(é-g" /Z:| < & a’

. K
=(1-1/¥ymax rijelS wjkek(n)+pK-eK(n)]/Wj
Aéég 12=

5(1-1/wj)(pK+EK(n))+eK(n)+[pK-eK(n)]/wj

=PK+(1-1/WJ)(EK(n))+eK(n))

<pKe(1-a) (EK(n)+eK(n))

=pK+EK(n+1), (4.50)
as desired. The third step follows from (4.47) and (4.41.2).

Next we show that
Fi(pj,ry)opK-eXine1) (4.52)
for jexk, Pj€X3(n), rj€Zj(n).

First we derive some preliminary results. For

convenience, define

(4.53.1)

.....................

.........................
.......................................
.............

. e e e e L T I I e I I
...
.........................
.........

..........

EREY .
, v %

Ty

ajxﬁjx/wj. (4.53.2)

Then'ﬁjK is the number of sessions on 1link j that are

controlled by 1links at a higher level than K, that is, the

number of sessions that are in (/4 k.
A>K

Let J be the largest number for which that ic¥J, 16,291.
For any H<J, (4.47) implies

H-1 _
;E: rij< 2 WiK(PK+EK(n))+W H=Tmax r, (4.54)
/(C‘,S/&* A=) EeX 9‘

Therefore
- _

2(1-a.H-1)ma¥ rij
el 1=
H-| —
H=1(c. Kpk) /W .H=1_ Kgk, .
+a, (cJ_g_'wJ PK) /W k§|a~’ E (4.55)
By the construction of the fair control vector
H-1 _
pH<(c o S w. kpk)/w H-1, (4.56)
J ki J J
By (4.41.3)
H-l H-1
zajkEk(nMZaJkEH"(n)
=y K=1
=(1-aJH'1)EH'1(n), (4.57)
and by the choice of J and (4.41.1)
2:; rysapl-ed(n)
AES:
d

>pH-el(n). (4.58)

Hence,

Fj(Pj,rj)é(1-aJH‘1)(pH-eH(n)-EH-I(n))+aJH,1pH

:pH-(1-ajH'1)(eH+EH'1(n))
2pH=(1-a)(el(n)+EH=1(n)). (4.59)

We are ready to show that (4.52) holds. We consider two
cases: J=K and J<K. Suppose J=K. If nzNK, then (4.59)
implies

Fi(pj,ry)apk-(1-a) (eK(n)+EX-1(n))

=pK-eK(n+1). (4.60)
If nd<Ny¢, let H be the largest number such that ndNy. Then
Fj(pj,rj)épa‘eﬂ(n”'”’

=pK-eK(n+1). (4.61) o
Now suppose J<K. Then (4.61) also holds for n<Nj,q, ifﬁ
)
Finally, suppose nsz*1. By (4.47) ffﬁ
o L
E ryj< ijk(PhEk(n)Hmax rij-(pJ’EJ(n))o (4.62) o
A€R K= AE Y, T
)]
Thus, :::
FJ(PRJ'PJ)2(1‘1/wj)ﬁ:;'rij %??‘
£ sz
+(ejo S wyk(pkeEK(n))-pJ-EJ(n)) /W o
&= '

I _ZT
Z“"’“J)(max rij-EJ(n))-pJ/WJ+(cJ-§E_ijpk)le ;

“<5 o ok
2(1-1/wj)(pJ-eJ(n)-EJ(n))-pJ/Hj-&(cJ.}ii wjkp)/HJ- i
= oA

3
2pJ+(cj-;§ wjkpk)/wj-(1-3)(eJ(n)+EJ(n))
=\

=pK-(1-a)(ed(n)+EY(n)), (4.63)
RO
w
- 106 - R

where the last step follows from the construction of the fair

control vector. But, since nzNJ+1,

(1-a)(ed(n)+EJ(n))<(1-a)(ed+1(n)+EJ(n))

zed+1(n+1)
<eK(n+1) (4.64)
and so -

Filpgoryrapk-eline). (4.65) o
®.1
We have shown that, é*ﬂlf
Fi(py,ryrelpK-eK(ne1), pKeEK(ne1)] S
*Xj(nen) (4.66) >

for jEXK, PsXj(n), rj€Z5(n). The conditions of Corollary

4,1 are satisfied, and therefore, the controls generated by

the asynchronous flow control algorithm of Theorem 3.2

converge to p%* without the update protocol.

It is instructive to consider why the proof in Chapter 3
requires the update protocol while this proof does not. In

both cases we must show that, for any e>0, the control Pj(t)

eventually drops below Pjtee. A necessary step in showing

this is demonstrating that

n+1 n-m n
pJ Spj +(cj-fJ)/HJ (4.67)
for some non-negative m. With the causality assumption,
n n=-m e
€3,
for some m»0, and so (4.67) is satisfied. With the update R

protocol, (4.68) holds for m=0 and the causality assumption is

- 107 - R

not needed.

This leads us to question whether the update protocol is
required for the generalized algorithm, as given in Theorenm
3.3, if we assume causality. In fact, the protocol is needed,

as the following example shows.

Consider a network of one link with capacity ¢ and W
sessions. Let g(x)=x and b;(x)=x, for all i. Then

p(n+1)=(1-a)p(n)+a(c=-f(n)), (4.69)
where az1/(W+1). Note that p¥*=zac. Now suppose that f(0)=c,
and the 1link updates many times in rapid succession, so that
f(0) does not have time to change from one update to the next.

Then, after N1 updates,

PN)z (1-a) 1p(0)+(1-a" 1) (c=£(0))
We can make e(N1) as small as we like by taking large enough
N,. Now the link waits until the flow reflects this control,
that is,

£(Ni)=W(c-£(0)-e(Ny)). (4.71)
Once again, the link updates rapidly, without waiting for the
flow to change, so that

P(Ny)ze-f(Ny)-e(N)

zc-W(c-f(0)-e(N;))-e(Ny). (4.72)

In this manner, we can construct a sequence of times {Nk} such

that the flows are given by

- 108 -

-——

e e e e e et
STt Tt

el

. - .

LI LA i A i A B et (M i i i g e S SR g M arSh are s o]
. ORI A I S N M A A e g A & | AR Ol

N, 1) =W(c=W(e-f(N)-e(Nk))-e(Ng,1)). (4.73)
For appropriately chosen {e(N,)}, this sequence of flows will

never converge.

Let us see where the conditions of Corollary 4.1 fail to
hold for this example., Suppose we have
X(n)=[p*-e(n),p*+E(n)]. Then Z,(n)=X(n) for each i. Now
suppose that p(n)=p%*-e(n) and riy(n)=p*+E(n). Then

p(n+1)=(1-a)(p*-e(n))+a(c-W(p*+E(n))

=p*-(1-a)(e(n)+E(n)). (4.74)
Hence, we cannot guarantee that F(p,r)éX(n) when peX(n),
r Z(n). Thus, for this algorithm, the update protocol is
required to ensure that the controls get above a given
threshold. Examining the proof of Theorem 3.3, we see that

the update protocol was invoked for that very reason.

We conclude this chapter by remarking that these results
are not obvious. Without applying Theorem 4.2 to the flow
control algorithms, we would probably have never discovered
that one algorithm requires the update protocol and the other

does not.

- 109 -

............................

[

. - . g
..

= Chapter 5§

. Simulation and Results

In this chapter we describe a computer program designed ff?
; to simulate a voice packet network using a flow control
algorithm, such as one of those described in Chapter 3. The .o

program was written in Lisp on the Symbolics 3600, by Allan

Wechsler and myself. The program listing is given in Appendix TN
E. After describing the program model and the program, we —d

introduce a specific network model and discuss the results of

the simulation using that model.

- 5.1 The Simulation Model S
R

The simulation model is substantially the same as that { f
- used by Hayden [9], with some minor differences. ;ﬁ&

The program allows the user to define a network with an

arbitrary topology. The network is specified by two global

§ variables: a list of its users (sessions) and a 1list of its ggi
- links, ifi
% A user is a data object that has, among other attributes, R
-~ a rate, a partner (the other user that it talks to) and a s

- route (the 1list of the links that are in its path). If user -

- - 110 -

i's partner is user k, then user k's partner is user |{. At
any given time a user 1is either active (talking) and its

partner is inactive (silent), or vice versa.

When a user is active, it generates a variable 1length
voice packet approximately every 20 msec. The actual time
between packet generations is a random variable uniformly
distributed between 18 and 22 msec. The length of a voice
packet in bits is given by

PACKET-LENGTH= [USER-RATE/50]. (5.1)
The rate is a floating point number, but the 1length is an

integer.

After generating a voice packet, an active user will
generate another voice packet with probability (1-p).
Otherwise, the packet generated is the last in its talk-spurt.
If the packet is designated last, the user becomes inactive
after the packet is transmitted and the partner becomes active
when the packet is received. We use p=1/60, and hence, the
number of packets per talk-spurt 1is a geometric random
variable with mean 60. This conforms with experimental values
measured by Brady [15], who found actual talk-spurt durations
to be approximately exponentially distributed, with mean 1.2
sec. This is not a completely accurate representation of real
speech, however, since brief periods of silence usually occur
between talk-spurts, and talk-spurts do not always alternate

strictly between two members of a conversation., Nevertheless,

- 111 -

it 1is an acceptable approximation for our purposes. We also
have the option of setting the talk-spurt length to infinity.)
This lets us study the steady state behavior of the system.

When a user is inactive, it generates fixed 1length

control packets at regular intervals, for the purpose of
passing feedback information to its partner. The length of ﬁff
hl the control packets is 10 bits, and the time between the i

generation of successive control packets is 100 msec.

A link is a data object that has a control value, a flow,
a list of its currently active users and a queue of packets

waiting to be transmitted on the link.] f};

A link's list of its active users also includes, for each
user, the user's rate, as determined by examining the most :;5
recently received packet from that user. This rate list is
used to determine whether the update protocol is satisfied, L
and to calculate the flow of the link. This is the main ;éﬁ
difference between our simulation and Hayden's. In Hayden's iﬂf
program, a link determines its flow by observing the number of
bits arriving in the queue over a given period of time. This
affects the value of the flow in three ways not accounted for
by the theoretical model. First, the observed flow includes :
control packet traffic. Also, the observed flow for a link is i?ﬁ}
limited by the capacity of the neighboring links that feed its ~

queue, Finally, the observed flow may represent the rates of

the 1link's different users in unequal proportions. For these

reasons, we prefer to calculate a link's flow by summing the

rates of the link's active users.

Each link attempts to update its control periodically, by
first checking whether the specified update protocol 1is
satisfied, If it is, ¢the 1link wupdates according to the
specified update function. If not, the 1link waits a given
interval and tries again. There are two update interval
parameters that can be adjusted: the time between a succesful
update and the next update attempt, and the time between an
unsuccessful attempt and the next attempt. They are called
the UPDATE-INTERVAL and the UPDATE-ATTEMPT-INTERVAL. In
section 5.4 we will see that the choice of these parameters is

critical to the performance of the systenm.

One of two update protocols can be selected: MOSELY or
HAYDEN. The MOSELY protocol is given by (3.21) and the HAYDEN

protocol always permits updates.

Three different update functions can be selected. The

HAYDEN-UPDATE-FUNCTION is given by

Pj(t+1)=max[cJ/HJ,min[cJ,pj(t)+(cj-fj(t))/WJ]]. (5.2.1)

The MOSELY-UPDATE-FUNCTION is given by
PJ(t+1)=max[cJ/HJ,

min[cj,max rij(t)+(cj-fj(t))/wj]]. (5.2.2)
AE3;

1R, "2 00 Je 0,0,

MNIJLINY
.

YRRCACRI 4 PRI

LN ’ FS a.' .

LA

L A

C
e

’

The JAFFE-UPDATE~FUNCTION is given by

Pj(te1)=maxlcj/(Wj+1),
minley,py(t)eley-£y(t)-ps(t))/(Ws+1)1]. (5.2.3)
The variable c; in these equations represents the effective
link capacity and not the true capacity. For the simulation
we used cJ=.8CJ, where CJ is the actual capacity. These
update functions differ slightly from those given earlier, in
that we restrict the range of the controls. Since we know
that the fair control allocation can never result in a control
for 1link j outside the interval [cJ/uJ'cJ] for Hayden's
feasible set or [CJ/(HJ+1),cJ] for Jaffe's feasible set, these

are reasonable modifications.

A packet is an object, created by a user, that has a
source and destination (two users), a rcute (a list of inks),
forward control and feedback information, and a variety of
statistics, such as its length, time of generation, and the

rate of its source,

When a packet is created, its forward control is set to
infinity. Each time a packet is transmitted across a link,
its forward control is reset to the minimum of its current
forward control and the control of the link. Hence, when a
packet arrives at its destination, its forward control is
equal to the minimum control of the links in its path. This

number is stored by the destination and used as the feedback

- 114 -

s
W)

.
R

g e e . R
. . IR B
M "‘I LIS B '-.-.'.1.4 .
. \ P ML A e
o el B P A PP
LI AR o Ot
A R I R A)
I A .

R
BRI
I JPE oX By u)

value 1in the next packet created by the destination to be
returned to the source., When the source receives the returned

packet, it changes its rate to equal the feedback value.

i Note that a packet contains its source's rate. This 1is
desirable for two reasons. A link could calculate a given
user's rate by multiplying the length of one of that wuser's

i packets by 50, but this produces serious round-off errors.
Also, a user might sometimes want to transmit at a rate 1lower
than that assigned, while still reserviné for itself the

- option to send at the higher rate later. Hence, we prefer the

users to communicate their rates to the links, rather than let

the links measure the rates.
This completes the description of the simulation model.
I 5.2 Ihe Simulation Program

- In this section we describe the event driven program that

% was written to simulate the model of section 5.1. .
:: The program works by scheduling and performing events in Zgﬁ?
i an event table. An EVENT consists of a TIME, a FUNCTION and F
P ARGUMENTS. When an event is created, it is added to the ?
: SEVENT-TABLE®, which is implemented as a heap. The heap is I
;; . sorted so that the event at the top of the heap is always the —
A one whose TIME is earliest. An event "takes place" when it is Eﬁ3}
NG s

O
'.'\ o

- 115 = BN

o

o 8"
CRCRE N
(]

CEEED ¢ o 0 LT L

EERAS S S

PR i N

AP a PP PL PR

T
o

L:;:
b
;
-
v
X

removed from the top of the heap and its FUNCTION is applied
to its ARGUMENTS. When this happens the global variable
STIME® is set to the TIME of the EVENT being performed.

The program begins by intializing the network, creating
the start-up event and adding it to the heap. The program
then enters a loop which repeatedly removes events from the
top of the heap and performs them, until the global variable
#TIME® exceeds the given time limit. Since most events, when
performed, create one or more new events with times later than

STIME®, the heap never becomes empty.

There are ten different types of events that occur, as

described below.

SIMULATION-STARTUP

This is the first event performed. It schedules the
first VOICE-PACKET-GENERATIONs for all intially active users
and the first CONTROL-PACKET-GENERATIONs for all initially
silent users. While the first group of
VOICE-PACKET-GENERATIONs are synchronized, subsequent
VOICE-PACKET-GENERATIONS will rapidly fall out of
synchronization. The same is true of the
CONTROL-PACKET-GENERATIONS. This event also schedules the
first UPDATEs and LINK-STATISTICS-COLLECTIONs for each 1link,
and the first USER-STATISTICS-COLLECTIONs for each user, The
times of the first link UPDATEs are randomized, since these

- 116 -

-

events would not fall out of synchronization otherwise.

- - N

When a voice packet is generated, 1its FORWARD~-CONTROL,
FEEDBACK-CONTROL and LENGTH are set, as described in the
previous section. The route of the packet is set to the route
of its source, its GENERATION-TIME is set to #*TIME®, and TYPE
is set to VOICE. The LAST-IN-TALK-SPURT? flag is set to T or
NIL, according to the outcome of a random "coin toss". The
entire packet is scheduled to arrive at the first link in its
route at *TIME® + #PACKET-GENERATION-DELAY®, This 1is
accomplished by adding the events PACKET-ARRIVAL and
PACKET-TAIL-ARRIVAL to the event-table. If
LAST-IN-TALK-SPURT? is NIL, another VOICE-PACKET-GENERATION
is scheduled for the appropriate future time, otherwise, a

CONTROL-PACKET-GENERATION is scheduled.

CONTROL-PACKET-GENERATION

When this event is performed, the user first checks ¢to
see if it is active or not. If the user is active, then it
started talking since the time at which the
CONTROL-PACKET-GENERATION was scheduled, and no further action
is performed. Otherwise, a control packet is generated, and
its FORWARD-CONTROL, FEEDBACK-CONTROL and LENGTH are set, as
described in the previous section. The route of the packet is
set to the route of its source, its GENERATION-TIME is set to
®TIME®, and TYPE is set to CONTROL. The packet is scheduled

TR ——

to arrive at the first 1link of 1its rdute at S®TIME®
SPACKET-GENERATION-DELAY®, by adding the event PACKET-ARRIVAL
to the event-table. Another CONTROL-PACKET-GENERATION 1is

scheduled for the appropriate future time.

ACKET-

When the head of a packet arrives at a 1link, its
ARRIVAL-TIME is set to #TIME®, the packet is placed at the end
of the queue, and link queue statistics are updated. If the
link is idle when the packet arrives, a PACKET-TRANSMISSION is
scheduled at #TIME® + ®PACKET-TRANSMISSION-DELAY#,

PACKET-TAIL-ARRIVAL

When the tail of a voice packet arrives at a 1ink, the
link checks whether the packet's source is on its list of
active users, 1If not, the link adds the source to its 1list,
Then the 1link updates its stored value of the source's rate,
which it reads from the packet. When the tail of a control

packet arrives, PACKET-TAIL-ARRIVAL does nothing.

AC -

This event occurs either when the link transmits the tail

of a packet, or when the head of a packet arrives at an empty
queue. If the link is transmitting the tail of a packet when
this event is performed, it will update its records of the
number of bits transmitted. If the packet just transmitted
was a voice packet and the last in its talk-spurt, the 1link e

- 118 -

.....................................
‘‘‘‘‘‘‘‘

will remove the packet's source from its list of active users.

Next, whether or not the link Just finished a
transmission, it checks its queue., If the queue is empty, the
event is finished. Otherwise, the link gets the first packet
in its queue and changes the packet's forward control value as
described in the previous section. Then ¢the 1link schedules
the transmission of the packet's tail at

®TIME® + (PACKET-LENGTH/LINK-CAPACITY)

+ ®PACKET-TRANSMISSION-DELAY. (5.3)
Next the link updates relevant statistics. Finally, the 1link
removes itself from the head of the packet's route list, and
checks for the packet's next destination, If the. packet's
route is empty, its next destination is its source's partner,
where a PACKET-ABSORPTION is scheduled for

*TIME® + LINK-PROPAGATION-DELAY

+ ®PACKET-ABSORPTION-DELAY®, (5.4)
Otherwise, the head of the packet is scheduled to arrive at
the next link in its route at

®*TIME® + LINK-PROPAGATION-DELAY

+ %PACKET-ARRIVAL-DELAY® (5.5) .
and the tail of the packet is scheduled to arrive at ﬁ; :
®TIME® + LINK-PROPAGATION-DELAY + ®PACKET-ARRIVAL-DELAY® T

+ (PACKET-LENGTH/LINK-CAPACITY). (5.6)

This event represents the arrival of a packet at its

- 119 -

destination. First, the packet's net delay is calculated by
DELAY=®TIME® + ®*PACKET-ABSORPTION-DELAY#®*

- PACKET-GENERATION-TIME. (5.7)
If it is a voice packet, the user's voice packet delay
statistics are updated. Otherwise, the user's control packet
delay statistics are updated. The user then sets its rate
from the feedback information, and stores the forward control
value for use as described earlier. If the packet is the last
in its talk-spurt, a VOICE-PACKET-GENERATION is scheduled for

the packet's destination.

UPDATE

When an UPDATE is performed for a link, the 1link first
checks whether the update protocol is satisfied. If it is,
the new CONTROL is calculated using the specified update
function, and another UPDATE is scheduled for #TIME®
SUPDATE-INTERVAL®, Otherwise, another UPDATE is scheduled for
STIME® + SUPDATE-ATTEMPT-INTERVAL®,

- CS-

This event collects link statistics, and adds them to the
#LINK-STAT-STREAM®, which is output to a file. It then zeros
the statistics and schedules the next
LINK-STATISTICS-COLLECTION at STIME® +
S INK~-STATISTICS-INTERVAL®,

- 120 -

E This event collects user statistics, and adds them to the i;i
: #USER-STAT-STREAM®, which is output to a file., It then zeros fif
E the statistics and schedules the next iig
j; USER~-STATISTICS-COLLECTION at STIME® + jga
N SUSER-STATISTICS-INTERVAL®,
This completes the description of the simulation program. i;;

5.3 Ihe Network Model B

Sl

In order to have a basis for comparison, we chose the —

same network model used by Hayden. This network is a scaled ﬁQE

down version of a network simulated at Lincoln Laboratories E?E

> [16]. The network consists of 80 users and 8 links, and its ::
;% topology is illustrated in Figure 5.0. The original network %ﬁ
: model considered traffic flow in only one direction, but in §§i
order to model the effects of feedback delay we must consider t:

two-way traffic flow. In order to use this model for two-way
o traffic without incorporating additional links, we view all

the sources as being at the same location.

EORTTIRrE B SRR
AU L N .'.'-'_-'_ '

i: We make the same user-partner assignment as Hayden, where
~ each user i has as its partner user (81-i), for 1i=1,...,40.
Ideally, there should be no correlation between the set of
links in a user's path and the set of links in its partner's
path, as would be the case if we had incorporated extra links

to handle the two-way traffic. However, the wuser pairs

o - 121 -

8 0°¢ 2andyyg ’

jJI0MI3N UOTIBTNWES aYy[-

3 o0Zs= "m ¥ NI (08-19) su3sn A_

0z M € NI RTETaaN o
02 = M 2 WNIT CEDETTaaN K
0Z+ 'm & e } NI (02-1) su3sn J \ "
t TrsuBI] 3 ..N

®poN - g

I043u8) i

8 = "m SWNIT(06-62) (09-68)0v-60) (0= 61 susn L) i
9l « "M 9NN (8L-GL) (B8S-SS) (BE-SE) (BI-SI) SWISN L g
> n_ o
b2 ‘m LANN (2-69) (vS-6P) (¥E-62) (bi-6) SHIAS
) AN (@5-19] (8v-1%) (62-12) (8-1) Suzsn” LI 2
CIYCELY)

(32,49), (31,50), (30,51) and (29,52) all share link 7. But, L
since they constitute only 8 out of 24 users, this should not '

be a serious problem. i

The program as described in the previous section contains i*

many variables related to the actual performance of a physical

network. The values of these variables are given in Table

- -
ok Al lma -

5.1, and have been chosen to be consistent with current

technology.

P

5.4 Simulation Results

'
REICIPUINE ¢

In this section we describe the results of the i
simulation. The theory of the preceding chapters addresses
only the the behavior of networks with fixed configuration.
In practice, however, the network configuration will change J——
rapidly as users initiate and end conversations. The ability
of an algorithm to control ¢the 1link flows in a changing
network depends upon the rate of convergence of flows in a , ;;i
static network. If the time required for the controls to
o) converge in a static network is short compared to the rate of
change of the dynamic network, the algorithm will work for the
- dynamic network. Hence, we divide our results into two

saubsections: static results and dynamic results.

FERENE N AN

5.4.1 Static Besults e

ORI

- 123 -

Ml Thall s e i Al St . Wi i LN
e Ay MR T e TR R T el

PN N A A N T e B S

Yariable Value
LINK-CAPACITY 40000 bits/sec

LINK-PROPAGATION-DELAY .003 sec
®PACKET-ABSORPTION-DELAY® .0005 sec
SPACKET-ARRIVAL-DELAY® | .0005 sec
SpPACKET-TRANSMISSION-DELAY® .0001 sec
®PACKET-GENERATION-DELAY® .0005 sec

Network Constants

Table 5.2

R

(N U P U
o St .
MU AN AR
oS AT TN ¢

A
'r“:'. L N
v 02 LI PRI

IS I IV

1

’

- 124 -

e e P et et e e tmTata e e e R B U NC S A R N e .
R A N R S e e S A I A N N SR e A AT N

e e e L TN e

In all of the experiments described in this section, we
studied a static network in which all even numbered users were

active for the entire simulation. For this network, Hayden's

9 fair control vector is
b ..

- (8000,8000,8000,8000,8000,4000,2667,2000) and Jaffe's fair
b control vector is (4987,4987,4987,4987,12050,3555,2461,1882).

Two important parameters to adjust are the update

interval and the update attempt interval. Preliminary results
indicated that the update attempt interval should be kept as
small as possible. While we could set the wupdate attempt
interval so that each 1link tries to wupdate each time it
receives a packet, this would slow down the simulation
considerably. Instead, we set the update attempt interval to
20 msec., 80 that each link tries to update after receiving a

new packet from each of its users.

Hayden observed, in his simulations, that setting the
update interval to 20 msec. produced severe oscillations in
the link flows. With an update interval of 100 msec., these
oscillations were greatly reduced. For comparison, we ran our

simulation using each of these values,

We have identified three parameters to adjust. We may

choose between the HAYDEN, JAFFE or MOSELY update functions,

- 125 -

‘.'.. T
ST

‘
K .
P TR W S
L
PRSI M 2.

Tl L P A
$oo it
»

the update protocol or no update protocol, and fast (every 20
msec.) or slow (every 100 msec.) wupdates. We ran the

simulation for each of the twelve combinations.

For the sake of brevity, we have chosen to display the
results for 1links 2 and 5 only: link 2 because it is typical
of the others, and link 5 because it is atypical. Link 5
differs from the rest in that, when the rest of the links!'
controls correspond to Hayden's fair allocation, 1link 5
controls none of its users., Thus Hayden's algorithm will

assign link 5 a control equal to its capacity..

Figures 5.1 - 5.3 show link 2 controls versus time for
all possible combinations of update function, update protocol
and rate of update. Figures 5.4 - 5.6 show the same data for
link 5. Inspecting these figures, we make the following

observations.

Both the HAYDEN and JAFFE update functions work
moderately well with slow updates on link 2. The JAFFE update
function can also control link 5 with slow updates, but the
HAYDEN function cannot. Both functions seem to work
marginally better with update protocols than without. Neither
function works at all well with fast updates, with or without
the protocol, although the protocol tends to damp the
oscillations for the JAFFE function. These results are

largely what we expected, based on Hayden's simulations. It

- 126 -

PREEEEN 4 PO

is a 1little surprising, however, in view of the theory of
Chapter 3, that the JAFFE function performs so poorly with
fast updates and the update protocol. These results do not
contradict the theory, though, since the theory makes no
claims about the rate of convergence, and the controls do

converge.

The MOSELY update function is capable of controlling both
links well wunder all circumstances. Convergence of the
controls with slow wupdates 1is slightly faster without the
update protocol than with. Since tl.e update protocol is not
necessary for the controls to converge, it is not surprising
that the protocol slows convergence down, as the protocol must

occasionally prevent a possibly beneficial update.

When updates are fast, there is almost no noticeable
difference between the performance of the algorithm with or
without the protocol. For link 2, it might be argued that,
because the controls converge to the fair controls from below,
the update protocol is nearly always satisfied, and hence the
performance is the same with or without the protocol. In
order to test this theory, we ran the simulation with the
initial controls and rates set high (4000 bits/sec.) to try to
produce a control sequence that converged from above. The
results of that simulation are shown in Figures 5.7 - 5.8.
The controls still converge from below, since after starting

high, the 1link cuts its control sharply to limit the flow.

T

.o

CIRCEN B o LAY

TP . " " e "e

There is more difference between the performance with and

without the protocol in this case, but the difference is still

small.

From these figures we conclude that the HAYDEN and JAFFE
update functions work best with slow updates, and the MOSELY
function works best with fast updates. In Figures 5.9 - 5.12,
we compare the performances of the three functions. Since the
JAFFE update function is designed to converge to a different
fair allocation than the others, it is difficult to assess how
well it does this relative to the other two functions. From
Figures 5.9 and 5.10, we might conclude that the MOSELY
function performs no better than the HAYDEN or JAFFE
functions. But Figures 5.11 and 5.12 show that this 1is not
so. Collectively, these figures seem to indicate that under
best case conditions, the functions work approximately equally
well, but for unusual conditions, the MOSELY function works

better.

As further evidence of this conclusion, consider Figures
5.13 and 5.14. These figures show the 1link 2 controls
produced by the HAYDEN and MOSELY functions, for four
different sample simulation runs for each. The HAYDEN update
function gives varying results for each run, while the
different control sequences produced by the MOSELY function
are indistinguishable. The variability of the HAYDEN function
is more surprising than the consistency of the MOSELY

- 128 -

function, when we consider how little difference there is in

the loads offered to the network for each sample run., For the
static simulations, the pattern of conversations does not
change, only the order of arrival of the packets in the queues

and the order of link updates differ from one run to the next.

The static simulation results seem to indicate that the
MOSELY wupdate function is slightly superior to the others.
However, the real test is how well the functions perform for a

dynamic network.

5.4.2 Dynamic Results

In this section we describe the results of the dynamic
simulation experiments. We preface ¢this discussion by
remarking that the simulation results are sufficiently
unexpected that we suspect an error in the program, and we

feel that additionaly testing is called for.

For all the simulation runs described in this section, we
used an average talk-spurt length of 60 packets, corresponding
to a 1.2 second talk-spurt duration. Thus, the 1link 1loads
change rapidly, as one user stops talking and its partner
begins. We ran the simulation for six different algorithms,
using each of the three update functions with and without the
update protocol. The MOSELY function was simulated only for
fast updates, and the HAYDEN and JAFFE functions only for slow

- 129 -

updates, since we found from our static experiments that that

is how these functions perform best. In each case, we

simulated the network for a 30 second interval.

For the sake of brevity, we show results only for links 2
and 8. By the symmetry of the network, links 1 - 4 are all
essentially equivalent, and we choose link 2 as representative
of the others. Link 8 is the most heavily loaded link, and we
choose it for worst case behavior. Figures 5.15 - 5.26 show,
for these two links and six algorithms, the number of bits
transmitted over a 0.10 second interval, along with the number
of active users and the maximum queue size, as a function of
time. So that these three quantities may all be displayed on
the same graph, we have scaled the number of users up by a

factor of 100, and the maximum queue size by a factor of 10,

In Figure 5.15 we notice that for times between 20 and 25
seconds, the flow appears to exceed the link's capacityl! It
only appears this way, however, because of the way that the
links count the bits transmitted. After each packet is
transmitted, the 1link increments its bit count by the length
of the packet. This count is zeroed at the end of each 0.10
second interval. Thus a packet which begins transmission in
one statistics collection interval, and finishes in another,
will count as having been wholly tranmitted in the second
interval, This is why we see a sequence of intervals where

the flow fluctuates above and below link capacity.

- 130 -

From examining these figures we see that the HAYDEN and
MOSELY update functions produce totally unacceptable queues.
The queues for the JAFFE function are much smaller. These
results are unexpected and we cannot explain them. We find
the size of the queues somewhat surprising, since Hayden's
simulations rarely showed queues exceeding 50 packets. One
possible explanation for this difference is that Hayden never
ran his simulation for more than a 10 second interval. We
notice that the really severe queues don't generally occur
till after 10 seconds. This could be due to the fact that the
simulation starts with all rates and controls relatively low,
and only the even numbered users active. Hence, it may take
several seconds for these effects to die out and steady state
behavior to dominate. Also, Hayden used measured flows to
calculate the controls while we calculate controls using a
theoretical flow based on the sum of the users' rates. Since
these calculated flows do not reflect the presence of control
packets in the network, the resulting controls will be
somewhat conservative., This seems like it should be a second

order effect, however.

In general, the queues build up 1in response to sudden
large changes in the number of active users. We see from the
static results that it takes all of the algorithms around 2 -
3 seconds to converge to the correct flow, so, when the number

of users changes rapidly, the algorithm cannot cope with the

- 131 -

) PR ,'-
» PRI A
G G 20 R VTSN G

e .u' RS

_ change. We also observe that the queues are much worse for
ﬂ. the algorithm with protocol than without. This 1s not
surprising, since the protocol prevents a link from lowering

its control until all its users are sending at a rate lower

=
()

" s AP
. .

LT AP A

. . A TP A,

than its control.

It is interesting to note that, for the JAFFE function,
the flows seems to oscillate more in response to the changes
in the number of active users. These oscillations are similar

to the oscillations observed for the static simulations.

Observing that the JAFFE function produced more stable

queues than the other functions, and that the MOSELY function

tended to result in higher flows, we ran the simulation for a

seventh, hybrid algorithm. The wupdate function for the

algorithms is obtained by replacing the value of the 1link

control wherever it appears in the JAFFE function with the

ij value of the maximum user rate. The hybrid algorithm was
}, implemented without protocol and with fast updates. The
s results are shown in Figures 5.27 and 5.28. Unfortunately,
there 1is no distinet improvement in performance for this

> algorithm.

One possible explanation for the difference in queue
sizes for these algorithms, is that the fair flows for the
JAFFE function are smaller than the fair flows for the other . {ffﬁ

ﬁ functions. Hence, we expect smaller queues. To examine this

effect, in Figures 5.27 and 5.28, we plot average delay versus
average flow for each of the seven algorithms. The averages
are computed over the entire 30 second interval. While the
average flows are indeed smaller for the JAFFE and HYBRID
functions, they are only slightly smaller. The difference in
average delays, however, is very great, and we are forced to
conclude that the JAFFE function gives inherently better delay

performance.

We believe that the intrinsic problem with all the
algorithms thus far proposed is that convergence of the
controls under static network conditions is too slow when
compared with the rate of change we may expect in a dynamic
network. One reason for this is the 1long feedback delay
between the links and the sessions. Two things could be done
to remedy this. Control packets <c¢ould be generated more
often, though this would increase overhead, and control

packets could be given priority in the queues.

Another reason that convergence 1is slow 1is that the
changes that a 1link makes in its <controls are always
conservative. Essentially, the links assume that all of their
users will be affected equally by changes in controls. But
this assumption is clearly erroneous. For example, if a link
decides to lower its control from Py to po, none of its users
that are currently sending at rates lower than P, will be

affected. Similarly, if a link raises its control when most ORIy

- 133 - :__.:.:::]

of its wusers are sending at much less than the current ;3

control, it is unlikely that any of those users will be -‘f

affected by the change. With the HAYDEN update function, the . ;iﬂ

links ignore potential feedback information from the users by Sii

taking note of only the sum of the rates. The MOSELY update .
function makes only slightly more use of the available
information, by observing the sum of the rates and the maximum

rates. Perhaps a really effective update function could be) &

devised, where the links make use of the entire rate vector. ?

!

s i

o

3

- 134 -

..........

el Sl S

e

RN

P

1°S ®inbi4

(yi1omjdu one}s)
uonduny 2an: CQBAMI 40 S| "SA JOJJUOD Z Yui)
(93s) swn
g 4] s 4 g 4]
S21epdn 704871050010 OU/URPARY ===

.-t e e _.e---

$a1epdn moisy1030j0.d/Laplen
$31vpdn)s8)/10301040 o:\._agu: ce=-
S3RPAN 1S8)/103010J0/UIPABY wmeree
[]

g

(29s/511q) 104]U03 Yu))

- 135 -

.....

(20s) owpy
8

™

“«a,m
=N

R e R)
AN

QoY

\.s.
o
LRI

Qi. a -
‘e '_'.i’.'

z's ainb4

..
. ‘.t ..
alal

(1iomjau anejs)
uonouny ayepdn a8 40) SWY) “SA |043UOD 2 HusY

9 S > € z ! .

]
c-:.'

$AVPAN MOIS/1020101d OU/BYBT ~-==-
$3epdn mois/j030101d/0ye; - o
$3)epdn 1S8}/1020)0)0 OUsB el - = = ~
S91epdn 1S8)/103010sd/3)8F ——

. ¥ —— v v

1

- 136 -

:

]

i

(995 /511q) 1013u03 MUYy

g
L

' el
oo
[e

.
—

§ £°G 94nb)4 B,
]

. . (¥10M}au o118)S) "
- uoljoun; ejepdn Ajosoyy 10§ S “SA [043UOCD Z Hu[] -

" (o9s) swni
. 8 L 9 S 4 £ g s

L 7 — T - ¥

.t

-
'a ¢

=

et e
»
Sasac

, 0004

$912pdn MO{8/102010sd OU/AIBON =~ -] c

. . $31Ep0N MO18/10301020ASON -+ o 000
s3jepdn 158)/(05010:d ou/Aldsopy - - - -]

$3;8pdN 1584/103010)0/ARSON -

- 137 -

g

:

0004

(995 /511q) 104u03 Yuy
Z

.:_s

& : . R) AV PRSP T TR SR I DAY y -
‘\f.c-v-o PR L A [V DS P R N ﬁ.. e ?
v-- | . .8
» . |
y!
..._
\o
be |
.
r
.

T .
D)

b T
o e
v v,

N A-“\
” e
; p'g 0inbid s
.\ {%40m}dU 21}8)S) w0

b uonouny a1epdn uspAeH 404 dwiL "SA {043u0 G Yu!
" ow
¢ foosroun 9 s y £ z : o
| . . N « | o
ﬁ‘ sa1epdn MOI$/10001020 OU/UIPABH ===~ .
- £919p4N MOIS/I00010IA/URPABY .
3 £31800N |SB}/|03010:d Ou/UBPABH ==~
. Sa18pdn 1681/103010s0/Uophey —— R R 2008
: R ; " |
-,. —- .s .-
5 y : " 0000 |
: : ! 000S$ -]
W . . 3
b, . ; .
r., " .
3 ' ' .
t " .. N 00002
:] ~ .]
- : | " ‘
(~. ' ' n a
,.. .. : ' 000SZ §
9 ‘ : : :
3 : ; . :
. ' K -
! : \ 0000€
r. \ ; : ﬁ
' £}
4 ! s
.A o
f [
,.. 000S¢E ~
3
:
\-..-.-\-~ o L araas S \ SR ..\, o | .. .‘. ot .-... .. 'y e vt :... et R R) LR 0Woe " A

R
T

wTw Y« e\,

A NN

S

-

Ll Tt

R S

G°G 94nbi4

(Miomeu ayeis)
uonouNy)epdn 848 405 dW] *SA JOIJUOD G YUIT

(o0s) owy)
8 Z 9 g » 3 z

L, Loy ” "~ - A g

SBPAN MO(S/(0301040 QU/DYS(~ ==~
SAUPUN MOJS/1000108/S 8P oo
saiepdn 158)/10001030 OusPjer - - -

$91epON 158)/1000)050/ 940 ——

00054

(°9s/81Q) 10J1u0d YUY}

- 139 -

o« g v, .
- .
o

-
ata

-..-- *

-

.
S AP

S

L]

v A R TR

e A

TS AT e,

-,

R

P A SN

. -_'

RECN

T T———y

9°G6 9.nb14

(40m}au d138]S)
uonouUNy arepdn A|asSoy 10§ dWIL “SA JO4JUOD S NuUlT
(39s) swipy
8] 9 S ¥ £ 4 [}

r L Y y— v ¥ S— 0 g v

se1epdn mo4S/1020104d OU/AIOSOp =~
8—“8: MOI§/1030]0. 30 \»—0"02
s9lepdn)sB)/)030)01d QU /KjASON =~ - -
sajepdn isey/|000j0:d 74 s0 ——

.l.l.‘.l.‘.l_..!l.rr.‘. .
Yty
S

i VT
g SOV .
-l
-eaBl e, &
SN IR W
Ny, i, P, e

WX PIRTARINS . SXAIOAAS CRAKERS) | ORI . RRoee

0024
00rL

-

g

]

{295 /%11Q) j013u0d Uy

- 140 -

1'S ainb(4

(’140M}3u 2118)S)
uogaun; aepdn Ajasop 10 3w ‘SA (04}UCD Z HuUST
(29s) ewit
8

4 9 S »y (2 4 [o

.408-
10002
1000¢€ '
3
Salupdn 159}/102010:d ou/Ajasopy - - - - ht
salepdn 1sBy/10201020/A1980)y —— H " '
—y
000S 3
>
(2]
o
3
0009 =
9
g
000L &
N\
(7]
®
ooos <
L]
. ul o o ' e -‘q-¢~v.-...-- St ., - & b. . u.M,.‘..-m~>-.»..l.-|--l.-w'~ .o.n..l!.h..h--nni‘-qb«' ..:.nvaf.ln..!i.l-l..‘ a'e .

~

.
.

T,
I S P

hE ik

-y

(295) owiy}
8

8°'S 84nbi4

(¥I0m}du 2138}S)
uolouny sepdn A19Soyy 404 dWIL “SA jOJJUOD § Ul

4 9 S » £ [

— v L . g v v v

s31updn 1$9)/109000:d ousAlsop - - -
$318pan 188)/1020100074)980py ——

- 142 -

.. R . e
ot s R e T

- >
- AEATTT N o E -

(29S/511q) 102]U03 YU}

-

G S SRR
-

B Y

""-.‘ '.."--"

-
.h

RO ¢

o -
" .

5 sn.

o

W,
TR “ »

P

)

(99s) awy
8

6°G 84nbi4

(11om}au aye)s)

SUoNOUN} 81BPAN 834y | 10} dUIL] *SA j043UOCD 2 NUIT

9

S L4 £ Z

I~

v

3~QE= MOI8/1020)0. 40 onep oo
SIIEPAN MOIS/1020)0I0/USPABH = - =
$5iepdn 158)/1020)0:d/KlasoN ——

v v v

:

(995 /511q) 104103 Uy

= 143 -

04°S ainbi4

(¥10M)8U 2138}S)
suonouny ayepdn eaiy | 10§ 8wi] *SA J043UOD Z YuUIT

(28s) dwy)

#

L 9 S L4 £ 4

S18PAN M048/102010:d OU/USPABH - = - -
£31004N 168}/1020102d Qu/Ajasopy ~——

v v v g

SP10PON MOIB/;0D0)04d QU/BNPBP -=-r

........

:

(298/511q) j041u02 NU||

- 144 -

.~
.
LI
-

~

P -
..-. -. \ Q_. -

ORI)
W g™
LS I)

T ETE IR~ ow
SUSTERTET

o

‘-

<~vc

- SalC i

8

-,

* ‘n',“ '-; Te

LN

Sl S-S

Tl
PN

~

R A

-

P

v

£ 4°G 94nbi4

«x;o;; jou o.amum»
suonauny Qawbﬁa 984y 40j dWIL °SA jO43U0D G NUIT
{29s8) swuj}

8 L 9 S | 4 £ L4)

i $918pdNn MOIS/103010)0/SL -+ M ’ d v N
so)epdn mos/j000)0)d/uapley - - -
S3jepdn ISC}/103010:d 74195018 ——

................................ .
.s
-.
............ ---"---."---l--"'-l--"-'I|-||"|'--\\

{oo0sz

:

(995/511) 101303 U

- 145 -

Zk's 84nbi4
«x;c;:w: 0.:@~m~
suofouny ejepdn 894y | 40§ dWiL "SA [043U0D G Nu{]
(09s) s}
g = 9 < 4 £ z :
T saiepdn mOS/1090)05d OU Qe - M v v v v
sa1epdn Mm0)s/1020)0sd OU/uapAey - -~ -
$018pdn 1584/1090101d OU/A|9SON
... !
B |
L
.. :
............................. ;
:
. '
-- .\
. 1
V. -.
| ¥
-

(995 /511Q) [01)u02 YU

§

- 146 -

€1°G 84nbi4

(310Mm}3U dyje)S)
(suni 1noy) uonauny ajepdn uspher 10§ SWIL *SA [043U0D 2 YUIT

4 9 S .4 £ (4)

v .y —_— L - v -r

T

3 $218p0N MOS/109010:d OU/UEPARY ===
' $312pdN MOI8/|0201040 OU/UBPARY «--eoeer
L $912p0N MO{S/10201040 QU/USPARH = = =
, $512p0N M0{$/1090}0:d ou/uIphey ——

- <
- Lo
- P

-” .-
- Lol
PP St g
- - Ji.lu-:‘...
IR B e ossmi s o O

§

Lo DRSS BRONATS L Lttt et e

g 8

(235/5119) j04)U02 yuy|

147 -

'

CI. T g .
O LR AN
N

O e T Ve
'.7.\ Se

RV BT BRI PA P AL B T c e, - .
ERTATS LR P A - 4 . A RN N Lo s e
.,.- AR & . ' 4 ~ [AR A R Rl ..~ & RO * B 1 I”. [N ._ e e
5
\-
-\-.
% p1°G 8inbiy
5 (10M)2U d1)e)}S)
(Sun4 4noj) uonouny 8)EPAN A|3Soy 104 dW) “SA JOJJUOD Z YUl
m... (99s) swp
8 Z 9 S 4 £ F4 J o
: _
& 000}
{0002
1000¢ !
3
kooov !

§

(295 /511q) 1043002 YUY}

$2)2pdn 158)/10504010 OUAIPS0HY ==~ -
$9)epdn)s8)/102010.)d OU/KjoSOK <o
§312pUn §59;/10901050 OU/A135 -

$3)kpdn S8 /10201040 OU/AFSOY —=——

:

3

"

e e
o e
Calad

)

Nd

..................
. ‘ ' . PR e . B RN

-

b

s

\\l‘—-i -

AR "R ame - ud

PO

~y

P aii o

L

§oete . -,
A . [AL W T SR .-
s , U R R} L] LR R 35 B
—........-.....\-a. h ., .~...-- o el

* B LA

G1°G 3inbi4

(yIom)au djweuAp) z yug
mc.nbna MO0jS/j020}04d OU/uBpARYH 404 @NAND ‘XBJN/S48S[) 4t /MO}4

se oz

(38s) dwy
oe

' H i
LI i
) \". .u
Aot H
L :

W (LX) o218 enonb wnwpeyy - |

.Scs SIEN NIV O IQUINN - -~
AL 268 L) f:o paRIWSUR Shg l..
\ 0003
)
S
[00s1 _
o _k... ‘0 -
4 -
{0002 |
{oose
1005¢
Joooy

. . -
O] . .

DRl T R
UMY VAT A

IS S SR

|

v o

-

P

.y

‘411

-t -

ARESAT V)

og

(20s) owp

R R TR ICRICR Ty, D R, . N . R T
... !,_ wJ.T...N...».\\.,. . .v t N % ..._ ..v.---. Tala i -..- RN)
. R SRR AU . Oy [P IR) . ' et %,
. ‘s se 2o - v . L e T S D S e L (] * b ~I.\I—. ‘e \u » .u-.h . n.-‘At-
.

94°G 9inbi4

(’140m}du djweusp) g yuIy

sajepdn mojs/jod0j04d ousuaphery 405 ananpd ‘Xep/Si18SM) £ /MO|4
0z]} (]} S o

.o_wv of1s anonb winwney
(004X} $3a50 QAN J0 JQUINN, - - - -
1SAIN DahOVgO pauwseey S¥g [—

L]

-

P YT T v v

.‘
ety ¢ \ N
vy D [}
LY Y
..- ' ' fo . L]
...... s ey
‘e .\ ' Wy o
[' vy
¢y oM '
[' -u
. v . o
(I K
- o~
]

AN

.t
SANAS
\. I‘

»,
-

.0t ot
.~ ~ '.\ o ~ .-\-

LI |
-,
-

.
ST

AN G AR

-
o~

e

e
TR

AP A
o

.
_‘i‘\.‘.‘:\'

-
L3 YR
£ 2t S gt

- 4% et ®a",
o _‘-..:.\:.._'-'.' Ve

>,
.

(o0s) swil

216 8anbid

(10M}3U onueufp) 2 i

04

. 19S() & /MOl
sojepdn !o.m\.ooc.enxcouac: 10} @nanp "xen/s! n

oc__

. M

\ A .Bw.u;»_u

*- == =! (pbrw) 18 :
3!3593—dx§°!£!§§

ST

4)

o

a"ﬂﬂc gﬂi m.....:.:..
I 0

veerennnian,,,

svg ;

(4 - - m.-

¢

t
&
¢
-

SRR

-ay
-l

YR Retetita e rertaresnseeeronsnenenonyn,

,--.oo
P

apuesusett
seaseaenesene

VST Lo

——

i

T

§

00Se

3

o I

T nV-.A-.:.‘
SR
ORI
P

84°S 94n6i4

(H20M)3U DJWBUAD) 8 NulTl

sojepdn moys /1020j04d/uophe 10§ onanpd "XeWw/Sies() f /Moj4

(505) swp
o¢ sz 0z

st o1

S

™

{012} o8 8nND wWRY -
(001 ¥) SIISN BAYIN JO JAQWNN =~ = =
(RAIBW 595 |0 SN0 PRINUSURI SR ~——

v A St ey 0 Qoo

wasthes, W Na ot e o

s
§ '
e
H '
~ i
K]
¢ nn !
Q'..‘-'.m-
" 4\ L
vt H
"h 1 L4
[}
"e
-d b
)
]
’
[}
]
»
-
]
)
]
4
",
by *
eyt
"
.

Wil ;zz??;?__wé ! *s_, :%g%

- 152 ~

B 3 ”.
A i ““.... “
3 g
3 61°G 94nbid ”.mw
‘. (r1om}ou dqweudp) Z yull m...“.“

: sojepdn mojs/1oo0joid ouysdjjer 4104 onenp) ‘Xew/$408M) & /MOlJ

-) oWy .

SR P

L

Y
LY

4
=a

.
aea ik

-
-
-
pL
- e

X awiw. VN‘ ggJ WAIXBIN oo ... s
y ! g-dﬂo»;gauv—o JAQWINN - === m) "..

", 1BAsBI| 999 10 Jan0 paltjusuRA I —=

'
L
_... I e ! o o

4 T Vo b 8
' - s

-
-
-~
-
-”
-
-
X

-
PRSP b
-

-

-

-
-

1
Y . & u {10004 s
L]

-,

A

~ j00S} L

- 153 -

10002

{oosz

.

...,
AR SN

—_—
..\

——
-.“

ﬁs.h.n

———
=
<
AR

et
" P

“~

g

.“"\ R
L

CRRRIRNEIR)
Ot
B

02Z°G 9snbl4

(’140Mm}au d1weuhp) g yurs
s9jepdn mo|s/]000j04d ou/3jjer 10 N3N XeN/SI8S() A /MO|4
(99s) swp :
oc

14 014 Sl

(1]

. 100¢
(01 x) 9218 aNaNd wWnmuney
{00LX) 508N 3ANIR jO RQUINN - - ~
IBAIQJM 236 §°() JIN0 pIWISURA B)g —

+~ '100SH

- 154 -

000r

$2°G @anbi4

” (aomjau o1weuAp) Z YUl

: sojepdn Moyssjoaojoid/8jjer 104 ananp) ‘Xew/S49sN # /MO|4

(o9s) awil

_ Of. sz % st 2 I I

"y N :
-“. ' ; " " . '
......... rxl P - -
(o) sz grpabwoupeyy 1t L 2 A A S A
As.wuvnss:.Q‘.nuu...o-o&isz T va oy 3 W ' vae el RN . ' Vet
{easasu! 93 10,1900 PansUiEn sugly, v YTRA] L N RN ’
2, Y » Yy ! ! ¢ \ ' " Vot v ! MO .. 000}
ey ! Y m ' . N) ! foet N M sd oy
R YIS] e .. ' ' Y I Y e S v -
'\ ", e ' .». v [) b Vo
Vs [N W, g ' (.. '
_) Tt v
v v\ fooss
'

- 155 -

HOOSe

;Z R

:

22's eanbig

(%10M]3U d1WBUA
sore ! P) 8 Au!
jepdn mojs/j030}04d /38 10§ o.\.ﬁaﬂu ..wms_\ﬁowa A /MO[4

(29s) 3w

oe

Ec& 215 9nanb winwixeyy
(001 X) S9SN QAYIR JO squuny - - - -

[PAIBIU D96 170 JAN0

n
oy
v p
AR WA
¢ =
])
[+
] [
’

pawsuR SIg ———

L T

€2°S e4nbi4

(110M}3U D1WBUAD) 2 UIT
sajepdn }se}/j020304d OU/A|3SO .Of BNANQ "XeN/SIISN A /MO|4

oe __S¢ ___0Z

4
1K)
y
[] |- -.
' v
el ! . fnoor
v ‘R N N ... " 00%
~ ' 8—.31_-!53 wawpeyy - v :

(001) s:asn ganow e - 4w
oA ﬂ. 299 1°04300 pannusuei{ sy ——
.- -s —. .- .-
-~ [N

00S}

Py

‘ 100sZ

- 157 -

-

et e

W, et e
CI AN
e e

P AN

.o

“
.I .‘-!

i
.

R

o

oy
IRy
e, 9
)
Y

M

!
e Bits transmitted aver 0.1 sec interval
.= = = Number of active users {x100)

-
--.".'.:.-

-
-'e o
-

ORIV

e Maximum queue size (x10)

30

time (sec)

25

20

Flow/ # Users/Max. Queue for Mosely/no protocol/fast updates

- 158 -

CatE T, ", . - - CREA A 4 LI S A L] * e e’ a”"a'a®ea? .y
E A IHJ_.(..- o ._-.,. T R A A S ".\ AU - RN \(-..-.‘ .2..\...' s K
i, RN R NP SPPONPRPET RO O AT S Sl SR S A S Pl S SN TS0, B S A Yl

Link 8 (dynamic network)

Figure 5.24

. (20s) oWl

-

G626 ainbi4

(14omjau spueuAp) g Huil

sojepdn jsejsj000104d/Aj3so0N 404 @nand ‘Xep/S49s/) Jt /MO|d

Sltate AW - 0 aae ccs R

L L S |

LAY

3 ot Se - e v
:.. L v o - -
. .-._.m fon o
l’l [/ - f L} u. - N u] [[} 8“
p : .. ' ...l '.. -. ..s.{ .:_ “.lu ..%-\)
i~ (o) ous enenb whwmeRe 'y M sy I EO R S '
o f(ohux)sesn amowyoiaquiiy -3 = I i Lok
. s Il s : : e L.
eusiuf 209 11840 paiBLR G " i var " on 0y leoas
1y Ve i ' " 0 W |
b4] ‘ A
g : [V
..' at . .a" .E\M
L =0V ¢ 8“‘
[] -.~ J
w4 K
Hoooz
_ wﬁ_ " loosz
. .
100S¢€

e e . e e e . A Voeete et e e e e R PR
R S ¥ SERAPSEARAOR el te el -M..L.. PRI .ﬂ.P.-..L.&.L-N.L olEN T NI N CAA

- 159 -

s

AN,

-
2y

"

.
QRN

A 8

: (09s) owipy

92°6 84nbiy

(%iomau diweuhp) g suly :
sajepdn)sej/j020}0id/AjdSOy 404 SNANY *XeN /SIS 4t /MO|J

S o d PLAREETENN A STe e e, 4

24 02 Sl ol s o)

(01%) 9218 Gnenb wWhWNEY -
(001 X) R135N PANIY JO JOQWNN - - - -

IBAJOIU) 995 |’ JOA0 PIUNUSURS SIG ——
R 1

)

B
o,
[N
e

-

v e
PO
PR

'™
..‘ L Upe

-
e,
| W s

22°G§ 8inbig

(HI0M|3U JIWeUAp) 2 yul) : o

sojepdn jsey/1020104d ou/pPlIGAH 105 N3N "XEW/SIBSH) Af /MO|4 Y

(o9s) own S
og sz oz Sl ()] S o

-

e .

Sata
o

-

-

-~

"b'"- '.- .
'LL'.:‘f 2y

‘ (0sx) 9218 onanb e..e_..ea.
oot (001 x) 808N 3AR08 jO .onE._z -
.u.:&c. R 100 3:.588. sug JEI |

- -
e
o
-
-
R
-*.
Y. Y'Y,

.
P

-
Sl
"~

l-.-

.

- |000s

Wil od

- -
PSRy

- 161 -

=
-
-
-\.',-.; e et o

{oose

——
-

s
AR SRS
e

TR,

O}

!&‘:.Fv. T T N R T T N N T TS TN S T T e T S R S s e Y T T I T I AN I TR T LT
%
N
N .
: t
- "
£z
8 . -
— £ze i
= T
£33 1o &
355 s
£3 3
{ g
)
& i E -~
2 Ex ~'.‘_': @
e 823§
-,] ‘,‘ .\.
| i 3
g
&
Q'
035
S2
2% o
. Rreeeoea r e N
‘é:_ -o.r'-"" - 3.2 m.
' (T XE g
8 s
1 6% B8
t: -~ > '9
23 “E l
a2
P Qx
= -5
c3
g
...... ~
o
A 8
-
%
~N
3
|

~ 162 - .

e T —————. BN g i i S o . D 3 0 g - , —p— -r
v P R - N .t e vt AT e e s e vt DI RIS R SR SRt i St
= e
», ERt
- o,
*. AL
. l‘-".l
-, Ly
Nt
-l

: -~ 40000,
. H
& »
2 ~
b [
h] 3sooo¢
| - L
b - -
- ¢
. >
:;i < SSOOOT
E:f) <4 Hayden/no protocol/slow
L " ~}-Hayden/protocol/siow
. 32000T x Jafie/no protocol/siow
X Jafte/protocol/siow
» ¥ Mosely/no protocol/tast
.:_ + < Mosely/protocol/fast
- 30000} * Hybrid/no protocol/fast
28000{<
26000}
: 24000 -
W o . 1
N Ave. delay (sec)

Link 2 Average Delay vs. Average Flow
Figure 5.29

Ave. flow (bits/sec)

40000(
380001
36000} *
¥
34000
4 Hayden/no protocol/slow +
-} Hayden/protocol/slow
32000 x Jafle/no protocol/slow
X Jatte/protocol/slow
Mosely/no protocol/fast
Mosely/protocol/tast
30000; Hybrid/no protocol/fast
28000}
26000}
24000L. -
4 o 1
. Ave. delay (sec)
Link 8 Average Delay vs. Average Flow
Figure 5.30

- 164 -

-

s
s

N
o
PR et

Chapter 6
Suggestions for Further Research

In this thesis, we have considered the problem of
designing a distributed fair flow éontrol algorithm that can
be implemented asynchronously and remain stable in the
presence of feedtzeck delays. After developing an appropriate
system model, we analyzed several flow control algorithms. We
discovered that one algorithm which is unstable when
implemented asynchronously, can be made stable by the addition
of an update protocol (the generalized link memory algorithm).
One algorithm cannot be made stable even with the update
protocol (Hayden), and another is stable even without the
update protocol (modified Hayden). This last algorithm is
particularly interesting in that the 1links, when updating
their controls, make more use of the available feedback

information than the other algorithms.

While the theoretical results indicate that these
algorithms should perform well, the results are only valid for
a static network. Computer simulations indicate that none of
the algorithms can respond to changing input conditions fast
enough to effectively control a dynamic network. Therefore,
it is necessary to improve the response time of the systen.

This might be accomplished in several ways. First, queueing

- 165 -

e

| Fronaind

...
..................

- priority should be given to the control packets, to speed up
convergence of tne controls, Also, when links become very

congested, we migant allow the system to discard 1low priority

o - 8
t - SR

.
AN |

packets. Finally, as described at the end of Chapter 5, we

)

could try to devise better update functions that make more o

complete use of the available feedback information.

As an example, we propose the following update function: oo
N+l ci(t D ._¢.D . ne .
Pyt maX TigleyIele g P Ws(a) when £y7ey
F(ricesM),ey) when f37>c; (6.1) S
where a is some appropriately chosen constant such that 0<£a<t, i

wj(a) is the number of sessions whose rate 1is higher than

. (t .0 (% .D i S
: a max rlJ(tJ), rJ(t,J) is the vector of rates o
P (---,Pij(tj“),...), icgﬁj, and F(Rj,cj) is the maximum of the

coordinates of the fair allocation over the set defined by

4 r3<Ry (6.2.1) L
b and =
{elp v e

The idea behind this wupdate function 1is simple. All the e

- update functions given previously change the controls by IR

conservative amounts, assuming at all times that the 1links
j control all their users. This update function lets the link
‘ use its knowledge of the rate vector to make better estimates B
of the number of sessions that are actually under its control.
When the flow is less than capacity, the link uses wj(a) as an ;?:{
estimate of the number of sessions it 1is currently

controlling. When the flow is greater than capacity, the link

- 166 - i

adopts the largest control that would let each of its sessions

send at the minizum of its former rate and the new control,
while guarantesin that the new flow would be less than or

equal to capacity.

In conclusion, we remark that flow control algorithms are
just one example of many different distributed asynchronous
problems., The techniques described in this thesis, that is,
the use of update protocols and more complete use of feedback
information, might be profitably applied to other problems‘as
well, and the theorems in Chapter 4 might be used to analyze

such algorithms

- 167 -

EIMCRE AN N o S LA o v B e S M A e i o et !'!'.'!ll_l'l'l~l_l ~ RIS IAR A ey

PTe T ta Nt v oL e A LIS

dppendix A

Theorem 3.1. If dy(t) and Dyj(t) satisfy (3.10) and (3.11),
then for any t0 there exists t1>t0 such that for all t)t},

t-dy5()-Dyy(t-dy5(£))2t0. (A.1)
for all jef, iéXJ, kedy.

Proof. For any t0, by (3.11) there must exist T

ij such that
Ti3-D3j(Ty5)>t0- (A.2)

Let Ty- max Tyj. By (3.11), there must also exist tjj such
nat.
that 1 ™%

tij-dij(tij)>Ti. (A.3)
Let tl= max tij. Then for tat!, by (3.10),
1€=1“é%
=45 5(t)-Dik(t-dj;j(t))

2tij-dij(tij)-Dik(tij-dij(tij))

2T«Dj(Ty)
2Tik-Dik(Tik)
2t0, (A.4)

This completes the proof of Theorem 3.2.

- 168 -

Appendix B

Lemma 3.2.1. Let Fj(z)=(min zk) (1-W3/(2W3))ecy/(203) and
define F(z)=(...,Fy(z),...). Let 20=0 and define zh+1zF(zh).

Then zjn-azjl=p1+“3/(2§3)(cj/Wj-p1) and ZJ"<°J/WJ for all n.

Proof. First we show that z% is a fixed point of Fj(-). Note
that since plzmin C5/N3, zj#2p! for all j and p1=2iP zZ, .,
Hence L
A N
Fi(zy9)=p! (1=Wy/(2H 1)) e /(205)
=z e, (B.1)

Now let }izii= max izj}. We show that F(*) is a contraction
1

under this norm.

LIF(x)=-F(y) | 1= max ‘(1‘“3"2§3’)‘“§" *i-min i) |

1

In

(1- m%n Wj/(gﬁj)) mzx i Xp=Yg!

(1- min W/ (20,0 1 ix-y i1 (B.2)

Hence, 2P 5z%.

Now suppose zM<c;/4; for each j, for some n. Then
n+l - it P q
2N IKCI=Wy/(2W) Jeg/Wyrcy/(2W ;)
:cJ/HJ. (3-3)
Hence, by induction, zj"<cj/wj for all n. This completes the

proof of Lemma 3.2.1.

Appendix C

Iheorem 3.4. Let S be a linear space with norm |i-{}| such
that {x: lix{igec} 1is compact for all ec. Let f:S—=>S and
fn:S->S be functions such that f,->f uniformly, and such that
if(x) - f(y)ii<iix - yii for all x,y€S. Suppose there
exists x* such that x®=f(x*). Define Xne12fn(xp). Then

’(r,'."’(.

Proof. Without loss of generality, we assume x¥z0. For each
e>0, define

d(e)=z max {i{f(x)il. (C.1)
Ixiig e

The maximum must exist because {x: |ix}i<c} is compact for all

c. Note that d(e)<e, since |if(x)!i<}ix}}.

Now,
IFCx)=f(e(x/ixti)) i i<l ix-e(xiix} i) i}
Silxij-e (C.2)
and
Hif(x) Hiciixll-esf(e(x/}ixt 1))
Llixli-(e-d(e)). (c.3)

Now let €1ze/2 and find N such that

HEp(x)=£(x) | iS(eq=-d(eq))/2 (c.4)
for all n2N. Then

- 170 -

et
r "

)
(PN
das o o

o'
;
)

Ay
"

Yol
I
i

!
-'-'4 1 x

LA
s
¢
ot
aa’aly


~~~~~~~~~~

ViXp 1121 ifn(xpat) |

SHIT(x, 1)1 1+(eq-d(eq))/2

< max (eq,{ixp_11ii-(eq-d(e1))/2),
where the third step follows by (C.3).

So for any X0,

HXg11< max (e, lixp}i=(e1-d(eq))/2),
and by induction on n,

i 1i< max (e, {ixgli-n(eq-d(ey))/2).

Thus, for any e>0, if 332}=x0:{/(e1-d(e1)),

completes the proof of Theorem 3.4

< max (ey {ixp_.q1il-C(e1-d(eq)))+(er-d(eq))/2

(C.5)

(C.6)

(c.7)

iixpii<e. This




---------
................

......................................

Appendix P

Define, for k=1,...,L,
eK(0)= aE (p.1.1)

EK(0)= E (D.1.2)
where a=.ﬁé2 1/W; and E is some suitably large constant such
that Expl/a. Let

el(n)=0 (D.2.1)

El(n+1)=(1-a)E (p.2.2)
for all nZI. Now define, for qZNk

ekK(n+1)=(1-a)(ek(n)+Ek=1(n)) (D.3.1)

EK(n+1)=(1-a)(eK(n)+EK(n)) (D.3.2)
and for Nk$“<Nk+1- K>k,

eK(n+1)= pK-pKeeK(n+1) (D.4.1)

EK(n+1):E, (D.4.2)
where Ny¢Np¢...<Np, Ni=1 and, for k>1,

ek=1(n)+EK-1(n)<(pk-pk-1)a/(1-a). (D.5)

for all n2N, | iﬁ
NG

We show by induction that the sequence N1<N2<...<NL ;if;
satisfying (D.5) exists, and that the sequences {eK(n)} and lli&

{EK(n)} are monotonically non-increasing and converge to O,

for all k.




Y SN
-------------------

...................................

................

Furthermore, we Show that the sequences have the

properties that, for k<K, for all n,

ek(n)<eK(n) (D.6.1)

Ek(n)SEK(n) (D.6.2)
and

pk-ek(n)<pK-eK(n). (D.6.3)

By (D.2), el(n)=0 and E'(n)->0. Hence, there must exist
a time N5 sucn that for all nXNy,

el (n)+EV(n)<(p2-p1)as(1-a). (D.7)
Suppose we have {eK=1(n)} and {EK-1(n)} such that eK-1(n)-0
and EK-1(n)—»0. Then there must exist a time Ny sych that,
for all “ZNK

eX=1(n)+EK-1(n)<(pK-pK~T)as(1-a). (D.8)
Now for n2>N.,

eK(n+1)=(1-2) (eK(n)+EX-1(n)). (D.9)
Since (1-a)<1 and EK-1(n)—0, eK(n)—o. Similarly, eX(n)—0
implies eK(n)—0. Hence, we have shown by induction, the
existence of N,<N><...<N;, and that ek(n)—>0 and EK(n)—>0 for

each k.

We show by induction that eK(n) and EK(n) are

monotonically non-increasing for each k. Clearly el(n) and

E'(n) are monotonically non-increasing. Now suppose that ey
eK-1(n) and EK-1(n) are monotonic non-increasing sequences.

Then eK(n+1)<eK(n) and EK(n+1)<EK(n) for nc<Ny. For n=Ng,

eK(NKH):(l-a)(eK(NK)+EK'1(NK)) D




............................................... e S A e P Tt i L e it IR - S N ot "-»";:.";‘

C

&iﬂ

=(1-a) (pK-pK-T4eK=T(N ) gK-T(Ny)) j;&

<(1-a) (pK-pK-1)+a(pK-pK-1) -

=pf-pld 5

<eK(Ny), (D.10) ;ﬁﬁ

Also, :f:

EK(NK+‘I):(1-3)(eK(NK)+EK(NK))

<(1-2) (eK(1)+EK(1))

=(1-2) (pK-p14E) .

<(1-a)(pl+E) ;gﬁ

<E R

=EK(Ng), (D.11) -

The next to last step holds becaust# E was chosen greater then

or equal to pl/a.

Now suppose eK(n)<eK(n-1) for some ndN.,1, Then :??
eK(n+1)=(1-a) (eK(n)+EK=1(n)) gég
<(1-a) (eK(n-1)+EK=1(n-1)) iif

=eK(n). (D.12) L

similarly, if EK(n)<EK(n-1), : t
EK(n+1)=(1-a) (eK(n)+EK(n)) e

<(1-a)(eK(n-1)+EK(n=1))
Hence, eK(n) and EK(n) are monotonically non-increasing for

all k.

PR ';"-’ Tl te _:.. s
i : :

ff_(
v o e e e s et
L0000

g

Next we show that (D.6) holds. For n=0, eK(0)=aE and

vl

gEK(0)=E for all k. For n=1, eK(1)=pK-p! and EK(1)zE. Hence,

" : ',‘::.’a.r'
A0 2P ARy

- 174 -

il




L

IR Ehai i S AR ".‘.T_‘:.‘:..—_' v g o I Sl e R S S At PE I AN

(D.6) holds for n=0 and n=1.

We show that (D.6.1) and (D.6.2) hold by induction.
Suppose that (D.6.1) and (D.6.2) are satisfied for some n21.
Let J be the largest number such that nzNJ_ We show that
(D.6.1) and (D.6.2) are satisfied for n+1, for k<K. We
consider three cases: k<K<J, k<J<K, J<k<K.

Let k<K<J. Then
ek(n+1)=(1-a)(eK(n)+Ek=1(n))
<(1-a)(eK(n)+EK-1(n))
=eK(n+1) (D.14)
and
EK(n+1)=(1-2a) (ek(n)+EK(n))
<(1-a)(eK(n)+EK(n))
=EK(n+1). (D.15)

Let k<J<K. Then by (D.14),
eK(n+1)<ed(n+1)
<pK-pdsed(n+1)
zeK(n+1) (D.16)
and
EK(n+1)Ed (n+1)
SE
=EK(n+1), (D.17)
Finally, suppose J<k<K. Then
eK(ne1)zpK-plaed(ne1)

- 175 -




..... LRI, At C 2 e ey v Py
....... s N e e T W T W o W o o ¥~ v v mr —

b T T N N T T
................

<pK-pd+ed(n+1)
zeK(n+1) (D.18)

and
EX(n+1)=E=EK(n+1). (D.19)
So, by induction, (D.6.1) and (D.6.2) hold for all n.

Finally, we show that (D.6.3) holds for all n21. Let J
be defined as above. We have already shown in (D.10), for

nsz

ek(n)geK(n+1)
<pkapk-1, (D.20)
Thus, for K<J,
pk-eK(n)gpk
<pk-1
<pK-eK(n). (D.21)
For J<K,
pk-ek(n)gpJ-ed(n)
=pK-eK(n). (p.22)
Therefore, (D.6.3) holds for all n.

This completes Appendix D.

T
'
—h
-2
On
'

1

N N,

T AT T AT AT L et e w ettt e T e e e e T S
TR TN LA R et AR R S e A T Tt et T e e e A W e e e T T e e e Y
L ™ T e e e e e T S S e e e e e e e
- ) » o " o . * - 1y




T p————————————
LI S P AN O e . NEEN B [

Appendix E
-%. Mode:LISP; Package:USER; Base:10; Fonts:MEDFNT ~#%- o

Copyright (c) 1984 by .
Jeannine Mosely and Allan C. Wechsler

It is the intention of the authors that this |
software remain in the public domain, and that S
no one shall impede its distribution, nor e

distribute it for profit.
AR R RN RN RN RN NN NN RN R RN RN RN R RN RNNRRRE

We WO We W We we WO o W
we W we WE o we WO we we
We W W Ve we we WS we we

(DEFSTRUCT (USER :CONC-NAME)

PARTNER ; Another user.
ROUTE 7 A list of links.
(RATE 500) ; Bits per second.
ID ;3 A number.
(PARTNER-RATE 1000) ; Bits per second.

;; The following six components are statistics that we
3; reset every after statistics collection.
(TOTAL-VOICE-PACKET-DELAY 0)
(TOTAL-CONTROL-PACKET-DELAY 0)
(NUMBER-OF-VOICE~PACKETS 0)

(NUMBER-OF-CONTROL-PACKETS 0)

(MAX-VOICE-PACKET=-DELAY 0)

(MAX-CONTROL-PACKET-DELAY 0)

TALKING? ;7 T or NIL.
PRINT-STATISTICS? ; T or NIL.
)
(DEFSTRUCT (LINK :CONC-NAME)
USERS An a-list of

active users and
their rates.

- we wo

(NUMBER~OF-USERS 0)
QUEUE-~FRONT
QUEUE~-BACK

A list of packets.
The last vertebra
of QUEUE-FRONT.

(Efficiency hack.)

-s we we wo

(QUEUE-LENGTH 0)
33 Max queue length is reset after each statistics
33 collection,
(MAX-QUEUE-LENGTH 0)
(CONTROL 1000)

(CAPACITY 40000)
(PROPAGATION~DELAY 0.003)
PACKET-NOW~-TRANSMITTING

Bits per second. e
Bits per second. I
Seconds. :
A packet, or NIL
if link idle.
per stats.

ever. '; ::1

(NUMBER-OF~PACKETS=-SENT 0)
(TOTAL-NUMBER-OF-PACKETS-SENT 0)

W Wwe We We W We W

- 177 - :f

. -.:.«.

WS,




(NUMBER-OF=-BITS-SENT 0) per stats.

’
(TOTAL-NUMBER-OF-BITS-SENT 0) ; ever,
(TOTAL-PACKET~-DELAY 0) ; ever.
(TOTAL-SQUARED-PACKET-DELAY 0) ; ever,
(PACKET-DELAY-HISTOGRAM ; ever,
(MAKE-ARRAY 11 ':TYPE 'ART-16B))
(PRINT-STATISTICS? T) ; T or NIL
ID) ; A number.

(DEFSTRUCT (PACKET :CONC-NAME)
(FORWARD-CONTROL 1000000) Minimum control
seen so far on
this traverse.
Control data
going back to

starting point.

FEEDBACK-CONTROL

LENGTH

ROUTE

GENERATION-TIME

ARRIVAL-TIME

LAST-IN-TALK-SPURT?

TYPE 7+ VOICE or CONTROL.
SOURCE

SOURCE-RATE

DESTINATION)

(DEFSTRUCT (EVENT :CONC-NAME)
FUNCTION
TIME
ARGUMENTS)

333 Global variables.

(DECLARE (SPECIAL #USERS*® ; All users.
SLINKS® ; All links.
STIME® ; Simulated.

#USER-STAT-STREAM®
SLINK-STAT-STREAM®
®EVENT-TABLE#®

; The Heap of

; Things to Come.
SNEXT-EVENT-NUMBER®)) ; Index into heap.
(DEFCONST ®PACKET-ABSORPTION-DELAY#®* 0.0005) .
(DEFCONST #PACKET-ARRIVAL-DELAY#®* 0,0005) A
(DEFCONST #PACKET-TRANSMISSION-DELAY* 0.0001) o
(DEFCONST ®*PACKET-GENERATION-DELAY® 0.0005)

(DEFCONST ®AVERAGE-TALK-SPURT-LENGTH®* 60) ; In packets. LR
(DEFCONST #USERS-TALK-FOREVER® T) ; Infinite talk N
; spurts? T or NIL. e

(DEFCONST #CONTROL-PACKET-SPACING* 0.10) ; Seconds. f'_
(DEFCONST #UPDATE-INTERVAL* 0.10) ; Seconds. e
e

ROy

- 178 - RN




i S
-'-.

R A A

e 2

—

e, o v i)
AR AT M
P M A R

(DEFCONST

(DEFCONST
(DEFCONST

(DEFCONST
(DEFCONST

(DEFCONST
'(19 15

SUPDATE-ATTEMPT-INTERVAL® 0.02) ; Seconds.

*UPDATE-PROTOCOL® 'MOSELY) ; HAYDEN or MOSELY.
S$UPDATE-FUNCTION® 'MOSELY-UPDATE-FUNCTION)

S®LINK-STATISTICS-INTERVAL®* 0.1)
#USER-STATISTICS-INTERVAL® 0.5)

®USERS-TO-PRINT®
19 21 29 35 39 41 49 55 59 61 69 75 79))

$3; Top level function.

(DEFUN RUN-NETWORK (TIME-LIMIT)
(INITIALIZE)
(WITH-OPEN-FILE
(#USER-STAT-STREAM® "o0z:<j9>user-stats.text® *':0UT)
(WITH-OPEN-FILE
(®LINK-STAT-STREAM* "0z:<j9>link-stats.text® ':0UT)
(FORMAT ®USER-STAT-STREAM® "

User ID
MCD

Time AVD MVD ACD
Rate Feedback™)

(FORMAT #*LINK-STAT-STREAM® "

Link ID
Max. Q

Time # Bits
Q # Packets")

Control # Users

(SETQ ®#TIME® -1)
(SIMULATE TIME-LIMIT)
(PRINT-LINK-HISTOGRAMS))))

333 Network initialization.

(DEFUN INITIALIZE ()
(SETQ #USERS#* NIL)
(CLEAR-EVENT-TABLE)

(LET ((LINK-1 (MAKE-LINK ID 1)
(LINK-2 (MAKE-LINK ID 2
(LINK-3 (MAKE-LINK ID 3)
(LINK-4 (MAKE-LINK ID 4)
(LINK-5 (MAKE-LINK ID 5)
(LINK-6 (MAKE-LINK ID 6)
(LINK-T (MAKE-LINK ID 7)
(LINK-8 (MAKE-LINK ID 8

RINT-STATISTICS? T))

PRINT-STATISTICS? T)))

(SETQ ®LINKS®* (LIST LINK-1 LINK-2 LINK-3 LINK-4

(USERS
(USERS
(USERS
(USERS

(USERS
(USERS
(USERS

LINK-5 LINK-6 LINK-7 LINK-8))
*((1 8) (21 28) (41 48) (61 68)) LINK-8)
*((9 14) (29 34) (49 54) (69 T4)) LINK-T)
*((15 18) (35 38) (55 58) (75 78)) LINK-6)
*((19 20) (39 40) (59 60) (79 80)) LINK-5)
'((1 20)) LINK-1)
*((21 40)) LINK-2)
(41

(
(
(
(
(
(
( 60)) LINK-3)

(
(
(
(
(
(
(

- 179 -

R AT I T UL SRR T
Lt . '.".I:‘l:':'.' . Tl ndene g
i Ralaneritele ol Ratantel e

Loaad s

-

14
I
PEBTINLPEPL LIS

o] T

’
»

» i Y .
P Tttt
PPNy AT

s

AT
e

S

oA

. 8

N %




DM A o St S i S Wi P ST A g A *.l e e L W L LV WY
e a PR .- . - P s Te w0 N . PR RN A s

(USERS '((61 80)) LINK-4))
(ESTABLISH-USER-PARTNERS)
(INITIALIZE-USERS-TO-PRINT))

(DEFUN INITIALIZE-USERS-TO-PRINT ()
(DOLIST (USER-TO-PRINT ®USERS-TO~PRINT®)
(SETF (USER-PRINT-STATISTICS?
(FIND-KNOWN-USER USER-TO-PRINT)) T)))

(DEFUN USERS (ID-RANGES LINK)
(LOOP FOR (LOW-ID HIGH-ID) IN ID-RANGES
DO
(LOOP FOR ID FROM LOW-ID TO HIGH-ID
DO
(ADD-OR-MODIFY-USER ID LINK))))

(DEFUN ADD-OR-MODIFY-USER (ID LINK)
(LET ((USER (FIND-USER ID)))
(PUSH LINK (USER-ROUTE USER))))

(DEFUN ESTABLISH-USER-PARTNERS ()
(LOOP FOR USER IN ®USERS*
DO
(SETF (USER-PARTNER USER)
(FIND-KNOWN-USER (- 81 (USER-ID USER))))))

(DEFUN FIND-USER (ID)
(OR (FIND-KNOWN-USER ID)
(LET ((USER (MAKE-USER ID ID)))
(PUSH USER ®USERS%)
USER)))

(DEFUN FIND-KNOWN-USER (ID)
(LOOP FOR USER IN ®USERS*®
DO
(WHEN (= (USER-ID USER) 1ID)
(RETURN USER))))

33; Event table hackery.

(DEFUN CLEAR-EVENT-TABLE ()
(SETQ SEVENT-TABLE* (MAKE-ARRAY 2048))
(SETQ ®NEXT-EVENT-NUMBER®* 1))

(DEFUN ADD-EVENT-TO-HEAP (EVENT)
(PERCOLATE-UP EVENT ®NEXT-EVENT-NUMBER®)
(INCF ®#NEXT-EVENT-NUMBER®))

(DEFUN GET-NEXT-EVENT ()
(WHEN (> ®NEXT-EVENT-NUMBER® 1)
(LET ((EVENT (AREF #®EVENT-TABLE® 1))
(HOLE (PERCOLATE-DOWN 1)))
(UNLESS (= HOLE (- ®NEXT-EVENT-NUMBER® 1))

- 180 -

EAENOMUNCAES DA A A L NS A SR

o

.
1
Latad.

o

[:. R AL
} LA i A
- ‘.{‘L”‘_'::"L'

v
'

DEER e e e o -
% PR »
RN P
' R N
A e
RN

[
AR
ot




...........................................

(PERCOLATE~UP (AREF ®EVENT-TABLE®
(- ®NEXT-EVENT-NUMBER®* 1))
HOLE))
(DECF ®NEXT-EVENT-NUMBER®)
EVENT)))

(DEFUN PERCOLATE-UP (EVENT INDEX)
(LET ((PARENT-INDEX (LSH INDEX =1)))
(LET ((PARENT-EVENT (AREF ®EVENT-TABLE®
PARENT-INDEX)))
(IF (OR (= PARENT-INDEX 0)
(EVENTS-IN-ORDER PARENT-EVENT
EVENT))

3; EVENT goes here -- put it here.
(SETF (AREF ®EVENT-TABLE#® INDEX) EVENT)

;3 EVENT goes higher --

;3 put parent here and recurse.

(SETF (AREF ®EVENT-TABLE®* INDEX)
PARENT-EVENT)

(PERCOLATE-UP EVENT PARENT-INDEX)))))

(DEFUN PERCOLATE-DOWN (INDEX)
(LET ((LEFT-CHILD-INDEX (LSH INDEX 1)))
(IF ( LEFT-CHILD-INDEX ®NEXT-EVENT-NUMBER#)
INDEX
(LET ((RIGHT-CHILD-INDEX (+ 1 LEFT-CHILD-INDEX))
(LEFT-CHILD (AREF ®EVENT-TABLE®
LEFT-CHILD-INDEX)))
(IF (< RIGHT-CHILD-INDEX ®NEXT-EVENT-NUMBER®)
(LET ((RIGHT-CHILD (AREF ®EVENT-TABLE®*
RIGHT-CHILD-INDEX)))
(COND ((EVENTS-IN-ORDER LEFT-CHILD
RIGHT-CHILD)
(SETF (AREF #EVENT-TABLE® INDEX)
LEFT-CHILD)
((PERCOLATE-DOWN LEFT-CHILD-INDEX))
T
(SETF (AREF ®EVENT-TABLE#® INDEX)
RIGHT-CHILD)
(PERCOLATE-DOWN RIGHT-CHILD-INDEX))))
(SETF (AREF ®EVENT-TABLE® INDEX)
LEFT=-CHILD)
LEFT-CHILD=-INDEX)))))

(DEFUN EVENTS-IN-ORDER (E1 E2)
(LET ((T1 (EVENT-TIME E1))
X (T2 (EVENT-TIME E2)))
OR

(< T1 T2)
(AND
(= T1 T2)

. '-. g ';."-"/. s

.
b vty

e P
St ,.'."..'il R
N B S 59 SR SR




(LET ((F1 (EVENT-FUNCTION E1))
(F2 (EVENT-FUNCTION E2)))
(OR (AND (EQ F1 #'LINK-STATISTICS-COLLECTION)
(NOT (EQ F2 #'LINK-STATISTICS-COLLECTION)))
(AND (EQ F1 #'LINK-STATISTICS-COLLECTION)
(EQ F2 #'LINK-STATISTICS-COLLECTION)
(< (LINK-ID (CAR (EVENT-ARGUMENTS E1)))
(LINK-ID (CAR (EVENT-ARGUMENTS E2)))))
(AND (EQ F1 #'USER-STATISTICS-COLLECTION)
(NOT (EQ F2 #'USER-STATISTICS~COLLECTION))
(NOT (EQ F2
#'LINK-STATISTICS-COLLECTION)))
(AND (EQ F1 #'USER-STATISTICS-COLLECTION)
(EQ F2 #'USER-STATISTICS-COLLECTION)
(< (USER-ID (CAR (EVENT-ARGUMENTS E1)))
(USER-ID (CAR (EVENT-ARGUMENTS E2)))))))

))))
;33 The Guts.

(DEFUN SIMULATE (TIME-LIMIT)
(EVENT #'SIMULATION-STARTUP 0)
(LOOP FOR EVENT = (GET-NEXT=-EVENT)
WHILE EVENT
UNTIL (< TIME-LIMIT (EVENT-TIME EVENT))
DO
(PERFORM-EVENT EVENT)))

- (DEFUN PERFORM-EVENT (EVENT)

& (SETQ #TIME® (EVENT-TIME EVENT))

(LEXPR-FUNCALL (EVENT~FUNCTION EVENT)
(EVENT-ARGUMENTS EVENT)))

: ‘Events. - - - :
. BENNEERA RN RN RN AR RN RN RN RN RN R AR NN R RN RN

we e we
e ge Wo
we we we

333 Schedule an event

(DEFUN EVENT (EVENT-FUNCTION TIME &REST EVENT-ARGUMENTS)
N (WHEN (< TIME ®TIME®)
~ (FERROR "Tried to schedule event in the past."))
N (ADD=-EVENT~-TO-HEAP
(MAKE-EVENT TIME TIME
FUNCTION EVENT-FUNCTION
ARGUMENTS (COPYLIST EVENT-ARGUMENTS))))

333 Everything starts up.

(DEFUN SIMULATION-STARTUP () -
(LOOP FOR USER IN ®USERS®
DO




..................................

(IF (EVENP (USER-ID USER))
(START-TALKING USER)
(EVENT #'CONTROL-PACKET-GENERATION
(+ #TIME® ¥CONTROL-PACKET-SPACING®)
USER))
(EVENT #'USER-STATISTICS~COLLECTION
(+ *TIME® ®USER-STATISTICS~INTERVAL®)

USER))
(LOOP FOR LINK IN BLINKS®
DO
(EVENT #'UPDATE
(+ STIME®
(SI:RANDOM-IN=-RANGE O #UPDATE-INTERVAL®))
LINK)

(EVENT #'LINK-STATISTICS~COLLECTION
(+ STIME® #[INK-STATISTICS-INTERVAL®)
LINK)))

;33 A link begins passing the first packet in its queue to
;33 the next link in that packet's route.

(DEFUN PACKET-TRANSMISSION (LINK)
(LET ((LAST-PACKET-SENT
(LINK~-PACKET-NOW~TRANSMITTING LINK)))
(WHEN LAST~PACKET-SENT
(INCF (LINK-NUMBER-OF-BITS-SENT LINK)
(PACKET-LENGTH LAST-PACKET-SENT))
(INCF (LINK-TOTAL-NUMBER-OF-BITS-SENT LINK)
(PACKET-LENGTH LAST-PACKET-SENT))
(IF (PACKET-LAST-IN~-TALK-SPURT? LAST-PACKET-SENT)
(REMOVE-USER-FROM-LINK
(PACKET-SOURCE LAST-PACKET-SENT)
LINK))))
(LET ((PACKET (POP (LINK-QUEUE-FRONT LINK))))
(SETF (LINK-PACKET-NOW-TRANSMITTING LINK) PACKET)
(UNLESS (NULL PACKET)
(INCF (LINK-NUMBER-OF-PACKETS-SENT LINK))
(INCF (LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(DECF (LINK-QUEUE-LENGTH LINK))
(LET ((PACKET-DELAY (-~ ®TIME®
(PACKET-ARRIVAL-TIME PACKET))))
(INCF (LINK-TOTAL-PACKET-DELAY LINK) PACKET-DELAY)
(INCF (LINK-TOTAL-SQUARED-PACKET-DELAY LINK)
(* PACKET-DELAY 2))
(INCF (AREF 2L%NK;PACKET-DELAY-HISTOGRAM LINK)
MIN 10
(FIX (// PACKET-DELAY 0.002))))))
(SETF (PACKET-FORWARD~-CONTROL PACKET)
(MIN (PACKET-FCRWARD-CONTROL PACKET)
(LINK-CONTROL LINK)))
(EVENT #'PACKET-TRANSMISSION
(+ ®TIME®

- 183 -




o a et e TR TR,

RN Yl MR 10 A AR AEY AL SR LNV VI AL aian A NS N .\-._'._‘ SR PR

(// (PACKET-LENGTH PACKET)
(FLOAT (LINK-CAPACITY LINK)))
®PACKET-TRANSMISSION-DELAY®)
LINK)
(LET ((DESTINATION (POP (PACKET-ROUTE PACKET))))
(IF (NULL DESTINATION)
(EVENT #'PACKET-ABSORPTION
(+ ®TIME®
(LINK~-PROPAGATION=-DELAY LINK)
SPACKET-ABSORPTION-DELAY®)
PACKET
( PACKET-DESTINATION PACKET))
(EVENT #'PACKET-ARRIVAL
(+ STIME®
(LINK~PROPAGATION-DELAY LINK)
#PACKET-ARRIVAL-DELAY®)
PACKET
DESTINATION)
(EVENT #'PACKET-TAIL-ARRIVAL
(+ STIME®
(// (PACKET-LENGTH PACKET)
(FLOAT (LINK-CAPACITY LINK)))
(LINK-PROPAGATION-DELAY LINK)
SPACKET-ARRIVAL-DELAY®)
PACKET
DESTINATION))))))

137 A packet is received by its intended target user.

(DEFUN PACKET-ABSORPTION (PACKET USER)
(LET ((DELAY (-~ (+ ®TIME® #PACKET~ABSORPTION-DELAY®)
(PACKET-GENERATION-TIME PACKET))))
(SELECTQ (PACKET-TYPE PACKET
(VOICE
(INCF (USER-TOTAL-VOICE-PACKET-DELAY USER) DELAY)
(INCF (USER-NUMBER-OF-VOICE-PACKETS USER))
(SETF (USER-MAX-VOICE-PACKET-DELAY USER)
(MAX (USER-MAX-VOICE-PACKET~DELAY USER)

DELAY)))
(CONTROL
(INCF (USER;TOTAL-CONTROL-PACKET-DELAY USER)
DELAY
(INCF (USER-NUMBER-OF-CONTROL-PACKETS USER))
(SETF (USER=-MAX-CONTROL-PACKET-DELAY USER)
(MAX (USER-MAX-CONTROL-PACKET-DELAY USER)
DELAY)))))
(SETF (USER-RATE USER)
(PACKET-FEEDBACK~-CONTROL PACKET)) :
(SETF (USER-PARTNER-RATE USER) i
(PACKET-FORWARD-CONTROL PACKET))
(WHEN (PACKET-LAST-IN-TALK-SPURT? PACKET)
(SETF (USER-TALKING? (USER-PARTNER USER)) NIL)
(START-TALKING USER)))

P d BRI S

PR S L
[ P

¢

P
o -

v'( v.'n'
., '.' (R
ALY SN

’ "-".
el 5
a8
bad s o

l..l-.l‘.(.f',' ‘| "'r :'.
. '.'. ') 'g 'a,'v » "a'
b “&"-”p"«I AL

- 184 -

e

an'h

et - -f AL )‘v.‘q. OO -‘-‘)‘-" - -‘t‘.'-‘-'.'-..\ SR PRI WA S
\ .' “ .',n PR IS AN _A\_A'.A .n.‘ RIS '\_.‘s:-- PR AR AU




(DEFUN REMOVE-USER-FROM-LINK (USER LINK)
(SETF (LINK-USERS LINK)
(DELQ (ASSQ USER (LINK-USERS LINK))
(LINK-USERS LINK)))
(DECF (LINK-NUMBER-OF-USERS LINK)))

+3; This is a separate function so it can be called at
$3; initialization time.

(DEFUN START-TALKING (USER)
(SETF (USER-TALKING? USER) T)
(EVENT #'VOICE-PACKET-GENERATION
(+ STIME®
®PACKET~-ABSORPTION-DELAY®
US (??NDOH-INTER-TALK-SPURT-SILENCE))
ER

+33 A packet begins to arrive at a link.

(DEFUN PACKET-ARRIVAL (PACKET LINK)
(SETF (PACKET-ARRIVAL-TIME PACKET) #TIME®)
;3 Enqueue packet.
(LET ((OLD-QUEUE-FRONT (LINK-QUEUE-FRONT LINK)))
(LET ((NEW-QUEUE-BACK (LIST PACKET)))
(IF (NULL (LINK-QUEUE-FRONT LINK))
(SETF (LINK-QUEUE-FRONT LINK) NEW-QUEUE-BACK)
(RPLACD (LINK-QUEUE-BACK LINK)
NEW-QUEUE-BACK))
(SETF (LINK-QUEUE-BACK LINK)
NEW-QUEUE-BACK)
(INCF (LINK-QUEUE-LENGTH LINK))
(SETF (LINK-MAX-QUEUE-LENGTH LINK)
(MAX (LINK-QUEUE-LENGTH LINK)
(LINK-MAX-QUEUE-LENGTH LINK))))
73 If link is idle, schedule instant transmission.
(UNLESS (OR (LINK-PACKET-NOW-TRANSMITTING LINK)
(NOT (NULL OLD-QUEUE-FRONT)))
(EVENT #'PACKET-TRANSMISSION
(+ STIME® ®PACKET-TRANSMISSION-DELAY®
LINK)))) :

333 The tail end of a packet arrives at a link.

(DEFUN PACKET-TAIL-ARRIVAL (PACKET LINK)
(WHEN (EQ (PACKET-TYPE PACKET) 'VOICE)
(LET ((ACTIVE-USER (ASSQ (PACKET-SOURCE PACKET)
(LINK-USERS LINK))))
(IF ACTIVE-USER

. (RPLACD ACTIVE-USER

(PACKET-SOURCE-RATE PACKET))
(ADD-USER~TO-LINK

- 185 -

- e, 4y %y -, &, ey o .
ot ’.-:f':'-. o . ":"‘-."':"‘

S SN B VL M S S A S N LML S R S R YL ST W I A R R RN T LT TR Tt
N e R T T e e e e R e e e e e S




(PACKET-SOURCE PACKET)
LINK
(PACKET-SOURCE-RATE PACKET))))))

(DEFUN ADD-USER-TO-LINK (USER LINK PACKET-LENGTH)
(PUSH (CONS USER PACKET-LENGTH)
(LINK-USERS LINK))
(INCF (LINK-NUMBER-OF-USERS LINK)))

333 A user creates a voice packet.

(DEFUN VOICE-PACKET-GENERATION (USER)
(LET ((PACKET
(MAKE-PACKET
FEEDBACK-CONTROL (USER-PARTNER-RATE USER)
LENGTH (FIX (// (USER-RATE USER) 50))
ROUTE (USER-ROUTE USER)
GENERATION-TIME #TIME®
LAST-IN-TALK-SPURT?
(IF #USERS-TALK-FOREVER®
NIL
(= 0
(RANDOM
RAVERAGE-TALK-SPURT-LENGTH®#®)))
TYPE 'VOICE
SOURCE USER
SOURCE-RATE (USER-RATE USER)
DESTINATION (USER-PARTNER USER))))
(LET ((FIRST-LINK (POP (PACKET-ROUTE PACKET))))
(EVENT #'PACKET-ARRIVAL
(+ ®*TIME® ®PACKET-GENERATION-DELAY®
PACKET :
FIRST-LINK) -
(EVENT #'PACKET-TAIL-ARRIVAL -y
(+ ®TIME® #PACKET-GENERATION-DELAY®) e
PACKET o
FIRST-LINK)) e
(IF (PACKET=-LAST-IN=-TALK~_JPURT? PACKET) o

(EVENT #'CONTROL-PACKET-GENERATION -
a+ -gxus' #CONTROL-PACKET-SPACING®) i

SER RO

(EVENT #'VOICE-PACKET-GENERATION ]
(+ ®TIME® (SI:RANDOM-IN-RANGE 0.018 0.022)) )

USER)))) v
333 A user creates a control packet. :

(DEFUN CONTROL-PACKET-GENERATION (USER)
(UNLESS (USER-TALKING? USER)
(LET ((PACKET LT
(MAKE-PACKET FEEDBACK-CONTROL =
(USER-PARTNER-RATE USER) e
LENGTH 10

- 186 -




AE A A e o e i e o o oo

ROUTE (USER-ROUTE USER) L
GENERATION-TIME #TIME® L
TYPE 'CONTROL )
SOURCE USER
DESTINATION (USER-PARTNER USER)))) oo
(EVENT #'PACKET-4RRIVAL
(+ STIME® ®PACKET-GENERATION-DELAY#®
PACKET :

(POP (PACKET-ROUTE PACKET)))
(EVENT #'CONTROL-PACKET-GENERATION
(+ *TIME® ®CONTROL-PACKET-SPACING®#) NI
USER)))) R
;33 A link updates its control. ___.

(DEFUN UPDATE (LINK) S
(MULTIPLE-VALUE-BIND (MAX-RATE FLOW) b4
(MAXIMIZE-AND~SUM-RATES-ON LINK) L
(IF (OR (SELECTQ ®UPDATE-PROTOCOL®* g
(MOSELY (NOT ( MAX=-RAT. i
(LINK-CONTROL LINK))))

(HAYDEN NIL))

(ZEROP (LINK-NUMBER-OF-USERS LINK)))
(EVENT #'UPDATE
(+ *TIME® ®UPDATE-ATTEMPT-INTERVAL®)
LINK)

(SETF (LINK-CONTROL LINK)
(FUNCALL ®UPDATE-FUNCTION®
LINK MAX-RATE FLOW)) o
(EVENT #'UPDATE RN
(+ *TIME® ®*UPDATE-INTERVAL®) )
LINK)))) e
Smlideny
(DEFUN MAXIMIZE-AND-SUM-RATES-ON (LINK) T
(LOOP FOR (USER . RATE) IN (LINK-USERS LINK) A
MAXIMIZE RATE INTO MAX-RATE :
SUMMING RATE INTO SUM
FINALLY S
(RETURN MAX-RATE SUM))) e
(DEFUN MOSELY-UPDATE-FUNCTION (LINK MAX-RATE FLOW) e
(LET ((ALPHA 1.0) e

(EFFECTIVE-CAPACITY (® 0.8 (LINK-CAPACITY LINK)))) O

(MAX (MIN (+ MAX-RATE " .

(/7 (% ALPHA (- EFFECTIVE-CAPACITY FLOW)) "
(LINK-NUMBER-OF-USERS LINK)))

EFFECTIVE=-CAPACITY) N
(// EFFECTIVE-CAPACITY i
(LINK-NUMBER-QOF-USERS LINK))))) S

(DEFUN HAYDEN-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
MAX-RATE o
(LET ((ALPHA 1.0) .
.
- 187 - o
S R e P e S S e e e, e e




(EFFECTIVE-CAPACITY (#® 0.8 (LINK-CAPACITY LINK))))
(MAX (MIN (+ (LINK-CONTROL LINK)
(/77 (% ALPHA (- EFFECTIVE-CAPACITY FLOW))
(LINK-NUMBER-OF-USERS LINK)))
EFFECTIVE-CAPACITY)
(// EFFECTIVE-CAPACITY
(LINK~NUMBER-OF-USERS LINK)))))

(DEFUN JAFFE-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
MAX-RATE
(LET ((ALPHA 1.0)
- (EFFECTIVE~CAPACITY (% 0.8 (LINK-CAPACITY LINK)))
- (CONTROL (LINK-CONTROL LINK)))
' (MAX (MIN (+ CONTROL
(/7 (% ALPHA (- EFFECTIVE-CAPACITY
FLOW
CONTROL))
(+ (LINK-NUMBER-OF-USERS LINK) 1)))
EFFECTIVE-CAPACITY)
(// EFFECTIVE-CAPACITY
(+ (LINK-NUMBER~OF-USERS LINK) 1)))))

;33 Some network behavior statistics are recorded.

(DEFUN LINK-STATISTICS-COLLECTION (LINK)
(COND ((LINK~PRINT=-STATISTICS? LINK)
(FORMAT ®LINK-STAT-STREAM®
"% 10D 2,1,10% 10D 10D 10D 10D 10D 10D"
(LINK-ID LINK)
STIME®
(LINK-NUMBER-OF-BITS-SENT LINK)
(FIXR (LINK-CONTROL LINK))
(LINK-NUMBER-OF-USERS LINK)
(LINK-MAX-QUEUE-LENGTH LINK)
(LINK-QUEUE-LENGTH LINK)
(LINK-NUMBER-OF-PACKETS=-SENT LINK))
(ALTER-LINK LINK
NUMBER-OF~BITS-SENT 0
MAX-QUEUE-LENGTH 0
NUMBER-OF-PACKETS~SENT 0)))
(EVENT #'LINK-STATISTICS-COLLECTION
(; .§§ME. ®LINK-STATISTICS-INTERVAL#®)
LINK

(D%FUN USER-STATISTICS-COLLECTION (USER)
COND
((USER=-PRINT-STATISTICS? USER)
(FORMAT
SUSER-STAT-STREAM®
"% 10D 2,1,108% 2,1,108 2,1,10% 2,1,10% 2,1,108 10D 10D"
(USER-ID USER)
®TIME®
(SAFE-// (USER-TOTAL-VOICE-PACKET-DELAY USER)

- 188 -

LIAAR N Je s e Dl et St sty o
AP AL IV L Y

.
oy

i
. -
.
Nt

‘s ,.'V

S RN

= P .
' PR
¥ PR A T
PN . N
.- et e .

-



" AD-A148 452 ASYNCHRONOUS DXSTRIBUTED FLOW CUNTROL RLGORITHHS(U) 3/3
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
. INFORMATION AND DECISION SYSTEMS J HUSELV DCT 84
UNCLASSIFIED LIDS-TH-1415 N@9914-84-K-8357 9/2 NL

END
[ «
brc




T "-'!'!'I."ll.-, NP

e K3 9 0l . .. - - . - - - - - . * . ———
- SEhI ORI /U A AR ORI SO I ACIPCE SN IO P 0 q

. . —_— o
! !
1 28 B2s |
'.O mh ',
= 2 g2 b
el
|
[ ) 20

=
o

N
(&)

==
I s

MICROCOPY RESOLUTION TEST CHART .
NATIONAL BUREAU OF STANDARDS - 1963 = A

VNN G




...................................................................

(USER-NUMBER-OF~VOICE-PACKETS USER))
(USER-MAX-VOICE-PACKET-DELAY USER)
(SAFE-// (USER-TOTAL~CONTROL-PACKET-DELAY USER)
(USER-NUMBER-OF~CONTROL-PACKETS USER))
(USER=-MAX-CONTROL-PACKET-DELAY USER)
(FIX (USER-RATE USER))
(FIX (USER-PARTNER-RATE USER)))
(ALTER-USER USER
TOTAL-VOICE-PACKET-DELAY O
NUMBER-OF-VOICE-PACKETS 0
MAX-VOICE-PACKET-DELAY 0O
TOTAL-CONTROL~-PACKET-DELAY 0
NUMBER-OF-CONTROL-PACKETS 0
MAX-CONTROL-PACKET-DELAY 0)))
(EVENT #'USER-STATISTICS-COLLECTION
(+ 'T%NE‘ $USER-STATISTICS~-INTERVAL®)
USER)

A X R R I I s s R R 222222222222

H Random stuff. -~~~
e EEEENEEEN AR RN AN RSN RN R AR RN RN NN RN RN RRRRERS

“e we w
we we we
e Wwe e

(DEFUN RANDOM-INTER-TALK-SPURT-SILENCE O
0.0001)

(DEFUN PRINT-LINK-HISTOGRAMS ()
(FORMAT SLINK-STAT-STREAM® n
Av. squared

Link Packets Av, wait wait Av,. flow ")
(LOOP FOR LINK IN ®RLINKS®
Do

(FORMAT %LINK-STAT-STREAM®
"¢ 4D 8D 6,1,108 6,1,108 2,1,108"
(LINK-ID LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS~SENT LINK)
(// (LINK-TOTAL-PACKET-DELAY LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(// (LINK-TOTAL-SQUARED-PACKET-DELAY LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(// (LINK-TOTAL-NUMBER-OF~BITS-SENT LINK)
STIME®))
(LOOP FOR I FROM O TO 10
DO
(FORMAT
*LINK-STAT-STREAM® " 2,1,88"
(/7 (* 100.0
(AREF (LINK-PACKET-DELAY-HISTOGRAM LINK)

1))
) (LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))))

- 189 -




»
TS
[
+
.
'
‘.
L}
.
.
.
.
.
.
.
.
.
8
.
.
.
f)
f
v
[
.
.
.
.
o
'
.
.
.
‘
v
.
»
o
.
f
.
/
¥
)
-
4
'
'
.
H
.
Py
g
S
y)
"
F]
.

/]
!

A Ak

y .-
2

RS
Y

g

(DEFUN SAFE-// (X Y)
(IF (ZEROP Y)

0
(77 X 1)))

.-
]

L

AL
»

.
AP

. _.l'-.

"
'
A ..'.'..

Teeist,

‘l‘} .
. v
)

N
"

o1y
sfe e

D)
_.t"l_l L

A

. 2
Vet e

a e B B LY

a8 &
.0 e,

(4

C-'

- 190 -

.
....
e 3 _»

AR R R I R N T Y LS AT R NS T T Y PSP - .
I T A S A kAR AR



Biographical Note

The author was born in Pittsburgh, PA, May 16, 1953. At
the time, her parents resided in the nearby suburb, Mars. For
years she took great delight in being able to tell people,
quite truthfully, that she was from Mars, In 1970, she
graduated from the University of 1Illinois High School in
Urbana, where she learned to love mathematics. In 1974, she
received a B.A. in Mathematics from the University of
Illinois. After a year working, she found out what the degree
was worth, and went back to school. In 1977, she received a
B.S. in Electrical Engineering, also from the University of
Illinois. In 1979, she received an S.M. in Electrical
Engineering from the Massachusetts Institute of Technology,
and in 1980, the degree of Electrical Engineer. The Ph.D.
will be her fifth and last degree, unless she decides to go to
law school.

In additional to her professional interests, the author
is fascinated by rotational motion, and enjoys bicycling, wood
turning, and hand spinning. She also collects and restores
antique spinning wheels, and has invented many designs for
paper-folded polyhedra.

- 191 -




T Ty
............

References

(11l B. Gold, "Digital Speech Networks", Proc. IEEE, Vol.
65, Dec. 1977.
[2] H. Frank and I. Gitman, "Economic Analysis of

Integrated Voice and Data Networks; A Case Study®™, Proc. IEEE,
Vol. 66, Nov. 1978.

[3] K. Bullington and J. M. Fraser, "Engineering Aspects
of TASI", Bell System Technical Journal, Vol. 38, Mar 1959.

(4] S. J. Campenella, "Digital Speech Interpolation®,
COMSAT Technical Review, Vol. 6, Spring 1976.

(51 J. A, Sciulli and S, J. Campanella, "A Speech
Predictive Encoding Communication System for Multichannel
Telephony", IEEE Trans. Comm., Vol. COM=21, July 1973.

[6] M. Gerla and L. Kleinrock, "Flow Control: A
Cogparative Survey", IEEE Trans. Comm., Vol. COM-28, April
1980.

[7) G. Karog, L. Fransem and E. Kline, "Multirate
Prgcessor (MRP)", Naval Research Laboratory Report, Sept.
1980.

[8) T. Bially, B. Gold, and S. Seneff, "A Technique for

Adaptive Voice Flow Control in Integrated Packet Networks",
IEEE Trans. Comm., Vol. Com-28, March 1980,

[9] H. Hayden, "Voice Flow Control in Integrated Packet
Networks™, M., S. Thesis, Dept. of Elec. Eng. and Comp.
Science, Mass, Inst. of Technology, Cambridge, MA, 1981,

[(10] J. M. Jaffe, "A Decentralized 'Optimal' Multiple-User
Flow Control Algorithm", ICCC .1980 Conference Record.

[11] E. M. Gafni, "The Integration of Routing and Flow
Control for Voice and Data in a Computer Communication
Network®™, Ph. D. Dissertation, Dept. of Elec. Eng. and Comp.
Science, Mass. Inst. of Technology, Cambridge, MA, Aug. 1982.

(121 E. Gafni and D, Bertsekas, "Dynamic Control of Session
Input Rates in Communication Networksa®™, LIDS Report.

[13] D. P. Bertsekas, J. N. Tsitsiklis, M. Athans,
"Convergence Theories of Distributed Iterative Process: A
Survey", M.I.T. LIDS Report P-1342, Dec. 1983

(14) D. P. Bertsekas, "Asynchronous Computation of Fixed
Points®, Mathematical Programming, Vol. 27 (1983) pp. 107-120.

- 192 -




.
K
o
=

L
.‘ 'l..l..l.l...l

.
D
AR PRI

L

ey

o N L

&
L4
.

R e s

T -
Bl N PR N AT I N

[(15] P. T. Brady, "A Statistical Analysis of On-0ff
Patterns in 16 Conversations,™ Bell System Technical Journal,
Vol. 47,Jan. 1968, pp. T73-91.

"'s

- 193 -

. L A

)

L) -
. b s =t . *'m """ .- .'l‘ M -~ o - -..“'-\
R N S R A RS SR S N X X




Distribution List

- Defense Documentation Center 12 Copies
Cameron Station
Alexandria, Virginia 22314

Assistant Chief for Technology 1 Copy
Office of Naval Research, Code 200
Arlington, Virginia 22217

Office of Naval Research 2 Copies
Information Systems Program

Code 437

Arlington, Virginia 22217

Office of Naval Research 1 Copy
Branch Office, Boston

495 Summer Street

Boston, Massachusetts 02210

Office of Naval Research 1 Copy
- Branch Office, Chicago

536 South Clark Street

Chicago, Illinois 60605

Office of Naval Research 1 Copy
Branch Office, Pasadena

1030 East Greet Street

Pasadena, California 91106

Naval Research Laboratory 6 Copies
Technical Information Division, Code 2627
washington, D.C. 20375

Dr. A. L. Slafkosky 1 Copy
Scientific Advisor

Commandant of the Marine Corps (Code RD-1l)

Washington, D.C. 20380

............... e en s mep e e
T o S A O

O NN T )




A L

Office of Naval Research 1 Copy
Code 455
Arlington, Virginia 22217

Office of Naval Research 1 Copy

S Code 458

o Arlington,. Virginia 22217

- Naval Electronics Laboratory Center 1 Copy

I Advanced Software Technology Division

- Code 5200

San Diego, California 92152

Mr. E. H. Gleissner 1 Copy

w Naval Ship Research & Development Center

i Computation and Mathematics Department "o
Bethesda, Maryland 20084 L

o Captain Grace M. Hopper 1 Copy )

Naval Data Automation Command

= Code OOH

L Washington Navy Yard

Washington, DC 20374

v
.‘;

Advanced Research Projects Agency 1 Copy

e Information Processing Techniques

> 1400 Wilson Boulevard Y

i Arlington, Virginia 22209

T Dr. Stuart L. Brodsky 1 Copy T
Office of Naval Research o

Code 432
Arlington, Virginia 22217

Prof. Fouad A, Tobagi
Computer Systems Laboratory
Stanford Electronics Laboratories

Department of Electrical Engineering

Stanford University e

Stanford, CA 94305 P =

: 2D
- i
L O
S e
2 S5

- a
> LN
R
' e
- Fl.a-.
3 3
N AN

‘ A

o S
e R e >
RN G A L, N T e e N e T TN T N N N T T NN e Tt N NN T N T T S S L e NN N



0
SR et .
e S hos i A e A -

RO Vi

1-85

v
1

-.-
b
A
b

. we .
e ENTNY

b
RS




