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Abstract ..

-We-considers7algorithms for flow control in computer
networks with fixed routing. The goal is to establish input
rates, for each source-destination pair, that satisfy a
particular fairness criterion.(- We describe~~everal algorithms
in which the input rates are calculated based on controls
established by the links of the network. These controls are
updated Ateratively, using feedback information from the
network. -We- showrthat the rates thus calculated converge to
the desired values when the links are assumed to update
synchronously, and without feedback delay. A model for
asynchronous operation with delay is given, and we demonstrate
for this model that the input rates calculated by the
synchronous algorithms may fail to converge. We show how to
modify the algorithms, by the introduction of an update
protocol and by using more of the available feedback
information, so that convergence of the rates is guaranteed.

7,,

-We extend-/ the model -for asynchronous computation
developed by Bertsekas'1T[4J\to get some results relating to
general asynchronous distributed algorithms with update
protocols. These results are used to give an alternate proof
of the correct operation of one of the flow control
algorithms.

-We develop- a computer programp to simulate the flow
control algorithms for a voice packet network. The simulation
results indicate that the algorithms behave as expected for a
network with static loads. However, when input loads change
in imitation of real conversations, the control algorithms do
not adapt fast enough to control the flows effectively. ( ..
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Chapter 1

Introduction

1.1 =gund

Advances in packet switching techniques make packet

switching a cost effective method for handling sporadic or

bursty comminications traffic. The sporadic nature of voice

and the desire to integrate voice and data in computer

communication networks [1], [2], makes the idea of packet

voice attractive. In this thesis, we consider the problem of

limiting traffic flow in such integrated networks.

In a traditional circuit switched voice communication..*

network, a given 2-way conversation is allotted two dedicated

channels. But usually a user spends 505 of his time

listening. In addition, pauses between words and phrases in

the speech of the active user represent a source of wasted

channel resources. These smaller units of uninterrupted voice%

are called "talk-spurts". The random nature of talk-spurts

.-.

Chapte lon benepotdbyteBl-yte nterT

algrodutm, usd n ntrcntnetl ins 31 Dgia

P-..

varations on a iclude Dgitahin Spechnerpoatio pandt -

Speechinredictive ffcig [4 tho fo an5n soadco.|"
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In an integrated voice and data communication network, it

is necessary to adopt flow control measures to limit the

amount of information entering the network, and prevent

congestion. While flow control techniques for data-only

networks have reached a high level of sophistica..on [6),

little is known about flow control for voice. The different

delivery requirements of voice and data demand a different

approach to the problem of flow control for each. While

considerable delay may be acceptable in a data packet, the

same delay would cause a voice packet to be discarded by the

receiver as "too late". Conversely, voice may suffer

considerable degradation due to errors and still be

intelligible, while the same errors in a data packet make it

worthless.

Traditional methods of flow control for voice simply

* block the initiation of new calls. TASI type systems may even

block new talk-spurts, resulting in clipping of the received

signal. Loss of more than about .5% of the signal by clipping

has proved unacceptable.

The idea of embedded coding, first proposed at the Naval

Research Laboratory (7), provides a new approach to voice flow

control [8] In embedded coding, speech is encoded into

priority ranked packets. The lower priority packets can be

discarded as needed, while the remaining packets still provide

an intelligible, though degraded, signal. Hence, we have

- 10 -



traded clipping for distortion. The level of network

congestion that results in unacceptable clipping for a call

blocking scheme is much lower than that required to render

embedded coding speech unintelligible.

Low priority packets can be discarded at their point of

entry into the network, as well as at the point of congestion,

resulting in a variable rate encoding scheme. Clearly, it is

better to discard entering packets when possible, to prevent

unnecessary waste of network resources.

An algorithm for voice flow control using embedded coding

has been studied by a group at Lincoln Laboratories, using a

computer simulation [8). In their model, conversations are

conducted over fixed routes. Low priority packets are

discarded at congested nodes, and terminals report the

received rates to senders, which reduce their input rates

accordingly. Provisions are included for allowing the senders

to increase their rates when the network is lightly loaded.

The primary objectives of this scheme are to maintain

stable operation of the network, while preventing excessive

delays due to congestion and providing the highest level of

service possible to each user.

This last criterion gives rise to the question of how to

allocate network resources in a "fair" manner, while giving

- 11 -".
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everyone the best possible service. Hayden [9) and Jaffe [10]

simultaneously and independently arrived at a concept of

"fair" rate allocation, which was generalized by Gafni and

Bertsekas [11], [12], and is defined in the next section.

1.2 Probl~m Moe

We will use the following model to study the problem of

voice flow control. Consider a network 9 j which consists of a
-set of links Y and sessions ~, where a session is a

source-destination pair between which a conversation is taking

* place. Each link j has an associated capacity cj, where cj>_0.

Each session is assigned a path through the network, which is

*fixed for the duration of the conversation. We denotebyej

*the set of links in the path of session i. We denote by j

* the set of sessions whose path contains link j.

Let ri(t) be the input rate of session i at time t. For

*now, we assume instantaneous propogation of data through the

* network, so that the component of flow on link j at time t,

due to session i, is ri(t). (This assumption will be dropped

*later, in favor of a more realistic model.) Then we define

. ,

- the flow on link j at time t as

We control the flow only by limiting inputs rates, and not by

discarding packets when the links are congested. We wish to

-12 -
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control the input rate for each session i and the flow on each

link j so that the steady state rate riz lim ri(t) and steady

state flow fj= lim fj(t) exist, and satisfy the constraints

for a fair allocation, as outlined below.

We would like for a fair rate allocation to be

indifferent to the geographical separation of the

source-destination pair. While priorities may be established

for certain sessions, it should not be on the basis of

distance. Furthermore, two sessions of the same priority

should be assigned the same rate, if the rate of one can be

traded for the other, without reducing the rate of any other

session or violating other system constraints. This will make

the network transparent to the session, in the sense that he

cannot tell the length of the assigned path by the assigned

rate.

We also require that each user be assigned the highest

possible rate, while guaranteeing that the steady state flow

on each link does not exceed a given function of the link

capacity.

With this motivation, we give the definition of a fair

allocation, first presented by Gafni [11]. First we need the

following two definitions.

A vector xz(xi,...,xn) is said to be lexicographically

- 13 -
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less than or equal to = if xj>Yj implies the

existence of j<i such that Xj<yj. We write this as x Y.

Ray-

Given a vector xe Rn , let 2' denote a vector whose

coordinates are some permutation of the coordinates of x. If

the coordinates of x have the property that xiSx2 .. /Xn, we

call x the increasing permutation of x, and we denote this

vector by x. (Note thatT '", for any permutation "x? of x.)

D efinit.tign. Let X be any subset of Rn. We say that xGX is a

fair allocation over X, if for all yeX, y <x.

We may think of X as a "feasible" set. The fair

allocation vector solves the following set of nested problems.

The first problem is to find a subset X1 of X, such that the

minimum coordinate of a vector xeX1 is greater than or equal

to the minimum coordinate of any vector in X. Next we find a

subset X2 of XI, such that the second smallest coordinate of

xEX2 is maximized over X1 , and so on.

1.3 Previo.us Work.

Hayden E91 gives a distributed algorithm which produces a

rate vector r=(...,ri,...) that is a fair allocation over the

set defined by

fj< ajcj VajF, (1.2)

where a is some constant, O<a l. The rationale behind (1.2)

14 "
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is simple: we restrict the steady state flow on each link to

some fixed fraction of link capacity, reserving the unused

capacity as a buffer against transient fluctuations in flow.

We call ajc j the effective capacity, and henceforth, when we

refer to a link's capacity it is assumed that we mean the

effective capacity.

Jaffe [10] gives an algorithm such that the vector

(...,biri,...) is a fair allocation over the set defined by

biri~cj-fj Vi, Vi',i, (1.3)

where bi is some positive constant associated with session i.

Hayden offers a distributed algorithm for achieving Jaffe's

desired rate vector.

The rationale behind (1.3) is more subtle than for (1.2).

First, it allows us to establish different priorities among

sessions, as characterized by the constant bi. Second, it

provides a buffer against transient flows which is sufficient

to allow session i on link j to increase its rate by a factor

of (1+bi), while still guaranteeing that fj<cj.

Alternatively, it permits a new session to be added to the

link, provided its rate is no greater than that of the most

privileged session already using the link.

Gafni [11] further generalizes the feasible set

considered by Jaffe. For each link jEC and session ieS, he

introduces functions gj:R ,-*R and bi:R+-R+. His objective

-15-
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is to generate a rate vector r such that the vector

(...,bi(ri),...) is a fair allocation over the set defined by

bj(r)Sgj(cj-fj) Vi E,Vj6 i ( 4.1)"

and

ri O Vi C (1.4.2)

and

fjcj 6 . (1.4.3)

We will refer to the functions g (.) and bi(.) as the link

constraint functions and session constraint functions,

respectively. For convenience, we will denote the vector

...-,bi(ri),.... by ba(r).

In order to guarantee the existence of a unique fair

allocation vector over this set, the following assumption is

needed [12]:

Assumption Li: For all j , gj(-) is monotonically

non-decreasing, and for all iCg., bi(-) is continuous,

monotonically increasing and maps R+ onto R+.

We note that this assumption also implies the existence of

b"1 (.). Unless otherwise noted, when discussing functions

,gj() and bi(.), we assume that A.uption 1.1 holds.

Gafni gives an algorithm that produces the desired rate

vector, provided that an additional assumption about the link

and session contraint functions is satisfied.

* -16-
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Assumpti.n 1.2: For each iJ, J~i, the function hij('),

defined by hij(f)=bi-l(gj(f)), is convex and differentiable on

R+ , and satisfies hij(O)=O.

By allowing the function bi(.) to be non-linear, we gain

flexibility in making priority assignments. Gafni also

provides some examples where it is desirable for gi(.) to be

non-linear as well. We summarize one such argument below.

Assume that the bit rate for each session i is a

stochastic process with mean ri and standard deviation diri,

where di2O. For each link j, define Dj= max di. For a given
link j, let k be the session in with the maximum mean rate

rj. If we assume that fjCcj, then by the independence of the

rates of different sessions, the standard deviation G'(f.) of

the flow fj satisfies

CFf) rr_ . - ,

<D~~ ~ ri)rk

<Djicjrk

If we choose

bi( r)(.6.)

and

g(f)f2/(cjDJ2),(162)

- 17-
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then from (1.1) and (1.5), we have
- f j D j%4•- -r

cj gj (c-fj)

Hence, proper selection of the function g.(.) can guarantee
J

sufficient reserve capacity on each link to accomodate

fluctuations in flow at least as great as the standard

deviation of the flow.

We note that, while the class of feasible sets considered

by Gafni is more general than the class of feasible sets

considered by Hayden, the two classes are disjoint, because of

Assumption 1.2.

In addition to seeking fair allocations over different

feasible sets, Hayden and Gafni also use different metnods of

controlling the session input rates. Both algorithms are

designed for synchronous operation, such that at each unit

interval of time n, each session calculates a new input rate

ri(n). For both algorithms, the rate vectors r(n) can be

shown to converge as n goes to infinity, and the limit vector

r is a fair allocation over the specified set.

In Hayden's algorithm, each link j calculates a control

value Pj(n+l) at time n+1, according to the equation

Pj(n+)=pj(n)(ajcj-fj(n))/Wj,.8.1)

- 18 -



* where Wi is the number of sessions on (or "weight" of) link J,

and aj is some constant satisfying O<aj_<l. Each session then

adjusts its rate so that

ri(n)= min pj(n). (1.8.2)

Hayden's algorithm can also be modified to give Jaffe's

desired rate vector by changing the control update equation to

Pj(n+)pj(n)+(ajcj-fj(n)-pj(n))/(Wj+l).1.9)

While it has been shown that the rates ri(n) for Hayden's

algorithm converge to the desired fair allocation, the control

values for the links do not necessarily converge. If there

exists a link such that all its sessions are controlled by

other links, then the flow on that link will converge to some

constant less than the capacity. In the attempt to bring the

flow up to capacity, the link will increase its control at

each update by (cj.fj(n))/Wj, and the control will grow to

infinity. This can create serious problems when a new session

joins the network.
-"

Even though it has been shown that Hayden's algorithm

converges to the desired rate vector, computer simulations of

his algorithm exhibit distressing oscillations in the link

- flows when inputs are changing. We suspect this is caused by

the failure of Hayden's model to accurately reflect delays in

the network: the delay between the time that a link updates

its control and its sessions learn the new value, and the

-19-
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delay between the time that a session changes its rate and the

flow on any of its links reflects that change.

In Gafni's algorithm, at time n, each link j calculates

for each of its sessions i, a control value Pij(n) given by

Pij(n)-aj(n)(hij(cj-fj(n))-ri(n)) (1.10.1)

where

aj(n)= 1/(1+,_. hk(cj-fj(n)) (1.10.2)

and hij(.) is defined as in Assumption 1.2, and h'lij(.) is the

derivative of hi.(-). Each session then finds its new rate

according to

ri(n+l)=ri(n)+ min Pij(n). (1.10.3)

If we define bi(r)=r and gh(f)=f, then the rate vector as

given by (1.4) is the same as Jaffe's, and (1.10.3) becomes

ri(n+1)=ri(n)+ min (cj-fj(n)-ri(n))/(Wj+1). (1.11)

Note the similarity of (1.11) and (1.9).

The essential difference between these two techniques is

that, in Hayden's algorithm, memory of the past state resides

with the links, while in Gafni's, past state information is

stored by the sessions. In Hayden's algorithm the link"

calculate their new control values in terms of the the past

control values and the past flows (rates), while the sessions .

find their rates in terms of the present controls. In Gafni's

algorithm, the s calculate their new rates in terms of

- 20 -
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the past rates and the past controls, while the links find

their controls in terms of the present flows (rates).

It is because new rates are calculated in terms of old,

that Gafni's algorithm has the important property that the

flows on the links are always less than or equal to the link

capacities, provided that the flows were less than or equal to

the capacities initially. Hayden's algorithm can only

guarantee that flows are less than or equal to capacities in

the steady state.

While this appears to be a serious flaw in Hayden's

algorithm, it may provide certain advantages. Assume that the

network in question is an integrated voice and data network,

and that the stated capacity of a link c3 is not the link's

true capacity but the portion of its capacity allocated for

carrying voice packets. If the voice and data packets are

queued separately, with voice being given priority, the

algorithm could produce a rate assignment which would generate

flows fj in excess of cj, without actually causing any voice

packets to be queued. At the next iteration of the control

update, the control for such a link would be greatly reduced '

and the voice flow fj would drop below cj, providing the extra

capacity needed to transmit the data packets that were queued

at the last step. Hence, the time average rate assignment for

a given session is likely to be higher for Hayden's algorithm

than for Gafni's.

- 21 -
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Furthermore, Gafni's algorithm has not been shown to

converge if the initial rates are chosen outside the feasible

set. Hence, if random fluctuations in the session rates, or

the initiation of a new session, cause flows to exceed

capacity, there is no guarantee that the rates will return to

values inside the feasible set. In the example above, where

gj(-) is given by (1.6.2), when the flows exceed capacity,

the link constraint function does not even satisfy Assumption

1.1. Because Hayden's algorithm has been shown to converge

from any initial control vector, it must eventually recover

from such disturbances, if they are sufficiently infrequent.

Gafni's algorithm also has the disadvantage that each

link must know the function bi(.) for all of its sessions.

This is not a serious drawback, though, since in practice

there will probably be only a small number of different

priority classes in use. The function bi(.) will be the same

for all members of a given priority class, so that the link

only needs to calculate Pij(n) for each priority class.

As noted previously, both Hayden's and Gafni's algorithms

are designed for synchronous operation, with all sessions

updating their rates simultaneously, making actual

implementation impractical. However, Gafni and Bertsekas [123

were able to show that Gafni's algorithm will produce a

sequence of rate vectors that converge to the desired fair

22-



rate allocation, even under certain asynchronous conditions.

Specifically, they consider an algorithm where a single

session rate ri is updated according to (1.10), and the flows

are then updated to reflect the change in ri. This process is

repeated indefinitely, with each session updating in a fixed S

cyclic order.

1.4 -evw

In Chapter 1 of this thesis, we introduce the problem of

flow control for packetized voice and introduce the idea of a
S

fair rate allocation over a given feasible set. We describe

previous work by Hayden and Gafni, each of whom developed

distributed flow control algorithms for achieving fair rate

assignments. We identify some problems associated with their

algorithms.

In Chapter 2, we describe a method of categorizing flow

control algorithms like Gafni's and Hayden's. We show how

their two approaches can be merged to unite some of the

advantages of each. In particular, we propose two algorithms

which produce a fair rate vector for sets in Gafni's class of

feasible sets (1.4), but without the need for the links to

calculate separate controls for each priority class. We

analyze one of these algorithms in detail.

In Chapter 3, we consider how the model of Chapter 1

-23-
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fails to account for network delays, and describe some

resulting difficulties. We then give an extended model which

not only considers delay, but also asynchronous operation of

the flow control algorithms. We introduce the idea of an

update protocol, which permits a link to update its control

only when the protocol is satisfied. We use update protocols

to construct some asynchronous flow control algorithms: one

that gives a fair rate vector over Hayden's feasible set and

two that give fair rate vectors over sets in Gafni's class of

feasible sets. For two of these algorithms, we prove that the

generated control sequences converge to produce the

appropriate fair rate vectors, given the assumptions of the

asynchronous model.

In Chapter 4, we build on the work of Bertsekas, et.

al., [13], [14], who have developed results that apply to

general asynchronous algorithms. Bertsekas considers a system

in which N processors find an element of a given solution set

by iteratively computing estimates of the solution. Each

processor receives feedback measurements from the system, and

uses these measurements to update its current estimate. In

Bertsekas' model, a processor may update its estimate at any

time, asynchronously with respect to the other processors. We

extend the model to include algorithms where updates times are

restricted by update protocols. We give a theorem similar to

Bertaekas', describing a class of such algorithms for which

the estimate sequences converge. We use this result to give

- 2Z -.
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an alternate proof of the correct operation of one of the flow

control algorithms given in Chapter 3. We also give a theorem - :

that shows how a synchronous algorithm, taken from a given

class of algorithms, can be implemented asynchronously by the

addition of an appropriate update protocol.

In Chapter 5, we describe a computer program written to

simulate the flow control algorithms of Chapter 3. The

program simulates a network carrying voice traffic only, where

each source-destination pair represents a voice conversation.

At any given time, one member of each such pair is talking,

and the other silent. We study the steady state behavior of

the network by setting the average talk-spurt duration to

infinity. For the static network, the algorithms behave much

as predicted. We also set the average talk-spurt duration to

a value representative of actual speech, to study how the

network behaves under real-life conditions. The results of

these simulations are inconclusive, and indicate that our

model is not detailed enough to let us accurately predict the

behavior of our algorithms in dynamic operation.

In Chapter 6, we summarize our results and give

suggestions for further research.
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Chapter 2

fntral 1-ti Synchronoul fISMr~ Algoarithms

2.1 Qptinas f= Al.gorithm Design

As mentioned in section 1.3, the essential difference

* between Hayden's algorithm, given by (1.8) and Gafni's in

(1.10), is that in Hayden's, state is stored by the links and

in Gafni's, state is stored by the sessions. In addition to

choosing where state memory resides, the algorithm designer .

must also consider how to allocate the burden of calculation.

If the feasible set over which a fair allocation is sought is

of the form given in (1.4), both the constraint functions

gj(.) and bi(.) must appear somewhere in the update equations

for the link controls or the session rates. Responsibility

for calculations involving gj(.) may be given to either the

sessions or the links, and the same applies to bi(.).

As an example of what this means, consider the following

algorithm. Let

Pj(n+l)=pj(n)+aj(n)(o-f(n)-pj(n)) JC (2.1.1)..

and

ri(n): min bi-'(gj(pj(n))) ViC (2.1.2)

- 26 -
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where {aj(n)) is some "appropriately" chosen sequence,

designed to ensure the algorithm's convergence. This

algorithm is the reverse of Gafni's: where his algorithm

assigns memory to the sessions and calculation to the links,

this algorithm assigns memory to the links and calculation to

the sessions.

Of the eight possible ways to assign responsibilty for

memory and calculation, two are clearly undesirable. An

algorithm where calculations involving the link constraint

functions are performed by the sessions, with the links doing

the calculations involving the session constraint functions,

obviously entails excessive overhead.

Ideally, we would like for a given link j to need to know

only its own constraint function gj(-), and for a given

session i to need to know only its own constraint function

bi(.). Such an algorithm, with state memory assigned to the

links, is given by

Pj(n+l)-pj(n)+aj(n) (gj(cj-fj(n))-pj(n)) V/j Cf. (2.2.1)

and

ri(n): min bi' (Pj(n)) ViE (2.2.2)

where the sequence (aj(n)} is chosen according to criteria

discussed in section 2.4. We call this the generalized link

memory algorithm.

- 27 -
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"L Another such algorithm, with state memory assigned to the

sessions, is given by

Pj(n):gj(cj-fj(n)) G X (2.3.1)

-* and

ri(n+l):rj(n)+min ai(n)(bi- (Pj(n))-ri(n)) Vi (2.3.2)

where {ai(n) } is some appropriately chosen sequence.

For both these algorithms, it is easy to see that if the

rates and controls converge, they converge to values that

satisfy (1.4.1). The problem remains to choose the sequences

(ai(n)) or (a (n)} in a manner that guarantees that the rates

converge to a unique point, and further to show that that

unique point is fLar over the set defined by (1.4)

In general, it is not always possible to select a

sequence that guarantees rate convergence. The choice of such

a sequence depends on the link and the session constraint

functions, and on which algorithm is being used.

In section 2.4, we give a definition for aj(n) and

conditions on gj(') and bi(.), such that the rates produced by

the generalized link memory algorithm (2.2) can be shown to

converge. We have not yet investigated this problem for the

algorithm proposed in (2.3).

Before showing how to select the sequences (aj(n)) for

--28 -
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the generalized link memory algorithm, we pause to discuss the

nature of the limit points of the rate and control sequences,

and to prove some theorems about the limit points.

2.2 Iho ixed FintgL of Jaill and Contrl Rldnit

Before trying to prove that the control and rate

sequences given by generalized link memory algorithm converge,

we consider whether or not there exist control and rate

vectors that are "fixed points" of (2.2), that is, we want R

and r' such that if R(n)=.2* and r(n)=r', then ja(n+1)=R e and

r(n+l)=r'. In this section, we give a centralized algorithm

for finding the fixed points ' and r.* of (2.2), and show that

they are unique.

We will also see that the fixed rate vector r* is the

same for the algorithms given by (1.10), (2.1), (2.2) and

(2.3). Since each of these algorithms was proposed to find

the fair rate allocations over the same set, it is not

surprising that they have the same r*.

In the next section, we show that 2* and ba(r') are fair

" * allocations over the appropriate sets for the generalized link

memory algorithm.

If there exist vectors .* and r' that are fixed points of

(2.2), then
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and

rje min bi7 1(PJ') 1 (2.4.2)

where

f fa= '5 rig. (2.4.3)

Combining these three equations, we get-

rjo: min bi'g~j rk*)) (2.5)-

*It is easy to see that similar manipulations Of (1.10), (2.1)

and (2.3), all yield equation (2.5).

We now show how to uniquely construct 2*. For each link

* j define Xj such that

* Assumption 1.1 guarantees that (2.6) has a unique solution.

See Figure 2.1. Let pi: min X. let Y1 be the set of links j
J9

*for which Xjp 1, and letj be the set of all sessions on

* links in

Suppose p* exists. By (2.4) we have

P4':E(c4-5bi''( min Pk*))- (2.7)

Therefore, by Assumption 1.1,

p @. gj(cj- 1 bi',(Pjo)). (2.8)
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and so, from Figure 2.1, we see that pj' Xj, for all .

Bounding pk' by Xk in (2.7), we have,

jSgj(c- ~ b0 1 m X)

for jC1 and so

=x. (2.9)

Thus if p* exists, Pjf= min Xk=P1 for all j-

Now we may rewrite (2.7) as

Pj*:gj(cj- 2 bi-1 (P') 2. bil( min Pk*)) (2.10)

~4S kS% - "
Equation (2.10) suggests the following procedure. To find the

next smallest P 3*, construct the reduced network

where 9'~fl ~:\~I and the

capacities of the links are defined by

CWlcj bi1l(P'). (2.11)

Now find X for each link 1', and pl'= min X.'. Repeat this.1 J
procedure until all the coordinates of R* have been found.

Thus, by construction, pf exists and is unique.

2.3 Ikij £atIi &ad Coto Ejjtd frmnts ar-1 £Air Allocatoni

In this section, we show that 2O and .r, as found in

section 2.2, are fair allocations over the sets specified

below. This and the results of the last section imply theb
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existence and uniqueness of a fair allocation rate over the

set given by (1.4). This last result was also shown in [12).

T If .* and r are the unique fixed points of.

(2.2), then .2* is a fair allocation over the set defined by

Pj<gj(cj- mi in bi'(Pk)) Vjic.' (2.12.1)

and ]2(r) is fair over the set defined by

bi(ri)<gj(cj-f j ) Vie, VJ'Ci. (2.12.2)

Pfr . As described in chapter 1, the fair allocation vector

over a set X solves a nested hierarchy of problems. The first

problem is to maximize the minimum coordinate of vectors in X.

Next, we maximize the second minimum coordinate over all

vectors which solve the first problem, and so on. Our

algorithm for finding 2* and rf solves for these vectors by

just such a nested procedure, finding the minimum coordinate

of each vector, then finding the next smallest coordinates,

and so on. Hence, it is sufficient to show that the first

iteration of the algorithm maximizes the minimum coordinates

of .2 and b(.r*). The "correctness" of the subsequent

iterations follows by induction.

We claim that pl the minimum coordinate of D' is the

maximum minimal coordinate of any vector 2 in the set given by

(2.12.1). Suppose otherwise. Then there must exist Q in the

feasible set with minimum coordinate q1>pl. If that were so,

- 33 -
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we would have, for each link J,

p l <ql"---

<qj 
..

gj(cj-.2 b i'l( rain qk)

-gj(cj- 2 bi-l(q ) )

I Sj(cj. 5 bi-l(pl)). (2.13)

AE j
But this is a contradiction, since, for each j -. I

p1=g.(C. - 1 bi- 1 (pl)). (2.14)

Now, since bi-1(.) is strictly increasing, (2.2.2)

. implies bi(rif) = min pj*. Because pl is the minimum

coordinate of .2, the minimum coordinate(s) of b(r) must be

bi(ri*):pl, for each ieJ1. We claim that this choice

maximizes the minimum coordinate of b2(.r'), since, if it did

not, there must exist b(a) in the set given by (2.11.2) with

minimum coordinate bm(sm)>pl But if that were so, we would

have for each session i, for each link

Pl <b( 3

<bi(ai)

gj(cj- 2 sk)

?ce~R ..-..-

Igj(cj- bk-1 (P1 )),  (2.15)

which is a contradiction. This completes the proof of Theorem

2.1.
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Notice that we have not yet shown that 2(r) is fair over

Gafnl's feasible set (1.4), as desired. We cannot show this

without making further restrictions on bi(.) and gj(.), since

j 9 might be negative for some i, and ba(r*) might not even be

an element of the set given by (1.4). This cannot happen when

Assumption 1.2 holds. We give the following corollary.

Corollary 2.1. For each iCe, define

hjj(x)=bj'l(gj(x)). If hij(O):O, then .p* is fair over the set

defined by

Pjsgj(cj- m rmin bi 1 l(Pk)) V J C. (2.16.1)

bl(pj)O 1 iej, V Cfi (2.16.2)

and

mrain bil(Pk)Scj VicS.,Vj6ong (2.16.3)

and b(Q:) is fair over the set defined by (1.4).

In order to prove the corollary, we invoke the following

lemma. The lemma is stated without proof, since it follows

trivially from the definition of fair allocation.

Lrmm 2,.1 If a vector x is fair over a set X, and Y is a

subset of X, then x is fair over Y, if and only if xe Y.

Proof Corllar. By the lemma, we need only show that .".

and r' are elements of the appropriate sets.

- 35 -
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Recalling (2.5), r'is the solution to

rio: min hij(cj-fjO), (2.17)

and hence

~ 0- ~min hik(ek-fk*) -

<:.hij(cj-.fj*). (2.18)

Now suppose f *>cj> O. Then

f * hij(O)

=01 (2.19)

which is a contradiction. Hence f3 3  o alj ic

fj' cj, (2.17) gives us ri0. O. That Q* satisfies (2.16)

follows trivially from (2.41) and the fact that r'satisfies

(1.41). This completes our proof.

Note that the condition hij(O)O is sufficient to show

* that .r* is in the set defined by (1.4), but it is not

* necessary.

These theorems allows us to concentrate on finding a fair

control vector, rather than a fair rate vector.

* ~2.41 Ibj .jj" Control Alg.oritbh

The genralized link memory algorithm is not completely

* specified until we describe how the sequences fa(n) are

chosen. One obvious way to choose the sequences is to let
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aj(n)=Aj(pj(n)), where Aj(') is some real valued function.

In order to establish some conditions that Aj(-) should

satisfy to guarantee the convergence of the controls, we

consider a network consisting of a single link j. For such a

network, (2.2) becomes

p(n+l)fp(n)+A(p(n))(g(c- K bi-l(p(n)))-p(n)). (2.20)
A.4

For convenience, define

G(x)=g(c- 1 bi(x)) (2.21)

and

H(x)=x+A(x)(G(x)-x). (2.22)

Then (2.20) becomes

p(n+l )=H(p(n)). (2.23)

It is well know that a sequence defined as in (2.23) will -

converge for any intial .(0), if

I' (x) I<I Vx (2.24)

and there exists x* such that H(xf)=x*.

While the condition in (2.24) guarantees that the

controls converge for a single link network, we are not able

to show that (2.24) guarantees convergence for a more general

network. We can, however, prove convergence for a multi-link

network for which similar, but more restrictive, conditions

hold.

Teorm Let 97=(j )be any network. Let gj(.) and

.......................-...........-...............................................'..................... -



bi(-) satisfy Assumption 1.1. For each j , S Jj, define

Gj(x,c,S)-gj(c- 2_ bi'(X)) (2.25) .

and

Hj(x,c,S)=x+Aj(x)(Gj(x,c,S)-x), (2.26)

where Aj(x)is a continuous function such that O<Aj(x)Sl for

all x. Suppose, for each J, gj(.) is uniformly continuous,

and

0 Hi(x,c,S< 1 , (2.27)

for all x, for any SC_- and c, Oclcj. Then, for any initial

control vector 2(0), the controls 2(n) and rates .r(n) given by

(2.2), with aj(n)=Aj(pj(n)), converge to fair allocations over

the sets given by (2.11).

The proof of Theorem 2.2 is deferred to Chapter 3, where

we will see that it is a special case of a more general

theorem relating to asynchronous flow control algorithms.

The conditions of Theorem 2.2 are somewhat restrictive

and we believe that the controls and rates will converge for

algorithms where Aj(.), gj(-) and ri(.) are less coL.strained.

Specifically, we conjecture that condition (2.27) can be

replaced by

H Hj(x,c,S) <1, (2.28)

but we have been unable to prove so.
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Let us consider the restrictions that (2.27) places on

A•(.), gj(.) and bi(c). While it is difficult to describe the

entire class of functions H(. such that Aj(.) may be

chosen to satisfy (2.27), at least one sub-class is easily

identifiable.

Consider the class of functions Hi(.,.) such that Aj(.)

may be chosen to be a constant, that is, Aj(x)=Aj, and such

that (2.27) is satisfied. We assume that O<Aj<i. Then (2.27)

becomes

-1<Aj( Gj(x,c,S)-l )<0. (2.29)

By Assumption 1.1, (x,c,$) is negative for all x, c and S,

and hence the right inequality of (2.29) is always satisfied.

Rearranging the left inequality, we get -

•G(x c,S). (2.30)

Hence, for those functions Gj(x,c,S) whose partial derivatives

with respect to x are bounded below, the conditions of (2.27)

can always be met for small enough A.
.

While (2.30) may seem a bit restrictive, we make the -

following observation. Suppose that we are given two sets of

functions gj(.) and g.,(.) that satisfy Assumption 1.1, and

such that gj(x):gj t (x) for x([O,cj. Then regardless of how

the functions may differ outside that interval, the fair rate

allocation over the set defined by (1.4) and gj(.) is the same

as the fair rate allocation defined by (1.4) and gj,(.).
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Hence, we may "tailor" the functions gj(.) any way we like

outside [Ocj], in order to satisfy (2.30), without affecting

the point to which the algorithm converges. Even so, there

may be some functions bi(.) and gj(.) for which (2.30) will

not hold.

2.5 An Examp"l

In the last section we described how the functions gj(.)

may be tailored outside the interval [O,cj] to give a function

which will satisfy the constraints of Theorem 2.2. In this

section, we give an example of this technique.

Suppose we are interested in finding a fair allocation

over the set given by (1.4), using functions bi(.) and gj(.) ..

as defined by (1.6). Recall that such a fair allocation has

the property that the excess capacity on any link is

sufficient to handle a fluctuation in flow as great as the

standard deviation of the flow. For convenience define

, kj=/(cjDj 2 ). Then gj(f):kjf 2 . This choice of gj(.) is

clearly unsatisfactory, since it is neither monotonically

- non-decreasing, nor uniformly continuous. We propose,

instead, that gj(') be defined as

0 (f)= 0 when f<O

. f when O<f<cj (2.31)

2kjcjf-kjcj when f>c .

Nowt
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SHj(xcS).x+A.(gj(cWSx).x), (2.32)

where W. is the number of sessions in S. So,

&Hj.(x, cS)1-Aj (WGj(c-Wx)+). (2.33)

Since

gi0(f) when f<O

2kjf when Oflci (2.34)
(,2k c when fOci "?ii

we have, for all x,

O<gjt (x)<2 kjcj. (2.35)

Combining (2.33) and (2.35), we get

1-Aj(1+2kjcjWs).< Hj(x,c,S)<l. (2.36)

Hence, we choose

Aj= 1 /( 1+2kjcjWs) (2.37)

and the conditions of Theorem 2.2 are satisfied.
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Chapter 3

As hrono 11 flak _ntr". Agorith:m

As mentioned earlier, the system model given in Chapter 1

fails to accurately describe the operation of flow control

algorithms by ignoring communication delays. In this chapter,

we describe in detail how the model fails, and then give an

improved model which allows for feedback delays and

asynchronous operation. We introduce the idea of an update

protocol and give some examples. We give an improved flow

control algorithm, together with a proof that the rates and

controls it produces converge to the fair allocation over

Hayden's feasible set, under the assumptions of the

asynchronous model. Finally, we modify the algorithm to

produce fair rates and controls over the more general feasible

set defined by (2.11).

3.1 Feedback Di....

In section 1.2 we made the assumption that data

propagates instantaneously through the network, allowing us to

define the flow on a link at time t as

fj(t)= ; ri(t) VJEY. (3.1)
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We also assumed that at time t, each session i knows the

current value of

min P-(t)

or

min Pj(t)

.A.

as required for the calculation of ri(t).

In practice, however, the concepts of instantaneous flow

and rate are not well defined. The presence of queues

distorts the input rates of the sessions as seen by the links,

and even in the absence of queues, propagation delays prevent

the links from knowing the sessions' current input rates.

Hence, we cannot expect these relations to hold at all times

t. However, for the flow control algorithms previously

discussed, were rate and control updates take place at tn,

n=0,1,..., we require only that
fj(tn): Z ri(tn) Vj c , (3.2)

and that each session i knows at time tn, the current value of

min Pj(tn)

or

mii Pij(tn).

We outline below a method for guaranteeing that (3.2) holds.

The other condition can be met only by careful synchronization

": • of the links and sessions, when selecting the update times tn.-

34
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In order to guarantee that (3.2) holds for all tn we

assume that the links calculate their flows by summing the

rates of their sessions, where the rates are communicated to

the links by the sessions. While this eliminates the problem

of rate distortion, there will still be delays. Communicating

the rates requires transmitting additional data between links

and sessions, but guarantees that (3.2) holds, provided that

the interval between updates is long enough to allow the

necessary exchange of information.

An alternative to this would be for each link to observe

the amount of traffic it carried over some recent interval of

time, and use that as its flow. Observing the flow has the

advantages of simplicity and low overhead, but makes it

impossible to enforce the condition (3.2), because of rate

distortion by the queues.

Hayden's [91 simulation of a network using his flow

control algorithm assumed that flows were observed. We

. believe that this contributed to the oscillations in flow that

. his simulation displayed. Another contributing factor is the

delay between the time that a link updates its control, and

its sessions learn the new control value. To see how such

-" oscillations might arise, we consider the following examples.

Suppose we have a network consisting of a single link,

4- 44-
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with capacity c=1, serving a single session. If we seek a

fair allocation over the set given in (1.2) with a=1, the

update equations for Hayden's algorithm are

p(nl )=p(n)+c-f(n) (3.3.1)

and

r(n)=p(n). (3.3.2)

Suppose that the delays are such that f(n)=p(n-1), instead of

f(n)=p(n). Then

p(n+1)=p(n)-p(n-1 )+1. (3.4)

For p(O)=O and p(1)=1, the subsequent controls are given in

Table 3.1. Obviously, the controls cycle forever, and do not

converge.

For the same network, suppose we want a fair allocation

over the set in (1.4), with g(f)=f and b(r)=r. Using Gafni's

algorithm, the update equations are

p(n)= .5(c-f(n)-r(n)) (3.5.1)

and

r(n+l )=r(n)+p(n). (3.5.2)

If the flow is communicated, f(n)=r(n). However, feedback

delay can cause the session to learn the link control value

late, so that

r(n+l )=r(n)+p(n-1)

=r(n)+ .5(1-2r(n-1))

=r(n)-r(n-1)+ .5 • (3.6)

For r(O)=O and r(1)=.5, the subsequent rates are given in

Table 3.2. Again we see that the rates cycle, and do not

-45-
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n (fl) ________n)n

0 0 0 0

2 2 2 1

3 2 3 1

14 1 4

5 0 5 0

6 0 6 0

7' 17 .5

Table 3.1 Table 3.2

Divergent Example for Divergent Example for
Hayden's Algorithm Gafni's Algorithm
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converge.

These simple examples show how important it is to account

for feedback delay in our system model.

3.2 Ihe Asynchronous System Mol I

In this section, we give a model for studying systems

with feedback delay which use asynchronous flow control

algorithms. The model assumes that flows are communicated and

that state memory is assigned to the links. The model can be

easily changed to allow algorithms with link memory.

At a given time t, each link j has a control value Pj(t)

and a flow fj(t), and each session i has rate ri(t). We

assume that the system begins operation at t=O, that is,

Pj(t)=O and ri(t)=o for t<O. At t=O, the links and sessions

choose some arbitrary initial controls P3 (O) and rates ri(O).

For each link j, session ice has an apparent rate

rij(t), which is the most recent rate communicated to link j

by session i at time t. The apparent rate rij(t) may differ

from ri(t) because of communication delays. Hence we have

rij(t):ri(t-dijlt)), (3.71)..:

where dj(t) is the delay described above. We will call

dij(t) the propagation delay. With this definition of rate,

flow is defined as

- T7 -
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fi(t): rij(t). (3.8)

When the system has been running long enough for a

session i to have received feedback from each of the links in

its path, the rate ri(t) at which a session sends is chosen as

the minimum of the control values of the links. Again,

because of communication delays, the most recent values of the

control for link j known by session i may not be current.

Hence,

ri(t)= min Pj(t-Dij(t)) when t Dij(t) Vj i-._

ri(o) when O<t(Dij(t) for some i

0 when t<O. (3.9)

We will call Dij(t ) the feedback delay.

We make two assumptions about the processes dij(t) and

Dij(t). First, for tlt 2

tl-dij(tl )<t2-dij(t2) (3.10.1)

and
tl1-Dij(tl )St2-Di 3 (t2). (3.10.2)

This guarantees that new information is not replaced by old.

Second, for any times t 0 and T 0 there must exist
- ij ij,

t 12tlj 0 and Tij12Tij 0 such that

tj j (tj I  (3.111.1)

and
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TijO T ij1.Dij(Tijl) (3.1 1.2) .)-

-. - -. -. r r' W r r r r w~r .r r.. .

This assumption guarantees that the links and sessions will

never stop receiving new information about the rates and

controls current in the network. That is, if a link j has

control Pj(t) at some time t, then each of its sessions willi!
eventually learn the value of the link's control at t or some

later time. Similarly, the apparent rate of session i on link

j must eventually reflect the changes in the session's input

rate ri(t)"

Together, these two assumptions guarantee that the system

eventually changes from its initial conditions. If we let

T 0=0, then (3.11.2) guarantees the existence of a time tij.-

such that Dij(to)Sto. Furthermore, by (3.10.2),

O<to-Dij(to)

<t-Dij(t) (3.12)

for all t>t0 . Hence Dij(t)St for t>t O . Thus, for large

enough t, (3.9) becomes

r i(t)= min p3 (t-D- -(t)) (3.13)

and (3.7) becomes

rij(t)= min Pk(t-dij(t)-Dik(t-dij(t))). (3.14)

The controls for the links are updated as follows. For

each link J, we are given a monotonic increasing sequence

{t n) for n20, with t 0>0. We define pjn=pj(tjn) and

fjn~fj(tjn). We assume that Pj(t)=pj(o)=pj 0  for 0<ttO.

-49 -
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Then t n is the time of (n+1)st control update for link .j, and

PjfllP45fl(iJtn) .j) ,cj,Wj) (3.15)

where Pj is the control update function for link j
j pn=(p n , pj n-i 1 ...pjO), cj and Wj are the capacity and w i h

of link J, respectively. The control for link j at time t,

fort nl~tt , is pj(t)=pjn. See Figure 3.1.

Note that Hayden's algorithm is a special case of this

model, obtained by letting dij(t).Dij(t)=.o for all t, and

*~ tn=n for all n, for each j, and defining

Pj( n,rij(tjn):iCjjcjWj)Pjn+(cj~rjtn)w

3pn(jfn/j (-3316.

Since, in general, dij(t)JO and D±3(t)iO, and because it

is difficult to synchronize links such that t n~n, it is

useful to ask for what values of dij(t), Dij(t) and tjn we can

expect the rates ri(t) to converge to some desired set of

* values.

* ~3.3 k~". Protocols f_=. ".ynch1rgno.u.A f£1j g~antrol Alggritim.

In this section we consider asynchronous flow control

algorithms such that the system can select the times t in

according to some established criteria. Such a set of

criteria is called an update protocol. We examine some

*Possible update protocols, in conjunction with different
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n+i
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t tl t.fl+i

Link Control as a Function of Time

Figure 3.1
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update functions.

Let us consider an algorithm using Hayden's control

update function, but with dij(t)40, Dij(t)/O and tjn/n. If

upper bounds are known for dij(t) and Dij(t), it might be

possible to eliminate the effects of these delays on the

controls and rates by waiting "long enough" between control

updates. That is, we would like to choose tjn such that

rij(tjn)=ri(tjn)= in Pk(tjn). (3.17)

In this case, the rates and controls would be identical to

those for a system in which dij(t)=Dij(t)=."

Since the proof of convergence for Hayden's algorithm

relies very little on the synchronous properties of his

algorithm, his proof is easily modified to show convergence

for an asynchronous algorithm where (3.17) holds.

Unfortunately, the condition given in (3.17) is difficult

to meet, since it requires that
.•~t i)::.

lj (tj~m n ) r (tn-dj (tj n ) -D°"'

imn Pk(tjn-dij(t n)-Dik(tjn-dij(tjn)))

min pk(tjn). (3.18)
• k ' "--'-

Necessary conditions for (3.18) to hold are complicated, but

it is clearly sufficient that

Pk(tjn ):Pk(tjn'dij(tjn)'Dik( tjn'dij (tjn))) (3.19)

- 52:
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K for each kEt i . If we choose tjn such that

tjn-tjn- a >dj(tjn)+Dlj(tjn-dij(tjn)) (3.20)-

then (3.19) is satisfied for k=j. But to guarantee (3.19) for

kij, it is necessary that there be no updates to the control

for link k between the time that session i learns the latest

value of pkn and the time that the flow on link j reflects any

possible change in ri(t) due to a change in pkn. This could

be accomplished by making the links and sessions update during

alternating intervals. That is, during a link update interval

all links will update their controls, while sessions may not

update their rates. The reverse is true for a session update

interval. This scheme has the disadvantages of being slow and

requiring additional communications to inform sessions and

links of the ends of the update intervals.

Another approach would be to perform updates only when

all the sessions on a link are either aware of the link's

current control, or are being controlled by another link whose

control is smaller. That is, choose t n such that

rij(tjn)Spj(tjn). (3.21)

If the links are able to observe the rates of their individual

sessions, then the condition of (3.21) is easy to enforce,

provided that a sequence of times it n} satisfying (3.21)

actually exists. Fortunately, the delay conditions (3.10) and

(3.11) guarantee the existence of such a sequence.

-53-
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We want to show that for each link j and any time t

there exists t22tI such that rij(t2)Spj(t2), for each iC4j.

We will need the following theorem:

Theorem 3.1. If dij(t) and Dij(t) satisfy (3.10) and (3.11),

then for any tO there exists t12t 0 such that for all tt,

t'dij(t)-Dik(t-dij(t)).t 0  (3.22)

for all to i* k--i.

The proof of Theorem 3.1 is given in Appendix A.

Now suppose that no such t2  existed. Then no link

updates could take place after tj. Now pj(tl)=Pjn for some n,

and so Pj(t)=pjn for all t>tl. But by Theorem 3.1, there must

exist t'>t I such that for all tt'

t-dij(t)-Dij(t-dij(t)))2tl. (3.23)

By (3.14), for large enough t,

rij(t). min Pk(t-dij(t)-Dik(t-dij(t)))

< Pj(t-dij(t)-Dij(t-dmj(t)))

Pj(t I )

= Pj(t), (3.24)

which is a contradiction. Hence, an infinite sequence of

times {t n) must exist such that (3.21) is satisfied.

Unfortunately, it is not possible to guarantee %-

convergence of the rates for a network using the control

- 54 -
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update function in (3.16) and the update protocol in (3.21).

A counter example is easily constructed using the following

argument. Suppose that for some link j at time t n, (3.21) is

satisfied and f n<cj. Then n+1 pjn+(cj.fjn)/WJ >pn.

Now at t.n+e, p.n+l>pjn, and if e is taken small enough, the
3 3

rates will not have had sufficient time to change and

rij(tjn+e)= rij(tjn)< pin< pjn+1. Hence the link may update

again "immediately". By updating the control arbitrarily

often, the control can be increased to any desired value.

An obvious approach to fixing this problem is to require

that

t n+1 t n 2 x (3.25)

for some positive x, for all jt, for all n. Another

approach would be to put an upper bound on the value of pjn.3

While it seems likely that either of these conditions would

guarantee convergence of the rates, we have not been able to

prove this.

3.4 An Asynchronous fl. Control Alg.rith

o .Fortunately, it is possible to prove convergence of the

rates for a network using this update function:

- p n+l max rij(tjn) + (cj_fjn)/W3  (3.26)

along with the update protocol given in (3.21), but without

any additional requirements.
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The new update function has the further advantage over

Hayden's that it guarantees convergence of the controls as I

well as the rates. For Hayden's algorithm the controls may

diverge, since the algorithm finds the fair control allocation

over the set defined by

. min pk~c Vj. (3.27.1)

Thus, if a link controls none of its session, the fair control

for that link is infinity. Our algorithm finds the fair

allocation over the set defined by

min Pk+Wj(pj- max min Pk)&cj V3. (3.27.2)
.L'Jj k--

It is easy to see that the fair rate vector produced by either _

(3.27.1) or (3.27.2) is the same, for if a link j controls any

of its sessions, Pj=max min Pk, and the two conditions are

equivalent. Otherwise, it does not matter what control link j

is assigned, since it does not affect the rates.

We can find the fair control vector over the set defined

by (3.27.2) by a global procedure almost identical to

Hayden's. We begin by finding the bottleneck link j,

assigning it Pj*=cj/Wj and assigning its sessions rates equal

to PjO. We then form a reduced network by deleting that link

and its sessions from the original network, and reducing the

capacity of the remaining links by the appropriate amount. We

repeat this procedure, finding the new bottleneck link and

reducing the network, until all links have controls assigned.

However, we may eventually find that our reduced network S
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contains a link that has no users. The fair allocation over

(3.27.1) sets the control for such a link to infinity, whereas

the fair allocation over (3.27.2) sets it to

pjf= max min Pk+(cj-F rig)/Wj. (3.27.3)

A.ES

We may interpret (3.26) as follows. Hayden's algorithm

fails to produce controls that converge for two reasons. In

the absence of any update protocol a link may update its

control before all of its sessions have learned the current

control value, thereby producing oscillations in the control.

Furthermore, when a link controls none of its sessions, it

increases its control without bound. The update protocol

overcomes the first problem by letting the link pretend that

all its sessions know its most recent value. The link simply

assumes that those sessions that are sending at a lower rate

are being controlled by some other link. The update function

overcomes the second problem by making the link pretend that

its current control is actually the rate of its fastest

session. Thus, whenever an update takes place, the link is

effectively controlling at least one of its sessions.

Next we prove that the algorithm given by (3.21) and

(3.26) produces input rates and link controls that converge to

the desired values. We give the following theorem:

Theorem 3.2. Let =(,?) be any network. Let Pj(t),

fi(t), ri(t), rij(t), pin and f n be given according to the
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asynchronous flow control model, where the control update

function is given by (3.26), the control update times t n

satisfy (3.21), and the delay functions dij(t) and Dij(t)

satisfy (3.10) and (3.11). Then, for any initial control

vector j0 and initial rate vector 1:0 , lim R(t):=,R and

lim r(t)=r*, where e is the fair allocation over the set

defined by (3.27.2) and z* is fair over the set defined by

(1.2).

In order to prove Theorem 3.2, we will need the

following lemma. The lemma says that the control for a

"bottle-neck" link jex l converges to pjO, in a network where

the flows are perturbed from their true values, provided that

the perturbations eventually go to zero. This implies that

the control for jC 1 of a network with no perturbations Must

converge, and the rates of its sessions must also converge.

To the other links, this network is indistinguishable from a

reduced network obtained by deleting link j and all its

sessions from the original network, decreasing the capacity of

each remaining link k by. ri , and perturbing the flow

fk(t) ( f(rI  (t)). Since the perturbations in the

flows go to zero, by the lemma, the controls for the

bottle-neck links of the reduced network must also converge.

By induction, we may then show that the controls for all the

links converge.

Lemma 2. Let 1:(23 , ) be any network. For each je, let

- 58



A A
' be some constant satisfying Wj)Wj, let (ejn) be some

sequence that converges to 0, and let {tin} be a sequence that

tAt A
satisfies the conditions given below. Let (t)=.Q and r(t).Q

for t<O and choose any initial vectors (0) and '(0). Let

Pi (t)=j (0)4 0 for 0(tt.0 and define

Pin+l- max r A(8n)+(cj_fjn-)j )/W.

A A A
where fin, rij(t), ri(t) are defined as in (3.7) - (3.9), and

n ) for tjn-l<t<t n. Assume that dij(t) and Dij(t)

satisfy (3.10) and (3.11). Further suppose that the sequence

(t n) is chosen so that
rlj (tjn)<P~j( tj n )  j n-,(3. 29.1) ""

and that the sequence {ej n } is chosen so that

Apjn>o Vn21, YjC P. (3.29.2)

Let pl:min c/wj" Define 1 and ,1 in the obvious
mA

manner. Then lim (t)=p1 and lim r(t)p for all

i Ef 1 Furthermore,
A

lim inf P.(t)>zj (3.29.3)

and

lim inf rij(t)2 min Zk* (3.29.4)

for all jc4, iEgj, where

zjf=pl+(cj/W p' )Wj/(2Wj). (3.29.5)

Ero 21 L&'A-",2

We begin by showing that lim inf Pj(t)2zj* and

-"9
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lim inf rij(t)l min Zk*. We do this by constructing monotonic

increasing sequences of lower bounds z n-zj= for each link j,

and a single monotonic increasing sequence of times {Tnj, such

that for all tT.Tn, Pj(t)>Zjn and rij(t)> min zkn, for each

We invoke the following lemma.
,'..-,

LAmm 3.2.1. For each Jo, let zjO:o and define
n1 A nW A

zn+l = (.Wj/2Wj) min Zk + Cj/2Wj. (3.30)

Then z nzja and zin<cj/Wj for all n.

The proof is given in Appendix B.

Let z n be defined as in (3.30). We now show how to

construct the sequence (Tn}. By Theorem 3.1, we may choose TO

so that for all tIT0

min[t,t-dij(t)-Dik(t-dij(t))]> max t1
0  (3.31)

for all J , i kE~i. Now if t.;T 0 , then Pj(t)=p for

some n l. Hence, by (3.29.2), Pj(t)>ZJO0=. Furthermore,

A A
rij(t) min Pk(t-dij(t)-Dik(t-dij(t)))

Smin ZkO. (3.32)

Now suppose there exists Tn such that for all t2Tn,

A A
Pj(t)>zjn and rij(t)> mi zkn, for all jt, iC . Since

z ln<cj/Wj, we may choose K large enough such that, for all

m>14, le ml<(cj_Wjzjn)/2 and t 'm>Tn , for each JEL. Now choose

-60-
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Tn+1 such that, for all t2Tnl,

mi~vtdjt)Dk~-i~t)>max tl ' (3.33)

for all jc~', - I tnl1, then P~t~m+1 for

some m 14. Hence,

AA
> ax rjj(tji) + (i ..ma r(t m)-e )/W

=(1-wj/j max ri (tj") + (cj -jM/

>(1 _W A A -

iDZn+cj/j( W~ n)/( 2W)

=(1-Wj, 2Qj) min zk~ + j/2Wj

z n+1. (3-34)

A

rijt=min Pk(t-dma(t)-tDik(t-dij(t)))

k i ~l' (3-35)

By induction, we have constructed the sequence (Tn) as

desired.

Next we show that, for each e>O, there exists T such that

for all t T ' 1jt)plwe and r j~~1.We for all j(-,ll,

where W= max W. Since we already have

lim inf pj~tpl and. lim inf rjj(t):l for J-4,iL this

will complete the proof that pj and r Jt.--pl for
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Let j be a link in and let i be a session on j.

Choose N large enough that 'r. .(tjfl)>Pl-e and ejn((WjW+1)e/2

for all n 2N. Suppose that max r±3 tn)P+We for somenN

Then

f n2(Wj-l)(pl-e)+.max rjj(t n)

.Wpl+(iw 3 +l )e. (3.36)

Hence,

A

pjn-.(TI.WW+ 1 )e/ 'j-ejn/Wj
I.

A -

<p .n-( W-W..1)e/(2Wj)

<* n (3.3T)

where the first step follows from the update protocol (3.29.1,)

and the fact that pl2c /Wj for JC-Xl* So as long as

max r j( tjn)>po.1We, pnf must decrease by at least

(W-j~le/(Wj)untl a fljtn<1 we for some t..

A 
3

Now suppose max riji(tjn)<P1+VWe. Then

A A
pn+l<max ^ ~j)[j(jl(le-a rij(tjn-en 3W

AA

<(-/Wj) max 'rij(tjn) + (pl+(W -l)e-ejfl)/Wj

A.

<(1-1/W )(p.We) +. (pl+We)/W.

zp1.We. (3.38)
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So once max r±(tn) falls below pl+We, so does pin+1, and

hence both must remain below pl+We.

So for each e>O, there exists N such that for all n.N

KA pl-e< (t)pl+We andp-e<rj(tjn)<pWe for all jCl,

iS.. Hence, there must also exist T such that for all t T,
pl-e<Pj(t)<pl+-e and ple rA " : -Pl..C~pt)(141Ie nd l.-e<ri.(t)<pl+1)e for all j 1 i&-..1 .

This completes the proof of Lemma 3.2.

We are now ready to prove Theorem 3.2.

Proof. Partition the links in z into sets 1,

S2 * . . ,yL, with the property that for each set,__k there

exists pk such that pe=pk for each j6. k and p3.1 pk for

jq 'k. DefineSk as the set of sessions i such that rie=pk.

Number the sets so that pl<p 2 <... <pL. The proof is by

induction on the sets of the partition. First we show that

the sequences {Pj(n)} for each j in I and (ri(n)) for each i

in ,i1 converge to pl. Then we show that if the sequences

(Pj(n)) for j in Xk and {ri(n)) for i in converge to pk

for all k<K, then the sequences {P(n)} for j in 'K+1 and

{ri(n)} for i in converge to pK+1.

In order to prove the induction step, we will also need

to show that if

lim inf rij(t)>pK (3.39)

%- %**.
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for j, CU 'h, &g( .jh)lJj, then (3.39) holds for JG C,"h,>k. Jk> K '' '

hI! i> Kt
4'-> k f-) j..

First note that p1=min P *- min c3/W3 . Now, let

P(O)=p(O) and r(O)=r(O). For each jC- , let WjWj and let

e n=:0 for all n. Then 't-*t anenoe (t)pj(t) and rj(t)=rj(t) for all

t. Therefore, by the lemma, lira Pj(t)=p1=Pj* and
lim rij(t)=pl=ri* fo %v I ifor

We must also show that (3.39) holds for K=1. Now for

i- US1, riu>pl and hence k~k9 for each k6/" Therefore

lim inf rij(t) m win Zk*

> pi, (3.40.1)

since, by definition, zk*>pl for kj Y-1.

Next we show that if the controls and rates converge to

pk for the links and sessions in k and k k<K, and (3.39)

holds for K, then the controls and rates converge to pK+1 for

the links and sessions in XK+1 and S.!+l, and (3.39) holds

for K+1.

We begin by defining a new network % ( where
Assign the links ink'

Y.: and i

A>K
capacities c. c -57 ri*. Let the weights of the links in

-' be denoted by WI. Define pj'(t), fj'(t), ri'(t),

rij,(t), Pint and f n, in the obvious manner. Note that

o 1
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-o

pK+l= min c.,/Wj,=pl'. Define and Il in the obvious

manner. Note that 1I'=ZK+I and ,41= K+1.

For each jq ', either W1=0 , or Wj'>O. If Wj'=O, then

each of link J's sessions is in .k, for some k&K. So, by the

induction hypothesis,

Jr pin+l= im [max r jn+(cj. 2rij(tjn)/Wj]

= max min pk+(c 2.ri,)iWj

'L I< 4

pj*. (3.40.2)

The last step follows from the construction of the fair

control vector (3.27.3).

For each jC4' such that Wj,>O, let W'=Wj and define
e n= __ (rij(tjn)_ri, ...

+Wj(.max rij(tjn) - max rij(tjn)). (3.41)

If = jj ', the sum is empty and ejn=0. Let

A
Pi'(O)=pj'(O)=pj(O) for each J6' and ri'(O)=ri'(O)=ri(O) for

AA A, A
each i& '. Define pj(t) ft r(t) r',(t) n and.•'t) 3j() i , ri (t)

fn' as described in Lemma 3.2. We will show thatn

and rin'=ri.n for all n. We will then show that (3.29.1) and

(3.29.2) are satisfied and that ejn-- O. We may then apply the

lemma.

I. A
We show that pjin,=pJn and rijnlrijn by induction. First

note that if j is the first link to perform a control update,
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then for t~t1" ofkhPk , ad rkt)ik) for each

Now suppose there exists somec tkfl such that, for t~t nl

Pilt)Pjt)and #ri(t)=rij(t) for each i6 - Let

t ml be the time of the next control update after tkfn, For

AA
jfik, n~~~) P't) n~t') =Pj(tim). Furthermore,

for J-k,
A

A A
z ax rikI tn)+(ckI .fn-e n)/Wkt

L max riktn).(ck..n)/Wk

mPk(tl M). (3.42)

The second step follows from the defintion of ekn. Hence,
A

Pilt)Pjt)for each J(-1' when t-tm This last remark
Aalso implies that rij:(t)=rij(t) for i iE4-' when

tstlM.

A
Because rijl(t)rijiti, (3.29.1) is satisfied. Since

pjfl+l':p n+1

> max rij(tjn)(cj_.Wj( max itj )/

>0, (3.43)

(3.29.1) is also satisfied.
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Nwwe show that e n-- O. By the induction hypothesis

rijt).ri.O or &~4VI if-.2j\kj' Also by hypothesis,

lim inf rij(t)>pK for i G/S', I Hence, there exists some

N such that for n2N

for jC~ icI Therefore, for n2N,

max rij(tjn)>pK

> max rji

-lim max r. *Ct~)) (3.45)

for jCL' Thus, for large enough n,-

max r. *(t fl)> max r. *(t.n) (3.46)
13 ~ i j j1

and

max ri i(tjfl)= max r ±3(t~n). (3.47)

So

lim (max r ijtn-max rjtn] (3.48)-

A.A

Now, by Lemma 3.2 we have pj't.~ 1  for j&/i4jl' But

Pj'(t):Pj(t) and is the set of links j with pj*=plvrnpK+l.

SO Pj(t)-4,pj* for j~~+. Similarly, rij(t)->ri for iC K

Finally, to complete the induction, we Must show that

(3.39) holds for K+1. But for i G .. l, rie>pK and hence,
A IA>

k for each kC-4.. Therefore, by the lemma,
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y ~ -~ -T--'"

A
lim inf rjj(t) lir inf rjj,(t)

> min z,

I- - .--

> p,.

pK+1, (3.49)

as desired. This completes the proof of Theorem 3.2.

3.5 Asynchronous AlgrimL i fr f Mo=Gneral Feaible _ta-

In this section we give two asynchronous algorithms that

produce fair controls and rates over the more general feasible

sets defined by (2.11). The algorithms are obtained by

modifying the synchronous algorithm given by (2.2) in much the

same way that Hayden's algorithm is modified to give the -

asynchronous algorithm of the preceeding section.
'. :'.4

.... '.

First we change the asynchronous system model so that

ri(t)= min bi "1 (Pj (t-Dij (t))) when t Dij(t)Vj-..

1 when O<t<Dij(t) for some JC i

when t<O. (3.50)

The new update protocol requires that link j performs updates

only when

* bi(rij(tjn))<Pj(tin) \±'° -. (3.51)

Unfortunately, when the flows are observed this update

protocol is not as easy to implement as the one given by
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(3.21). Since the link enforces (3.51) by monitoring its

sessions' rates, it must know how to calculate bi(rij(t) ) for

each of its sessions. But this defeats the intent of the

original algorithm to distribute calculation reasonably

between the links and the sessions. When flows are

communicated, this is not a problem, since the sessions can

simply inform the links of both rij(t) and bi(rij(t)).

The update function (3.26) was obtained by replacing all

occurences of p.n in (1.8.1) with max ri.(t.n). Hence,

(2.2.1) suggests the new update function .

pjn+l=(1_a n) max bi(rij(tjn))+angj(cj_fjn) (3.52.1)

where
a.n-Aj(max bi(rij(tjn))) (3.52.2)

where Aj(.) is some appropriately chosen function. This new

update function does produce an algorithm that behaves as

desired, but in fact, with the update protocol, it is not

necessary to modify the update function of (2.2.1) at alli

To see why this is so, consider the case where g (x)-x,

.b(x)=x and ajn:l/(Wj+l) for each JC , - Then (2.2.1)

becomes

pj n+l=pj n+(cj_ f-jn-pj n)/(Wj+I ). (3-3

This algorithm gives Jaffe's fair rate vector [10]. We

interpret this update function as follows. Consider Hayden's

algorithm in the case where each link j has a "phantom"
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session that experiences no feedback or propagation delays,

and whose path consists only of link J. Let f n denote the

aggregate flow of all other sessions and let W, be the number

of all other sessions on J. Then at all times, each link is

controlling at least one of its sessions. But the reason for

replacing pjn in (1.8.1) with max rij(tjn) in (3.26) was so

that each link could pretend to be controlling one of its

sessions, and thereby prevent unlimited increases in its

control value. Since each link is already controlling a

"phantom" session, it is not necessary to modify the update

equation at all.

We give the following theorem.

Theorem 3,a. Let 7 =( , ) be any network. Let gj(.) and

bi(.) satisfy Assumption 1.1. Let fi(t), ri(t), and rij(t) be

given according to (3.7), (3.8) and (3.50). Let pjn=pj(tjn)

* and f n:fj(tjn) where the control update times tin satisfy

(3.51), and the delay functions dij(t) and Dij(t) satisfy

(3.10) and (3.11). Let the control update function be given

. by (2.2.1), with a n=Aj(pjn). Let gj(x), Aj(x), Gj(x,c,S) and

Hj(x,c,S) be as in Theorem 2.2. Then, for any initial control

- vector R0 and initial rate vector rO , li.(t).RO and

lim r(t)zr*, where p and r' are the fair allocations over

the set defined by (2.12).

Before proceeding with the proof of this theorem, we

- 70 -

'|?. . . ... :_........-o..:..N...,i!:il



prove the following useful lemma.

Lemma~~~~ 3,.Le.,Otgj-

iemma 3.3. Let 7/=(8 , ) be any network. Let bi(.) 8j()

*fld Aj(x) be as in Theorem 2.2. For each j, let (ejn) be any

sequence that converges to 0, and let (t n) be a sequence that

satisfies the conditions given below. Let 2(t)=. and Ir(t)=.Q
AA

for t<0 and choose any intial vectors 2(0) and r(0). Let

0 for O<t~t 0 and define

A A
n+l=(l-a n)pjn+ajngj c~fn-e n)(.)

where f n, r i(t) are defined as in (3.7), (3.8) and

(3.50), /ajn:A(pn), and (t:pj(tjn) for t n-l<t~t n.

Assume that dij(t) and Dij(t) satisfy (3.10) and (3.11).

Further suppose that the sequence {t n} is chosen so that

bi( J (tjn))_ p (tjn) 'ieAj, njO, (3.55.1)

and that the sequence {e n} is chosen so that pin is bounded

below. That is,

pjn>z 0 Vnj1, "j X, (3.55.2)

for some z 0.

Let p1= min pj*. Define and A) in the obvious

manner. Then lim jp(t)=pl and lim b ij(t))=pl for all

ck! i Furthermore, lim inf pj(t)>zj and.:. X->
lim inf bi(A j(t)) min zk*, for all jC-, ic-j, where

Z-. Hj(p ,cj, Sj).

?."

,"f Lm a,
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First, we will show lrn iflf pj(t)2j and

lim inf b im t) min zk*. Then we show that for each e0O,

there exists T such that for all t>T, jt<lE~)frec

J6 1 , where

Ea(e)=2(Gj(pl-etcj+e,, j)-.p'). (3.56)

This is sufficient to show the convergence of the controls,

since Xjpl for jC'l, and because Ej(.) has the properties

that it is monotonically non-decreasing, and EJ(O)=O. The

convergence of the rates follows directly from the convergence

of the controls.

We show i. inf Ajt2j n lim inf bi(~jt) rit zk

by constructing monotonic increasing sequences Of lower bounds

and a single monotonic increasing sequence of times

(Tn I, such that for all t> Tn, pj~t)>zjn and

b i( Aij(t) )> mizn, for each iJ~ iQ-jj. Let zj0 be as in

(3.55.2) and define z n by

First we show how to construct the sequence (Tn). Then we

show that z ZjO. -.rl

By Theorem 3.1, we may choose TO such that for all t TO

mintttdij(t)-Dik(t-.dij(t))J> max t10  (3.58)

for all JCE , iE.j kEki. No if U-T0, then 'Pj(t):QPn for

some n 1. Hence, by (3.55.2), pj(t)>zjO. Furthermore,

bi(r~i~t)=win Pk(t-dij(t)-Dik(t-dij(t)))
k( E;(
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> min z 0 (3.59)
- .=..,-

Now suppose there exists Tn such that for all t Tn , ,

pj(t)>zjn and bi(rij(t))> min zkn ,  for all a , .

Choose M large enough such that, for all m2M, le ml<lel and

t zm>Tn, for each J . Now choose Tn 1 such that, for all

,..Tn+_,l....

min[tt-dij(t)_Dik(t.dij(t))]> max tl M, (3.60)

for all JX, icj, k(C . If t.T n l , then (t) mj+1 for --

some m>M. The update protocol (3.55.1) guarantees that

f MS 3 b 1-l(pjm). (3.61)

Hence, we have
M+l>(1- M jm ajg (jm)_ );."'

l-j~ p m aj g (cj- bi- I  - ejn  ......

H Am .njlpjm9cj-lej n ,j :--

> Hj( min zkn,cj-ejn ,Aj)

z n+1, (3.62)

where the next to last step follows from (2.27). Thus,
A ".1'urthrmor

A

biJ(t)) =min (Pk(t-dij(t)-Dik(t-dij(t))))

> min z n+1. (3.63)k

By induction, we have constructed the sequence {Tn) as

desired.-
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Now we show that zifl..)Pzj* To do this we invoke the

following theorem.

Therem 3j.Let S be a linear space with norm I such

tht x: IixH. c) is Compact for all c. Lef:-San

ftj:S--'S be functions such that f 3P uniformly, and such that

1Hf(x) - f(y)IMI<x - Y11 for all x,yC--S. Suppose there

exists x* such that x zf(x) Define xnfnx) Te

x ni '

The proof of this theorem in given in Appendix C.

Let F , n(z):Hj(min zk ,cj-ej n jj and

Fj(.z)=Hj(min zk,cj,,.-J). Let Fn(Z)=(eo., n Z. and

_()(...F z Since ej(n)-- O, Fn(Z)--F(z,).

Let H1zi.I=max IzjI. Then, since gj(*) is uniformly

continuous, for any C->O, we can find such that

1 !Fn(Z)-F(Z) I I

:max IHj(min zkrcj-Iejni'P,Aj)-Hj(min zktcjt jj)I

:3 J(min zk)

k.

Ij(min zk,cj-Iej P< .j)-Gj(min ZkO#_&)

<max 1 i(i e n bil1(min zk)

A e

-gi~j-:- b1 mi -k)



-. ~1 K, -7 .7 7

< (3.64)

whenever lej(n)I<L--. Hence, the convergence of Fn(z) to FWz

is uniform.

Furthermore, by (2.27)

iIF(x)-F(y)H:= max :Hj(min xk'cj,.j)-Hj(min yk,cj,4j

< max Imfl xk-mflin yk!

K A<

< max !Xk..yki

= Lxx H.(3.65)

Finally we show that zis a fixed point of F(-) Let h

satisfy Z h*: min zk*. Then

Zh :h(zh*, ch h)

=Xh (3.66)

whr h is defined by (2.6). Now for any j, zjE zh*Xh and

so

-X he (3.67)

Therefore

d :Xj..Hj(X,cjqA-j), (3.68)

which Implies Xh.-Xj. Hence Xh:min Xk=p and
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Fj(Zesn=Hjpl ICj

Hence, by Theorem 2.3, zn-,*

Next we show that, for each e>0, there exists T such that
fo al , j~)p 1 EAe

foral t>v i~t<p+Eje)and bi(ri(t))<Pl+Ej(e) for all

ILet j be a link in .1and let i be a session on j.

Choose N large enough that b±Pi(tjf))2p1-e and le n*I~e for

al 11 N. NOW suppose that p~fl~pl +Ej(e) for some n> N. Since

f n>1 b-lpe) (3.69)

we have

A A

A n)So~~= as l n as P.j p1+ jCe )+ il b es ta ~
AA

Furthermore, the amount by which pjfl decreases is at least

(l/ 2 )Ej(e) min (Aj(x)e:xE LEpl+Eje),^ M3I, (3.71)

where M is any time for which PjM>pl+Ej(e). The minimum in

(3.71) Must exist because A,(x) is continuous and positive for

all x. Therefore, p~ Must eventually be less than p14.Ej(e).
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NOW suppose pfl<p1+Fj e). Then

A

A Ap1 -~p.t n<p'+E( ni-p b'.4.nfG))pl1++ efor al

all~ -a'" t>T PlneP~)(pl+E i(e) a pi-ebi j(t))< 1 E(e fo

all j(- <p, Ej~e. Thscopeestepro7o2ema33

Wene ae cntows read tonprvergTheore 3.3.r C

Thore 3.2. Tah e proof isbyindtio onuc thet sets ofl the

AA

all pjn. Th +e j(t)~ ) and ple^irij(tj):ri3Ct () or all t

Therfore byce ther lemtals exisPt T suchthandfo

all biTript))~pl~trilEje or jE -e1 b iEEj&1fo

Nex wre sow tayto ifrthe chonrls an3rtsoneget

Pro forto the links nda sessionse in the ando ofkK ad(.2

Thorm3..Th pof sbyinutino-77-et f h

parttio, ad isanaogos totheprof ofTherem3.2
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holds for K, then the controls and rates converge to pK+1 for

the links and sessions in K+1 and K+1, and (3.72) holds

for K+1. We begin by defining a new network 1 '=(X ',X)

exactly as described in the proof of Theorem 3.2.

For each jc.' let

e in= (r ij(tjn)-rig). (3.73)"

If .& 3 - j',let ejnO. By the induction hypothesis, en0.nI•

Let ,(O)=pj,(O)=pj(O) for each j ' and ri, (O)= ri'(O)= ri(O)
A A A A An,

for each iC-,. Define Pj'(t), no'(t), r1 '(t), r'(t), Pj

and fpn, as described in Lemma 3.2. By an argument analogous
3

to that given in the proof of Theorem 3.2, we claim that
A Ap n=pjn andr nt=rijn for all n.

Next we show that (3.54) is satisfied. Because

rtj(t)=rij(t), (3.54.1) is satisfied.

Let Z<min( O,pl) and let t 0 be the time of the

first link update. Then Pj(t)>z0  for t<tl O. Now suppose

Pj(t)>z0 for t<tjn. Then -

>Hj(z o cj, JJ) """

>zo 0• (3.74)

The last step follows because ZO<p1<Xj. Therefore, pj(t)>z0

for t<tk , where tk is the time of the next link update after

t n . So, by induction, Pj(t)>zo for all t. Hence (3.54.2) is
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satisfied.

Now, by Lemma 3.2 we have pjt(t)--,p1t for J, Z"11. But

Pil~)=P~t) nd 11 is the set of links j with j=lpKl
So~~c- Pt)pj fo 3 LK+1. Similarly, rij(t)..gri* for

ic-,jK+1. This completes the proof of Theorem 3.3.

A similar theorem can be proved for an algorithm using

the update equation (3.52). The proof is essentially the same

as for Theorem 3.4, except that in the lemma we define p.fl+l

by

AA
p nl=(-a )(mx bi(rij(t~n))+ETI)

+ a jngj(cj..4jn-ejn (375

where (E n) is any sequence that converges to 0, and E.'X O for

all n.

Note that Theorem 2.2 follows directly from Theorem 3.14,

by letting dij(t)=Dij(t)=O end choosing t nzri for each
i3
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Chapter 4

a. gner Asynchronous rit Aloithms

Bertsekas and others [13] have developed some broadly

applicable results pertaining to general asynchronous

distributed algorithms. In this chapter, we discuss these

results and show how they can be modified to include the

algorithms presented in Chapter 3.

4.1 ---ral .agnyrgenrl Ibor.Am

In this section we present Bertsekas' main result,

slightly reformulated to match our model.

For a given feasible set X qRn, we are interested in

finding an element of the solution set XeCX. Such an element

is called a solution. We consider a system in which a network .

of N processors iteratively computes estimates of the

solution. Each processor i maintains at -all times t an

estimate of the solution xi(t)EX, and a vector of mi

measurements zi(t)-(Zii(t),...,zim (t)), as communicated to

the processor by the network. The estimates and measurements

are updated as follows.

Without loss of generality, we index the times at which

B80-"i
° "'"t
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the events of interest take place (such as a processor

updating its estimate or receiving a measurement) by an

integer variable t. We also assume that for any integer t

only one event of interest occurs in the system. Suppose

processor i receives at time t a new value of the measurement

A A
Zij(t). We call the received value zij(t) to distinguish it

from the value zij(t) currently stored by the processor. Then

zij(t+1 )=zij(t). Furthermore, the processor updates its

estimate according to

xi(t+1)=Mij(xi(t),zi1(t),. ..,Zim(t)) (4.1)

where Mi(.)j is a given function. We call this a measurement

update. If no new measurement is received then

Zij(t+1)=zij(t). Each processor also updates xi(t) from time

to time, according to

Xi(t+1)=Fi(xi(t),zi(t)) (4.2)

where Fi(.) is a given function. We call this a

self-generated update. When no new measurement is received,

and the processor does not update its estimate, xi(t+1)=xi(t).

The measurement zij(t) received by processsor i at time t is

related to the processor estimates xl,x 2 ,...,XN by

zij(t)G((T'(t)) .,XN(TiJN(t))). (4.3)

(Bertsekas also includes as an argument to Gij(.) a random

variable C4. We omit this for simplicity, since the systems

we are studying are deterministic.) We make the following

assumptions about the times at which measurements are received

or updates take place.

- 81 -
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AssumqpiAn 1.O. For all 1<i<N, 1_<jSmi, 1k<N, Tijk(t)St.

1~ -;if,

A~~t..t:n 14.1. If tlt 2 , then

T1 jk(t I )2Tijk(t2) (4.4)

for all 1<i<N, -<j<mi, 1<k N.

Ass,,mp -on 4.2. For each i and j, and any to, there exists

t1>t0  at which processor i receives a measurement zij(tl) of

the form (4.3), with Tijk(tl).to for each lkKN. Also, for

each i and any to, there exists t2 >t0 at which processor i

updates its estimate according to (4.2).

Assumption 4.0 says that delays must be positive, that

is, we cannot predict the future. We call this the causality

assumption. Assumption 4.1 is essentially equivalent to

(3.10). Assumption 4.2 is equivalent to the result of Theorem

3.1, the consequence of (3.10) and (3.11). Bertsekas calls it

the continuing update assumption. The new assumptions are

required because we no longer assume that the measurements

Zij(t) are updated continuously.

Bertsekas gives the following theorem.

•T.heorem 4.1 . Let Assumptions 4.0 - 4.2 hold. Suppose there

exists a sequence of sets {X(k)} with the following

properties:

a. - 82-
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K and

X:*f) X(k). (4.5.2)

For 1<i<N, l<j. mj and k2O, define IL

Zij(k):{Gij(x1....,xN)IxhcEX(k) for 1 hKNI (4.6.1)

xi(k)={Fi(xi,zi)IxicX(k),zi6-Zi(k)) (4.6.2)

zjj(k)={Gij(xl,...,xN)jxh<-jj(k) for 1-0-0)t (4.6.3)

where Zi(k)=Zlj(k)X... XZi±W(k). Let Zfi(k):Zij~k)x... xZim (k).

Suppose that the sets X(k) and the mappings Fi(.)t Gij(.)

and Mij(.) are such that, for all i, j, k,

Xi(k)C X(k) (4.7.1)

Mij(xi,zi)CeX(k) when xj6X(k)p ziG-Zi(k) (4.7.2)

Mjj(xi,zi)E'fi(k) when xic-Xi(k)p zic-Zi(k) (4.7.3)

Mij(xi,zi)C-X(k~l) when xice-Xi(k), zie-Zi(k) (4.7.4)

Fi (xi, zi)eX(k,1X when xiEX(k+1)t zjgGZi(k) (4.7.5)

Then, if all initial processor estimates xi(O) are in X(O),

and all initial measurements Zi(o) are in Z (0), the limit

points of (xi(t)) are solutions for each i:1,,..,N.

We interpret the theorem as follows. Condition (4.7)

ensures that if all estimates xi(t) are in Xi(k) and all

measurements zi(t) are in Zi(t), then eventually, xi(t) and

Zi(t) will enter Xi(k.1) and Zi(k+l)t respectively, and remain

there. So for any k>O, x(t)EX(k) for large enough t. Thus,
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as k increases, x(t)CX(k) gets arbitrarily close to the

solution set. To see how (4.7) guarantees this, consider the

following argument.

Let us assume that xi(t)EXi(k) and zi(t)-Zi(k) for all i.

Condition (4.7.1) says that after processor i performs a

self-generated update, the new estimate will still be in

Xi(k). Similarly, (4.7.2) says that after a measurement

update, the estimate is still in Xick).

After a self-generated update, processor its estimate is

in Xi(k). We may regard the membership of xi(t) in Ii(k) as

progress toward the goal that xi(t) eventually be in Xi(k+1).

Condition (4.7.3) says that that progress is not undone by any

subsequent measurement updates.

Condition (4.7.4) says that after all the processors have

made self-generated updates, and enough time has passed for

the measurements to relfect this, then processor i's next .

measurement update will drive xi(t) into Xi(k+1). Finally,

(4.7.5) ensures that after xi(t) is in Xi(k+1), additional

self-generated updates will not push xi(t) out of Xi(k+1).

Theorem 4.1 is sufficiently general that we are tempted

to try to reformulate the asynchronous flow control algorithms

in terms that would allow us to apply the theorem. The

theorem as given, however, does not apply to the algorithms

-84-
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described in Chapter 3 for two reasons.

Theorem 4.1 states that if an asynchronous algorithm

meets certain conditions, the sequence of processor estimates ...

it generates must converge to a solution, regardless of the

manner in which the estimates are updated. But the flow

control algorithms in Chapter 3 require that updates only

occur at specified times, that is, when the update protocol is

satisfied.

Furthermore, Theorem 4.1 states that each processor i

computes a complete estimate of a solution xi , whereas the

flow control algorithms only require each link j to compute an

estimate of the jth coordinate of the solution p*.

Both of these difficulties can be overcome by slight

reformulations of the theorem, as described in the following

sections.

4.2 Aloim wit PnrtUa.1 Prcssr Esinae

S;.,.- '

In this section we show how to modify Bertsekas' model to

describe algorithms in which each processor estimates only a

partial solution. In an earlier paper, Bertsekas [141 gives a

result similar to Theorem 4.1 for algorithms where processors

compute only partial solutions, but that result is less

general than Theorem 4.1, in that the form of the measurements
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is more constrained.

In general, the dimensionality of the solution may exceed

the number of processors. In that case we would need some

processors to calculate estimates of several solution

coordinates. However, we may consider the ni coordinates that

processor i estimates as an hi-vector, and then consider that

vector as a single coordinate of an N-vector. So, without

loss of generality, we assume that each processor i calculates

only the ith coordinate of the solution. Indeed, we may

consider that in the general algorithm of section 4.1, the

limit points that each processor i calculates are the

(n-dimensional) ith coordinates of solutions in

(X*) N_ XN cRnN.

We may still describe the algorithm using (4.1) - (4.3)

by simply reinterpreting xi(t) as processor i's estimate at t

of the ith coordinate of the solution. We write

x~t=( )) where xi(t)GXI for each i:l,...,N and

X(t)GX:Xlx...xX N . We call x(t) the complete estimate and

Xi(t) the ith partial estimate.

We might now state a theorem similar to Theorem 4.1 for

this model, but for one remaining difficulty. Even when the

processor estimates converge, Theorem 4.1 does not promise

that the different processor estimates converge to the same

solution. An algorithm where the processors each calculate

- .: -'.8
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one coordinate of different solutions is of dubious value.

For example, we might have Xl(t)__ XltEX 1* and x2 (t)-'.x2 X2 ,

but (xii x2')PX" Additional restrictions are needed to

guarantee that if the partial estimates converge, they

converge to coordinates of the same solution. While more

general results may be possible, we choose to avoid the

problem by assuming that the solution set X* is the Cartesian

product of sets XiO, i=l,...,N,

XXx... XXN*" (4.

Rather than restate Theorem 4.1 for this model, we expand

the model in the following section to include update

protocols, and so get a more general result.

4.3 Gene~ral Asynchronous Algori.thbm. wit Upat Prte

In Chapter 3, we introduced the idea of an update

protocol as a way of restricting when the processors could

update their estimates. In this section, we revise our

interpretation of an update protocol so that the processors

may update at any time, but only when the protocol is

satisfied does the update actually affect the estimate.

An update protocol for processor i can be expressed in

terms of a protocol function Pi:XixZi -- {0,1), where Z i is the

set of all possible measurements zi. If Pi(xi,zi)=1, we say

that the measurements zi are consistent with the estimate xi .

8 7 " "
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5 1

Thus, Pi(.) is the indicator fuction of some subset of XlxZ ' .

and we call this set the consistent set Ci. Define
A
Fi(xi, zj)= i(xilzi) when Pi(xi,zi)=l

x otherwise (4.9)

9 and Ar

M i(xizi)= ij(xizi) when Pi(xi,zi):l

fx i  otherwise. (4.10)

We call Fi(.) and "ij( . ) the constrained update functions, and

Fi(.) and Kij(.) the unconstrained update functions. We

rewrite (4.1) and (4.2) as

xi(t+1)=Mjj(xi(t), zi1(t), • • zij(t), • • zimi(0)) (4.11) :!

and

Axi(t+l)=Fi(xi(t),zi(t)). (4.12). --.-

Hence, we restrain the processor from changing its estimate

unless the processor's current measurements are consistent

with its estimate.

IL

We make the following assumption about the update-

protocol.

Asmion 4.3. For each processor i, there exists an

infinite sequence of times for which Pi(xi(t),zi(t))=1 and the

processor updates according to (4.12).

One way to ensure that Assumption 4.3 holds is to require

Pi(xi,(Gi(xl)p@Gim (x i)))l (4.13)

* ..*.**
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for all xcXlx...{xi}... xXN 1Sj_<mi, for all Xi Xi .

Essentially, (4.13) says that if each of the measurements zij

could have been generated using the current estimate xi, then

they are consistent with that estimate.

To see how (4.13) implies Assumption 4.3, suppose there

exists some time to such that Pi(xi(t),zi(t))=O for all t-to.

Then xi(t)=xi(t0 ) for all t to. But by Assumption (4.2),

there exists tj>t O such that

zij(t 1 )=Gij (x 1(Tij
1(t )l,...,xi(tO

),o..., it:

XN(TijN(t))). (4.14)

for each 1<j<mi. But (4.13) and (4.14) imply

Pj( xi(tl ), zi(t) I)=I (4. 15) :- :[:

which is a contradiction. Hence (4.13) guarantees the

existence of an infinite sequence of times for which

We give the following theorem.

Theorem !J.,2. Let Assumptions (4.0) - (4.3) hold and let Xf be

of the form (4.8). Let the processor estimates xi(t) be

updated according to (4.11) and (4.12). Suppose there exist

sequences of sets (Xi(k)) for Iei&N with the following

properties:

X*CX(k+I )C X(k) C ... X (4.16.1)

and coo

X= i') X(k), (4.16.2)

- 89 -
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where X(k)=Xl(k)x...XXN(k).

For 1(i<N, l<j~miq and k>-Ot define

ij(k)=(Gij(x):'xCX(k)) (4.17.1)

Zij(k):tGij(x)IxCiX(k)), (4.17.3)

where Zi(k) and Y(k) are defined in the obvious manner.

Suppose that the sets X(k) and the mappings Fi(.), Gij(e)

and Mij(.) are such that, for all i, j, kt

Xi W52Xi (k) (4.1 8.1)

i.j (xi, zieXXi(k) when xie-Xi(k), z~r-Zi(k), Pi(xi,zi)=1

(4.18.2)
'ij(xi,zi)C-Xi(k) when xic-i(k), ZiL-Zi.(k), Pj(xi,zi)=1

(4.18.3) %

M i jx i z i )-C ik 1) when xij-Yj(k), zirT-i(k), Pi(xizi)=1

(4.18.4)
Fi~i~z)C-i~kl)when xj-Xj(k+l)g zjG-T1 (k), Pi(xi,zi)=1

(4.18.5)

Then, if all initial processor estimates Xi(O) are in Xj(O),

and all initial measurements zi(O) are in Zj(O), the limit

points Of (x(t)) are solutions.

Prof We Will show, by induction, that there eXists a

* ~monotonic increasing sequence of times {tksuhta

xi(t)=i(k) for 1.1iSN (4.19)

for all t~tk. Therefore, by (4.16) and (4.8), the limit
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points of {x(t)J are solutions.

We begin by showing that

Xi(t)C-Xi(0) for 1iN (4.20)

for all t~tO=0. By assumption, (4.20) holds for t=0. Now

suppose there exists t,20 such that (4.20) holds for all

O~t-t'. Our model assumes there is exactly one processori

that performs an update according to either (4.11) or (4.12)

at time t'. So for each processor j=i, xj(tI+1)=xj(tI). if

Pi(xi(tt),zi(tQ):0t then xi(tt.1)=xi(t') and (4.20) holds for

t1+1. If Pi(xi(t' ,zi(tQ):1, we consider two cases.

A

Suppose processor i receives a measurement Zij(tI) at t'

and updates according to (4.11). By the causality assumption,

xh(Tijh(tt))E-xi(0) for each 1 Kh N. Thus (4.3) and (4.17.1)

imply that zij(tt)e-Zi3 (0). Similarly, zih(t' )CZih(0) for

1<h<mi. Hence, by (4.18.2)p xi(t'+1)reXi(0).

Now suppose processor i updates according to (4.12) at

WN t'. As above, we argue that zih(t')C.Zih(o) for lSh~mi.

Hence, by (4.17.2) and (4.18.1), xi(tI,1)6Xi(0)!LXi(0).

Thus, (4.20) is satisfied for t1+1, and by induction,

(4.20) holds for all t 0.

NOW Suppose there exists k and tk such that (4.19) holds

for all t~tk We will show that there exists tk+)ksc
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that (4.19) holds for all ttk+l. We do this by constructing,

for each i, an intermediate sequence of times,

tk<('ki<tkiltk'<Jki'<tki'tk ' ', such that v

Zi(t)CZi(k) for t>rki (4.21.1)

Xi(t)C-Xi(k) for t>tki (4.21.2)

xj(t)eCXj(k) for t>tk', for all j (4.21.3)

Zi(t)C.Zi(k) for t>?ki, (4.21.4)

Xi(t)CXi(k+1) for t>tki, (4.21.5)

Xj(t)eXj(k+1) for t>tk'', for all j (4.21.6)

By the induction hypothesis and the causality assumption,

there exists 2 ki for each processor i such that (4.21.1)

holds.

We claim that (4.21.2) holds when tki is the time of

processor i's first update after'Z-ki according to (4.12) with

. Pj(xi(t),zi(t))=l. Clearly (4.21.2) holds for t=tki+l. Now

suppose (4.21.2) holds for some t>tki+1 " If processor i does

not update at t, or Pi(xi(t),zi(t))-O, then xi(t+1)=xi(t) and

(4.21.2) holds for t+1. If processor i updates by (4.11) with

Pi(xi(t),zi(t))=1, then by (4.18.3), Xi(t+1)6Xi(k). If

processor i updates by (4.12) with Pi(xi(t),zi(t))=1, then

X1 (t+lICXi(k) by (4.17.2). Hence, (4.21.2) holds for all

t>tki

Now choose tk,=max tki and (4.21.3) is satisfied.

-92-

.4Q



AD-Ri49 452 ASYNCHRONOUS DISTRIBUTED FLOW CONTROL ALGORITHMS(U) 213
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
INFORMATION AND DECISION SYSTEMS J MOSELY OCT 84

UNCLASSIFIED LIDS-TH-i4i5 N 4-84-K-0357F/9/2 NL

mhEEEEomhhmhhhImE~hE~hEEEEEE



.1

1.25 11. 11.65Il~ I IInI

MICROCOPY RIESOILUTION TEST CHART

NATIONAL BUOKA 01 STJUWO&NS -19163 - A

I'l
*'I12 11 4 (~
.. I -

-- - ... ... ,.. ...... '-'..,. . -.. . .. .- . . .• . .- .-..-.,. .. . . ,, , ' -, '.... ".. ,- . - .. .. •,.. ,.',., , . ... . .. '. .<. ." .



* - - -- - .o .. .

By the induction hypothesis and the causality assumption,

there exists ' ki' for each processor i such that (4.21.4)

holds.

By the continuing update assumption and (4.18.4) there

exists tki, such that (4.21.5) holds for tztki'+l. Now

suppose (4.21.5) holds for some t>tki, 1. If processor i does

not update at t, or Pi(xi(t),zi(t))=O, then xi(t+l)-xi(t) and

(4.21.5) holds for t 1. If processor i updates by (4.11) with

Pi(xi(t),zi(t))-1, then by (4.18.4), xi(t+l)C'Xi(k+l). If . -.

processor i updates by (4.12) with Pi(xi(t),zi(t))_1, then

Xi(t+l)EXi(k+l) by (4.18.5). Hence, (4.21.5) holds for all

t>tki,

Hence, we may choose tk ,,=max tki, and tk+1=tk ''+l. We

have constructed the sequence {tk) as desired. This completes

the proof of Theorem 4.2.

Note that Theorem 4.1 can be considered a special case of

Theorem 4.2, by using the protocol functions Pi(xi,zi)=1 for

all xEXi, zieZi, and by letting Xi(k) in (4.16) equal X(k) in

(4.5), for each i.

While we could use Theorem 4.2 to prove the results of

Chapter 3, it is more convenient to apply the following

corollary. The corollary is just a simplified form of Theorem

4.2, for the case where there are no measurement updates, only

9'.
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self-generated updates.

S4. 1. Let the processor estimates Xi(t) be updated

according to (4.11) and (4.12) with Mjj(xj,zj)xi" Let

Assumptions 4.0 - 4.3 hold and let X*, {X(k)), {X(k)},

{Zij(k)) and {Zij(k)) be as in the statement of Theorem 4.2.

Suppose

X(k) C_ X(k+1). (4.22)

Then, if xi(o)CXi(o) and zi(O)C--Zi(O) for all i, the limit

points of {x(t)) are solutions.

Proo We prove the corollary by the application of Theorem

4.2. Since Mi(xi,zi)=xi, the conditions (4.18.2) and (4.18.3)

are trivially satisfied. The condition (4.22) implies

(4.18.4) and (4.18.1). Furthermore, (4.18.1) implies

Zij (k): {Gij ( x) IxC(k))}"".

'(Gij(x) IxeX(k))

=Zij(k) (4.23)

and so
{Fi( x i , zi) I x i6Xi (k+l), z i Ti (k) Pi( x i, z i)1} =

! j{Fi(xi, z i ) 1 xic=Xi(k),ziC-Zi(k),Pi(xi, zi)=1 --':

=Xi (k)
"!" l( k+1 ). (4 .24) ""-

Hence (4.18.5) is satisfied.

We have shown that the conditions of Theorem 4.2 are

satisfied and therefore, the limit points of {x(t)) are
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solutions. This completes the proof of Corollary 4.1.

In the next section, we use this corollary to obtain a

result that shows how some synchronous algorithms can be made

to work asynchronously.

4.4 Protool f=Z or Zyncri Algorit-ms

In this section we describe how, starting with a

synchronous distributed algorithm taken from a given class of

algorithms, we can design an update protocol that allows us to

implement the algorithm in an asynchronous manner.

Unfortunately, it is not always possible to implement the

desired protocol, and so, the result has limited application.

We present it mainly for the insight it provides about why

such update protocols work.

We model a synchronous algorithm as follows. As in

section 4.2, each processor i at time t has an estimate

Xi(t)eXi of the ith coordinate of a solution xEX*, where X0

is of the form (4.8). All the processors update their

estimate simultaneously at each t, according to

Xi(t+l)=F(xi(t),zi(t)) (4.25)

where

Zij(t):Gij(x(t)) (4.26.1)

and

zi(t)=( ...,zj (t),...). (9.26.2)
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Note that there are no measurement updates, since all

measurements are "received" simultaneously. Combining (4.25)

and (4.26) we get

x(t+1 )=(H1 (x(t)),... ,HN(x(t)))

:H(x(t)) (4.27)

where Hi(x)=Fi(xi,Gi(x)).

We give the following theorem.

Theore For each i, let (X(k)) be a sequence such that

X* CX(kel )C. X(k)GC ... .C X (4.28.1)

X1: ( X(k) (4.28.3)

and

H(X(k)).X(k.1) (4.28.3)

where X(k):Xl(k)x.. xXN(k) and H(X~k)) is the image of X(k)

under the mapping HIC.).

Let (x(t)) be generated by (4.3) and (4.9) -(4.12) with

x(O)C-X(O) and zi(O)C6Zi(O) for each i. Let Assumptions 4.1 and

4.2 hold. If it is Possible to define Pi(XiVZi) such that

C(Fi(xitGi(x))):x X(k))t (4.29)

and such that Assumption 4.3 holds, then the limit points of

{x(t)) are solutions.

Proo~f. We prove Theorem 4.3 by the application of Corollary
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4.1. Since there are no measurement updates, we take

Mij(xizi)=Xi . Combining (4.17.1), (4.17.2) and (4.29) we get

x1 (k)= {Fi( xi, zi)lIxi&Xi (k), ziC-Zi (kj, Pi( xi, zi)=l }I'-

j--{Filxi,Gi(x) ) 1 x,,l-(k)} 2.

: {Hi(x) IxGX(k))

=Hi(X(k))

CXi(k+1). (4.30)

Hence, (4.22) holds and the conditions of Corollary 4.2 are

satisfied. This completes the proof Theorem 4.3.

The first' part of the theorem simply states conditions on

the manner of convergence of the estimates generated by the

synchronous algorithm. Clearly, if x(0)GX(0), the sequence

(x(t)) generated by the synchronous algorithm (4.27) is such

that x(k)6X(k) for all k, and hence its limit points are

solutions.

Now consider an asynchronous algorithm that satisfies

Corollary 4.1. The estimate sequence {xi(t)} behaves as

desired because (4.22) guarantees that, with xi(t)EXi(k) and

Zi(t)CZi(k), updating will never cause xi(t) to go back to

li(k-l) , and because Assumption 4.3 guarantees that xi(t) will

eventually enter Xi(k+1). Now take an algorithm for which

(4.22) does not hold. If we choose a protocol such that

updating is forbidden whenever updating would cause xi(t) to

go back to Xi(k.l), then (4.22) will be satisfied.
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Equation (4.29) tells us how to design that update

protocol. We do this by comparing the image of Xi(k)xZi(k)

under Fi(.) with the image of Xi(k)xGi(X(k)) under Fi('). The

set Xi(k)xGi(X(k)) consists of all estimate and measurement

pairs for processor i such that each of the measurements could

have been generated from the same element xEX(k). Hence,

Xi(k)xGi(X(k)) is a subset of Xi(k)xZi(k). Now choose the

consistent set Ci such that Fi(') maps Xi(k)xZi(k)lCi to the

image of Xi(k)xGi(X(k)) under Fi('). Then, with the protocol

function equal to the indicator function on Ci, (4.29) holds.

The idea behind (4.29) is that updates are permitted only when

updating will not push xi(t)CXi(k) back into Xi(k-1).

While we can always select the consistent set so that

(4.29) holds for any given k, it may not be possible to choose

the set so that (4.29) holds for all k. Even if (4.29) holds

for all k, the update protocol may not satisfy Assumption 43.

Furthermore, it may ndt be possible to implement the resulting

update protocol, since doing so might require the processors

to know the exact form of the measurement generation functions

Gij(*).

Though these limitations restrict the usefulness of

Theorem 4.3, it still provides a starting point for someone

trying to design an update protocol.

1.5 bfl DI CoQ ~nt.rolg AlgorithLbm a an EvamIn...
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In this section, we give an alternate proof of Theorem

3.2, using Corollary 4.1. In fact, we prove a somewhat

stronger result than Theorem 3.2, since we will show that the

update protocol is not needed for the controls to converge.

We note, however, than in order to apply Corollary 4.1, we

must make the causality assumption, which was not required for

the proof of Theorem 3.2. The update protocol is required,

even with causality, for the algorithm of Theorem 3.3, as a

simple example will show.

We begin by showing how the elements of the flow control

model fit the general model of sections 4.2 and 4.3. The

feasible set X is taken to be RN, where N is the number of

links in the network, and the solution set is X*={p*), where

p* is the fair allocation over Hayden's feasible set (3.27.1).

The processors are the links and the estimates they compute

are the coordinates of the control vector p. The measurements

Zji received by link j are just the rates rij of its sessions.

Since the links receive new measurements continuously, but do

not update each time new measurements are received, the only

events of interest are the control updates which take place at

times tin, for jt, n2O. In the notation of Chapter 4, we

have

Mij(pj, rj)-pj (4.31.1)

Fj(pj,rj):max rij+(cj- _ rij)/Wj (4-.31.2)

and d
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Gmj(p)- min Pk for iej-j. (4.31.3)

The original protocol function is given by

Pj ( pj, rj ) -10  if m ax rij PJ

otherwise. (4.32)

However, we will show that the conditions of Corollary 4.1 can

be met using P (pj,rj):l for all Pj,rj'R.

To apply the corollary, we must construct the sequences

{Xj(n)) such that

L j(n+1) ijn)i ... Xj(O (4.33.1)-.-.

Xj(n):(pjl (4.33.2)

and

Fj (pj,rj)&Xj(n+1) (4.33.3)

when PjCXj(n), rj.Zj(n).

Even though we have shown in Chapter 3 that the controls

of the flow control algorithm converge for any initial

controls Pj(O>GR and rates rij(O)6R, there exist networks for

which it is not possible to construct a chain of sets X(n) as

in (4.33) with X(O)=RN. This is because, with X(0)=RN,

X(Ol=RN which implies X(1)=RN. So, by induction X(n)=RN for

all n. Instead, for any initial Pj(O) and rij(O), we take

Xj(0):[-Aj,BJ], (4.34)

for suitably large Aj, Bj.
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Now partition the links into sets I,•1,., L and the

sessions into sets ) 1,...•A.L as in the proof of Theorem

3.2. We will construct (X(n)} by finding sequences (ek(n))

and (Ek(n)} for each k=1,...,L, such that

Xj(n)=[pk-ek(n),pk+Ek(n)] for j-(:;k (4.35)

and (Xj(n)) satisfies (4.33).

Before defining {ek(n)} and (Ek(n)}, we describe the idea

behind their construction. We begin by taking el(n)=O for n1 :

and finding {E1 (n)) that is monotonically decreasing and

converges to 0. As long as El(n) is greater than some

threshold less than p2, we keep Ek(n) fixed at some large

number E and let pk-ek(n)=pl-el(n), for all k22. When El(n)

drops below the threshold at some time N2 , we let p2- e2 (n )

rise above pl and E2 (n) begins to fall. We still keep Ek(n)

fixed at E and let pk-ek(n)=p2-e 2 (n) for k23. This process is

repeated until (ek(n)) and {Ek(n)} have been found for all k.

We formally construct the sequences {ek(n)}, {Ek(n)) as

follows. First define, for kzl,...,L,

ek(o)= aE (4.36.1)

and

Ek(O)= E (4.36.2)

where a= min 1/WI and E is some suitably large constant such

that E>pL/a. Now let

el(n)=O (4.37.1)

and
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EI(n+1)=(1-a)E (4.37.2)

for all n21. Suppose that we are given a sequence

NI<N2<...<NL such that N1 =l and, for k>1,

ek-l(n)+Ek-l(n)<(pk-pk-l)a/(l-a) (4.38) -..

for all n>Nk. Now define, for n_>Nk

ek(n+1)=(1-a)(ek(n)+Ek .l (n)) (4.39.1)

Ek(n 1)=(l-a) (ek(n)+Ek(n)) (4.39.2)

and for NkIn<Nkl, K>k,

eK(n 1)= pK-pk+ek(n 1) (4.40.1)

EK(n+1)=E. (4.40.2)

In Appendix D, we show by induction that the sequence

N1 <N2<...<NL satisfying (4.38) exists, and that the sequences

{ek(n)) and (Ek(n)) are monotonically non-increasing and

converge to 0, for all k. Hence, (4.33.1) and (4.33.2) are
satisfied.

Furthermore, we show that the sequences have the

properties that for <K, for all n,

pk-ek(n )_&pK-eK(n) (4.41.1)

ek(n)_eK(n) (4.41.2)

and

Ek(n)SKEK(n). (4.41.3)

These properties will be needed to show that (4.33.3) holds.

We show that (4.33.3) is satisfied for n=O. Note that

(Wj.1)(pk-aX)+ max rij_ " rij <Wj max rij, (4.42)
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for rjE-Zj(O). Therefore,

Fj(pj,rj) max rij+(cj-Wj max rij)/Wj

2Cj/wj

- 2p1  (41.43)

Fj(pj,rj)S max rij(cj-.(Wj-.1)(pk-a.X).. max rjj)/Wj

p (1-1/wj)( max i-kaXcjW

<(1 -1/Wj)(E~aE)+Cj/Wj

L <pk..E. (4.44)

Hence,

Fj(pj rj)E:-pl pk+EJ:Xj( 1) (41.45)

as desired.

Before showing that ('1.33) holds for n 1, we make the

following observations. If session i on link j is in

then every link in its path is in XK for some K, k. Thus,

('1.31.3) and ('1.41.1) imply

riAmin pK.eK(n)

:pk-ek(n) (4.46)

for iC-jkl rijCEZij(n). Furthermore,

f or iECk rijEZij(n).

Now we show that (4.33) holds for n 1. First we show
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tha t

Fj(pj,rj).(pK+EK~nfl) (4.48)

for J.kK, PjC-Xj(n), rjC-Zj(n). We consider two cases: fl<NK

and n>NK If fl<NK, by (4.44)

F. p+K~~). (4.49)

Now suppose n NK LtWk be the number of sessions on link .jK. Let 3
in k. Then, by (4.46)

r j,.,3 5-Wjk(pk-ek(n)).max ri3..(pk-ek(n))

<5 Wjkek~n) +max r. .P-e~n) (4.50)

Therefore,

F. n1/j.m rij+ wwke kn) ma ri+pK-eK(n)/W

=pK+(1-.1/W )(EK(n))+eK(n))

=pK+eEK(ne1) (4.50)

as desired. The third step follows from (4.47) and (4.'f1.2).

Next we show that

Fjpjr~~K-eK(n~1) (4.52)

for jo tKq PjCGXj(n), rjCEZj(n).

First we derive some preliminary results. For

convenience, define

Wjk (4.53.1)
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and

a3 K:V K/WJ (41.53.2)

ThenT WK is the number of sessions on link j that are

controlled by links at a higher level than K, that is, the

number of sessions that are in L1r..4k.

Let J be the largest number for which that ici J, icQZij

For any H&J, (4.47) implies

H-i
r ri< 15-k(pkEk(n))+W.H-1max -iii.(.4

Therefore -

k~p+Ekn)) H-maxrH-/WF3(pj,rj)2max rij cj- iWjk~kE~) HV la r, 1k.=)

- ij

+a.Kl1(C.- :J W.p) .--1 a*.(.5

By the construction of the fair control vector

pH<(c 5;-kpk)/ H-1. (41.56) ...

By (4.41.3)

akEk(n) a kE1(n)

t(l-, H3) H-~ ) (4-57

and by the choice of J and (4.41.1)

max r j4 .tpJ-eJ(n)

>H..eH(n). (4.58)

Hence,

-105-



:pH-.( 1-a H-1 )(eHEHl (ii))

We are ready to show that (41.52) holds. We consider two

Cases: J=K and J<K. Suppose J=K. If O>N K hn(.9

implies

=PK..eK(n+1). (4.60)

Iff<Ki let H be the largest number such that n NH. Then

=pK..eK(n,1). (41.61)

Now suppose J<K. Then (11.61) also holds for n<NJ+1.

Finally, suppose n>Nj~,1 By (4.4T7)

r 3...(J+EJ(n)). (41.62)
riE iWkpk.Ekn) +max r.j(

Thus,

* . j(Pkj,rj)(1.1/Wj)max nij

+(c.. 'Wjk(pk+Ek(n))-pJ-EJ(n))/W.

)(1..1/Wj) (pJCJ(n).EJ(n))..pJ/Wj+(cj'2 wi~)W

:pK_(1-a)(eJ(n)+EJ(n)), (11.63)

1o6



where the last step follows from the construction of the fair

control vector. But, since n>Nj 1 ,

(1-a)(eJln)+EJ(n))<(1-a)(eJ+l (n)+EJ(n))....

:eJ+l (n+l)

eK(n+l) (4.64)

and so

Fj(pjrj)pK-eK(n+). (4.65)

We have shown that,

Fj ( pj,rj)EpK - eK(n+ l ),pK+EK(n + I ) m

=Xj(n+l) (4.66)

for JC4K, P &Xj(n), rjGZj(n). The conditions of Corollary

4.1 are satisfied, and therefore, the controls generated by

the asynchronous flow control algorithm of Theorem 3.2

converge to p' without the update protocol.

It is instructive to consider why the proof in Chapter 3

requires the update protocol while this proof does not. In

both cases we must show that, for any e>O, the control Pj(t)

eventually drops below Pj*+e. A necessary step in showing

this is demonstrating that

P n+l<pjn-m+(c  " n)/Wj (4.67)

for some non-negative m. With the causality assumption, -

max rij(tjn)Spjn-m (4.68)

for some mO, and so (4.67) is satisfied. With the update

protocol, (4.68) holds for m-O and the causality assumption is -
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not needed.

This leads us to question whether the update protocol is

required for the generalized algorithm, as given in Theorem

3.3, if we assume causality. In fact, the protocol is needed,

as the following example shows.

Consider a network of one link with capacity c and W

sessions. Let g(x)=x and bi(x)=x, for all i. Then

p(n+l )=(1-a)p(n)+a(c-f(n)), (4.69)

where a=l/(W+1). Note that p*=ac. Now suppose that f(O)=c,

and the link updates many times in rapid succession, so that

f(O) does not have time to change from one update to the next. .

Then, after N1 updates,

=( pO+(1 ~)(c-f(O))

=c-f(O)-e(N1 ) (4.70)

We can make e(N 1 ) as small as we like by taking large enough

NJ .  Now the link waits until the flow reflects this control,

that is,

f(N1)=W(c-f(O)-e(N1)). (4.71)

Once again, the link updates rapidly, without waiting for the

flow to change, so that

P(N2 )=c-f(N1 )-eCN2 )

=c-W(c-f(O)-e(N1 ))-e(N 2 ). (4.72)

In this manner, we can construct a sequence of times {Nk) such

that the flows are given by
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f(Nk+l)=W(c-W(c-f(Nk).e(Nk))-e(Nk+l)) (473)

For appropriately chosen {e(Nk)}, this sequence of flows will

never converge.

Let us see where the conditions of Corollary 4.1 fail to

hold for this example. Suppose we have

X(n):[p*-e(n),pa E(n)]. Then Zi(n)=X(n) for each i. Now

suppose that p(n)=p*-e(n) and ri(n)=pO+E(n). Then

p(n+l ):(1-a)(p*-e(n))+a(c-W(p'+E(n))

=p*-(1-a)(e(n)+E(n)). (4.74)

Hence, we cannot guarantee that F(p,r)EX(n) when peX(n),

r Z(n). Thus, for this algorithm, the update protocol is

required to ensure that the controls get above a given

threshold. Examining the proof of Theorem 3.3, we see that

the update protocol was invoked for that very reason.

We conclude this chapter by remarking that these results

are not obvious. Without applying Theorem 4.2 to the flow

control algorithms, we would probably have never discovered

that one algorithm requires the update protocol and the other

does not.
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Chapter 5

Simaion an~d Results

In this chapter we describe a computer program designed

to simulate a voice packet network using a flow control

algorithm, such as one of those described in Chapter 3. The

program was written in Lisp on the Symbolics 3600, by Allan

Wechsler and myself. The program listing is given in Appendix

E. After describing the program model and the program, we

introduce a specific network model and discuss the results of

the simulation using that model.

5.1 .b& Simlatiol Model''.--

The simulation model is substantially the same as that

used by Hayden [9], with some minor differences.

The program allows the user to define a network with an

arbitrary topology. The network is specified by two global

variables: a list of its users (sessions) and a list of its

links.

A user is a data object that has, among other attributes,

a rate, a partner (the other user that it talks to) and a

route (the list of the links that are in its path). If user
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i's partner is user k, then user k's partner is user i. At

any given time a user is either active (talking) and its

partner is inactive (silent), or vice versa.

When a user is active, it generates a variable length

voice packet approximately every 20 msec. The actual time

between packet generations is a random variable uniformly

distributed between 18 and 22 msec. The length of a voice

packet in bits is given by .

PACKET-LENGTH: uSER-RATE/SOl. (5.1)

The rate is a floating point number, but the length is an

integer. L

After generating a voice packet, an active user will

generate another voice packet with probability (1-p).

Otherwise, the packet generated is the last in its talk-spurt.

If the packet is designated last, the user becomes inactive

after the packet is transmitted and the partner becomes active

when the packet is received. We use p:1/60, and hence, the

number of packets per talk-spurt is a geometric random

variable with mean 60. This conforms with experimental values

measured by Brady [15], who found actual talk-spurt durations

to be approximately exponentially distributed, with mean 1.2

sec. This is not a completely accurate representation of real L

speech, however, since brief periods of silence usually occur

between talk-spurts, and talk-spurts do not always alternate

strictly between two members of a conversation. Nevertheless,
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it is an acceptable approximation for our purposes. We also

have the option of setting the talk-spurt length to infinity.

This lets us study the steady state behavior of the system.

When a user is inactive, it generates fixed length

control packets at regular intervals, for the purpose of

passing feedback information to its partner. The length of

the control packets is 10 bits, and the time between the

generation of successive control packets is 100 msec.

A link is a data object that has a control value, a flow,

a list of its currently active users and a queue of packets

waiting to be transmitted on the link.

A link's list of its active users also includes, for each

user, the user's rate, as determined by examining the most

recently received packet from that user. This rate list is

used to determine whether the update protocol is satisfied,

and to calculate the flow of the link. This is the main

difference between our simulation and Hayden's. In Hayden's

program, a link determines its flow by observing the number of

bits arriving in the queue over a given period of time. This

affects the value of the flow in three ways not accounted for

by the theoretical model. First, the observed flow includes

control packet traffic. Also, the observed flow for a link is

limited by the capacity of the neighboring links that feed its

queue. Finally, the observed flow may represent the rates of
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the link's different users in unequal proportions. For these

reasons, we prefer to calculate a link's flow by summing the

rates of the link's active users.

Each link attempts to update its control periodically, by

first checking whether the specified update protocol is

satisfied. If it is, the link updates according to the

specified update function. If not, the link waits a given

interval and tries again. There are two update interval

parameters that can be adjusted: the time between a succesful

update and the next update attempt, and the time between an

unsuccessful attempt and the next attempt. They are called

the UPDATE-INTERVAL and the UPDATE-ATTEMPT-INTERVAL. In

section 5.4 we will see that the choice of these parameters is

critical to the performance of the system.

One of two update protocols can be selected: HOSELY or

HAYDEN. The MOSELY protocol is given by (3.21) and the HAYDEN

protocol always permits updates.

Three different update functions can be selected. The

HAYDEN-UPDATE-FUNCTION is given by

Pj(t+l)-max[cj/Wj,min[cj,pj(t)+(cj-fj(t))/WjJJ. (5.2.1)

The MOSELY-UPDATE-FUNCTION is given by

Pj(t+1 )=max[cj/Wj,

min[cjmax rij(t)+(cj-fj(t))/Wj]J. (5.2.2)
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The JAFFE-UPDATE-FUNCTION is given by

Pj(t+1 )=max~cj/(Wj.1),

min[cj,Pj(t)+(cj..f(tpj(t))/(Wj+lfl]. (5.2.3)

The variable Cj in these equations represents the effective

link capacity and not the true capacity. For the simulation

we Used cj:.8Cj, where Cj is the actual capacity. These

update functions differ slightly from those given earlier, in

that we restrict the range of the controls. Since we know

that the fair control allocation can never result in a control

for link J Outside the interval (cj/Wj,cj] for Hayden's

feaibl se orEcj(Wjl),jlfor Jaffe's feasible set, these

are reasonable modifications.

A packet is an object, created by aUser, that has a

source and destination (two users), a rout~e (a list of links),

forward control and feedback information, and a variety of

statistics, such as its length, time of generation, and the

rate of its source.

When a packet is created, its forward control is set to

infinity. Each time a packet is transmitted across a link,

isforward control is reset to the miiu fiscurrent

forward control and the control of the link. Hence, when a

* packet arrives at its destination, its forward control is

equal to the minimum control of the links in its path. This

number is stored by the destination and Used as the feedback
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value in the next packet created by the destination to be

returned to the source. When the source receives the returned

packet, it changes its rate to equal the feedback value.

Note that a packet contains its source's rate. This is

desirable for two reasons. A link could calculate a given

user's rate by multiplying the length of one of that user's

packets by 50, but this produces serious round-off errors.

Also, a user might sometimes want to transmit at a rate lower

than that assigned, while still reserving for itself the

option to send at the higher rate later. Hence, we prefer the

users to communicate their rates to the links, rather than let

the links measure the rates.

This completes the description of the simulation model.

*5.2 Thjn SimulaionPrga

In this section we describe the event driven program that

was written to simulate the model of section 5.1.

The program works by scheduling and performing events in

an event table. An EVENT consists of a TIME, a FUNCTION and

ARGUMENTS. When an event is created, it is added to the

*EVENT-TABLE#, which is implemented as a heap. The heap is

sorted so that the event at the top of the heap is always the

one whose TIME is earliest. An event "takes place" when it is
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removed from the top of the heap and its FUNCTION is applied

to its ARGUMENTS. When this happens the global variable

*TIME* is set to the TIME of the EVENT being performed.

The program begins by intializing the network, creating

the start-up event and adding it to the heap. The program

then enters a loop which repeatedly removes events from the

top of the heap and performs them, until the global variable

*TIME* exceeds the given time limit. Since most events, when

performed, create one or more new events with times later than

*TIME*, the heap never becomes empty.

There are ten different types of events that occur, as

described below.

SIMULATION-STARTUP

This is the first event performed. It schedules the

first VOICE-PACKET-GENERATIONs for all intially active users

and the first CONTROL-PACKET-GENERATIONs for all initially

silent users. While the first group of

VOICE-PACKET-GENERATIONs are synchronized, subsequent

VOICE-PACKET-GENERATIONs will rapidly fall out of

synchronization. The same is true of the

CONTROL-PACKET-GENERATIONs. This event also schedules the

first UPDATEs and LINK-STATISTICS-COLLECTIONs for each link,

and the first USER-STATISTICS-COLLECTIONs for each user. The

times of the first link UPDATEs are randomized, since these
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events would not fall out of synchronization otherwise.

VOICE-PACKET-GENERATION

When a voice packet is generated, its FORWARD-CONTROL,

FEEDBACK-CONTROL and LENGTH are set, as described in the

previous section. The route of the packet is set to the route

of its source, its GENERATION-TIME is set to *TIME*, and TYPE

is set to VOICE. The LAST-IN-TALK-SPURT? flag is set to T or

NIL, according to the outcome of a random "coin toss". The

entire packet is scheduled to arrive at the first link in its

route at *TIME* + 'PACKET-GENERATION-DELAY. This is

accomplished by adding the events PACKET-ARRIVAL and

PACKET-TAIL-ARRIVAL to the event-table. If

LAST-IN-TALK-SPURT? is NIL, another VOICE-PACKET-GENERATION

is scheduled for the appropriate future time, otherwise, a

CONTROL-PACKET-GENERATION is scheduled.

CONTROL-PACKET-GENERAT ION

When this event is performed, the user first checks to

see if it is active or not. If the user is active, then it .

started talking since the time at which the

CONTROL-PACKET-GENERATION was scheduled, and no further action

is performed. Otherwise, a control packet is generated, and

its FORWARD-CONTROL, FEEDBACK-CONTROL and LENGTH are set, as

described in the previous section. The route of the packet is

set to the route of its source, its GENERATION-TIME is set to

'TIME', and TYPE is set to CONTROL. The packet is scheduled
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to arrive at the first link of its route at *TIME* +

'PACKET-GENERATION-DELAY', by adding the event PACKET-ARRIVAL

to the event-table. Another CONTROL-PACKET-GENERATION is

scheduled for the appropriate future time.

PACKET-ARRIVAL

When the head of a packet arrives at a link, its

ARRIVAL-TIME is set to 'TIME', the packet is placed at the end

of the queue, and link queue statistics are updated. If the

link is idle when the packet arrives, a PACKET-TRANSMISSION is

scheduled at 'TIME' + 'PACKET-TRANSMISSION-DELAY'.

PACKET-TAIL-ARRIVAL

When the tail of a voice packet arrives at a link, the

link checks whether the packet's source is on its list of

active users. If not, the link adds the source to its list.

Then the link updates its stored value of the source's rate,

which it reads from the packet. When the tail of a control

packet arrives, PACKET-TAIL-ARRIVAL does nothing.

PACKET-TRANSMISSION

This event occurs either when the link transmits the tail

of a packet, or when the head of a packet arrives at an empty

queue. If the link is transmitting the tail of a packet when

this event is performed, it will update its records of the

number of bits transmitted. If the packet just transmitted

was a voice packet and the last in its talk-spurt, the link
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will remove the packet's source from its list of active users.

Next, whether or not the link just finished a

transmission, it checks its queue. If the queue is empty, the

event is finished. Otherwise, the link gets the first packet

in its queue and changes the packet's forward control value as

described in the previous section. Then the link schedules

the transmission of the packet's tail at

*TIME' + (PACKET-LENGTH/LINK-CAPACITY)

+ 'PACKET-TRANSMISSION-DELAY. (5.3)

Next the link updates relevant statistics. Finally, the link

removes itself from the head of the packet's route list, and

checks for the packet's next destination. If the, packet's

route is empty, its next destination is its source's partner,

where a PACKET-ABSORPTION is scheduled for

*TIME* LINK-PROPAGATION-DELAY

+ 'PACKET-ABSORPTION-DELAY'. (5.4)

Otherwise, the head of the packet is scheduled to arrive at

the next link in its route at

'TIME' + LINK-PROPAGATION-DELAY

+ 'PACKET-ARRIVAL-DELAYO (5.5)

and the tail of the packet is scheduled to arrive at

'TIME' + LINK-PROPAGATION-DELAY + 'PACKET-ARRIVAL-DELAY'

+ (PACKET-LENGTH/LINK-CAPACITY). (5.6)

PACKET-ABSORPTION

This event represents the arrival of a packet at its
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destination. First, the packet's net delay is calculated by

DELAY=OTIMEO + 'PACKET-ABSORPTION-DELAY'

- PACKET-GENERATION-TIME. (5.7)

If it is a voice packet, the user's voice packet delay - .

statistics are updated. Otherwise, the user's control packet

delay statistics are updated. The user then sets its rate

from the feedback information, and stores the forward control

value for use as described earlier. If the packet is the last

in its talk-spurt, a VOICE-PACKET-GENERATION is scheduled for

the packet's destination.

When an UPDATE is performed for a link, the link first

checks whether the update protocol is satisfied. If it is,

the new CONTROL is calculated using the specified update

function, and another UPDATE is scheduled for *TIME* +

'UPDATE-INTERVAL'. Otherwise, another UPDATE is scheduled for

*TIME* + 'UPDATE-ATTEMPT-INTERVAL'.

LINK-STATISTICS-COLLECTION

This event collects link statistics, and adds them to the

'LINK-STAT-STREAM', which is output to a file. It then zeros

the statistics and schedules the next

LINK-STATISTICS-COLLECTION at *TIME*

'LINK-STATISTICS-INTERVAL'.

USER-STATISTICS-COLLECTION

- 120 -

.- .. .......... . . . . . . . . . . . . . . . . . . . . . . . . . .

• .. ..... ..... .. ,-.........................-.................-........................ ....-.- ,-.1: .



-r c r - - - .-. 'rr n.- - .

This event collects user statistics, and adds them to the

'USER-STAT-STREAMO, which is output to a file. It then zeros

the statistics and schedules the next

USER-STATISTICS-COLLECTION at *TIME* +"

aUSER-STATISTICS- INTERVAL.

*- This completes the description of the simulation program.

5.3 The Networ Mode

In order to have a basis for comparison, we chose the

same network model used by Hayden. This network is a scaled

down version of a network simulated at Lincoln Laboratories

[16J. The network consists of 80 users and 8 links, and its

topology is illustrated in Figure 5.0. The original network

model considered traffic flow in only one direction, but in

order to model the effects of feedback delay we must consider

two-way traffic flow. In order to use this model for two-way

traffic without incorporating additional links, we view all

the sources as being at the same location.

We make the same user-partner assignment as Hayden, where

each user i has as its partner user (81-i), for i:1,...,40.

Ideally, there should be no correlation between the set of

links in a user's path and the set of links in its partner's

path, as would be the case if we had incorporated extra links

to handle the two-way traffic. However, the user pairs
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(32,49), (31,50), (30,51) and (29,52) all share link 7. But,

since they constitute only 8 out of 24 users, this should not

be a serious problem.

The program as described in the previous section contains

many variables related to the actual performance of a physical

network. The values of these variables are given in Table

5.1, and have been chosen to be consistent with current

technology.

5.4 SimLu in i Res.lts

In this section we describe the results of the

simulation. The theory of the preceding chapters addresses

only the the behavior of networks with fixed configuration.

In practice, however, the network configuration will change

rapidly as users initiate and end conversations. The ability

of an algorithm to control the link flows in a changing

network depends upon the rate of convergence of flows in a

static network. If the time required for the controls to

converge in a static network is short compared to the rate of

change of the dynamic network, the algorithm will work for the

dynamic network. Hence, we divide our results into two

subsections: static results and dynamic results.

5.4.1 §I-U esults
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Varlable au

LINK-CAPACITY 40000 bits/sec

LINK-PROPAGATION-DELAY .003 sec

'PACKET-ABSORPTION-DELAY' .0005 sec

*PACKET-ARRIVAL-DELAYI .0005 sec

'PACKET-TRANSMISSION-DELAY' .0001 sec

'PACKET-GENERATION-DELAY' .0005 sec

Network Constants

Table 5.2
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In all of the experiments described in this section, we

studied a static network in which all even numbered users were

active for the entire simulation. For this network, Hayden's

fair control vector is

(8000,8000,8000,8000,8000,4000,2667,2000) and Jaffe's fair

control vector is (4987,4987,987,4987,12050,3555,2461,1882).

Two important parameters to adjust are the update

interval and the update attempt interval. Preliminary results

indicated that the update attempt interval should be kept as

small as possible. While we could set the update attempt

interval so that each link tries to update each time it

receives a packet, this would slow down the simulation

considerably. Instead, we set the update attempt interval to

20 msec., so that each link tries to update after receiving a

new packet from each of its users.

Hayden observed, in his simulations, that setting the

update interval to 20 msec. produced severe oscillations in

the link flows. With an update interval of 100 msec., these

Oscillations were greatly reduced. For comparison, we ran our

simulation using each of these values.

We have identified three parameters to adjust. We may

choose between the HAYDEN, JAFFE or HOSELY update functions,

-125-
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the update protocol or no update protocol, and fast (every 20

msec.) or slow (every 100 msec.) updates. We ran the

simulation for each of the twelve combinations.

For the sake of brevity, we have chosen to display the

results for links 2 and 5 only: link 2 because it is typical

of the others, and link 5 because it is atypical. Link 5

differs from the rest in that, when the rest of the links'

controls correspond to Hayden's fair allocation, link 5

controls none of its users. Thus Hayden's algorithm will

assign link 5 a control equal to its capacity..

Figures 5.1 - 5.3 show link 2 controls versus time for

all possible combinations of update function, update protocol

and rate of update. Figures 5.4 - 5.6 show the same data for

link 5. Inspecting these figures, we make the following

observations.

Both the HAYDEN and JAFFE update functions work

moderately well with slow updates on link 2. The JAFFE update

function can also control link 5 with slow updates, but the

HAYDEN function cannot. Both functions seem to work

marginally better with update protocols than without. Neither

function works at all well with fast updates, with or without

the protocol, although the protocol tends to damp the

oscillations for the JAFFE function. These results are

largely what we expected, based on Hayden's simulations. It
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is a little surprising, however, in view of the theory of

Chapter 3, that the JAFFE function performs so poorly with

fast updates and the update protocol. These results do not

contradict the theory, though, since the theory makes no

claims about the rate of convergence, and the controls do '£

converge.

The MOSELY update function is capable of controlling both

links well under all circumstances. Convergence of the

controls with slow updates is slightly faster without the

update protocol than with. Since tLe update protocol is not

necessary for the controls to converge, it is not surprising

that the protocol slows convergence down, as the protocol must

occasionally prevent a possibly beneficial update.

When updates are fast, there is almost no noticeable

difference between the performance of the algorithm with or

without the protocol. For link 2, it might be argued that,

because the controls converge to the fair controls from below,

the update protocol is nearly always satisfied, and hence the

performance is the same with or without the protocol. In

order to test this theory, we ran the simulation with the

initial controls and rates set high (4000 bits/sec.) to try to

produce a control sequence that converged from above. The

results of that simulation are shown in Figures 5.7 - 5.8.

The controls still converge from below, since after starting

high, the link cuts its control sharply to limit the flow.

127
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There is more difference between the performance with and

without the protocol in this case, but the difference is still

small.

From these figures we conclude that the HAYDEN and JAFFE

update functions work best with slow updates, and the MOSELY

function works best with fast updates. In Figures 5.9 - 5.12,

we compare the performances of the three functions. Since the

JAFFE update function is designed to converge to a different

fair allocation than the others, it is difficult to assess how

well it does this relative to the other two functions. From

Figures 5.9 and 5.10, we might conclude that the MOSELY

function performs no better than the HAYDEN or JAFFE

functions. But Figures 5.11 and 5.12 show that this is not

so. Collectively, these figures seem to indicate that under

best case conditions, the functions work approximately equally

well, but for unusual conditions, the MOSELY function works

better.

As further evidence of this conclusion, consider Figures

5.13 and 5.14. These figures show the link 2 controls

produced by the HAYDEN and MOSELY functions, for four

different sample simulation runs for each. The HAYDEN update

function gives varying results for each run, while the

different control sequences produced by the MOSELY function

are indistinguishable. The variability of the HAYDEN function

- is more surprising than the consistency of the MOSELY

-128-

,.,.... ... ,,.,,-. .-. ,, ..5 . , .. .. .... ".. . .z*- . -. ' .- -,-- . .*:- :- *" , . - .. , . ,- .5',**, . ,.- . ,,- , .".' S



.I .. -.

function, when we consider how little difference there is in

the loads offered to the network for each sample run. For the

static simulations, the pattern of conversations does not

change, only the order of arrival of the packets in the queues

and the order of link updates differ from one run to the next.
p

The static simulation results seem to indicate that the

MOSELY update function is slightly superior to the others. _

However, the real test is how well the functions perform for a

dynamic network.

5.4.2 Dlynami Result z.

In this section we describe the results of the dynamic

simulation experiments. We preface this discussion by .. .

remarking that the simulation results are sufficiently

unexpected that we suspect an error in the program, and we

feel that additionaly testing is called for.

For all the simulation runs described in this section, we

used an average talk-spurt length of 60 packets, corresponding

to a 1.2 second talk-spurt duration. Thus, the link loads

change rapidly, as one user stops talking and its partner

begins. We ran the simulation for six different algorithms,

using each of the three update functions with and without the

update protocol. The MOSELY function was simulated only for

fast updates, and the HAYDEN and JAFFE functions only for slow

- 129 -

IL-



i.

updates, since we found from our static experiments that that

is how these functions perform best. In each case, We

simulated the network for a 30 second interval.

For the sake of brevity, we show results only for links 2

and 8. By the symmetry of the network, links 1 - 4 are all

essentially equivalent, and we choose link 2 as representative

of the others. Link 8 is the most heavily loaded link, and we

choose it for worst case behavior. Figures 5.15 - 5.26 show,

for these two links and six algorithms, the number of bits

transmitted over a 0.10 second interval, along with the number

of active users and the maximum queue size, as a function of

time. So that these three quantities may all be displayed on

the same graph, we have scaled the number of users up by a

factor of 100, and the maximum queue size by a factor of 10.

In Figure 5.15 we notice that for times between 20 and 25 . -

seconds, the flow appears to exceed the link's capacityl It

only appears this way, however, because of the way that the

links count the bits transmitted. After each packet is

transmitted, the link increments its bit count by the length

of the packet. This count is zeroed at the end of each 0.10

second interval. Thus a packet which begins transmission in

one statistics collection interval, and finishes in another,

will count as having been wholly tranmitted in the second

interval. This is why we see a sequence of intervals where

the flow fluctuates above and below link capacity.
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From examining these figures we see that the HAYDEN and

NOSELY update functions produce totally unacceptable queues.

The queues for the JAFFE function are much smaller. These

results are unexpected and we cannot explain them. We find

the size of the queues somewhat surprising, since Hayden's

simulations rarely showed queues exceeding 50 packets. One

possible explanation for this difference is that Hayden never

ran his simulation for more than a 10 second interval. We

notice that the really severe queues don't generally occur ..

till after 10 seconds. This could be due to the fact that the

simulation starts with all rates and controls relatively low,

and only the even numbered users active. Hence, it may take

several seconds for these effects to die out and steady state

behavior to dominate. Also, Hayden used measured flows to

calculate the controls while we calculate controls using a

theoretical flow based on the sum of the users' rates. Since

these calculated flows do not reflect the presence of control

packets in the network, the resulting controls will be

somewhat conservative. This seems like it should be a second

order effect, however.

In general, the queues build up in response to sudden

large changes in the number of active users. We see from the

static results that it takes all of the algorithms around 2 - -...-.

3 seconds to converge to the correct flow, so, when the number

of users changes rapidly, the algorithm cannot cope with the
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change. We also observe that the queues are much worse for

the algorithm with protocol than without. This is not

surprising, since the protocol prevents a link from lowering

its control until all its users are sending at a rate lower

than its control.

It is interesting to note that, for the JAFFE function,

the flows seems to oscillate more in response to the changes

in the number of active users. These oscillations are similar

to the oscillations observed for the static simulations.

Observing that the JAFFE function produced more stable

queues than the other functions, and that the MOSELY function

tended to result in higher flows, we ran the simulation for a

seventh, hybrid algorithm. The update function for the

algorithms is obtained by replacing the value of the link

control wherever it appears in the JAFFE function with the

value of the maximum user rate. The hybrid algorithm was

implemented without protocol and with fast updates. The

results are shown in Figures 5.27 and 5.28. Unfortunately,

there is no distinct improvement in performance for this

algorithm.

One possible explanation for the difference in queue

sizes for these algorithms, is that the fair flows for the

JAFFE function are smaller than the fair flows for the other

functions. Hence, we expect smaller queues. To examine this
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effect, in Figures 5.27 and 5.28, we plot average delay versus

average flow for each of the seven algorithms. The averages

are computed over the entire 30 second interval. While the

average flows are indeed smaller for the JAFFE and HYBRID ...

functions, they are only slightly smaller. The difference in -

average delays, however, is very great, and we are forced to

conclude that the JAFFE function gives inherently better delay

performance.

We believe that the intrinsic problem with all the

algorithms thus far proposed is that convergence of the

controls under static network conditions is too slow when

compared with the rate of change we may expect in a dynamic

network. One reason for this is the long feedback delay

between the links and the sessions. Two things could be done

to remedy this. Control packets could be generated more

often, though this would increase overhead, and control

packets could be given priority in the queues.

Another reason that convergence is slow is that the

changes that a link makes in its controls are always

conservative. Essentially, the links assume that all of their

users will be affected equally by changes in controls. But

this assumption is clearly erroneous. For example, if a link

decides to lower its control from p, to P2, none Of its users

that are currently sending at rates lower than P2 will be

affected. Similarly, if a link raises its control when most
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of its users are sending at much less than the current

control, it is unlikely that any of those users will be

affected by the change. With the HAYDEN update function, the

*: links ignore potential feedback information from the users by

taking note of only the sum of the rates. The MOSELY update

function makes only slightly more use of the available

information, by observing the sum of the rates and the maximum

rates. Perhaps a really effective update function could be

devised, where the links make use of the entire rate vector.
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Chapter 6

Zuagesionsf. urthetr Research

In this thesis, we have considered the problem of

designing a distributed fair flow control algorithm that can

be implemented asynchronously and remain stable in the

presence of feedbAck delays. After developing an appropriate

system model, we analyzed several flow control algorithms. We

discovered that one algorithm which is unstable when

implemented asynchronously, can be made stable by the addition

of an update protocol (the generalized link memory algorithm).

One algorithm cannot be made stable even with the update

protocol (Hayden), and another is stable even without the

update protocol (modified Hayden). This last algorithm is

particularly interesting in that the links, when updating

their controls, make more use of the available feedback

information than the other algorithms.

While the theoretical results indicate that these

algorithms should perform well, the results are only valid for

a static network. Computer simulations indicate that none of

the algorithms can respond to changing input conditions fast

enough to effectively control a dynamic network. Therefore,

it is necessary to improve the response time of the system.

This might be accomplished in several ways. First, queueing
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priority should be given to the control packets, to speed up

convergence of the controls. Also, when links become very

congested, we mignt allow the system to discard low priority

packets. Finally, as described at the end of Chapter 5, we

could try to devise better update functions that make more

complete use of the available feedback information.

As an example, we propose the following update function:

.nl .a rij(tjn)+(cj-fjn)/wJ(a )  when fjn<cj

fF(rj (tjn),c j) when fjn>cj (6.1)

where a is some appropriately chosen constant such that Oia<1,

Wj(a) is the number of sessions whose rate is higher than

a max r.j(tjn), rj(tjn) is the vector of rates(3jn 33

rijjn) ,.. i(, j, and F(Rj,cj) is the maximum of the

coordinates of the fair allocation over the set defined by

rij-0ij (6.2.1)

and -

.c - (6.2.2)-

The idea behind this update function is simple. All the

update functions given previously change the controls by

conservative amounts, assuming at all times that the links

control all their users. This update function lets the link

use its knowledge of the rate vector to make better estimates

* of the number of sessions that are actually under its control.

When the flow is less than capacity, the link uses Wj(a) as an

estimate of the number of sessions it is currently

controlling. When the flow is greater than capacity, the link
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adopts the largest control that would let each of its sessions

send at the minimum of its former rate and the new control,

while guaranteeing that the new flow would be less than or

equal to capac.t..-.

In conclusion, we remark that flow control algorithms are

just one example of many different distributed asynchronous

problems. The techniques described in this thesis, that is,

the use of update protocols and more complete use of feedback

information, mignt be profitably applied to other problems as

well, and the theorems in Chapter 4 might be used to analyze

such algorithms
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AR~nhix A

Theorem 3.1. If dij(t) and Djj(t) satisfy (3.10) and (3.11),

then for any t0 there exists t12t0 such that for all t. t1,

t-dij(t)-Dikt-.dji (t)).>t 0  (A.1)

for all J6e?, if.8j, kf.;'j.

5.

Proof. For any to, by (3.11) there must exist Tij such that

Tij-.Dij(Tij).>t0. (A.2)

Let Ti= max Tij. By (3.11), there must also exist tij such

that -

tij..dij(tij)>Ti. (A.3)

Let t1= max tij Then for ttby (3.10),

>tij-dij(tij)-Dik(tij-dij(tij))

>Ti..Dik(Ti)

>T i-Dik(Tik)

,t-. (A.4)

This completes the proof of Theorem 3.2. t
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Lemma 3.2.1. Let Fj(z&)=(min zk )(1-Wj/(2wj))+cj/(2Wj) and

define F(.Z)=(...vFj(z), ...) Let zO=:Q and define zfl+l:F(zfl).

Then z fl.,Zj*zp+Wj/(2Wj)(cj/Wj.p1) and z fl<c~i~fraln

Proof. First we show that 7z' is a fixed point of Fj(9). Note

that since pl~min cjWj zj*2pl for all j and pl~min z

Hence

=Zj (B.1)

Now let 'ILz,'HI max Izj. We show that F(*) is a contraction

under this norm.

HF(x)-F(Y)',I= max 1(1-Wj/(2W**j))(min xk-min Yk)I

Max (1...W/(2W'j))I(min xk-min Yk)I

(1- min Wi/(2 *W*j)I.I (B.2)

Hence, zn.

Now~~ sups jc/Wj for each J, for some n. Then

=a /W. (B.3)

Hence,~~ byidcio, Z jC/Wj for all n. This completes the

proof of Lemma 3.2.1.
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Thorem . Let S be a linear space with norm ii such

that {x: 'lixIllc) is compact for all c. Let f:S-tS and

fn:S-.tS be functions such that fn--*f uniformly, and such that

Hif(x) - f(Y)lIlMlx - Yl1 for all x,yES. Suppose there

exists x* such that x :f(xo). Define Xnilzfn(Xn) Then

X -. X .. .-

Xn*x

Proof. Without loss of generality, we assume x*:O. For each

e>O, define

d(e): max iif(x)ll. (C.1)

The maximum must exist because (x: jxHlc) is compact for all

c. Note that d(e)<e, since llf(x)Il<Ijxll.

Now,

I f(x)-f(e(x/I lxi l))l 1<1 x-e(xi lxill "DI"'

. I Ix l l-e (C.2) :: '

and

1 lf(x)1 i1<1 ix I -e+f(e(x/ IXI I))

_[I x l-(e-d(e)). (C.3)

Now let ele/2 and find N such that

I Ifn(x).f(x) I IS(ej-d(ej ))/2 (C.4)

for all n2N. Then 7.

-170-



xS

n<:I lff(xI..1

< max (eltiixn'It..(ej-.d(el)))+(ej-.d(el))/2

< max (el,illxn-1 lH..(el-.d(el))/2), (C-5)

where the third step follows by (C.3).

So for any xO,

lxl<max (e,lHxOHj'-(ej-d(ej))/2), (C.6)

and by induction on n,

IIsxn 1 < max (e, i'xO Ij-n(ej-d(ej))/2). (C.7)

Thus, for any 0>O, if n>2HlxOI/(ej-.d(ej)), H1xnHll<e. This

completes the proof of Theorem 3.4
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Define, for k:1,...,L,

ek(O)= aE(D1)

and

Ek(O)= E (D. 1.2)

where a= min 1/Wa and E is some suitably large constant such

that E~pL/a. Let

e1 (n)=O (D.2.1)

and

El (ni..1 :1 -a)E (D.2.2)

for all n01. Now define, for nON

and for Nk---n<Nk+l, M9k

eK(n,1)= pK-pke~ek(n,1) (D.4. 1)

EK(n+1 )=E, (D.4.2)

where 141<N2 .(NL, N1=1 and, for 0>1,

for all n>N

We show by induction that the sequence Nl<N2 <...<NL

satisfying (D.5) eXists, and that the sequences iek(n)) and

{Ek(n)) are monotonically non-increasing and converge to 0,

for all k.
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Furthermore, we show that the sequences have the

properties that, for k(K, for all n,

ek(n)&eK(n) (D.6.1)

Ek(n)SEK(n) (D.6.2) S.

and

pk..ek(n)SpK-.eK(n). (D.6-3)

By 0D.2), el(n)=O and El(n)---O. Hence, there must exist

a tme 2 such that for all n >N2,

e1 (n)+EI (n)<(p2-pl )a/(1-a). (D.7)

Suppose we have teKl1(n)l and IEK-1(n)) such that eK-l(n)-.O

and EK-l(n)__4O. Then there must exist a time NK such that,

for all n>N K

Now for n>NK

* .eK(n+1)=(1-a)(eK(n)+EKl1(n)). (D.9)

Since (1-a)< and EKl1(n)--*O, eK(n)--:PO. Similarly, e K(n)O

implies EK(n)--*O. Hence, we have shown by induction, the

existence of Nl<N2< ... <NL, and that ek(n)--.*O and Ek(n)-.*O for

each k.

We show by induction that eK(n) and EK(n) are

monotonically non-increasing for each k. Clearly el(n) and

El(n) are monotonically non-increasing. Now Suppose that

eK"'(n) and EKl1(n) are monotonic non-increasing sequences.

Then eK(n,1)<eK(n) and EK(n,1)<EK(n) for n<NK Fo :,

OK(NK,(1 )z( 1.a)(e K(NK),E K- (NK))
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z(1-a)(pK ~+eK-1(NK)ElN)

KpK...pK.pK-1

<eK(N K). D.0

EK(K+).(1.a)(eK(N)+EK(N))

<E

The next to last step holds becaust E was chosen greater then

or equal to pL/a.

Now suppose eK(n)<eK(n-1) for some n>NK+l. Then

Similarly, if EK(n)<EK(n-1),

Hence, ek(n) and Ek(n) are monotonically non-increasing for

all kc.

Next we show that (D.6) holds. For n:O, ek(O)=aE and

Ek(O)=E for all kc. For n:1, ek(l)zpk~pl and Ek(1)=E. Hence,
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(D.6) holds for nzO and n=1.

We show that (D.6.1) and (D.6.2) hold by induction.

Suppose that (D.6.1) and (D.6.2) are satisfied for some n 1.

*Let J be the largest number such that O N . We show that

(D.6.1) and (D.6.2) are satisfied for n+1, for k(K. We

consider three cases: k<KSJ, k eJ<K, J<Ic(K.

Let k<K_ J. Then

=eK(n+l) (D.14)

and

Ek(n+1 )=(l-a)(ek(n)+Ek(n))

<(1-a)(eK~n)+EK~n))

:EK(ni.1). (D. 15)

Let kSJ<K. Then by (D.1J4),

ek(n+1 )&eJ(n+l)

pK +eJ(nl)

=eK~n~l)(D.16)

* and

SE

=EK(n+l). (D. 1)

Finally, suppose J~k<K. Then

ek(n,1 )=pk-.pJ~eJ(n~1)
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~p K-pJ~eJ(n+1)

and

So, by induction, (D.6.1) and (D.6.2) hold for all n.

Finally, we ahow that (D.6.3) holds for all n> 1. Let J

be defined as above. We have already shown in (D.10), for

O>Nk

ek(n) ek(n+l)

Thus, for K J,

pk..ek(n )Spk

<pK-eK(n). (D.21)

For J<K,

pk-.ek(n )SpJ-eJ( n)

Therefore, (D.6.3) holds for all n.

This completes Appendix D.
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A12pndix

;; . Mode:LISP; Package:USER; Base:1O; Fonts:MEDFNT -'-

;;; Copyright (c) 1984 by
;;; Jeannine Mosely and Allan C. Wechsler

;;; It is the intention of the authors that this
;;; software remain in the public domain, and that
;;; no one shall impede its distribution, nor
;;; distribute it for profit.
|1

(DEFSTRUCT (USER :CONC-NAME)
PARTNER ; Another user. -.
ROUTE ; A list of links.
(RATE 500) ; Bits per second.
ID ; A number.
(PARTNER-RATE 1000) ; Bits per second.
;; The following six components are statistics that we
;; reset every after statistics collection.
(TOTAL-VOICE-PACKET-DELAY 0)
(TOTAL-CONTROL-PACKET-DELAY 0)
(NUMBER-OF-VOICE-PACKETS 0)
(NUMBER-OF-CONTROL-PACKETS 0)
(MAX-VOICE-PACKET-DELAY 0)
(MAX-CONTROL-PACKET-DELAY 0)
TALKING? ; T or NIL.
PRINT-STATISTICS? ; T or NIL.

(DEFSTRUCT (LINK :CONC-NAME)
USERS ; An a-list of

-active users and
; their rates.

(NUMBER-OF-USERS 0)
QUEUE-FRONT ; A list of packets.
QUEUE-BACK ; The last vertebra

of QUEUE-FRONT.
(Efficiency hack.)

(QUEUE-LENGTH 0)
;; Max queue length is reset after each statistics

; collection.
(MAX-QUEUE-LENGTH 0)
(CONTROL 1000) ; Bits per second.
(CAPACITY 40000) ; Bits per second.
(PROPAGATION-DELAY 0.003) ; Seconds.
PACKET-NOW-TRANSMITTING ; A packet, or NIL ".

if link idle.
(NUMBER-OF-PACKETS-SENT 0) ; per stats.
(TOTAL-NUMBER-OF-PACKETS-SENT 0) ; ever.
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(NUMBER-OF-BITS-SENT 0) ; per stats.
(TOTAL-NUMBER-OF-BITS-SENT 0) ; ever.
(TOTAL-PACKET-DELAY 0) ; ever.
(TOTAL-SQUARED-PACKET-DELAY 0) ; ever.
(PACKET-DELAY-HISTOGRAM ; ever.
(MAKE-ARRAY 11 ':TYPE 'ART-16B))

(PRINT-STATISTICS? T) ; T or NIL
ID) ; A number.

(DEFSTRUCT (PACKET :CONC-NAME)
(FORWARD-CONTROL 1000000) ; Minimum control

seen so far on
; this traverse.

FEEDBACK-CONTROL ; Control data
going back to

; starting point.
LENGTH
ROUTE
GENERATION-TIME
ARRIVAL-TIME
LAST-IN-TALK-SPURT?
TYPE ; VOICE or CONTROL.
SOURCE
SOURCE-RATE
DESTINATION)

(DEFSTRUCT (EVENT :CONC-NAME)
FUNCTION
TIME
ARGUMENTS)

;;; Global variables.

(DECLARE (SPECIAL 'USERS* ; All users.
*LINKS* ; All links.
*TIME' ;Simulated.
'USER-STAT-STREAM.
'LINK-STAT-STREAM-
'EVENT-TABLE' ; The Heap of

Things to Come.
'NEXT-EVENT-NUMBER')) ; Index into heap.

(DEFCONST 'PACKET-ABSORPTION-DELAY' 0.0005)
(DEFCONST 'PACKET-ARRIVAL-DELAY* 0.0005)
(DEFCONST 'PACKET-TRANSMISSION-DELAY' 0.0001) -
(DEFCONST 'PACKET-GENERATION-DELAY' 0.0005)

(DEFCONST 'AVERAGE-TALK-SPURT-LENGTH' 60) ; In packets.
(DEFCONST 'USERS-TALK-FOREVER' T) ; Infinite talk

spurts? T or NIL.
(DEFCONST 'CONTROL-PACKET-SPACING' 0.10) ; Seconds.

(DEFCONST 'UPDATE-INTERVAL' 0.10) ; Seconds.
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(DEFCONST 'UPDATE-ATTEMPT-INTERVAL' 0.02) ; Seconds.

(DEFCONST 'UPDATE-PROTOCOL' 'MOSELY) ; HAYDEN or MOSELY.
(DEFCONST 'UPDATE-FUNCTION' 'MOSELY-UPDATE-FUNCTION)

(DEFCONST 'LINK-STATISTICS-INTERVAL' 0.1)
(DEFCONST 'USER-STATISTICS-INTERVAL' 0.5)

(DEFCONST 'USERS-TO-PRINT'
'(1 9 15 19 21 29 35 39 41 49 55 59 61 69 75 79))

;;; Top level function.

(DEFUN RUN-NETWORK (TIME-LIMIT)
(INITIALIZE)
(WITH-OPEN-FILE
('USER-STAT-STREAM' "oz:<j9>user-stats.text" ':OUT)
(WITH-OPEN-FILE
('LINK-STAT-STREAM' "oz:<j9>link-stats.text" ':OUT)
(FORMAT 'USER-STAT-STREAM' "

User ID Time AVD MVD ACD
MCD Rate Feedback")

(FORMAT 'LINK-STAT-STREAMO "
Link ID Time # Bits Control # Users
Max. Q Q # Packets")
(SETQ *TIME* -1)
(SIMULATE TIME-LIMIT)
(PRINT-LINK-HISTOGRAMS))))

;;; Network initialization.

(DEFUN INITIALIZE ()
(SETQ 'USERS' NIL)
(CLEAR-EVENT-TABLE)
(LET ((LINK-i (MAKE-LINK ID 1))

(LINK-2 (MAKE-LINK ID 2 PRINT-STATISTICS? T))
(LINK-3 (MAKE-LINK ID 3))
(LINK-4 (MAKE-LINK ID 4))
(LINK-5 (MAKE-LINK ID 5))
(LINK-6 (MAKE-LINK ID 6))
(LINK-7 (MAKE-LINK ID 7))
(LINK-8 (MAKE-LINK ID 8 PRINT-STATISTICS? T)))

(SETQ 'LINKS' (LIST LINK-i LINK-2 LINK-3 LINK-4
LINK-5 LINK-6 LINK-7 LINK-8))

(USERS '((1 8) (21 28) (41 48) (61 68)) LINK-8)
(USERS '((9 14) (29 34) (49 54) (69 74)) LINK-7)
(USERS '((15 18) (35 38) (55 58) (75 78)) LINK-6)
(USERS '((19 20) (39 40) (59 60) (79 80)) LINK-5)

(USERS '((I 20)) LINK-i)
(USERS '((21 40)) LINK-2)
(USERS '((41 60)) LINK-3)
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(USERS '((61 80)) LINK-4))
(ESTABLISH-USER-PARTNERS)
(INITIALIZE-USERS-TO-PRINT))

(DEFUN INITIALIZE-USERS-TO-PRINT ()
(DOLIST (USER-TO-PRINT 'USERS-TO-PRINT')

(SETF (USER-PRINT-STATISTICS?
(FIND-KNOWN-USER USER-TO-PRINT)) T)))

(DEFUN USERS (ID-RANGES LINK)
(LOOP FOR (LOW-ID HIGH-ID) IN ID-RANGES

DO
(LOOP FOR ID FROM LOW-ID TO HIGH-ID

DO
(ADD-OR-MODIFY-USER ID LINK)))

(DEFUN ADD-OR-MODIFY-USER (ID LINK)
(LET ((USER (FIND-USER ID)))

(PUSH LINK (USER-ROUTE USER))))

(DEFUN ESTABLISH-USER-PARTNERS ()
(LOOP FOR USER IN *USERS*

DO
(SETF (USER-PARTNER USER)

(FIND-KNOWN-USER (- 81 (USER-ID USER))))))

(DEFUN FIND-USER (ID)
(OR (FIND-KNOWN-USER ID)

(LET ((USER (MAKE-USER ID ID)))
(PUSH USER 'USERS')
USER)))

(DEFUN FIND-KNOWN-USER (ID)
(LOOP FOR USER IN *USERS'

DO
(WHEN (z (USER-ID USER) ID)

(RETURN USER))))

;;; Event table hackery.

(DEFUN CLEAR-EVENT-TABLE ()
(SETQ 'EVENT-TABLE' (MAKE-ARRAY 2048))
(SETQ 'NEXT-EVENT-NUMBER' 1))

(DEFUN ADD-EVENT-TO-HEAP (EVENT)
(PERCOLATE-UP EVENT 'NEXT-EVENT-NUMBER')
(INCF 'NEXT-EVENT-NUMBER'))

(DEFUN GET-NEXT-EVENT ()
(WHEN (> 'NEXT-EVENT-NUMBER' 1)

(LET ((EVENT (AREF 'EVENT-TABLE' ))
(HOLE (PERCOLATE-DOWN 1))) -

(UNLESS (a HOLE (- 'NEXT-EVENT-NUMBER' 1))
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(PERCOLATE-UP (AREF 'EVENT-TABLE'

I

(* NEXT-EVENT-NUMBER' 1))
HOLE))

(DECF 'NEXT-EVENT-NUMBER')
EVENTS))

(DEFUN PERCOLATE-UP (EVENT INDEX)
(LET ((PARENT-INDEX (LSH INDEX -1)))

(LET ((PARENT-EVENT (AREF 'EVENT-TABLE'
PARENT-INDEX)))

(IF (OR (= PARENT-INDEX 0)
(EVENTS-IN-ORDER PARENT-EVENT

EVENT))

;; EVENT goes here -- put it here.
(SETF (AREF 'EVENT-TABLE' INDEX) EVENT)

;; EVENT goes higher --
;put parent here and recurse.

(SETF (AREF 'EVENT-TABLE' INDEX)
PARENT-EVENT)

(PERCOLATE-UP EVENT PARENT-INDEX)))))

(DEFUN PERCOLATE-DOWN (INDEX)
(LET ((LEFT-CHILD-INDEX (LSH INDEX 1)))

(IF ( LEFT-CHILD-INDEX 'NEXT-EVENT-NUMBER')
INDEX
(LET ((RIGHT-CHILD-INDEX (+ 1 LEFT-CHILD-INDEX)) L

(LEFT-CHILD (AREF 'EVENT-TABLE'
LEFT-CHILD-INDEX)))

(IF (< RIGHT-CHILD-INDEX 'NEXT-EVENT-NUMBER')
(LET ((RIGHT-CHILD (AREF *EVENT-TABLE'

RIGHT-CHILD-INDEX)))
(COND ((EVENTS-IN-ORDER LEFT-CHILD

RIGHT-CHILD)
(SETF (AREF 'EVENT-TABLE' INDEX)

LEFT-CHILD)
(PERCOLATE-DOWN LEFT-CHILD-INDEX))

(T
(SETF (AREF 'EVENT-TABLE' INDEX) L

RIGHT-CHILD)
(PERCOLATE-DOWN RIGHT-CHILD-INDEX))))

(SETF (AREF 'EVENT-TABLE' INDEX)
LEFT-CHILD)

LEFT-CHILD-INDEX)))))

(DEFUN EVENTS-IN-ORDER (El E2)
(LET ((Ti (EVENT-TIME El))

(T2 (EVENT-TIME E2)))(OR",-""

(< TI T2)
(AND

(- Ti T2)
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(LET ((Fl (EVENT-FUNCTION EM)
(F2 (EVENT-FUNCTION E2)))

(OR (AND (EQ F1 *'LINK-STATISTICS-COLLECTION)
(NOT (EQ F2 #'LINK-STATISTICS-COLLECTION)))

(AND (EQ Fl *lLINK-STATISTICS-COLLECTION)
(EQ F2 #'LINK-STATISTICS-COLLECTION)
(< (LINK-ID (CAR (EVENT-ARGUMENTS El))

(LINK-ID (CAR (EVENT-ARGUMENTS E2)))))
(AND (EQ Fl *tUSER-STATISTICS-COLLECTION)

(NOT (EQ F2 #'USER-STATISTICS-COLLECTION))
(NOT (EQ F2

#'LINK-STATISTICS-COLLECTION)))
(AND (EQ Fl *'USER-STATISTICS-COLLECTION)

(EQ F2 *'USER-STATISTICS-COLLECTION)
(< (USER-ID (CAR (EVENT-ARGUMENTS El)

(USER-ID (CAR (EVENT-ARGUMENTS E2)))))))

;;The Guts.

(DEFUN SIMULATE (TIME-LIMIT)
(EVENT #'SIMULATION-STARTUP 0)
(LOOP FOR EVENT z(GET-NEXT-EVENT)

WHILE EVENT
UNTIL (< TIME-LIMIT (EVENT-TIME EVENT)
DO

* . (PERFORM-EVENT EVENT))

-' (DEFUN PERFORM-EVENT (EVENT)
(SETQ *TIME* (EVENT-TIME EVENT))
(LEXPR-FUNCALL (EVENT-FUNCTION EVENT)

(EVENT-ARGUMENTS EVENT))

Events. ..

;;Schedule an event

(DEFUN EVENT (EVENT-FUNCTION TIME &REST EVENT-ARGUMENTS)
z (WHEN (< TIME *TIME*)
% (FERROR "Tried to schedule event in the Past."))

(ADD-EVENT-TO-HEAP
(HAKE-EVENT TIME TIME

FUNCTION EVENT-FUNCTION
ARGUMENTS (COPYLIST EVENT-ARGUMENTS)

;;Everything starts up.

(DEFUN SIMULATION-STARTUP 0)
(LOOP FOR USER IN *USERS*

DO
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(IF (EVENP (USER-ID USER))
(START-TALKING USER)
(EVENT #* CONTROL-PACKET-GENERATION

( *TIME* *CONTROL-PACKET-SPACING')
USER))

(EVENT #'USER-STATISTICS-COLLECTION
(+ *TIME* 'USER-STATISTICS-INTERVAL')
USER))

(LOOP FOR LINK IN *LINKS*
DO ,
(EVENT #'UPDATE

( 'TIME'
(SI:RANDOM-IN-RANGE 0 *UPDATE-INTERVAL'))

LINK)
(EVENT #'LINK-STATISTICS-COLLECTION

( 'TIME' 'LINK-STATISTICS-INTERVAL')
LINK)))

;;; A link begins passing the first packet in its queue to
;;; the next link in that packet's route.

L: y

(DEFUN PACKET-TRANSMISSION (LINK)
(LET ((LAST-PACKET-SENT

(LINK-PACKET-NOW-TRANSMITTING LINK)))
(WHEN LAST-PACKET-SENT

(INCF (LINK-NUMBER-OF-BITS-SENT LINK)
(PACKET-LENGTH LAST-PACKET-SENT))

(INCF (LINK-TOTAL-NUMBER-OF-BITS-SENT LINK)
(PACKET-LENGTH LAST-PACKET-SENT))

(IF (PACKET-LAST-IN-TALK-SPURT? LAST-PACKET-SENT)
(REMOVE-USER-FROM-LINK
(PACKET-SOURCE LAST-PACKET-SENT)
LINK))))

(LET ((PACKET (POP (LINK-QUEUE-FRONT LINK))))
(SETF (LINK-PACKET-NOW-TRANSMITTING LINK) PACKET)
(UNLESS (NULL PACKET)

(INCF (LINK-NUMBER-OF-PACKETS-SENT LINK))
(INCF (LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(DECF (LINK-QUEUE-LENGTH LINK))
(LET ((PACKET-DELAY (- 'TIME'

(PACKET-ARRIVAL-TIME PACKET))))
(INCF (LINK-TOTAL-PACKET-DELAY LINK) PACKET-DELAY)
(INCF (LINK-TOTAL-SQUARED-PACKET-DELAY LINK)

( PACKET-DELAY 2)) . .

(INCF (AREF (LINK-PACKET-DELAY-HISTOGRAM LINK)
(MIN 10

(FIX (// PACKET-DELAY 0.002))))))
(SETF (PACKET-FORWARD-CONTROL PACKET)

(MIN (PACKET-FC'RWARD-CONTROL PACKET)
(LINK-CONTROL LINK)))

(EVENT f 'PACKET-TRANSMISSION
(+. 'TIME'

i 183 -

,:. . . . . ......... "... ... "-" .... ': .. ....-. . . . . .. ' - .-..... .



,._ . .. ... - -•

(11 (PACKET-LENGTH PACKET)
(FLOAT (LINK-CAPACITY LINK)))

'PACKET-TRANSMISSION-DELAY')
LINK)

(LET ((DESTINATION (POP (PACKET-ROUTE PACKET))))
(IF (NULL DESTINATION)

(EVENT 'PACKET-ABSORPTION
(* 'TIME*

(LINK-PROPAGATION-DELAY LINK)
'PACKET-ABSORPTION-DELAYO)

PACKET
(PACKET-DESTINATION PACKET))

(EVENT # 'PACKET-ARRIVAL
( *TIME*

(LINK-PROPAGATION-DELAY LINK) -i

'PACKET-ARRIVAL-DELAY')
PACKET
DESTINATION)

(EVENT #' PACKET-TAIL-ARRIVAL
( 'TIME*

(/ (PACKET-LENGTH PACKET)
(FLOAT (LINK-CAPACITY LINK)))

(LINK-PROPAGATION-DELAY LINK)
'PACKET-ARRIVAL-DELAY')

PACKET
DESTINATION))))))

;;; A packet is received by its intended target user.

(DEFUN PACKET-ABSORPTION (PACKET USER)
(LET ((DELAY (- ( *TIME' *PACKET-ABSORPTION-DELAY')

(PACKET-GENERATION-TIME PACKET)
(SELECTQ (PACKET-TYPE PACKET)

(VOICE
(INCF (USER-TOTAL-VOICE-PACKET-DELAY USER) DELAY)
(INCF (USER-NUMBER-OF-VOICE-PACKETS USER))
(SETF (USER-MAX-VOICE-PACKET-DELAY USER)

(MAX (USER-MAX-VOICE-PACKET-DELAY USER)
DELAY)))

(CONTROL
(INCF (USER-TOTAL-CONTROL-PACKET-DELAY USER)

DELAY)
(INCF (USER-NUMBER-OF-CONTROL-PACKETS USER))
(SETF (USER-MAX-CONTROL-PACKET-DELAY USER)

(MAX (USER-MAX-CONTROL-PACKET-DELAY USER)
DELAY)))))

(SETF (USER-RATE USER)
(PACKET-FEEDBACK-CONTROL PACKET))

(SETF (USER-PARTNER-RATE USER)
(PACKET-FORWARD-CONTROL PACKET))

(WHEN (PACKET-LAST-IN-TALK-SPURT? PACKET)
(SETF (USER-TALKING? (USER-PARTNER USER)) NIL)
(START-TALKING USER)))
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(DEFUN REMOVE-USER-FROM-LINK (USER LINK)
(SETF (LINK-USERS LINK) p

(DELQ (ASSQ USER (LINK-USERS LINK))
(LINK-USERS LINK)))

(DECF (LINK-NUMBER-OF-USERS LINK)))

;;1 This is a separate function so it can be called at
;;; initialization time.

(DEFUN START-TALKING (USER)
(SETF (USER-TALKING? USER) T)
(EVENT #'VOICE-PACKET-GENERATION

(+ *TIME*
*PACKET-ABSORPTION-DELAY'
(RANDOM-INTER-TALK-SPURT-SILENCE))

USER))

A packet begins to arrive at a link.

(DEiUN PACKET-ARRIVAL (PACKET LINK)
(SETF (PACKET-ARRIVAL-TIME PACKET) 'TIME')
;; Enqueue packet.
(LET ((OLD-QUEUE-FRONT (LINK-QUEUE-FRONT LINK)))

(LET ((NEW-QUEUE-BACK (LIST PACKET)))
(IF (NULL (LINK-QUEUE-FRONT LINK))

(SETF (LINK-QUEUE-FRONT LINK) NEW-QUEUE-BACK)
(RPLACD (LINK-QUEUE-BACK LINK)

NEW-QUEUE-BACK))
(SETF (LINK-QUEUE-BACK LINK)

NEW-QUEUE-BACK)
(INCF (LINK-QUEUE-LENGTH LINK))
(SETF (LINK-MAX-QUEUE-LENGTH LINK)

(MAX (LINK-QUEUE-LENGTH LINK)
(LINK-MAX-QUEUE-LENGTH LINK))))

;; If link is idle, schedule instant transmission.
(UNLESS (OR (LINK-PACKET-NOW-TRANSMITTING LINK)

(NOT (NULL OLD-QUEUE-FRONT)))
(EVENT #'PACKET-TRANSMISSION

(+ 'TIME' 'PACKET-TRANSMISSION-DELAY')
LINK))))

;;; The tail end of a packet arrives at a link.

(DEFUN PACKET-TAIL-ARRIVAL (PACKET LINK)
(WHEN (EQ (PACKET-TYPE PACKET) 'VOICE)

(LET ((ACTIVE-USER (ASSQ (PACKET-SOURCE PACKET)
(LINK-USERS LINK))))

(IF ACTIVE-USER(RPLACD ACTIVE-USER
(PACKET-SOURCE-RATE PACKET))

(ADD-USER-TO-LINK
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(PACKET-SOURCE PACKET)
LINK(PACKET-SOURCE-RATE PACKET))))))

(DEFUN ADD-USER-TO-LINK (USER LINK PACKET-LENGTH)
(PUSH (CONS USER PACKET-LENGTH)

(LINK-USERS LINK))
(INCF (LINK-NUMBER-OF-USERS LINK)))

;;; A user creates a voice packet.

(DEFUN VOICE-PACKET-GENERATION (USER)
(LET ((PACKET

(MAKE-PACKET
FEEDBACK-CONTROL (USER-PARTNER-RATE USER)
LENGTH (FIX (1/ (USER-RATE USER) 50))
ROUTE (USER-ROUTE USER)
GENERATION-TIME *TIME'
LAST-IN-TALK-SPURT?
(IF *USERS-TALK-FOREVER'

NIL
(0 0

(RANDOM
'AVERAGE-TALK-SPURT-LENGTH')))

TYPE 'VOICE
SOURCE USER
SOURCE-RATE (USER-RATE USER)
DESTINATION (USER-PARTNER USER))))

(LET ((FIRST-LINK (POP (PACKET-ROUTE PACKET)
(EVENT *' PACKET-ARRIVAL

(+ *TIME' 'PACKET-GENERATION-DELAY')
PACKET
FIRST-LINK)

(EVENT #'PACKET-TAIL-ARRIVAL
(+ *TIME* 'PACKET-GENERATION-DELAY')
PACKET
FIRST-LINK))

(IF (PACKET-LAST-IN-TALK- PURT? PACKET)
(EVENT #' CONTROL-PACKET-GENERATION

(+ 'TIME' 'CONTROL-PACKET-SPACING')
USER)

(EVENT #'VOICE-PACKET-GENERATION
(+ *TIME' (SI:RANDOM-IN-RANGE 0.018 0.022))
USER))))

;;; A user creates a control packet.

(DEFUN CONTROL-PACKET-GENERATION (USER)
(UNLESS (USER-TALKING? USER)

(LET ((PACKET
(MAKE-PACKET FEEDBACK-CONTROL

(USER-PARTNER-RATE USER)
LENGTH 10
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ROUTE (USER-ROUTE USER)
GENERATION-TIME *TIME*
TYPE 'CONTROL
SOURCE USER
DESTINATION (USER-PARTNER USER))))

(EVENT #I PACKET-ARRIVAL
( *TIME* 'PACKET-GENERATION-DELAY)
PACKET
(POP (PACKET-ROUTE PACKET)))

(EVENT #' CONTROL-PACKET-GENERATION
( *TIME* 'CONTROL-PACKET-SPACING')
USER))))

;;; A link updates its control.

(DEFUN UPDATE (LINK)
(MULTIPLE-VALUE-BIND (MAX-RATE FLOW)

(MAXIMIZE-AND-SUM-RATES-ON LINK)
(IF (OR (SELECTQ 'UPDATE-PROTOCOL.

(MOSELY (NOT ( MAX-RAT -.
(LINK-CONTROL LINK))))

(HAYDEN NIL))
(ZEROP (LINK-NUMBER-OF-USERS LINK)))

(EVENT #'UPDATE
( 'TIME* 'UPDATE-ATTEMPT-INTERVAL)
LINK)

(SETF (LINK-CONTROL LINK)
(FUNCALL 'UPDATE-FUNCTION'

LINK MAX-RATE FLOW))
(EVENT #'UPDATE

( 'TIME' 'UPDATE-INTERVAL')
LINK))))

(DEFUN MAXIMIZE-AND-SUM-RATES-ON (LINK)
(LOOP FOR (USER . RATE) IN (LINK-USERS LINK)

MAXIMIZE RATE INTO MAX-RATE
SUMMING RATE INTO SUM
FINALLY
(RETURN MAX-RATE SUM))) "

(DEFUN MOSELY-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
(LET ((ALPHA 1.0)

(EFFECTIVE-CAPACITY (0 0.8 (LINK-CAPACITY LINK))))
(MAX (MIN (+ MAX-RATE

(U/ (' ALPHA (- EFFECTIVE-CAPACITY FLOW))
(LINK-NUMBER-OF-USERS LINK)))

EFFECTIVE-CAPACITY)
(// EFFECTIVE-CAPACITY

(LINK-NUMBER-OF-USERS LINK)))))

(DEFUN HAYDEN-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
MAX-RATE
(LET ((ALPHA 1.0)
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(EFFECTIVE-CAPACITY (D 0.8 (LINK-CAPACITY LINK))))
(MAX (MIN (+ (LINK-CONTROL LINK)

(i (0 ALPHA (- EFFECTIVE-CAPACITY FLOW))
(LINK-NUMBER-OF-USERS LINK)))

EFFECTIVE-CAPACITY)
(/ EFFECTIVE-CAPACITY

(LINK-NUMBER-OF-USERS LINK)))))

(DEFUN JAFFE-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
MAX-RATE
(LET ((ALPHA 1.0)

(EFFECTIVE-CAPACITY (I 0.8 (LINK-CAPACITY LINK)))
(CONTROL (LINK-CONTROL LINK)))

(MAX (MIN (+ CONTROL
(// (# ALPHA (- EFFECTIVE-CAPACITY

FLOW
CONTROL))

(+ (LINK-NUMBER-OF-USERS LINK) 1)))
EFFECTIVE-CAPACITY)

(/ EFFECTIVE-CAPACITY
(+ (LINK-NUMBER-OF-USERS LINK) 1)))))

;;; Some network behavior statistics are recorded.

(DEFUN LINK-STATISTICS-COLLECTION (LINK)
(COND ((LINK-PRINT-STATISTICS? LINK)

(FORMAT *LINK-STAT-STREAM'
" 1 OD 2,1110$ 1OD 1OD 1OD 1OD 1OD 1OD"
(LINK-ID LINK)
*T IME*
(LINK-NUMBER-OF-BITS-SENT LINK)
(FIXR (LINK-CONTROL LINK))
(LINK-NUMBER-OF-USERS LINK)
(LINK-MAX-QUEUE-LENGTH LINK)
(LINK-QUEUE-LENGTH LINK)
(LINK-NUMBER-OF-PACKETS-SENT LINK))

(ALTER-LINK LINK
NUMBER-OF-BITS-SENT 0
MAX-QUEUE-LENGTH 0
NUMBER-OF-PACKETS-SENT 0)))

(EVENT #'LINK-STATISTICS-COLLECTION
(+ *TIME* 'LINK-STATISTICS-INTERVAL')
LINK))

(DEFUN USER-STATISTICS-COLLECTION (USER)
(COND
((USER-PRINT-STATISTICS? USER)
(FORMAT
'USER-STAT-STREAM"; " $ IOD :,1t10= 2,11910$ 2,1910$ 291,10$ 2,1t10= 10D IOD" '

(USER-ID USER)
'TIME*
(SAFE-// (USER-TOTAL-VOICE-PACKET-DELAY USER)
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(USER-NUMBER-OF-VOICE-PACKETS USER))
(USER-MAX-VOICE-PACKET-DELAY USER)
(SAFE-// (USER-TOTAL-CONTROL-PACKET-DELAY USER)

(USER-NUMBER-OF-CONTROL-PACKETS USER)) P
(USER-MAX-CONTROL-PACKET-DELAY USER)
(FIX (USER-RATE USER))
(FIX (USER-PARTNER-RATE USER)))
(ALTER-USER USER

TOTAL-VOICE-PACKET-DELAY 0
NUMBER-OF-VOICE-PACKETS 0
MAX-VOICE-PACKET-DELAY 0
TOTAL-CONTROL-PACKET-DELAY 0
NUMBER-OF-CONTROL-PACKETS 0
MAX-CONTROL-PACKET-DELAY 0)))

(EVENT #' USER-STATISTICS-COLLECTION - -
(+ *TIME* 'USER-STATISTICS-INTERVAL') S
USER))

... *eEE§IlIiIliUi~u*III*Ilu**iuIII liuIiIuuuglIIIII ""'

Random stuff. ..........
... .egmwu,mo.*a,nwu,*guui mm,u*uueee,.o.,es,,,

(DEFUN RANDOM-INTER-TALK-SPURT-SILENCE ()
0.0001)

(DEFUN PRINT-LINK-HISTOGRAMS ()
(FORMAT 'LINK-STAT-STREAM ""

Av. squared
Link Packets Av. wait wait Av. flow ")

(LOOP FOR LINK IN *LINKS*
DO
(FORMAT 'LINK-STAT-STREAM'

" $ 4D 8D 6,1,1O$ 6,1,10$ 2,1,10$"
(LINK-ID LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK)
(U/ (LINK-TOTAL-PACKET-DELAY LINK)

(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(II (LINK-TOTAL-SQUARED-PACKET-DELAY LINK)

(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK)) *..

(II (LINK-TOTAL-NUMBER-OF-BITS-SENT LINK)
*TIME'))

(LOOP FOR I FROM 0 TO 10
DO
(FORMAT
'LINK-STAT-STREAM' " 2,1,8$"
(/1 (4 100.0

(AREF (LINK-PACKET-DELAY-HISTOGRAM LINK)
I))

(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))))
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(DEFUN SAFE-// (X Y)
(IF (ZERtOP Y)

0
U/I X Y)))
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