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spending time t in the network. We argue that convex, nondecreasing (CND)
functions are suitable for a variety of classes; examples suggest a range
from linear (e.g. file transfers) to step-like (e.g. packetized voice). An
appropriate performance measure is the limiting expecte4 average cost per
packet. (As an equivalent characterization, we show that, for a given class,
the expected average cost converges to the expected cost in equilibrium,
under mild conditions.) Within a given class, strictly convex costs will be
driven by packets whose routes have m-any hops, and/or packets which have long
delays on some links;' such packets may profitably be given priority as well.

We propose a distributed scheme in which a single scheduling policy is
* executed independently on every link. Link traffic is modeled by a

stochastic'sequenc'e" {Tnl heie di,b ,h n,, IRxX[xO,)xRx(0,o .

represents for..packet.n. the epoch of arrival to-the link (aTgan+l), traffic

class, delay on.upstream links, route, and transmission time; yn () becomes

known to the link scheduler at a_(&o). Routing-scheduling interactions and
comunication overhead are mentioned, and desirable properties for estimates
f of the delay:on.-downstream links are discussed. We develop a dynamic
programing formulation in which the scheduler incurs a decision cost
g(t,y) _ c(b,h~t-a+T+f) by selecting for-.transmission atepoch t a packet
with characteristics ycY. -t

We focus on priority rules *(t,y): at epoch t, a packet for which is
maximum is selected for transmission. A rule 0* is optimal (in the static
sense) if it empties out any given queue at minimum cost; e.g. for linear
costs g(t,y) = m yt, we shown that the ".IC rule" * f m y/ is optimal in this

sense. A significant result here is that, in the case of constant transmis-
sion times, an optimal time-independent rule minimizes the limiting-average -

cost for every w; thus for linear decision costs, the rule * = my generates

an optimal policy for a G/D/1 link. For delay costs of the form c(b,t) =
co(t Ab), where co is CND, we show similarly that the rule * = Ab+h-a+f is

optimal for a G/D/l l.nk if f is time-independent. Suboptimal rules are also
given for certain costs in the case of variable service times.
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TRANSMISSION SCHEDULING TO REDUCE CONVEX DELAY COSTS

IN PACKET NETWORKS

by Darius M. Thabit

Submitted to the Massachusetts Institute of Technology on 14 October
1983, in partial fulfillment of the requirements for the degrees of Electrical
Engineer, and Master of Science in Electrical Engineering .

ABSTRACT

Delay is a fundamental issue in packet communication networks. Previ-
ous work has focused on expected delay as a performance measure in queue-
ing models, in the context of routing. It is clear that some types of traffic
are more sensitive to delay than others, and some simple priority structures
have been proposed; but the fact that expected delay is not very meaningful
for certain applications (e.g. packetized voice, which has a critical delay
ceiling) has received little attention.

Both issues are addressed here by defining traffic classes, and assigning
delay costs c(b,t) which reflect the undesirability of a class-b packet spending
time t in the network. We argue that convex, nondecressing (CND) functions
are suitable for a variety of classes; examples suggest a range from linear
(e.g. file transfers) to step-like (e.g. packetized voice). An appropriate perfor-
mance measure is the limiting expected average cost per packet. (As an
equivalent characterization, we show that, for a given class, the expected aver-
age cost converges to the expected cost in equilibrium, under mild conditions.)
Within a given class, strictly convex costs will be driven by packets whose
routes have many hops, and/or packets which have long delays on some links;
such packets may profitably be given priority as well. ,..-.

We propose a distributed scheme in which a single scheduling policy is
executed independently on every link. Link traffic is modeled by a stochastic
sequence Jyrj, where <e*,b ,yhn,rn,? n> 2 Yn:O"Y a lRx Bx [0,e)k Rx (0,e) represents
for packet n the epoch of arrival to the link (an:en ), traffic class, delay on
upstream links, route, and transmission time; y ,4) becomes known to the link
scheduler at an(Y). Routing-scheduling interactions and communication overhead
are mentioned, and desirable properties for estimates f of the delay on
downstream links are discussed. We develop a dynamic programming formu-
lation in which the scheduler incurs a decision cost g(ty) a c(b, h + t - a + + f) by
selecting for transmission at epoch t a packet with characteristics y I Y.

We focus on priority rules f(t.y): at epoch t, a packet for which f is
maximum is selected for transmission. A rule 0" is optimal (in the static
sense) if it empties out any given queue at minimum cost; e.g. for linear -costs
g(t~y) a myt. we show that the "pC rule" umy/r is optimal in this sense. A
significant result here is that, in the case of constant transmission times, an
optimal time-independent rule minimizes the limiting-average cost for every or,
thus for linear decision costs, the rule f i my generates an optimal policy for
a GIDI1 link. For delay costs of the form c(b,t) - c0(t*Ab), where c o is CND,
we show similarly that the rule •Ab+h-a'f is optimal for a GID/1 link if f
is time-independent. Suboptimal rules are also given for certain costs in the
case of variable service times.

Thesis Supervisor: Robert G. Galleger
Title: Professor of Electrical Engineering
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CHAPTER I - INTRODUCTION

1.1 Communication Delays In Packet Networks

In many types of communication systems, the traffic load is not a static

quantity; even during periods of peak average loading, the instantaneous load P

typically has a substantial variation about this average. However, providing a

system with sufficient capacity to accommodate these instantaneous load

peaks can almost never be justified economically, and the reduced allocation .

of system capacity may result in degradation of one or more aspects of

service to the users.

In packet-switched systems, such as datagram or virtual-circuit communi-

cation networks, point-to-point transmission of data packets is accomplished

over a single shared channel, and packets ready to depart are queued in a

buffer when the transmitter on a link is busy [Tanenbaum; 53.3.5] [Heart et

a/]. Due to the irregular pattern in which data traffic arrives from outside the

network, a certain degree of queueing due to entering traffic will be almost

inevitable, and this will be compounded by internal traffic. In this case, then,

the limited system capacity manifests itself in the form of queueing delays.

Of course there are other delays associated with packet switching: however,

packet processing and transmission delays are relatively small, and propagation

delays become significant only in satellite applications; in any case, all of

these are more-or-less constant system parameters as far as a given user-pair

is concerned.

Communication delay is a fundamental performance issue in packet

networks. As one consideration, many applications have certain necessary or

desirable response-time characteristics for the individual packets. As an

example, the perceived quality of a display terminal session is degraded as the

..................... .*
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round-trip delay is increased; in particular, it is tempting to speculate that this

kind of consideration will be relevant whenever the psychophysical needs of

the user come into play. As another example, in certain kinds of real-time,

distributed processing environments, the value of information decreases as it

gets older.

As a second consideration, It is often the case that each of the individual

packet delays contributes to the total duration of a given session or, more

specifically, of a given job. In this context, the effects of delay are most

noticeable in applications characterized by frequent exchanges of short

messages; as the frequency of such exchanges increases, the delay becomes a

larger fraction of the total time required to complete the job. At the other

extreme, in a "one-sided" data conversation such as a file transfer, the sender

may have many packets in the network simultaneously, in which case the -7

effect of individual packet delays on total job time will be much weaker."

It appears that, for many applications, delay considerations can be

resolved into one or both of the basic types described above; and moreover,

that one of these will often dominate the other. For instance, in a voice

conversation, user-related constraints on the round-trip response times of indi-

vidual packets should come into play decisively at relatively low levels of

delay; again, one might suspect that this would apply in those cases in which

a human is involved in a direct way (cf. Roberts et &/; p. 544). On the other

hand, in certain types of machine-machine interactions, individual packet delays

would be irrelevant, and the total job time will be the dominant consideration,

as Roberts t @/. [p. 544] have observed.

'As an intermediate case, in a "window" flow-control strategy, the sender
is allowed no more than M packets in the network at one time [see Gerla et
a/, 1980]; the job time will then be determined essentially by the round-trip
delays of every Mth packet.

* °o• ,°,,.I , . , - . • • . .. '. % , .4J' . . ... . , . 4.'. .. , . . . , -. ,,4 ~ \ . . . . . -. . . . . .. .'4- , .. -. . . .-• , o .
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The primary motivation for distinguishing these two types of applications

is that they typically lead to different kinds of performance criteria, as

discussed in S2.1. For brevity, applicat ons for which the individual packet

delays are the dominant consideration will be referred to here as
I

packet-sensitive, and those for which the job time dominates will be called

job-sensitive.

As a final consideration, from the network operator's point of view,

congestion will result if packets spend too much time in the network.

Although one could attempt to incorporate this into delay costs, we expect

that buffering capability will be such that congestion is typically dominated by

other considerations. p

1.2 Delay Performance Criteria

Published work on packet networks has been concerned almost exclusive-

ly with reducing the average delay per packet. In particular, considerable

progress has been made in the development of packet routing algorithms under

the average delay criterion, due in part to the linearity of this performance

measure in the individual link delays [see e.g. Gallager].

However, average delay as a performance measure has two serious weak-

nesses. First of all, desirable delay characteristics for data traffic will vary

over a wide range for different applications. Roberts et al. [p. 544] give

some figures for typical time-sharing applications as follows: a 50 character

line of text (400 bits) should traverse the network in at most 200ms; for inter-

active graphics, a new display page (20 kbits) should take less than a second,

and interrupts (less than 100 bits) within 30-90ms. According to Bell Labs [p.

56], voice conversation is not "unduly" impaired if the origin-destination delay

is less than 300ms. Low priority items, such as certain kinds of file transfers

or sensor data, could reasonably be expected to tolerate delays on the order

V . ~ N_--....--
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of several seconds or more. One recent analysis which addresses this issue

provides for scheduling voice packets ahead of data packets [Ibe].

At a more fundamental level, however, for certain types of applications

average delay simply is not very meaningful. This is perhaps best illustrated

by an example such as the following: in a packetized voice transmission

system, voice samples or "frames" must be delivered to the destination at

regular intervals, to be reassembled and decoded for the listener; if a packet

arrives early it is simply buffered; if it arrives late it must be discarded. It is

fairly clear that the fraction of packets arriving "on time" is all we really care

about here; depending on the distribution of packet delays, the average delay

need not be a very reliable indicator of this.

Thus the figures cited in the next to last paragraph leave something to be

desired; for instance, must we hold the delay of every text packet below

200ms, or will we be content to achieve this as an average value? More

specifically, what are the consequences of exceeding this value, and whet, if

anything, do we gain by undercutting it? Such questions have received little if

any attention in the literature.

For certain aspects of telephone system performance, Bell System spec-

ifications are reported to be established as follows. The expected percentage

of users that would bestow a particular subjective rating (e.g. "good"), in

conjunction with a particular aspect of raw performance (e.g. receiver rms

noise voltage), is called the grade of service associated with that rating and

performance aspect [Bell; pp. 45-48]; the calculation of grades of service is

based in part on subjective testing of customers. Typical objectives are to

provide grades of service of about 95% in the "good or better" category and

a negligible fraction in the "poor" category.

The grade of service concept represents a step in the right direction

because it reflects, in essence, a functional dependence of user satisfaction on

-, ,.*. t," .- . , ... ..... .... .... .... .... ... .. ......................... .. - .......... . .. ...- , .-. . .



raw performance. Here, however, we are primarily interested in the automatic

control of delay performance in an operational network, and this will require

an objective function, i.e. a scalar measure of global performance, rather than

a collection of individual specifications. It is common in an operations

research context to assign costs as functions of delay for various commod-

ities, with the expected cost as a performance measure. We adopt this

approach here, and thus exploit the notion of user dependence in a very direct

way.

We are motivated here by the philosophy that, for a given application,

any user should be able to expect a certain level of performance from the

system, regardless of geographical separation or other non-essential factors.

As Wong et a/. have pointed out, this is particularly reasonable when users are

charged on the basis of resource usage. Our goal then is to provide accepts-

ble service, for all users at as small a dollar cost as possible to the operator,

or equivalently for as many users as possible at a given dollar expenditure.

In Chapter II, we develop a cost structure for packet delays, and show

how it addresses the issues raised here. A probabilistic framework is defined,

and by considering equilibrium behavior some qualitative insights are obtained.

In Chapter III, we describe a distributed implementation of the basic schedul-

ing idea, and construct a model for the sequential decision process associated

with packet selection. We can show that in certain idealized cases, optimal

policies are given by simple selection rules.

..- -----.
*~.* .. * a---- -- °* *.-



CHAPTER II - A COST STRUCTURE FOR PACKET DELAYS .

2.1 Delay Cost Functions

Let B be some set of data traffic c/asses: for instance, B might be a set

of applications, e.g. video terminal, packetized voice, etc; but B is not

restricted to any particular interpretation, and we require only that it be a

countable set. We assume the availability of a function c from Bx [0p) into

the real numbers IR, such that c(b,t) represents the undesirability, from the

standpoint of the entity operating the network, of a "typical" user experiencing

an individual packet delay t for a class-b packet, t->O, beB. For short, the

function c(b, ) is referred to simply as the de/ay cost for class-b packets. It

isn't obvious how such functions would be constructed in practice. They

should of course draw on subjective testing for applications directly involving

humans; it would probably be most straightforward in such cases to construct

for t-O the associated marginal cost function2

m(b,t) z ac(b,t)Iat, (2.1)

i.e. m(b,t)At reflects the aproximate cost of increasing the delay of a class-b

packet from t to t+At. Then the delay cost clearly may be derived as

c(b,t) -Jf m(b,x)dx c(b,O) (2.2)
0

" ffor some c(b,0).

Now consider a collection of packets, labelled (uniquely) by either the

positive integers IN* or a subset {1,2. ... N}, which traverse some system;

2lacking the standard "equals by definition" symbol in our character set,
we will make do with ",n".

-6-
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suppose that packet n belongs to class bneB and spends time sLO in the

system. Obvious measures of performance are the total cost

N
I c(bn,s r) (2.3)
nrl

in the finite case, and the long-term average cost per packet

N
lim (1/N) I C(bn, sn) (2.4)

in the infinite case, assuming convergence. The additive structure without any

weighting implicitly requires that the delay costs c(b, ) reflect, as much as

possible, the relative urgency of the various traffic classes. It also implies

that time-independent constants in the delay costs are irrelevant to the

minimizatign problem, so that we may as well take c(b,0) * 0 in (2.2).

In an attempt to get some feeling for the general behavior of delay cost

functions, we will speculate on their form for some representative

applications. At the same time, we will argue that functions which are convex -__

and nondecreasing (or CND for short) are suitable as delay costs for a reason-

ably wide variety of applications; it turns out that CND cost functions have a

number of desirable properties, and we want to exploit these in the sequel.

We note here that for a convex cost c(b, ), the associated marginal cost m(b, )

is nondecreasing, and this answers in a general way the questions raised in

51.2 concerning constraints on raw delay: we lose at least as much by

exceeding a given constraint as we would gain by undercutting it by the same

A amount (cf. Haji etal].

Consider first, as a packet-sensitive application, the packetized voice

connection mentioned earlier in 51.2. The cost associated with the transit time

of a single voice packet is essentially a step function, i.e. of the form

, ; ".2!2
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u'1(t) * 0 for tST and 1 for t>-T. where T is a threshold representing the desired

delay between arrival to the network and decoding at the destination. 3 The

average cost (assuming voice traffic only) is then

N
(1/N) I u T(sn., (2.5)

nal

which is the fraction of packets for which smn>T.

Now in the context of an operating network, a desirable control mech-

anism would be aware of this threshold, and would attempt to ensure that

voice packets do not cross it. But we can accomplish the same effect with a

convex, non-decreasing function such as c(voice. ) of Fig. 1. The price paid for

using the convex delay cost is that the control mechanism will continue need-

lessly to pay attention to packets past the threshold. However, under normal

operating conditions (i.e. when the traffic load is not excessive), we would

expect the fraction of packets exceeding the threshold to be very small if the

control mechanism is effective.

As a second application, consider the access of a remote facility using a

display terminal, in terms of the round-trip response time. We assume here

that processing in the remote facility normally has a relatively small time

requirement. Sufficiently short response times are not objectionable (or even

noticeable) to the typical user and the delay cost will be flat over this range.

The typical user will then become increasingly impatient with increasing

response time beyond a certain point. Finally, the user resigns him or herself

to the likelihood of an extraordinary delay, at which point the delay cost

3User satisfaction will of course depend also on the value of the thresh-
old T itself, but the selection of a threshold is a separate issue.

6This functional form for delay costs is also similar to that depicted by
Lawler [1964; Fig. 1] in a job shop context.

'C.-.. V .* -~..-- . .
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levels off again. A reasonable delay cost might look something like the

dashed curve 4 of Fig. 2. The control mechanism should presumably try to keep

the majority of packets below the "knee" of the curve at T(disp), and all but a

negligible fraction below the "shoulder" at Tddisp). Again, we can achieve a

similar effect with the solid version c(disp, ) of the curve, which is convex

and nondecreasing, with the same implications as in the previous example.

In this case, the delay cost was naturally expressed in terms of the

round-trip response time. To conform with our earlier definition, we might

now try to find functions c(user, ) and c(reply, ), reflecting delay costs for

individual user and reply packets, which satisfy

c(disp,t~s) u c(user,t) + c(reply,s) (2.6)

for all t and s; but it isn't hard to show that, because c(disp, ) is nonlinear,

this is impossible. One could, of course, seek a "best approximation" (e.g. in

the sense of expected values in the equation above), and intuitively we expect

that any reasonable cost functions so derived will also be CND. At the same

time, however, the approach that will be developed here is in principle appli- -.

Figure 1 Possible delay cost function for packetized voice

lq *,*• ,. .,-* ) -'.--i
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cable to round-trip delay costs as well; the assumption of valid individual

packet delay costs for "round-trip-sensitive" applications may be viewed as

essentially a notational simplification.

For job-sensitive applications, the dominant consideration is the total job

duration, which is in general the sum Iti of an unspecified number of compo-

nents. The concern of the user (or manager) will typically be the fact that

processing facilities and possibly personnel must be dedicated to the job for

its duration; there may also be connect-time charges, both for the network and

for remote resources not owned by the user. For a given application, the

natural approach would again be to express these losses as a job delay cost

function c(job, ). In this case, however, connect-time charges will typically be

linear, and in general a linear cost seems most reasonable for dedicated

user-owned resources; the well-known business maxim "time is money" is

offered as a partial justification. Then we can write

" c(job, It1 " mtt " Int 1 , (2.7)

Figure 2 Possible delay cost function for display terminal

. ,.,.,.
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so that a linear cost c(i.t) • mt (which is convex and nondecreasing) is appro-

priate for the individual packet delay components as well.

2.2 Stochastic Perfortance Measures

Of course the class bn and system time sn of packet n are not known in

advance. In queueing and scheduling literature it is typical to model the uncer-

tainty about such a situation by a stochastic sequence, say (z,, ne IN*) or

1zr, nal.... N), where Zn is a random "vector" (or more properly a random

ordered set). e.g. <a,br, On>, whose elements represent the essential character-

istics of packet n, e.g. the epoch$ a. of arrival to the system, class b,, and

length R, The r.v. z, are all functions on an appropriate sample space 0

taking values in some space Z, e.g. IRu Bx(0,e); we assume in particular that the

arrival epochs satisfy an(w)S n+(0) for all well The statistics of the packet

sequence (zn) are specified by a probability measure P. which reflects the

likelihood of various events defined in terms of the Zn..

Associated with each point w#Q is a sample sequence or realization

{z,*)) of the packet generation process; we may then assign to every such

realization a value x(s) from some space X, in which case the function x:d--X

is a random variable' on C) as well, and its statistics are in principle deter-

mined by the probability measure P. We generally abbreviate events such as

{el. x(e) * A) by {x(m)aA) or just {xeA), and if PfxeA) * 1, we may write

"xiA w.p.1" (i.e. with probability one).

.In deference to tradition, a "time" will denote the duration of a

'*'. (temporal) event, whereas an "epoch" will denote a specific instant.

* 6A rigorous construction would require that x be measurable on 0 [Ash;
.. 51.5, 5.6]; this ensures probability assignments for events defined in terms of

x. We will simply assume that the packet process and system parameters are
such that this requirement is met for all functions on 0 defined here.

.. "- .,
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We assume that the system will treat packets in accordance with some

deterministic policy v (chosen from a given set nl of policies), so that associ-

ated with each realization (znl()) of the external packet process will be a

well-defined (although possibly unbounded) sequence fsriv)) of nonnegative

system times; i.e. the s J,) are random variables on M Again, obvious

performance measures for the policy v are the expected total cost

N
JN(l) I E EJc[brSn(,)]) (2.8)

and the Iong-run expected average cost"

N
J() a lim 11N) I Etc[b,,sn(r)]J; (2.9)

Ni nal

when the limit exists; thus we seek practical policies for which JN or J is

small. We will not always make explicit the • dependence, but some underly-

ing policy is always assumed.

For certain traffic classes, particularly packet-sensitive classes, it is

appropriate to define performance specifications as well. We may construct

such a specification for any given class b&B by imposing a simple constraint
on the associated long-run cost. We will assume here that the event

( aw: (zg.)) contains infinitely many class-b packets) (2.10)

'it might seem more natural to consider instead the expectation of the
limit Ellim(lON)INC bf,sn()]), but (2.9) is more convenient from a technical
standpoint; in any case, if there exists a random variable M such that
(1/N)ZNc[brj&),r.&,)] < M(a) for all a, N, then by the dominated convergence
theorem [Ash; p. 49] the two performance measures are equivalent for a given
policy ,.

$We can write P(O-Ob) - P(lim infro {brob)); this will be 0 if, for instance,
the b, are independent and liminfn P bn-b) > 0 [cf. Ash et al, 1975; p. 136].

""". . " ".-'.' -.-. %* *',":..,'* ..--. "
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has probability one;* then for every .oefl , let

N
nj(b,w) a minIN: .' (bn r b)ub a j) (2.11)

nal

be the index of the jth class-b packet in {zn(&)}, where the indicator A b,}ub) a

1 if br() " b and 0 otherwise. Then we can require of the long-run expected

average cost per class-b packet that

N
J(b) a r (l0N.) I Elc[b,s(nj)] 1 0 b) < c[b,T(b)] (2.12)

N: nal

for some appropriately chosen "target time" T(b), such as T(disp) in Fig. 2

(thus two traffic classes may have the same delay cost but different specifica-

tions). The additive nature of the performance measures suggests that the

delay costs be individually scaled (multiplicatively) such that c [b,T(b)] is a

constant (say 1) independent of b: this makes precise the manner in which the

delay coats should ref lect the relative urgency of their respective classes.

One might also want to define one or more "floating" traffic classes

without specifications. In the network synthesis problem [cf. Gerla et s/.

1977] performance for these classes could be traded off for savings in dollar

cost, while specifications for the other classes are guaranteed. In an opera-

tional network, the cost functions for the floating classes could be multiplica-

tively scaled as a group, from time to time as necessary, such that

specifications for the constrained classes are just met.

Finally, it will also be useful to have a performance measure in terms of

the equilibrium distribution of system time associated with a given class of

packets; the equilibrium distribution is a much more intuitive entity to think .,,

about, and is known for many representative queueing situations, Define

~ ti.,. ~ : *.~* ~~ . '. .-,. --- a.!
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F.(t;b) a P.s[nj(b,))StjO(213

the distribution of system time for the jth class-b packet, where lj (b,) is

defined in (2.11). Now suppose there exists a distribution function F( ;b) which

is, in some sense, an arbitrarily close approximation to Fj( ;b) for sufficiently

large j; then F( ;b) corresponds to what we would think of as the distribution

of system times seen by class-b packets in equilibrium. The sense in which

Fj( ;b) is required to approach F( ;b) in this context is called week convergence

[Ash; 58.1]; weak convergence of a sequence of probability distribution func-

tions, denoted here by Fn W F, is equivalent' to pointwise convergence F,(t)

Fit) for every continuity point t of F (including to).

Now if Fj( ;b) F( ;b), we might expect that, In some cases,

fc(b~t)dF(t;b) uJib), (2.14)

i.e. that the expected cost of every class-b packet arriving after the system is

in equilibrium is indicative of the long-run average cost. In the case of linear

costs, certain system models have been shown to obey relations timilar to

(2.14) [Fife] [Stidham; p. 1122]. Without assuming a specific model, we can

show that (2.14) holds for every continuous, nondecreasing, nonnegative delay

cost c(b. ),under a technical condition on the sequence {c [b,s(nj)]) which

should be satisfied for most models of interest (note that every convex delay

cost is continuous); a formal statement and proof are given in SA.

*however, it is often defined as follows: F, - F if f fx(t)dF,(t) f'x(t)dF(t)
for every bounded, continuous function x: IR IR. .*J

.. ._"
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2.3 Delay Performance In Equilibrium

In the light of the previous paragraph, we expect that delay performance

in equilibrium will be representative of long-run average performance as well,

and we will often tacitly assume that (2.14) is true. We first obtain a charac-

terization of equilibrium delay performance for a typical packet switching

network.

2.3.1 Packet Network Model

Our model of a packet network is a set V of nodes, which represent

* packet switches, and a set E of links, where link ci,j . represents a one-way

transmission channel from node i to node j; thus -cV,E: is a (directed) graph

[Lawler, 1976; 52.3]. Associated with each link is a packet queue feeding a

transmitter, and we assume unlimited buffer space. The transmitter on link e

has capacity * 0 bits/sec, so that transmission of a packet of random length f"

bits on link a takes a random time r A - Dif, seconds. The structure just

• vdescribed is often called the "subnet;" the user's computer system, or "host,"

is interfaced to one of the subnet nodes [Tanenbaum; S1.2]. We view the

packet process {zn} as being generated by the ensemble of external hosts,

and the policy v as a responsibility of the subnet.

Packet n is generated with a specified destination, and in real life the

subnet must select for it a rout. rr, i.e. a sequence of links from the origin

node to the destination node. The subnet will often have other responsibilities

as well, such as congestion control (Gerls at al, 1980]. Here, however, we

want to focus on subnet scheduling; we first of all want as simple as possible

a structure for the subnet policy in our model, so we now make the explicit

qualification that v is a subnet shelduling policy only.

Secondly, we are not going to pursue in any depth the effects of possi-

ble interactions between scheduling and other subnet functions. As an exam-

* . .N..
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pie, define '0 s "first-come-first-served (FCFS) scheduling on every link," and

suppose f , is the same except that it always gives priority to packets on

some route r. If the route assignments are identical in each case, it is intu-

itively obvious (and very likely true as well) that the delay on route r will be

smaller under 1 r than under fo. For this reason, however, an adaptive routing

strategy might assign a larger portion of traffic to r under i,. than under wo

[Tanenbaum; 55.2].

For concreteness, we will assume that every packet vector zn(y) contains

a route rn(y) in some set R; the system time sn(w) is then the sum of the

queueing and transmission times for packet n as it traverses the succesive

links in the route r14). We also implicitly assume a flow control mechanism,

situated between the hosts and the subnet, which keeps link loading at a

reasonable level.

Suppose now that, as n -. -, and for every route reR,

P{sn5t, rnurj w.- H(t,r). (2.15)

It then follows that, as n -,

P~rr)r} u P~s,,a, r -r} " H(.o,r) a G(r), (2.16)

P{sSt) I P{s.,St, rnmr) w- H(t,r) a F(t), (2.17)
R R

and, as long as P lrn'r},G(r) 0 0,

% P{sr<trner) z P(sri<t. rn=r)+P{rnur) I- H(t,r)+G(r) a Fl(t). (2.18)

Then F(t) - ZmFr(t)G(r), i.e. the equilibrium distribution of system times is the

sum of the distributions corresponding to the individual routes weighted by the

equilibrium route probabilities, as we might have expected.

. . . ....-.
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By making some simplifying assumptions, we can invoke a standard

result to get a qualitative picture of F(t). It is typical to modal a packet

network as a collection of independent M/G/1 queues, because the distribution

of delay is known in this case [Klsinrock, 1975; ch. 5]. In particular, for an

I

M/M/1 queue in which packets are transmitted FCFS,16 the density of delay

(queueing plus transmission) on link e has the exponential form f t)a

rp.,)exlttog t) quliwhere p. -t E(F) is the service rate and X, is the

arrival rate [Kleinrock, 1975; p. 202]. Moreover, if the link capacities e. are

such that 6, a collectis independent of e, the system time over a given route

r of hops (links) has an Erlang density

f(t) g pFr(t)anmit on 1exp(-6t)+(j-1)!, (2.19)

expectation Sr a ftdFw(t) *j/i and variance j e2 for a picture see Klsinrock,

1975; Fig. 4.5 p. 1243; thus for such an idealized model the overall equilibrium

density f(t) a IR (t)G(r) of system times is a weighted sum of the Erlang

densities corresponding to the different routes, and might look something like

Fig. 3. While the MIMI1 packet network model is a fairly reasonable one from

the standpoint of mean delay [Kleinrock, 1976; ch. 5), we do not expect an

accurate representation of the entire distribution; yet neither do we expect

such limitations to materially alter the qualitative picture developed here.

"This model is equivalent to the "network of Markovian queues" [Klein-
rock, 1975; 54.8) (id which case the queues correspond to the vertices of a
graph rather than the edges).

S. -.. . . .~ . .-.. .
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2.3.2 Implications of Convex Delay Costs

For a linear cost clt) = mt, we don't really care about the shape of f, we

just want the equilibrium mean S a JtdF(t) to be small. However, as the

convexity of c becomes more pronounced, the mean becomes less crucial, and

we generally become concerned more with higher moments of delay; e.g. if

c(t) * (t/T)k (T is some threshold), we want the kth moment ftkdF(t) to be

small. In turn, the higher moments are typically driven by the upper tail of Z

the equilibrium density, which corresponds to packets whose routes have large

numbers of hops,3 1 and/or packets which have long queueing times at some

links on their routes. Transmission scheduling offers the potential for mitigat-

ing both of these contributions to the upper tail, by giving priority (at the

transmitteri to packets whose routes have large numbers of hops, and by

giving priority to packets which have had long queueing times at "upstream"

Figure 3 Density of system time in a hypothetical MIM/1 network

"e.g. in the ARPANET c. 1976, many node pairs had routes with as many

as 7 hops [Gerla ot W, 1977; Fig. 1, p. 49).

i*-o.o.-..- ,**--,-..-. -*.*..... ..* * ...--. ,....-.*... . .. . . .... . . . . . .
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V.s. earlier) links in their route, or are expected to do so at "downstream" (i.e.

later) links.

We immediately qualify this, however, by noting that, in order for sched-

uling to be effective, there must be packets to schedule. We should expect

that scheduling can be most effective in environments charcterized by large

numbers of packets in queue, such as high-speed systems. Scheduling might

also turn out to be most useful as a smoothing response to transient load

surges.

We expect that pulling the upper tail of the equilibrium distribution in

toward the mean must come at the expense of pulling the lower "tail" in

toward the mean as well, i.e. we expect some sort of conservation of the

mean system time S. In a single work-conserving G/G/1 queue the mean is

conserved iff packets are selected independent of their transmission times

[Kleinrock, 1976; 53.4) [Heyman et a/, 1982; 511.5]. We expect the situation

to be a little more complicated in the network case, but the single quoktie deri-

vation suggests that the analogous quantity is the sum of transmission times on

the given link and on downstream links. Thus if we give priority to packets

with many hops, we might anticipate an increase in mean delay as well as a -

reduction in higher moments. By Little's formula [cf. Stidham, 1972;

pp. 1122-23] this would increase the expected number in system, which is bad

from the standpoint of congestion; but by generalizations of Little's formula

[Brumelle] [cf. Kleinrock, 1975], higher moments of number in system should

be reduced, which seems desirable from a congestion standpoint.

Insofar as the mean system -time S is conserved, we can alternatively

view convex costs as being generally driven by the central moments

f It-S kdF(t) of equilibrium delay, such as the variance. Indeed, Jensen's

inequality [Ash; p. 287) gives Jc(t)dF(t) > c(S) for every convex function c;

moreover, this holds with equality if and only if the distribution F is a unit

.• %.
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step (i.e. the density f is a unit impulse) at the mean S. Thus given a

collection of distributions with the same mean, those which best approximate

(in some sense) a unit step are the most desirable, from the standpoint of any

given convex cost; this Is essentially a restatement of the basic idea of 52.1.

The variance of equilibrium delay similarly has components due to the

variance of route hop-length and the variance of delay at individual links (or

along individual routes). Wong et al. have recently addressed the effect of

route hop-length variance with packet scheduling: they derived a

time-dependent scheduling discipline (cf. S3.3.2), based on route membership

only, that minimizes the variance I RSr-S) 2G(r) of mean route delays in equilib-

rium. That work was motivated by a concern for fairness among different

node pairs (cf. 51.2), and the scheme effectively aligns the means of the densi-

ties f r(t), subject to certain connectivity constraints. However, the effect on

the higher moments of, delay along individual routes is not apparent. We also

note that their simulation results showed little variation in mean delay due to

scheduling discipline.

The convexity property also suggests an approach to lower bounds on the

expected cost. Denote by F( ;,) the equilibrium distribution under policy ,, and

define S() a JtdF(t;v). If we can find a policy i° such that S(e') S S(u) for all

w ell, then for every convex and nondecreasing function c, we have

c [S(I -S c [S(w)] S Jc(t)dF(t;w) (2.20)

by monotonicity and Jensen's inequality. For a single M/GI1 system, it is well

known that the desired w" is that policy which gives priority at each departure

instant to a waiting packet with the smallest transmission time (see S3.2.2).

From the discussion above, a network analogue to the optimal single queue '"-"-,

policy should suggest itself. However, we should not expect such bounds to

be very tight, because " is not likely to achieve equality in the second
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inequality. Moreover, the idea does not seem to generalize to the case of

multiple packet classes in a useful way. .-

Finally, we mention the possibility of improving delay performance

through selective packet routing. There are a great many approaches to rout-

ing [Tanenbaum; 15.23, but the effective goal can be expressed as follows:

for each origin-destination pair of nodes, the composite traffic flow rate (in

bitslsec) required by the associated users is apportioned among some desig-

nated set of paths; the objective Is a profile of link flows that gives rise to a

low expected path delay per packet. Given such a flow assignment. then, one

could reserve the lower delay paths to a given destination for the more urgent

traffic. However, the examples given in SA.2 suggest that, for larger utilize-

tions, such a scheme will not in general be as flexible as scheduling.

. i-.
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CHAPTER III - SCHEDUING ALGORITHMS FOR PACKET NETWORKS

Given the network configuration, the packet generation process, and the

delay costs, we want a scheduling policy i to reduce or minimize the

performance measure J(l) or JNl4). A scheduling policy basically specifies, for

each departure instant, the next packet to be transmitted. An urgent, newly-

arrived packet might also be allowed to displace or "pre-empt" the one in

transmission.'" Without allowing pre-emption, one might still decide to leave

the transmitter idle after a departure if a relatively urgent packet were

expected in a very short while. On the other hand, both pre-emption and

inserted idle time typically complicate queueing system analysis as well as

increase the expected delay, and pre-emption has associated protocol problems

in packet networks: for these reasons we will not consider such strategies

here.

3.1 A Decentralized Scheduling Problem

The network scheduling problem arises in a number of other contexts, for

example the so-called "job shop" scenario, in which pieces of work must be

processed on a number of different machines, perhaps not in the same order.

[see e.g. Conway et al. In many such cases, the time-scale on which deci-

sions are made is relatively long; it is then reasonable to assume that, for a

given realization &, the characteristics z,4&v) - <arJ&),b"(&), n(w),rn(&)> of arrival n

(or estimates thereof) become known to a single scheduler at the epoch anl()..

In a packet network, however, this information becomes available at an(y)

only at the first link in the route re(m). Collecting such detailed state informa- .-

12 For analysis of some pre-emptive queueing policies see e.g. Conway et
.P/. [58.7] and Schrage [1968].

-22-
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tion for a global scheduler (and passing instructions back to the individual

nodes) is clearly out of the question; at the same time, however, most of this

dynamic information is of relatively little value in making scheduling decisions

for a given link. This motivates consideration of distributed schemes, in

which each link makes its own scheduling decisions, based on a combination

of locally available information and limited communication with other

nodes.' 3 A reasonable performance measure for such a link scheduler would

then be the expected (average) cost of all packets transiting that link; such a

scheduler will exert a minimal influence on other packets, which would in any

case be difficult to quantify. Thus v will be interpreted as a link scheduling

policy, to be executed independently at every link.

Specifically, we will consider implementations characterized by the

following assumptions about the kinds of information available to the link

scheduler: -

* The delay cost is known for every class; we do not antipicate a
large number of classes in practice.

* Certain sample statistics are known about delays on the routes in

which the link is included; the use of these is discussed in 53.2.

Furthermore, for each transiting packet:

7 The epoch of arrival to the link itself is of course known.

* The traffic class is known.

* The delay at upstream links in the route (or equivalently, the epoch
of arrival to the system) is known; this has obvious practical
implications, which are discussed below.

'Such an approach might be desirable as well in certain applications with
longer time scales, as an alternative to more complicated global strategies.

~~~~~. . . . . . . . . .. . . ....... .......,. _L _i_ _ili!I.I._ ,,i _ sl . ." . _ .
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* The route is known; actually, we do not need the route per se
(which may not be known in practice), just some key to the delay
statistics associated with the route, such as the session identifier
[Tanenbaum; 555.4.1, 5.4.4].

* The transmission time on the link (or equivalently the length) is
easily established during arrival.

Given (z, and i, the packet process seen by a given link is specified;

however, it will certainly be very "messy," even if {zrJ is "nice." In fact.

the link arrival process will in general have a mild dependence on the link

departure process, and hence on the link scheduling policy, through feedback

paths. To avoid these difficulties, we will simply define a new link process

yJ from scratch, with the assumption that the statistics relevant to the

scheduling problem are similar to those that would arise under. the old network

process {zrJ. The elements of y, will be: the epoch a, of arrival to the link;

the class br; the "history" hr, i.e. the time behind packet n in the system; the

route rr; and the transmission time tr P will now denote the probability

measure for the link process.1 "  It is in this case useful to make the explicit

definitions

Y) AW 1 ,(w),br4w),h 1 (u)r,(w)> E IRxBx [0,,)xRx(O,--) * Y (3.1)

for every meG.

The assumption of accurate knowledge of each packets history is an

important one here. For example, priority schemes based on number of hops

in route, and number of hops remaining in route, were considered, but often

had much worse second moment properties than FCFS. The obvious way to

1"In principle, knowledge of the statistics of {y1, might help the link

* make scheduling decisions, but we will not consider this approach here.

'Thus no additional effort is entailed by a round-trip-sensitive reply
packet retaining the history from the user leg of its trip (cf. 52.1).

.................................
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communicate the packet history is for every packet to contain a bit field,

which is either "stamped" once with the epoch of arrival to the system, or

updated by each node in the route to reflect the new history. ' Thus there is

an obvious tradeoff between resolution and link loading, and the assumption

of precise information can never really be satisfied. On the other hand, we

will see that histories are not really necessary for packets with linear costs.

In other cases there may be sneaky ways to circumvent the requirement as

well: for instance, in a packetized voice protocol, a precise time stamp may

be forwarded at the onset of every session (or talkspurt, as the case may be);

the system-arrival epochs of subsequent packets can then be recovered from

their sequence numbers if all nodes have accurate clocks. However, the

relationship between resolution and performance is certainly not clear and

requires further attention.

3.2 A Dynamic Programming Formulation of Link Scheduling

. The behavior of a queueing system may often be modeled as a contin-

uous-time Markov process [see e.g. Heyman at &I, 1982; chs. 8, 9]. In many

cases, however, we are interested in the system behavior only at a certain

(countable) set of epochs, and the behavior on this "embedded" set of epochs

is often a discrete-time Markov process with a simpler state space than that

of the underlying process; a standard example is the M/GI1 queue [Kleinrock,

1975; 55.3). We will construct such a Markov for the link scheduling

problem, or more precisely a model "schema" or template. The model is

essentially a dynamic programming formulation (Bertsekas, 1976; chs. 2. 9]; it

is also similar to the Markov decision process [Heyman of W/, 1984; ch. 4].

For other applications of dynamic programming and Markov decision processes

to queueing system control see e.g. Stidham o f. [1974] and references

therein.

- "e % "".% ,*%e ' - '.% ' % . .%.% % Si " . . .• * . . '* .. . .. .* 5. *
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3.2.1 Process State and Dynamics

We first need a notion of process state. We want to make a scheduling

decision whenever the transmitter is idle and faces a non-empty queue; we

will represent the kth such decision epoch by tk, k * 0, 1.

We want also to represent the characteristics of the packets in queue.

Let 0 be a subset of IN*, and r a function from 0 into Y; the function & can

be interpreted simply as a list of packets and their characteristics; indeed, the

rigorous definition of a function u:Q-Y is the et of ordered pairs {<n,y>: n iE, *1

y-r(n)) [see e.g. Suppes; ch. 3]. Then if Y is the set of all such lists,46 we

may represent by sk:O(-y the queue list, and by 0k the set of packets in

queue, at the decision epoch tk.

Finally, in order that the process be Markov, we typically need to record

some additional information about the process history up to epoch tk. We

denote this information by fk:0 '4 , where * is an appropriate space; the nature

of the Vik will be elaborated on below. Thus we define the state represen-

tation Xk at the kth decision epoch, and the state space X, by

X00() <tkl(e),Vk(w),?kl(e)> 6 IRY* * X; (3.2)

note that, given WET, the corresponding packet-set 0 is always determined as

In: cn,y>ev for some yeY), i.e. as the domain of v. In particular, the initial

state xo will include components defined by

to  a ,, (3.3)

Goa In: snai), (3.4)

"Note that every such function v:Q--Y is a subset of IN xY * (<n,y>: .
nelN , ycY) (think of the graph of v in IN -Y coordinates); then Y is the spaceof all subsets of INxY which are also functions. Other "big" sets defined

here (such as 11) can be precisely specified in a similar manner.
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go I {<n, Yn): nlo). (3.5)

We now represent the dynamics which govern the motion of the process

through the state space. We will say a map p:X-IN* is admissible if P(x)e.Q

for all x#X. Then we formally define lat last) an admissible scheduling policy

as a sequence v a <po, p ....2- of admissible maps on the state space; let n be

the set of all such policies. The interpretation is that, at the epoch tk, the

scheduler selects for transmission the packet

U k  Pk(Xk) f £ k  (3.6)

(in the finite case only the first N maps are used); packet Uk subsequently

departs at epoch d(uk) * tk r ?(Uk). A policy rel is stationary if * <, p.....-

for some ,

The next decision epoch can be written as

ak Ic if Qk-Uk 0 a & ak 1l > d(Uk),
tk 1 a { (3.7)

d(uk) otherwise

where o is the empty set. Let Ek*, in: tk<snStk*, be the set of packets

which enter the queue in the interval following the kth decision; then

I -k Uk U Ek, (3.8)

and the new queue list is given by

Vk*I f<n,Yn: nfeQk }, (3.9)

For a given policy v, denote by {Xk(l)) the process which results from the

sequence of decisions (Ukpk(Xk), kW).

As a concrete example of how the ? k would be chosen, suppose that

{ynj is the superposition of independent processes for each b IB, and that for

~- '~.:.% *V %* V.. .V . .

. S *C°*°t -. .'
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each component process, the interarrival times, histories, routes, and transmis-

sion times are i.i.d. and independent of each other; then it is suffucient that ? k

includes for every class the latest arrival epoch up to and including tk. On

the other hand, a model of this type may in principle be constructed for the

system behavior under completely arbitrary packet processes, by recording the

entire state history in the ."-

3.2.2 Decision Costs

The process {yr4 says nothing about the probabilistic behavior of packets

after they leave the link. As the basis of a performance measure for the link

scheduling problem, we will use the delay statistics (and the delay costs) to

develop a decision cost g: IRxY -- [0,w); here g(t,y) will represent an estimate of

the cost (on system exit) for a packet with characteristics y which begins

transmission at epoch t on a given link. Thus g tk-y(uk)] will represent the

estimated cost for the packet uk selected at epoch-tk, and we may redefine

JN and J as (expected) estimated costs of using the policy i by"'

N-I
Jpig) E 1" Eg[tk(1),y(U )]1 (3.10)

k -o

N-I '".::
J(F) . lim (1IN) I E g t k(W),y(u ) , (3.11)

NI k.0

where y(uk) abbreviates yfpk[Xk(JrW]. It is not hard to show that (2.8) and

(3.10) are equivalent, in the sense that they would have the same value in a
single link system; assuming convergence, we might expect the same of (2.9)

" It is typical in dynamic programming to condition the performance
measure on a given initial state; in the present context we expect any such
dependence to be very mild at worst and we will not worry about it explicitly.

~ #:.Y...:.:§d>-:
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and (3.11), although a proof is not attempted here. The link scheduling prob-

lem is then effectively specified by a probability measure and decision cost

cP,g:; given such an instance of the problem, a policy which minimizes (3.10)

or (3.11) will be called optimal.

Our approach to the decision cost g at a given link is to construct an

estimate f(t,y) of the "future," i.e. of the delay on downstream links, for a

packet with characteristics y selected at t; we then define

g(ty) a c[b, h e (t-a) + r * f]. (3.12)

Of course the actual packet futures must have some variation about the esti-

mate f, and for strictly convex delay costs this will drive up the average cost

beyond the estimate given by (3.12). In certain such cases, the bias is irrel-

evant to the optimization problem: for instance, if c(bt) a t2, then g(ty) ,

I (h+t-a + f)2 - t2 2(h-a4'v f)t + (h-a r f) 2 , and the f 2 term is an

isolated constant. For a cubic delay cost, however, the slope of the decision

cost would be biased by an f 2 term (in this case one might consider the addi-

tional use of an estimate of the second moment of downstream delay). As

the convexity becomes more pronounced, however, we should also expect that

an effective scheduling algorithm will tend to reduce the variation in packet

futures for any given <t,y>.

* Thus the link essentially interprets the downstream estimate f as a delay

which has already been incurred; it Is then not completely unreasonable to

define the effective elsed time

q(t,y) a h + (t-a) + f(t,y) (3.13)

of a packet with characteristics y at epoch t. The link is thus assumed to be

already "liable" for the amount c[b,;(t,y)] at epoch t, and the decision cost

W I .
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may now be expressed simply in terms of the effective elapsed time as

g(t.y) a c(b,v f).

To construct our future estimate f, we assume that the link scheduler has

a table which gives an estimate D(b,r) of the delay to the destination on

downstream links for a class-b packet on route r; of course D(b,r) a 0 if the

link is the last one on route r. In practice, the estimates are likely to be

sample moving averages of the form

N-I" "

(M-m) 1 I Dj(b,r.&,i), (3.14)

where D (b,r,&,a) is the downstream delay of the jth class-b packet on route r

to reach the destination. The table would be updated periodically using

reports from the destination nodes. Adaptive routing algorithms often employ

such tables of downstream delays (for a single class) [Tanenbaum; 55.2]. For

simplicity, we will assume that D is independent of w and r, since we have no

intention of accounting for these complications. Thus we obtain a simple

estimate of the future by setting'

f(t,y) - D(b.r). (3.15)

Note that f is independent of t here, so that g( y) is simply a shifted version

of c(b, ), and has the same functional form.

'*And this can similarly be modified to include an estimate of the system
time on the return leg for a round-trip-sensitive user packet.
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3.2.3 A Refinement of the Downstream Delay Estimate

For a given pair cb,r>', the goal of the scheduler may be viewed as mini-

mizing the variation in estimated system times of transiting packets (cf.

52.3.2). The packet histories, arrival epochs, and transmission times will be

taken into account by the downstream links, and this should help rectify

imbalances in the delays accumulated at the given link and the upstream links

associated with transiting routes; the estimate f *D(b,r) is somewhat "pessi-

mistic" in that is does not anticipate any such help from the downstream

*links. The following example illustrates how this may degrade system

perf ormance.

Suppose for a given realization there are four packets in queue, all of the

same class b and with identical transmission times r. The link is the last one

in a route shared by packets 1 and 2, so their estimate is f 1 .2 *0; their

accumulated delays differ by 3,r seconds. The link is the first one in a route

shared by packets 3 and 4, with some estimate f 3 .4 ; they have arrived 5?

*1 seconds apart.

This is clearly the last opportunity to do anything about the relative

delays of packets 1 and 2, and in fact their system times can be made exact-

.4 ly equal if the schedule 1-3-4-2 is followed. This schedule also reduces by r

the difference in accumulated delays for packets 3 and 4 (as seen by the next

link) to 41-, moreover, there is a good chance that this difference can be

reduced further, if not eliminated entirely, by the downstream links. But the

pessimistic scheduler is in effect operating under the mistaken assumption that

this is also the last opportunity to do anything about packets 3 and 4. Fig. 4

shows how the effective elapsed times V,~ of the four packets might be

related in the worst case; the average decision cost at the link is then mini-

mized by the schedule 3-1-2-4 (this is easy to prove, and we do so in 53.4,

but the intuition should be fairly clear). This schedule indeed reduces the

...................................
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differences in accumulated delays for packets 3 and 4 to 2r, but results as

well in an irrevocable difference of 2,r in the total system times of packets

and 2.

We can also imagine the opposite extreme, that of the totally

"optimistic" scheduler; this one assumes that the downstream links are some-

how able to guarantee equal system times for all packets with the same <b,r"-

(a particularly poor assumption on the last link in a route). To generate such

optimistic estimates of downstream delays, a link might maintain a table

which gives an estimate S(b,r) of the total system time for a class-b packet

on route r, and derive a time-dependent estimate f(t,y) = S(b,r) -

[h + (t-a) + r]. This gives q(ty) - S(b,r) - r and g(t,y) a c [b,S(b,r)); with this

estimate, then, decisions may be based on at most packet class and 'route, and

cannot be very meaningful.

The example of Fig. 4 shows that a link has a limited capacity for reduc-

ing variations in accumulated delay. Thus a more "realistic" scheduler should

expect that, for a given pair <b,r>, each downstream link will make some

contribution to this goal, and it should realize that some effort on its own

c c k,-).

Ci

III

Figure 4 Elapsed times with pessimistic estimates
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part will be required as well. We may strike such a balance between the

pessimistic and optimistic schedulers with an estimate of the form

fit,y) P /yD(b,r) ( 11-py) [S(b,r) - (h • t - a +)] (3.16)

where Pye(0,1) represents the fraction of the responsibility assumed by the link

for a packet with characteristics y.

As one possibility, if Jr is the number of downstream links on route r,

we might set y - 1/(j+l). Then for packets at early links in a route, the S

differences in effective elapsed times are reduced to much more reasonable

values than those seen by the pessimistic scheduler; however, they are not

completely eliminated, so that meaningful scheduling decisions may still be

made. Of course other assignments for Py are possible, and experimentation

would probably be helpful in establishing reasonable choices; but one obvious

constraint is that, on the last linl in a route, Py should go to 1, so that f

goes to 0.

Now, however, f is affine in t, and we find that

g(t,y) c(b, yt Ky) (3.17)

for some Ky independent of t. While the convexity of c(b, ) is retained in

g( ,y), the particular functional form need not be; we will see in $3.4 that the

characterization of an optimal policy becomes more difficult in this case.

3.2.4 Performance on a Saturated Link

Consideration of scheduling disciplines other than FCFS opens up the

possibility that some packets may get "trapped" in the system forever, and

we clearly want to avoid this. Indeed, both (2.9) and (3.11) have little signi-

ficance unless (with probability one) sn is finite for every n. If this condition
S

. .. . . . -
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is not met, thenL E[c(brs,n)] • for some n, so that (2.9) cannot converge.

And because (3.11) accounts for packets in order of departure, it doesn't even

give any indication of this problem; in fact the scheduler might conceivably

minimize (3.11) while neglecting indefinitely the most urgent packets.

To ensure no trapping, we could require that on each link the queue

empties out infinitely often, I.e. the queue busy-periods are all finite (this is

typically sufficient for stability of a queue: Kleinrock, 1975; p. 93]; then every

packet is selcted eventually, at every link in its route. More precisely,

suppose that, on every link, we have

(w.p.1) liminf IQkI = 1, (3.18)
k1

where IQ denotes the number of elements in a set Q; recall that by defi-

nition Ik is never 0. Thus for every k there exists a j>k such that

0Qfl j 1 [cf. Rudin; pp. 55-57]; then (w.p.1) for every packet n, we have nEEk

for some3  k, and hence dn - tj + Trn and s. : t j tk 7 n for some jk.

We might also imagine a situation in which the finite busy-period

assumption is violated, particularly when the potential traffic is large. As a

somewhat weaker assumption, then, we require only that

(w.p.1) liminf 1Qkj - M < ( (3.19)
k.

for some M, i.e. for every k there exists a j-k such that IQj I < M; we do

expect that such an M exists in practice, regardless of the policy. We may

,"Suppose that, for every n, E[c(bnsr)] is finite: then by Jensen's inequal-
ity E(sn) is finite, hence s. is finite w.p.1; then the probability of -%e set of
realizations in which sn is infinite for some n is P(Unffbn jisinite)) S
lan iPisn infinite) a 0.

'this actually presumes in addition that (w.p.1) lim infnY Tn > 0.

%I"
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loosely refer to a link for which M>1 as marginally stable (pathological insta-

bilities exist). Trapping is now possible for some policies, which suggests

(correctly) that (3.18) is also a necessary condition (for no trapping under every

policy); but an argument similar to the one in the previous paragraph shows S

that no trapping occurs under FCFS, so that at least one such policy always

exists.

We will address the marginally stable case by holding the link account-

able for every arriving packet, as follows: in $3.3.1, r"(t,v) is defined as the

optimal cost of emptying out the queue described by the list v, starting at

epoch t; we redefine J (for the last time) by"

N-I
J(*) - lim (1/N) E{ I g [tkl(91y(uk)] + r [tN(I),NI()]). (3.20)

N1 k.0

rnttN) represents the liability of the link after N decisions (assuming no

additional arrivals). Now if (1/N)E~r-[t(,).,N(r)] 0, then obviously J(F) .

limN,(1/N)Jn(w). Moreover, we expect intuitively that (w.p.1) no trapping occurs

in this case. and that (2.9) and (3.20) are equivalent.

It would be nice if we could guarantee that (w.p.1) the optimal policy

never traps in the marginally stable case, but this is not true; for instance, in

the case of linear delay costs c(bt) - mtt and constant transmission times, we

will show in 53.3.2 that (in the single-queue case) packets with minimum mb

always have the lowest priority, regardless of their effective elapsed times.

In principle, there should exist conditions under which the optimal policy will

never trap; a likely candidate would be unbounded marginal costs for every

class. In such a case, r" would serve as a "penalty function" which discour-

2 1Thus J is no longer a true per-packet average; this allows for further
anomalies, which we will not pursue, but the reader is invited to explore.
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ages the scheduler from neglecting any particular packet for too long. In

practice, however, we cannot guarantee such a condition. Alternatively, we

could establish absolute time limits such that a packet automatically goes onto

a special subqueue with preferred status once its limit has been reached; this

will also guarantee no trapping.

3.3 A Class of Efficient Scheduling Policies

It is appropriate in this context to focus on simple policies which can be

executed quickly. The transmission time of a data packet is typically on the

order of 10 milliseconds; thus even an (inexpensive) processor, dedicated to

the task of scheduling, will have time for only a few thousand machine

instructions per decision.

3.3.1 Myopic Scheduling Policies

In particular, it seems reasonable first of all to forget about the dynamic

aspect of the problem; i.e. at any given decision epoch, Ignore the fact that

more packets are expected to arrive in the future, and address only the static

problem of emptying out the queue at minimum cost. Policies of this type

will be called myopic scheduling policies [cf. Heyman et al, 1984; ch. 3]; the

notion will not really demand a precise definition.

In general, the arrival of new packets can upset the optimality of a static

schedule, as the following example shows. Consider a single link system, and

suppose that for a given realization packets 1 and 2 are present, and packet 3

will arrive in r seconds. All packets have transmission times r. The delay

costs are c(b j,t) n emax(0,t-i], c(b 2t) a amax(Ot-2 ), and c(b ,t) a

•maxf0,t-r), with e << a, as shown in Fig. 5. The optimal sequence for pack-

ets 1 and 2 is clearly 1-2, which has total cost 0. But if packet 1 goes first,

then one of packets 2 or 3 must incur a cost of ar, whereas the policy which
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results in 2-3-1 has total cost 2er < ev; depending on the process statistics,

then, the myopic policy need not be optimal. In certain cases, however, a

*.- myopic policy can minimize the expected cost 22 as defined in 53.2.

To formalize the static scheduling problem, let wY be a queue list with

IQ I q packets. We define a static sequence for a as a collection

a a tonr neQI, where On is the set of packets in Q to precede packet n. The

On must then be strictly nested, i.e.2 3

o O(n) . o#(n Q-nQ (3.21)

where n1 is the first packet according to the sequence a and nq is last. Given

a decision cost g, the cost of scheduling P in accordance with r, starting at

epoch t, may then be written compactly as

r(,,t.) I g[t + I r, v(n)] (3.22) ".-
nsQ Jet,

C ( ,.,) C OP, -

./ •

-" *"-r"..'

Figure 5 How myopic policies can fail

."There are other such sequential decision problems, e.g. some inventory
problems, for which the optimal policies are myopic under certain conditions
[see Heyman et &l, 1984; ch. 3).

2.Alas, "<" denotes proper set inclusion.
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and this motivates our definition; but we will often revert to the shorthand

n --n2-,..-ne. The optimal cost for the static problem <t0r> will be defined as

r(t•,) m min l"qt,.) (3.23)

(cf. §3.2.2), and the sequence a* is optimal for the problem < if it achieves

the minimum in (3.23).

There are qI possible static sequences for a given collection of q

packets; the search for more efficient solutions to this problem has been rela-

tively active over the last twenty years. There seem to be two basic

approaches, the first of which consists of devising rules for eliminating

non-optimal sequences from consideration. As the most straightforward exam-

pie, dynamic programming approaches can reduce the computation required in

the general problem to the order of 2 q [Held et a/.] [Schild et &/.] [Lawler,

1964]. When the cost functions take a particular form, we can apparently do

better; additional elimination criteria have been given for non-decreasing costs
."'%

[Elmaghraby], CND costs [Henderson et &/; 53), and quadratic costs [Schild St

&/]. But there is nothing to suggest that the complexity of these schemes is

better than exponential, which is unacceptably slow in our context. Moreover,

it is not clear that it is any less difficult to find the first item in an optimal

sequence (which is all we really want for a dynamic policy) than it is to find

the whole sequence.

4...- .

* 7
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3.3.2 Priority Rules

The second approach is the use of intuition (and a little luck) to find

selection rules for the first item when the decision costs have a particularly

auspicious form; these rules can typically be expressed as priority rules, which

are (at worst) order m at each decision, and this is as good as we could

reasonably have hoped for. We may interpret any function 0: IMY - IR as a

priority function; when a decision is to be made among the packets in a queue

list a at epoch t, we simply select i packet nhQ for which f [t,u(n)] is maxi-

mum, i.e. we select a packet with the highest priority [cf. Schrage, 1973]; for

concreteness (and without loss of generality), we assume that ties are resolved

in favor of the lowest index. If t(ty) is independent of t for all yEY, then f -

is time-independent, and we may as well write O:Y-.IR; most useful priority

rules are in fact of this type. Time-independent rules are especially attractive

here because packets need only be ranked once (eog. inserted into a linked-list

data structure); this of course represents less overall computation, but also

facilitates consideration of packets arriving relatively close to the decision

epoch.

Given a static problem <t,"y we define the sequence e generated by a

time-independent priority function 0 (or the corresponding rule) by

* lin : 0[,(i)] > O[w(J)]) U {iEQ: [(w1)] a O[,(j)] & i-cj) (3.24)

for all j#Q; the time-dependent case is tedious to write down, but should be

intuitively clear as well. Given a decision cost g, we will say that a

time-independent priority function (or rule) 0" is optimal (in the static sense) if

it generates an optimal sequence for every <t,v lRxY. For certain decision
' .... costs, optimal time-independent rules do exist (we are aware of no

time-dependent rules which are optimal in this sense). Similarly, the (station-

ary) policy v generated by a priority function 0 (or rule) may be defined by
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p(t,w) " minfieQ: f[t,v(i)] > f[t,w(j)] for all j601 (3.25)

for all xeX. where the notation emphasizes the fact that decisions depend only "

on t and v; similarly, for a time-independent rule we write p(v). The policy

generated by an optimal priority rule may be optimal as well for certain

statistics P.

To illustrate these ideas, priority functions corresponding to a number of

well-known selection rules (usually associated with single-queue systems) are

now presented. First-come-first-served may be expressed as f(y) a -a. In the

case of linear decision costs g(ty)- myt, the so-called "C" rule is given by

0(y) a mylr; it is optimal for the static problem, as we will demonstrate

below, and the policy it generates is optimal for the dynamic problem (in the

stable case) when the arrival process is Poisson and the classes and service

times are ii.d. and independent [Lippman] (see also Fife]. In the special case

g(ty) a t. the "shortest job first" rule mentioned in 52.3 is of course given by

t(y) =l/. Now consider costs of the form c(b.t) = maxlO,t-Tb1; Tb has the

interpretation of a due-date or grace period, after which a linear cost is

incurred. Jackson's "due-date rule" is given by f(y) • -(Tb-), i.e. select the

packet whose due-date is closest; for a single queue, the rule can be

expressed as (y) • -(Tbea), and minimizes the "maximum lateness"

maxN{c(bn,,sn)) in the static problem [Conway et a/; 553.3, 8.8). Finally,

Kleinrock's time-dependent rule (1976; 53.7] is the one used by Wong et 0/. to

place the means of the various route delays (see 52.3.2 above); it is probably

most meaningfully expressed here as O(t,y) a m,(t-a), where the mr are suit-

able constants, chosen independently for every link.

It is easy to show that, in the case of linear decision costs g(ty) - myt,

the #C rule

a(y) myh" (3.26)

L,

.- "..'
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is optimal (in the static sense).:* Let <t,w> be given, and let u be the

sequence generated by f ; without loss of generality, assume that Q -

{1,2.... q and w.(1) < v*(2) < ... < eu(q); then r(#u,t,r) s r(,t,#) for every 6,

as follows. If packet 1 is not first in @, we can interchange it with the

immediately preceeding packet j without increasing the total cost: the costs

of the other packets clearly are unaffected by the interchange (because

r vj+TI); the cost of packet 1 decreases by mjrj and the cost of

packet 2 increases by mjrl, and m/tr > mjlj yields for the net cost

increase mjr, - milj S 0. Iterating the argument, packet 1 can be "bubbled"

to the first position in the sequence without increasing the cost, and packets

2, 3.... q-1 can similarly be bubbled to the 2nd, 3rd .... (q-1)st positions without

increasing the cost. In general, the optimality of any time-independent rule

may in principle be established through such an interchange argument, because

the rule will give an optimal sequence for the two-packet problem correspond-

ing to any interchange pair.

It might seem, at first glance, that an optimal priority rule should always

generate an optimal policy, but this is not so. The following example is a

little involved, but illustrates some pertinent points. Consider a single queue

with linear costs c(b,t) m mat, using the pC rule f(y) • mar. Suppose that, for

a given realization, packets 1, 2, and 3 have the following transmission times,

delay costs, and priority assignments:

*l = f c(b ,t) a t O(y1 ) = 1-.

T2 a (1 2e)r c(b2,t) - (1 )t (Y2 ) = (1 + e)/(1 2.)r

73 = T c(b3,t) - 2t POY3) a 21

t Although the proof is simple, it is new to us. Proofs of optimality in

the dynamic case proceed differently.
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where i <- 1. Packets 1 and 2 arrive simultaneously, and packet 3 arrives

(1+2e)v seconds later. Then the policy generated by the PC rule (which is

indeed optimal for packets 1 and 2 only) results in the sequence 1-2-3, with

total cost (7+4.'2e2)i,; on the other hand, the sequence 2-3-1 has total cost

(6 + 51 + 22),r.

It is fairly clear that the scheduler is forced into making a poor decision

because of the variation in transmission times (the example suggests as well

the possible benefits of inserted idle time); indeed, if we reset 7rn " 7 for all

n, the /,C rule reduces to a "maximum slope" rule which gives the optimal

sequence 2-1-3; similarly, if 7rr (1.21E)? for all n, the rule correctly gives

2-3-1. It turns out that, in the case of constant transmission times, every

optimal time-independent rule always (i.e. for every P) generates an optimal

policy (in fact, it minimizes the cost for every realization); the proof is based

on interchanges of non-adjacent packets, and is given in 5A.3. Thus in the

case of linear decision costs, the maximum slope rule generates an optimal

policy for the GIDI1 link.

3.4 Selection Rules for Strictly Convex Costs

The pC rule may in some cases be a useful guideline even when the

delay costs are not linear. Given a problem <t,v> in the single-queue case. if

the marginal costs m(b, ) can be reasonably approximated as constant over the

corresponding intervals [V, I+ I Or J, then the interchange argument of 53.3.2

has some validity, and the use of the priority rule

O(t~y) a m [b, V(t,y)]/i, (3.27)

"Moreover, there probably exist coupled constraints on the ranges of the
marginal costs and transmission times under which an optimal sequence is
guaranteed.

.-.
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should result in good performance"* (note that here V ut-a). We should also

expect good performance in the dynamic problem (cf. Haji at al.] if the

marginal costs and queue size are such that the linear approximation is valid

most of the time. In the many-link case we have"6 g'(t,y) bg(ty)/bt-

Pymn(b. Pyt + Ky) from (3.17), and the corresponding rule is

f(t,y) • Pym(b. )/r, (3.28)

with ; as in (3.13); in the special case of linear costs, we get f(y) Pm.r.

again a time-independent rule.

If we specialize to constant transmission times v, we can find optimal

time-independent rules in some other cases of interest. Let c IR-IR be any

CND function, with derivative mo:IR-IR, and consider the case of identical

costs c(b,t) a c(t), tZ0, in a single-queue system. In this case the optimal

rule is f(t,y) a ; (cf. 53.2.3); this is equivalent to FCFS

0(y) -a (3.29)

(cf. Henderson et .l; Thm. 2] [cf. Haji et &l], and thus generates an optimal

policy for the GIDI1 queue. To show this, suppose that in some sequence we

have A arbitrary packets followed by packet j and then packet i, and that

t ;43. If we interchange i and j. the cost of packet i decreases by

co(I* r r) - co(V i Ar) and that of packet j increases by co( j r + )-

€o( +fir); the net increase is then

f m 0 (t)dt - f mo(t)dt S 0 (3.30)
V jo o;

'there is of course an implicit time-dependence in (3.14) [and similarly
for S(b,r)], and in practice Py might depend on t as well; we assume here that
these parameters do not change significantly over large numbers of transmis-
sion times.
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(for every r30), because m o is nonnegative and nondecreasing. In fact, it is

not hard to show that if t jI S jq "I11 for all i,j e(:, then the rule

makes optimal choices in the case of variable transmission times as well.

- Now in a somewhat more practical vein, we can derive different delay

costs from co by shifts of the form c(b,t) - co(t Ab) - co(Ab), t->0, as illus-

trated in Fig. 6. In this case m(b,t) - mo(t+ AD). and it is not hard to see (or

prove) that in a single queue the optimal rule is simply O(t,y) - Ab * q, or

O(Y) Lb " a; (3.31)

again the rule generates an optimal policy for the GIDI1 queue. Note that the

due-date scenario may be expressed as the particular case co(t) M max{O,t), ......

with Lb a -Tb, But while the careful construction of a nominal cost co might

yield a useful collection of delay costs c(b, ), there is no guarantee of this; in

particular the scaling requirement is not likely to be met.

In the many-link case, c(Ab) is time-independent, and we may assume

g(t,y) a co(q -r + A). Then if we use the time-independent future estimate

(3.15), it is again easy to see that the rule

O(y) A Lb h - a f (3.32)

is optimal, and generates an optimal policy for a GIDI1 link. However, with

the more realistic time-dependent future estimate (3.16). we have g(t,y)-

co(iyt +Ky+ Ab) from (3.17), and the decision costs no longer correspond to a

simple family of shifted functions. In particular g'(ty)- ymO(Vyt + Ky + Ab); ':

because the time-scaling of these marginal decision costs depends on y, we in

"We can improve the pessimistic estimate (3.15) without introducing time
dependence, by replacing (t-a) In (3.16) with an estimate L(b,r) of the queueing7.

d delay on the given link; but there remains a tradeoff between the quality of
the estimate and our ability to characterize good policies.

_, ,..o-." -
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general cannot make the same kind of argument as in (3.30), and cannot find

an optimal time-independent rule. 2 .

In general, it is hard to say much about the nature of optimal rules when

the transmission times are not constant. The due-date rule #(t,y) - -(Tb-;) is

one exception; and while the maximum lateness maxN{c(brSr) is not an addi-

tive performance measure, it is appropriate here as the limiting case

(1N[c(brr~s)]P) 1P as p--. With a time-independent estimate f, the form of

the decision costs does not change in the network case; thus the rule

(y) [ -Tb - (h - a f)], (3.33)

a special case of (3.32), is optimal in the static sense for variable transmis-

sion times as well. As another case of interest, Schrage [1973] has derived a

suboptimal time-dependent rule for variable service times to reduce the second

moment of delay [i.e. c(bot) - t 2]; the results of his simulation for an MIMI1

queue with utilization p - 0.95 showed substantial improvement over FCFS. In

our notation the rule is

C• "

E--.

C. (.0

Figure 6 Shifted versions of a given nominal cost

..-. , ... "-'-"
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t(t,y) a 2VE
2 (r)I " T2, (3.34)

where E(r) is the expected transmission time overall, and is similarly applica-

ble in the network case with a time-independent estimate f.

Unfortunately, we have not found reasonable policies for the important

case in which competing cost functions have very different forms. Part of the

problem is that the interchange argument is not reliable in general, as

suggested earlier. Now consider the set I of all schedules or for a given prob-

lem <t,u>. The success of the interchange argument for an optimal time-

independent rule rests on the fact that every local minimum of r( ,t,r):Z-IR is

a global minimum, i.e. r is in some sense "convex" in I. However this prop-

erty does not hold in general. Conway et &l. give a counterexample in which

the service times are variable; the example below shows that the property can

fail for constant transmission times as well.

Suppose that packets 1, 2, and 3 have transmission times i, and arrive

simultaneously at a single queue system; let c(b1,t) = t and c(b 2,t)= c(b 3 t)

amax0O,t-2r), with a>>1. Then the sequences 1-2-3 and 1-3-2 each have total

cost ar, and are local minima; in either case, if packet 1 is interchanged with

the succeeding packet, the lost increases to (e+ a)r. Yet the global optima are

the sequences 3-2-1 and 2-3-1 with cost 2e. Thus a selection rule may be

myopic as well, in the sense that it can "paint itself into a corner" by not

looking at the entire cost function.



CHAPTER IV - SUMMARY AND CONCLUSION
p

We have addressed the issue of delay performance in packet networks by

assigning delay costs for different classes of traffic, and adopted a limiting-

average expected cost approach. In particular, we suggest that applications

characterized by constraints on individual packet (or round-trip) response times

lead to strictly convex costs, while applications for which job-related

constraints dominate will have linear costs. We showed that the expected

cost in equilibrium is an equivalent performance measure, and characterized the

equilibrium delay performance of a typical network, this suggested consider-

able potential for reducing convex costs by packet scheduling, especially when

link traffic is relatively heavy. In contrast, routing seemed to be relatively

inflexible in this respect.

A distributed scheduling implementation was proposed, which incorporates

knowledge of packet histories and estimates of packet futures; we know little -- .

about the tradeoff between resolution and communication overhead associated

with time stamps for packet histories. Link scheduling was formulated as a

dynamic programming problem, with decision costs representing estimates of

the delay cost on system exit. We concentrated on simple static selection

rules appropriate in a real-time environment, but showed that for some ideal-

ized cases such rules are optimal. In particular, we found that, in the case of

constant transmission times, a time-independent priority rule which is optimal

in the static sense always generates an optimal dynamic policy. The most

useful case we found was that of shifted delay costs of the form c(b,t) a

Co(t Ab), where co is convex and nondecreasing; in this case the rule 0(y) a

Ab + h- a + f is optimal for a GIDI1 link, if the downstream estimate is

time-independent. We did not find useful rules for the important case in

-47-
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which the delay costs have radically different forms, but helped explain why -

this case is more difficult.

We believe that the basic idea potentially has practical merit, especially

as processing costs come down in the future. r
?.

[. - -
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APPENDIX

A1 Convergence of Average Cost to Equilibrium Cost -

Theorem: Suppose a sequence (Fn,) of distribution functions converges

weakly to a distribution function F, and let c: IR IR be nonnegative, nonde-

creasing, and continuous. If

lim f c~t)dF.,(t) *0 uniformly in n, (A. 1)
A-t It I>A

then

N
lim (11N) I fc(t)dFg~t) fc(t)dF(t) (A.2)
N I Ml

Remarks: Note that if F, is nonnegative [i.e. F,4t) a 0 for t<O for all n,

then so is F, and we are only concerned about the behavior of c on [0,.).

* Thus if we substitute Fj( ;b) for FM9, F( ;b) for F, and c(b, )for c, (A.2) is

equivalent to (2.14).

In fact it is easy to show that if rc(t)ltl~dFn,(t) is uniformly bounded for

some p>0. then (A.1) holds [use the approach on p. 186 of Loeve]; thus

* uniform boundedness of the expected costs Eic [b~s(n s))) is "almost" suffi-

cient for (2.14).

Proof: Denote by C,, and C the expectations with respect to F, and F in

(A.2); we first show" that CM- C. Define for every A e IR the function C A by

-~ * 8This is a known result (Loeve; 5 11.4); the proof here is based on a
moment convergence proof from Chung [Thin. 4.5.2), and is more direct.

-49-
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Ct)* ctt) if t:SA A3
c(A) if t:1A

These functions are all continuous and bounded on IR, so we have for all A

lim fcAjt)dF ,(t) fC A(t)dFjt) (A.4)

directly from the. definition of weak convergence [Ash; 554.5, 8.1]. Also,

Q ctt)-c~tt)] dF ,4t) I f1c(t)-c £(t)J dF .t)

S c(t)dF ,4t) S I c(t)dffn(t). (A.5)-
t>A lA >t

so by (A.1), fAc-cAjdFfl vanishes uniformly, i.e.

lim fcA(t)dFfl(t) *C, (A.6)-
At

uniformly in n.

It then follows from (AA4 and (A.6), and properties of uniform conver-

gence [cf. Rud in; p. 149], that Ic AdF converges and

lim fcAt)dF(t) l im C,, (A.7)
At ni

i.e. the iterated limits exist and are equal. But ICAdF C by (essentially)

monotone convergence [Ash; p. 44], SO C,, - C.

Thus for every e2,O, there exists an M such that ICn-CI < e/2 for n*&M.

Take

Lu [maxt(2/e) I(C,-C), Mul (A.8)
n. 1
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where rx1 is the smallest integer not less than x; then for NL, we have .

N
J(IIN) 1C, - C

nui

NB
a I(1lN),.,C-C)I.

M-i N

a 1(/N) I(C.-C) (I1N) CL-C)J
Mi" 1 N =

-< 10/0) ICn-C) + J(N-M I)-1 -(Cn-C)1
flai n-N

5 (02) * (12) * (A.9)

i.e. (IlN)INCn " C, which is equivalent to (A.2).

A.2 Alternate Route Delays in an Optimal Flow Assignment

We consider here, in a network setting, the traffic leaving a given node,

intended for a given destination; two alternate paths pi and P2, of N1 and N2

hops, are available. We model the equilibrium behavior with a function V, such

that w(f) gives the expected number of packets (in queue and transmitter) on a

link with flow f, independently at all links in the network. The expected

number of packets in the system is then the sum L a IEP(fe) over all links

e sE, and by Little's formula [cf. Stidham, 1972; pp. 1122-23] we have L a XS,

where ) is the total arrival rate. Thus a minimum-delay flow assignment is

one which minimizes XE,(f.); here we examine some of the implications of

such an assignment.

If we assume further that Y is convex (as it is for M/GI1). we can charac-

terize the optimal flow assignment as follows [Bertsekas, 1981; eqn. (4.4) and

below]: if v'(f) m ar(f)/f, and we define the first derivative length (FDL) of a

v-* '

•,o4
Pd*. *r~'~ *, . *.-....-...:.-
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path p by Ipl'(f.), then path flow is positive only on paths with minimum FDL

Thus if we have positive flow on both Pi and P2, optimality requires that

din I ,'(fs) * I Y(f9)"d 2. (A.10)
P I P2

Intuitively, if p I had a smaller FDL, then some flow could be shifted from P2

to Pi, and by convexity the sum XP,'(f) + Ip 2 V(fe) would decrease, equiv-

alent to a decrease in overall delay.

If the derivative v' is convex as well (also true for M/G/1), we expect

that, for a given first derivative length, variability among link flows along a -. .

path implies a smaller average link flow (over the path) than does a relatively

constant link flow profile. But because v itself is convex, variability among

link flows also requires less average link flow for a given number of packets

on the path, and when N I - N2 these factors tend to cancel. As an example,

a string of four MIMI1 links, with expected transmission times E(r), capacities

9, and flows 0.49, 0.5, 0.60, and 0.78, has a path delay of S I 9.5E(r); the

same system has a path delay of S2 = 9.8E(r) if all link flows are equal and

adjusted such that the FDLs are equal, d 2 a d 1.

If Ni 0 N2, the path delays are not as constrained. In the case of M/MI1

links with constant path flows f, and f2, optimality requires

N 1 1(8f 1)2 * N 2 1(-f 2 12, or (A.11)

4/N1 /(8-f 1 ) • IN2 / (-f2), which gives

N iE( ) N2 1(9-f 1) • N 2 (E)WN I/(-f2), or

S14N 2  S2,/N1 , (A.12)

where E() is the expected packet length. Thus the greater hop-length path has

.' a larger path delay, but the relative difference is still not so large for N2

Ji

J........ .......... ........ .......... ...... .....
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close to N1. The previous paragraph suggests that non-constant path flows- '"l

should not significantly alter this result.

A.3 Optimal Priority-based Policies for G/D/ I Links

To formalize the G/D/1 case, let c n {v#T: v(i) a r(j) for all ij e Q) be

the set of all queue lists with constant transmission times. Then given g, a

priority rule #* is optimal in the case of constant transmission times If it

generates an optimal sequence for every <t, > e 'MTe (it is intuitively compel-

ling that if a rule is optimal for any given constant , then it is optimal for

every such constant; indeed, we show in 53.4 the optimality of some rules of

this type, and the proofs are always independent of r). Now if 0, a {wt*

._ $) r ji() for all i,j i IN*) is the set of all realizations with constant trans-

mission times, we define JN(ir4lc) and J(wjIj by conditioning the

expectations3 ' in (3.10) and (3.20) on O. Then we have the following:

Theorem: Given a decision cost g, suppose there exists a

time-independent priority function #* which is optimal in the case of constant

transmission times. Then for every P, in the problem <P,g•, the stationary

policy > ,p.• generated by 0" satisfies

J O r"I DO :< J NO Od (A. 13) ""

for every vel Furthermore, if J(v l exists and is finite, then

J1,10) S lim inf ('1N) (JN(wIj0) * E[ctj,)IQ(cl (A. 14)N1

for every weli, where r ,4() abbreviates r [t,,),,4v)].

29lf necessary, we can formalize the expectations by simply considering a
new probability measure P. associated with Oc.

;%,-' . r,... ., .. .,. .. ....
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Proof: Consider the problem of minimizing

•L-"--.I-

JL'.) Igitk(eWv).YNuOVIO)J 00130IW (A. 15)

over well, where rL(W.u) abbreviates r* [tL(N.,s)WL(Vwu)]; JL is the incurred cost

plus liability after L decisions, for a given realization (assuming no further

arrivals). We show below that. in fact,

:L5)~ LU1 (A. 16)

for every vec, wen, L Now in the finite case. QN is empty for every,

so r(tp*PN) - 0; then with L *N in (A.16), taking expectations conditioned on

Spreserves the inequality [cf. Ash; p. 41), giving (A.13). In the infinite case.

take expectations in (A.16) conditioned on0 Q., divide by L, and take lim inf

as L-P, each of which preserves the inequality; this gives (A.14) when the LHS

converges.

Now lot WeOc and L be given, and suppose that ,(w) u for all n: to

get (A.1), we show that for every policy vwfl, there exists a sequence of

policies 0wlt, ... e L d, V *, in which L is non-increasing, i.n. jfurthe J

L( isl) •Nj ) To see how jL changes from one policy to the next, it

is helpful to visualize the packet selections UO, U1, c. UL n (dictated by a

given policy) laid out along the time axis at epochs t t V ... te (note that

for constant transmission times, the t are independent of the policy, for a

given realization); follow these by the packets in L laid out according to the

optimal static sequence generated by 0% at epochs tL, tL+T, -". tL+(q-1),r

(where q ,QLI is also independent of the policy). The basic idea is that, If

tANote that we could just as easily have conditioned on a given initial
state here to get the more standard dynamic programming statement.

S. ° ° °'i ... " ...
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the packet uj selected at tj under the policy wJ is not the one dictated by P* ,

i.e. if uj(VJ) 0 p*[Pj(rJ)I, then we find a new policy vJ*10 under which the

positions of packets ujl(J) and #'vj(iJ)] in the ordering are interchanged; the

effect of the transformations is that policy u -  has the form

<" .... p °, , jt .... > (j-0, 1....Ll). Note that every such interchange must

occur within some busy period (because #" is admissible); the lemma below

shows that no such interchange can increase the value of J L (the lemma is

proved after the theorem). S

Lemma: Given a decision cost g, suppose there exists a time-

independent priority rule " which is optimal in the case of constant transmis-

sion times; let #" be the map which defines the policy generated by f*. Then

if a eYc is a queue list with transmission times r. p*() i 6 Q implies

g It,Di)] + g [t. (m+lfr, v(j)] < g It, (j)J g t (m+1)r, v(i)] . (A.17)

for every ij E Q, talR. m * 0, 1 ..... Thus if packets i and j are separated by :.- .

m packets in an ordering, the combined cost of both packets is no greater

with packet i in the earlier position.

Formally, we get wJ+i from ujI as follows, for j-1 1, ... L-1:

Case A: [v(v (wJ)] * uj(wi); i.e. policy PJ makes the choice dictated by

" at epoch tj, so simply pick J, * iv, and JL does not change.

Case B: #'[vj(jJ)] z up(i0) for some p e {j+1....L-1}; i.e. the packet

which p" would have chosen at tj is instead selected at some later epoch

tp P t L by J. Then pick any vj such that

SL
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" •Xj(W , 0,,(,i)],

P k EX kil J+)] , pik[Xk&Jl] k j.p (A.18) Iz

(thus uJ *1 is not uniquely specified here). Some thought shows that these are

all admissible choices if *J is admissible. Clearly the packets in OL are not

affected by this interchange, so r*L(w1*') r' j); similarly, gk(wj t )  gk(Vj )

for kSL-1. klj,p. Only the costs of packets uj( J ) and u 1 are affected, and

by the lemma (with m1 a p-j) we have .

5 gitj.y[ujwu)) gitpy[Eu). (A.19)

Thus Jl( 1 ) S jL(yj).

Cane C: p"(v(rJ) fQL(Fj); I.e. the packet that would have been

selected at tj by ** is not chosen by v in the first L decisions. In this case

pick any "t ' 1 which satifies

#J* [x J ) ,)],.

P k [Xk( )l k [Xk(,W J)], k, "j. (A.20)

Now if e is the (optimal) sequence for YL(0 ) generated by t', let t' be the

sequence for #L(*J*I) obtained by substituting uj(vJ) for /,*[j(vJ)] in a*; then

assuming 0 packets proceed p*[r (w J)] In €" [or uj(,J) in e'], the lemma

gives (with m+1 a L-1+9)

gft),yIuj(Irj*'l] } + glt, L--ay(Iri4)]}

a

S gftj.y[uj(ij)]} + gft flv,y[uJ(hJ*)}. (A.21)
;r.'.
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0 Since g(rl) a gk(VJ) for ksL-1, k~j, and the costs g(tL + I0'n, yn) for all

- , other packets nQL., rOP- [w(VJ)J, are unaffected by the Interchange, we have

I. L-1

I gk(y,i4 ) * r*(, 1 ) < 1 gk(,1i ) + r[o',tL,,L(,1 ')3

L-1
sIgk(,I) 4.r1VtL,&L(1j)3 (A.22)

k-O

1

(where the first inequality follows from the definition of ro), or in other

words jL(F 1 ) W (J).

We get r from 1 L-1 in essentially the same way, in each case, except

that for kaL,L+1,... we must of course set P k a ,O, which clearly has no

effect on jl

Proof of Lemma: The lemma is a statement about only packets i and j;

to prove it we define a new queue list 'eYc consisting of packets i and j,

and m other packets whose characteristics are the same as those of j. For

concreteness, let no a max{i,j} - I and Q' {i,j, no,...no+m-1); then ,'(i) a w(i),

and o'(n) a u(j) for n z j, n0 ,. ... notm-1.

Now consider the sequence defined by

• (o) < e(no -< ... < (noem-1) < r(i). (A.231)'

The first two packets in the sequence (j and nom-t) are indistinguishable, and

interchanging them clearly cannot affect the total cost r(u,t,.,); similarly we

can bubble packet j to the next-to-last position for the same total cost. Now

we can interchange packets i and j without increasing the total cost: simply

. note that i precedes j in the optimal sequence for the corresponding

0 two-packet problem. Iterating the same argument, we can bubble packet i to

the first position without increasing the total cost. Finally, packets
..VI-;- .

".,,?



no,.. n0.m-1 are now back in their original positions, so their combined cost

is the same, hence the combined cost of packets i and jcannot have

increased.

Z
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