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Both issues are addressed here by defining traffic classes, and assign-
ing delay costs c(b,t) which reflect the undesirability of a ciass-b packet
spending time t in the network. We argue that convex, nondecreasing (CND)
functions are suitable for a variety of classes; examples suggest a range
from linear (e.g. file transfers) to step-like (e.g. packetized voice). An
appropriate performance measure is_the limiting expected average cost per
packet. (As an equivalent characterization, we show that, for a given class, .
the expected average cost converges to the expected cost in equilibrium, :
under mild conditions.) Within a given class, strictly convex costs will be O
driven by packets whose routes have many hops, and/or packets which have long <
delays on some links; such packets may profitably be given priority as well. oy

3
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We propose a distributed scheme in which a single scheduling policy is
executed independently on every link. Link graffic is modeled by a
stochastié'Béquenéé"{yﬁf}'ﬁﬁiie Ein}b;;hntf;,?;$"§'yﬁi”QY = IRxBx[0,»)xRx(0,=)
representsAforupackgt:n.the epoch of arrival to the link‘(an5§n+1), traffic . s
class, delay on upstream links, route, and transmission time; y (w) becomes -
known to the link scheduler at a_(w). Routing-scheduling interactions and )
communication overhead are qentigned, and desirable properties for estimates :
f of the delay.on.downstream links are discussed. We develop a dynamic ' S
programming formulation in which the scheduler incurs a decision cost RIS
g(t,y) = c(b,hst-a+7+f) by selecting for-transmission at.epoch t a packet
with characteristics yeY.

We focus on priority rules ¢(t,y): at epoch t, a packet for which ¢ is
maximum is selected for transmission. A rule ¢* is optimal (in the static
sense) if it empties out any given queue at minimum cost; e.g. for linear
costs g(t,y) = myt, we shown that the 'uC rule" ¢ = my/r is optimal in this

sense. A significant result here is that, in the case of constant transmis-
sion times, an optimal time-independent rule minimizes the limiting-average
cost for every w; thus for linear decision costs, the rule ¢ = my generates

an optimal policy for a G/D/1 link. For delay costs of the form c(b,t) =
co(t+Ab), where <o is CND, we show similarly that the rule ¢ = Ab+h-a+f is

optimal for a G/D/1 1link if f is time-independent. Suboptimal rules are also
given for certain costs in the case of variable service times.
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ABSTRACT

Delay is a fundamental issue in packet communication networks. Previ-
ous work has focused on expected delay as a pesrformance measurs in queue-
ing models, in the context of routing. It is clear that some types of traffic
are more sensitive to delay than others, and some simple priority structures
have been proposed; but the fact that expected delay is not very mesningful
3 for certain applications (e.g. packetized voice, which has a critical delay
E ceiling) has received littie attention.

Both issues are addressed here by defining traffic c/asses, and assigning
delay costs clb,t) which reflact the undesirability of a class-b packet spending
[ . time t in the network. We argue that convex, nondecreasing (CND) functions
- sre suitable for a varisty of classes; examples suggest a range from linear
Lo {e.g. file transfers) to step-like (e.g. packetized voice). An appropriste perfor-
mance measure is the limiting expected average cost per packet. (As an
equivalent charscterizstion, we show that, for a given class, the expected aver-
age cost converges to the expected cost in equilibrium, under mild conditions.)
Within a given class, strictly convex costs will be driven by packets whose
routes have many hops, and/or packets which have long delays on some links;
such packets may profitably be given priority as well.

We propose a distributed scheme in which a single scheduling policy is
executed independentiy on every link. Link traffic is modeled by a stochastic
sequence {y,}, where <a,bphnlnrh> B y,:0=Y & |RxBx [0,0xRx(0,0) represents
for packet n the epoch of arrival to the link (8,<8n,.4), traffic class, delay on
upstream links, route, and transmission time; y Jo} becomes known to the link
scheduler at a,(w). Routing-scheduling interactions and communication overhead
are mentioned, and desirable properties for estimates f of the delay on
downstream links are discussed. We develop & dynamic programming formu-
lation in which the scheduler incurs a decision cost git,y) ®= c(b,h+t-a+r+f) by
selecting for transmission at epoch t a packet with characteristics y eY.

We focus on priority rules ¢{t,y)l: at epoch t, a packet for which ¢ is
maximum is selected for transmission. A rule ¢° is optimal (in the static
sense) if it empties out any given queue at minimum cost; e.g. for linear.costs
g{t,y) = myt, we show that the “4C rule” ¢ = my/r is optimal in this sense. A
significant result here is that, in the case of constant transmission times, an
optimal time-independent rule minimizes the limiting-average cost for every e
thus for linear decision costs, the rule ¢ = m, generates an optima! policy for
a G/D/1 link. For deiay costs of the form c(b,t) = colt+4 ), where co is CND,
we show similarly that the rule ¢ = Ap+h-a+f is optimal for a G/D/1 link if f
is time-independent. Suboptimal rules are aiso given for certain costs in the
case of veriable service times.
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CHAPTER | - INTRODUCTION

1.1  Communication Delays in Packet Networks

in many types of communication systems, the traffic load is not a static
quantity; even during periods of peak average loading, the instantaneous load
typically has a substantial variation about this average. However, providing a
system with sufficient capacity to accommodate these instantaneous {oad
peaks can almost never be justified economically, and the reduced aliocation
of system capacity may result in degradation of one or more aspects of
service to the users.

in packet-switched systems, such as datagram or virtual-circuit communi-
cation networks, point-to-point transmission of data packets is accomplished
over a single shared channel, and packets ready to depart are queued in 2
buffer when the transmitter on a link is busy [Tanenbaum; §3.3.5] [Heart et
a/]. Due to the irregular pattern in which data traffic arrives from outside the
network, 8 certain degree of queueing due to entering traffic will be almost
inevitable, and this will be compounded by internal traffic. In this case, then,
the limited system capacity manifests itself in the form of queueing delays.
Of course there are other delays associasted with packet switching: however,
packet processing and transmission delays are relatively small, and propagation
delays become significant only in satellite applications; in any case, all of
these are more-or-less constant system parameters as far as a given user-pair
is concerned.

Communication delay is a fundamental performance issue in packet
networks. As one consideration, many asplications have certain necessary or
desirable response-time characteristics for the individual packets, As an

exampie, the perceived quality of a display terminal session is degraded as the
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round-trip delay is increased; in particuiar, it is tempting to speculate that this
kind of consideration will be relevant whenever the psychophysical needs of
the user come into play. As another example, in certain kinds of real-time,
distributed processing environments, the value of information decreases as it
gets older.

As 3 second considerstion, it is often the case that each of the individual
packet delays contributes to the total duration of a given session or, more
specifically, of a given job. In this context, the effects of delay are most
noticeable in applications cheracterized by frequent exchanges of short

messages; as the frequency of such exchanges increases, the delay becomes a

larger fraction of the total time required to complete the job. At the other

extreme, in a "one-sided” data conversation such as a file transfer, the sender
may have many packets in the network simultaneously, in which case the
effect of individual packet delays on total job time will be much weaker.?

It asppeasrs that, for many applications, delay considerations can be
resolved into one or both of the basic types described above; and moreover,
that one of these will often dominste the other. For instance, in a voice
conversation, user-related constraints on the round-trip response times of indi-
vidual packets shouid come into play decisively at reiatively low levels of
delay; again, one might suspect that this would apply in those cases in which
a8 human is invoilved in a direct way [cf. Roberts et &/; p. 544]. On the other
hand, in certain types of machine-machine interactions, individual packet deiays
would be irrelevant, and the total job time will be the dominant consideration,

as Roberts et a/. [p. 544] have observed.

1As an intermediate case, in a “window"” flow-contro! strategy, the sender
is allowed no more than M packets in the network at one time [see Gerla et
a8/, 1980]); the job time will then be determined essentially by the round-trip
delays of every Mth packet.

.
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. The primary motivation for distinguishing these two types of appliications
is that they typically lead to different kinds of performance criteria, as
discussed in §2.1. For brevity, applicat.ons for which the individual packet
delays are the dominant consideration will be referred to here as
packet-sensitive, and those for which the job time dominates will be called
job-sensitive,

As a final consideration, from the network operator's point of view,
congestion will result if packets spend too much time in the network.

Although one could attempt to incorporate this into delay costs, we expect

that buffering capability will be such that congestion is typically dominated by

other considerations.

1.2 Delay Performance Criteria

Published work on packet networké has been concerned almost exclusive-
ly with reducing the average delay per packet. In particular, considerable
progress has been made in the development of packet routing aigorithms under
the average delay criterion, due in part to the linearity of this performance
measure in the individual link delays [see e.g. Gallager].

However, average deley as a performance measure has two serious weak-
nesses. First of all, desirable delay characteristics for data traffic will vary
over a wide range for ditferent applications. Roberts et a/. [p. 544] give
some figures for typical time-sharing applications as follows: a 50 character
line of text (400 bits} should traverse the network in at most 200ms; for inter-
active graphics, a new display page (20 kbits) should take less than a2 second,
and interrupts (less than 100 bits) within 30-90ms. According to Bell Labs [p.
56), voice conversation is not “unduly” impaired if the origin-destination delay

. is less than 300ms. Low priority items, such as certain kinds of file transfers

or sensor data, could reasonably be expected to tolerate delays on the order

. ) s e e maca .
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of several seconds or more. One recent analysis which addresses this issue

provides for scheduling voice packets ahead of data packets [lbe).

s aa

At 8 more fundamental level, however, for certain types of applications

ol

average delay simply is not very meaningful. This is perhaps best illustrated

by an example such as the following: in a packetized voice transmission
system, voice samples or “frames” must be delivered to the destination at
’ requiar intervals, to be reassembled and decoded for the listener; if 8 packet
h arrives early it is simply buffered; if it arrives late it must be discarded. It is
> fairly clear that the fraction of packets arriving “on time” is all we really care
;‘ about here; depending on the distribution of packet delays, the average delay
t need not be a very reliable indicator of this.

.. Thus the figures cited in the next to last paragraph leave something to be

desired; for instance, must we hold the delay of every text packet below

200ms, or will we be content to achieve this as an average value? More
specifically, what are the consequences of exceeding this value, and what, if
3 anything, do we gain by undercutting it? Such questions have received little if
any attention in the literature.

For certain aspects of telephone system performance, Bell System spec-

ifications are reported to be established as follows. The expected percentage
of users that would bestow a particular subjective rating (e.g. “good”), in -
conjunction with a particular asspect of raw performance (e.g. receiver rms
- noise voltage), is called the grade of service associated with that rating and
performance aspect [Bell; pp. 45-48); the calculation of grades of service is
based in part on subjective testing of customers. Typical objectives are to

provide grades of service of about 95% in the “good or better” category and

8 negligible fraction in the “poor” category.

0

The grade of service concept represents a step in the right direction Lo
because it reflects, in essence, a functional dependence of user satisfaction on ::_:
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raw performance. Here, however, we are primarily interested in the automatic
control of delay performance in an operational network, and this will require
an objective function, j.e. a scalar measure of global parformance, rather than
a collection of individual specifications. It is common in an operations
research context to assign costs ss functions of delay for various commod-
ities, with the expected cost as 8 performance measure. We adopt this
approach here, and thus exploit the notion of user dependence in a very direct
way.

We are motivated here by the philosophy that, for a given application,
sny user should be able to expect a certain level of performance from the
system, regardless of geographical separation or other non-essential factors.
As Wong et a/. have pointed out, this is panicularl§ reasonable when users are
charged on the basis of resource usage. Our goal then is to provide accepta-
ble service, for all users at as small a dollar cost as possible to the operator,
or equivalently for as many users as possible at a given dolisr expenditure.

in Chapter |l, we develop a cost structure for packet delays, and show
how it addresses the issues raised here. A probabilistic framework is defined,
and by considering equilibrium behavior some qualitative insights are obtained.
In Chapter 111, we describe a distributed implementation of the basic schedul-
ing idea, and construct 8 model for the sequential decision process associated
with packet seiection. We can show that in certain idealized cases, optimal

policies sre given by simple selection rules.
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CHAPTER Il - A COST STRUCTURE FOR PACKET DELAYS

2.1 Delay Cost Functions

Let B be some set of data traffic classes: for instance, B might be 2 set
of applications, e.g. video terminal, packetized voice, etc; but B is not
restricted to any particular interpretation, and we require only that it be a
countabie set. We assume the availability of a function ¢ from Bx [0x) into
the real numbers IR, such that c(b,t) represents the undesirability, from the
standpoint of the entity operating the network, of a “typical” user experiencing
an individual packet delay t for a class-b packet, t20, beB. For short, the
function clb, ) is referred to simply as the del/ay cost for class-b packets. It
isn‘t obvious how such functions would be constructed in practice. They
should of course draw on subjective testing for applications directly involving
humans; it would probably be most straightforward in such cases to construct

for t20 the associated margina/ cost function?

m(b.t) ® ac(b,t)/at, {2.1)
ie. m{b,t)At reflects the aproximate cost of increasing the delay of a2 class-b
packet from t to t+At. Then the delay cost clearly may be derived as

cib.t) = f:m(b,x)dx + ¢(b.0) (2.2)

for some c(b,d).
Now consider a coliection of packets, labelied (uniquely) by either the

positive integers IN* .or a subset {1,2,...N}, which traverse some system;

llacking the standard “equals by definition” symbol in our character set,
we will meake do with “=", .
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suppose that packet n belongs to class bnheB and spends time s,20 in the

system. Obvious measures of performance are the total cost
N
2 clbnSh (2.3)
n=1q

in the finite case, and the long-term average cost per packet

lim (1N, £ ctonsn) (2.4)
in the infinite case, assuming convergence. The additive structure without any
weighting implicitly requires that the delay costs c(b, ) reflect, as much as
possible, the relative urgency of the various traffic classes. It also implies
that time-independent constants in the delay costs are irrelevant to the
minimization problem, so that we may as well take c(b,0) = 0 in (2.2).

in an attempt to get some feeling for the general behavior of delay cost
functions, we will speculate on their form for some representative
applications. At the same time, we will argue that functions which are convex
and nondecreasing (or CND for short) are suitable as delay costs for & reason-
ably wide variety of applications; it turns out that CND cost functions have &
number of desirable properties, and we want to exploit these in the sequel.
We note here that for a convex cost c(b, ), the associated marginal cost m(b, )
is nondecreasing, and this answers in a general way the questions raised in
§1.2 concerning constraints on raw deiay: we lose at least as much by
sxceeding 2 given constraint as we would gain by undercutting it by the same
amount [cf. Haji et a/].

Consider first, as a packet-sensitive application, the packetized voice
connection mentioned earlier in §1.2. The cost associated with the transit time

of a single voice packet is essentially a step function, /.e. of the form
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uqt) = 0 for t<T and 1 for t>T, where T is a threshold representing the desired
delay between arrival to the network and decoding at the destination.? The

average cost (assuming voice traffic only) is then
' N
i‘ (1IN)n 311 uvisn. (2.5)

3 which is the fraction of packets for which s,>T.

Now in the context of an operating network, a desirable control mech-

anism would be aware of this threshold, and would sattempt to ensure that

voice packets do not cross it. But we can accomplish the same effect with a

¥ .'.n ". "l ".

convex, non-decreasing function such as c{voice, ) of Fig. 1. The price paid for
using the convex delay cost is that the control mechanism will continue need-
lessly to pay attention to packets past the threshold. However, under normal
operating conditions (/.e. when the traffic load is not excessive), we would
expect the fraction of packets exceeding the threshold to be very small if the

control mechanism is effective.

ICATAE AT TR

As a second application, consider the access of a remote facility using a

display terminsl, in terms of the round-trip response time. We assume here

that processing in the remote facility normally has a relatively small time

IR

requirement. Sufficiently short response times are not objectionable (or even
noticeable) to the typical user and the delay cost will be flat over this range.
. The typical user will then become increasingly impatient with increasing
response time beyond a certain point. Finally, the user resigns him or herself

to the likelihood of an extraordinary deiay, at which point the delay cost

s v e

2User satisfaction will of course depend also on the value of the thresh-
old T itself, but the selection of & threshold is a separate issue.

) RO

*This functional form for delay costs is also similar to that depicted by :
Lawler [1964; Fig. 1] in a job shop context. ol
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levels off again. A reasonable delay cost might look something like the
dashed curve* of Fig. 2. The control mechanism should presumably try to keep
the majority of packets below the “knee” of the curve at T(disp), and all but a
negligibie fraction below the “shoulder” at T Jdisp). Again, we can schieve a
similar effect with the solid version c(disp, ) of the curve, which is convex
and nondecreasing, with the' same implications as in the previous example.

In this case, the delay cost was naturally expressed in terms of the
round-trip response time. To conform with our earlier definition, we might
now try to find functions c(user, ) and c(reply, ), reflecting delay costs for

individual user and reply packets, which satisfy
c({disp,t+s) = c(user,t) + c({reply,s) . (2.8)

for all t and s; but it isn't hard to show that, because c(disp, ) is nonlinear,
this is impossible. One could, of course, seek a "best approximation” (e.g. in
the sense of expected values in the equation above), and intuitively we expect
that any reasonable cost functions so derived will aiso be CND. At the same

time, however, the approach that will be developed here is in principle appii-

c(verce,+)

Figure 1 Possible delay cost function for packetized voice




RO SRR A R MM AN e st e tar

-10-

cable to round-trip delay costs as well; the assumption of valid individual
packet delay costs for "round-trip-sensitive" applications may be viewed as
essentially a notational simplification.

For job-sensitive applications, the dominant consideration is the total job
duration, which is in general the sum It; of an unspecified number of compo-
nents. The concern of th; user (or manager) will typically be the fact that
processing facilities and possibly personnel must be dedicated to the job for
its duration; there may aiso be connect-time charges, both for the network and
for remote resources not owned by the user. For a given application, the
natural approach would again be to express these losses as a job delay cost
function c(job, ). In this case, however, connect-time charges will typically be
linear, and in géneral a linear cost seems most reasonable for dedicated
user-owned resources:; the well-known business maxim “time is money” is

offered as a partial justification. Then we can write

c(job,XIt,) = mIt, = Imt,, (2.7)

cfdrsp.t)

—+— 4 —> t
Tldisp) Tr(Ause)

Figure 2 Possible delay cost function for dispisy terminal
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d 80 that a linear cost c(i,t) = mt (which is convex and nondecreasing) is appro-

priate for the individual packet delay components as well.

2.2 Stochastic Performance Measures
Of course the class b, and system time s, of packet n are not known in
advance. In queueing and scheduling literature it is typical to model the uncer-

tainty sbout such a situation by a stochastic sequence, say {2z, ne¢IN*} or

{zn n=1,...N}, where z, is a random “vector” (or more properly a random
R ordered set), e.g. <a,b,2,>, whose elements represent the essential character-
N istics of packet n, e.g. the spoch® a, of arrival to the system, class b, and
A length 2, The r.v. z, are all functions on an appropriste sample space (),

taking values in some space Z, e.9. IRxBx(0,0); we assume in particular that the

¥ arrival epochs satisfy an(e) € 8,.4(e) for all wefl. The statistics of the packet
sequence {z2,] are specified by a probability measure P, which reflects the
E: likelihood of various events defined in terms of the 2,.
1-: Associated with esach point ee) is a sample sequence or realization
- {z4w)} of the packet generation process; we may then assign to every such
realization a value x(s} from some space X, in which case the function x{)*X
is a random variable* on () as well, and its statistics are in principle deter-
: mined by the probability measure P. We gsnerally abbreviate events such as
{weld: x(w) ¢ A} by {x(wieA] or just {xeA}, and if P{xeA}] = 1, we may write
- "xeA W.p.1” (/.e. with probability one).
: ) 'In defersnce to tradition, a8 "time” will denote the duration of a
: (temporal) event, whereas an “epoch” will denote a8 specific instant.
- . *A rigorous construction would require that x be measurable on ) [Ash;
§§1.5, 5.8); this ensures probability assignments for events defined in terms of
> X. We will simply assume that the packet process and system parameters are

such that this requirement is met for all functions on () defined here.

.« -
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l We assume that the system will treat packets in accordance with some
'- deterministic po/icy s {chosen from a given set Il of policies), so that associ-
ated with each realization {z,{s)] of the external packet process will be a

i well-defined (although possibly unbounded) sequence {s.{e«,s)} Of nonnegative
system times; /.e. the s, (s) asre random veariables on (. Again, obvious

performance measures for the policy = are the expected total cost
N
JInin) = n§1E{¢ [brsnir)]} (2.8)

and the long-run expected average cost’

- . Jig) = mn (1IN):§1E{C [brsnie))}; (2.9)

when the limit exists; thus we seek practical policies for which Jy or J is

smali. We will not always make explicit the s dependence, but some underly-

IR

ing policy is always assumed.

'u'(_l 1'4

“As

For certain traffic classes, particularly packet-sensitive classes, it is

appropriste to define performance specificstions as well. We may construct

v v
e

such a specification for any given class beB by imposing a simple constraint

.
K o
PRI

r.
r.

" on the associated long-run cost. We will assume here that the event

-

B Op s {#: {z{w)} contains infinitely many class-b packets} (2.10)
Py

i ¢ XV

’It might seem more natural to consider instead the expectation of the
limit E{lim(1/N)Zyc([bn.Snir)]}, but (2.9) is more convenient from a technical
standpoint; in any case, if there exists a random variable M such that
(1N)Zac [Diw).5 e, 7)) < M(e for all w, N, then by the dominated convergence
theorem [Ash; p. 49] the two performance measures are equivalent for a given
policy =. .

X ' TR
|

>

‘We can write P(O-QQp) = P(lim inf, {b#Ab}); this will be 0 if, for instance,
the b, are independent and liminf, P{b,sb} > 0 [cf. Ash et 8/, 1975; p. 136). O
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’ has probability one;* then for svery eef),, let
N
nyb,e) = min[N:n_21X {bw)=b} = j} (2.11)

be the index of the jth class-b packet in {z.(#)}. where the indicator X{b,=b} =
1 if be) = b and 0 otherwise. Then we can require of the long-run expected

average cost oer class-b packet that
Jib) = lim (1IN)nN§1E!c [b.s(n;)] D} < c[b,T(b)] (2.12)

for some appropriately chosen ~target time” T(b), such as T(disp) in Fig. 2
(thus two traffic classes may have the same delay cost but different specifica-
tions). The additive nature of the performance measures suggests that the
delay costs be individually scaled (muitiplicatively) such that c[b,T(b)] is &
, constant (say 1) independent of b; this makes precise the manner in which the
delay costs shouid refiect the relative urgency of their respective classes.
} One might aiso want to define one or more “floating” traffic classes
without specifications. In the network synthesis problem [cf. Gerla et o/,
1977) performance for these classes could be traded off for savings in dollar
cost, while specifications for the other classes are gusranteed. In an opera-
r tional network, the cost functions for the floating classes could be muiltiplica-

tively scaled as a group, from time to time as necessary, such that

specifications for the constrained classes are just met. -,i-_._'..

Finally, it will also be useful to have s performance measure in terms of ..._“

the equilibrium distribution of system time associated with a given class of \\‘

e

packets; the equilibrium distribution is a much more intuitive entity to think :"\':

- about, and is known for many representative queueing situations, Define :';

-.:'.‘v -’ \-.‘:..: - L - o 3" ‘:.\:.,‘:... \:h"}\ ------ g ..- ,..._‘ g
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Fylt:b) = P{s[n4b.e))st|0, (2.13) .

the distribution of system time for the jth class-b packet, where n,(b,e) is

,_.,.,,,._.ﬂ
PRI RY
RO FOR L

., -A, -
50 A

..
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defined in (2.11). Now suppose there exists a distribution function F( ;b) which
is, in some sense, an arbitrarily close approximation to F4( ;b) for sufficiently
large j; then F( ;b) corresponds to what we would think of as the distribution
of system times seen by class-b packets in equilibrium. The sense in which
F4 :b) is required to approach F( ;b) in this context is called weak convergence
[Ash; §8.1]; weak convergence of a sequence of probability distribution func-
tions, denoted here by F, Y~ F, is equivalent® to pointwise convergence F.(t) ~
F(t) for every continuity point t of F (inciuding ).

Now if F,( ;b) % F( :b), we might expect that, in some cases,
Jelb,t)dF(tb) = J(b), (2.14)

i.e. that the expected cost of every class-b packet arriving after the system is
in equilibrium is indicative of the long-run average cost. In the case of linear
costs, certain system models have been shown to obey relations :=:milar to
(2.14) [Fife] [Stidham; p. 1122]. Without assuming a specific model, we can
show that (2.14) holds for every continuous, nondecreasing, nonnegative delay
cost c(b, ), under a technical condition on the sequence {c([b,s(n;)]} which
should be satisfied for most models of interest (note that every convex delay

cost is continuous); 8 formal statement and proof are given in §A.1.

*however, it is often defined as follows: F, "= F iff [x(t)dF.(t) ~ [Sx(t)dF(t)
for every bounded, continuous function x: IR = IR,
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23 Delay Performance in Equilibrium

in the fight of the previous paragraph, we expsct that delay performance
in equilibrium will be representative of long-run average performance as well,
and we will often tacitly assume that (2.14) is true. We first obtain a charac-
terization of equilibrium delay performance for a typical packet switching

network.

2.3.1 Packet Network Model

Our modet of a packet network is a set V of nodes, which represent
packet switches, and a set E of /inks, where link <i,j> represents a one-way
transmission channe! from node i to node j; thus <V.,E> is a (directed) graph
[Lawler, 1978; §2.3]. Associated with each link is a packet queue feeding a
transmitter, and we assume uniimited buffer space. The transmitter on link e
has capacity #4 bits/sec, so that transmission of a packet of random length 2
bits on link e takes a random time rg, = 8/§4 seconds. The structure just
described is often called the “subnet;” the user's computer system, or “host,”
is interfaced to one of the subnet nodes [Tanenbaum; §1.2]. We view the
packet process {z,} as being generated by the ensembie of external hosts,
and the policy s as a responsibility of the subnet.

Packet n is generated with a specified destinastion, and in real life the
subnet must select for it a route r, /.e. a sequence of links from the origin
node to the destination node. The subnet will often have other responsibiiities
as well, such as congestion control [Geria et a/, 1980]. Here, however, we
want to focus on subnet scheduling; we first of all want as simple as possible
a structure for the subnet policy in our model, 80 we now make the explicit
qualification that = is a subnet schedu/ing policy only.

Secondly, we are not going to pursue in any depth the effects of possi-

bie interactions between scheduling and other subnet functions. As an exam-
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. ple, define = & "first-come-first~served (FCFS) scheduling on every link,” and
- suppose r,. is the same except that it always gives priority to packets on

some route r. |If the route assignments are identical in each case, it is intu-

itively obvious (and very likely true as well) that the deiay on route r will be

RS, T

smalier under =, than under ro For this reason, however, an adaptive routing

strategy might assign a larger portion of traffic to r under s, than under »g |
[{Tanenbaum; §5.2]. t‘f';

. For concreteness, we will assume that every packet vector z.(e¢) contains -:

a route rp{e) in some set R; the system time sp(v) is then the sum of the

* queueing and transmission times for packet n as it traverses the succesive
i links in the route r o). We also implicitly assume a flow control mechanism,
situated between the hosts and the subnet, which keeps link loading at a

reasonabie level.

l Suppose now that, 8s n -~ o, and for every route reR,
- P{SnSt, rpsr} = Hit.r). {2.15)

it then foliows that, as n = o,

5 P{rar} = P{spSe, rpar} = Hiwr) = Gin), (2.16)
3 Pisnst} = I PispSt, rmar} “= I Hun = Fio), (2.17)
ey
)

and, as long as P {r.=r},G(r) # 0,

WP S
PRI

Pi{snSt|rnsr} = P{spSt, rosr}+P{rper} “= Ht,rsGir) = FR(1). (2.18)

LI 4 S

Then F(t) = XZaF"(t)G(r), i.e. the equilibrium distribution of system times is the
-.:‘f sum of the distributions corresponding to the individual routes weighted by the

equilibrium route probabilities, as we might have expected.
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By making some simplifying assumptions, we can invoke s standard
resuit to get a qualitative picture of F(t). It is typical to model a packet
network as 8 collection of independent M/G/1 queues, because the distribution
of delay is known in this case [Kleinrock, 1975; ch. 5). In particular, for an
M/M/1 queue in which packets are transmitted FCFS,** the density of delay
(queueing plus transmission) on link e has the exponential form f%t) =
(re~ra)eXP [{ug-Agit], Where o = 1/E(ry) is the service rate and )q is the
arrival rate [Kleinrock, 1975; p. 202]. Moreover, if the link capacities 8§, are

such that éo & (se-hg) is independent of e, the system time over a given route

r of j hops (links) has an Erlang density
fr(t) = aF"(t)/at = 33tI~ Yexp(-Sth(j-1)!, (2.19)

expectation S”™ s [tdF"(t) = j/é, and variance j/i% [for a picture see Kieinrock,
1975; Fig. 4.5, p. 124]; thus for such an idealized model the overall equilibrium
density f(t) = Xaf"(t)G(r) of system times is a weighted sum of the Erlang
densities corresponding to the different routes, and might look something like
Fig. 3. While the M/M/1 packet network model is a fairly reasonable one from
the standpoint of mean delay [Kleinrock, 1976; ch. 5], we do not expect an
accurate representation of the entire distribution; yet neither do we expect

such limitations to materially alter the qualitative picture developed here.

1*This model is equivalent to the "network of Markovian queues” [Klein-
rock, 1975; §4.8] (irn which case the queues correspond to the vertices of a
graph rather then the edges).
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2.3.2 Implications of Convex Delay Costs

For a linear cost cit) = mt, we don‘'t really care about the shape of f, we
just want the equilibrium mean S = [tdF(t) to be small. However, as the
convexity of ¢ becomes more pronounced, the mean becomes less crucial, and
we generally become concerned more with higher moments of delay; e.g. if
c(t) = (t/T)* (T is some tr;reshold), we want the kth moment [t*dF(t) to be
small. In turn, the higher moments are typicslly driven by the upper tail of
the equilibrium density. which corresponds to psckets whose routes have large
numbers of hops,*? and/or packets which have long queueing times at some
links on their routes. Transmission scheduling offers the potential for mitigat-
ing both of these contributions to the upper tail, by giving priority (st the
transmitter) to backets whose routes have large numbers of' hops, and by

giving priority to packets which have had long queueing times at "upstream”

A (e

_Figure 3 Density of system time in a hypothetical M/M/1 network

l1g.g. in the ARPANET c. 1976, many node pairs had routes with as many
as 7 hops [Gerla et 8/, 1977; Fig. 1, p. 49).
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. {.e. aarlier) links in their route, or sre expected to do so at "downstream” (j.e. —

N
N

later) links.

.'-'l'

-
. .
LULATA

We immediately qualify this, however, by noting that, in order for sched-

EARY
Y (]

bt

uling to be effective, there must be packets to schedule. We should expect
that scheduling can be most effective in environments charcterized by iarge
numbers of packets in queue, such as high-speed systems. Scheduling might
h also turn out to be most useful as a smoothing response to transient load
‘_:’.: surges.

; We expect that pulling the upper tail of the equilibrium distribution in

toward the mean must come at the expense of puiling the lfower “tail” in

toward the mean as well, /.e. we expect some sort of conservation of the
mean system time S. In & single work-conserving G/G/1 queue the mean is
conserved iff packets are selected independent of their transmission times i:jf':-

[Kleinrock, 1976; §3.4] [Heyman et a/, 1982; §11.5). We expect the situation

2 X

'
e
TS T

to be a little more complicated in the network case, but the single queue deri-
vation suggests that the analogous quantity is the sum of transmission times on

the given link and on downstream links. Thus if we give priority to packets

f b

with many hops, we might anticipate an increase in mean delay as well as &
reduction in higher moments. By Little's formula [¢f. Stidham, 1972;
pp. 1122-23] this would increase the expected number in system, which is bad
from the standpoint of congestion; but by generalizations of Little's formula -
[Brumelie] [cf. Kleinrock, 1975), higher moments of number in system should
be reduced, which seems desirable from a congestion standpoint.
insofar as the mean system .time S is conserved, we can aiternatively .

view convex costs as being generally driven by the central moments

J|t-S|*dF(t)} of equilibrium delay, such as the variance. Indeed, Jensen's

inequality [Ash; p. 287) gives Je(t)dF(t) 2 ¢(S) for every convex function c; ,"i

moreover, this hoids with equality if and only if the distribution F is a unit

-
-—
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step (i.e. the density f is 8 unit impulse) at the mean S. Thus given a .
> collection of distributions with the same mean, those which best approximate
(in some sense) a unit step are the most desirable, from the standpoint of any
given convex cost; this is essentially a restatement of the basic idea of §2.1.
The veriance of equilibrium delay similarly has components due to the
variance of route hop-length and the variance of delay at individual links (or
along individual routes). Wong et a/. have recently addressed the effect of
route hop-length variance with packet scheduling: they derived a
time-dependent scheduling discipline {¢f. §3.3.2), based on route membership
only, that minimizes the variance I p(S"™-S)2G(r) of mean route delays in equilib-
rium. That work was motivated by a concern for fairness among different
node pairs (cf. §1.2), and the scheme effectively aligns the means of the densi-
ties f'(t), subject to certain connectivity constraints. However, the effect on

the higher moments of delay along individual routes is not apparent. We aiso

note that their simulation results showed littie variation in mean deiay due to

- scheduling discipline.

The convexity property also suggests an approach to lower bounds on the ........
2 expected cost. Denote by F( ;») the equilibrium distribution under policy =, and
define S(r) = [tdF(t;s). If we can find 8 policy #* such that S(z") £ S(s) for all

=¢ll, then for every convex and nondecreasing function ¢, we have

3 c[Se™)] < c[Sim] < SeltdFits) (2.20)

by monotonicity and Jensen's inequality, For a single M/G/1 system, it is well

“,I.C.I.tl

known that the desired s° is that policy which gives priority at each departure —

instant to a waiting packet with the smaliest transmission time (see §3.2.2).

2
)
LA AR

A From the discussion above, a network analogue to the optimal single queue CAEN
: policy should suggest itself. However, we should not expect such bounds to 0T
Py
4 et
J be very tight, because 5" is not likely to schieve equality in the second S
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inequality. Moreover, the idea does not sesm to generalize to the case of
multiple packet classes in a useful way.

Finally, we mention the possibility of improving delay performance
through selective packet routing. There are a great many approaches to rout-
ing [Tanenbaum; §5.2], but the effective goal can be expressed as follows:
for each origin-destination pair of nodes, the composite traffic flow rate (in
bits/sec) required by the associated users is apportioned among some desig-
nated set of paths; the objective is a profile of link flows that gives rise to a
low expected path delay per packet. Given such a flow assignment, then, one
could reserve the lower delay paths to a given destination for the more urgent
traffic. However, the exampies given in §A.2 suggest that, for larger utilizs-

tions, such a scheme will not in general be as flexible as scheduling.
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CHAPTER Il - SCHEDULING ALGORITHMS FOR PACKET NETWORKS

Given the network configuration, the packet generation process, and the
delay costs, we want a scheduling policy r to reduce or minimize the
performance measure J(r) or Jy(r). A scheduling policy basically specifies, for
each departure instant, the next packet to be transmitted. An urgent, newly-
arrived packet might also be allowed to displace or “"pre-empt” the one in
transmission.?? Without allowing pre-emption, one might still decide to leave
the transmitter idle after a departure if a relatively urgent packet were
expected in a very short while. On the other hand, both pre-emption and
inserted idle time typically complicate queueing system analysis as well as
jncrease the expected deiay, and pre-emption has associated protocol problems
in packet networks; for these reasons we will not consider such strategies

here.

3.1 A Decentralized Scheduling Problem

The network scheduling problem arises in a number of other contexts, for
example the so-called “job shop” scenario, in which pieces of work must be
processed on a number of different machines, perhaps not in the same order.
[see e.g. Conway et a/]. in many such cases, the time-scale on which deci-
sions are made is relatively long; it is then reasonable to assume that, for a
given realization w, the characteristics zp{v) = <apu),bn{0)2n{w}r fe}> of arrival n
{or estimates thereof) become known to a single scheduler at the epoch ap(w).

In a packet network, however, this information becomes available at ap(e)

only at the first link in the route rp(e). Coliecting such detailed state informa-

13For analysis of some pre-emptive queueing policies see e.g. Conway et
al. [§8.7]) and Schrage [1968].

-22-
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tion for 8 global scheduler (and passing instructions back to the individual -
nodes) is clearly out of the question; at the same time, however, most of this
dynamic information is of relatively little value in making scheduling decisions
for a given link. This motivates consideration of distributed schemes, in .b
which each link makes its own scheduling decisions, based on a combination
of locally available information and fimited communication with other

nodes.!? A reasonable performance measure for such a link scheduler would

then be the expected (average) cost of all packets transiting that link; such a .
} .
scheduler will exert a minimal influence on other packets, which would in any L
A case be difficult to quantify. Thus = will be interpreted as a8 /ink scheduling ;,'-fj
policy, to be executed independently at every link. f«
Z-_ Specifically, we will consider implementations characterized by the :
- S
L, following assumptions about the kinds of information available to the link
b scheduler: —
e The delay cost is known for every class; we do not antipicate a :*_,{:}
f-}j large number of classes in practice. L
- e (Certain sample statistics are known about delays on the routes in v
t which the link is included; the use of these is discussed in §3.2. .f’.“‘
: Furthermore, for each transiting packet: -
I o
F‘ e The epoch of arrival to the link itself is of course known. -
L e The traffic class is known.

The delay at upstream links in the route {or equivalently, the epoch
of arrival to the system) is known; this has obvious practical

I
[N
')
a -

- implications, which are discussed below. RS
»"_\' :_ .:"
C:::Z'
LI T
- 135uch an approach might be desirable as well in certain applications with e
longer time scales, as an alternative to more complicated giobal strategies. -'_:.-:'
i o
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c

e The route is known; actually, we do not need the route per se ,
(which may not be known in practice), just some key to the delay
statistics associsted with the route, such as the session identifier SRR
(Tanenbsum; §§5.4.1, 5.4.4]. {0
]

e The transmission time on the link (or equivaiently the length) is B

easily established during arrival.

Given {z,} and », the packet process seen by a given link is specified;
however, it will certainly be very "messy,” esven if {z,} is “nice.” In fact,
the link arrival process will in general have a miid dependence on the link
departure process, and hence on the link scheduling policy, through feedback

paths. To avoid these difficuities, we will simply define a new link process

{yd from scratch, with the assumption that the statistics relevant to the
scheduling probiem are similar to those that would arise unde- the old network
process {z,}. The elements of y, will be: the epoch a, of arrival to the /ink;
the class b, the “"history” h, /.e. the time behind packet n in the system; the
route r,; and the transmission time r, P will now denote the probability
measure for the link process.** |t is in this case useful to make the explicit

definitions

Yrie) B <8 (0).,b fo),hpla).r o), 7 {a)> € IRxBx [0,0)xRx{0,0) & Y (3.1)

for every wel). -"-:i-'l".'

The assumption of accurate knowledge of each packets history is an
important one here. For example, priority schemes based on number of hops
in route, and number of hops remaining in route, were considered, but often

had much worse second moment properties than FCFS. The obvious way to

14)n principle, knowledge of the statistics of {y,] might help the link
make scheduling decisions, but we will not consider this approach here.

13Thus no additional effort is entailed by @ round-trip-sensitive reply
packet retaining the history from the user leg of its trip (¢/. §2.1). ::.:_-_.-3
R

TR

RN

. e ‘e, m " IR - . . . - » - - ~
-~ «"a -«® P g® (Ve et . COMTELIT SRS S IV UL P B Lt e e . . . . - . .

* W et 0, . * . v e w L L N WL R L L I Y P T S S S R . . S I N PR RN
AR I WAL AT '.'-‘.A\.\‘!_IA~A$.‘.!;!“.A'.'..'.'.",,-.-E~ s o gty Yt te Nt e LT e e g e et e e e e *

......
-------------




-2 5=

communicate the packet history is for every packet to contain a bit field, —
which is either "stamped” once with the epoch of arrival to the system, or
updated by each node in the route to reflect the new history.** Thus there is

an obvious tradeoff between resolution and link loading, and the assumption

of precise information can never really be satisfied. On the other hand, we

will see that histories are not really necessary for packets with linear costs.
L In other cases there may be snesky ways to circumvent the requirement as
>-;;1 well: for instance, in a packetized voice protocol, a precise time stamp may
be forwarded at the onset of every session (or talkspurt, as the case may be);

the system-arrival epochs of subsequent packets can then be recovered from

their sequence numbers if all nodes have accurate clocks. However, the
relationship between resolution and performance is certainly not clear and

requires further attention,

3.2 A Dynamic Programming Formulation of Link Scheduling

The behavior of a queueing system may often be modeled as a contin-
uous-time Markov process [see e.9. Heyman et a/, 1982; chs. 8, 9]. In many
cases, however, we are interasted in the system behavior oniy at s certain
{countable) set of epochs, and the behavior on this “embedded” set of epochs
is often a discrete-time Markov process with s simpler state space than that
of the underlying process; a standard example is the M/G/1 queue [Kieinrock,
1975; §5.3]. We will construct such a Markov mc~¥s' for the link scheduling
prablem, or more péecisoly a model “schema” or template. The modesl is

essentially a dynamic programming formulation [Bertsekas, 1976; chs. 2, 9); it

is also similar to the Markov decision process [Heymen et a/, 1984; ch. 4).
For other applications of dynamic programming and Markov decision processes
to queueing system control see e.g. Stidham et a/. [1974] and references 4
therein. f-;;L]
5
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Xulo) & <ty(o) o lo),ye(o)> € IRxYxY¥ 8 X; (3.2)
note that, given »eY, the corresponding packet-set Q is always determined as
{n: <n,y>ev for some yeY}, i.e. as the domain of v. In particuiar, the initial
state xo will include components defined by -~
tos 8y, (3.3) A
Qo= {n: ap =2y}, (3.4) ”\j
2y
)
ey
N
1éNote that every such function v:Q-Y is a subset of IN*xY = {«<n,y>: B
neiN®*, yeY} (think of the graph of v in IN*-Y coordinates); then Y is the space —
of all subsets of IN*xY which are also functions. Other “big” sets defined :-'.-;j
here (such as [l) can be precisely specified in a similar manner. :.::.:1
N
AR
) "
-.‘.-:
N e e o A e i B e SN

3.2.1 Process State and Dynamics .

We first need 8 notion of process state. We want to make s scheduling
decision whenever the transmitter is idle and faces a non-empty queue; we
will represent the kth such decision epoch by ty, k = 0, 1,....

We want also to represent the characteristics of the packets in queue.
Let Q be a subset of IN*, and » a function from Q into Y; the function » can
be interpreted simply as a list of packets and their characteristics; indeed, the
rigorous definition of a function »:Q-Y is the set of ordered pairs {<n,y>: neQ,
y=»(n)} [see e.g. Suppes; ch. 3]. Then if Y is the set of all such lists,** we
may represent by »,.:(0~Y the gueue /ist, and by Q, the set of packets in
queue, at the decision epoch t,.

Finally, in order that the process be Markov, we typically need to record
some additional information about the process history up to epoch t,. We
denote this information by p, 0¥, where ¥ is an appropriate space; the nature
of the y, will be elaborated on below. Thus we define the state represen-

tation x, at the kth decision epoch, and the state space X, by
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. 1o ® {<nyn>: neQol. (3.5)

We now represent the dynamics which govern the motion of the process
through the state space. We will say a map x:X~IN* is admissible it u(x)eQ
for all xeX. Then we formally define (st last) an admissible scheduling policy
as a sequence 7 ® <y, y4....> Of admissibie maps on the state space; let Il be
the set of ail such policies. The interpretation is that, at the epoch t,, the

scheduler selects for transmission the packet
U B Xy e Q. (3.8)

(in the finite case only the first N maps are used), packet u, subsequently
departs at epoch duy) = ty + r{uy. A policy sell is stationary if = = <y, 4,...>
for some ..

The next decision epoch can be written as

B if Qh'uk s g & Bueq > dluy),
teeq ® . (3.7
du,) otherwise

I where g is the empty set. Let Ey .4 8 {n: t,<a, St ..} be the set of packets

which enter the queue in the interval following the kth decision; then

Qu+1 = Qy ~uy UE, (3.8)
and the new queue list is given by

vet & {<nyp>: neQypoql. (3.9)

For a8 given policy s, denote by {x.(r)}] the process which results from the

sequence of decisions {u,=pdx,), k20}.
As 8 concrete example of how the y, would be chosen, suppose that : .-:'C:':
- ,-"‘;".1

{yn} is the superposition of independent processes for each beB, and that for -

¥ LA SRR RS IO X N S LA . " . Q™. #, =T \ ot -y o *, "
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sach component process, the interarrival times, histories, routes, and transmis- .
sion times are i.i.d. and independent of sach other; then it is suffucient that y,
includes for every class the iatest srrival epoch up to and including t,. On
l the other hand, a model of this type may in principie be constructed for the
system behavior under compietely arbitrary packet processes, by recording the

entire state history in the y,.

3.2.2 Decision Costs

The process {y, says nothing about the probabilistic behavior of packets
after they leave the link. As the basis of a performance measure for the link
L scheduling problem, we will use the delay statistics (and the delay costs) to
develop a decision cost g: I1RxY = [0,«); here glt,y) will represent an estimate of
the cost (on system exit) for a packet with characteristics y which begins
transmission at epoch t on a given link. Thus gft,,ylu,)] will represent the

estimated cost for the packet u, selected at epoch-t,, and we may redefine

«"s%a%, " N

Jn and J as (expected) estimated costs of using the policy » by!?

Ine) = T Edgltulnyiual], (3.10)

TEMT . e e T e

N-{
Jix) m lim (1N} I Efg(tulrlyluill, (3.11)

where y(u,) abbreviates y{u,[x.(r})]}. It is not hard to show that (2.8) and
{3.10) are equivaient, in the sense that they would have the same value in @

single link system; assuming convergence, we might expect the same of (2.9)

17t js typical in dynamic programming to condition the performance
measure on a given initial state; in the present context we expect any such
dependence to be very mild at worst and we will not worry about it explicitly.

4« 4. pEmsa.8.8 8 & A BTES s F TV
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and (3.11), although a proof is not attempted here. The link scheduling prob-
lem is then effectively specified by 8 probability measure and decision cost
<P,g>; given such an instance of the problem, a policy which minimizes (3.10)
or {3.11) will be called optimal.

Our approach to the decision cost g at a given link is to construct an
estimate f(t,y) of the “future,” /j.e. of the delay on downstream links, for a

packet with characteristics y selected at t; we then define
git,y) = c[b, h + (t-a) + r + f]. {3.12)

Of course the actual packet futures must have some variation about the esti-
mate f, and for strictly convex delay costs this will drive up the average cost
beyond the estimate given by (3.12). In certain such cases, the bias is irrel-
evant to the optimization problem: for instance, if c(b,t) = t2, then git,y) =
(het-a+r+f)2 = t2+ 2h-a+r+fit + (h-a+r+f2, and the f2 term is an
isolated constant. For a cubic delay cost, however, the slope of the decision
cost would be biased by an f2 term (in this case one might consider the addi-
tional use of an estimate of the second moment of downstream delay). As
the convexity bscomes more pronounced, however, we should also expect that
an effective scheduling algorithm will tend to reduce the variation in packet
futures for any given <t,y>.

Thus the link essentially interprets the downstream estimate f as a delay
which has siready been incurred; it is then not completely unreasonable to

define the effective e/apsed time
pit.,y) = h + (t-8) + f(ty) (3.13)

of a packet with characteristics y at epoch t. The link is thus assumed to be

siready "liable” for the amount c[b.s(t,y)]] at epoch t, and the decision cost

B i o T I P
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may now be expressed simply in terms of the effective eiapsed time as
git.y) = c(b.y+r).

To construct our future estimate f, we assume that the link scheduler has
a table which gives an estimate D(b,r) of the delay to the destination on
downstream links for a class-b packet on route r; of course Dib,r) = 0 if the

link is the last one on route r. In practice, the estimates are likely to be

sample moving averages of the form
M-1
(M-m) - , I Dybburer), (3.14)

where D yb,r,e,7} is the downstream delay of the jth class-b packet on route r
to reach the destination. The table would be updsted periodically using
reports from the destination nodes. Adaptive routing algorithms often employ
such tables of downstream delays (for a single class) [Tanenbaum; §5.2). For
simplicity, we will assume that D is independent of o and », since we have no
intention of accounting for these complications. Thus we obtain a simple

estimate of the future by setting®®
f(t,y) = Dib.r). {3.15)

Note that f is independent of t here, so that g( .y) is simply a shifted version

of c(b, ), and has the same functional form.

13And this can similarly be modified to include an estimate of the system
time on the return lag for a round-trip-sensitive user packet.

1
%
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3.2.3 A Refinement of the Downstream Delay Estimate

For a given psir <b,r>, the goal of the scheduler may be viewed as mini-
mizing the variation in estimated system times of transiting packets (cf.
§2,3.2). The packet histories, arrival epochs, and transmission times will be
'z'.ff taken into account by the downstream links, and this shouid help rectify
: imbalances in the delays accumulated at the given link and the upstream links
associated with transiting routes; the estimate f = D(b,r} is somewhat "pessi-
mistic” in that is does not santicipate any such help from the downstream
links. The following example illustrates how this may degrade system

performance.

Suppose for a given realization there are four packets in queue, all of the
same class b and with identical transmission times r. The link is the last éne
in a route shared by packets 1 and 2, so their estimate is f{ 5 = 0; their

4 sccumulated delays differ by 3r seconds. The link is the first one in a route
shared by packets 3 and 4, with some estimate f3 4 they have arrived 5r
seconds apart.

This is clearly the last opportunity to do anything about the relative
delays of packets 1 and 2, and in fact their system times can be made exact-
ly equal if the schedule 1-3-4-2 is followed. This schedule also reduces by r
the difference in accumulated delays for packets 3 and 4 (as seen by the next
link) to 4r; moreover, there is a good chance that this difference can be
reduced further, if not eliminated entirely, by the downstream links. But the
pessimistic scheduler is in effect operating under the mistaken assumption that
this is also the last opportunity to do anything about packets 3 and 4. Fig. 4
shows how the effective elapsed times 3, Of the four packets might be
related in the worst case; the average decision cost at the link is then mini-
mized by the schedule 3-1-2-4 (this is easy to prove, and we do so in §3.4,

but the intuition should be fairly clear). This schedule indeed reduces the

e e e e e e e e
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h differences in accumulated delays for packets 3 and 4 to 27, but results as .
well in an irrevocabie difference of 2r in the total system times of packets 1
and 2.
_ We can also imagine the opposite extreme, thast of the totally
~optimistic” scheduier; this one assumes that the downstream links are some-
= how able to guarantee equtlll system times for all packets with the same <b,r>

(a particularly poor assumption on the last link in & route). To generate such

optimistic estimates of downstream delays, 8 link might maintain a8 table

which gives an estimate S(b,r) of the total system time for a class-b packet

on route r, and derive a time-dependent estimate f(t,y)s= S(br) - .
[h + (t-a) + £]. This gives 3(t,y) = S(b,r) - 7 and g(t.,y) = c[b,S(b.r)];: with this
estimate, then, décisions may be baséd on at most packet class and route, and

cannot be very meaningful.

The example of Fig. 4 shows that a link has a limited capacity for reduc-

ing variations in accumulated delay. Thus a more “realistic” scheduler should
expect that, for a given pair <b,r>, each downstream link will make some
contribution to this goal, and it should realize that some effort on its own

r c(bt)

e
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Figure 4 Elapsed times with pessimistic estimates
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| * part will be required as well. We may strike such 8 balance between the

[ pessimistic and optimistic schedulers with an estimate of the form

fit.,y) = gyDib.r) + (1-8))[S(b.r) - (h+t-a+r)) (3.16)

where Sy €(0,1) represents the fraction of the responsibility assumed by the link
for a packet with characteristics vy.

As one possibility, if j,. is the number of downstream links on route r,

- ——

we might set py = 1(j.+1). Then for packets at early links in a route, the .. -
differences in effective elapsed times are reduced to much more reasonable
values than those seen by the pessimistic scheduler; however, they are not :;'Z:'
completely eliminated, so that meaningful scheduling decisions may still be :::
made. Of course other assignments for j, are possible, and experimentation -‘f_jl’ .

would probably be helpful in establishing reasonable choices; but one obvious
constraint is that, on the last link in a route, S, should go to 1, so that f
goes to 0.

Now, however, f is affine in t, and we find that
alt,y) = c(b, Byt +Ky) (3.17)

for some K, independent of t. While the convexity of c(b, } is retained in
gl .y), the particular functional form need not be; we will see in §3.4 that the

characterization of an optimal policy becomes more difficult in this case.

3.2.4 Performance on a Satursted Link
Consideration of scheduling disciplines other than FCFS opens up the
possibility that some packets may get “trapped” in the system forever, and

we clearly want to svoid this. Indeed, both (2.9) and (3.11) have little signi-

. ficance unliess (with probability one) s, is finite for every n. If this condition
P
3
4
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is not met, then'® E[c(b,s)]) = « for some n, so that {2.9) cannot converge.
And because (3.11) accounts for packets in order of departure, it doesn‘'t even
give any indication of this problem; in fact the scheduler might conceivably
minimize (3.11) while neglecting indefinitely the most urgent packets.

To ensure no trapping, we could require that on esch link the queue
empties out infinitely often, /j.e. the queue busy-periods are 8il finite [this is
typically sufficient for stability of a queue: Kleinrock, 1975; p. 93); then every
packet is selcted eventually, at every link in its route. More precisely,

suppose that, on every link, we have

(w.p.1) linunf |Qy| = 1. (3.18)

where |Q| denotes the number of elements in a set Q; recall that by defi-
nition |O,| is never 0. Thus for every k there exists a j>k such that
|Q;] = 1 [ef. Rudin; pp. 55-57]; then (w.p.1) for every packet n, we have neE,
for some?® k, and hence d, < t; + 7, and s, < t; - t, + 7, fOr some j>k.

We might also imagine & situstion in which the finite busy-period
assumption is violated, particularly when the potential traffic is large. As &

somewhat weaker assumption, then, we require only that

(w.p.1) limki'nf jQy) =M< o (3.19)

for some M, /j.e. for every k there exists a j>k such that |Q;| < M; we do

expect that such an M exists in practice, regardiess of the policy. We may

31'Suppose that, for every n, E[c(b,8s,)) is finite: then by Jensen's inequal-
ity E(s,) is finite, hence s, is finite w.p.1; then the probability of --e set of
realizations in which s, is infinite for some n is P({Upny¢{sn wrinite}) <
I 2 1P {8, infinite} = 0.

3sthis actually presumes in addition that (w.p.1) liminf,,r, > 0.
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* loosely refer to a link for which M>1 as marginslly stable (pathological insta-
bilities exist). Trapping is now possible for some policies, which suggests
(correctly) that (3.18) is also a necessary condition (for no trapping under every

policy); but an argument similar to the one in the previous paragraph shows

that no trapping occurs under FCFS, so that at least one such policy always
exists.

We will address the marginally stable case by holding the link account- e
sble for every arriving packet, as follows: in §3.3.1, [(t,v) is defined as the
optimal cost of emptying out the queue described by the list v, starting at

} epoch t; we redefine J (for the last time) by3?

Jin) = Iim {1/N) E{::Z;g [tilm)ylu)] + T [taln) on(m)]}. (3.20)

T*(tyvy) represents the liability of the link after N decisions (assuming no

additional arrivais). Now if (U/N)E{l"[ty{r).on(n]} =~ 0, then obviously J(») =

'Es 4 ¢ o

limyi{1/N)J pir). Moreover, we expect intuitively that (w.p.1) no trapping occurs

in this case, and that (2.9) and (3.20) are egquivalent,

It would be nice if we could guarantee that (w.p.1) the optimal policy

T

never traps in the marginaily stable case, but this is not true; for instance, in

the case of linear delay costs c(b,t) = m,t and constant transmission times, we :.;'-"T‘j:
will show in §3.3.2 that (in the single-queue case) packets with minimum my b ..

always have the jowest priority, regardiess of their effective elapsed times.

in principle, there should exist conditions under which the optimal policy will
never trap; 8 likely candidate would be unbounded marginal costs for every . a

cless. In such 2 case, I'" would serve as a “penalty function” which discour~ -_.:l:.j?:l

2:'Thus J is no longer a true per-packet average; this aliows for further
anomalies, which we will not pursue, but the reader is invited to expiore.
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ages the scheduler from neglecting any particular pscket for too long. in
practice, however, we cannot guarantee such a condition. Ailternatively, we
could establish absolute time limits such that a packet automatically goes onto
a special subqueue with preferred status once its limit has been reached; this

will also guarantee no trapping.

3.3 A Cilass of Efficient Scheduling Policies

It is appropriate in this context to focus on simple policies which can be
executed quickly. The transmission time of a data packet is typically on the
order of 10 milliseconds; thus even an (inexpensive) processor, dedicated to
the task of scheduling, will have time for only a2 few thousand machine

instructions per decision.

3.3.1 Myopic Scheduling Policies

in particular, it seems reasonable first of all to forget about the dynamic
aspect of the problem; /j.e. at any given decision epoch, ignore the fact that
more packets are expected to arrive in the future, and address only the static
problem of emptying out the queue at minimum cost. Policies of this type
will be called myopic scheduling policies [cf. Heyman et a/, 1984; ch. 3]; the
notion will not really demand a precise definition,

In general, the arrival of new packets can upset the optimality of a static
schedule, as the following example shows. Consider a single link system, and
suppose that for a given realization packets 1 and 2 are present, and packet 3
will arrive in ¢ seconds. All packets have transmission times r. The delay
costs are c(b.t) ®= emax{0,t-r}, c(bpt) = emeax{0,t-2r}, and c(byt) =
amax{0,t-r}, with ¢ << ¢, as shown in Fig. 5. The optimal sequence for pack-
ets 1 and 2 is clearly 1-2, which has total cost 0. But if packet 1 goes first,

then one of packets 2 or 3 must incur a cost of ar, whereas the policy which
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resuits in 2-3-1 has total cost 2¢r < ar; depending on the process statistics,

then, the myopic policy need not be optimal. in certain cases, however, a

e:'.:_' myopic policy can minimize the expected cost?? as defined in §3.2. .
h . To formalize the static scheduling problem, let reY be a queue list with L
i |Q] = q packets. We d'efine a static sequence for » as a collection
f;? ¢ & {g neQ}, where ¢, is the set of packets in Q to precede packet n. The

o, Must then be strictly nested, /.e.?? =t

g = 0Ny <...<alng s Qng (3.21) S
where n, is the first packet according to the sequence ¢ and ng is last. Given . 'f-':_ji_'.
a decision cost g, the cost of scheduling v in accordance with ¢, starting at ey

epoch t., may then be written compactly as

FTeto)e I gt+ I rj oin)], 3.22)
neQ jeon
cChi,t) c(ba, t) c by, t)
4 A 1‘ h
/; t - - ¢ . - t J
T T T

Figure 5 How myopic policies can fail

3iThere are other such sequential decision problems, e.g. some inventory

- problems, for which the optimal policies are myopic under certain conditions
o [see Heyman et a/, 1984; ch. 3). - ==
- 13Alas, “<” denotes proper set inclusion. :f.:':
.f ..‘ .
..‘ .--?;
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and this motivates our definition; but we will often revert to the shorthand .

Ny-ny-...-Nq. The optimal cost for the static problem <t,»> will be defined as

I'*{t,v) = min Nea.t,v) (3.23)
o

(¢f. §3.2.2), and the sequence ¢" i§ optimal for the problem <t,v> if it achieves : ..
the minimum in (3.23).

There are q! possible static sequences for a given collection of q . ‘
packets; the search for more efficient solutions to this problem has been rela-
tively active over the last twenty vyears. There seem to be two basic
approaches, the first of which consists of devising rules for eliminating

non-optimal sequences from consideration. As the most straightforward exam-

ple, dynamic programming approaches can reduce the computation required in

the general problem to the order of 29 ([Meld et a/.] [Schild et a/.] [Lawler, -

1964). When the cost functions take a particular form, we can aspparentiy do
N better; additional elimination criteria have been given for non-decreasing costs
§ [Eimaghraby]), CND costs [Henderson et a/; §3), and quadratic costs [Schild et
! 8/]. But there is nothing to suggest that the complexity of these schemes is
» better than exponential, which is unacceptably siow in our context. Morsover,

it is not clear that it is any less difficult to find the first item in an optimal

sequence (which is all we really want for a dynamic policy) than it is to find

the whole sequence.




3.3.2 Priority Rules

The second approach is the use of intuition {(and a little luck) to find

»

.
adet, SAL,
PR = =)

selection ruies for the first item when the decision costs have a particularly

A
)

auspicious form; these rules can typically be expressed as priority rules, which
are (at worst) order m at each decision, and this is as good as we couid
reasonably have hoped for. We may interpret any function ¢: IRxY = IR as a
priority function; when a decision is to be made among the packets in a queue
list » at epoch t, we simply select a packet neQ for which ¢[t,v(n)] is maxi-
mum, /.e. we select a packet with the highest priority [cf. Schrage, 1973]; for
concreteness (and without loss of generality), we assume that ties are resolved

in favor of the lowest index. If ¢(t,y) is independent of t for all yeY, then ¢

is time-independent, and we may as well write ¢:Y=IR; most useful priority

rules are in fact of this type. Time-independent rules are especially attractive
here because packets need only be ranked once (e.g. inserted into a linked-list
data structure); this of course represents less overall computation, but also
facilitates consideration of packets arriving relatively close to the decision
epoch.

Given a static problem <«t,»» we define the sequence ¢ generated by a

time-independent priority function ¢ (or the corresponding rule} by
os % {ieQ: g[o(i)] > p[v()]} U {ieQ: ¢[o(i)) = ¢ [v(j)] & i<j} (3.24)

for all jeQ; the time-dependent case is tedious to write down, but should be
intuitively clear as well. Given a decision cost g we will say that a
time-independent priority function (or rule) y' is optimal (in the static sense) if
it generates an optimal sequence for every <t.v> ¢ IRxY, For certain decision
costs, optimal time-independent rules do exist (we are aware of no

time-dependent rules which are optimal in this sense). Similarly, the (station-

P K e T T T
. .l. 'l. A .'. '.-._' .'v . ‘ v ... " ‘a. .'..,‘:"'. .
*y et AR B R T,

.
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ary) policy = generated by a priority function ¢ (or rule) may be defined by
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.
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Hte) & min{ieQ: ¢[t,o(i)] 2 ¢[t,vlj)] for all jeQ} {3.25) .

for all xeX, where the notation emphasizes the fact that decisions depend only

on t and v; similarly, for a time-independent rule we write g(v). The policy
- generated by an optimal priority rule may be optimal as well for certain
statistics P.
‘ To illustrate these ideas, priority functions corresponding to a number of
H well-known selection rules (usually associated with single-Queue systems) are
i'_if- now presented. First-come-first-served may be expressed as ¢(y) = -a. In the
A case of linear decision costs g(t,y) = myt, the so-called “4C” rule is given by
#ly) = my/r; it is optimal for the static problem, as we will demonstrate
below, and the policy it generates is optimal for the dynamic problem (in the
stable case) when the arrival process is Poisson and the classes and service
times are‘ i.i.d. and independent [Lippman] [see also Fife]. In the special case
alt,y) = t, the "shortest job first” rule mentioned in §2.3 is of course given by
#ly) =1/r. Now consider costs of the form c(b,t) = max{0,t-Tpl; T, has the

interpretation of a due-date or grace period, after which a linear cost is

incurred. Jackson’s "due-date ruie” is given by ¢{y) = {Ty~3). /i.e. select the
packet whose due-date is closest; for a single queue, the rule can be

expressed as ¢ly) = «{Tp+a), and minimizes the “maximum Iateness”

i'- maxy {cbySn)} in the static problem [Conway et a/; §§3.3, 8.8). Finally,
Kieinrock’s time-dependent rule [1976; §3.7] is the one used by Wong et a/. to N
place the means of the various route delays (see §2.3.2 above); it is probably :;
_ﬁ most meaningfully expressed here as ¢(t,y) =+ m.(t-a), where the m, are suit- _'l;
.?1
Lf able constants, chosen independently for every link. e
- 3
o It is easy to show that, in the case of linear decision costs g(t.y) = myt, .x}.i
-.‘- l\~-
j\ the ,C rule :;j:i
L’: #°ty) = myir (3.26) 0%
5 25
e O
n::- '_—:'_l
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e 'f::*
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o is optimal (in the static sense).?* Let <t,»> be given, and let ¢° be the

2 il A e 06 ErY V. SR .8

sequence generated by ¢ without loss of generality, assume that Q =
{1.2,...q} and ¢°(1) < ¢"(2) < ... < ¢"(q); then T'(¢*,t,9) S I(ot,s) for every o,

as follows. If packet 1 is not first in ¢, we can interchange it with the

LIRS fF AL OIS DY

immediately preceeding packet j without incressing the total cost: the costs
of the other packets clearly are unaffected by the interchange (because
rytry; = ry+7,); the cost of packet 1 decreases by m,r; and the cost of
packet 2 increases by myr,, and m,/ry 2 my/r; vyields for the net cost

increase m;r, - m,r,; < 0. iterating the argument, packet 1 can be "bubbled”

LSRR TR CENG UL

-

to the first position in the ssquence without increasing the cost, and packets

2,3,...q-1 can similarly be bubbled to the 2nd, 3rd,...(q-1)st positions without
increasing the cost. In general, the optimality of any time-independent rule
may in principie be established through such an interchange argument, because

the rule will give an optimal sequence for the two-packet problem correspond-

i
:
2
l

ing to any interchange pair.

it might seem, at first glance, that an optimal priority rule should aiways
generate an optimal policy, but this is not so. The foliowing example is a
little involved, but illustrates some pertinent points. Consider a single queue
with linear costs c(b,t) = myt, using the »C rule ¢{y) = my/r. Suppose that, for
a given realization, packets 1, 2, and 3 have the following transmission times,

delay costs, and priority assignments:

e cbqet) = t #lyq) = e
ro = (1426 clbat) = (14 ekt gy ) = (14 eM(1+2¢)r
r3e 7 clbat) = 2t plys) = 2 o

14Although the proof is simple, it is new to us. Proofs of optimality in
the dynamic case proceed differently.
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where ¢ << 1. Packets 1 and 2 arrive simuitaneously, and packet 3 arrives
(1+2¢)r seconds later. Then the policy generated by the 4C rule (which is
indeed optimal for packets 1 and 2 only) results in the sequence 1-2-3, with
total cost (7+4¢+2¢%r; on the other hand, the sequence 2-3-1 has total cost
(6+5€+2¢?)r.

It is fairly clear that the scheduler is forced into making a poor decision
because of the variation in transmission times (the example suggests as well
the possible benefits of inserted idle time); indeed, if we reset r, = r for all
n, the C rule reduces to a "maximum slope” rule which gives the optimal
sequence 2-1-3; similarly, if r, = (1+2¢)r for all n, the rule correctly gives
2-3-1. It turns out that, in the case of constant transmission times, every
optimal time-independent rule always (i.e. for every P) generates an optimal
policy {(in fact, it minimizes the cost for every realization); the proof is based
on interchanges of non-adjacent packets, and is given in §A.3. Thus in the
case of linear decision costs, the maximum slope rule generates an optimal

policy for the G/D/1 link.

3.4 Selection Rules for Strictly Convex Costs

The 4C rule may in some cases be a usefui guideline even when the
delay costs are not linear. Given a problem <t,v> in the single-queue case, if
the marginal costs m(b, ) can be reasonably approximated as constant over the
corresponding intervals [y, 3+ XZo7na]. then the interchange argument of §3.3.2

has some validity, and the use of the priority rule

g(t.y) = m[b,s(t.y))/r (3.27)

3sMoreover, there probably exist coupled constraints on the ranges of the
marginal costs and transmission times under which an optimal sequence is
guaranteed.
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. should result in good performance?® (note that here jy=t-a) We should aiso
expect good performance in the dynamic problem [cf. Haji et a/] if the
marginal costs and queue size are such that the linear approximation is valid
most of the time. In the many-link case we have3¢ g'(t,y) s agit,y)/at =

Aymib, gyt +Ky) from (3.17), and the corresponding rule is
pit.y) = gymi(b.y)ir, (3.28)

with 3y as in (3.13); in the sp;cial case of linear costs, we get ¢ly) = fmylr,
again a time-independent rule.

If we specialize to constant transmission times r, we can find optimal
time-independent ruies in some other cases of interest. Let cglR~IR be any
CND function, with derivative mg:IR+IR, and consider the case of identical
costs c(b,t) = cdt), t20, in a single-queue system. In this case the optimal

rule is ¢(t,y) = 3 (cf. §3.2.3); this is equivalent to FCFS
#ply) = -a (3.29)

{cf. Henderson et a/; Thm. 2] (cf. Haji et a/), and thus generates an optimal
policy for the G/D/1 queue. To show this, suppose that in some sequence we
have 2 arbitrary packets followed by packet j and then packet i, and that
1; 2 95 If we interchange i and j, the cost of packet i decreases by
Cols+8r+r) - colgy +Rr) and that of packet j increases by colyj+8r+7) -

Colsy +8r), the net increase is then

g 3¢+ ) g yHa+1)r
J meitydt - [ mgltidt < 0 (3.30)
'j‘af '1*07

~. l4there is of course an implicit time-dependence in (3.14) [and simiiarly

for S(b,r)), and in practice Ay, might depend on t as weil; we assume here that
these parameters do not change significantly over large numbers of transmis-

sion times.
2
y
e A
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(for every r>0), because mg is nonnegative and nondecreasing. In fact, it is

3
n
i
-
-
~
~
5

not hard to show thst if [r,~r4| < [95-93] for all ijeQ, then the rule
makes optimal choices in the case of variable transmission times as well.

Now in a somewhat more practical vein, we can derive different delay

s SR "0 8%

costs from cq by shifts of the form c(b,t) = cgt+ 4y = coldy). t20, as illus-

:} trated in Fig. 6. In this case m(b,t) = mgft+4,), and it is not hard to see (or
I prove) that in a single queue the optimal rule is simply ¢{t,y) = A, + 3, OF
- #ly) = 8p - &; (3.31)

again the rule generates an optimal policy for the G/D/1 queue. Note that the
_i. due-daste scenario may be expressed as the particular case cglt) = max{0,t},
: with 4p = -T,, But while the careful construction of a8 nominal cost co might
yield a useful collection of delay costs c(b, ), there is no guarantee of this; in
- particular the scaling requirement is not likely to be met.

In the many-link case, cl(i,) is time-independent, and we may assume

git.y) = cols+r+4,). Then if .we use the time-independent future estimate

l (3.15), it is again easy to see that the rule

¥ #y) = dp+h-a«+f (.32
is optimal, and generates an optimal policy for a G/D/1 link. However, with
i the more realistic time-dependent future estimate (3.16), we have g(ty) =

.
o -6

Colfyt +Ky +4,) from (3.17), and the decision costs no longer correspond to a
simple family of shifted functions. In particular g'(t.y) = Symg(Byt+Ky + Ap);

because the time-scaling of these marginal decision costs depends on y, we in

e YPHER S S0

A i

17We can improve the pessimistic estimate (3.15) without introducing time
dependence, by replacing (t-2) in (3.16) with an estimate L(b,r) of the queueing
delsy on the given link; but there remains a tradeoff between the quality of
the estimate and our ability to characterize good policies.
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general cannot make the same kind of argument as in (3.30), and cannot find
an optimal time-independent rule.??

In general, it is hard to say much about the nature of optimal rules when
the transmission times are not constant. The due-date rule ¢(t,y) = ~(Ty~y) is
one exception; and while the maximum lateness maxy{clb,S,)] is not an addi-
tive performance measure', it is appropriate here as the limiting case
{ZInlcbnasAI™ /P as p-w. With a time-independent estimate f, the form of

the decision costs does not change in the network case; thus the rule

#y) = -[Tp = (h-a+f)], (3.33)

a special case of (3.32), is optimal in the static sense for variable transmis-
sion times as well. As another case of interest, Schrage [1973) has derived a
suboptimal time-dependent rule for variable service times to reduce the second
moment of delay [i.e. cibt) = t2?]; the results of his simulation for an M/M/1
queue with utilization p = 0.95 showed substantial improvement over FCFS, In

our notation the rule is

((b’,t;)

|
__’C_fi_,J./:/ - <,
T .

Figure 6 Shifted versions of 2 given nominal cost
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$(ty) = 29E3(r)ir - £3, (3.34) )

where E(r) is the expected transmission time overall, and is similarly applica-
ble in the network case with a time-independent estimate f.

Unfortunately, we have not found reasonable policies for the important
case in which competing cost functions have very different forms. Part of the
P problem is that the interchange argﬁment is not reliable in general, as
suggested earlier. Now consider the set I of all schedules ¢ for a given prob-

lem <t,v>. The success of the interchange argument for an optimai time-

»

v

independent rule rests on the fact that every local minimum of I'( ,t,0):2~IR is

"ha
B

a global minimum, /.e. T is in some sense “convex” in L. However this prop-
erty does not hold in general. Conway et a/. give a counterexample in which
the service times are variabie; the examplie below shows that the property can
fail for constant transmission times as weil. .
Suppose that packets 1, 2, and 3 have transmission times 7, and arrive
simultaneously at a single queue system; let c(byt) = t and c(bat) = c(bst) =
amax{0,t-27}, with a>>1. Then the sequences 1-2-3 and 1-3-2 each have total
cost e¢r, and are local minima; in either case, if packet 1 is interchanged with
the succeeding packet, the :ost increases to {(e+g)r. Yet the global optima are
the sequences 3-2-1 and 2-3-1 with cost 2e. Thus a selection rule may be
myopic as well, in the sense that it can "paint itself into a corner” by not

looking at the entire cost function.
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CHAPTER IV - SUMMARY AND CONCLUSION

We have addressed the issue of delay performance in packet networks by
assigning delsy costs for different classes of traffic, and adopted » limiting-
average expected cost approach. In particular, we suggest that spplications
characterized by constraints on individual packet (or round-trip) response times
lead to strictly convex costs, while applications for which job-related
constraints dominate wili have linear costs. W_e showed that the expected
cost in equilibrium is an equivalent performance measure, and characterized the
equilibrium delay performance of a typical network; this suggested consider-
able potential for reducing convex costs by packet scheduling, especially when
link traffic is relatively heavy. In contrast, routing seemed to be reistively
inflexible in this respect.

A distributed scheduling implementation was proposed, which incorporates
knowledge of packet histories and estimates of packet futures; we know fittie
about the tradeoff between resolution and communication overhesd associated
with time stamps for packet histories. Link scheduling was formulated as a
dynamic programming problem, with decision costs representing estimates of
the delay cost on system exit. We concentrated on simple static selection
rules appropriate in a reai-time environment, but showed that for some ideal-
ized cases such rules are optimal. In particular, we found that, in the case of
constant transmission times, a time-independent priority rule which is optimal
in the static sense always generates an optimal dynamic policy. The most
useful case we found was that of shifted delay costs of the form c(b,t) =
colt+ Ap), where co is convex and nondecreasing; in this case the rule ¢{y) =
Ap+h-a+f is optimal for a G/D/1 link, if the downstream estimate is

time-independent. We did not find useful rules for the important case in

-47-
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which the delay costs have radically different forms, but helped explain why .

% this case is more difficult.
We believe that the basic idea potentially has practical merit, especially

SN

as processing costs come down in the future.
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APPENDIX =

A.1 Convergence of Average Cost to Equilibrium Cost T

Theorem: Suppose a sequence {F,} of distribution functions converges
weskly to a distribution function F, and let c: IR = IR be nonnegative, nonde-

creasing, and continuous. |If

lim J cit)dFn,(t) = 0 uniformly in n, (A.1)

Ao 1tI>A -

then N

N .~

lim (1N) 2 fe(t)dFdt) = JSc(tidFit) (A.2) R

Remarks: Note that if F,, is nonnegative [i.e. F{t) ® 0 for t<0] for all n, R

nan

then so is F, and we are only concerned about the behavior of ¢ on [0,0). —

Thus if we substitute Fy(:b) for Fp, F(:b) for F, and clb, ) for c, (A2) is

equivalent to (2.14). i

In fact it is easy to show that if fc(t)|t|PdFn(t) is uniformly bounded for =

N some p>0, then (A.1) holds [use the approach on p. 186 of Loeve]; thus -

_:-_f uniform boundedness of the expected costs E{c[b,s(n )]} is "almost” suffi-

cient for (2.14). Soo

N Proof: Denote by C, and C the expectations with respect to F, and F in Z-:Y_f-

(A.2); we first show?* that C, -~ C. Define for every A ¢ IR the function ¢, by

19This is 8 known result [Loeve; §11.4); the proof here is based on a

o ' moment convergence proof from Chung [Thm. 4.5.2], and is more direct.
-49- o
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clt) if tSA - )

calt) = { (A3)

C(A) if t>A ,'-_.:-:.:

These functions are all continuous and bounded on IR, so we have for ail A L:ff.-:::..;-

lri,t;n Jealt)dF o(t) = S (t)dF(t) (A.4)

directly from the definition of weak convergence [Ash; §§4.5, 8.1]. Aiso,

J [cltyc At)) dF ft) = t.r> JJetti-c 4)) oF o)

< !J; ‘c(t)dF oty = 'J; 'c>(tA)dF nit), (A.5)

so by (A.1), flc-c,)dF, vanishes uniformly, i.e.

lim Jealt)dF oft) = Cpy (A.6) ;:::
uniformly in n.
1t then follows from (A.4) and (A.6), and properties of uniform conver-

gence [c¢f. Rudin; p. 149], that [c,dF converges and

lim Jeat)dF{t) = lim Cp, (A7)
At ni

i.e. the iterated limits exist and are equal. But fc,dF - C by (essentially)
monotone convergence [Ash; p. 44], so C, ~ C.
Thus for every ¢>0, there exists an M such that |C,-C| < €/2 for n2M.

Take

Ls [ mex{(2/e) ‘T(CrC) MH (a8)
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where [x] is the smallest integer not less than x; then for N2L, we have

N
[y 2€, - €|

J(1/N) %scn-cn
ns

[N Eie -0 + () Fie o))
ns9 ns

A

ML E(Ca=C)] + |IN-Me1)=? 2Cn-C)]
n= 4 n=M

A

(e/2) + (¢]2) = ¢, (A.9)

i.e. (1IN)Z\Ch = C, which is equivalent to (A.2).

A2 Alternate Route Delays in an Optimal Flow Assignment

We consider here, in a network setting, the traffic leaving a given node,
intended for a given destination; two alternate paths p; and pj;, of Ny, and Nj
hops, are available. We model the equilibrium behavior with a function v, such
that v(f) gives the expected number of packets (in queue and transmitter) on a
link with flow f, independently at all links in the network. The expected
number of packets in the system is then the sum L & Zgv(fg) over all links
e ¢E, and by Little’s formula [cf. Stidham, 1972; pp. 1122-23] we have L = 1S,
where )\ is the total arrival rate. Thus a minimum-delay fiow assignment is
one which minimizes Zgv(f,):; here we examine some of the implications of
such an assignment.

If we assume further that v is convex (as it is for M/G/1), we can charac-

terize the optimal flow assignment as follows [Bertsekas, 1981; eqn. (4.4) and

below]: it v'(f) = av(f)/af, and we define the first derivative /ength (FDL) of »
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path p by Zpv'ife). then path flow is positive only on psths with minimum FDL. .
::E Thus if we have positive flow on both p, and p, optimality requires that
;-I
L dy = 921 vifg = ;;2 vife) ® do. {A.10)
; Intuitively, it py had a smaller FDL, then some flow could be shifted from p,
to py and by convexity the sum Zpqr(fg + Zpav(fy) would decrease, equiv-
alent to 2 decrease in overall delay.
If the derivative v’ is convex as well (also true for M/G/1), we expect
S that, for a given first derivative length, variability among link flows slong a
path implies 8 smaller average link flow (over the path) than does a relatively
constant link flow profile. But because v itself is convex, variability among
link flows also requires less average link flow for 8 given number of packets
5 on the path, and when N, = N, these factors tend to cancel. As an example, .
R 2 string of four M/M/1 links, with expected transmission times E(r), capacities
: 6, and flows 0.44, 0.5¢, 0.6, and 0.78, has a path delay of S, = 9.5E(r); the
& same system has a path delay of S, = 9.8E(r) if all link flows are equal and
: adjusted such that the FDLs are equal, d; = d,.
5 If Ny # N,, the path delays are not as constrained. In the case of M/M/1
;'. links with constant path flows f; and f,, optimality requires
N OBt )2 = NoBIB-f5)% or (A1)
o YN /(8-f,) = VNgal(d-f5), which gives
N E(QVNHB-f4) = NE(BWN (/(8-f5), or R
° O ..'-.q
% SWN, = SN, (A.12) R
. »"...-‘.'.
A [ ALY
- A/
- . where E(Q) is the expected packet length. Thus the greater hop-length path has . St
N a larger path delay, but the relative difference is still not so large for N, .'_~:.;-;.‘
by N
. P
) )
. )
» \q
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close to N;. The previous paragraph suggests that non-constant path flows

should not significantly alter this result.

A3 Optimsl Priority-based Policies for G/D/1 Links

To tormalize the G/D/1 case, let Yo 5 {veY: r(i) = r(j) for all i,je Q} be
the set of all queue lists with constant transmission times. Then given g, a
priority rule y' is optimal in the case of constant transmission times if it
generates an optimal sequence for every <t,v> ¢ ™Y, (it is intuitively compel-
ling that if a rule is optimal for any given constant r, then it is optimal for
every such constant; indeed, we show in §3.4 the optimality of some rules of
this type, and the proofs are always independent of r). Now if Q. 3 {wel:
7 4e) = r40) for all i,j eIN*} is the set of all realizations with constant trans-
mission times, we define J\(r|Q.) and J(»|QJ by conditioning the

expectations?® in (3.10) and (3.20) on 0. Then we have the following:

Theorem: Given a decision cost g, suppose there exists a
time-independent priority function ¢° which is optimal in the case of constant
transmission times. Then for every P, in the problem <P,g> the stationary

policy »* = <4%,," ...> generated by ¢° satisties
Inir" Q) € Inlz|Qe) (A.13)
for every sell Furthermore, if J(r*|0 exists and is finite, then

Jir |0 € limNi:‘If (VUN) {UMri0c) + E[T "Mr)|0C)) {A.14)

tor every sell, where T °\(r) abbreviates I'" [t\(s),v \ir)].

'\t necessary, we can formalize the expectations by simply considering a
new probability measure P, associated with Q.
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Proof: Consider the problem of minimizing
L=t
jL"v') L kgogitu".')'Y[Uk(':')]} + r.L‘"t') (A-15)

- over =¢ll, where I'" (s.s) abbreviates I'* [t (v,7),v (w.5)); j_ is the incurred cost
plus liability after L decisions, for a given realization (assuming no further

arrivals). We show below that, in fact,
jLl@r”) £ jle.s) (A.16)

for every wele, 7€ll, L. Now in the finite case, Qy is empty for every w, ¥,

so T"(tyop) = 0; then with L = N in (A.16), taking expectations conditioned on
; c preserves the inequality [c¢f. Ash; p. 41], giving (A.13). In the infinite case,

: take expectations in (A.16) conditioned on?* (). divide by L, and take lim inf

as L-o, each of which preserves the inequality; this gives (A.14) when the LHS
converges.

Now let wef}c and L be given, and suppose that 7,(w) = r for all n. to

get (A.16), we show that for every policy #%¢ll, there exists a sequence of
policies #0 #7, ... #t"%, % in which j_ is non-increasing, i.e w19 2
jles 2 ... 2 jL.s”). To see how j_ changes from one policy to the next, it
is helpful to visualize the packet selections ug, Uy, ... U_-¢ (dictated by a
given policy) laid out along the time axis at epochs to ty, ... t_ -4 (note that
for constant transmission times, the t, are independent of the policy, for 8
' given realization); foliow these by the packets in Q, laid out according to the
optimal static sequence ¢ generated by ¢°, st epochs t_, ty+r, ... t +(q-1)r

(where g = |Q,| is aiso independent of the policy). The basic idea is that, if

. 3oNote that we could just as easily have conditioned on a given initial
state here to get the more standard dynamic programming statement.

AR
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the packet u; selected at t; under the policy »3 is not the one dictated by '
ie if uglzd) ¢ 4 [vs(r9), then we find a new policy #7*', under which the
positions of packets uy(s’) and s"[v,(#7}] in the ordering sre interchanged; the
effect of the transformations is that policy 3 has the form
< e pt il dieq.0 (20, 1,...L-1). Note that every such interchange must

occur within some busy period (because p. is admissible); the lemma below

shows that no such interchange can increase the value of j, (the lemma is

proved after the theorem).

Lemma: Given a8 decision cost g, suppose there exists a time-
independent priority rule p‘ which is optimal in the case of constant transmis-
sion times; let ;,° be the map which defines the policy generated by ¢°. Then

if veYc is a queue list with transmission times 7, " (v) = i ¢ Q implies
glt.o(i)] + glt+(m+1)r, »(j}] = glt.,o(j)] + glt+(m+1)y, o(i)] v (A7)

for every i,jeQ, telR, m = 0, 1, .... Thus if packets i and j are separated by
m packets in an ordering, the combined cost of both packets is no greater

with packet i in the earlier position.
Formally, we get »i*' from #3 as follows, for j=1 = 1, ... L-1:

Case A: ;" [v4(n?)] = u,lni); ie policy n? makes the choice dictated by

s" 8t epoch ty, so simply pick #**' = »J, and j_ does not change.

ase B: ;°[vy{#?)] = uplrd) for some p e {j+1,...L-1}; ie. the packet
which »° would have chosen at t; is instead selected at some later epoch

tp < t, by 2. Then pick any »7*' such that

- - LT e ™ e, e
A TP P AW, e e N,
. g’ ,:._i‘.' - .o, B A
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PRI CHUERS IR O P
# plxpled* ) = pdIx e ),
A Sty BERPEIN L)) AR TN A

{thus s3*' is not uniquely specified here). Some thought shows that these are
all admissible choices if #J is sdmissible. Clearly the packets in Q, are not
atfected by this interchange, so T'* (s3*") = I'* (sJ); similarly, g,(s3*1) = g, (sJ)
for kst-1, k#j,p. Only the costs of packets u,(r‘) and upir’) are affected, and

by the lemma (with m+1 = p-j} we have
gityy[ustr?*")] + gitay [uplr?* "N}
s gltuylufed)} + gltpyude )]}, (A.19)
Thus ji(e3*Y) s j (s9).

case C: ;" ([vyir?)) eQ (r?); /je the packet that would have been

selected at t; by »° is not chosen by sJ in the first L decisions. In this case

pick any #3*1 which satifies
p3 Vg Ixglx3%N) = 4 e 4009,
AR MOZAL) IR IR ¢ ST L)) P Y 7 (A.20)

Now if ¢° is the (optimal) sequence for v (»’) generated by ¢°, let ¢ be the
sequence for » (r?*") obtained by substituting uy(sJ) for °[v,(rJ)] in ¢°; then
assuming 2 packets preceed »°[v(r’)] in ¢° [or usr?) in ¢'], the lemma

gives (with m+1 = L-1+8)
gity,ylus(r?* )} + glt +ary[usie)]]}

s gltyyluyle)]} + glt +8r,y[uiri* "], (A.21)
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Since g,(ri*') = g,(v?) for ksL-1, kej, and the costs g(t, + [0 " n|r, yn) for all

other packets neQ,, ney " [v (s J)), are unaffected by the interchange, we have

L=1 . - L4 - R *
k“-:OQu("“) + T s3*Y) = k-zo gulrd*Y) + Tlo st v, iv?*)

Y

L=
ks

<

(A.22)

™M

gk(' J) + r [¢ .'tL'. L(")]

o

(where the first inequality follows from the definition of T'°), or in other

words j (r3*) € j led).

We get #* from s'~' in essentially the same way, in each case, except
that for ksL,L+1,... we must of course set ,u‘.‘ = 4, which clearly has no

effect on j..

Proof of Lemma: The lemma is a statement about only packets i and j;

to prove it we define a new queue list ¥ €Y. consisting of packets i and j,

and m other packets whose characteristics are the same as those of j. For

concreteness, let no = max{ijl +1 and Q' 8 {i,j,no....ng*tm=-1}; then »'(i) = (i),
and o'(n) = »(j) for n = j, ny, ... Ng*rmM-1,

Now consider the sequence defined by

(A.23)

a(j) < alng < ... < alng'm=1) < ali).

The first two packets in the sequence (j and ng+m-1) are indistinguishable, and
interchanging them ciearly cannot affect the total cost [(s.t,v"); similarly we

can bubble packet j to the next-to-iast position for the same total cost. Now

we can interchange packets i and j without increasing the total cost: simply

note that i precedes j in the optimal sequence for the corresponding

two-packet problem. Iterating the same argument, we can bubble packet i to

the first position without increasing the total cost. Finally, packets

-------
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No ... Ng*m-1 are now back in their original positions, so their combined cost
is the same, hence the combined cost of packets i and j cannot have

increased.
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