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On Modeling the Performance and Reliability of

. Multi-Mode Computer Systems®

V. G. Kulkarni®, V. F. Nicolat and K. S. Trivedi}

Abstract

We present an effective technique for the combined performance and reliability
i analysis of multi-mode computer s):stems. A reward rate (or a performance level) is
associated with each mode of operation. The switching between different modes is
characterized by a continuous time Markov chain. Different types of service-
interruption interactions (as a result of mode switching) are considered. We consider
the execution time of a given job on such a system and derive the distribution of its
completion time. A useful dual relationship, between the completion time of a given
f job and the accumulated reward up to a given time, is noted. We demonstrate the use

of our technique by means of a simple example.
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We consider a model for the combined evaluation of performance and reliability of :
& multi-mode computer system. Performance (e.g.. throughput, response time,
instruction execution rate) changes from mode to mode and a mode change occurs in
response to an event such u a failure or a repair. The stochastic process representing
the modes (structure-states) and mode changes can be thought of as a reward process
by associating a reward (performance index) with each mode [4,10]. We can then study
the the distribution of the accumulated reward until time £ by time domain
methods[ 10] or by transform techniques{4,14).

The authors who have taken such a system-oriented view do not consider the
effect of a fault occurring during the execution of a program. A task(job or program)-
oriented view of such a sytsem recognizes the fact that it is possible for a system
failure to occur before the completion of a task [7] and that even if the task is com-
pleted, its completion time is likely to be different from its execution time in a given
mode [3,5,12). The job in service is interrupted with each mode change and the type of
service -interruption interaction depends upon the mode just entered. For example,
the occurrence of a fault during the execution of a job preempts the job and a later
system recovery may allow the job to resume from the point of interruption (the
preemptive-resume (prs) discipline) or the job may have to be repeated from the =
beginning. In the latter case, the repeated job may have the identical work require- Fias
ment as the original preempted job (the preemptive-repeat-identical (pri) discipline)
or a different work requirement sampled from the same distribution (the preemptive-
repest-different (prd) discipline).

The purpose of this paper is to develop a model that unifies and extends the NN
efforts of these two groups of researchers. In particular, we show that if all interrup-
tions are of the preemptive-resume type then the completion time of a given task and ::.iI o

the accurmnulated reward until a given time are dual measures, so that the distribution L
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: j
of one of them allows us tc? compiite llhg distribution of the other. In fact, our model is
even more, general - in that bothiacyélic (closed or non-repairable) and cyclic (open or
repairable) systems are modeled.

" Our model provides an exact andlysis of the completion time distribution of a pro-

gram (jdb) executing in a multismode system. It is also possible to incorporate the

effect of queueing in our model. If the time spent in each structure-state is large com-

pared with the interarrival and processing times of jobs, then we can use steady- state
peﬁomnﬁce measures as reward rates for each structure-state. Such approximate
decomposition methods have been considered by several authors [4,7,10,15]). If the
assumption of a wide sepax.'ation between the structure-state holding times and job pro-

cessing times does not hold, then a more complex analysis is required [1,5,12].

We develop the basic modeliin the next section. In sections 3, 4 and 5 , we con-
sider the individual cases where all: structure-states are of the same type, that is,
preemptive-resume, preemptive-repeat-identical, or preemptive-repeat-different,

respectively.

2. The Basic Model

Consider a single server (e.g., a computer) serving a single job (e.g., a program).
The job is characterized by its work requirement, B. For example, the work require-

ment of a computer program can be measured in terms of the number of instructions
to be executed. We assume that B is a random variable with cumulative distribution
function G(z) = P(B <z) and EST IG7(s)=E(e*?). To avoid trivialities we assume
G(0+) = 0.

The rate at which the server performs work is assumed to change with time

]
according to the following model: At any time the server is in one (and only one) of the

n +1 states(modes) numbered 0,1,2,...1n. 'In state i the server performs work at rate

7,20, 1<i<n, work units per unititime (e.g., the instruction execution rate). The state
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0 is an absorbing "failure" state, i.e., once the server is in state 0, it stays there forever
and the work rate in this state is zero ( 7¢=0). We allow absorbing non-failure states
among the states 1,...,n with reward rates greater than zero so that if the server enters
such a state, the job will eventually complete. Let Z/t) be the state of the server at
time ¢. {Z(t).f = 0] is called the structure-state process. We shall assume that the
structure-state process is a stochastic process with piecewise constant paths with fin-
ite number of jumps in finite intervals of time. Furthermore, the structure-state pro-

cess is assumed to be independent of the work requirement B of the job.

The states i = 1,2,..,n are classified as (i) prs: preemptive-resume, (ii) pri:
preemptive-repeat-idéntical or (iii) prd: preemptive-repeat-different.

The following quantities have been analyzed before in the literature for some spe-
cial §Z(t ).t = 0} processes:

1. The job completion time (T(z)): defined to be the total time the server takes to com-
plete a job that requires z units of work. T denotes the unconditional completion time
of a job that requires a randormn amount of work, say B units. Gaver{5] studied the dis-
tribution of the r.v. T for a system subject to one type of failure and repair, in which
the operating state is Markovian and the failure state is semi-Markovian. Nicola[12]
extended Gaver's model to allow for mixed types of failures and repairs. Castillo and
Siewiorek [3] condsidered a system with two types of failures in which the preemptive-
repeat type failure could occur duri.ng the repair-time of the preemptive-resume type
failure.

Il. The probability of dynamic failure (n): defined to be the probability that the sys-
tem fails before the job is completed, i.e. the server enters state 0 before completing

B units of work[7].

IIl. The cumulative reward upto time t (Y(t)): defined to be the total amount of work

done by the system up to time £. Y is the total accumulated work during the system'’s

N T T A N A TN T N T BTN VA N T T T

)




4

lifetime; it is the limit of Y(t) as £ + =. The r.v. Y(t) was first studied by Puri [14] for
Markovian Z(t) processes. Meyer[10] and Donatiello and Iyer[4] studied the distribu-
tion of Y(t) for an acyclic Markovian Z(t) process. Beaudry [2] studied the r.v. Y for a
Markovian Z(t) process, while Osaki and Nishio [13) studied the r.v. Y for a semi-
Markovian Z(t) process.

To present a unifying view of the quantities defined above, we introduce the cumu-
lative measure, ¥(t), defined as follows: Suppose that at time ¢ = 0 the server starts
processing a job with infinite work requirement. W(¢) is the amount of useful work
completed by the server until time ¢ (thus, excluding the work done prior to the last
visit to a pri or a prd state). The following properties of the cumulative measure, ¥(t),

are immediately obvious:
(iy w()=o0,
(i) Z(t)=1i=>dW(t)/dt =,

(iii) If there is a transition in the structure-state process at time t and Z(t+) = 1,

then W(t+) = 0ifi is a pri or a prd state and W(t+) = W(t-) if i is a prs state.

Typical sample paths of the structure-state process and the cumulative measure,
W(t), are shown in figure 1, for the following case: Set of states = {0,1,2,3, state 1 is
prs with r, = 1, states 2 and 3 are pri or prd with ro =2 and rg = 0, state 0 is the
absorbing failure state.

The following theorem shows how the quantities T, 7, Y(t) and Y can be related to

each other via the cumulative measure , ¥(¢ ).

Theorem 1.
(i) T = minft =0:¥(t)= Bj.
(ii) The dynamic failure probability, n = P(T = «),
(iii) If all states are prs, then
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P(Y(t)<z)=1-P(T(z) < t)
and

P(Y<z)=1-P(T(z) < =).

Proof: (i) Let T be the job completion time. 1t is clear that

7 >t} & §W(u) < B, for all O<us<t],
since W(u) represents the useful work done upto time u. As ¥(t) has piecewise con-
tinuous paths with only downward jumps, T is given by (i).

(ii) It is clear that

§ Dynamic Failure ] <> § system fails before job completion }
‘ e {W(t)< B forall t >0} > {T=e).
Hencen = P(T = o),

(iii) Let 7(z) = minf{t > 0: W(t) = z3. If all states are prs, then

{Y(t) >z} > (H(t) > 2} o {T(z) < ¢3.
Hence
P(Y(t) >z) = P(T(z) < t). QE.D.
It is apparent from the above theorem that
T = minft = 0:W(t) = B} (2.1)

is the unifyihg random variable. This paper is devoted to the study of this random vari-
able. Define the following distribution functions:

F(tz)=P(T<t|B =z 2(0)=1), z=0, 1<i<n,
F(t.z)=P(T<t|B =z), z>0,
F(t) = P(T <t|2(0) = 1), 1<is<n,
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B
F(t)=P(T<t)

and the corresponding LSTs (Laplace Stieltjes Transforms),
F(sz)=E(*T|B=z,Z(0)=1), z=20,1<i<n, (2.2)
F(sx)=E(e~T|B=z), z=>0, (2.3)
F(s)=E(™*T|2(0)=1i), 1<i<n, (2.49)
F(s) = E(e™T). (2.5)

From the independen'ce of {Z(t ).t = 0} and B it follows that
Fs.x) = 3 Fls2)P(2(0) =4). =20, (2.6)
Fi(s) = ] F(s 2)dG(), 15is<n, @

()

Fe) = & Re)PE0) = ). (2.8)

From equations (2.8) - (2.8) it is clear that the conditional LSTs F{"(s,z) are of central
importance to the analysis of 7. In order to obtain explicit formulae for F*(s,z) it is
necessary to make some further assumptions about the structure-state process. In
the remaining paper we make the assumption that {Z(¢ ).t = 0} is a time homogeneous
continuous time Markov chain (CTMC). The results derived here can be extended in a
straight forward manner to the case when the structure-state process is assumed to be
semi- Markov. Let gy 1<1i #j <=, be infinitesimal transition rate from state i to j

and gyo be the absorbing failure rate from state i. Let @ =[gy], 1<1i,j <n,bethen

by n generator matrix where ¢; = 2 gy = —gy- Note that row sums of @ are < 0. We
-~

mention one property of the CTMC for future reference. Define
H = minft >0:2(t) # Z(0)} (2.9)

as the holding (or sojourn) time in the initial state. Then we have

( ~) denotes LST, i.e., the Laplace transform of a probability density function.

~ e
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7 i
P(H<z,2(H+)=7]|2(0) =1) = %-(1—9""). G # 7). (2.10)
In the next section we treat the case where all states i = 1,2,..n are preemptive-
resume (prs) and in sections 4 and 5 we consider the case where all states are
preemptive-repeat (pri and prd, respectively). The mixed cases where some states are
prs and some are pri or prd have been studied in [8].
3. The Preemptiveresume Cuse s
In this section we assume that the states 1,2,...n are all preemptive-resume :
states. Note that state 0 does not have to be classified since it is a failure state. :-’.:‘;
Theorem 2 below gives a method of computing the conditional LST's defined by equa-
tion (2.2). First, some notation: .
Fi%swu)= [ e F(s,z)dz , 1sis<n, (3.1)
(]
E(sw) = [FT*(s.u), FE*(sau) (s )], (32) o
QS
R = ding[r,ra... ], (3.3) Ry
r=[rire...mta)". (3.4) DN
where the superscript 7 denotes transpose. :j
Theorem 2. F{(s,u),for 1<i<n,isgivenby .'.:';3':2
~0, = -r‘ qu e (] - el
F%(swu) = ey + ,21 ey fs.u)1si<n (3.5) B
in oyl
N
Proof: Conditioning on the sojo-~n time H in the initial state we get 2
e /", if hez/7( l:-__fjt
E(e*T|H=h,B=2,2(0)=i) = 3 ALy
e""z JLl","’(s,z—r‘h), if h<z/7 Y
=1 gs d \':\7-
1™ o
(*) denotes the Laplace transform of a function s
=
e
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Unconditioning yields

F(szx) = j E(e*T|H =h,B =2,2(0) =i)ge ™ dh
0

s/7
=g et/ ﬁ 9y f A Fj(s,z~rh)dh
o

Multiplying both sides by e ** and integrating we get equation (3.5). QE.D.

Equation (3.5) can be put in a matrix form as follows:

[s/ +uR - Q] E*(su) =1,
where 1 is the identity matrix. As it is well known that [s/ + uR — @] is invertible, we
get .

E’(su)=[sl +ur - Q"' . (3.5a)
A direct inversion with respect to s yields

d F'(tou) =e@ wRit g

After integration and some manipulations, we get

F'tu) = ‘IL—[I —e(@-uR)]g (3.6)
We now describe how we can use the above theorem to compute F{"(s,z). Using

Cramer's rule we can write
F%(su) = A(s,u)/ C(su)

where C(s,u) = det[s/ + uR — @] and A(s,u) are appropriate n by n subdeterminants
of the augmented matrix [s/ + uR - @; r]. It is obvious that both 4(s,u) and C(s,u)
are polynomials in s and u. Hence one can use partial fractions to invert F{ (s, u) with
respect tou. Let d = |{i:ry > 0}|, i.e. d is the number of states in which work rate is
positive. Then C(s,u) is a d-degree polynomial in u for a fixed value of s. Let

~u(s),....~ug(s) be the roots of C(s,u). In the special case when these roots are dis-

.e -.':a.l-.\-..; g AT e l:-'-:q'.:-‘ ;-': od 0T o ] ¥ ¥ ¥ f_..' -.‘ T O Tl ..v.- :‘. o=y :

p— ?
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tinct, we can write

Frtsw) = 3 ()

3 1<i<n , 3.7
J=1 u+uj(s) ( )

where

Ay(s) = “_.La_".v‘;z(') -Z,L((E::—)(u +u;(s)), 1<j<d (3.8)

Inverting with respect to u, we get
F(s.z) = ’f:l Ay(s) S il 1<i<n (3.9)
Hence from equation (2.4)

F}"(S)=’g:4a(5) G (us(s)). 1<sisn, (3.10)

(recall that G™(s) = ] e **dG(z)), and
()

) = 5 (3 mayo)] (o). (3.1

where m; = P(Z(0)=1),1<si<n.

It is interesting to note that the LST of T for a given s is simply a linear combina-

tion of the LST of B evaluated at u,(s),...,ug(s).

Now, assumning that state 0 is reachable from every other state, the probability of

dynamic failure can be computed easily from Theorem 1 as
r)=P(T=°°)=1—li_x.1&F"(s). (3.12)

The following corollary indicates how the LST of the cumulative reward Y(¢), for a

given t, can be obtained from the Fi (s ,u) functions.

Corollary 1. For agivent = 0, let Y(f) be the curnulative reward upto time . Let

Y, (z.t) = P(Y(t)<s =z | z(0) = 1),
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¥ (u.t) = E(eY®) | Z(0) = 1)
and

Yows) = [ o™ Hut)at .
Then

Ko(us)= L1 -uReu) . 1<isn
Proof: Part (iii) of Theorem 1 implies that

P(Y(t) <z|2(0) = i) = P(T(z) > t | Z(0) = i).

Now,
Y4 (u,s) =Ze"‘E(e )| Z(0)=1)dt
& ':io et ]o e~ d, P(Y(t) < z | Z(0)=1i)dt
” Zoe“‘Le"‘d,P(Y(t) < z|2(0) = i)dt
=;Z'oe“"d,[‘_zoe"‘[1—P(T(z) <t]2(0) = i)]dt]

= = ] e d, Fi(s.z)/s =[1-u F'(su))/s.

=0
Using equation (3.5a), we can write in a matrix form

Y*(us)=[sI +uR -Q] e
with

X (us) = [Y7*(us) Yoo (uis)... Yoo (u.s)]T.
A direct inversion with respect to s yields

X(ut)=ell-wRig

Q.E.D.

10

(3.13)

(3.13a)

(3.14)
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We end this section with a simple example.
Erample 8.1. The switching server

Consider a system that operates in two modes each with a different work rate, say
r; and rg for modes "1" and "“2", respectively. The system switches between the two
modes according to a Poisson process at different rates, say A and 4 from modes "1"
and "2, respectively. A total system failure may occur at any mode of operation at dif-
ferent rates, say Ao and g for modes "1" and “2", respectively. The CTMC representing
the switching server is shown in figure 2. In the case where a total system failure may
not occur, i.e. Ag = g = 0 and if 7z = 0 then the switching server model reduces to the
completion time model of job execution in a system subject to breakdowns and repairs

considered by Gaver [5].

In this example we consider the case in which both states 1 and 2 are of the
preemptive-resume type. We note that if we set 4 = 0 in this example we obtain the
reward model of a two processor system considered by Meyer [10]. In our example the

@ matrix is

_=A A
Q= b —H

where X' = A + Agand i’ = u + yo. Then from Equation (3.5a)

F;"(s.u) _{s-l-r,u-l-)\' ) ]-’{:1]
g (sw) | —u strmup] [ref

Solving for F1*(s,u) and Fg *(s.u) we get

r,rgd +r(s+u) + oA
(s+N + ryu)(s+u'+rau)-Nu

Fi'(swu) =

ryrae + To(SHN) 4T, 4
(s+N+ryu)(s+u'+rpu)-Au’

Fi'(sw) =

Hence, using eq. (3.9) we get

Fi(s,z) = Ay(s)ezp(—u,(s)z) + Ap(s)ezp(-ue(s)z),
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;F;;(s.zr': An(s)ezp(—u,(s)z) + An(s)ezp (~—ua(s)z)

when%

ruy(s) = [ry(s 4+ Hral(s 4N+ s+ PO+ ARG 7/ (27 )
tug(s) = [ry(e+pHrre(s +X)—V/{r (s +2) ~ro(s +X)EHaNGT 7L )/ (27 1))
Ayle) =[ryle+p) + roh = ryrguy(s))/ [(uels) - ui(s))rira]

C Auels) ={ry(s+0) + Toh = 7 yrqua(s))/ [(ui(s) - ue(s))rire]
Agi(®) = [ro(e +X) + 7y — 7 yrguy(s))/ [(ugls) —ui(s)rire]
Ase(s) = (ra(8 +N) + 7y = ryrqus(s))/ [(wi(s) - ua(s))rire)

Then g
P (5‘).-': [mAsi(s ) +mede ()]G (uy(s ) +[m A re(S )+ 2 Ane(s )1 G (uas ) ..

And 1), the probability of dynamic failure, is given by 1 — F~(0).
From corollery 1, we‘have

Yro(ua) = H1-u Fi'(s.u)]
_ (N (s 4p) + ru(s +r) = M
T e[(s+N+ru)(s +trau)-Au)

< Bio(u) s B1(u) Bia(u)
s s+s,(u)  s+sg(u)

where

sy(u) = %—[(X‘ +ru 4+ ru) + VN u - -ru ) + 4N)]

spfu) = g-[(x + U+ u +Tu) - V(N u—p =T u ) + 4Au))

Ry roudo - M
Biolu) = = o)
B (‘u) = KN e (u)) (-5 (u)) + reu(ho=si(u)) =\
ok Y AOETD)

o KN =g (ud) (i =sg(1)) + Tou(Mo=sa(u)) = A
Busfu) = = Py
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: Inverting with respect to s, yields

Y7 (u.t) = Byo(u) + Byy(u)e ™™ 4+ Bo(u)e "™

LY bt T '

&
z In a similar manner we can compute Yz (u,t). We note that the above LSTs can be
| inverted in this case to obtain the distribution function of Y(¢) as an infinite sum of
} Bessel functions owing to the occurrences of radicals in the expresions of s,(u) and
:9 sg(u). However, in the case that u=0 (as considered by Meyer), the radicals disappear
- and the inversion is relatively easy (as derived in [4] for arbitrary number of proces-
_Z sors).
p 4. The Preemptiverepeat-identical Case.
'_:3 In this section we assume that all states are preemptive repeat-identical. The
] =
b main result is given in the following:
2 Theorem 3. The conditional LSTs F{'(s.z), 1 i < n as defined in equation (2.2) satisfy
)
ol the following simultaneous equations:
4 Fo(s,z) = e @tes/no 94 __(1—g~Cte=/Ty o s,zx),1<i<n
T(s.7) ,g(sﬂn) )y (s.x) (4.1)
X It
i
::;! Proaof: Conditioning on the holding time H in the initial state we have
£ X
2
p N M haz/7
- E(e *T|{H=h,B=x,Z(0)=1) = q
.'3 "‘"2 A F(s.z) it h<z/7y
o I=1 ai
X ik
Unconditioning yields equation (4.1). Q.E.D. =
'. Solving equations (4.1) we get F{"(s,z), for 1<t <n. Then equations (2.7) and ,a~.
, fl _.":':"t
N (2.8) can be used to compute F~(s). Finally, n = 1 ~ F(0). :":'.
) h YL
‘ Example 4.1. Consider the switching server of example 3.1, except now we assume that P_
3 :::::'::
B i
2 R
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* states 1 and 2 are preemptive-repeat-identical.

" Equations (4.1) become:

="V

S . e

‘:; (s+\)Fr(s.z) = (s +A’)c’("x)"" + A(1-¢ | frikie g (s,z)

e

; (s +u)Fi(s.2) = (s +pw)e W™ 4 1 OO F (s ).

: Solving the above equationi we get

3 Fi(s.z) = (s+u)[s+N)a + A(1-a)d])/A

5t Fe(s.z)=(s+\)[s+u)d + u(1-d)a]/A

ey

A !

s where a = exp(—~(s+\)z/T)), b = exp(~(s+w)z/re) and
%o
- A= (s+X)(s+u) = Nu(1-a)(1-d) . F(s), for i = 1,2 and F(s) can be obtained from
..., equations (2.7) and (2.8).

-

...’-'.3

ot
?A,
5l 5. The Preemptive-repeat-different Case

.,; Here we consider the case, where all structure-states of the process are
';-y preemptive-repeat-different (pra).

-.'_-1 v

The following theorem holds

';::;T Theorem 4. The LSTs F(s), for 1<1 <n, as defined in equation (2.4) satisfy the fol-
o2y

o lowing simultaneous equations

'j F(s) = G ((s+q)/re) + ’ﬁ (;%3{1—0"(@ +q¢)/1))Fy(s), 1si<n (5.1)
&) =]
\-;. Tt
‘-3‘ Note that when r; =+ 0, G~({s+g¢)/7¢) » 0, since G (0+) = 0 and hence I',im.G"(s) -+ 0.

o T
,-_,‘é _ Proof: Conditioning on the work requirement B of the job to be executed and on the -
'«Ej holding time H in the initial state we get ,.
i 0_‘,, '..',’.

A Vi 7’:‘70‘,‘!.'..‘70:.'-’3 (TR ,.~:’..;..\;...\ )
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, ith=z/7
""'2 %LF,"'(S). ith<z/7

=] i
P

E(e~T|B=2,H=h,Z(0)=i)=

Note that if a structure state transition occurs before the job is completed then a dif-
ferent job with independent and identical distribution is restarted.

Now, unconditioning on B (the job's work requirement) yields
r‘“ -
E(eT|H=h,2(0)=t) = [ « ™" dG(z)+ [ ¢ 3 I rr(s)aG(z)
s=0 P %2 g
Unconditioning on H (the holding time in the initial state), yields equation (5.1).
QE.D.

Solving equations (5.1) we get F{"(s), for 1<i <n. Equation (2.8) can be used to get
F*(s). The dynamic failure probability (n) follows immediately

n = P(T=x)=1-F(0).
Note that the preemptive-repeat-different case with a constant (or deterministic)

work requiremezt of a job (B=z) corresponds to the preemptive-repeat-identical case.

Ezample 5.1. Agein we consider the switching server of example 3.1 with the states 1
and 2 being preemptive- repeat-different. From equations (5.1) we have

Fi(s) = G((s4X)/72) + il 1=G (s 4X)/ r0)IFE 6)
Fi(s) = () m) + asf1=G (s 4 /7917 ()
1t follows that
Gz XY T+ (7 EH(1=-G (s +4X)/ 7 )G (s +4)/ 7o)

(-G GEDA-C (s XY/ r))(1-G (s +4)/ 7e))]
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G (s +1 ) r)H(FED (-G (s )/ 72)) T (s +X)/ 1)
N~(AAA-E (s 0 T ) (1-G (s +4)/ To))]

s+u
F~(s) can be obtained from equation (2.8).

Fg(s)=

8. Oonclusions and Extensions

We have developed a unified model for the combined evaluation of performance
and reliability of multi-mode computer systems. This allows us to compute both
system-oriented measures (such as the accumulated reward) and task-oriented meas-
ures (such as the completion time and the dynamic failure probability) from a single
model. We model preemptive-resume and preemptive-repeat interactions between
task execution and mode change (failure/repair) events. It is clearly of interest to
pllow mixed preemptive-resume and preemptive-repeat interactions in the same
model. This and other extensions have been studied and reported recently [8]. The
techniques developed in this paper can be exetended to the case where the structure-

state process is a semni-Markov process.
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Figure 2

Switching Server
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A direct inversion with respect to s yields

_z"‘(u,.t) = g(o"‘R)‘ e .




TITU + Te(StA)+T i
(s+N+ru)(s+u'+rau)=Ne’

Fi'(sw) =

Hence, using eq. (3.9) we get

Fi(s.z) = Au(s)ezp(~u(s)z) + Ang(s)ezp(—ue(s)z).

AP T AT




B < RGN, 0)) 5 rpuhgms,(u) = ha
L &(u)s,(u)-sp\u

N —pa(ud) ('—sg(ts)) + rou(ho—sp(u)) = u

sp(u)se(u)—s,(u)]

Big(u) =




Solving equations (4.1) we get F(s,z), for 1<1i <n. Then equations (2.7) and
(2.8) can be used to compute F~(s). Finally, n = 1 = F~(0).

Ezample 4.1. Consider the switching server of example 3.1, except now we assume that
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holding time H in the initial state we get




