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ABSTRACT 

An Extended Stochastic Petri Net (ESPN) model, useful for modeling 
systems which exhibit concurrent, asynchronous, or nondeterministic 
behavior is developed. Applications demonstrating the flexibility of the 
model for a variety of system modeling applications are presented. Ana- 
lytic techniques for the representation of a class of ESPNs as Markov or 
semi-Markov processes are discussed, as is the simulation of more general 
models. Finally, DEEP (the Duke ESPN Evaluation Package) is previewed. 

1. Introduction 

A Petri Net is an abstract, formal graph model useful for representing sysirms which 

exhibit concurrent, asynchronous, or nondeterministic behavior. The analysis of the 

Petri net model provides information about the system it represents, provided the model 

is a valid representation of the system under study, and the solution of the model is 

correct. Increasing the flexibility of the modeling tool increases the validity of the model, 

but makes the model correspondingly more difficult to solve. The goal of this paper is 

twofold. First, an Extended Stochastic Petri Net (ESPN) model is developed, and the flexi- 

bility of such a model is demonstrated through a variety of system modeling applications. 

Second, analytic and simulation techniques for the solution of an ESPN are derived and 

demonstrated in DEEP (the Duke ESPN Evaluation Package). 

Supported in part by the NASA Langley Research Grant NAG-1-70, by the National Science 
Foundation grant UCSB3-0200, by the Army Research Office grant DAAG29-84-K-0045, and 
by the Air Force Office of Scientific Research. 
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Recall the composition of a Petri Net(PN) bipartite graph [PeteBl] : a set of places, P 

(drawn as circles), a set of transitions, T (drawn as bars), and a set of directed arcs, A, 

which connect transitions to places or places to transitions. Places may contain tokens 

(drawn as dots). The state of a PN, called the PN marking, is defined by the number of 

tokens contained in each place. 

place is an output from a transition if an arc exists from the transition to the place. A 

transition is enabled when each of its input places contains at least one token. Enabled 

transitions can fire, by removing one token from each input place and placing one token 

in each output place. Thus the firing of a transition causes a change of state (produces a 

different marking) for the PN. 

A Stochastic Petri Net (SPN) [Moll82] is obtained by associating with each transition 

a so called firing time. Once a transition is enabled, an exponentially distributed amount 

of time elapses. If the transition is still enabled, it will then fire. A Generalized Stochastic 

Petri Net (GSPN) [Mars84] allows immediate (zero firing time) as well as timed transitions 

(exponentially distributed firing times); immediate transitions are drawn as thin bars, 

timed transitions as thick bars. 

An Extended Stochastic Petri Net allows firing times to belong to an arbitrary distri- 

bution. In addition to the general firing time distributions, some other extensions to Petri 

Nets are considered here. An inhibitor arc [PeteBl] from a place to a transition has a 

small circle rather than an arrowhead at the transition. The firing rule is changed as fol- 

lows: A transition is enabled when tokens are present in all of its (normal) input places, 

and no tokens are present in the inhibiting input places. When the transition fires, the 

tokens are removed from the normal input places and deposited in the output places as 

usual, but the number of tokens in the inhibiting input place remains zero. A probabilistic 

arc from a transition to a set of output places deposits a token in one (and only one) of 

the places in the set. The choice of which place receives the token is determined by the 

probability labels on each branch of the arc. In Figure 1, when the transition is enabled, 

it fires by removing the toktn from the input place, and depositing it in either place PI 

(with probability a) or in place P2 (with probability 1-a). 

A counter arc from a place to a transition is labeled with an integer value, k. This 

changes the firing rule such that a transition is enabled when tokens are present in all of 

its (normal) input places and at least A: tokens are present in the counter input place. 

When the transition fires, one token is removed from each normal input place, while k 

tokens are removed from the counter input place. Associated with a particular counter 

arc can be a count er-alternate arc, which enables an alternate transition when the count 

is between 1 and (fc-1), inclusive. The alternate transition can fire each time a token is 

deposited in the  counting input place  until there  are  Jfc   tokens present.   The  count 

'.•.- 
A place is an input to a transition if an arc exists from the place to the transition; a '"• \^- 
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remains unchanged by the firing of the alternate transition, as it removes nc token from 

the counter input place. A counter-alternate arc is labeled with a k. 

Neither the counter arc nor the counter-alternate arc are true extensions to Petri 

Nets, as both can be realized by a cascade of normal places and transitions [Duga84]. 

Rather they are useful shorthand notations for such a cascade. 

2. ESPN Applications 

2.1. Modeling Imperfect Coverage in Fault-Tolerant Computer Systems 

The ESPN model was initially developed as an aid in modeling imperfect coverage in 

fault-tolerant computer systems [Geis84] for the HARP (the Hybrid Automated Reliability 

Predictor) project [GeisB3] at Duke University. The HARP reliability model is character- 

ized by a behavioral decomposition [Triv83] of the overall model into separate fault- 

handling and fault-occurrence submodels. This technique is based on the observation 

that the fault-occurrence behavior of a system is composed of relatively infrequent 

events while fault-handling behavior is composed of relatively frequent events. Faults 

may occur over periods of days or even weeks, but detection and recovery may take only 

•econds. The fault-handling model is solved for coverage factors which are then used as 

inputs to the overall model. The overall model, which accepts these inputs as well as 

parameters defining system structure and fault-occurrence behavior, is then solved for 

the system reliability as a function of time. 

Fault handling begins when a fault occurs (entry /) and completes when the fault is 

handled (exits R or C) or when the system fails (exit F). Exit R represents the correct 

recognition and handling of a transient fault (called transient restoration ), while exit C 

represents the reconfiguration of the system to tolerate a permanent or "leaky" transient 

fault (traditionally called coverage ). Here / represents the initial marking of the net. 

Many issues must be considered in the design of a general fault-handling model. 

Among these are the different classes of faults, the available recovery mechanisms, and 

the various possibilities for reconfiguration. The inherent concurrency between the fault 

activity and the system fault treatment mechanism can be captured most effectively in 

terms of an ESPN. As an example, consider the HARP fault-handling model shown in Fig- 

ure 2. The initial marking of this net contains a token in the place labeled 'System OK.' 

When a fault occurs in the system, a token is deposited in the place labeled 'Fault.' The 

tokens in these two places enable transition Tl. The transition fires immediately, thus 

removing a token from the input places. A token is then deposited in place 'Active Inter- 

mittent' or 'Transient', with probability 1-t and t respectively, depending upon whether 

the fault is intermittent or transient, (t is a user-input value defining the percentage of 

faults which are transient). Simultaneously, a token is deposited in place 'Lurking', which 

^s^:^$5&sZ^^ 
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represents the presence of a lurking (undetected) fault. If the fault is intermittent, the 

token which was deposited in place 'Active Intermittent' will circulate between places 

'Active Intermittent' and 'Benign Intermittent,' signifying the oscillation of the fault 

between the active and benign states. If the fault is transient, eventually the token which 

was deposited in place 'Transient' will be passed to place 'Transient Gone,' signifying the 

disappearance of the fault. Note that if a token exists in both places 'Transient Gone' and 

'Lurking', that transition T5 can fire. This represents a transient fault which disappears 

before its presence is felt. 

While the fault is lurking and is still active (i.e a token in place 'Lurking' and no 

token in either places 'Benign Intermittent' or 'Transient Gone'), two things may happen: 

an error may be produced or the fault may be detected directly. These two events are 

represented by transitions T6 and T7, respectively. If the self-test procedure is run while 

the fault is active, it will be detected with probability d (d is a user-input value denning 

the detectability of stuck-at faults). Once an error is produced, it is detected with proba- 

bility q, or else it propagates through the system, causing a system failure. 

Once the fault is detected, a token is deposited in place 'Counter' which records the 

number of times transient recovery is attempted. As long as there are fewer than k 

tokens in place 'Counter,' transient recovery can begin. When recovery is completed, the 

fault may still exist, and the detection/recovery cycle may repeat. If recovery has com- 

pleted, and the transient fault is gone, T5 is enabled, and the system is once again func- 

tioning correctly. If the recovery has completed, and the intermittent fault has gone 

benign, transitions T6 and T7 wait for the fault to become active again before they are 

enabled. 

If the fault is detected too often (more than k times), the fault is then assumed to be 

permanent in nature, and no automatic recovery process is begun. This is modeled by 

the accumulation of k tokens in place C. Once k tokens are present transition Til is dis- 

abled (transient recovery procedures are inhibited) and transition T12 is enabled (per- 

manent recovery procedures begin). Once the fault is determined to be permanent, a 

diagnosis procedure is invoked to isolate the faulty unit; this is represented by a token in 

place 'Isolate'. The diagnosis procedure is successful with probability i. If the faulted unit 

is isolated, the system attempts automatic reconfiguration, which is represented by place 

'Reconfigure.' Reconfiguration is successful with probability r and the token is passed to 

place 'OK Degraded', which represents the system again operating correctly, although 

performance may be somewhat degraded. 

The user of this model must define the distributions for each timed transition, the 

probability of fault detection (d), error detection (g), isolation (i) and reconfiguration 

(r). The user must also provide the number of attempts at transient recovery (Jfc), and 

the percentage of faults which are transient (t). 

•    V 
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Let /'JIC(T) denote the probability of depositing a token in place "OK degraded" in an - 

amount of time ST from the time of entry into the model. Likewise, .PJR(T) represents re- 

depositing a token in the place "System OK," and PJF(T) represents depositing a token in 

the "System Failure" place. Let P/.(») (where • t\R,C, F\ denote the probability of 

depositing a token in the appropriate exit place, '•'.•'.'.' 

P/.(«) = lim PJ.(T) SV. 

and let /V(T) be the distribution of times-to-exit, -^-^ 

The solution of the ESPN model should provide the imperfect distribution P/»(T) or the 

exit probability Pp(<*>) and the time-to-exit distribution F»(r). This set of metrics is then 

aggregated into the overall model by using either a first-order approximation 

[TrivB4a,Triv84c] or by using exact aggregation [Geis84,TrivB4a]. 

2.2. Modeling of Gracefully Degrading Systems uV/' 

In the dynamic redundancy techniques used in many ultra-reliable systems [Siew82], 

redundant units are used for error detection, correction, and/or replacement of failed 

units. They perform no useful work until they replace a failed on-line unit. Graceful 

degradation techniques, on the other hand, use the redundant hardware as part of the —— 

system's normal resources at all times, to increase performance as well as system reliabil- 

ity. The analysis of such a system must deal simultaneously with aspects of performance. ':•'.• 

fault-tolerance, imperfect coverage,  and repair.   The  solution of such a model would .«*•• 

include measures of the "abilities" of the system: reliability, availability and a combine-                            £*£• 

tion of reliability and performance. 

The ESPN representation of a gracefully degrading system with one component type \-/ 

is shown in Figure 3.   The number of tokens in place pp i. represents the number of 

identical units that are operational.   The initial number of tokens in place p t, N, equals 

the total number of units.  Assuming as exponential failure law (for simplicity of explana- 

tion), they fail at rate tX ( X is the failure rate of a single unit).  Transition r, represents />'.> 

units failing. •.:•-[!' 

When a unit fails, a single-entry, three-exit fault-handling model (such as the HARP 

fault-handling model) is entered.  The three exits from the fault-handling model, R (tran- 

sient  restoration),   C  (permanent  fault  coverage),  and  F  (single   point  failure),   are •. V 

represented by transitions tg, ta and t4 respectively.   The firing time distributions for •!-;•! 

these transitions are PIR(T). PIC(T) and /V(T), respectively, from the solution of the 

fault-handling model.  If we are using a single-fault model (such as the HARP model), we                            .-"•>"-*. 

may assume (conservatively) that the occurrence of a second fault during the handling of                            .'/. 

the first fault causes immediate system failure.   This is represented by the counter arc                            •".•• 
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N 
•fi"[Q ] = !C  * ' a ' ^"00 [ * tokens in place p j af time t ] 

The    expected   accumulated   computation   capacity   (termed   accumulated   reward   in 

[Triv84b]) at time t, can be obtained by an additional integration: 

t 

E[Yt] = f E[C,] dx 
o 

Thus, an ESPN model of a gracefully degrading system, besides being very easy to 

understand, is general enough to provide measures of reliability, availability, and perfor- 

mance. 

-*. •*r. H 
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enabling transition t6, in which Jfcj = 2.   If one is using a double fault model, in which the 

third fault causes failure, Jbj would then be 3. 

Transition t2 returns the token to place p,, and the system continues operating with 

no loss of performance. Transition t3 represents the reconfiguration of the system to 

bypass a faulted unit, so a token is deposited in place p9. The failed unit can then 

undergo some manual repair, and be returned to the active pool of resources. Transition 

te represents the repair of a failed unit while the system is still operational. The repair 

distribution while the system is up, Fgtj(r), is the firing time distribution for transition t e. 

If ks units are down at any given time, the system fails (transition t ?). 

Once the system has failed, the entire system is taken off-line and repaired. Thus, 

any tokens that exist in places P\,pz orp3 must be moved to place p4 upon system failure. 

This "flushing out" of places px,pz andpa is accomplished by immediate transitions t9.t10 

and f||. The repair distribution while the system is down, /)JD(T), is the firing time distri- 

bution for transition 18. When the system is repaired, all N tokens are deposited in place 

P[, thus there are N arcs from transition tB to place p v 

The solution of this model yields measures of the "abilities" of the system. 

Reliability, the probability that the system has not failed by time t, is given by 

R(t) = 1 - Prob[ token reached place p4 by time t ] 

Availability, the probability that the system is up at time t, is given by 

A(t) = 1 - Prob[ token in place p4 at time t] 

The steady-state availability, the long-term probability that the system is up. is given by 

A„ = 1 - Prob [ token in place p4in steady -state ] 

The expected computation capacity at time t [TrivB4b], assuming that each unit has a 

computation capacity of o, is given by 

I 

-•.• 
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3. ESPN Analysis 

3.1. The Reachability Tree 

The first step in the analysis of any Petri Net is the generation of the reachability 

tree. A marking M' is said to be immediately reachable from M if the firing of some tran- 

sition T, which is enabled in II, yields AT. W is reachable from M if it is immediately 

reachable from M or is reachable from any marking which is immediately reachable from 

M or is M itself. 

The nodes of the reachability tree represent reachable markings of the net; the root 

node represents the initial marking. A directed edge points from marking M to marking 

IT if II' is immediately reachable from II. The edge is labeled with the transition T whose 

firing produces II' from II, and the probability p, that M' is reached from II when T fires. 

As an example of the generation of a reachability tree, consider the submodel of the 

HARP fault-handling model shown in Figure 4. The reachability tree for this net is shown 

in Figure 5. Each marking in the reachability tree is labeled with the names of the places 

which contain a token in that marking. 

A reduction of the reachability tree is possible, by partitioning markings into two 

classes, and absorbing markings of one class into the other. A marking is called a vanish- 

vng marking [Mars84] if it enables an immediate transition. A vanishing marking is so 

named since no time is spent in this marking. If a marking enables only timed transitions 

then it is called a tangible marking. A vanishing marking can be absorbed into the tangi- 

ble marking that precedes it, by adjusting the next-state and probability labels on the 

edges. Figure 8 represents the reduced reachability tree of Figure 5. It is on this reduced 

tree that the analysis is performed. 

3.2. Markovian Reachability Tree 

DEFINITION ( Markovian Reachability Tree ) 
A reduced reachability tree can be called Markovian if it exhibits the Markov 
property, that is, if all firing time distributions for timed transitions are 
exponential. 

THEOREM 1: A Markovian reachability tree can be classified as a Markov chain, in which 
each state in the Markov chain represents a unique marking in the reachability tree. 

Proof: See Molloy [MollBl], Natkin [NatkBO], and Marsan. Balbo, and Conte [MarsB4] who 

have developed this theory as (Generalized) Stochastic Petri Nets. Figure 7 presents an 

illustration of the relationship between an ESPN whose reachability tree is Markovian, and 

the resulting Markov chain. In the ESPN, each timed transition is labeled with its firing 

rate.  In the Markov chain, the initial state is state TL with probability t, and AL with pro- 

H 
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bability (1-t). 

3.3.  Semi-Markovian Reachability Tree 

DEFINITION ( Semi-Markovian ReachabUity Tree ) 

A reduced reachability tree can be called semi-Markovian if it exhibits the Mar- 
kov property at   .'- times when marking changes occur. 

Three conditions concerning the transitions in the ESPN must be satisfied for the 

reachability tree to be semi-Markovian. Before we study these conditions, we need to 

classify each of the timed transitions into one of three groups: exclusive, competitive, or 

concurrent. 

Exclusive Transition — A timed transition 7} is said to be exclusive if, for every mark- 

ing Mk in the reduced reachability tree that enables ?i, Mk enables no other transition. 

That is, whenever transition 7< is enabled, no other transition is enabled. 

Competitive Transition — Let 7} be a non-exclusive timed transition. Then there 

exists a marking Mk in which 7i and some other transition Tj are enabled. If for every 

such Tj in every such marking Mk. the firing of Tj disables the transition 7}, then 7} is 

called a competitive transition. 

Concurrent Transition -- Again let Tt be a non-exclusive timed transition. Then there 

exists a marking Mk in which 7i and some other transition Tj are enabled. If for any such 

Tj in any such marking Mk, the firing of 7} does not disable transition Tit then 7i is called 

a concurrent transition. 

THEOREM 2: A reachability tree is called semi-Markovian if it satisfies three conditions: 

Condition 1: The firing time of an exclusive transition may belong to any arbi- 
trary probability distribution. 

Condition 2: The firing time of a competitive transition may belong to any arbi- 
trary proability distribution. However, the firing time of a transition that is re- 
enabled subsequent to being disabled is assumed to be of the type preemptive- 
repeat-different. That is, the time between the enabling and firing of the re- 
enabled transition is independent of and has the identical distribution as the 
preempted firing time. 

Condition 3: The firing time of all concurrent transitions must be exponentially 
distributed. 

Proof: It is necessary to verify that a semi-Markovian reachability *. ee satisfies the Mar- 

kov property at the times at which state changes occur. Recall that a state represents a 

marking for the ESPN, and that state changes occur when transitions fire. In examining 

the markings for the reachability tree it is useful to distinguish three cases. 

,* sV-1 

Case 1:  The marking enables an exclusive transition. 

-'3 

•••• &£< •  
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The time spent in the marking is the time needed for the exclusive transition to 

fire and is independent of the past history of the process. 

Case 2: The marking enables non-exclusive transitions. 

Assuming (without loss of generality) that the marking enables both a competi- 

tive and a concurrent transition, the future of the process depends on which 

fires first. If the competitive transition fires first, then the concurrent transi- 

tion may still be enabled upon entry into the next state. In this next state, the 

remaining time for the concurrent transition depends on the time needed for 

the competitive transition to fire in the previous state. The memoryless pro- 

perty of the exponential distribution assures us that this remaining time distri- 

bution will be identical to the original firing time distribution. 

If the concurrent transition fires first, then by definition, the competitive transi- 

tion is disabled. If the process subsequently enters another marking in which 

the competitive transition is re-enabled, the preemptive-repeat-different 

assumption of condition 2 assures us that the firing time of a re-enabled transi- 

tion is identical to the original firing time distribution, and is independent of the 

preemption. 

Case 3: The marking enables no transition. 

If a marking enables no transition, then this marking is an absorbing state of 

the process, and no further state changes may occur. 

THEOREM 3: A semi-Markovian reachability tree can be classified as a semi-Markov pro- 
cess [Fell64], in which each state in the semi-Markov process represents a unique mark- 
ing in the reachability tree. 

Proof: In the ESPN, the firing time distribution TJC(T) is the probability that transition K 

fires in an amount of time *T after it is enabled. Let tg(r) be the corresponding density 

function. In any subsequent diagrams, a transition will be labeled with its corresponding 

distribution. 

In the semi-Markov process, the defective probability distribution /JJ(T) (with 

Eij{^)-0; Fq(ae)^l), is the probability that a sojourn time in state i has duration ^T and 

ends by a jump to state j. The next-state transition probability a* = /y(°°)- 

The  unconditional  sojourn  distribution  in  state i  is  the  sum of the  conditional l-'v"* 

sojourn time distributions: 

S(T) = £ Mr). 
J 

We begin our analysis at some marking Aft (called state i in the semi-Markov pro- 

cess).  Suppose the firing of transition Tj from marking W4 yields marking JL, where Tj is 

V V V >*•*-• V'• V "-*-"•••"» V'-   -  J-V   •-•'•.'••-*•".•-•••.•-• ••  '• .'   .'•  "•   "•."••'•."•.'•'            .-.-   • 
--•-'--•-•-•-•-"•-•-"-•-•-' ^--   •»-•,<-•«-•«-•..-•••••.•-•-••-.••---•-•«••-•---•-•-»-•-•-.-«--•   -    ' - <-- 
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^(T)=P«VJT n (i - u*)) tav(*)dx. 

4. Conversion of an Acyclic Reachability Tree to a Semi-Markov Process 

If the firing time of a concurrent transition is not exponentially distributed, then the 

corresponding ESPN cannot be converted to a semi-Markov process using Theorem 3. But 

it may be possible to convert the reduced reachability tree to a semi-Markov process by a 

judicious lumping of markings to form one state. The conditional sojourn time distribu- 

tions can then be determined by performing a path analysis of the markings in the 

lumped state. 

DEFINITION ( Acyclic reachability tree ) 

A reduced reachability tree can be termed acyclic if each marking can be visited 
only once; that is. if there are no cycles. Formally, for every marking W that is 
reachable from a marking M, M must not be reachable from M'. 

DEFINITION ( Concurrency set ) 

For each concurrent transition T whose firing time is generally distributed, (i.e. 

•'%••'-• 

an exclusive transition. Then the conditional sojourn time distribution for this state is 

simply the transition firing time distribution. 

fij(r) = 7}(T) 

Next suppose that, from marking Mi, the firing of transition T* yields Mj with proba- 

bility pj, and the firing of transition Tk yields Mk with probability pk, and that no other 

markings are immediately reachable from Mx (Note that if 7} * Tk then the two transi- 

tions are competing and pj = pk = 1. If Tj-Tk then after the firing of the transition, a pro- 

babilistic branching occurs, where pj + pk = 1.) If 7} * 7^ then. 

Fair) = f (l-7i(x)) tjix) dx      and,      Fä(T) = / (l-7}(x)) tk(x) dx. 
0 0 

If Tj = 7k = T then. 

fii (T) = Pi • T(r)        and.        F0 (T) = pk • T{j). 

The conditional sojourn time calculation generalizes to markings that enable more 

than two transitions.  Let A be the set of enabled transition in marking Aft.  Let a4j i A be 

the transition whose firing causes a jump from state i to state j with probability p.. 

Then the conditional sojourn time distribution is: 

»:> 

not exponential), define a concurrency set, Cj, such that a marking M is an ele- •".;»•.>> 
ment of the concurrency set Cj if any of the following conditions are satisfied: 1- '•>*." \ 

1) M enables transition T, 
2) a marking Mj (tCf) is reachable from some Mk {tCf) through M, I 
3) M is the "closest" marking such that each Mj (eCy) is reachable from M. 
("Closest" in the sense that there is no M' such that M' is reachable from M 
and each Mj (tCr) is reachable from M'.) 
4) M is an element of some concurrency set whose intersection with CT is 
nonempty. 

•-' •.' •.• -' -. -.• •.• -.' -.• •.••.••.-"-.""• •"•»•'- '•- •'- •'• •'• •". •'- -' •. -. > v. ••.'.-.'••. '.•."-• '••   • -   .• .•'.- "-• V -•       • .• * -'.- .• .-"» ••   • "•• .- '••..• v 
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Once the concurrency sets have been determined, the conversion of the reachability 

tree to a semi-Markov process may proceed. A marking M that is an element of no con- 

currency set becomes a state in the semi-Markov process, and the calculation of the 

sojourn times proceeds as in the semi-Markovian reachability tree. 

For each concurrency set, a state in the semi-Markov process is formed by combin- 

ing all markings in the set into a single state. The determination of the conditional 

sojourn time distributions in this state consists of calculating, for each possible path 

through the lumped state, the time-to-exit for each output arc. This path analysis is best 

explained through a series of simple examples. 

Consider the ESPN in Figure 8a, where TA and Tc have general distributions, while TB 

is exponential. The corresponding reachability tree is shown in Figure Bb. In this exam- 

ple, T4 is an exclusive transition, while Tg and Tc are concurrent transitions. The con- 

currency set associated with transition Tc contains markings BC and DC, the state con- 

taining these markings will be labeled C. The semi-Markov process representation of ihis 

tree is shown in Figure Be. The conditional sojourn time distributions for the merged 

state C are given by: 

T 

FcjBgir) = f (1 - TB(x)) tc(x) dx 
0 

T 

FCMT) ••• f TB(x) tc(x) dx 
0 

Clearly, as the concurrency increases, the complexity of the path analysis also 

increases. The level of complexity is increased further when we consider a sequence of 

concurrp it transitions, some of which are not enabled immediately upon entering the 

merged state. As an example, consider the ESPN in Figure 9a, where concurrent transi- 

tion Tg is generally distributed. The corresponding reachability tree and semi—markov 

process are in Figures 9b and 9c, respectively. Since markings BC, BE, BF and BG each 

enable transition Tg, they will be merged into a single state, called B. There are four pos- 

sible exits for this state, each corresponding to a distinct path. 

Path 1: BC-*DC.  The probability that state DC is entered at time x is simply the 
probability that Tc has not fired by time x and that Tg fires at time x. 

FBMT) = / (1 " TC(X)) tg(x) dX 
0 

Path 2: BC-*BE-*DE. The probability that state DE is entered at time x is the 
probability that, at some time u, Tc fires, thus enabling transition Tg. Between 
u and x Tg does not fire, and at time x Tg fires. See Figure 10a for a timing 
diagram of this sequence. 

T     X 

//U*(T) • // tg(x) (1  - 7>(X-U)) tC(u) du dX 
0    0 
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Path 3: BC-*BE-»BF-*DF. In the timing diagram for this path, shown in Figure 
10b. Tc fires at some time w, then 7^ fires at some time u^w. where Tg was 
enabled at time w. Between u and x Tg does not fire, where 7> was enabled at 
time u, an at time x, TB fires. 

T   s   • 
fBMrir) = / / ftB(x) (1 - 7X*-u)) t*<U-uO *c(tu) dw du dx 

ooo 

Path 4: BC-*BE-*BF-*BG-*DG. Figure 10c shows the timing diagram for this path, 
in which Tc fires at time v, and enables Tg which fires at time w, thus enabling 
Tg. At some time u, Tg fires. Then at time x^u>w>v, Tg fires, where Tg was 
enabled at time 0. Thus, 

Till 

^äJW(T) = f f f f h(x) tF(u-w) tg(w^v) tc(v) dv dw du dx 
oooo 

This methodology can be validated [DugaB4] by looking at the case in which the firing 

times are all exponential. This system then reduces to a Coxian stage-type distribution. 

If cycles are permitted within a lumped state, then an infinite number of possible 

paths arise, and an automatic conversion of an arbitrary ESPN to a semi-Markov process 

becomes intractable. Even in acyclic reachability trees it seems infeasible to perform 

automatic path analysis and solve for the sojourn times on any but the most simple sys- 

tems. In such cases we can easily resort to simulation of the ESPN to obtain the desired 

solution. 

5. DEEP (The Duke ESPN Evaluation Package) 

The design of the Duke ESPN Evaluation Package, DEEP, can be divided into three 

levels: input, analysis, and solution. (See Figure 11.) DIVE (The DEEP Interactive Video 

Editor) allows for the graphic input of an ESPN, by allowing the user to position the 

places, transitions and arcs on the screen. It interprets the net as it is input and checks 

to see if it is a valid ESPN. Once the net is input, its description is fed to another module, 

Reach. We are also in the process of developing a textual input language for DEEP. 

Reach generates the reachability tree for the net, and absorbs the vanishing mark- 

ings into the tangible ones. Once the reduced reachability tree is generated, it is charac- 

terized as Markovian, semi-Markovian, or neither.  If the reduced reachability tree is Mar- pf 

kovian, it is solved as a continuous-time Markov chain; if it is semi-Markovian, it is solved :~, 

as a semi-Markov process.  If it is neither, it is simulated. 

ESPN-sim uses one of two types of simulation, transient or ergodic, depending on 

the measures desired by the user. If the user is interested in exit-probabilities and time- ~. 

to-exit distributions (as in modeling imperfect coverage), or time-dependent occupation im- 

probabilities for places (as in reliability modeling) a transient simulation is performed.  If J? 

the user is interested in long-term or average measures, such as average token count or 

£V>^:N>>:N>:>^ 
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transition utilization, an ergodic simulation is performed. 

DEEP is undergoing development and testing, and only portions of it have been fully 

implemented thus far. 

6. An Example 

As an example of the hierarchical modeling of a gracefully degrading system, we will 

solve an "instantaneous coverage" [Triv84c] version of the "ability" model discussed in 

Section 2.2. In this model, assuming that the time spent in the fault-handling model is 

negligible as compared with fault-occurrence and repair times, transitions tz,t3, and 14 

are combined into one immediate transition tj (See Figure 12). The probabilistic output 

arc labels are functions of r (transient restoration) and c (coverage) from the solution of 

the fault-handling model. Transition ts can be eliminated, since we are ignoring the pos- 

sibility of near-coincident faults. (Methods of incorporating near-coincident faults can 

be found in [Triv84c] and [Geis84].) 

Before we can solve the "ability" model, the fault-handling model (Figure 2) must be 

solved for the parameters listed in Table 1. The imperfect probability distributions, Pa 

and PJC are shown in Figure 13. For the solution of the "ability" model, we need only 

c = flc(-) and r = Jfr(-). 

Considering the system failure state as an absorbing state (i.e. FXD=0), the model was 

simulated for the parameters listed in Table 2. The occupation probabilities for places p, 

and p4 are shown in Figure 14. A plot of the reliability of the system is shown in Figure 

15a, while Figure 15b shows a plot of the expected computation capacity of the system, 

assuming that ot=l. 

To estimate the availability of the system, the model was again simulated for the 

values listed in Table 2. Additionally, off-line repair was allowed, where FJ&(T) was 

assumed Normally distributed (truncated at zero; mean = 10 hours, standard deviation = 

2 hours). A plot of the estimated availability of the system is shown in Figure 16. 

7. Conclusions 

The ESPN model greatly enhances the modeling power of stochastic Petri Nets, but 

also increases the complexity of the solution of the model. We have developed both ana- 

lytic and simulative solution techniques for ESPNs; the choice of solution technique 

(which can be made automatic) depends on the characteristics of the net. DEEP (The 

Duke ESPN Evaluation Package) will provide automated analysis of an arbitrary ESPN, and 

will be ready for initial testing in late 1984. 



» , '•*.-'•'•' •"• '." '."•' ^'.*•"*• '.*• •'-'."'."-'.*-'.'. .'."'."* i',"-"—- m. -•• -i '   *- ' -."   ' -'-.' -• ._»•.• »•: ^r'.'u-.11^. .*. ."  •f.f.•:•_ •.' ^. -r.'J*. H r -*. -*, 

- 14- 

B. Acknowledgements 

We would like to thank Professor Vidyadhar Kulkarni for many helpful discussions 

and John White for his work on DIVE. A special thanks is extended to Dr. Mark Smother- 

man for his collaboration on HARP. 

9. References 

[Beau7B] M. Danielle Beaudry, "Performance-Related Measures for Computing Systems." 
IEEE Transactions on Computers, June 1978. 

[Duga84] Joanne Bechta Dug an. Extended Stochastic Petri Nets: Applications and Analysis, 
Ph.D. Dissertation. Department of Electrical Engineering, Duke University, 1984. 

[Fell84] W. Feller, "On Semi-Markov Processes," Proceedings National Academy of Sciences, • 
Volume 51, pages 653-659, 1964. 

[Geis83] Robert Geist, Kishor Trivedi, Joanne Bechta Dugan, and Mark Smotherman, 
"Design of the Hybrid Automated Reliability Predictor," Proceedings IEEE/AIAA 5th 
Digital Avionics Systems Conference, November, 1983. I* 

[Geis84]   Robert Geist, Kishor Trivedi, Joanne Bechta Dugan, and Mark Smotherman, 
"Modeling Imperfect Coverage in Fault-Tolerant Systems." FTCS, June 1984. V 

[Mars84]  M. Ajmone Marsan, Gianfranco Balbo, and Gianni Conte, "A Class of Generalized 
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems," — 
ACM Transactions on Computer Systems, May, 1984. • 

[Moll82]   Michael K. Molloy,  "Performance Analysis using Stochastic Petri Nets," IEEE !;. 
Transactions on Computers, September, 1982. 

[NatkBO]    S.  Natkin,  "Reseaux  de  Petri Stochastiques," These  de  Docteur Ingegneur, — 
CNAM-Paris. June 1980. • 

[PeteBl] James L Peterson, Petr* Net Theory and the Modeling of Systems. Prentice-Hall, 
1981. 

[Siew82] Daniel P. Siewiorek and Robert S. Swarz, The Theory and Practice of Reliable Sys- 
tem Design. Digital Press, 1982. " 

[Triv83] Kishor Trivedi and Robert Geist, "Decomposition in Reliability Analysis of Fault- 
Tolerant Systems," IEEE Transactions on Reliability, December, 1983. 

[TrivB4a] Kishor Trivedi. "Reliability Evaluation for Fault-Tolerant Systems," in G. Iazeolla, 
P.J. Courtois, and A. Hordijk, (eds.), Mathematical Computer Performance and Reli- 
abüity North Holland, 1984. 

[Triv84b] Kishor Trivedi, "Modeling and Analysis of Fault-Tolerant Systems," International 
Conference on Modeling Techniques and Tools for Performance Analysis, Paris, May 
1984. 

[TrivB4c] Kishor Trivedi. Rjbert Geist, Mark Smotherman, and Joanne Bechta Dugan, 
"Hybrid Modeling of Fault-Tolerant Computer Systems," to appear, Computers and 
Electrical Engineering, Special issue on "Reliability and Verification of Computing 
Systems." 

•>v/-y^-^-- ••• --. •• -•.••• -•• •-. --.J-..-_.-.v.-•••.••••-•.•••./.-.••_••••.• ••••.•\v />.->."•••.Vs.--.•••.• w - -_.•.-^.-•.-*.. 

:%•>! 



'   • "•' V\*V\» V V .""* "-^ -^ "* ." "T •" '.* "-"< -••' •-' **-*"T-" "*-* ••" *-m V 

2 

21 

inhibitor  arc 

probabilistic arc 

counter arc and 
. J       counter-alternate arc 

Figure 1.     Petrl Net Extensions 

Figure 2.  ESPN  Fault-Handling  Model 

Figure 3.   "Ability"  Model  of   a Gracefully  Degrading System 
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Figure 4.  HARP Submodel 
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Figure 5. Reachability Tree 
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Figure 7.  ESPN and Cot responding Markov Chain 
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Time Distribution 

ACTIVE Transition nnif(0, 1 see.) 
BENIGN Transition unif(0, 0.5 sec.) 
Transient Lifetime exp(IOO/sec) 
DETECT Transition unif(0, 0.4 sec.) 
ERROR Transition weibull(10/sec, 2.5) 
ERROR-DETECT Transition weibull(50/sec, 0.25) 
ISOLATE Transition truncated normally.0, 1.0) 
RECOVERY Transition 2-stage erlang(IO0/scc.) 
RECONFIGURE Transition truncated normal(t.0, 0.5) 

Other Parameters 

Probability of fault detection by self test: 0.8 
Probability of error detection: 0.45 
Probability of isolating detected fault: 0.5 
Number of recovery attempts: 5 
Probability of successful reconfiguration: 0.75 
Fraction of faults which are transient: 0.5 
Desired confidence level: 90% 

Table 1. Input Parameters for Fault-Handling Model 
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Figure 13.  Results of Simulation of Fault-Handling Model 
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H - 3 units 

Kj " 2 units 

X • 10  failures/hour 

FRU " 2-stage Erlang (0.5/houc) 

Table 2. "Ability" Model Parameters 
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Figure 14.    "Ability" Model Solution 
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Figure 15.  a) Reliability b) Expected Computation Capacity 
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