


MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963 ~ A

Bolliens and SEASH

PRICE S

DESTRIBUTION STATEMENT A
Approved for public release
Obstribution Unlimited

MIRE

84 12 10 092

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2	. GOVT ACCESSION NO.		
JSR-84-203D	AI48396		
4. TITLE (and Subtitle)		5. TYPE OF REPORT &	PERIOD COVERED
Solitons and SeaSat			
		6. PERFORMING ORG.	REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)	
K. M. Case		F19628-84-C-0001	
9. PERFORMING ORGANIZATION NAME AND ADDRE		10. PROGRAM ELEMEN	T PROJECT TASK
The MITRE Corporation 1820 Dolley Madison Blvd.		AREA & WORK UN	T NUMBERS
McLean, VA 22102		12. REPORT DATE	13. NO. OF PAGES
11. CONTROLLING OFFICE NAME AND ADDRESS		August 1984	18
		15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)		Unclassified	
		15. DECLASSIFICATION	N/DOWNGRADING
1	1		
16. DISTRIBUTION STATEMENT (of this report)	DISTRIBUTION STATE	EMENT A	
	Approved for public Distribution Unlined in Block 20, if different for	release; nited	
	Approved for public Distribution Unlin	release; nited	
	Approved for public Distribution Unlin	release; nited	
17. DISTRIBUTION STATEMENT (of the abstract entered	Approved for public Distribution Unling in Block 20, if different for	releases nited	
17. DISTRIBUTION STATEMENT (of the abstract entered	Approved for public Distribution Unling in Block 20, if different for	releases nited	
17. DISTRIBUTION STATEMENT (of the abstract entered	Approved for public Distribution Unling in Block 20, if different for	releases nited	
17. DISTRIBUTION STATEMENT (of the abstract entered	Approved for public Distribution Unling in Block 20, if different for	releases nited	
17. DISTRIBUTION STATEMENT (of the abstract entered	Approved for public Distribution Unling in Block 20, if different for	releases nited	
17. DISTRIBUTION STATEMENT (of the abstract entered	Approved for public Distribution Unling in Black 20, if different for the black 20 if different for the black and identify by black numbers	releases nited	

DD 1 JAN 73 1473
EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Solitons and SEASAT

K. M. Case

August 1984

JSR-84-203D

Approved for public release, distribution unlimited

JASON
The MITRE Corporation
1820 Dolley Madison Boulevard
McLean, Virginia 22102

ABSTRACT

It has been suggested that Soliton formation might be relevant to SeaSat observations. It has also been said that there are no Solitons in more than one space dimension. The second statement is demonstrated to be false. The Kadomtsev-Petviashvile equation relevant to Internal Waves is shown not to have Soliton solutions. This lends support to the view that Solitons and SeaSat have little in common.

Access	ion For		DAIC \
NTIS	GRALI	A	1
DTIC T	'AB	ū	-
Unanno			
Justif	ication_		-
Ava1	lbution/		-
	Avail and		
Dist	Specia	l.	
A-1			

1.0 INTRODUCTION

The persistence of long V-shaped wakes observed by SeaSat has led to suggestions that the phenomena may be related to Internal Wave Solitons. Most observations were made under conditions for which one would have little or no reason to expect Solitons to be relevant. However, there is one case (Rev. 407) for which one might think otherwise. This was a big ship in shallow water with a strong thermodine.

A priori there is little likelihood that the equations describing internal waves generated by ships will admit Soliton solutions. (By a Soliton we mean a non-singular disturbance localized in space at any time which retains its integrity on interactions with similar disturbances.) While there are many equations in one space dimension which have Soliton solutions, little is known about spaces of higher dimensions. (Indeed it is sometimes said that there are no true solitons in case the number of space dimensions is greater than one. Below we will see this is not true.)

Since the paradigm of an equation describing Solitons is the Korteineg-deVries (KdV) equation it is natural to take as our starting point an equation closely related to this which does

describe fully three dimensional internal waves. (The class of solutions described is not exactly those we would expect to be ship produced. However, it is hoped that the results obtained will give support to our conviction that Internal Wave Solitons are not relevant for the SeaSat photographs.)

The equation we have in mind is

$$u_t + \partial_x^{-1} u_{yy} + \partial_x (3u^2 + u_{xx}) = 0$$
 (1)

where

$$\theta_{x}^{-1}\phi = \frac{1}{2}\left\{\int_{-\infty}^{x} - \int_{x}^{\infty}\right\} \phi(x') dx'$$

Closely related to Eq. (1) is the equation

$$u_r - \partial_x^{-1} u_{vv} + \partial_x (3u^2 + u_{xx}) = 0$$
 (2)

The Eqs. (1) and (2) are known as the Kadomtsev
Petviashvili (1) equations. A derivation of Eq. (1) in the case of internal waves is given in reference (2). An important point is that for internal waves the sign of the term in Eq. (1) involving uyy is unambiguously required to be plus. (There are physical situations

where Eq. (2) can hold. An example is when capillarity is important.)

Our main result is the following: The extension of the N-Soliton solutions of K-deV to solutions of Eqs. (1) and (2) generally break up asymptotically into K-deV Solitons moving in arbitrary directions in the x-y plane. (These are then plane waves.) They are physically unacceptable as being non-localized. However, for special values of the parameters these solutions are localized in x,y. However, for Eq. (1) these localized solutions are singular. Hence these solutions again are not physical. (This is not so for Eq. (2). True localized, non-singular, non-interacting "lumps" result. We include these primarily to show that multi-dimensional Solitons do indeed exist.)

In Section 2 the formalism used by Zakharov and Shabat (3) to integrate the K-P equations is summarized. The generalization of the N-Soliton KdeV solution is given in Section 3. In Section 4 the "lumps" which result when special relations exist between the N-Soliton parameters is presented.

2.0 FORMALISM

Zakharov and Shabat (3) have introduced a method to integrate Eqs. (1) and (2). We summarize this here.

Let F(x,z;y,t) satisfy the two equations

$$\frac{1}{4}\frac{\partial F}{\partial t} + \frac{\partial^3 F}{\partial x^3} + \frac{\partial^3 F}{\partial z^3} = 0 , \qquad (3)$$

and

$$\frac{1}{\sqrt{3}} \frac{\partial F}{\partial y} + \frac{\partial^2 F}{\partial x^2} - \frac{\partial^2 F}{\partial z^2} = 0.$$
 (4)

Determine K(x,z;y,t) from the Volterra equation

$$F(x,z) + K(x,z) + \int_{x}^{\infty} K(x,s) F(s,z) ds = 0$$
 (5)

(Here we have suppressed the parametric arguments y and t.)

Then they show that

$$u = 2 \frac{d}{dx} K(x,x)$$
 (6)

satisfies Eq. (1).

To find solutions of Eq. (2) we merely note that from any solution of Eq. (1) we can obtain a solution of Eq. (2) by the replacement y + iy.

3.0 GENERALIZATION OF THE N-SOLITON K-dev SOLUTIONS

We follow reference (3).

A. Suppose

$$F = e^{-\kappa x - \eta z} M(t, y)$$
 (7)

From Eq. (3) we find

$$M = C(y) e^{4(\kappa^3 + \eta^3) t},$$
 (8)

Then Eq. (4) gives

$$C = M_0 e^{-\sqrt{3} (\kappa^2 - \eta^2) y},$$
 (9)

i.e

$$M = M_0 e \left[\sqrt{3} (\eta^2 - \kappa^2)y + 4(\kappa^3 + \eta^3)t \right]$$
 (10)

Our Gelfand-Levitan Equation (5) becomes

$$K(x,z) + Me^{-\kappa x} - \eta z + \int_{x}^{\infty} K(x,s) Me^{-\kappa s} e^{-\eta z} - 0$$
, (11)

Clearly $K(x,z) = K(x) e^{-\eta z}$. Inserting in Eq. (11) yields

$$K(x) + Me^{-\kappa x} + \frac{Me^{-(\kappa + \eta)x}}{\kappa + \eta} \quad K = 0$$
 (12)

Solving gives

$$K(x,z) = \frac{-M e^{-(\kappa x + \eta z)}}{1 + \frac{M}{\kappa + \eta} e^{-(\kappa + \eta)x}}$$
(13)

Then

$$K(x,x) = \frac{-M e^{-(\kappa + \eta)x}}{1 + \frac{M}{\kappa + \eta} e^{-(\kappa + \eta)x}}$$

$$= \frac{\partial}{\partial x} \ln \left[1 + \frac{M}{\kappa + n} e^{-(\kappa + \eta)x}\right]$$

and so

$$u = 2 \frac{\partial^2}{\partial x^2} \ln \left[1 + \frac{M}{\kappa + \eta} e^{-(\kappa + \eta)x} \right]$$
 (14)

Defining x_o by

$$(\kappa + \eta) \times_{0} = \ln \frac{M}{\kappa + \eta}$$

gives

$$x_0 = \frac{1}{\kappa + n} \ln \frac{M_0}{\kappa + n} + \sqrt{3} (\eta - \kappa)y + 4(\kappa^2 - \kappa \eta + \eta^2)t$$
 (15)

Then Eq. (14) becomes

$$u = \frac{\frac{1}{2}(\kappa + n)^{2}}{\cosh^{2} \frac{(\kappa + n)}{2}(x - x_{0})}$$
(16)

To interprete this consider $\kappa = \eta$ then

$$U = \frac{2\kappa^2}{\cosh^2 \kappa(x - x_0)}$$
 (17)

with

$$x_0 = constant + 4\kappa^2 t$$

This is just a K-deV Soliton. For $\kappa \neq \eta$ the solution (16) is then a K-deV type soliton propagating at an arbitrary angle with respect to the x-axis. This is a plane wave - it is constant on the line

$$x - \sqrt{3} (\eta^2 - \kappa^2)y = constant$$
,

and hence physically really not acceptable.

B) The above is readily extended to get the 2-dimensional extension of the N-Soliton K-deV solution. Thus we generalize Eq. (10) by choosing

$$F = \sum_{n} M_{n} (t,y)e^{-\kappa_{n}x - \eta_{n}z}$$
(18)

Since Eq. (3) and (4) are linear we have in analogy to Eq. (10)

$$M_{n} = M_{n}(0) e^{\left[\sqrt{3} (\eta_{n}^{2} - \kappa_{n}^{2})y + 4(\kappa_{n}^{3} + \eta_{n}^{3})t\right]}$$
(19)

The degenerate integral equation for K(x,z) is then satisfied by

$$K(x,z) = \sum_{n}^{\infty} K_{n}(x) e^{-\eta_{n}z}$$
 (20)

where

$$K_n(x) + M_n e^{-\kappa_n x} + M_n \sum_{m} \frac{e^{-(\kappa_n + \eta_n)x}}{\kappa_n + \eta_m} K_m(x) = 0$$
 (21)

This is readily solved using Cramer's rule. Thus

$$K_{n}(x) = \frac{A_{n}(x)}{\Delta(x)}$$
 (22)

where

$$\Delta = \det \left\{ \delta_{nm} + \frac{M_n e^{-(\kappa_n + \eta_m)x}}{\kappa_n + \eta_m} \right\}$$
 (23)

and \boldsymbol{A}_n is obtained from $\boldsymbol{\Delta}$ by replacing the n'th column of the matrix by the vector

$$(-M_1e^{-\kappa_1x}, -M_2e^{-\kappa_2x}, \ldots)$$

Suggested by the form of Eq. (14) we look at $\sum_{n=0}^{\infty} A_n(x) e^{-\eta x}$ and verify that

$$\sum_{n} A_{n}(x) e^{-\eta x} = \frac{\partial}{\partial x} \Delta(x)$$

therefore $K(x,x) = \frac{\partial}{\partial x} \ln \Delta$ and so

$$u(x) = 2 \frac{a^2}{\partial x^2} \ln \Delta \qquad (24)$$

To interpret this result we consider the limit as y, t go to infinity. Assuming no special relations between the

various pairs (κ_n, η_n) . Then we note that for large |y|, |t| there will be regions where one of the M_n (say M_j) is much larger than all others. Hence then

$$\Delta \approx 1 + \frac{M_j e^{-(\kappa_j + \eta_j)x}}{\kappa_j + \eta_j}, \qquad (25)$$

which is just the single soliton result of Eq. (14). Thus asymptotically the solution breaks up into a sum of the simple "plane soliton" solutions.

4.0 DEGENERATE CASES

It is well known that the K-deV equation has in addition to solutions like those of Eq. (24) solutions which are rational functions of the coordinates. These can be obtained by making a suitable ansatz for the form of solution. This is

$$U = \sum_{n=0}^{\infty} \frac{c_n}{\left[x - a_n(t)\right]^{\alpha}}$$
 (26)

Inserting in the K-deV shows that this will be a solution if $\alpha=2$, the c_n are constants and the a_n satisfy simple coupled ordinary differential equations. An alternative approach is to take the general solution of Eq. (24), specify relations between the parameters, κ_n , n_n , and pass to limits. This is the procedure given in reference (4) – and the one we will follow.

We have seen that a solution is obtained from Eq. (24) with Δ given by Eq. (23). Introduce λ_n , γ_n by

$$\kappa_{\rm n} = \frac{\lambda_{\rm n} + \gamma_{\rm n}}{2}, \quad \eta_{\rm n} = \frac{\lambda_{\rm n} - \gamma_{\rm n}}{2}$$
(27)

then choosing $M_n(0) = -a_n \lambda_n$ we have $\Delta = \det \Gamma$ where

$$\Gamma_{nn} = \delta_{nn} + \frac{2 M_n}{\gamma_n - \gamma_m + \lambda_n + \lambda_m} e^{-\left[\frac{\lambda_n + \gamma_n + \lambda_m - \gamma_m}{2}\right]x}$$
(28)

$$M_{n} = -a_{n} \lambda_{n} e^{\lambda_{n} []_{n}}, \qquad (29)$$

$$[]_{n} = [-\sqrt{3} \ \gamma_{n} y + (\lambda_{n}^{2} + 3\gamma_{n}^{2})t]$$
 (30)

Now look at the limit as all $\lambda_n \to 0$.

Assuming $a_n \sim 1+\zeta_n \ \lambda_n$ we have on expanding in λ_n and keeping only matrix elements of first order in the λ_n

$$r_{nn} = \lambda_n d_n$$

$$n \neq m \qquad \Gamma_{nm} = \frac{-2\lambda_n}{\gamma_n - \gamma_m} \tag{31}$$

where

$$d_n = x - \zeta_n + \sqrt{3} \gamma_n y - 3\gamma_n^2 t$$
 (32)

Then

$$\det \Gamma = (\Pi \lambda_n) \det \Gamma^*$$
 (33)

with $\Gamma'_{nn} = d_n$

$$n \neq m \quad \Gamma'_{nm} = \frac{-2}{\gamma_n - \gamma_m} . \tag{34}$$

We can then write

$$u = 2 \frac{a^2}{ax^2} \ln \det \Gamma$$
 (35)

The essential points are seen by considering the case of ${\tt N}$ = 2. Then

$$\Delta' = \det \Gamma' = d_1 d_2 + \frac{4}{(\gamma_1 - \gamma_2)^2}$$

$$= \left[x - \zeta_1 + \sqrt{3}\gamma_1 y - 3\gamma_1^2 t\right] \left[x - \zeta_2 + \sqrt{3}\gamma_2 y - 3\gamma_2^2 t\right]$$

$$+ \frac{4}{(\gamma_1 - \gamma_2)^2}$$
(37)

Clearly u is then a rational function of x, y, t. Consider various possibilities for $\boldsymbol{\zeta}_n$, $\boldsymbol{\gamma}_n$.

(i) ζ_n , γ_n real. The solution is clearly singular.

(There are points where $\Delta' = 0$.)

(ii) ζ_n , γ_n complex. For the solution to be real we must have

$$\zeta_1 = \zeta$$
, $\zeta_2 = \zeta^*$
 $\gamma_1 = \gamma$, $\gamma_2 = \gamma^*$

Then

$$\Delta^{r} = -\frac{1}{\gamma_{1}^{2}} + |x - \zeta + \sqrt{3} \gamma y - 3\gamma^{2}t|^{2}$$
 (38)

The second term can vary from 0 to ∞ and therefore Δ vanishes at least once.

These rational solutions of Eq. (1) are physically unacceptable.

On the other hand we noted that a solution of Eq. (2) is obtained from one of Eq. (1) by the replacement y + iy. In such a case

$$\Delta^{-} + [x - \zeta_{1} + i\sqrt{3}\gamma_{1}y - 3\gamma_{1}^{2}t][x - \zeta_{2} + i\sqrt{3}\gamma_{2}y - 3\gamma_{2}^{2}t]$$

$$+\frac{4}{(\gamma_1 - \gamma_2)^2}$$
 (39)

Again if the γ_r , γ_r are real the solution is singular. If these are complex we must require in order that the solution be real that $\gamma_1 \equiv \gamma$, $\gamma_2 = -\gamma^*$. In this case

$$\Delta' = \frac{1}{\gamma_{r}^{2}} + |x - \zeta + r\sqrt{3} \gamma y - 3\gamma^{2} t|^{2}.$$
 (40)

If γ_r (real part of γ) is non-zero this obviously gives a non-singular solution. It is also well-behaved at infinity. As |x| (|y|) go infinity $U \sim \frac{1}{x^2} \left(\frac{1}{y^2} \right)$.

5.0 CONCLUSIONS

Two dimensional Solitons exist. However, some equations describing internal waves which might be strongly suspected of having Soliton solutions do not.

While not definitive this lends significant support to the view that Solitons have no connection with the phenomena observed by SeaSat.

REFERENCES

- (1) B. Kadomtsev and V. Petviashvili, Sov. Phys. Dokl. 15 (1970), 539.
- (2) Case, K. N. and Rosenbluth, M. N., JSR-76-29 (June 1977).
- (3) Zakharov, V. E. and Shabat, A. B., Funct. Anal. Appl. 8 (1974) 279.
- (4) Manakov, S. V., Zakharov, V. E., Bordag, L. A. Its, A. R., and Matreev, V. B., Physics Letters, 63A, (1977), 205.

Dr. Marv Atkins
Deputy Director, Science & Tech.
Defense Nuclear Agency
Washington, D.C. 20305

National Security Agency Attn RS: Dr. N. Addison Bali Ft. George G. Meade, MD 20755

Mr. Anthony Battista [3] House Armed Services Committee 2120 Rayburn Building Washington, D.C. 20515

Mr. Steve Borchardt Dynamics Technology Suite 200 22939 Hawthorne Boulevard Torrance, CA 90505

Mr. Rod Buntzen NOSC Code 1603B San Diego, CA 92152

Dr. Curtis G. Callan, Jr. Department of Physics Princeton University Princeton, NJ 08540

Mr. Gerald Cann
Principal Assistant Secretary
of the Navy (RES&S)
The Pentagon, Room 4E736
Washington, D.C. 20350

Dr. Kenneth M. Case
The Rockefeller University
New York, New York 10021

Dr. Robert Cooper [2] Director, DARPA 1400 Wilson Boulevard Arlington, VA 22209 Dr. Roger F. Dashen Institute for Advanced Study Princeton, NJ 08540

Dr. Russ E. Davis
Scripps Institution
of Oceanography
(A-030), 301 NORPAX, UCSD
La Jolia, CA 92093

Defense Technical Information [2]
Center
Cameron Station
Alexandria, VA 22314

The Honorable Richard DeLauer Under Secretary of Defense (R&E) Office of the Secretary of Defense The Pentagon, Room 3E1006 Washington, D.C. 20301

Director [4]
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Richard Foss, A05

CAPT Craig E. Dorman
Department of the Navy, OP-095T
The Pentagon, Room 5D576
Washington, D.C. 20350

CDR Timothy Dugan NFOIO Detachment, Sultiand 4301 Sultiand Road Washington, D.C. 20390

Dr. Frank Fernandez ARETE Assoc. P.O. Box 350 Encino, CA 91316

(Continued)

Mr. Richard Gasparouic APL Johns Hopkins University Laurel, MD 20707

Dr. Larry Gershwin NIO for Strategic Programs P.O. Box 1925 Washington, D.C. 20505

Dr. S. William Gouse, W300 Vice President and General Manager The MITRE Corporation 1820 Dolley Madison Blvd. McLean, VA 22102

Dr. Edward Harper [10] SSBN, Security Director OP-021T The Pentagon, Room 4D534 Washington, D.C. 20350

Mr. R. Evan Hineman
Deputy Director for Science
& Technology
P.O. Box 1925
Washington, D.C 20505

Dr. Richard Hoglund Operations Research Inc. Room 428 1400 Spring Street Silver Spring, MD 20910

Mr. Ben Hunter [2] CIA/DDS&T P.O. Box 1925 Washington, D.C. 20505

The MITRE Corporation [25] 1820 Dolley Madison Bivd. McLean, VA 22102 ATTN: JASON Library, W002 Mr. Jack Kallsh Deputy Program Manager The Pentagon Washington, D.C. 20301

Mr. John F. Kaufmann
Dep. Dir. for Program Analysis
Office of Energy Research, ER-31
Room F326
U.S. Department of Energy
Washington, D.C. 20545

Dr. George A. Keyworth
Director
Office of Science & Tech. Policy
Old Executive Office Building
17th & Pennsylvania, N.W.
Washington, D.C. 20500

Mr. Jerry King [3] RDA P.O. Box 9695 Marina dei Rey, CA 90291

MAJ GEN Donald L. Lamberson Assistant Deputy Chief of Staff (RD&A) HQ USAF/RD Washington, D.C. 20330

Dr. Donald M. Levine, W385 [3] The MITRE Corporation 1820 Dolley Madison Blvd. McLean, VA 22102

Mr. V. Larry Lynn Deputy Director, DARPA 1400 Wilson Boulevard Arlington, VA 22209

(Continued)

Dr. Joseph Mangano [2] DARPA/DEO 9th floor, Directed Energy Office 1400 Wilson Boulevard Arlington, VA 22209

Mr. Wait McCandless 4608 Willet Drive Annandale, VA 22003

Mr. John McMahon Dep. Dir. Cen. Intelligence P.O. Box 1925 Washington, D.C. 20505

Director
National Security Agency
Fort Meade, MD 20755
ATTN: William Mehuron, DDR

Dr. Marvin Moss
Technical Director
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Walter H. Munk 9530 La Joila Shores Drive La Joila, CA 92037

Dr. Julian Nall [2] P.O. Box 1925 Washington, D.C. 20505

Director
National Security Agency
fort Meade, MD 20755
ATTN: Mr. Edward P. Neuburg
DDR-FANX 3

Prof. William A. Nierenberg Scripps institution of Oceanography University of California, S.D. La Jolia, CA 92093 Dr. John Penhune Science Applications, Inc. MS-8 1200 Prospect Street La Jolia, CA 92038

The MITRE Corporation
Attn: Records Resources
1820 Dolley Madison Boulevard
McLean, VA 22102

Mr. Alan J. Roberts
Vice President & General Manager
Washington C³ Operations
The MiTRE Corporation
1820 Dolley Madison Boulevard
Box 208
McLean, VA 22102

Los Alamos Scientific Laboratory ATTN: C. Paul Robinson P.O. Box 1000 Los Alamos, NM 87545

Mr. Richard Ross [2] P.O. Box 1925 Washington, D.C. 20505

Mr. Richard Ruffine
OUSDRE
Offensive & Spece Systems
The Pentagon, Room 3£129
Washington, D.C. 20301

Dr. Phil Selwyn Technical Director Office of Naval Technology 800 N. Quincy Street Arlington, VA 22217

Dr. Eugene Sevin (2) Defense Nuclear Agency Washington, D.C. 20305

(Concluded)

Mr. Robert Shaffer House Arms Services Room 2343 Rayburn Office Building Washington, D.C. 20515

Mr. Omar Shemdin JPL Mail Stop 183501 4800 Oak Grove Drive Pasadena, CA 91109

Mr. Robert Shuckman P.O. Box 8618 Ann Arbor, MI 48107

Dr. Joel A. Snow [2] Senior Technical Advisor Office of Energy Research U.S. DOE, M.S. E084 Washington, D.C. 20585

Mr. Alexander J. Tachmindji Senior vice President & General Manager The MiTRE Corporation P.O. Box 208 Bedford, MA 01730

Dr. Vigdor Teplitz ACDA 320 21st Street, N.W. Room 4484 Washington, D.C. 20451

Mr. Anthony J. Tether DARPA/STO 1400 Wilson Boulevard Arlington, VA 22209

Dr. Al Trivelplece Director, Office of Energy Research, U.S. DOE M.S. 6E084 Washington, D.C. 20585 Mr. Marshal Tulin Dept. of Mechanical Eng. University of California Santa Barbara, CA 93106

Dr. John F. Vesecky
Center for Radar Astronomy
233 Durand Building
Stanford University
Stanford, CA 94305

Mr. James P. Wade, Jr.
Prin. Dep. Under Secretary of
Defense for R&E
The Pentagon, Room 3E1014
Washington, D.C. 2030?

Dr. Kenneth M. Watson 2191 Caminito Circulo Norte La Jolia, CA 92037

Mr. Robert Winokur Director, Planning & Assess. Office of Naval Research 800 N. Quincy Street Arlington, VA 22217

Mr. Leo Young
OUSDRE (R&AT)
The Pentagon, Room 3D1067
Washington, D.C. 20301

Dr. Fredrik Zachariasen (452-48)
California Institute
of Technology
1201 East California Street
Pasadena, CA 91125

END

FILMED

1-85

DTIC