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I. INTRODUCTION

Suppose that we have n individuals or components which are subject

to 'failure' and that the response variable of interest is time to

failure. Let Tj*, T2*, ..., Tn* be independent random variables

representing the times to failure of the individuals. We suppose

that right censoring may occur because of the need for early termination .

of the investigation and let T1 , T2 ,..., Tn represent the recorded

survival times. Defining censoring indicator variables

I if T.* is uncensored .

1O if T.* is censored

we have .

T T. if W. I 1 , T.* > T. if w. = 0 (1.2)

We let n nn --
"i n. nc  = (1-i)( .3) L -

ui- 1

denote the numbers of uncensored and censored observations, respectively.

We now suppose that measurements are available on k explanatory variables P.
x , x x. Setting (x ,x x) the p.d.f. and survival

Xk Setn k' * (x k

function of T* given x will be denoted by f(t;X) and S(t;Z),

respectively. If the hazard function f(t;x)/S(t;x) is assumed to be

a constant independent of t for any given x, then T* has the

exponential distribution with p.d.f.
P exp(-t/p ), t > 0( -',.-

f(t;x) X ::Z~ (1.4)f~t~x) 0 otherwise~  "'

where px denotes the expected value of T* given x.

Various models have been proposed in the literature to represent the

dependence of Vi on x. Fiegl and Zelen (1965) consider the model form

Ux A (1 *x'6) (3.5)

! 7 - "-"
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while Greenberg et.al. (1974) use the form

-x /(I + x'S) (1.6)

where 0' - (Sie2...,ak) and X is a positive constant. Both models

require that the condition x'O < I must be imposed to ensure that

lx > 0. An alternative model which does not require a constraint to

be imposed on x'B is

"x- Xexp(x'B) (1.7)

This model arises for the exponential case from the well-known family

of proportional hazard regression models (see e.g.Kay (1977))in which

an assumed underlying hazard function is adjusted by multiplicative

exponential factors to allow for the effect of the explanatory variables.

Prentice (1973) also discusses the use of censored regression models for

the exponential case.

In this paper, we consider the power transformation model given by

x - (!+ 6x'@)1/6 (.8)

We shall refer to 6 as the power parameter. It is seen that when

6 -1, the model corresponds to the usual additive regression model

for the mean given by (1.5), while if 6 -1 the reciprocal model

(1.6) is obtained after appropriate reparameterisation. When 6-0,

the model given by (1.7) is obtained. For later work, it is convenient

to write the power transformation model in the form

Vx  ( + 6x %)1/6 (1.9)

where OX'), 8'- . k and

B,0 =  -6)1, ,. - Sit j-l,...,k (1.10)

In general, the power parameter 6 as well as the coefficient vector -

will have to be estimated from the data. In section 2, results are given

for maximum likelihood estimation and it is shown how the estimates can

be obtained numerically using the statistical package GLIM. The problem

of assessment of the goodness of fit of the model is discussed briefly in

section 3 and in section 4 a numerical example is used to illustrate the -''

vrocedure.

.. .% .



2. MAHIUM LIKELIHOOD ESTIMATION

We shall assume that the stochastic model underlying the censoring

mechanism is unknown. The likelihood given the data (tiw.,x.),

where z! (xil,xi2 ,...,xk), is

2. .2. -- I
%.z -

where U..* (I + 6x'. I a and X'. -(1,x'.). If we put

L 11-f2ti ; x ) *1 -2.t ;x ....

-II

t IT x -/,x.) (2.2)

the log likelihood is

n
log L - (to.log. U v~ - W Wlogt.(.3

The likelihood equations are obtained by setting

I I 2 2 -0, j -0,1,...k

i ~P 77i~.
--i -ii : i-I-1

Since

the lao uw l ikelihood stiaesae.onda.tesouio.f h

The 2ieio equations arobandbsetg "' '....,

I3i i\ l U

i-I '. ' 0 "

(2.6)

_r% . . .,

the maximum likelihood estimates are found as the solution of the ..--

k+ 2 equations

n P.l~ 6 0"0,-....

z (W -1i ) (2.5
i j \ i Gt i3-1)'-

(W I.-Slog-(2.6
ti. t



a r

where . t( 6Z,'

Routine calculation gives the second order derivatives of the log-

likelihood as

2 1L. x.." 0 (6+) - -- . (2.7)

'.- - -

I~o&L ii
-B.3 T. Xi*0i wi-i)(0.-CO -i -b (2.8)

- . [ uiz? (wi-u )Izi(3-Gi - - O -.-c ..
6 } Li~~ ilL ~ (2.9)

for jj'- 0,1,...,k, where

*~~ I. 2  (O - logU~ (2.10)

Setting
A A

S where denotes a.., evaluated at .= , and etc, the

estimated asymptotic covariance matrix of the estimators is

The matrices in the partitioned form are given by

(2.11)

'p-...

*," ".=

f.



The calculation of the estimates and statistics used for making ........I

inferences about 6 and A* is performed straightforwardly using the

statistical package GLIM which has been developed for fitting generalized

linear models by maximum likelihood for error distributions in the

exponential family. The method is similiar to that described by Aitken

and Clayton (1980) for fitting proportional hazard regression models for

censored survival data.

In (2.3), the first term represents the kernel of a log-likelihood

treating W1 , W2 .. Wn as independent Poisson variables with E(Wi) =viJ"

and the second term is independent of 0 and 6. From (2.2) we have

6
{( h i  - 11/6 - x'. (2.12)

2. .'*2..

If 6 is known, the value k.(6) which maximises the log-likelihood,

now denoted by logL(k*(6), 6) , can be found fitting a Poisson regression

model with the user defined link function % ( i) -={(ti/)j) 1)6.

In the usual case when 6 is unknown, the maximum likelihood estimates
A A

and can be found using the following iterative procedure which

is based on a general method suggested by Pregibon (1980) for selecting

the link function in generalised linear models. ..-.

A A
Suppose that 6 denotes an initial approximation to 6. Using the .. ;I A . % 9 . o

first order Taylor series expansion about the value 6 6 gives the

approximation A

__________ A (t./Ii.)6

(t 1j) -1 A(-6 log(t i/i) (t - 1i 2.

61 (2.13)

An initial fit is made using the model g( =  to yield the

estimate and fitted values (1) from which we form

zi () ti ogi I )  - ti i  2 (2.14) :' .::....

fit~~~~ Afte-de ~ () AiL
A fit of the model gA + * z (6-6) then gives the second

A Oj iIh*1
approximation 62, Where is treated as an additional explanatory

variable. The procedure is then repeated until satisfactory convergence

is obtained.

a"2" p '?- )'- 9.'- . "-;.'9 "." :"-* . . ," % .'" -".% 9-"*'. " .-.-. '.." . ,.' X . . " . " •. '"*. . . .. . . . " " "
.: ---- .J _,'-_ . t 9 9- 9 9 b 9 , .. .9 .,?% .- , ,".". . .,. .. , . ... .".' '- ..

€ . .
'-",..."% .. . -. "-".. ."" ', ,
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If a confidence interval for 6 is required, we use the approximate

distribution result

(A), A A X2

2) l L 6 1 - 2 logL{ (6), L(x 3

giving '"

p 6M 6.> oLA()g X( [-a~{ 1-a (2.15)

where X2( -0) denotes the upper 1O01% point of the 4 distribution.
V .

Thus if 6L and 6 are the two values of 6 for which

logLfA*(6),86 - logL{A,(*), }- X2(' -a).

where 6L< C then the interval (6L'6 u) provides an approximate

100( -a)% confidence interval for 6. The calculation of this interval

will require values of logL{8,(6),6) to be determined for a grid of

values of 6.

A A

The covariance matrices for A* and 6 can also be found straightforwardly

using (2.11) since the GLIM output will provide the value of A71,
A A

the covariance matrix for f, when 6 is treated as the true fixed value

of 6. Finally, we may wish to test the hypothesis that a specified

subset of the explanatory variables have no effect on the expected time

to failure. This can be done using a standard likelihood ratio test based

on the difference between the maximised log-likelihoods under the full and

reduced models, this being the difference between the corresponding

deviances in the GLIM output.

3. RESIDUAL PLOTS

A graphical procedure based on suitably defined observed residuals provides "...

a useful preliminary assessment of adequacy of fit of the power transformation

model. If the model is correct, the random variable R - T*(1+6 . *)'5

has the standard exponential distribution. Thus if there is no censoring,

we define observed residuals by

r , , (.,, (3..,

. -

-: :..:.:.:. :2 :. ::.: ::: :y :..;.:: .. .:.: ..;:':':-:.' :::-.:: :: :'::::.:k:.::::::-.: H:::
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If the model is correct, the {ri } will approximately have the

properties expected of a random sample of n observations from the

standard exponential distribution. A plot of the ith ordered residualn ! shuI ..."

r M against the ith smallest exponential score e. n a I should
Sn-i*1

then give an approximate straight line relation with unit slope and zero

intercept.

To deal with censoring, we note that

E{R R> t (. .)- 6  +t( + 6x'I (3.2)

Replacing the censored value of R by the maximum likelihood estimate

of its expected value, we define modified residuals by

t if W.-t (3.3)
1 ~A A x6i w

A plot of r~~ against e. should again give an approproximate

straight line relation if the assumed power transformation model is

correct.

4. AN ILLUSTRATIVE EXAMPLE

To illustrate the use of the power transformation model we use the

data in table I which were taken from Prentice (1973). The data

are for groups of advanced lung cancer patients, the groups being

defined by two factors, type of chemotherapeutic agent at two levels

standard and test, and tumour cell type at four levels, squamous, small,

adeno and large. In the original study, four explanatory variables were

measured and the analysis based on model (1.7) indicated that only one

variable, general medical status on a scale 10,20,...,90 had a real

effect. We have only included this variable in our analysis. The

survival times are in days and right censored observations are shown .

with an asterisk.

The CLIM fitting procedure described in section 2 was used to fit the

model.
1l [ +6{8 (j)+xO (j))] 1/ 2 (4.1)

, . . . . . . . ,. .. , .-
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If the model is correct, the {ri) will approximately have the

properties expected of a random sample of n observations from the

standard exponential distribution. A plot of the ith ordered residual
n'

r(i) against the ith smallest exponential score e.,n  should
n-i J

then give an approximate straight line relation with unit slope and zero

intercept.

To deal with censoring, we note that

E{R1 R > t ( 6x )/ 6 ) 1 + t(I + 6 (3.2)

Replacing the censored value of R by the maximum likelihood estimate

of its expected value, we define modified residuals by
A

1~~ A A ~/ fw-
r! t.O+6 x'.8 ) ifW1 33

A A

A plot of r~)against e. should again give an approprr-xi te

straight line relation if the assumed power transformation model is

correct.

4. AN- ILLUSTRATIVE EXAMPLE

To illustrate the use of the power transformation model we use the

data in table I which were taken from Prentice (1973). The data
are for groups of advanced lung cancer patients, the groups being

defined by two factors, type of chemotherapeutic agent at two levels

standard and test, and tumour cell type at four levels, squamous, small,

adeno and large. In the original study, four explanatory variables were

measured and the analysis based on model (1.7) indicated that only one

j variable, general medical status on a scale 10,20,...,90 had a real

effect. We have only included this variable in our analysis. The

survival times are in days and right censored observations are shown

with an asterisk.

The iLI fitting procedure described in section 2 was used to fit the

model.
M~~)-C *6{0 * (j)+X0 * (.j))] ~,j12..8(4.1)

Ix

. ,-. .:..-



TABLE I

Data for lung cancer patients: t - days of survival, x general .

medical status, G, - standard squamous, G2 - standard small,

G3 standard adeno, G4 - standard large, G5 - test, squamous,

G6  test, small, G7 - test, adeno, G8 = test, large. .

G1 G2  G3 G Gs G6  G7 Ge

t x t x t x t x t x t x t x t x

72 60 30 60 8 20 177 50 999 90 25 30 24 40 52 60

411 70 384 60 92 70 162 80 112 80 103* 70 18 40 164 70 S

228 60 4 40 35 40 216 50 87* 80 21 20 83* 90 19 30

126 60 54 80 117 80 553 70 231* 50 13 30 31 80 53 60

118 70 13 60 132 80 278 60 242 50 87 60 51 60 '15 30

10 20 23* 40 12 50 12 40 991 70 2 40 90 60 43 60

82 40 97* 60 162 80 260 80 111 70 20 30 52 60 340 g0

110 80 153 60 3 30 200 80 1 20 7 20 73 60 133 70 S

314 50 59 30 95 80 156 70 587 60 24 60 8 50 111 60

100* 70 117 80 182* 90 389 90 99 70 36 70 231 70

42 60 16 30 143 90 33 30 8 80 48 10 378 80

8 40 151 50 105 80 25 20 99 80 7 40 49 30

144 30 22 60 103 80 357 70 61 70 140 70

25* 80 56 80 250 70 467 90 25 70 186 90 P
11 70 21 40 100 60 201 80 95 70 84 80

18 20 1 50 80 50 19 50

139 80 30 70 51 30 45 40

20 30 44 60 29 40 80 40

31 70 283 90

52 70 15 50 -

287 60
18 30
51 60
122 80
27 60
54 70
7 50
63 50

392 40
10 40

p

where Ix(j) denotes the expected survival time for a patient in group j

having medical status value x. The use of the initialisation value
A A A A
61 a 0 led to the sequence 62 - 0.359, 63 - 0.432, 64 - 0.429 of

A A

approximations to 6 and 6 was therefore taken as 0.43 correct to

two decimal places. In table 2, values of i x(j) are given for the

eight groups and the nine medical status levels used for classifying

the patients. The maximum likelihood estimates of BO(j) and B*,Qi)

are also shown together with their estimated standard errors. The results

show that at the higher levels of x, the expected survival times are

I .' °

/~~~~~~~~~~~~~~~~~~~~~.....-...'.'.'..:;.-.....-....-...,...........-............ ... ,.... ............. ....



highest f or group G5, and that the differences among the groups

G3, G6 and G7 are relatively small. These results support the general

finding made by Prentice and it should be noted that for these data,

the use of the power transformation model leads to only a moderate

improvement in fit compared with the model given by (1.7). The value

of 2logL{C%(0.43), 0.43) - 2logL{S (0),0) is 1.41 which when

referred to the X, distribution is just significant at the 25% level.

It is of course instructive to use the general power transformation model

to assess the adequacy of fit of the commonly used model given by (1.7).

TABLE 2

Maximum likelihood estimates of regression coefficients and of expected

survival times.

x GC 2  G3  G4 G G6  C7  Go
10 27.4 43.0 1.4 49.2 1.9 9.3 23.8 2.5
20 43.6 52.1 5.6 67.4 13.8 15.5 30.1 10.3
30 64.1 62.2 13.0 88.8 39.4 23.6 37.1 24.8
40 89.2 73.4 24.2 113.7 81.2 33.7 45.1 46.8
50 119.2 85.6 39.5 142.1 140.7 46.0 53.9 77.1
60 154.2 98.9 59.2 174.3 219.4 60.4 63.6 116.2
70 194.5 113.3 83.5 210.2 318.6 77.1 74.3 164.7
80 240.1 128.8 112.7 250.0 439.4 96.1 85.9 223.0
90 291.4 145.5 146.9 293.7 582.7 117.6 98.5 291.7

() 5.21 8.38 -1.74 8.30 -3.36 2.23 5.81 -1.80e*0

SE{ Ci()) 6.76 4.83 2.61 13.75 3.23 2.68 2.86 4.48*0

B* Ci) 0.213 0.101 0.214 0.179 0.411 0.150 0.096 0.291

SE{S (j)) 0.140 0.090 0.072 0.204 0 .999 0.067 0.055 0.110

5.EXTENSIONS

The regression model given by (1.8) for the mean or equivalently the

reciprocal of the hazard function of the exponential distribution is

more flexible than other models that have been previously used. It

is therefore likely that except for very large data sets, the model will

provide a satisfactory fit if the underlying distribution is exponential,

even if the model's link function is not correct.

For distributions other than the exponential the power transformation

link function may be used to model the dependence of the hazard function ,.

- ,. . . .



on explanatory variables. Thus if h(t; x) denotes the hazard

function for time to failure given x, we may use the proportional

hazards regression model

h(t;x) h.(t;O)(l +6x'B)1/ 6  (5.)

where h.(t;O) represents che hazard function for an individual with

x - 0 which is assumed to depend on a vector e of unknown parameters.

A straightforward argument shows that the log-likelihood under the model

given by (5.1) is

n n
logL(ae,6)- 1 (wlogit -V )+I IWlog{ho(ti;e)/Ho(ti;e)) (5.2)

where

Ho(t;O) - h(u;9) du (5.3)
0

is the cumulative hazard function and

p : 6x!6)1/6 H(t;e), in1,...,n (5.4)

Suppose now that the underlying distribution depends on two parameters,

X and e say, and that

H(t;x,e) )ri(t;e) (5.5)

where X > 0 and Tn(t;8) 0Yt>O. Examples of distributions having

this property are the Weibull with H*(t;X,O) a Xt and the Gompertz

with Ho(t;X,6) = (X/e)exp(et), t>0. If (5.5) holds, we may write

V n(tiO)(i + 6x'B ) 1/
6  (5.6)

where

*0 - , j - 1,...,k (5.7)

For e known, the ML estimate 8 (e) can be found treating the (w-

as observations on independent Poisson regression variables, the link

function being ["

g - - (5.8)

If 8 is unknown, a search over a grid of values of 8 would be needed

to find the global maximum of the log-likelihood.

* 'o.
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