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1. INTRODUCTION

Suppose that we have n individuals or components which are subject
I to 'failure' and that the response variable of interest is time to
failure. let T *, Tp*, ..., Tn*
representing the times to failure of the individuals. We suppose

be independent random variables

that right censoring may occur because of the need for early termination

of the investigation and let T, T;,..., Tn Trepresent the recorded

survival times. Defining censoring indicator variables

{l if T.* is uncensored

(1.1)

w, =
: (0 if Ti* is censored

we have

X = i - 3 -
Ti ’I‘i if wy 1, Ti* > Ti if w, 0 (1.2)

Ve let n n
no= 7w, n, =) 0-w) (1.3)
- i'l

denote the numbers of uncensored and censored observations, respectively.

We now suppose that measurements are available on k explanatory variables !fﬁfﬂ

X p Xypoues Xpo Setting x' = (xl,xz,....xk) the p.d.f. and survival

function of T* given x will be denoted by f(t;x) and S(t;x), ;';f%f
respectively. If the hazard function £(t;x)/S(t;x) is assumed to be ]
a constant independent of t for any given x, then T* has the

) exponential distribution with p.d.f,

=? exp('-t/ux), t>0

u
£(t5x) = {x

0 otherwise

—~—

where My denotes the expected value of T* given x.

Various models have been proposed in the literature to represent the
dependence of b, on x. Fiegl and Zelen (1965) consider the model form

-~

- x(nfvg) (1.5)
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while Greenberg et.al. (1974) use the form

v, - A1+ x'B) (1.6)
vhere B' = (81,82,...,Bk) and A is a positive constant. Both models
require that the condition x'B < | must be imposed to ensure that
b, > 0. An alternative model which does not require a constraint to

be imposed on x'g is

uo- Aexp(x'8) (1.7)

-~ '.‘.4

This model arises for the exponential case from the well-known family

of proportional hazard regression models (see e.g.Kay (1977)} in which

an assumed underlying hazard function is adjusted by multiplicative

.
‘. '.:'
cal

:; exponential factors to allow for the effect of the explanatory variables.
‘ Prentice (1973) also discusses the use of censored regression models for
& the exponential case,

In this paper, we consider the power transformation model given by

by = A0+ sx'g)1 /8 (1.8)
We shall refer to § as the power parameter. It is seen that when
8§ =), the model corresponds to the usual additive regression model
for the mean given by (1.5), while if 6§ = -1 the reciprocal model
(1.6) is obtained after appropriate reparameterisation. When &-+0,
the model given by (1.7) is obtained. For later work, it is convenient

to write the pover transformation model in the form

ue = (1 + 8x18 )8 (1.9)

~

vhere x = (1,x'), B, = (8*0’8*1“°"B*k) and

v P PP .
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= Buo = O%-1/6, B = %8 el (1.10)
= 3y
¢ In general, the power parameter & as well as the coefficient vector 3* ]
-~ A'.."-Q.
will have to be estimated from the data. In section 2, results are given tﬁ}l:
.1'._.'4

for maximum likelihood estimation and it is showm how the estimates can

v be obtained numerically using the statistical package GLIM. The problem e
< of assessment of the goodness of fit of the model is discussed briefly in ::Q:
- i : : : : ey
é section 3 and in section 4 a numerical example is used to illustrate the AR
’ procedure. -2
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) 2. MAXIMUM LIKELIHOOD ESTIMATION

We shall assume that the stochastic model underlying the censoring

mechanism is unknown. The likelihood given the data (t, ,ml,;sl).

'= 3 e 3 i
vhere x; = (x; +X;,, X5 ), 18

n l-mi
{f(t P X5 )} {s(ti;zi)}

1-1
n

- {u;“’t exp(-t, /u )} (2.1)
i-l i ~i

- ,/6 ] = 1]
where uz‘:i (1 + 8x2.8) and x1. = (1,x";). If ve put
B =t ul R i=1,2,...,0 (2.2)
%
the log likelihood is
logL-z (w;log ¥ -u) -zwlogt. (2.3)
im] i=]
The likelihood equations are obtained by setting
';‘(‘"i'"i) ;:}-0 . 'z'(“’i"‘i);;i =0, §i=0,1,...k.
i=1 ¥i jm1 Wi %3
Since
o, Y.\ ou. M. \6 M.
1 i ( 1) ) i 1 {( 1) ( 1)}
- =-x..{—) , - a—Jd{ =] -1~ 38log{— (2.4)
vy 9B, 13\eg 3 L\E i
the maximum likelihood estimates are found as the solution of the
k+2 equations
~ i .
i ! (mi-Ui)'t_.- -0 » J.o.l.-.o.k (2-5)
is) 1ij i
T
2 (wi-ui){(—é') -l-élog(l:l)}- 0 (2.6)
i=] i i

o
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vhere i, = t.(1+ Gz;iﬁ.)"/g

Routine calculation gives the second order derivatives of the log-

likelihood as

0n
3’1ogaL - -ingij X; 50 Gzi {(6+ Dy —émi} ik TR 2.7)
% !

9%10gL 1 §

ng" -- 3121 x5 °i{“’i‘“i"“i") - uizi} --b, (2.8)

32 1 n (0.'1)

-l ) [“i’i* (“’i’“i){'i“‘“i’ - = 1°3°i}] - e

i=) (2.9)
for j,j'=0,1,...,k, where
¥i\8 1

0 '('{;) . e 0 -1-1080) (2.10)
Setting

A= (a..,) , B=«b.), ¢=(

ij j

A a s 3 etc, th
where a.., denotes 8550 evaluated at £ = B and 6=, » the
estimated asymptotic covariance matrix of the estimators is

vV s 37
V = n L -
~ vV v B' €
12 ~22 ~ ~

The matrices in the partitioned form are given by

Y= Kenpe-pa e By
(2.11)

V.o -RBE-BAR . Y, = (C-BAE




The calculation of the estimates and statistics used for making
inferences about & and ﬁ* is performed straightforwardly using the
statistical package GLIM which has been developed for fitting generalised
linear models by maximum likelihood for error distributions in the
exponential family. The method is similiar to that described by Aitken

and Clayton (1980) for fitting proportional hazard regression models for
censored survival data.

In (2.3), the first term represents the kernel of a log-~likelihood
treating W,, w,....,wn as independent Poisson variables with E(wi)'-ui,
and the second term is independent of E* and 6. From (2.2) we have

{(:i/ui)'S -~ 1)/8 = x.. 8, (2.12)

A
If 6 is known, the value g (8) which maximises the log-likelihood,
now denoted by logL(ﬁ (6), 8) , can be found fitting a Po1sson regression
model with the user defined link function gs(u )= {(t /u ) - 1}/6.

In the usual case when & is unknown, the maximum lzkelxhood estimates

A A

6 and ﬁ* can be found using the following iterative procedure which
is based on a general method suggested by Pregibon (1980) for selecting
the link function in generalised linear models.

Suppose that 6 denotes an initial approximaction to 6. Using the

first order Taylor series expansion about the value § = 6 gives the
approximation

(t5 /v )S,_ ){ G;(t v, )6, log(t,/u,) + 1= (e, /u, )’}

[

86‘“9 ~ + (6~

o>

3:’ (2.13)

An initial fit is made using the model gs(ui) - i;ig' to yield the
AQ

A *
estimate gf‘) and fitted values Iy ) from which ve form

:i(l) { (t /l-l( ))61108( /IJ( ))4'1 ( (l)){\}/q (2.14)
A fit of the mgfel gt () = g;ig* 0) - 5) then gives the second
approximation §,, where af , is treated as an additional explanatory

variable. The procedure is then repeated until satisfactory convergence
is obtained.
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1f a confidence interval for 6 is required, we use the approximate

distribution result
A A A
210gL {8 (&), §} ~ 2 logL B,(6),8 }~‘>xf
~k

giving
P [logL{g*(G).G} > logL(?_*(a) ,8) - {xf(l -a )] ~i-a (2.15)

where xs(l-a) denotes the upper 100a% point of the x% distribution.

Thus if SL and GU are the two values of § for which

10gL{B, (5),8) = 10gL{B, (8,8} - §x2(1-

where 6L< Cu’ then the interval (GL,GU) provides an approximate

100(1 -a)X confidence interv:l for &§. The calculation of this interval
will require values of logL{B*(G),G) to be determined for a grid of
valves of 4.

A A
The covariance matrices for g* and § can also be found straightforwardly

using (2.11) since the GLIM output will provide the value of A~!,

the covariance matrix for ﬁ* when 3 is treated as the true fixed value
of 6. Finally, we may wish to test the hypothesis that a specified
subset of the explanatory variables have no effect on the expected time

to failure. This can be done using a standard likelihood ratio test based
on the difference between the maximised log-likelihoods under the full and
reduced models, this being the difference between the corresponding
deviances in the GLIM output.

3. RESIDUAL PLOTS

A graphical procedure based on suitably defined observed residuals provides

a useful preliminary assessment of adequacy of fit of the power transformation
model. If the model is correct, the random variable R = T*(l+6§;§*)-1/6

has the standard exponential distribution. Thus if there is no censoring,

ve define observed residuals by

RN ﬁ.)"’s v i=1,2,.000m 3.1




If the model is correct, the {ri} will approximately have the
properties expected of a random sample of n observations from the
standard exponential distribution. A plot of the ith ordgred residual

-1

(i) against the ith smallest exponential score e, . " Z j  should
' on-iel

then give an approximate straight line relation with unit slope and zero

intercept.

To deal with censoring, we note that

BRI R>t (14658 /8) = 1ar(1e6g8)7 /8 (3.2) B
Salox Ry~ *
i Replacing the censored value of R by the maximum likelihood estimate 3,_§{
of its expected value, we define modified residuals by "
A - c
. A A _1/6 S
) + ' : - S
: r; - { ti(l Gg*iﬁ*) 3 if w, =1 (3.3) LI
- Ry B0 i w.=0
[} RS
i l*ti(l'*ég*ig*) i e

A plot of xii) against e . should again give an approproximate

»
straight line relation if the assumed power transformation model is
i correct.

4. AN JLLUSTRATIVE EXAMPLE

To illustrate the use of the power transformationimodel ve use the

data in table | which were taken from Prentice (1973). The data

are for groups of advanced lung cancer patients, the groups being
defined by two factors, type of chemotherapeutic agent at two levels
standard and test, and tumour cell type at four levels, squamous, small,
adeno and large. In the original study, four explanatory variables were

measured and the analysis based on model (1.7) indicated that only one

variable, general medical status on a scale 10,20,...,90 had a real
effect. We have only included this variable in our analysis. The
survival times are in days and right censored observations are shown

with an asterisk.

The GLIM fitting procedure described in section 2 was used to fit the =

model. ' '_:.::'

u () = [1+8{B  (§) *xs*l(j)}] » 3=1,2,...,8 (4.1 :?S?I

e e N L D T T s e e
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If the model is correct, the {ri} will approximately have the
properties expected of a random sample of n observations from the ;fi;ﬂ
standard exponential distribution. A plot of the ith ordered residual .

noa
r ;) ®8ainst the ith smallest exponential score e, = Y j~ should
' on-i+)

. S
.',-__.-_:'

then give an approximate straight line relation with unit slope and zero

D
.

intercept.

To deal with censoring, we note that

v

-1 L
BRI B>t (1o 65187 ) = a1 ggrp )™ (3.2) e

Replacing the censored value of R by the maximum likelihood estimate

of its expected value, we define modified residuals by e,:.1
A .

A 18 "

)7 e w e (3.3)

A
- ti(l *65:&@* A
A -1/ if w, =0

A
L
! l"ti(l *Gg*ig*) "

A plot of rf;) against e n should again give an appropr~xi te
»

strajght line relation if the assumed power transformation model is

correct.

4. AN TLLUSTRATIVE EXAMPLE

To illustrate the use of the power transformation.model we use the

o data in table | which were taken from Prentice (i1973). The data

are for groups of advanced lung cancer patients, the groups being

% defined by two factors, type of chemotherapeutic agent at two levels

- standard and test, and tumour cell type at four levels, squamous, smsll,
adeno and large. In the original study, four explanatory variables were

measured and the analysis based on model (1.7) indicated that only one

e . '..'."'. . o

variable, general medical status on & scale 10,20,...,90 had a real
effect. We have only included this variable in our analysis. The
survival times are in days and right censored observations are shown

: wvith an asterisk.

E s [ ]

- The GLIM fitting procedure described in section 2 was used to fit the

model. 1%

3 v, (i) = (1 +6{B*.(j) *xa‘l(j)}] » Ji=1,2,...,8 (4.1)

g

t

~,"aTa




Data for lung cancer patients: t = days of survival, x = general ) E:f
medical status, G, = standard squamous, G, = standard small,
G, = standard adeno, G, = standard large, Gs = test, squamous,

G¢ = test, small, G, = test, adeno, G, = test, large.

G G Gy G, Gs Ge Gy Gg
t X t X t X t X t X t b4 t X t x

72 60 30 60 8 20 177 50 999 90 25 30 24 40 52 60 2
a11 70 38 60 92 70 162 80 112 80 103* 70 18 40 164 70 ]
228 60 4 40 35 40 216 SO  87% 80 21 20 83% 90 19 30 :
126 60 54 80 117 80 553 70 231*50 13 30 31 80 53 60

118 70 13 60 132 80 278 60 242 50 87 60 51 60 15 30

10 20 123%* 40 12 50 12 40 991 70 2 40 90 60 43 60 S
g2 40  97% 60 162 80 260 80 111 70 20 30 52 60 340 80 -
110 80 153 60 3 30 200 80 1 20 7 20 73 60 133 70 & . |
. 314 50 59 30 95 80 15 70 587 60 24 60 8 50 111 60
100% 70 117 80 182 90 389 90 99 70 36 70 231 70
{ 42 60 16 30 143 90 33 30 8 80 48 10 378 80
g 40 151 S0 105 80 25 20 99 80 7 40 49 30
144 30 22 60 103 80 357 70 61 70 140 70
254« 80 56 80 250 70 467 90 25 70 186 90
11 70 21 40 100 60 201 80 95 70 84 80
18 20 1 50 80 50 19 50
139 80 30 70 51 30 45 40
20 30 4 60 29 40 80 40
31 70 283 90
52 70 15 50
- 287 60
] 18 30
51 60
f 122 80
’ 27 60
i 54 70
7 50
63 50
392 40
10 40

vhere U _(j) denotes the expected survival time for a patient in group j
having medical status value x. The use of the initialisation value

A A A A
6, =0 led to the sequence 6, = 0,359, &, = 0.432, 6, = 0.429 of

v —— W WIw ST

approximations to 6§ and & was therefore taken as 0.43 correct to

; two decimal places. In table 2, values of ax(j) are given for the

. eight groups and the nine medical status levels used for classifying

? the patients. The maximum likelihood estimates of B*O(j) and 8*1(5)

are also shown together with their estimated standard errors. The results

show that at the higher levels of x, the expected survival times are

-------------------
......................
-------

------------

------
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highest for group G5, and that the differences among the groups .
G3, G6 and G7 are relatively small. These results support the general
finding made by Prentice and it should be noted that for these data,

the use of the power transformation model leads to only a moderate
improvement in fit compared with the model given by (1.7). The value

of 2log11(§*(0.43). 0.43}) - 210g11§*(0),0] is 1.41 which when
referred to the Xf distribution is just significant at the 25% level.
It is of course instructive to use the general power transformation model

to assess the adequacy of fit of the commonly used model given by (1.7).
TABLE 2

Maximum likelihood estimates of regression coefficients and of expected
survival times.

x G, G, G, G, Gs G, G, G,

10 27.4 43.0 1.4 49.2 1.9 9.3  23.8 2.5
20 43.6 52.1 5.6 67.4 13.8 15.5  30.1 10.3
30 64 . 62,2 13,0 88.8 39.4 23.6 37,1 24.8
40 89.2 73.4 24,2 113.7 81.2 33,7 45.1 46.8
50 119.2 85.6 39.5  142.1  140.7 46.0 53,9 77.1
60 154.2 98.9 59.2  174.3  219.4 60.4  63.6  116.2
70 194.5  113.3 83.5  210.2  218.6 7.1 4.3 164.7

80 240,1 128.8 112,7 250.0 439.4 96.1 85.9 223.0
90 291.4 145.5 146.9 293.7 582.7 117.6 98.5 291.7

B, () 5.21 838 -1.74  8.30 -3.3  2.23 5.8 -1.80
SE(B, (i)} 6.76  4.83  2.61  13.75  3.23  2.68  2.86  4.48

A
B*l(j) 0.213 0.101 0.214 0.179 0.411 0.150 0.096 0.291
sE{g*l(j)} 0.140 0.090 0.072 0.204 0.299 0.067 0,055 0.110

5. EXTENSTONS

The regression model given by (1.8) for the mean or equivalently the
reciprocal of the hazard function of the exponential distribution is
more flexible than other models that have been previously used. It
is therefore likely that except for very large data sets, the model will
provide a satisfactory fit if the underlying distribution is exponential,

even if the model's link function is not correct.

For distributions other than the exponential the power transformation

link function may be used to model the dependence of the hazard function

. UL
..........
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on explanatory variables. Thus if h(t; x) denotes the hazard
function for time to failure given X, We may use the proportional

hazards regression model

h(e3x) = h(£;8) (1 +6x'8) /8 (5.1)

vhere ho(t;g) represents che hazard function for an individual with

x=0 which is assumed to depend on a vector € of unknown parameters.

A straightforward argument shows that the log-likelihood under the model
given by (5.1) is

. n n
logL (8,6,6) = 2_(ui1ogu1-ui)+{ w;log{h (. ;0) /B (t ;0)) (5.2)
i=1 i=1 =
where
t
H (t;0) = [ h_(u;6) du (5.3)
o

is the cumulative hazard function and

B = (1 +8xi8) VO H (¢30), i=l,...,n (5.4)

Suppose now that the underlying distribution depends on two parameters,

A and © say, and that

H (t53,8) = An(t;6) (5.5)

where A > 0 and n(t;8) 20Vt >0. Examples of distributions having
this property are the Weibull with H (t;2,0) = Xte and the Gompertz
with H_(t;1,0) = (A/6)exp(Bt), t>0., If (5.5) holds, we may write

- . 16 .6
My = (e 30) (1 +8x! .8 )Y (5.6)
where
25-1 5
B*O = T L] B*j = A Bj Y j - l’.o.’k (5.7)

For 6 known, the ML estimate g*(e) can be found treating the {wi)

as observations on independent Poisson regression variables, the link

s - [{ 2 }6 ] C(5.8)

ﬂ(ti;e)

function being

If 6 is unknown, a search over a grid of values of 8 would be needed

to find the global maximum of the log-likelihood.
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