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Abstract

This paper is the first in a series of three in which we discussqome

theoretical and practical aspect of a feedback finite element method for

solving systems of linear second order elliptic partial differential equations

(with particular interest in classical linear elasticity). In this first part -

'9-e- introduceToome nonstandard finite element spaces, though based on the usual

square bilinear elements, permit local mesh refinement. The algebraic

structure of these spaces and their approximation properties are analysed. An

-Lequivalent estiaator' for the HI  finite element error is developed.(/In the

second paper we shall discuss the asymptotic properties of this estimator. In

the third paper we shall also report on some computational experience with the

FEARS program which uses this estimator as part of a feedback loop to control

mesh refinement and some of its programing features.

3-



3

§0. Introduction

The practical success or failure of many finite element computations

often depends critically on the user's choices of finite element mesh and

element type. As a simple illustration of this, consider the boundary value

problems that arise in classical plane linear elasticity. For such problems "

it is well known that in the neighbourhood of certain critial boundary points

(e.g. angular boundary points, or points where the boundary conditions change

between specified tractions and specified displacements), the stresses exhibit

some form of singular behaviour. Unless such critical points are handled

carefully, the resulting finite element solution may have disappointing ac-

curacy*

One way in which such critical points may be treated is to employ an

appropriate mesh refinement strategy in the neighbourhood of the point.

Broadly speaking, two kinds of refinement strategy can be identified. On the

one hand, there are a priori refinement techniques which grade the mesh in a

manner governed either by earlier experience with similar kinds of problems or

by the results of some a priori analysis of the nature of the singularity.

For many problems in linear elasticity an asymptotic representation of the

solution in the vicinity of the critical point is available. Using such

representations it is often possible to derive a sequence of graded meshes

which can be shown to converge in the energy norm at an optimal rate with

respect to the number of degrees-of-freedom of the resulting discrete system.

From a practical point of view however, a weakness of such a priori methods is

that the analysis or experience they are based upon is asymptotic in nature ./C-..

and is seldom discriminating enough to tell whether a singularity, though

present in theory, is going to cause significant problems at the level of

accuracy that one is working. As an example consider the stress singularity

P .oO

° ;
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Kr-2g() typically associated with cracks in plane elasticity. The

potential of this singularity to affect the accuracy of a finite element

approximation will depend on K. Usually an a priori analysis can give little

insight into the value of K. If K is small enough (compared to the overall

level of accuracy desired), then no harm will be done by employing, say, a

uniform mesh near the crack tip. Indeed, were a refined mesh used, the extra

degrees of freedom would not lead to any significant improvement in accuracy

over the uniform case. On the other hand, any (fixed) mesh refined near the

crack tip will give a far from optimal mesh as K + m. (Optimal here

indicates a sense of minimum error for a given number of degrees of

freedom). This kind of phenomenon becomes more pronounced when, as occurs in

most practical problems, there are a number of critical boundary points in the

region of interest, and a decision must be made on how the corresponding

refinements should be 'kweighted."

The other kind of refinement strategy referred to earlier is a posteriori

in character. In this approach an initial finite element solution is

calculated using some mash. This solution is then examined in some fashion,

and based upon this examination a refinement of the initial mesh is decided

upon. Using this new mesh, a new finite element solution is computed. This

process can obviously be iterated until some stopping criterion is

satisfied. This kind of feedback technique could conceivably avoid the

problem mentioned above, since the computational significance of the

singularities present may be able to be ascertained during the feedback

process. Everything, of course, depends on the a posteriori examination

carried out after each step and the refinement decision arising from it.

So far we have only mentioned mesh refinement necessitated by some form

of singular behaviour of the solution. However in many other situations

'5-. . .. . . . . . . . . . .-- - 5 . . . . - .



5

proper mesh refinement can also be crucial. As a typical example consider the

use of curved elements for solving problem in elasticity. In general such

7 elements cannot exactly represent rigid body motion. Because of this, proper

mesh refinement may again be essential for satisfactory results, even though

the solution is very smooth. It would seem very dif ficult to predict the

pattern of such refinement a priori.

In this series of papers we shall describe and provide an analysis of one

such feedback approach. The approach we shall deal with has been implemented

in a practical form in the FEARS program [see [1]). This algorithm is besed

upon an a posteriori examination which involves the calculation of an a

posteriori error estimator for the energy (or similar) norm of the error.

This estimator is composed of elementwise error "indicators", and the

* refinement decision at each stage is made on the basis of the distribution of

these indicators. The theoretical analysis of this method is far from

complete. At the moment there are many cojectures, etc., which though

convincingly demonstrated by many numerical experiments can either not be

proved rigorously, or not be proved in the generality that practical

experience would indicate they hold.

Our theoretical analysis will concentrate upon the error indicators and

estimators, in particular, upon clarifying in what sense they "estimate" the

energy norm of the error of the finite element solution. We shall show under

quite veak assumptions that the estimator, E say, is an equivalent estimator

for the energy norm lei of the error e, that is

c E E el - CE(1

f or sowe constant C > 0 uniformly over large class of meshes; and moreover

under some further restrictions that E is also an asymtotically exact esti-

mator for Eel, that is

%.
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lei - E(l+o(le)) (2)

as Iel * 0.

The properties (1) and especially (2) suggest that the estimator can be

reliably used for stopping the refinement process once some desired accuracy

is achieved. Experience with FEARS confirms this.

To be considered worthwhile the process of succesive construction of

meshes should lead to a sequence of meshes whose rate of convergence is

comparable to that of the theoretically optimal mesh grading (at least when

dealing with practical problems). They should also have other "optimal"

properties. When a feedback process has such optimal properties, it is called

an adaptive process. (For more about this see [2] [3] [4].) Experience

indicates that the FEARS program implements an adaptive process.

In §1.1 of this paper we shall describe the kinds of boundary value

problems that we wish to consider (essentially those related to linear elas-

ticity). §1.2 contains a description of the finite element discretization to

be employed. In §1.3-1.5 we give some properties of the corresponding finite

element spaces for use later in the paper. In particular, we introduce the

important concept of a K-mesh in §1.4. Although we describe a rather general

set up in §1.1 and §1.2, the subsequent analysis is carried out in a more

restricted setting. This has been done for the sake of clarity and simplicity

of notation. The analysis of the general case can be done analogously. In §2

we derive an equivalent estimator for the energy norm of the finite element

error. An important step in this is the basic error estimate of §2.1. Using

this result the error is able to be localized to a small number of elements.

Some technical lemmas are proved in §2.2 and §2.3, while §2.4 contains the

main results of this section. ".

In the second paper of this series we shall deal with the asymptotic
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exactness of the estimator, as well as discussing the overall performance of

the algorithm. P

The third part will deal more specifically with design of the FEARS

program and analyse its performance in the light of the developed theory.

.

S.

-°
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1. Formulation of the problem and its finite element solution

1.1. We shall consider the boundary value problem

2 2
L (u) Dk~kijkD + I c1 u f~ in 9

0
ui 0 on 80Q,(.)

2 2 2
X ik (u)nk a ~ ijkl D Iu j)nk t on 810 (i1 1,2)

k-1 k-i J,t-1

on a bounded domain 0 c 12 whose boundary 8Q is made up of two dis joint

parts 800 7& 0 and 810; n-(nl,n2) is the outward pointing unit normal

on 80. This problem can be cast in a variational form. If 800 is

*sufficiently smooth (piecewise smooth, say) we may define the trace of H (0)

functions on 80. Let us write

H -{(vv) V~ E H (9))

H 0 {(v1,v2): v i E H(0), V, - 0 on 80Q).

and H0  are Hilbert spaces with respect to the norm

-V IV vii I1) 2 with Iv i I, being the usual (scalar) H'(0) -

Sobolev norm. The boundary value problem (1.1) can now be posed as: Find

u E H 0 such that

2 2
b(u,v) I f ~~vi dx + I t V ds, vv E H (1.2)

800

where the bilinear form b: Ho H0  R f is defined by

2 2
b(w,z) - f ( aijkijtD ki D c ciwjzi)dx.

0 i,j,k,I-1 i'j-1
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We shall assume that 0 can be represented as a collection of

transformed unit squares. To this end we make the following assumption on 0:

There is a finite number of subdomains 0 C Q(d =,...,N) such that - -

(i) 0 fQ g (d,g 1,...,N; d #g)

N(ii) = U Qd
dl

d-1d

(iMi) There is an invertible transformation 4d: Qd + [0,112 which,

00 -1together with is inverse 4#d is sufficiently smooth (bounded

derivatives of all orders, say)

(iv) Qd a 4#1 ((0,1)2 )"

The image under 4,d of the closed edges and corners of (0,112 will be

referred to as the edges and corners respectively of d

(v) 0 d and 0e (d # e) can only have a single edge or a single corner

in common (or else Qd and Q are disjoint) *

(vi) 0OQ is the union of a number of (complete) edges of subdomains.

We shall write 8(0,1)2 =40 (a n d and 8 1

- ,d(8tQ n

An edge common to Qd and 0 will be called an interface between 9d and 0d e d

(vii) If r is an interface between 9d and e then 4d and

must "agree" on r in the following sense: if s is an arclength

measured along r", and sd and se  are arclengths measured along

(r) and 4e(r) respectively, then regarding sd and se as

functions of s, either Sd(S) Se(S) or Sd(S) 1 -Se(S)

Figure 1 shows a possible partitioning of a circle into subdomains. For

a suitable choice for the mappings 4 d in the case, see [5]. If r is an

. . .°. . . . . .

". ... --. .. -..--.. . -.-.-. . - .. -... . - . - .-.-. . -. .. -.. -.-.-.- .. -.-. . .--...- .-. ... .". ..- -, -.. -. ,. ' ....
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interface between Q and Q e then we can naturally identify Q C r) and 0 (r)

as illustrated in Fig. 1. By virtue of (vii) above this identification

takes a particularly simple form when expressed in terms of local arclength.

Figure 1. Partitioning of the circle into subdomains.

This representation of Q induces a natural correspondence between f

and the set Mof N tuples of the form

V

where

(i) VI'd) -(V~d) V 'd)), V~d) E H1 ((0,1)2) (i1 1,2, d 1..N

(ii) if r is an interface between 0d and Q (d,e -1,...,N; d~e)
d e



vVd 0 4 on r. (j -1,2)

This correspondence is defined by:

v - (vv) E Hf -b- V - (.,(v1 0'd 0  0' v ' E M,

and

w - w(1)..,wN)) M .w - (wl,v 2) f H

where

vi ~W~d) 0 4'd on d' (1 1,2, d

(wiE Hl(Q) by virtue of the interface continuity requirement (ii) above).

Let MO M be the set of tuples satisfying the additional condition

0(iii) if r is an edge of 9d and r F then

(d) dd on r. (j -1,2).

*Clearly M0 O- Ho under the above natural correspondence. M and MO are

* Hilbert spaces with respect the norm

N 21
1VI1 (**Q d1 IV(d) 12  2.

0-1 ) (dlill 1,(0,1)

The problem (1.2) can now be reformulated as: Find U M o0  such that

B(,V I f I F dx + f i T ds), VV E M
d-l (012 imi 1d0 ' (12 0

(1.3a)

where the bilinear form B: M0 x M0 + R is defined by

N 2 (d) (d) (d) 2 (d) (d) z(d)d (.b
B(W,Z)- I f ( A DWj D Z + Ci Wi Zi x. (.b

dI(0,1)2 jkll
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In (1.3) we have used the notation

d) 1 2 W-d) Cd)
- E W (ijstai~~~k I~ s~t-l+ mt l' .'

(d) 1)--
C j W (c-j ,

ii IICc1 c d)

() (d)i

each defined on (0,1)2; while on 51(0,1)2
~dI

(d) 7-1 (ti o4- 1.

(d) d)

We have set Ed) (d)j Ed) determinant ( ij 1,2), and

ii Di~ 1  I Cjd

E~d) ( (d (..d )2 1/ with denoting differentiation with respect
i-I -..

1 2. '.
to arclength along bd (0,1) 2

With regard to the coefficients and input data of (1.2) we shall suppose

that the aiJkl, cij and fi are sufficiently smooth on each separately

ijkOo c- d

(say, bounded derivatives of all orders), and that the ti  are sufficiently

smooth on each subdomain edge contained in 6 Q.

We assume the symmetries

a ijkt a jilk (i,j,k,x - 1,2),

. so ensuring that b(.,-), is a symmetric bilinear form. Additionally, we

shall suppose that the bilinear form b(o,) is coercive over HO, that is,

there exists a > 0 such that
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Itb(w,w)l 1 ;0lOl , tV H oe (1.4a) ;::];

1,0

Further we will assume that for some C > 0 L._1

2 -2 k2 .:-
aijkk~ijj ) C(& + E), k- 1,2; R (1.4b)

1 2-i

By virtue of our assumptions on the mappings 4pd' the above properties

transfer naturally to the transformed system. Let us explicitly note the

symmetry condition B(U,V) - B(V,U) VV,W E MO, the coercivity condition

IB(W,W)i IWE2  VW E MO ,

and

2 2 2
Aijkiej  > C(E1+&2), k - 1,2; & R2 .

ij-1

Note that in the case when the a are discontinuous across an
ijkl

interface r between two subdomains, then the classical formulation (1.1)

needs to be supplemented by an interface condition expressing the continuity

of "tractions" across r. This condition is of course implicit in the varia-

tional formulations (1.2) and (1.3) of the problem.

The finite element approximation that we shall discuss is based upon the -

formulation (1.3) of the problem. If ~QCM, the corresponding Galerkin

approximation U E MO to U is defined by

N . 2 2s( v) .( ..(d). (d) () d
di1 (0,1) F aVdx + 1 i Vdds) VV E O .

-i(0,1)2 1 a(0,1) -.
d

°
°-
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The coercivity of B(.,.) ensures the existence and uniqueness of t. We

have of course the projection property

=' IUIi, (g,,.Q d) ( CIU I,(I,""" Q) • (1.5) ..'.."''

The finite element error U- satisfies the usual orthogonality relation

B(U-I,V) - 0 VV E o  (1.6a)

which leads to the standard kind of best approximation estimate

IU1.,Q) 1 C inf IU-V E1 ( . ). (1.6b)

The finite element approximation V corresponds (under the natural

correspondence between H and M) to an approximation u to the solution

u of (1.1), (1.2). In terms of the energy norms of the respective errors we

have

1/2(b(u-u,u-u))1/2 (B(U-U,U- ) o (1.7)

1.2. Suppose that a subdivision of Q into subdomains . with

*' corresponding mappings sI,..., N satisfying the conditions of §1.1 has been

decided upon. We shall now define what we mean by a mesh D on Q.

A mesh D is an N-tuple (DI,.o..D N ) where each Vd (d - 1,...,N) is a

partition of 10,112 into closed squares A (with edges parallel to the

coordinate axes). Each Vd is called a submesh on 9d and either

(i) 0d o - {[0,1]2}

or

(ii) Dd - Dvi)is constructed from an existing submesh

Ii.o,. pi), byrpaigayAEpi) by the four congruent:

. ..

.' " " " " " - " -" -""- "- -- '. .' .-.. . ----.- '. .. .'. .- .-.... i. - - . .. : g -... - .'2" ...-.--- ----- .% :
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squares resulting from the simultaneous bisections of A in the

two coordinate directions (see Fig. 2).

-(O (C0,112, D(l) (A..A D2

1 {A 1 ,..,.-) .-2 -

Figure 2. The construction of a submesh on the subdomain Qi

Each closed square A E d is called an element of 0d. We shall use

IAI to denote the length of a side of A. Clearly IAI - 2-  with s ; 0 an

integer. Further we denote h(Dd) - max IA.;

A point P is called a node of Dd if either

(i) P is a vertex of an element of Dd

or

(ii) there is an interface between Od and Q e and 0e0 *d (P) is a

vertex of an element of Ve.

Nodes P of Dd are classified as D-proper if either

(i) P E (0,1) 2 and whenever P E A' for A' E Dd , then P is a

vertex of A'

or
((i))"--1

":'(ii) d (P) E 8.

or

(iii) 4Pd (P) lies on an interface between 0d and 0e P is the vertex

of an element of d' and (,o d)(P) is the vertex of an

element of pe.

%:.,-
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element of D

If a node is not P-proper, it is said to be V-improper. The cases (i), (ii), 9

(iii) above are clearly mutually exclusive, and we shall further classify the

D -proper nodes as interior, boundary or interface nodes depending upon

whether (i), (ii) or (iii) applies. Fig. 3 shows an example of mesh with

proper and improper nodes indicated.

Each of the straight line segments y

I

I-

Figure 3. A mesh on 9 ('- denotes the natural identification of
points across interfaces).

forming the boundary of an element of Vd will be called an edge. For

definiteness an edge will be assumed to be closed, that is, it includes its

endpoints. lyl will denote the length of an edge. An edge is called a

primitive edge if it contains no nodes other than its endpoints.

We associate with a mesh D the finite element subspace W(D)

consisting of all tuples of the form

...........................................................................
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(..) .-

where

i) W(d) (Wfd)Wd)), W d) E HI((0,1)2) (jl,2; d-1,...,N)

(ii) W~d) is bilinear on each element Q- E d (J1,2; d-1,...,N)
DdI

(iii) if r is an interface between Qd and Qe

Wd) 0 W(e) 0 on r, (j,2; d,e-1,...,N).

Clearly (V) E M. Define M0 (D) - () n 0o

The finite element subspaces we have introduced are non-standard since .

improper nodes are permitted. (Note however that the spaces remain

conforming). These spaces permit local mesh refinement, yet maintain many of

the desirable programming characteristics of the more usual square or

rectangular elements.

Having defined a general framework, we shall in the analysis for the

remainder of this paper only consider the particular case of one subdomain

(N-i) and 4P the identity mapping (so g - (0,1)2). This restriction is for " "

notational simplicity only. Our results extend quite naturally to the case N

> 1 and 4P general, though with a considerable growth in notation. In the

light of this simplification we shall from now on suppress the subdomain index

0 2
and just write Q, M, a (0,1) , etc. There is also no need now to

distinguish between the original problem (1.2) and the transformed problem

(1.3). For definiteness we shall from now on use the notation of the original

problem.

To further contain notation, where no confusion is possible we shall not

notationally distinguish between vector valued functions and their compo-

nents. In such instances all operations, relations, etc., are to be

understood in a componentwise sense.



1.3. On a uatter of terminology we shall say that a line [PlIP2 1 is a

binary segment of another line (Q1,Q2] if

-1 Q + 1 - (Q2-Ql)
2

a-0,1,...; k -0,1,...,2u-l

2-Q + t- (Q2-Q1).

Lemma 3. 1.

(a) If A, A* are distinct elements of w ith 1A1 4 1A*1, then one I

and only one of the following holds:

(I) afln m

(ii) A and A share only one point. This point being a proper

node (and hence also a vertex of both A and A*)

(III) A fl A* is an edge of A. This edge is a binary segment of

an edge of A*.

(h) If Q is an improper node, then Q lies in the interior (i.e., is

not an endpoint) of an edge of a unique element A*. Furthermore, if Q is

the vertex of 'A E V then 1A1 < IA*1.

Proof. (a) These results follow readily by an induction based on the

refinemtent process used to construct V

(b) Since Q is Improper, there is an element A* with QE A* but Q

is not a vertex of ** It is readily seen that *is unique. Case (iii)

of (a) applies. Assuming that II I*1 leads to a contradiction since

Q is not avertex of *.a
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Lema 3.2. Suppose D is a mesh and that z L2((0,1)
2) is bilinear on

each A E D. If x has a well defined limiting value at each interior node .

(i.e., z is continuous in these points) then z E (D).

Proof. It suffices to show that z E Co((0,1) 2). Let x E (0,1)2. If x
P

lies in the interior of an element then z is obviously continuous at x.

The other possibility is that x is a common boundary point of (at least) two

elements, A and A* say. There are two cases to consider here: (i) x is

a vertex of A or A*. In this case the hypothesis guarantees continuity.

(ii) x is not a vertex of A or A*. Case (iii) of Lemma 3.1(a) must then -

apply. Quite generally we may suppose that IAI C IAI, so A* A is an

edge, (P1,P2] say, of A and is contained in an edge of AC. The limit

of z on _[P,P21 from within A is a linear function, as is the limit from

within A*. But, by our hypothesis, at P1  and P2  these limits must

agree. Thus they must agree througout [PI,P 2], and so in particular at

x. The continuity of z at x follows. .

Theorem 3.3.

(a) For any proper node P there is a ;p EP() satisfying

1 if Q P

0p(- (3.1)

0 if Q is a proper node, Q 4 P.

In addition p 0 everywhere.

(b) If (p E R(D) and P(P) - 0 for all proper nodes P, then P = 0

(In particular, the 4P are unique). / .*'..

(c) {p: P a proper node) is a basis for U(V). In fact, for any

-(D), =  o(P)p41  where denotes summation over all proper nodes
P P

P of V.

- ° o o . . ~ ~...... . . .......... . °. ° .. .. o . .. . . .. . .
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Proof. (a) We shall construct a function z E L2 (0,1) 2  which is biliear on

each A E D. Arrange the elements of V in order A1 ,...,A m  where 0

IA i I (J 19...,m-1). Suppose that z > 0 has been defined on each

A for j < n. To define z on An it suffices to specify the limitingjn

values of z from withing An at each vertex Q of An: 0

(i) If Q is a proper node, then set

I if Q- P
z(Q) -

10if Q P

(ii) If Q is improper, then by Lemma 3.1(b), Q lies in the p

interior of an edge, [P1,P21 say, of some unique element A*

with IA*t > I& I. Thus A* " A for some j < n and we mayn

define z(Q) - z*(Q) > 0 when z*(Q) is the limiting value .

of z at Q from within A*.

Thus we are able to define z > 0 on An• It is clear from this method

of construction that z has a well defined limiting value at each node of

D, and so by Lemma 3.2, z E (D). Obviously if we set 4p= z, then

)p > 0 and (3.1) is satisfied.

(b) Again arrange the elements of D in order of nonincreasing size.

Suppose that (p 0 on all A; for j < n. Consider any vertex Q of An.

If Q is proper then (p(Q) - 0. On the other hand, if Q improper, then
P

again by Lemma 3.1(b), Q lies in the interior of an edge, [P1 ,P21 say, of

some unique element A* with IA*I > IA I. Thus A* - A with j < n.
n

But P - 0, on AP and so P(Q) -0. Thus (P -0 at all vertices of
I

An, and therefore T -0 on An.

(c) This follows readily from (a) and (b).

. ...

°o .° , m . • . . . . .. . . . ... .° • . *. •. . ,. • • . ° ° ° . °. . .- ° , . . .. - ° . . - - . . ... o • ° "..°'
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Corollary 3.4.

(a) {P: P a O(0,1)2} is a basis for 10(V). M -

(b) I 4 ,p 1,p[ 1.

P

(c) On any A E D, IDj4pI D - (i ( 1,2).

Proof. This follows readily from the Theorem 3.

Theorem 3.5.

(a) Supp(4p) closure {x E [0,112: p(X)W 0} is the union of a

(whole) number of (closed) elements.

(b) Supp(4#p) is "connected" in the sense that if A', A" E supp Jp

then there exists a sequence of elements A' - A0 ,...,A s - A" such that:

i) A S supp 4p (j O,..,s)

(ii) The pair Aj. Aj+l share an edge of the smaller of the pair

(j-

Proof. (a) This follows from the simple observation that if a bilinear

function on an element A vanishes on K S A, then either K - A or K is

a (one dimensional) curve.
r

(b) Let supp 4 - U Ak. Assume that lAki 0 tAk+l , k = 1,...,r-1.
k-i A" k

It will suffice to show the result in the case A' A1 .

First we show that one of the vertices of A1  must be P. Suppose that

this is not the case, and let Q be any vertex of A1 . If Q is proper,

p(Q) " 0. So at least one vertex, Q say, of A1 must be improper with

41 (Q) # 0. By Lemma 3.1(b), there therefore exists an element A* with Q
p

lying inside an edge of A* and IA*1 > IA11. Since Q E A* with 4ip(Q)

0, it follows that A* S supp 4p. But this contradicts the maximality of

A 1 .
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Next notice that any element with P as a vertex can be "connected" to

A either directly (if (iii) of Lemma 3.1(a) applies) or indirectly by way of

one intermediate element (if (ii) of Lemma 3.1(a) applies).

We now prove the result by induction on k. Suppose that we can "con-

nect" Ak to &I for all k 4 J, and consider Aj+1 . If P is a vertex of

Aj+I, then by what was said above, Aj+ 1  can be "connected" to A1,. If P

is not a vertex then at least one vertex, Q say, of Ar must be improper-2

with 4p(Q) # 0. From Lemma 3.1(b) it follows that there exists A* ( D

with Q E A*, 1A*I > IA .lI and A* n aj+I  an edge of Aj+I . Clearly

A* £ supp 4p, so A* - Ak  for some k 4 J. Thus Aj+ I  can be "connected"

to A1  by appending A j+I to the connecting chain for Ak. 0

For any proper node P we shall refer to OP Interior (supp(dp)) as

the star of P. We shall also make use of the following notation:

VP {A E D: A ¢ supp(4 i)},

U{y: y and edge of some A EVp, Y a p}

0 1

-r
0  r* u-P

- u

The three tuple <P,Dp,r> will be called the star tuple of P. Note that

1
the star uniquely determines Q., r*, rp and rp. For instance

9 l Int( U A),A(Dp 
:.

- U ( A- Qp).
AE VP

::... %**.:. .
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Furthermore observe that whether or not an edge contained in p is primitive

can be determined from Vp alone.

Let us also introduce the notation

"* =OU{y: Y and edge of some A E V, y 3(0,1)21,

r = r* U 8 0.

Lemma 3.6.

(a) If A E D (and D contains more than one element), then A E D -

for some interior proper node P.

(b) r*- U r.
P P

(all proper nodes) .

(c) 80 = U rp.
pP

(all proper nodes)

Proof. (a) An easy induction on the refinement process used to construct the

mesh shows that for any element at least one vertex is an interior proper

node.

(b) Clearly r* r*, so U r* r*. For the reverse inclusion:
P ~P P

Suppose y is an edge of A with y j 80. Let x be the midpoint of y. By

Corollary 4(b), 1 *p(X) - I. So for at least one proper node P, Wp(X) .
PP

0. It follows that A E and y 8Q.

(c) Again it is obvious that U p 810. To show the reverse. Let
P

PPT be an edge of A E D. Then by (a) of the len-, A E D p for some proper

node P. o

Suppose y is a straight line segment which when extended to infinity in

either direction divides 2  into half planes and - Let x E y

.. ,,. :....-.-..-....,....... ".-.. .. ,-. ..........-............. ... '.....•....,........ ..........-.-
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and suppose v - (vl,v 2 ) is a sufficiently smooth function defined in S+

+ .+ A()H=it fn {y: Ix-yl < el and S- = n {y: Ix-yI < E}. Let n and n be

the unit normals to y pointing out of (+ and n- respectively. We

shall define Iv.nl at x by

Iv.;] lint v(y). (+) + lint v(y).4(-).
y+x y1x

YES(+) yES(-)

Lemma 3.7. Suppose z E C0(Qp) is bilinear on each A E Vp. If

[Vzn] - 0 on each y E p* then z is bilinear in Qp.

Proof. Let A' be any element of Pp. The function z is bilinear on A'.

Extend this bilinear function to all of Qp, and call this extension z*. We

claim that z - z* on all elements of Dp. To show this it suffices by

Theorem 3.5(b) to show that if z - z* on A, and the pair A1 , A2 share an

edge, y say, of the smaller of the pair, then z = z* on A2. But this

follows readily since Mi) z is bilinear on A2, (ii) z is continuous

across y, and (iii) y E F* and so the directional derivative of z normal

to y is continuous across y. 0

For any A E D define QA, the influence region for A by

Q - Interior U supp
AP

(AE P)

Introduce the notation VA , {A* E D: A* E U supp 4,p} and rA {Y: y
P

AED

an edge of some A* E PA' y a 00). The three tuple (,DA,FA> will be

called the influence tuple of A.

. .. -
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1.4. We shall now introduce a restriction on the "spread" of supp((p)..
P

This restriction will be essential for our analysis later on.

For any set S S R2 let ISI w max sup Ix -Y 1 .
i-1,2 x,yES

Let K > 1. A mesh D is called a K-mesh if for each proper node P

1supp(4,p) 1 K min IAI. (4.1)
AEDp 

..

For any K > I there are certainly meshes that are not K-meshes. For

instance, for meshes of the type shown in Fig. 4(a), supp(QO) is always the

Figure 4(a). Example of a mesh which is not a K-mesh.

shaded region, yet the minimum element size can be made arbitrarily small by

continuing the refinement process sufficiently far. The K-mesh property is,

in some sense, only a local property as it permits many natural forms of mesh

grading. For instance, the grading pattern of Figs. 3(b) can be continued

indefinitely without violating (4.1) with K -2.

.. . . . .. . . . .. .

*' -
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Figure 4(b). Example of a K-mesh with refinement.

[It is conjectured that the above definition of a K-mesh is equivalent

to: There is L > 1 such that if A,A' E D and A n A, o0 then

L-  ( IA'I/IAI ( L. (4.2)

By equivalence here we mean that if (4.1) holds then (4.2) holds with L =

L(K); and if (4.2) holds then (4.1) also holds with K - K(L).]

In what follows we shall always assume that the mesh D is a K-mesh.

We now state some important properties of K-meshes.

Lemma 4.1. Suppose D is a K-mesh, then there exist C = C(K) > 0 such

that

(i) if A E "DP CIAI ;o max IWI.
A(O

P

(ii) If P is a proper node, card Dp 4 C.

(iii) If A E D, card{P: A E Dp) 4 C.

(iv) If y is an edge of an element of D, card{P: y C.Pi~
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(v) If P is a proper node, card{Q:Vp n VQ v 0) C C.

(vi) If A* E V, card(A: A* E V} C C.

(vii) If y is an edge of an element of D, then there are at most C

nodes on y.

Proof.

(i) max IAI 4 lsupp 4p i K m IAI.
AEVD AEVP P

2

(ii) card(Dp) 4 2p 4C K2
min IAI
AEVD

(iii) If A E Vp, then Isupp ,pl 4 K min lA*I < KIAI. So
A*EVp

U (supp ,p) S QA where QA is a square with centre at the
P

(AEVp)

center of A and side 2(K-1/2) IAI.

Now if A' E U Dp, then A' and A are elements of the
P

(A(VD

same Vp for at least one proper node P. So

I"-21 1 2

.- " o-

Thus card( U )< IQA1 2  4 (K - -)2
P.,. ~(AEVp) .-.-

But certainly card( U Vp) > . card({ P: A E Vp}) since P

P P) 4P
::: (AEVp).-.

must be the vertex of at least one element of Vp and, of course,

no element has more than four vertices. Thus

2 1 2
card{P: A E 4p 16 K (K -

P
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(iv) y can be an edge of at most two elements. By (iii) each of these

elements is contained in Dp for at most C proper nodes P.

Thus y can be contained in r for at most 2C proper nodes P.
P

(v) By (ii) there are at most C elements in Vp, while, by (iii),

each such element in turn belongs to a DQ for no more than C

proper nodes Q. Thus Dp n DQ 0 0 for at most C2  proper

nodes Q.

(vi) By (iii), A* is contained in supp %p for at most C proper

nodes P. For each such node in turn, supp 4@p can contain at

22
most C elements A. Thus, card(A: A* E D A }  C2

(vii) If Y is on 6(0,1) 2  then the endpoints of y are the only nodes

on y. Otherwise suppose y is an edge of A. Since 4P - 1,
P

at, say, the midpoint of y, then for at least one proper node P,

4P > 0 at the midpoint of y. In fact it follows that 4p > 0

everywhere on y, except perhaps at an endpoint. Any node on y

must then be a vertex of an element of D.. By (ii) the number of

such elements is bounded. o

We would expect that many stars Q are essentially identical except for
P

a translation and scaling. Indeed, as we shall see in Theorem 3, there are in

fact only a finite number (depending on K) of stars up to translation and

rescaling. To set the scene for the result let us consider an arbitrary

2 2proper node P. Define an affine transformation R R2

W (max (x- P).

A(D

, -. ..- -, . .... ..
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It is readily verified that v (P) -0 and max IT (A)t 1 1. We shall

consider % to map the star of P onto some "standard" star. The mapping

v ill be referred to as the star transformation of P. Let us set

o P

(a) Af )I1

0 or 0

r r u r0
0 0 9

4,0 4P 0 P

0The two-tuple <Do, r > will be called the standard star tuple of P. With a

harmless abuse of notation ye shall refer to members of Do as elements and __

*their (closed) sides as edges. Notice that Q%, r*9 r0  and r can be

reconstructed from 0D~ in much the same way as .,r r and r

* can be expressed in terms of star tuple of P. Somewhat less obvious is the

following result.

0*Lemma 4.2. 4. is completely determined by <vor >.

Proof. This is clearly the same as saying that if V is a mesh and P is a

*proper node of D, then 4P is completely determined by <F, P9r >. To show

this, we shall construct a function z E M-(D) using only our knowledge of

0*<PVp 9r >, and then prove z 4,

............. * :P--.* * * .. *
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ri< Arrange the elements of Dp in order of nonincreasing size,

AA 2 ,...,Am* say. Suppose that z has been defined on each A; for j <

n. To define z on A it suffices to specify the limiting values of z
n

from within A at each vertex Q of A
nn

(I) If Q = P, then z(Q) - 1.

(II) if Q P:

(1) If Q E 6, then z(Q)" 0.

(ii) If Q E OQ and Q is proper node (in the context of the

(iii) If Q E Qp and Q is improper (just as in (ii), this can be de-

termined from Pp alone), then by Lemma 3.1(b) Q lies in the

interior of an edge [P1,P21, say, of some unique element A*

with IA*j > An1. In our present case A* E Dp and so A* - A

for some j < n and we may define z(Q) - z*(Q) where z*(Q)

is the limiting value of z at Q from within A*.

This enables us to define z on each A E VP. Define z on the

remaining elements of D to be identically zero. By the above construction

z has a well defined limiting value at each node of D, and so by Lemma

3.2, z E (). However z satisfies (3.1), and so by Theorem 3.3, z

Theorem 4.3. There are at most C - C(K) standard star tuples <D0,'r>.

Proof. It will suffice to show that there are at most C possibilities

for Do, since once D0  is known there are only C possibilities for

0r0. ( D0  has at most C elements and each such element has no more than

0
four edges. r0  must be the union of some of these edges.) Since0 .-
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I U Al X ian JAI 4 K,
A (DooA,°-

U A must be contained in a square with centre 0 and side 2K.
Let a be an integer such that 2m> K. Let Q be a square with

centre 0 and side 2a 1. Define a uniform grid on Q of grid size 2- .

We claim that each A E V0  consists of a (whole) number of grid squares. If

we can show this, then the theorem will follow at once by simple combinatoric

considerations.

Firstly note that for any A EDO , certainly JAI = 2-  for some integer

C 0. Moreover,

IAI min IA'I -JI U A'I > 2 "m

A'ED0  A' ED0

and, of course,

IAI C max IA'I - 1.
A'ED00

In particular, if (0,0) is a vertex of A, then A must consist of a whole

number of grid squares. To prove this result for an arbitrary element of Do,

it will suffice by Theorem 3.5(b) to show that whenever the pair A*, A** PO

are connected in the sense of Theorem 3.5(b) and A* consists of a whole

number of grid squares, then so also A*. But this follows readily on

recalling (iii) of Lemma 3.1. 0

We also shall need standard forms for the influence tuples. To this end

2 2for each A E D define an affine transformation TA: Rt 4 R

A(x) " 12 "-

-. 9o

W. - oA: ""; A 2
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where is the centre of A. It is easily seen that TA(A) = [0,1]2. Just

as for the case of star tuples we shall consider -r as mapping the influence

tuple of A onto some standards reference tuple. Let us set

-, {r b(A*): A* E VA} ,IS

-. oCr ..

The two tuple (V,,r,> will be called the standard influence tuple of A, and

clearly Q, can be reconstructed from the standard tuple: -

-l Int( U A).

AEV*

Akin to Theorem 4.3 we have

Theorem 4.4. There are at most C - C(K) standard influence tuples <V,,r,>.

Proof. It will suffice to show that there are at most C possibilities

for V,, since once D, is known there are only C possibilities for r,.

(By (ii) and (iii) of Lemma 4.1, D, has at most C elements; r, must be

some union of the edges of these elements.)

To prove the claim for v,, we apply an almost identical argument to "'""'

that used in Theorem 4.3. 0

1.5. For later use we shall need to know something about the approximation

properties of the finite element subspaces W(V) and M0 (). In this section we

shall prove some results in this direction. The methods of proof are more or

less standard, the only real difference arising from the fact that the star

-9.- -'-

-I'.~ ~ ~ ~ ~ ~~~~~~~~~~~~~•. :.............................................
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Q may spread further than just those elements adjacent to P. The K-mesh

assumption however restricts this spread and allows us to retrieve much of the

standard theory.

Lemma 5.1. Let <D,,*> be a standard influence tuple. There is a constant

C - C(Dr*) > 0 such that if z E Hr(Q,) (r - 1,2) and z -0 on r*

then

inflz-qI ( CIZI (5.1)
qQ .1

where Q is the set of all polynomials of degree r- 1 on Q, which vanish

on P,. By 1-1 Ir, -I ) we denote the usual Sobolev norm (seminorm).
rQ r,Q

Proof. Suppose not, then we can find z(n) (n = 1,2,...)

inflz(n)-qlr, > nlz ( n ) IL52

qEQ rQ. r.Q

Without loss of generality we may as well suppose tha:,

inflz (n)-qI - 1 (5.3)
qEQ rQ

(by taking suitable multiples of the original z(n) if necessary) and

Iz(n) I < 2 (5.4)
r,Q

(by adding a suitable qn E Q to each of the original z(n) if necessary).

From (5.4) we can conclude using Rellich's Lemma that a subsequence of the

z(n) converges in Hr-l(Q,). We can suppose that this subsequence is the

entire sequence (by deleting members of the original sequence if necessary).

But from (5.2), lim I(n) , 0. Thus z(n) converges in R
Ltn-'e rO (a')

Let z be the limit. Obviously, Iz()r, - 0, and as g is connected
r.----.

. . . . . . . .~ '.. ~ ! ~ ~ . . . . ~ i. ' .- .i
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(this fact follows readily from Theorem 3.5(b)), the only possibility is for

z( - ) to be a polynomial of degree r - 1 on Q*. Moreover, z(  = 0 on r

(since taking traces is a continuous operation in flr(Q*)). Thus z E Q.

But this contradicts the limiting form of (5.3). -

Theorem 5.2. There is a constant C > 0 such that for any z E Hr(0) fly 0

(r - 1,2) and any K-mesh V, there exists a function z E7 i0(D) such that

Iz-xzl ( CIAIr- Izi (i 0,1; AE D). (5.1)s,A rQA t

Proof. Let p(t) be a polynomial in one variable satisfying f p(t)dt - 1
1 0

and f tp(t)dt - 0. For any e > 0 define
0

i (tle) t E [o,r l  .- :.

- p(-t/) t E [-C,01

0 It, > C.

For any proper node P of D set

C min lt"
AEE p

and Sp - {Ix(Q: Ixi - Pil < EP, i 1,2). Our choice of ep guarantees

S C Qp. For any y E HI(Q) let

Yp f y(x)Op(x -P)o (x2-P 2 dx/ f dx (5.2)
S -P )(C S2

and define".--?

i o --.

P

~, -. *.*.- *- ~ -~ ... .:.*.. .-. ..-.-.-.-.- ,-,

P P° ,..-

and. define
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Clearly (Corollary 3.4(a)) iry M ()

We shall nov prove (5.1). Suppose A E D and let <D*,r*> be the

standard influence tuple of A, and, as usual, write Q - Interior ( u tA).
AEVD*

Then

Iicy 18,A 4IYP ,P

0

4 C IY PiIAI -
P

(P60) ..
ADP

by Corollary 3.4 (b) and (c). However, from (5.2)

IV FP 'O's 4 IAI-lylO'sP

* whenever A E Vi,. Thus

lInyls, 4 C lyl 0 I A -s 4 CIAI -sly '

* ~ ~~ to th unt(qar.(53)b)oe

01-

to th uniy 0qae (53 1)bCcomes'rQ ~ (54

Iny T 1-4 Cy 0
A 2 A.'

and. . . . . . . . . . . , so .. -
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If C is a polynomial of degree r - I on 9A which vanishes on

r, then C can trivially be extended to all of o. Direct calculation shows

that %C C. Thus

I0 'TA i z 0 'A1 18012 - inftI(z4-K) 0 -a :(z+C) 0oA
s,(OI) s,(O,)2

(5.5)

4 infl(z+C) o D-r1
C

-1-

by (5.4). But clearly as C ranges over all possibilities C 0 ranges

over all polynomials of degree r - 1 on Q, which vanish on r,. Thus by

the result of Lemma 5.1,

inflz0A 0-o I .Q, 4 CIz 0 'rAlr,. (5.6)

Combining (5.5) and (5.6), and rescaling back to A gives the desired result

(5.1) upon noting that the constant in (5.6) can be taken to be mesh

independent by Theorem 4.4. o

Corollary 5.3. There is a constant C > 0 such that for any K-mesh D,

(i) If z E Rr(o) fl M0  (r - 1,2).

IZ-Igzl Ch()r-S9zA r (s = 1,2)s ,Q :r'Q.:

(ii) If z E a (Q) n m0

2 2p4 (z-nz p C1 CzlIo" .:

P 1,0,

Proof.

(i) It follows directly from the theorem that

, ".. ...... - .'-..'. -... "..- ". - . -. -.-...............................................................-............., -. -.-.. '.-..-..
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2
I z-xzl I < Ch() A Z 2,Q

r- s< Ch(V) IzAr ,Q

by (vi) of Lemma 4.1.

(ii) if A E Dp then the theorem and Corollary 3.4(b) arnd (c)0

shows

I(z-1rz)I1, lA C( max supID 4P llz-rzA + suij( I IZ-1tzlA
P1-1,2 xEA PO xEA 1A

On the other hand, if A D V then obviously

I( P(z-nz)IulA .0

Fixing A, squaring and suimming over all proper nodes P gives

2 2
I( (z-1rz))l <iA CliI 1

by (iii) of Lemma 4.1. The result now follows, Just as in (M, from (vi) of

Lemma 4.1.

We shall also need a lower bound on the approximation power of MMV. To

this end we prove the following lemma.

Lemma 5.4. Suppose that z E H'(Q) and that there is an open disc D 9

where

Ci) z E C()

(it) max inf ID it zWI > 0. (5.7)

1-1,2 xED

Suppose that the mesh V satisfies for some r 0
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min IAI > ch(V). (5.8)

A(..

AMV

Then there are constants C, ho  such that if h(V) < ho,

inf Iz-vI > ch().

Proof. Certainly

inf Iz-vI 2  2nf .2

v (AE w z-w I,A"
(w bilinear on A)

. inf z-V+ 2 (5.9) .
MV w 1,AAED w ..

&ED (w bilinear on A)

On each element A c D, we can expand z as a Taylor series about the

centre, x say, of A,

Z(X)- w + D11 z(x) (xi -xi) + r(x) (x E A)

where w is bilinear on A and

-3 -2
Ir(x)l 4 Ctx-x l3  I Dr(x)l Clx-xl2 (" 1,2)

for some constant C, independent of the particular A under

consideration. Writing

12

2- + Diiz(x)(xi-xi)2

we obtain using the finite dimension of the classes of functions involved

..,- ,.-.-.. . .. . .. .., . . . . .. . . .... * ... . . , .+.-...+.... . .. ... ,.... .- =..=.....:.
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2 2

w bilinear on A

where C* > 0 is independent of A by (5.7). Hence

iaf liz-wi inf 1.-wl - r(x)E

(w bilinear on A) (w bilinear on A)

2 - I 3

> CIAI

for h(V) < ho, and hence JAI, sufficiently small. Therefore (5.9) enables

us to say

inf lz-yE2  > C IA!4

vEV(V) AED

AED

>Ch(V)2  I A1 (5.10)
AEV

AEF

using (5.8). Note however, that for h(V) small enough, D* c- U A where

AED

D* is a disc concentric with D but of radius half that of D. Thus

SIA!2 > area D*, and the lemma follows at once from (5.10).
A ED

AD

Let us remark that the hypotheses of the lemma are not very demanding at

all.
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2. The A-posteriori Error Estimate

2.1. For each proper node P of V, define

{v E R(Q): v o on r}.

(Clearly by extending functions in Mp by zero to the remainder of Q we can

consider S HO). We shall associate the following local subproblem with

the proper node P: Find n p E Mp such that

b(np,v) - b(u-u,v), v f H. (1.1)

After an integration by parts the right hand side of (1.1) can be written out

explicitly in terms of the input data of (1.1.1):

b(u-u,v) I . f (f-L(u))v dx- f, a(u)-n v ds
AEVp A r

(1.2) . ""-

+ f (t-a u).n)v de.8'€Q

0 2

Note also that as long as P 80(0,1)2, then ,pE M 0(D), and that

therefore

b(u-u,cJ,) = 0 (1.3)

by the usual finite element error orthogonality relation (1.1.5b).

We are now able to state and prove the fundamental error estimate of this

paper. This result will allow us to estimate the global finite element error

lu-UIQ in terms of the solution n of the local subproblems (1.1). The

basic ideas behind this estimate were first presented in [6].

.. .. .........
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Theorem 1.1. There is a constant C > 0 such that for any K-mesh

/2u 1  4 C(I I (1.4)
-: P P "-"'P

where denotes a summation over all proper nodes P of D.

P

Proof. (M) The right hand inequality: By the coercivity of B (see

1.1.4c), and the finite element error orthogonality relation (1.1.6a), we have

for any V E M0(D)

-2
1u-zi 4 C b(u-uu-u)

4 C b(u- ,u--V)

C C b(u-.( pl))(U--V))

P _

since 4 p 1 by Corollary 1.3.4(b). Thus,

p2

Iu-ul 1 Q C b(u-u,4p (u--V)).
PP

p 1

But 4p(U-u-V) E Mp (certainly p(U-i-V) E H (0i); for the trace behaviour

2note that if P % 8(0,1) then p 0 on b, whereas if P E 69 then

u-u Vin0 on na8(0,10 while 4P, 0 on fng). Thus

ri P
b(ur- ,,p(U---V)) -b(-np,4,p(U-u-V)) i "V

and we have

Iu-uI C Ib(r1p,)p(u--V))I

1,0 P

2 1/ 2

p I2 Ip 2 -"Q

- " -'. . .



42

2 )1/2 u-ZuI±,w C,-p,Q

on making the particular choice of V described in Corollary 1.5.3(11).

The left hand inequality: Let us partition the set of proper nodes

of D into disjoint classes Xj ( 1,...,J(D)) say, with the property

that whenever P,P' E Xj* then f , - 0. It follows from Lemna 1.4.1(v)

that we may always ensure that J(D) 4 C, for some mesh independent

constant C > 0. Now

b(u-- , n+rp) " b(u- ,rp) :!

P P

- P

p p "-

by the coercivity of B over Mpc MO  (1.1.4c). But

J
Ib(u-u, < )t CIuuI1, Q I I I P '1,Q

P J-i P Xj

-'- ,T2 1I/2

' C lu-u oJ Q j 1 I?1 IQp )1.2

"'!' J 2 )1/2- :"
...... < c u-uPl, oil P1 2:i

I a Pi +'-
J- P P

p 'p

The left hand inequality now follows. o
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* The significance of this result is that within the class of K-meshes the

ratio - (U. In1 /2 /2u 1  is bounded above and below (away from zero),
P

independently of the global mesh refinement pattern (as long as the K-mesh

property is maintained). Note also that Theorem 1 demands no assumptions on

the regularity of the solution u (other than it lie in M0 , of course).

However the practicality (1.4) will depend on whether the solutions of

the local subproblems (1.1) can in some sense be effectively estimated. This

is the matter that shall concern us for the remainder of this section. Our

main result will be Theorem 4.5 which will turn out to estimate the Tjp'S in

terms of the "Jump residuals" [a(Z).nl across the interelement

boundaries.

2.2. In this and the following section we establish some preliminary results

which will be the basis of our effective estimation of In"llQ. We shall be

working initially with a version of the subproblem (1.1) "standardized" to the

standard star tuple <D0,rg>. We now describe this standardized problem: Let -

S {u E H (): u 0  on rg}

and consider a continuous bilinear form A0: Mo Mo_ -' R which satisfies the

S.-conditions

"-:: I~~aO(u,v)l < P-lul , 0 "-:'.
uv

1A (u,u)I lu2

• . . . . . . . . .•".

-.-. '.- o- O . o . o - o O .o . - . ,0 " . ' o '. - . - . ' . . . o . e . . " o . - o -



44

for some > 0. Corresponding to any R0 E L2 (%O) and r0 E L2(r0 ) let

T1O H0  be the solution of

A0(n0,v) "f Rov dx + f r0v ds, v E MO.  (2.1)

9 r0 0

Let (P E M0  be a function with the properties

M(i) 0 on 909 (2.2)

(ii) for some 6 > 0, ( P 6 on some disc contained in go.

* Finally let Go . L2 (Q0 ) and g0  L2(r0 ) be finite dimensional subspaces.

Lemma 2.1. There is a constant C -C(V) > 0 such that for any v E No 7

OIl ,, < CIVIl,0 '.:0 0 9

and provided r0  0
0

1v0g

Proof. The first estimate is a standard trace result, while the second is a

Poincare-type bound on the L2  norm in terms of the R, semi-norm. "

0

LemmA 2.2. There is a constant C = C(lP',,rg) > 0 such that -

I10ll,g0  4 C(IR%10 ,0 + Ir01o,ro).

Proof.

h1 I0 I ' Q0 4 C A0 ( TI0 ,Sl) "';

C If R nOO dx + f ro0 dsI
0O ro . 2.-

C(IIo, Q o'og + noIo,ronrooro).
0 00 '0

S.~ - -- ~ 4 4. 4.
. . . . . . . . . .. -. -*-. -..-.-...
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By Lemma 2.1, 'oor 4 'nol, and of course InOlo% a 4 In1,00 0 0
The lemma follows Immediately.o

Lemma 2.3. Suppose Go and go are finite-dimensional subspaces of

L90)and L2(ro ) respectively, then there is a constant C

-c(P,v 0,r0,G03 g0 ) > 0 such that if R0 E Go and ro E go then

I no I1,Q > C(1R010 g + fr010 r
0 '0 '0

*Proof. Suppose the result does not hold, then there are sequences n~')

and r4n), (n -1,...) from Goand go respectively, and corresponding

solutions no of (2.1) such that

1n (n) (n)
I I ( I + Ir0 1r) (2.3)

We may without loss of generality assume that

Q'Q 0 0 O,r 0  7-.(24

Inpriclr (n) 1n an 4 1. By the finite dimensions

'6 'o' 6 Er o,r0

of Goand go we may suppose that

R(n) RE i

and

r (n) . r E go in L(

0 2 0 . .
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Let Tj be the solution of (2.1) corresponding to R and r. By Lemma 2.2

applied to (-(n))

I1" 1 4C C(IR-R I30  + Ir-rni I +0 0;1, go-' 0 0

(n)but by (2.3), nn  + 0 in 1-1 and so we conclude that 1 = 0.

Thus for any v E MO

0 - Ao(,v) - f Rv dx+f rv ds.

But this can only mean that R = 0 and r - 0. However this clearly

contradicts the limiting case of (2.4). 0

Lemma 2.4. Let Go  and go be as in Lemma 2.3, then there is a constant C

- C(g0,Fr0 0, 0,g 0, 0 ) such that if R0 E Go, r0 E go and p E P0  (the set of

constant functions on 0

11o1Oo 4 c(Iromo,r + 1Ro-PB0,0  + If R 0 o dx + f ro 0 dsl).
0 0

Proof. We shall again argue by contradiction. So suppose the result is not

true, then there are sequences Rn) r~n) and p(n) from Go, go and

PO respectively, such that

BR(n)U (r0n)1  ,R0n) f r) ""00 0,Q 0  n( r + - + If R(n)PO dx + f r(n)( 0 dsl)O,ro 10,0 0 0  0 0 0

(2.5)

where we can suppose that

I I(n) 10 O 1. (2.6)

.. .. . . . . . . . . . . . . *',

---. ':,-"- ._%:,.5.,'-L.:'. ' '-" -" "-.."- -" :'." -. "-'.-''. -'"'. " . . . . . . .... "."..'"...".".."."',".".".,.""--.."-..
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By the f inite dimension of Gowe may as well assume that R(I0 + R E Go in

*L(Q) But by (2.5), IROn - I()0  + 0. Thus p~n + R in L (0)

*But P0  is certainly a closed subspace of L2(00) (since it is finite

dimensional), and so Rt E P0 , i.e., R is a constant on go. Now (2.5) also

* shows that r (n 0 in L (r) and that020

If (n), x+ f r0n( pdsl;+0 as n* + Thus we mustbhave

0or

0 lIJ. (Pj dx -f Rq0o dx.

The only way this can happen when (P has the properties (2.2) and R is a

*constant, is for R -0. But this contradicts the limiting case of (2.6). o

09 Lemma 2.5. There is a constant C -C(%,%-D) > 0 such that for any z E B 0
00

inf IDz-pi 0  < j Jz + (f [zn 2 dsfr'21 (2.7)

PEb AE Do 0
F0

where Dz denotes any (element-by-element) zeroth, first or second order

derivative of z.

Proof. Let M - z ES :Dz E Pol. Clearly the quotient space B0/M is

finite dimensional, and (2.7) will follow if we can show that both sides of

(2.7) define norms on Ba/N. In both cases it clearly suffices to show that

if the respective quantity in (2.7) vanishes then z E M:

Mi The left side: If inf Uft-p1 Q0  M 0, then Dz is a constant on
PE P0 '

gosince P0 is finite dimensional and hence closed.
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(Ii Th riht ide If ( ~2 1/2
2 e =Dz 0, then Dz is constant on

AEV 0  2
each A(D0. On the other hand, if 2 Vz.nJ ds = 0, then [Vzo.-.

f o l ds-, ten-vz- I
0

0r 0"-: %

0
0 on rot and so by Lemma 1.3.7 z is bilinear on o .  In

particular, Dz E C 0(o). The net result being that Dz E PO. "

We shall now relax the requirements of Lemmas 2.3 and 2.4 that R0  and

r0  lie in the finite dimensional spaces Go  and go. Instead we shall

require that they can be approximated from within these spaces.

Lemma 2.6. Let Go  and go be as in Lemma 2.3, and suppose that

inf IRO-R*E0,g + inf Iro-r*H e. .
R*EG 0 r*Eg0  '0 0

Then

(i) there is a constant C C(,%0,ro,0,g0 ) > 0 such that

c-'(IRuO, + lroI O,ro-e) 4 |I, C(IR1, 0  + Iroor)
0• o0 0 o° -'.0

(2.8)

(ii) there is a constant C C(o0,D0 ,r0 ,G0 g0,9,0 ) > 0 such that if

f R0 0 dx + f r0 0 ds - 0 (2.9)

then

IR010,go ( r ,010,r0 + inf IR o-pi ,90o+(2.10)
0  PEPO O %

Proof. Choose R* E Go and r* E go such that S o

.•*°- "o-
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OR o-R*I10 0 0 + Ir o-r* I or 0 2e. Let n*~ be the solution of (2.1)

corresponding to r* and R*. Applying Lemma 2.2 to the difference (r0 -rI*)

we get

I n0-*li,Q C C(|Ro-R*|0,o + Ir0-r*0r0)

Using Lemma 2.3,

RoIO,Q0 + IroIOo 0 4 R*I, 0 o + Ir*o 0  + 2c

< CIn*l1 1,Q + 2E
0

c(Inonl,ao + )-

0

proving the left side of (2.8). The right side follows from Lemma 2.2.

For (2.10) we have

IRON0,0  4 IR*(0,0 + 2e
0 0

while Lemma 2.4 gives for any p E P0

R*IOo 1 C(Ir*lOr + IR*-p 0I + If R*%0 dx + f r*40 dsl)
0'0 0 9 r

< C(Ir I + + If R0 0 dx + f r04,0 dsl + e)0 0 0 r0>:
'0 0

4 C(nr 0 0 ,r0 + IR0-PI,Q0 + E)

by virtue of the orthogonality relation (2.9). 0

. . . . . . . . .. * . . . . . . . . .
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2.3. In the last section we considered a "standardized" form of the local

subproblems (1.1). In this section we extend those results to the actual star

tuple <P, p,rp>.

For any proper node P with standard star tuple <DorF>, let

:2 + 
2 be the star transformation of P (see §1.4), that is

x)= W (x-P)P~ P

where P Pp max IAI. (Notice that P € 1.)

AEDP

Corresponding to the finite dimensional spaces Go  and go of §2.2 let us

define

Gp {v E L2 (Q): v 0 E G c L2(9

-1 -- 1

g = (v E L2 (.): v o E T? g0 }c L 2 (rp).

At this stage it is convenient to consider a more general version of (1.1):

Find E Mp such that

b(n,v) - f Rv dx + f rv ds, V v E Mp (3.1)
Op r"P

where R E L2 (QP ) and r E L2(rp)."

Lemma 3.1. Set

C p inf IR-RI 0  + / inf Ir-rl (3.2)
REGp P rEg - P

then

pL

. .. . . , . . . . . . . .. . ... - . . .- .. .. : . ,. . , - .
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(I) there is a constant c -c(V 02r0,G0,g0) such that

-1 II + / In0  -e) Ini1  < C(PPIRI 0  + 1/2 fr )

0(ii) there is a constant C -C(V 0,r0,.Gogo) such that if

fR dx +f rdI, ds -0

then

(1/2
PP1R10O' C(P Irl + pP inf IR-pI Q + C)

oPrP PE PO(9 P) U~P

Where POO)is the space of constant functions on Op.

Proof. It Is clear that MO IV E Hi (9): v o0T E Mp}. Define a bilinear

form A0: MO x M. R by

A0 (u,v) -b(u o0p v o p).

It follows from the boundedness of b(*,*) on MPx

1A (u,v)I - b(u o T v 0 SP~

4 Clu 0 -Ph1,I IV 0 ' ,Q

2 2 2 1/ 2 24 C(p lul + lu11  ) P IVI + IvI1  2
00 ,QOQ 0  Q,

< CluE1 %lI 1,

In addition, by the coercivity of b(-,-) over Mp,

. . .. . . .. .
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IA (u,u)I - b(u 0aP u 0 'T > Eu 0 I'r Q IJ

00

> CIuI2

0
using lemma 2.1, noting that r 0 . It is readily verified by a change of

variable of integration that for any v E M

ao~ 0 T,v) -b(r,v 0 T 1) f R(v 0 T P1) dx + fr r P
Q P p

f (P 2 R 0 )v dx +f (pr o TP)v ds.

So we are in a situation covered by the analysis of §2.2 with no r~ o T

2R 0 =-p R o T and ro pr o P. Furthermore, for any RE Gp and rEgp,

we have p R 0 T E Go and pr 0 T E go with

'0 '0

-pER-R1 + p 2 Ir-Dr *

P'

By virtue of (3.2) we are now able to apply Lemma 2.6 to infer from (2.8) **.-

C 1 R0 C(pr 0 Rn + ITpr

Upn esalngbak o teatal str Q'Q

0 0 0

(3.3

............... .. .. . .. . . .
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2 2 2 _ 1 I2 + 2
~P 1, QOOQ 0 PO, 1,Q 0 % 2 h 0 Q IIlQ~ P

1,P 

p
while by Lemma 2.1 we also have the opposing bound

P o 1,O g o p 1,QO 0 C I1,Qp P C 1N, p.

Rescaling the other terms in (3.3) leads at once to (i) of the lemma.

To show (ii) note that 0 0 P 0 T. satisfies (2.2) and that

2p
f (p2R 0 TP)4- + f (pr 0 =P)4O f R, dx + f rp ds - 0.9 0 rp: i !

Part (ii) of Lemma 2.6 then gives

2 2 i 0
Up2R 0 4pOa C(Ipr o +rOr +pinf Up2R 0 TV- P10,a + C), .i":i::.f:'

Up0 R QQ Q 0  PEP0  0

where, since 41 0 is determined by the standard tuple <V 0o'o'ro>' the I

constant C of Lemma 2.6 (1i) is in fact C - C(Qo0,tOr0 ,G0,g0 ). Rescaling

to p gives the result. o

PI

2 ]2 Te
2.4. We now return to the task of effectively estimating ( I pi1 p •,0 The

P 'P

local subproblems (1.1) fit into the pattern of §2.3 if we set (see (1.2))
S

R (f-L(Z)) on each A

and
-f(u)-n1 on r* (4.1)

rI
r -, t ( ;). on I(0,1)2

t • G ° -
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To complete the framework required for applying the results of §2.3 we define

G {v E L (go): v is constant on each A E o

go v E L2C1'0): v is linear on each primitive edge y L ro}.

It is clear that Goand go are finite dimensional and that they are

determined completely by the standard star tuple <Vt 0>

Lemma 4.1:

Ci ~ 2 2A o0) as h(V) +*0.
AED ,

Cii i nf OR-RI1, o(h(V)) as h(V) -*0.

P P iEG OQ

ppii i nf Ir--rI 0 2 o(h(V) 2 as h(L7) *0.
P rEg~

(iv) There exists r* E L2(r) which is linear on each primitive edge y E r,

which agrees with r at all nodes lying on r, and which

satisfies

~ ~~rr' 2  
-2

A ~ -r1bnr o(h(V)) as h(V) -*0.

Proof. To prove Wi,

SAl2- 2 2 h2 V~u 2  2 A 2

A EV 1,9 AEP D

By the projection property (1.1.5) of the finite element solution the first

terms obviously tends to 0. For the second term
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I A1 2 lu e inf I -v 2

2,A v 1A
~(v linear on A)

SC(Iu-412  + + inf It-viA
AED t v

(v linear on A)

which certainly tends to zero as h(V) + 0.

- Nov turn to (ii) of the lemma. On each element A E Vp, R is a sum of

terms each of the form X(x)&(x) where X has bounded derivatives of all

ordrs n an ~- 1uiu rDj (i,j -1,2). We can find a constant

function e on A such that

< CIAII 1

< CIA1(IuI 2 A + IAI)>

Thus

inf IR-RI Cf rI (IA 2  ,A + I
REG OQ AEV

P p

* and so

- 2 2 (IAI21 12  IA4
pp luf ER-RI 0  4 C pp2 + )

P REG P 1 AEV 2,

-C C h(V)( IA UZ A~~ + hD
AEP 2,
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where we have made use of the fact that each element A E D belongs to a

Dp for at least one, but no more than C = C(K), proper nodes P (Lemmas

1.3.6 and 1.4.1). Part (ii) of the lemma now follows immediately on using

For part (iii), observe that on each element edge y making up rp, r

is a sum of terms of the form X(t)&(t) where X has bounded derivatives of

all orders (independent of D) and - I or a limiting value of DiZ (i -

1,2) on the edge. There is no loss of generality in assuming tha D j isii

linear on this edge. We can find a linear function on y satisfying

I?.&- o , C II2 1X&I2,_...

."y ",y.

2

I CIyi2 (I&I2,)

i-I 2 ,y .

where Diu is the limiting value on y from within an element A E Dp. We

have

IIDiul < CIAI 1/211 I2,A

and so '~ 1 + '"'+2)" .i!i
Ix(P CIAI (IAIIUIfA+II) (4.2)

Therefore p

1orc2 f I IA!2I1 4 1/2inf llr...10,rp < CpP2 u 21'2 A + IA I /2 '"'"":'':

S

and so, much as part (i), squaring and summing over all proper nodes

I.--

'...'. "- .. .... - _.- .. "". . ....*~ . .. . . -... . - ~. .* * ............... . .... - . -" . . , . -
. . . . . . . . . .-.-.. . . .. . .

-
...... _... ...... dm-+-,...++ ,++



pp Lnf Ir-ri2 0 C C P (IIuQ + A)
P rEgp oPr P MVD

-C Ch(V) 20 ' 1~2 1Z, + h(V) 2).
A2'

Again, on using (1), part (iii) of the lemm follows.

Part (iv) of the lemma likewise follows from (4.2) and (4.1), since we

may as well choose to interpolate X& at the endpoints of X.

We are now able to state and prove the main results of this paper

concerning an equivalent estimator for the energy norm of the finite element

error. Because of the coercivity of b(o,o) there is no need to distinguish

between equivalent estimators for Cb(u-u,u-u)'2 , or Iu-uE *, For

*definiteness we shall phrase our result Ii terms if the latter.

*Theorem 4.2. There is a constant C > 0 such that for any K-mesh

iu-Zii CE (4. 4a)
I ,Q

* where

E ~ [IAI 2IRI 2 + IAIrIl 2 t/f2.

If in addition for some L > 0

)uul ; Lh(V) (4.5)

then there are constants C > 0, ho > 0 such that for any X-mesh D with

h(V) 4 h

C E iu-i1 * (4.4b)
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'roof. Consider a particular proper node P and its star Qp. By Lemma 3.1

C -pp Inf IR-RIo + (4.6)% 0, r" i'
REGP P rEg. PQ

where

E2 . [IAIIRI2 + 1Al
[P AE~pOA O,6A rp. ..

A-o '.- P,

Here we have used the fact that for any A E V, D IAI PP (see Lemma

1.4.1).:""

The constant in (4.6) depends only on the standard star tuple <Do,r 0>

. associated witb the proper node P, but is otherwise independent of the mesh

or the node P. However, by Theorem 1.4.3, for any K mesh there are at

most C - C(K) < - possible standard star tuples. We may therefore regard

the constant C in (4.6) as uniform for all proper nodes P and all meshes

of the specified class.

We claim that C-1 E2 ' 2  C E2. To see this we need only recall
P

(i) any element A D V belongs to a Vp for at least one but no more

than C - C(K) proper nodes P (see Lemmas 1.3.6 and 1.4.1)

(ii) any edge contained in r is contained in a r for at least one,

but no more than C C(K) proper nodes P (see Lemma 1.4.1).

Thus squaring (4.6), summing over all proper nodes P, and using (ii) and

(iii) of lemma 4.1 gives

C'(E2-h(V)2o(1)) < I Tl C E2  (4.7)
1

Theorem 1.1 allows us to conclude from (4.7)

,.. .-'* 9:cZ-"; ..-.- . *. * *. .
I-, "* 9.. . . ..- . 9 . ... . .. *•.. . "%
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c-I(E2-h(D)2o(0)) 4 lu-l0,Q 4 C E2 .

Making use of (4.5) gives the desired result. a

At first glance the estimate of (4.4a) may not seem too surprising since ..-.

it bounds the error in terms of a "residual." Note however a simple

integration by parts of (1.2) would only have yielded

lu-l 1  C C E*

where (E*)2 - [IRIO + IAi-l rlo, Anr].

0

To obtain the extra powers of Jl in (4.4) it was essential that we

were able to reduce the estimation of the global error lu-ul, 0  to the con-

sideration of a number of local subproblems.

The estimate of (4.4) is sharp in the sense that uniformly for all K- .-

meshes

0' 0 < C- 4 E/uu-1U C (4.8)

(at least for h(V) sufficiently small). In contrast, for E*, although we

certainly have the estimate
C-1 € E*

C1 4
lu-ul1

E**

. -as h(P) 0.

I u-uN1

I'-S

V .
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Theorem 4.2 requires no extra assumptions on the regularity of the exact

solution u other than (4.5). However this requirement is hardly a

restriction at all being satisfied in all but trivial cases (see Lemma 1.5.4).

Although the estimate of Theorem 4.2 is sharp in the sense described

above, it can be simplified even furthev. It turns out that the L2  residual

contribution can be dropped from E, giving an expression solely in terms of

"line residuals," while still maintaining the two-sided estimate (4.4). This

will be shown in Theorem 4.5. It is natural to ask whether the "reverse"

simplification is valid, that is, can the "line residuals" be dropped from -

without affecting the estimate. It is not difficult to see that this cannot

be true. Consider the simple case where L(.) is the Laplacian. Then for

bilinear elements, L(u 0, and the L2  residual becomes just

( IAI2 f Ifl2 dxV) Ch(D)Nflo--
A A

if the mash D is quasiuniform. However, if the solution u has some

singular behaviour so that u i H2 (g) then Iu-u 1 1Q must converge at a

slower rate than 0(h(D)). So the L2  residual alone cannot suffice for E

2;
in (4.5) in this case.

For proving Theorem 5 we shall need the following lemmas:

Lemma 4.3. There is a mesh independent constant C > 0 such that for any

"'0proper node P and any z c 5(Qp) {(z E C (9 ): z bilinear on each AEDp},

inf 1Dz-pI0  c fPP( I I Dz 1 2 +pff ffVz-n ]I 2 if)
pEPo(Q ) ,P ,EVrP rP

where Dz denotes any (element-by-element) zeroth (s - 3/2), first

(s 1/2) or second (a - - 1/2) derivative of z.
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Proof. This is just the rescaled version of Lemma 2.5, taking note again that

there are only a finite number of standard star tuples. o

Lemma 4.4. Suppose y E 0 is a straight horizontal or vertical line segment, ".

then for any z E WD:,

fifVzn ds < C f [(z).n) 2 ds.
Y Y

Proof. For definiteness suppose - - -

10.
that y is vertical and let super-

script (-) and (+) indicate limits

from the left and righthand sides

of y respectively. (See Fig. 5.)

Since all the aijk are continuous

in 0, Figure 5. The scheme of notation.

la(z)on] - {(ai kXD z n + (a ikDtzink)
ij,k,l ii.-

= {aijli[-(Dizj)(+) + (D z
i[j1.1 .

since n2  0, n(+) - -1 and n = 1. But D2z1  is continuous across y,

so

ffa(z).nD , ail [-(Dz 1 ) (+ + (DlZ )-]'

a [Vzon]

where

alll a12 11

11 1Nal = a

2111a 2211

% " ' ,° ""m ~  "- °  '  o -" • " ." o °  • °  " " " , " * " ."• "• , •o ." , "" * . .""° , . ." ." • ° " ." " " ""- . ° " • " o"9

: ',:. ,,,, ,¢.-:.,,:,.:-,,.:._.,....,.,,_ ..:-._.,,,....:,.=..; .,_,,..,..,-.,-...,-..........._,, ._.,...._.._.....,..,.....,._.._......,.._...,,-...,......
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But the matrix all is uniformly positive definite on 0 (see 1.1.4b) and

so det(a'1 ) C > 0 on 0. It follows then that on

I[Vz~nIt CtiI,(z).nil,

and the lema is proven in this case.

The case of y horizontal is treated similarly.

Theorem 4.5. Suppose that for some L > 0

fir-uI > Lh(V)

then there are constants C,ho 0 such that for any K-mesh D with

h(V) < h

C'E C u4 CE (4.9a)

1,Q

where

E - AI~rI 2  t12. (.b
A o,anr (.b

Proof. First note that the left hand side of (4.9) follows trivially from

(4.4b) since E 4E. To prove the right hand side it will suffice to show

I AI II E + o(h(V)) (4.10)
A,

with the o(1) term valid as h(V) +

For any interior proper node P we have (see (1.2), (1.3))

f R, dx +f rI, do 0
P P

with Rt and r as in (4.1). Thus we may apply part (ii) of Lemma 3.1,



63

ppIRI0 ,Q < C(p1,2 I rl + PP inf IR-pI + (4.11)

P P PE PO (OP)

where PO(Qp) is the space of constant functions on p and

p p IR-RI0P + p2 inf Ir-r o.rp

We shall concentrate on the term inf IR-pl0 ,p for a while. As

PEPo(Q)

the coefficients of L() are smooth on Q, let us write E(-) for L(.)

but with its coefficients replaced by their averages over 9p. If we then set

AEVp

we have

inf IR-PI 03, 1 -10 + inf IR-pU 0, p
PEPo(QP) Po() (4.12)

< CppI-UI22, p + tnf I!.-Pl o, P  (4.12)

PE PO (Qp)

IP C(i1 2  1 Q) + inf I L(7) -PEPo(Qp) AEDp

where 1 is to be understood in an element-by-element sense.

Now L(7) is Just a sum of terms of the form X(D-u) where X is a constant

and Du denotes a zeroth, first or second derivative of the funtion

E B(Qp). (The constant X is bounded independently of P and D). We may

clearly apply Lemma 4.3 to obtain

...............................................................

-. * .... -- A .-. -- -. -. . ~ .. '.-'.'.. - -: .' -- -
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inf I O() - P'0A

pEP(Op) AEVp

C(P ,9 + ; 1/2 f [ .n 2lds)12) (4.13)

SC(P 1- r*P U~pp2,9p 4. PP/ (f [a(u)-n I] ds l2 +

r;
p

I

by Lemma 4.4.

Substituting (4.13) in (4.12), and then this in turn into (4.11) gives

ppIR0,0 C( r0 I (4.14)

where

<* 4 + P(IuI + 10.

Squaring (4.14) and summing over all interior proper nodes P gives

. IAI 21RO C p2 2
AED 0,A P P -Q'.

(P an interior
proper node) (4.15)

SC(E + I (C + h(D)2 ( A12 u2, + h(D)2))
P A 2.A

where, much as in the proof of Theorem 4.2, we have used the following

properties of our meshes:

(M) for A E Dp, C Pp ( IAI < Cpp (see Lemma 1.4.1)

(ii) any element A E D belongs to D for at least one interior

proper node P (see Lemma 1.3.6) and at most C = C(K) proper

nodes P (Lemma 1.4.1)

'.,..,-................................,.........,...... .'................
A. . * * *. -. _" .'_ . . . . . . .... .
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(iii) any edge contained in y is contained in rp for one more than C

C(K) proper nodes P (Lemma 1.4.1). ° 0

The desired result (4.10) follows at once from (4.15) and the assumed

lower bound on lu- ull upon appealing to (i), (ii) and (iii) of Lemma-"- 0

4.1.

A slightly more computationally cotvenient form of estimator than that

2
given by Theorem 4.5 would be obtained if the integrals involved in IrIo,8Anr

could be replaced by discrete sums.

If g is a (sufficiently smooth) function defined on an edge, y say,

of an element, and if QI,...,Qk are the nodes which lie on y then let us

write

,--k 2 1/.
1g1)'Y (hi Y IgoQj)I)?

If A is an element and g is defined on aA n r then we shall write

2p
'g' owr "go -)

(Y an edge of A)
ycr -

Corollary 4.6. Theorem 4.5 remains true if E is replaced by E* where

A 4

Proof. Let r* be as in (iv) of Lemma 4.1. Since any edge can have no-

more than C - C(K) nodes on it (see Lemma 1.4.1)

,¥r* 0 yr l y .,...I.

,.- .- ,-...,, .... ....-... ,-.......... ...........-...... ,.,,-, ..... , .- ,.
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Thus

0A~

But

Oj~r*r 2 4 : C AI(IrIOA2 l + Ir-r*IO 2 l .

4 C(E 2 + IAItr-r*l~~fF 2

4 C(E 2 + o(h(V) 2

by (iv) of Lemma 4.1. Likewise

E C(~ IAIIr*N 2  + o(h() 2))

The corollary now follows by virtue of the assumed lower bound on rlu-uI
1,Q

in the theorem. 0

Since we are only concerned here with equivalent estimators for Hu-uO 1 Q

there are many other modifications that can be made to E or E* without

affecting their equivalent estimator property. Let us just mention one other

such modification which we shall say a little more about in Part HI. Using

the same notation as above, define

** - (lyl max Ig(Qj)I2/

gomax (Igi *)2 + max (Ig * 2  1/2.

Y Y

(Y a vertical edge of A ya horizontal edge ofA
Yc r A)c (YA
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Now set

E* 1~ IA(11 ri ~q2 /2

Since there are at most C =C(K) nodes on an edge of any element, it is

immediate that C-1 E* < E** 4 CE*. Thus E** is an equivalent estimator

under the same conditions that apply to E*.
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