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\\\ Abstract

/;> This paper is the firat in a series of threé/:;\which/;;\aiscuscE?one
theoretical and practical aspect of a feedback finite element method for
solving systems of linear second order elliptic partial differential equations
(with particular interest in classical linear elasticity).//;;\lhis first part

Slue—introduceasome nonstandard finite element spaces, though based on the usual
square bilinear elements, permit local mesh refinement. The algebraic
structure of these spaces and their approximation properties are analysedf An

/#*Wequivalent estimatordeBr the Hi, finite element error is deve10ped.€/1n the
second paper we shall discuss the asymptotic properties of this estimator. In
the third paper we shall also report on some computational experience with the

FEARS program which uses this estimator as part of a feedback loop to control

mesh refinement and some of its programing features.




-

§0. Introduction

The practical success or failure of many finite element computations
often depends critically on the user”s choices of finite element mesh and
element type. As a simple illustration of this, consider the boundary value
problems that arise in classfcal plane linear elasticity. For such problems
i1t 1s well known that in the neighbourhood of certain critial boundary points
(e.g. angular boundary points, or points where the boundary conditions change
between specified tractions and specified displacements), the stresses exhibit
some form of singular behaviour., Unless such critical points are handled
carefully, the resulting finite element solution may have disappointing ac~
curacy.

One way in which such critical points may be treated is to employ an
appropriate mesh refinement strategy in the neighbourhood of the point.
Broadly speaking, two kinds of refinement strategy can be identified. On the
one hand, there are a priori refinement techniques which grade the mesh in a
manner governed either by earlier experience with similar kinds of problems or
by the results of some a priori analysis of the nature of the singularity.
For many problems in linear elasticity an asymptotic representation of the
solution in the vicinity of the critical point is available. Using such
representations it is often possible to derive a sequence of graded meshes
which can be shown to converge in the energy norm at an optimal rate with
respect to the number of degrees~of—-freedom of the resulting discrete system.
From a practical point of view however, a weakness of such a priori methods is
that the analysis or experience they are based upon is asymptotic in nature
and 1s seldom discriminating enough to tell whether a singularity, though
present in theory, is going to cause significant problems at the level of

accuracy that one is working. As an example consider the stress singularity
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Kt'l g(6) typically associated with cracks in plane elasticity. The

BaFL R AR

potential of this singularity to affect the accuracy of a finite element AN

..—

approximation will depend on K. Usually an a priori analysis can give little

¥ "l

insight into the value of K. If K is small enough (compared to the overall

level of accuracy desired), then no harm will be done by employing, say, a

b
ii
I

uniform mesh near the crack tip. Indeed, were a refined mesh used, the extra

degrees of freedom would not lead to any significant improvement in accuracy f%ﬂ?
over the uniform case. On the other hand, any (fixed) mesh refined near the

crack tip will give a far from optimal mesh as K + o, (Optimal here

indicates a sense of minimum error for a given number of degrees of

freedom). This kind of phenomenon becomes more pronounced when, as occurs in
most practical problems, there are a number of critical boundary points in the ‘f:‘_‘-Z‘:‘_'
region of interest, and a decision must be made on how the corresponding

refinements should be "weighted."

The other kind of refinement strategy referred to earlier is a posteriori

in character. In this approach an initial finite element solution is
calculated using some mesh. This solution is then examined in some fashion,

and based upon this examination a refinement of the initial mesh is decided

upon. Using this new mesh, a new finite element solution is computed. This kf;?'
process can obviously be iterated until some stopping criterion is
% satisfied. This kind of feedback technique could conceivably avoid the
: problems mentioned above, since the computational significance of the
singularities present may be able to be ascertained during the feedback
process. Everything, of course, depends on the a posteriori examination

carried out after each step and the refinement decision arising from it.

So far we have only ment{oned mesh refinement necessitated by some form :iiﬂ

N S
5 of singular behaviour of the solution. However in many other situations ﬁf:{
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proper mesh refinement can also be crucial. As a typical example consider the

-
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I use of curved elements for solving problems in elasticity. In general such

elements cannot exactly represent rigid body motion. Because of this, proper
mesh refinement may again be essential for satisfactory results, even though
i the solution is very smooth. It would seem very difficult to predict the
pattern of such refinement a priori.

In this series of papers we shall describe and provide an analysis of one

! such feedback approach. The approach we shall deal with has been implemented

& in a practical form in the FEARS program [see [1]]. This algorithm is based

5 upon an a posteriori examination which involves the calculation of an a

i posteriori error estimator for the energy (or similar) norm of the error.
This estimator is composed of elementwise error "indicators", and the
refinement decision at each stage is made on the basis of the distribution of

- these indicators. The theoretical analysis of this method is far from

E complete. At the moment there are many cojectures, etc., which though

- convincingly demonstrated by many numerical experiments can either not be

l proved rigorously, or not be proved in the generality that practical

experience would indicate they hold.

Our theoretical analysis will concentrate upon the error indicators and
estimators, in particular, upon clarifying in what sense they "estimate" the
energy norm of the error of the finite element solution. We shall show under

3 quite weak assumptions that the estimator, & say, is an equivalent estimator

for the energy norm lel of the error e, that is {;i
: -1 o
C'E < 1el < CE (1) e
- i
for some constant C > 0 uniformly over large class of meshes; and moreover _—
,'.:.'..:_1
under some further restrictions that E is also an asymtotically exact esti-~ {jiﬁ
.
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mator for 1lel, that is
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let = E(l+o(rel)) (2)

as lel » 0,

The properties (1) and especially (2) suggest that the estimator can be
reliably used for stopping the refinement process once some desired accuracy
18 achieved. Experience with FEARS confirms this.

To be considered worthwhile the process of succesive construction of
meshes should lead to a sequence of meshes whose rate of convergence 1is
comparable to that of the theoretically optimal mesh grading (at least when
dealing with practical problems). They should also have other "optimal"
properties. When a feedback process has such optimal properties, it 1s called
an adaptive process. (For more about this see [2] [3] [4].) Experience
indicates that the FEARS program implements an adaptive process.

In §1.1 of this paper we shall describe the kinds of boundary value
problems that we wish to consider (essentially those related to linear elas-
ticity). §1.2 contains a description of the finite element discretization to
be employed. In §1.3~1.5 we give some properties of the corresponding finite
element spaces for use later in the paper. In particular, we introduce the
important concept of a K-mesh in §1.4. Although we describe a rather general
set up in §1.1 and §1.2, the subsequent analysis is carried out in a more
restricted setting. This has been done for the sake of clarity and simplicity
of notation. The analysis of the general case can be done analogously. In §2

we derive an equivalent estimator for the energy norm of the finite element

error. An important step in this is the basic error estimate of §2.1. Using E;iﬂi
this result the error is able to be localized to a small number of elements.
Some technical lemmas are proved in §2.2 and §2.3, while §2.4 contains the

main results of this section.

In the second paper of this series we shall deal with the asymptotic




exactness of the estimator, as well as discussing the overall performance of
the algorithm.
The third part will deal more specifically with design of the FEARS

program and analyse its performance in the light of the developed theory.
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l. Formulation of the problem and its finite element solution

I_ l.1. We shall consider the boundary value problem
; ]
L,(u) = - (a D,u,) + c,qu, = £, in Q
i 1 1Ko gel PePgkePety’ T L g%y 1
0

- u, = 0 on 2379, (1.1)
! L (d o 1

o,, (u) H a D.u = t, on 3 Q (1 =1,2)
2 R s SN RIS Lo " 1 ’

on a bounded domain Q ¢ RZ whose boundary 3Q 1is made up of two disjoint

N

parts on ¥ 0 and alo; n= (n;,ny) 41s the outward pointing unit normal
on 3Q. This problem can be cast in a variational form. If 609 is o
sufficiently smooth (piecewise smooth, say) we may define the trace of HI(Q) b
i functions on on. Let us write
. - . 1
: H {(v),vy): v, € H(Q)}
B Hy = {(v)v)t v, € 8@, v, =0 on 2%},
and HO are Hilbert spaces with respect to the norm
2 2 I 1 i
- vl o= (1} |vi|1’Q) , with vyl g being the usual (scalar) H'(Q) S

i=] —
Sobolev norm. The boundary value problem (l.1) can now be posed as: Find o

u €Hy such that

2 2 -

b(u,v) = [ ] fv o dax+ [ ) t;v.ds, Vv € Hy (1.2) o
= Q 1=1 1, 1=1
3R
- )
oy where the bilinear form b: Hy x Hy » R 1is defined by
)

3 wo = [0 ] ) ) :
e b(w,z) = a, . DwD.z, + C W2, )dx. e
3 VIPR A L b i S AR TR i o 2
. -
.
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We shall assume that Q can be represented as a collection of
transformed unit squares. To this end we make the following assumption on Q:

There is a finite number of subdomains Q, € Q(d =1,...,N) such that

a<
(1) Qd n Qg =g (dyg = 1,...,N; d # g)
- N—
(11) @ = U Q
d=1

(1{i1) There is an invertible transformation byt Sd +> [0,1]2 which,
together with 1s inverse ¢;1, is sufficiently smooth (bounded
derivatives of all orders, say)

-1 2
(iv) Q= 4y (o,1)).

The image under ¢;1 of the closed edges and corners of [0,1]2 will be
referred to as the edges and corners respectively of Qd.
(v) Qd and Qe(d # e) can only have a single edge or a single cormer

in common (or else Q, and 5e are disjoint)

d
(vi) aoQ is the union of a number of (complete) edges of subdomains.
We shall write 62(0,1)2 - ¢d(a°n N22,) and aé(o,l)2
1
= n
by(70 N aa,).

An edge common to Qd and Qe will be called an interface between Q, and Qe.

d
(vii) If T 1s an interface between Qd and Qe’ then bq and bq

must "agree" on T in the following sense: if s 1s an arclength
measured along I', and 84 and 8, are arclengths measured along

¢d(P) and ¢e(P) respectively, then regarding s; and s, as

functions of s, either sd(s) - se(s) or sy(s) =1~ se(s).

Figure 1 shows a possible partitioning of a circle into subdomains. For

a suitable choice for the mappings by in the case, see [5]. If I 1is an
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interface between Qd and Qe’ then we can naturally identify Qd(r) and Qe(F)

as 1llustrated in Fig. l. By virtue of (vii) above this identification

takes a particularly simple form when expressed in terms of local arclength.

Figure 1. Partitioning of the circle into subdomains.

This representation of Q induces a natural correspondence between H

and the set M of N tuples of the form

v o= v v gy

where

(W v - (8D Dy D e glo,n?) (=12, a5 Leem

(11) 1f I 1s an interface between Qd and Qe (d,e = 1,...,N; d¥e)

AT
. P AN
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(d -
vj [o] ¢d = j q; on T . (j 1’2)

This correspondence is defined by:

o

v = (vl,vz) € H >V = (oou,(vl o d);l, v2 ¢;1),lco) € M,

and

,,E ’ W = (W(l),...,W(N)) € M > W = (wl,wz) € H

b where

vy = Wid) ] ¢d on Qd, (1 =1,2, d=1,...,N)

(wie ‘HI(Q) by virtue of the interface continuity requirement (i1i) above).
Let My S M be the set of tuples satisfying the additional condition

(111) If T 4s an edge of Qd and T € a°o then

V(d) (o)

Ei j ¢d =0 onT. (3 = 1,2).

Clearly MO > Hy under the above natural correspondence. M and My are

Hilbert spaces with respect the norm

- (] [ oz fa

v
1,(8)504+50,) d=1 1=1 * 1,(0,1)2

The problem (1.2) can now be reformulated as: Find U € MO such that

. N 2 2

BU,v) = §J ( f )) Fid)vid) ax + ) Tid)vid) ds), YV EM,
B d=l (g )2 1=l ac11(0.1)2 1=1

= (1.3a)

where the bilinear form B: Mg x MO + R is defined by

N 2 2
B(W,2) = } [ ( 1} ald) p Dy Sl 3 c(d)w(d)z(d))dx. (1.3b)
©.152 Lrisistel L R P WAL S I
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In (1.3) we have used the notation

2 .
@ _ _1 -1, (@) () .
-]
(d) = ___l__. ~1 _;.:.
cij @ (cijc¢d ), 4
IE |
(@

g 1 -1 -
) = —0—(f, © ¢ ), 1
E i IE(d)l i d ]

each defined on (0,1)%; while on a;(o,n2

Ti E(d) (ti o (bd )o - g
"]
We have set E(d) =D (¢,),, lE(d)| = determinant (E(d): i,j = 1,2), and —d
ij 1'7d’j i}
2 o
1
Ed) - (3 (-d— (,) )2)/2 with 4 denoting differentiation with respect S
{=1 ds d’1 ds -_-\
1 2 L
to arclength along 3, (0,1)". e
d ___*
With regard to the coefficients and input data of (1.2) we shall suppose f;jﬂ
ey
S
that the aijkx’ ey and fi are sufficiently smooth on each Qd separately QFT;
(say, bounded derivatives of all orders), and that the t; are sufficiently -
smooth on each subdomain edge contained in alq. ﬁ;ﬂ
We asgume the symmetries tzi
, g
gk T Fjaak (1,3,k,2 = 1,2), -
so ensuring that b(e,¢), 13 a symmetric bilinear form. Additionally, we
shall suppose that the bilinear form b(¢,*) 18 coercive over H,, that is,
there exists a > O such that :f:?




NN

2
Ib(w,w)|l > alwll,‘2 VWGHO. (1.4a)

Further we will assume that for some C > 0

E a, 1 BB, > C(E2 + D) k=1,2; £ €R (1.4b)
1, 4= L3K7L7] 1" =2h ’

By virtue of our assumptions on the mappings ¢d’ the above properties ;:[;

transfer naturally to the transformed system. Let us explicitly note the

symmetry condition B(U,V) = B(V,U) VV,W € Mgs» the coercivity condition

2 .
IB(W,W)| > alml’(gl""’gd) VW € My,
and
§ A EE, > CEHED) k=1,2; £ R
1jkk>1"=] 1 °27? e *
1,3=1
Note that in the case when the aijkx are discontinuous across an

interface T between two subdomains, then the classical formulation (l.1)

needs to be supplemented by an interface condition expressing the continuity

of "tractions” across TI'. This condition 1is of course implicit in the varia-

tional formulations (l.2) and (1.3) of the problem.

The finite element approximation that we shall discuss is based upon the —
formulation (1.3) of the problem. If ﬂb c MO’ the corresponding Galerkin

approximation Ue ﬁb to U 41s defined by

N .2 2
B = § (f ] r®as g Tid)vid)ds) vV € My
=1 0,12 -1 aac0,1) 71 -
RN
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‘ The coercivity of B(e,¢) ensures the existence and uniqueness of ¥. we
have of course the projection property
< c . . S
'U'l’(gl’...’gd) c' Il’(Ql’...,Qd) (1 5) :‘:L:":
Y
o
The finite element error U-U satisfies the usual orthogonality relation Do
B(U-1,v) = 0 Vel (1.6a) S
which leads to the standard kind of best approximation estimate fb».f;-
[} ml’(Ql""’Qd) < C inf 1 '1'(91""'94) (1.6b)
vell, :

The finite element approximation ] corresponds (under the natural

correspondence between H and M) to an approximation U to the solution

u of (l.1), (1.2). 1In terms of the energy norms of the respective errors we E:

(b(u-?;,u-ﬁ))l/2 - (BT, (1.7) 1?

—

l.2. Suppose that a subdivision of Q _into subdomain.s Ql""'QN with

corresponding mappings d’l”""’N satisfying the conditions of §l.l1 has been \

decided upon. We shall now define what we mean by a mesh § on Q. ::
A mesh D is an N-tuple (D;,...,0y) where each D4 (d = 1,...,N) is a _
partition of [0,1]2 into closed squares A (with edges parallel to the t’,
coordinate axes). Each D4 1is called a submesh on Q 4 and either .:v.
(1) D4 =09 = {10,112} 3_7;5':';

or , {
(11) Dy = 31)15 constructed from an existing submesh '_"
051'1), by replacing any A€ Dgi-l) by the four congruent




g - 4 g » T
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o ;..'-.
= fon
squares resulting from the simultaneous bisections of A in the oEN
> S
o two coordinate directions (see Fig. 2). -
e
e}
.‘-b
0(0{ - {(0,112} v{l) = {B1r00es8,} v§2) = {855.00,45} -
‘ Figure 2. The construction of a submesh on the subdomain Q,.
Each closed aquare A € Dd is called an element of 04. We shall use "“""
IA]l to denote the length of a side of A. Clearly |Al = 27% with s > 0 an e
lf'-: integer. Further we demote h(Dy) = max {Al. ~
- AGDd :.—
A point P 1s called a node of U4 if either RS
. tANT
Al
::;: (1) P 1s a vertex of an element of 7, -f:'.f-
,._- T
- or ':_
1 oo
(1) there is an interface between Q, and Q,, and ¢, © ¢, (P) 1is a
vertex of an element of 10,. :',j._ -
_ Nodes P of Dy are classified as D-proper if either :
o (1) P € (0,1)% and whenever P ¢ A’ for A’ € Dy, then P 1is a
_, vertex of A’ - '_Z:f;f':
) or —
i (11) ¢;l(r) € 20
-, .
- or <
: (111) ¢;1(P) lies on an interface between Q, and Q,, P is the vertex ‘ .__
%
‘-.:? of an element of 04, and (cg;e o 4.;1)(1’) is the vertex of an e
Y .I \.
... .!- -
7 element of 7,. _.;2::
- e
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element of D,. R

If a node is not D-proper, it is said to be D-improper. The cases (1), (ii), L I
(i11) above are clearly mutually exclusive, and we shall further classify the '

D -proper nodes as interior, boundary or interface nodes depending upon

whether (1), (i1) or (11i) applies. Fig. 3 shows an example of mesh with
proper and improper nodes indicated. .‘_-'.'_:.f]

Each of the straight line segments 1y

definiteness an edge will be assumed to be closed, that is, it includes its

;.m ':’1

Figure 3. A mesh on @ («+> denotes the natural identification of s
points across interfaces). e

SNERR

. " RS

forming the boundary of an element of vd will be called an edge. For ;':Z..'-.:‘:
-1

"

endpoints. [y| will denote the length of an edge. An edge 1s called a

primitive edge if it contains no nodes other than its endpoints.

We associate with a mesh 0 the finite element subspace M(D) e

consisting of all tuples of the form .

-
---------




W = (w(l)’...’w(N))

where

() W@ = @), w® eanlco,n?) (3=1,2; d=l,...,N)
(11) ng) is bilinear on each element A € Dy (3=1,2; d=1,...,N)

(111) 4if T 1s an interface between Q; and Q

ey

j o ¢d - W(e) o ¢e on T, (3=1,2; d,e=l,...,N).

3

Clearly M(D) S M. Define Ho(v) = (D) n Mg -

The finite element subspaces we have introduced are non-standard since
improper nodes are permitted. (Note however that the spaces remain ;;,;
conforming). These spaces permit local mesh refinement, yet maintain many of
the desirable programming characteristics of the more usual square or
rectangular elements.

Having defined a general framework, we shall in the analysis for the
remainder of this paper only consider the particular case of one subdomain
(N=1) and ¢ the identity mapping (so Q = (0,1)2)- This restriction is for
notational simplicity only. Our results extend quite naturally to the case N
>1 and ¢ general, though with a considerable growth in notation. In the
light of this simplification we shall from now on suppress the subdomain index b
and just write Q, M, a°(o,1)2, etc. There is also no need now to
distinguish between the original problem (l1.2) and the transformed problem
(1.3). For definiteness we shall from now on use the notation of the original
problem.

To further contain notation, where no confusion 18 possible we shall not
notationally distinguish between vector valued functions and their compo-

nents. In such instances all operations, relations, etc., are to be

PR
P
PN
&G 5%

understood in a componentwise sense.
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e
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1.3. On & mtter of terminology we shall say that a line [P;,P;] 1is a

binary segment of another line [Ql.Qzl if

Pp=Qq +?‘(Qz‘01)
a= 0,1,-..;

P, = Ql+':TH-(Qz-Q1).

Lemma 3.1.
(a) If A, A* are distinct elements of D with |A] €

and only one of the following holds:
(1) ANa*=§p

*
(i1) A and A share only one point. This point
an edge of A%,

the vertex of A € D then [|A| < |A*]|.

refinement process used to construct D.

(b) Since Q 1is improper, there is an element A* with

Q 1s not a vertex of *, a

node (and hence also a vertex of both A and A%*) .

(i11) A N A* 1s an edge of A. This edge is a binary segment of

(») If Q 1is an improper node, then Q 1lies in the interior (i.e., 1s

not an endpoint) of an edge of a unique element A*. Purthermore, if Q 1is

Proof. (a) These results follow readily by an induction based on the

is not a vertex of *. It is readily seen that * {8 unique. Case ({i1)

of (a) applies. Assuming that | | | *1 leads to a contradiction since

k= 0,1..00’2"1

|A*), then one

being a proper

Q€ A* but Q

.................
.......
AT A AT IR
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Lemma 3.2. Suppose D is a mesh and that =z Lz((O,l)z) is bilinear on
each A€ D, If z has a well defined limiting value at each interior node N

(i.e., z 1s continuous in these points) then z ¢ M(D).

Proof. It suffices to show that z € C°((0,1)2)- Let x € (0,1)2. If x
lies in the interior of an element then z 1s obviously continuous at x.
The other possibility is that x is a common boundary point of (at least) two

elements, A and A* say. There are two cases to consider here: (i) x 1is

»
a vertex of A or A*. In this case the hypothesis guarantees continuity. i..'-g
(11) x 1is not a vertex of A or A*, Case (iii) of Lemma 3.1(a) must then
apply. Quite generally we may suppose that JA] < |A*], so A* A 1is an .
edge, [P;,P;] say, of A and is contained in an edge of A*. The limit T .
of z on [Pl,le from within A 1is a linear function, as is the limit from =
within 4*. But, by our hypothesis, at P; and P, these limits must
agree. Thus they must agree througout [P;,P;], and so in particular at
x. The continuity of z at x follows. o »
Theorem 3.3. _
(a) For any proper node P there is a ¢p eM(D) satisfying
1 1f Q=P ,‘:
¢p(Q) = (3.1)
0 if Q 4s a proper node, Q # P. ﬁ::
In addition d¢yp > 0 everywhere. .
(b) If ¢ ¢ M(D) and o(P) = 0 for all proper nodes P, then ©® = 0 :
(In particular, the “’p are unique).
(¢) {4p: P a proper node} is a basis for M(D)s 1In fact, for any
o €MD), o = g ®(P)¢p where ) denotes summation over all proper nodes _-__
P of 0. ’ ,OEE
SO
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Proof. (a) We shall construct a function z € L2(0,1)2 which is biliear on
each A ¢ D. Arrange the elements of D in order Bpseee,d) where

IAJI > lAj+1| (§ =1l,00.,m1). Suppose that z > 0 has been defined on each
Aj for j < n. To define 2z on An it suffices to specify the limiting

values of z from withing An at each vertex Q of L

(1) If Q 1is a proper node, then set

1 if Q=P
z(Q) =
0 if Q# P

(i1) 1If Q 1is improper, then by Lemma 3.1(b), Q 1lies in the
interior of an edge, ([P{,P;] say, of some unique element A¥
with [A*] > (4 [. Thus A* = Aj for some j < n and we may
define z(Q) = z*(Q) > 0 when 2z*(Q) is the limiting value
of z at Q from within A%*.

Thus we are able to define z » 0 on 4,. It is clear from this method
of construction that 2z has a well defined limiting value at each node of
D, and so by Lemma 3.2, z € M(D). oObviously if we set ¢p = z, then

¢p 0 and (3.1) is satisfied.

(b) Again arrange the elements of D 1in order of nonincreasing size.
Suppose that ¢ = 0 on all A; for j < n. Consider any vertex Q of An'
If Q 1s proper then ¢(Q) = 0. On the other hand, if Q improper, then
again by Lemma 3.1(b), Q 1lies in the interior of an edge, [P;,P;] say, of

some unique element A* with [A*]| > 14,1 Thug A* = A, with § < n.

b
But ¢ = 0, on Aj, and so ®(Q) = 0. Thus ® = 0 at all vertices of

A and therefore ¢ = 0 on An'

n’

(c) This follows readily from (a) and (b).

.................
........................................................
..........................................................................
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Corollary 3.4.

(a) {op: P £ 2°00,0%) 1s a basis for My (D).
(b) ] dp =1, lgp! < L.

P
(c) Onany A €0, IDj¢PI < T%T' (1 = 1,2).

Proof. This follows readily from the Theorem 3.

Theorem 3.5.

(a) Supp(dp) = closure ({x ¢ [0,11%: $p(x) # 0}  1is the union of a
(whole) number of (closed) elements.

(b) Supp(¢p) 1is "connected" in the sense that if A’, A" < supp ¢p

then there exists a sequence of elements A’ = Bgreessb = A" such that:

1) 4, S supp ¢p (3 = 0,004,8)
i (11) The pair Aj, Aj+1 share an edge of the smaller of the pair

(j = 0,.00,8‘1).

Proof. (a) This follows from the simple observation that if a bilinear
function on an element A vanishes on K C A, then either K= A or K is
a (one dimensional) curve.

r

(b) Let supp ¢P = kU1 Ak- Assume that IAkl > IAk+1|’ k = 1,0.0,!‘"1.
It will suffice to show the result in the case A’ = 8-

First we show that one of the vertices of 4, must be P. Suppose that
this is not the case, and let Q be any vertex of By If Q 1is proper,
¢P(Q) = 0. So at least one vertex, Q say, of 4, must be improper with

¢p(Q) # 0. By Lemma 3.1(b), there therefore exists an element A* with Q

lying inside an edge of A* and [A*I > 14;1. Since Q € A* with ¢p(Q) #

0, 1t follows that A* < supp ¢pe But this contradicts the maximality of Ijgﬁ

......................
.............................................
.................................................
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:: The three tuple <P,DP,Fg> will be called the star tuple of P. Note that

. the star uniquely determines QP’ P;. P; and PP. For instance

: g, = Int( U a)
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&+ = U (2a - 20,).

:' ¥ AEDP ?

~:

N e e e et e
e N o R A R R R T N O N AT AT ol

.t

............

22

Next notice that any element with P as a vertex can be "connected" to
8, either directly (if (111) of Lemma 3.1(a) applies) or indirectly by way of
one inteirmediate element (if (1i) of Lemma 3.1(a) applies).

We now prove the result by induction on k. Suppose that we can "con-
nect” A to A; for all k < j, and consider Aj+1‘ If P 1is a vertex of
Aj+1’ then by what was said above, Aj+1 can be "connected" to 8. If P
is not a vertex then at least one vertex, Q say, of Aj+1 must be improper
with ¢P(Q) # 0. From Lemma 3.1(b) it follows that there exists A* € D
with Q € A*, |A*| > 'Aj+1' and A* Aj+1 an edge of Aj+1. Clearly
A* S supp ¢p, so A% = 4, for some k < j. Thus Aj+1 can be "connected”

to 4, by appending Aj+1 to the connecting chain for By o o
For any proper node P we shall refer to Q, = Interfor (supp(¢p)) as
the star of P. We shall also make use of the following notation:
?p = {8 € D: b S supp(ep)},

P§ = U{y: v and edge of gome A € DP’ Y ﬁ OQP},

ﬁ“
Sl
R O
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‘v « “e s
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Furthermore observe that whether or not an edge contained in FP is primitive
can be determined from DP alone.

Let us also introduce the notation

I* = U{y: y and edge of some A €D, vy ¢ 6(0,1)2},
1
r = r+yawnq.

Lemma 3.6.
(a) If A€D (and D contains more than one element), then A € DP
for some interior proper node P.

X = %
() r g Ty

(all proper nodes)

(¢) ala = u rl.

P P
(all proper nodes)

Proof. (a) An easy induction on the refinement process used to construct the
mesh shows that for any element at least one vertex is an interior proper
node.

(b) Clearly P; S T* 80 U F; S I'*, For the reverse inclusion:
P
Suppose Y 1is an edge of A with y £ 3Q. Let x be the midpoint of y. By

Corollary 4(b), J ¢p(x) = 1. So for at least one proper node P, bp(x) #
P
0. It follows that A € Dp and vy ¢ Q.

(c) Agaln it is obvious that U r; < alo. To show the reverse. Let
P
Y be an edge of A € D. Then by (a) of the lemma, A € DP for some proper

node P. o

Suppose y 1s a straight line segment which when extended to infinity in

2 (+) )

either direction divides R“ into half planes x and = . Let x€y




and suppose Vv = (vl,vz) 1s a sufficiently smooth function defined in st

- - A+ AL -
=% N {y: Ix-yl <€} and S == N {y: Ix-yl <e}. Let n and 2 be
the unit normals to vy pointing out of ﬁ(+) and n(-) respectively. We

shall define fvenl at x by

fven] = 1lmt v(y)-ﬁ(+) + 1lmt v(y)-ﬁ(')_
y>x y+x
yes(+) yes(=)

Lemma 3.7. Suppose 2z € CO(QP) is bilinear on each A € DP. If

[Vzen] = O on each v € T} then z 1is bilinear in Q.

u‘, Proof. Let A’ be any element of Up. The function 2z 1is bilinear on A’.
Extend this bilinear function to all of QP’ and call this extension z*. We

claim that 2z = z* on all elements of Dp. To show this it suffices by

Theorem 3.5(b) to show that {f =z = z* on 4, and the pair A, 4, share an
edge, Y say, of the smaller of the pair, then 2z = z* on AZ' But this
follows readily since (1) z 1is bilinear on 8,, (i1) =z 1is continuous
across vy, and (ii11) vy € Pg and 8o the directional derivative of 2z normal

to y 1is continuous across vy. a

For any A € D define Q,, the influence region for A by 5 1;

Q, = Interior ( g supp ¢p). If;:

(A€ Dp)

."v e, .
U S U

Introduce the notation DA = {A* € D: A* ¢ U supp ¢P} and PA = {y: vy
P

R
AT
Sobat '

A€D,
an edge of some A* ¢ Dps Y < aoo}. The three tuple <A,DA,PA> will be

.
v
A,

'

1

ke

called the influence tuple of A.
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l.4. We shall now introduce a restriction on the "spread" of supp(¢P).
This restriction will be essential for our analysis later on.

For any set S € B2 let |S| = max sup Ix,;-y,l.
i=1,2 x,y¢S

Let K> 1. Amesh 0 1is called a K-mesh if for each proper node P

Isupp(d)P)l < Kmin |Al. (4.1)
AEDP

For any K > 1 there are certainly meshes that are not K-meshes. For

instance, for meshes of the type shown in Fig. 4(a), supp(QP) is always the

Figure 4(a). Example of a mesh which is not a K-mesh.

shaded region, yet the minimum element sfze can be made arbitrarily small by
continuing the refinement process sufficiently far. The K-mesh property is,
in some sense, only a local property as it permits many natural forms of mesh

grading. For instance, the grading pattern of Figs. 3(b) can be continued

indefinitely without violating (4.1) with K = 2,
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Figure 4(b). Example of a K-mesh with refinement.

[It 18 conjectured that the above definition of a K-mesh is equivalent

to: There is8 L > 1 such that 4f A,A’ € D and AN A # @ then

o< 1ai/1al < L (4.2)

By equivalence here we mean that {f (4.1) holds then (4.2) holds with L =
L(K); and if (4.2) holds then (4.1) also holds with K = KR(L).]
In what follows we shall always assume that the mesh 0 1s a K-mesh.

We now state some important properties of K-meshes,

Lemma 4.1. Suppose D 1is a K-mesh, then there exist C = C(K) > 0 such

that

(1) If A€ DP. ClAl » max |Al.
AGDP

(i1) 1f P 4is a proper node, card DP < C.
(111) If A €D, card{P: A € Dy} < C.

(iv) If y 1s an edge of an element of D, card{P: yS PP} < C.




(v)
(vi)
(vit)

Proof.

(1)

(11)

(i11)

If P 1s a proper node, card{Q:Dp 0 Dq * g} < c.
If A* € D, card{A: A* € DA} < C.

If y 1is an edge of an element of 0, then there are at most C

- nodes on .

max |Al € |supp ¢P| < K min [Al.
A€ DP '3 DP

| supp ¢P I2 2
card(DP) ¢ ————— < K-,

min |A]

AGDP

If A€ DP’ then |[supp ¢Pl < K min |A*| < K|Al. So
Ak€ DP

U (supp ¢P) € Q, where Q, 1s a square with centre at the
P A A
(4€Dp)
center of A and side 2(K -14) 1al.
Now 1f A’ ¢ U Dp, then A’ and A are elements of the
P
(aepp)

same D, for at least one proper node P. So
a1 > X isupp 4yl > L 1Al
K 'SUPP %p K o'

2

1Q,1
Thus card( U DP) < —l_A—_Z £ l&KZ(K - %)2.
P (x1a1)

(a€D,)
But certainly card( U DP) > %-card((?: A€D.}) since P
P
(Aetb)
must be the vertex of at least one element of DP and, of course,

no element has more than four vertices. Thus

card{P: A ¢ DP} < 16 KZ(K - %62.
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Y can be an edge of at mogt two elements. By (1i{1) each of these
elements is contained in DP for at most C proper nodes P.

Thus y can be contained in FP for at most 2C proper nodes P,
By (i1) there are at most C elements in DP, while, by (1ii),
each such element in turn belongs to a DQ for no more than C
proper nodes Q. Thus DP n DQ ¥# P for at most c? proper

nodes Q.

By (1i1), A4* 1is contained in supp p for at most C proper
nodes P. For each such node in turn, supp ¢P can contain at
most C elements A. Thus, card{A: A* € DA} < c2.
If y 1is on 6(0,1)2 then the endpoints of y are the only nodes
on y. Otherwise suppose y 18 an edge of A. Since X ¢P =1,
at, say, the midpoint of vy, then for at least omne propzr node P,
¢p > 0 at the midpoint of y. In fact it follows that 4p >0
everywhere on <y, except perhaps at an endpoint. Any node oa Yy

must then be a vertex of an element of Dp. By (ii) the number of

such elements is bounded. o

We would expect that many stars Q_ are essentially identical except for

P

a translation and scaling. Indeed, as we shall see in Theorem 3, there are in

fact only a finite number (depending on K) of stars up to translation and

To set the scene for the result let us consider an arbitrary
2 2

proper node P. Define an affine transformation t_,: R » R",

P

tP(X) - T;;;lTZTT (x - P).

AGDP

L Al asnh addh o o aol ae ]

.
..
cat

O
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It is readily verified that 1P(P) = 0 and max ItP(A)l = 1, We shall
A€D
P

consider <, to map the star of P onto some "gtandard" star. The mapping

if 'P will be referred to as the star transformation of P. Let us set
! Qo = TP(QP)l
: o = {=p(8): € D}, i
{ .
A = * -
Po 1P(PP), R
0 . 0 g
1 1 P
To *p(Tp), -
r. = rxUrt S
0 0 o’ ﬁ;ﬁ:
= -1 -
¢o ¢P ) tP . hff*

The two-tuple <0, Pg) will be called the standard star tuple of P. With a

harmless abuse of notation we shall refer to members of Do as elements and

their (closed) sides as edges. Notice that QO’ PE, Pé and Po can be
0 1
*
reconstructed from <Do,ro> in much the same way as QP’ PP’ PP and I‘P
can be expressed in terms of star tuple of P. Somewhat less obvious is the .

following result.

Lemma 4.2. ¢0 is completely determined by <DO,P8>.

Proof. This 1s clearly the same as saying that if 7 is a mesh and P 1is a

proper node of D, then ¢P is completely determined by <P, P,FS). To show

this, we shall construct a function z € M(D) using only our knowledge of

<P,DP,Pg>, and then prove z = bpt :»?;




........
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Arrange the elements of DP in order of nonincreasing size,
AI’AZ"°"Am’ say. Suppose that z has been defined on each A; for J <
n. To define 2z on An it suffices to specify the limiting values of z

from within An at each vertex Q of An:

(1) 1If Q=P, then z(Q) = 1.
(I1) If Q # P:
(1) If Q ¢ OQP, then z(Q) = O.
(11) If Q ¢ QP and Q 1s proper node (in the context of the
<p, D, ,Pg> this just means that whenever Q ¢ A* for

A* ¢ Dp then Q {s a vertex of A*) then z(Q) = 0.

(i11) If Q ¢ QP and Q {is improper (just as in (ii), this can be de-
termined from I)P alone), then by Lemma 3.1(b) Q 1lies in the
interior of an edge [Pl,le, say, of some unique element A*

with {A*] D IAnl. In our present case A* ¢ DP and so A% = Aj

for some j < n and we may define z(Q) = z*(Q) where z*(Q)

is the limiting value of z at Q from within A%,

This enables us to define z on each A€ DP' Define 2z on the

remaining elements of 0 to be identically zero. By the above construction

z has a well defined limiting value at each node of 0, and so by Lemma
3.2, z¢€ EQD)' However 2z satisfies (3.1), and so by Theorem 3.3, 2z

-¢P. a

Theorem 4.3. There are at most C = C(K) standard star tuples <DO,Pg>.

Proof. It will suffice to show that there are at most C possibilities
for Dy, since once DO is known there are only C possibilities for

T

0 -— -
0. ..‘.
four edges. Pg must be the union of some of these edges.) Since

( Uo has at most C elements and each such element has no more than




- v
-------------------------------------

| U Al ¢ Kmin Al < K,
A, a€D,

U A must be contained in a square with centre 0 and side 2K.
A€D
0

P R U

Let m be an integer such that 2™ > K. Let Q be a square with
2l+1

Y
PR ALIIRE RN

centre 0 and side . Define a uniform grid on Q of grid size 2 &,
We claim that each A ¢ vo consists of a (whole) number of grid squares. If
we can show this, then the theorem will follow at once by simple combinatoric

considerations.

Firstly note that for any Aievo, certainly |A] = 2-E for some integer

£ > 0. Moreover,

IAl] > min (A] > I U Al > 2™
A'GDO A'evo

Al

and, of course,

18} < max 18°I = 1.
‘€D,

In particular, if (0,0) 1s a vertex of A, then A must consist of a whole

e
statat

number of grid squares. To prove this result for an arbitrary element of Do,
it will suffice by Theorem 3.5(b) to show that whenever the pair A*, A** ¢ Do
are connected in the sense of Theorem 3.5(b) and A* consists of a whole

number of grid squares, then so also A**., But this follows readily on

recalling (i11i) of Lemma 3.1. u]

We also shall need standard forms for the influence tuples. To this end ;2;}

. for each A € U define an affine transformation Ty Rz > Rz R

- 1 11
) @ = gy (G P) NS
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where x, is the centre of A. It 1is easily seen that 1A(A) = [0,1]2. Just

as for the case of star tuples we shall consider T, as mapping the influence

tuple of A onto some standards reference tuple. Let us set

2, = 7,(a,),

Dy = {TA(A*)= A* ¢ DA}’

Ty = 7,(T,).
The two tuple <D,,[,> will be called the standard influence tuple of A, and
clearly Q, can be reconstructed from the standard tuple:

g, = Int( U Aj.

A€D,

*

Akin to Theorem 4.3 we have
Theorem 4.4. There are at most C = C(K) standard influence tuples <Dy sTy>e

Proof. It will suffice to show that there are at most C possibilities
for Ds, since once 7D, 1s known there are only C possibilities for Tye
(By (11) and (1i11) of Lemma 4.1, D, has at most C elements; I, must be
some union of the edges of these elements.)

To prove the claim for D, we apply an almost identical argument to

that used in Theorem 4.3. a

1.5. For later use we shall need to know something about the approximation
properties of the finite element subspaces M(D) and ﬁo(p). In this section we
shall prove some results in this direction. The methods of proof are more or

less standard, the only real difference arising from the fact that the star
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QP may spread further than just those elements adjacent to P. The K-mesh
asgumption however restricts this spread and allows us to retrieve much of the

standard theory.

Lemma 5.1. Let <D,,l,> be a standard influence tuple. There is a constant
¢ =c(,,r,) >0 such that 1f =z ¢ Hr(Q*) (r=1,2) and z=0 on [I*
then

inflz-qlr

< Clz] (5.1)
q€Q s

’Q* Q*

where Q 1s the set of all polynomials of degree r - 1 on Q, which vanish

on I, By 1-1_ _(l*l_,) we denote the usual Sobolev norm (seminorm).
* r,Q r,Q
Proof. Suppose not, then we can find z(n) (n=1,2,...)

(n) (n)

inflz® "“=qi > nlz . 5.2
q:Q 1 r,Q, ! lr,Q* G-2)
Without loss of generality we may as well suppose that,
taf1zDoqr_ = 1 (5.3)
q€Q ToMa
(by taking suitable multiples of the original 2(n) 4 necessary) and
124"y < 2 (5.4)

r,Q,

(by adding a suitable q" € Q to each of the original z(n) if necessary).

From (5.4) we can conclude using Rellich’s Lemma that a subsequence of the
(n)

z converges in Hr-l(Q*). We can suppose that this subsequence is the

entire sequence (by deleting members of the original sequence if necessary).

But from (5.2), 1lim lz(n)lr Q. - 0. Thus z(n) converges in HY(Q,).
o4 "

Let z(’) be the limit. Obviously, lz(")lr g =0, and as g 1s connected
9

*
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(this fact follows readily from Theorem 3.5(b)), the only possibility is for

Q) e

to be a polynomial of degree r - 1 on Q.. Moreover, =0 onT,
(since taking traces is a continuous operation in Hr(Q*)). Thus z(a) € Q.

But this contradicts the limiting form of (5.3). o

Theorem 5.2. There is a constant C > 0 such that for any z ¢ HT(Q) N H0

(r = 1,2) and any K-mesh 0, there exists a function nz € ﬂo(v) such that

r~s
|z-1:z|s’A < ClAl lz.r.QA’ (s =0,1; A€ D). (5.1)
1
Proof. Let p(t) be a polynomial in one variable satisfying [ p(t)dt = 1
0
1
and [ tp(t)dt = 0. For any € > O define
0
p(t/e) t € [0,¢e]
o, - p(~t/e) t € [-¢,0]
0 1t] > €.
For any proper node P of D set
1 ~
€& = -fgin 1Al
A€ty

and SP = {xeQ: Ixy - Pyl < €ps i =1,2}. Our choice of €p Suarantees

SP < QP' For any y ¢ HI(Q) let
B o=k ’(‘”el,(’l"’l)"ep("z'l’z) ax / [, ax (5.2)
P P
and define

..............
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Clearly (Corollary 3.4(a)) =y € ﬁO(D).

We shall now prove (5.1). Suppose A<D and let <0,,I,> be the

standard influence tuple of A, and, as usual, write Q, = Interior ( U 4).

A€D,
Then
I%ylg 5 < IZ, 1Tpl1dplg o
rka’a
1-s
< C I 1Yp11al
P
(H2e)
AGDP
by Corollary 3.4 (b) and (c). However, from (5.2)
Y < eliyn < ciar tuy
P P 70,8, Y,s
P
whenever A € DP‘ Thus
-s -s
Ixylg , € C g 7lg,5, 181" ¢ CIalTHNg o
0 (5.3)
( P&O Q)
56D,

by (1i1) of lemma 4.1 and since SPE'QP < QA when A ¢ DP. Upon rescaling A

to the unit square, (5.3) becomes

-1 -
Iny 0 ¢ | < Clyort, I
4s,0,1)? A 70,8,
and so
ly © T-l - ny © T-ll < Clyo T 0 . (5.4)
A A A 'r,Q,
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If { 1is a polynomial of degree r ~ 1 on QA which vanishes on

PA, then { can trivially be extended to all of Q. Direct calculation shows

that «x{ = {. Thus

-1 -1 -1 -1
l1zot, =-nzo0 %, | = inf|(z+) © ¢, - w(zHl) o 1, |
4 4 's,0,1)2 ¢ A 4 s,(0,1)?
(5.5)
-1
< 12fl(z+c) o] Ty 'r,Q*

by (5.4). But clearly as [ ranges over all possibilities [ o 1A1 ranges
over all polynomials of degree r ~1 on Q, which vanish on TI,. Thus by

the result of Lemma 5.1,

inflz o 1:-1 - o 'r-ll < Clz o 'r-A.l

c A A 'r,Q, (5.6

r,Q,’

Combining (5.5) and (5.6), and rescaling back to A gives the desired result

(5.1) upon noting that the constant in (5.6) can be taken to be mesh

independent by Theorem 4.4. a

Corollary 5.3. There {s a constant C > 0 such that for any K-mesh 7,

r~s -
iz 1tzls’Q < ¢h(D) Izur’Q, (s = 1,2)

(11) If z € B'@) n M, T
2 2 o
% I¢P(z-ﬂz)l1,QP < Clzll’Q. -
Proof. i:fj
e
(1) It follows directly from the theorem that N

(1) If z ¢ B°(@) N My (r=1,2).
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1
< Ch T (] Izli )2

Iz-nzls
A

,Q

< Ch(z))’f"‘nzar,Q

by (vi) of Lemma 4.1.

(11) If 4 € Op» then the theorem and Corollary 3.4(b) and (¢)

shows
My, (z=x2z) < C( max supiD, 4, |N0z=nzl + supld_|)z-nz] ).
P 1,A 1=1.2 xés L°P 0,87 Len P 1,A
On the other hand, if A ¥ Dp then obviously
I¢P(z-nz)H1,A 0.

Fixing A, squaring and summing over all proper nodes P gives

2

2
1,A < Cizt

) 1pp(z=nz))0 1,0

P A

by (11i) of Lemma 4.1. The result now follows, just as in (i), from (vi) of

Lemma 4.1. o

We shall also need a lower bound on the approximation power of M(D). To

this end we prove the following lemma.

Lemma 5.4. Suppose that 1z € HI(Q) and that there is an open disc D £ Q
where

(1) z ec D,

(11)  max inf |D, z(x)] > 0. (5.7)

i=1,2 x€D

Suppose that the mesh 0 satisfies for some «k > O

,-v.."..l"
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min |Al > «xh(D).
A€D

ASD

Then there are constants C, h, such that 1f h(D) < hy,

inf lMz-vl, Q 2 Ch(D).
vell(D) ’
Proof. Certainly
inf lz-vlf q ) inf lz-wlf A
vl ) ’ A€D w ’
(w bilinear on A)
2
> Z inf lz-wll’A.

A€D w
ASD (w bilinear on A)

centre, x say, of A,

2
— 1 - -2
z(x) = w(x) + i-izl DiiZ(x) (x1~xi) + r(x)
where w 1s bilinear on A and
-3 -2
le(x)l < Clx-xI", IDir(x)l < Clx-x|

for some constant C, 1independent of the particular A under

consideration. Writing

Z(x) = w(x) +% Duz(;)(xi—;i)z

1

| Ha¥e 1)

i

we obtain using the finite dimension of the classes of functioms

., -

(5.8)

(5.9)

On each element A & 3; we can expand 2 as a Taylor series about the

(x € A)

(1 =1,2)

involved

A A A At




. 2
- - 2
inf Vz=wl) 2 c( I b, z(x)1)1al
w i=}
w bilinear on A
> C*IAI2

where C* > 0 1is independent of A by (5.7). Hence

> 1z-wl -1 ]
’ i:f Ilz-wll’A i:f z=w 1, r(x) 1,A
' (w bilinear on A) (w bilinear om A)

> C*IAI2 - ClAl3

> CIAI2

for n(D) < hy, and hence |Al, sufficiently small., Therefore (5.9) enables

us to say

inf nz-vlf g > ¢ 1 1t
veEM(D) i AeD

A€D

2

> ch(p)? Y14l (5.10)

A€D
A€D

using (5.8). Note however, that for h(D) small enough, D* S ( A where
A€D

ASD
D* 1is a disc concentric with D but of radius half that of D. Thus

o
vt

]

R AR
s 0 g Lt
PP

1

]
-
;4
%
-4
n

2 e
Z 1A17 > area D*, and the lemma follows at once from (5.10). 1
A€D B
ASD )
Let us remark that the hypotheses of the lemma are not very demanding at .-::'1
R
all. -~ r .
."\ . N
e
-:._ :.‘1
AT
RS

™~
\'_\']
.................. TN e e e e . .___._._..._._.~._.‘,._._._'.1'.'1
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2. The A-posteriori Error Estimate
2.1. For each proper node P of P, define

HP = {ve¢ BI(QP): v=0 on rg}.

(Clearly by extending functions in Mp by zero to the remainder of Q we can
consider Mp S Hy). We shall associate the following local subproblem with

the proper node P: Find Np € Mp such that

b(flP.v) - b(u—ﬁ',V), v € MPO (1.1)

After an integration by parts the right hand side of (l.1) can be written out

explicitly in terms of the input data of (l.l.1):

blu=u,v) = § [ (£~L(Q))v dx - Ja c(;)-; v ds
r

AGDP A
(1.2)
+ (t=o(u)en)v ds.
L]
Note also that as long as P¥ 60(0,1)2, then ¢P € ﬁo(v), and that
therefore |
b(u—G,¢P) = 0 (1.3)

by the usual finite element error orthogonality relation (1.1.5b).

We are now able to state and prove the fundamental error estimate of this
paper. This result will allow us to estimate the global finite element error
|urG|1’Q in terms of the solution T of the local subproblems (1.1). The
basic ideas behind this estimate were firat presented in [6].
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Theorem l.1. There is a constant C > 0 such that for any K-mesh
-1 2 /o ~ 2 f
c (g Inpll’op)l < huuly o< c(g InPll,QP)l (1.4)

where 2 denotes a summation over all proper nodes P of 7.
P

Proof. (1) The right hand inequality: By the coercivity of B (see
l.1.4c), and the finite element error orthogonality relation (l.l.6a), we have
for any V ¢ ﬁb(v)
tu-g1> < C b(u-u,u-u)
1,Q '

< C b(u-u,u=u~V)

< C b(u—ﬁ,(g ¢P)(u-G;V))

since ) ¢p = 1 by Corollary 1.3.4(b). Thus,
P

~2 ~
Iu—ull’Q < C g b(u-u,¢P(u u=v)).

But ¢P(u-3-v) € Mp (certainly ¢P(u-5-v) € HI(QP); for the trace behaviour
note that if P ¥ 0(0,1)2 then bp = 0 on 0Q;,, whereas 1f P € 3Q then

u=u~- V=0 on Pg n 60(0,1)2 while ¢P =0 on Pg N Q). Thus
b(u-?:‘,cpp(u-E-V)) = b(np,4p(u-u-V))

and we have

2 ~e
Iu-ull’Q < cg 15(np, bp(u=u=V)) |

1 ~ 1
< C (g lnl,lf’gp)/2 (g I¢P(u-u-V)I§’Q )/2

-
- El

.
. -
» -

.........
---------
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< ¢ (] Inplf’g f&lurﬁl
P
on making the particular choice of V described in Corollary 1.5.3(ii).
The left hand inequality: Let us partition the set of proper nodes
of 0 1into disjoint classes xj (§ =1,...,J(D)) say, with the property
that whenever P,P’ € xj, then Q n Q. = P. It follows from Lemma 1l.4.1(v)
that we may always ensure that J(P) < C, for some mesh independent
constant C > 0. Now

b(u=u, } n = blu-u,n,)
. ) = o

= ¥ b(n,,n,)
L TipsTlp

> ¢} npl) g

P P

by the coercivity of B over Mpc My (l.l.4c). But

J
Ib(u=u, § n )i < Clu-ul D) |
£ L, 45 p 1, 1,

< C tu-uf EJ (3 m? *&
u-u n
La & LA TP e

h|

J 1

< C lu-ul Z (z In ! )2
1,Q y=1 P P I,QP
~ 2 A

< Clumuly o (1 ey o )%,

P P

The left hand inequality now follows. n]
L L el T T e L e



The significance of this result is that within the class of K-meshes the
ratio @ = (g l‘nl,lz)l/2 /lu"'l‘l'll,‘2 is bounded above and below (away from zero),
independently of the global mesh refinement pattern (as long as the K-mesh
property is maintained). Note also that Theorem 1 demands no assumptions on
the regularity of the solution u (other than it lie in Mg, of course).

However the practicality (l.4) will depend on whether the solutions of
the local subproblems (l.1) can in some sense be effectively estimated. This
is the matter that shall concern us for the remainder of this section. Our
main result will be Theorem 4.5 which will turn out to estimate the np's in
terms of the "jump residuals" [aCE)';] across the interelement

boundaries.

2,2. 1In this and the following section we establish some preliminary results

which will be the basis of our effective estimation of Ity Q° We shall be
14

working initially with a version of the subproblem (1.1) "standardized" to the

standard star tuple <00,Fg>- We now describe this standardized problem: Let
My = {u € Hl(Qo): u=0 on Pg}

and congider a continuous bilinear form AO: Mo x Mo + R which satisfies the

conditions

le(u,v)l < Blull,g uvll’g

0 0

u,VGMO

IAgu,)1 > B tul?

...............

i

.........



Lemma 2.1, There is a constant C = C(DO,Pg) > 0 such that for any v € M,

Proof.

for some f > 0. Corresponding to any Rg € Lp(Q;) and ry € Ly(Ty) 1let

o Mg be the solution of

Ay(ng,v) = | Rgvdx + [ rqv ds, v € My, (2.1)
Qo ro

Let ©q € My be a function with the properties
(1) 9,50 on Qg (2.2)
(1) for some &§ > 0, ¥5 > § on some disc contained in Q.

Finally let Gy < L2(Qo) and gg € L2(Po) be finite dimensional subspaces.

'V'O,P < Clvll'Qo’

0

and provided Pg 0

1 < .
W 0,9, C'V‘l,oo

Proof. The first estimate is a standard trace result, while the second is a

Poincaré-type bound on the Ly nomm in terms of the H; semi-norm. o B
,;L,
Lemma 2.2. There is a constant C = C(B,Do,Pg) > 0 such that R

lnoll'go < C(IROIO’QO + |r0|0,r0).

2
oM, ¢ € Bo(ngsng)

< cIf Ryng dx + / rong ds|
8y To

< C(lROlO,QOanlO,QO + lnolo’rolrolo’ro).
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e
By Lemma 2.1, '“O'O,PO < c'“O'l,Qo' and of course 'nOlO,QO < 'nO'I,QO' :fii

The lemma follows immediately. a] i

Lemma 2.3. Suppose Gy and g; are finite~dimensional subspaces of

LZ(QO) and Lz(ro) respectively, then there is a constant C

= C(B,0sTsCys8y) > 0 such that if Ry ¢ Gy and rg € gy then

e
A4 4 4.4

> S%lo,0, * To'o,ry)"

ol 0 0

0

Proof. Suppose the result does not hold, then there are sequences Rén)
and ré“), (n=1,...) from Gy and gy respectively, and corresponding
solutions nén) of (2.1) such that

< %-(IRén)l + e )e (2.3)

(n)
Ing ! 0,0, o Yo,r,

1,00

We may without loss of generality assume that

(n) (n) -
IR0 'O,Q + nro lo’r 1. (2.4)
0 0
In particular |} (n)' <1 and Ir(n)l < 1. By the finite dimensions
%o "lo,q, 0 'o,r,
of Gy and gy we may suppose that 1
(n) g
Ry > Ré€ Gy in LZ(QO) 7
*4
and :;1
r(n) + r € in L_(T.). ::%
0 %o 240 e




Let n be the solution of (2.1) corresponding to R and r. By Lemma 2.2

applied to (n—nén)).

ln-ngn)l

< C(IR—Rén)l

1,9, 0,9, o 'o,r,)

but by (2.3), nén) +0 in "'1,9 and so we conclude that n = O.

0’
Thus for any v € M,

0 = Ay(n,v) = [ Rvdx+ [ rvds.
% To
But this can only mean that R =0 and r = 0. However this clearly

contradicts the limiting case of (2.4). a

Lemma 2.4. Let Gy and gy be as in Lemma 2.3, then there is a comstant C
= C(QO,FO,GO,gO,wo) such that if Ry € Gy, rg€gy and p € Py (the set of
constant functions on Q)
IRolg,q ¢ c(|r0|0’r +IRyphy o+ I BRygdx+[ 1y qdsl).
0 0 0 Q r
0 0
Proof. We shall again argue by contradiction. So suppose the result is not

true, then there are sequences Rén), r6“) and p(n) from Gy, gp and

Py respectively, such that

N P T SR I e A P

+1f Rgn)wo dx + [ rén)wo dsl|)
0 O,Fo Q r

0 0

0,Q 0
(2.5)

where we can suppose that

] (n). - 1. (2.6) E::-"’

.. . .4\'-\_‘_\ O R R R R R
bV 0¥ TP

.........................................
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i By the finite dimension of Gy we may as well assume that Rg“) *+ R €Gy in ;i
I L.(@). But by (2.5), IRS® - p(®)y +0. Thus p{™ s R n L,@,). T
o 2%’ =27 o 0,9, P 2*"0 o
ii But Py 1s certainly a closed subspace of LZ(QO) (since it 1s finite ffi
- dimensional), and so R €P,, 1i.e., R 1s a constant on Qg. Now (2.5) also ;i:
‘ shows that rén) +0 1n L,(Ty) and that .
m 1f R(()n)cpo dx + | r(()n)too ds{ + 0 as n+ @ Thus we must have -
‘ Q T
, 0 0 s
v (n) o
0 = la [ RV, dx = [ Rg, dx.
. 0 0 o
:- - nyw Qo Qo ‘.
s o
. The only way this can happen when ¢, has the properties (2.2) and R 1is a ~
-
ff‘; constant, is for R = 0. But this contradicts the limiting case of (2.6). a iy
g Lemma 2.5, There is a constant C = C(QO,DO) > 0 sguch that for any z¢€ BO =
{z € CO(QO): z bilinear on each A € 0},
1 -
inf 1Dz-pl ¢ (] w2i? )2+ (J zeal? ds)llz} (2.7)
PET, O,QO A€D 1,A 0
0 PO :
where Dz denotes any (element-by-element) zeroth, first or second order if
derivative of z. i

Proof. Let M = {z €8 : Dz € Py}. Clearly the quotient space By/M 1is

finite dimensional, and (2.7) will follow if we can show that both sides of

(2.7) define norms on BO/H. In both cases it clearly suffices to show that

if the respective quantity in (2.7) vanishes then =z € M:

(1) The left side: If inf #Dz-pi
213 Po

= 0, then Dz 18 a constant on
O,Qo

QO since Po is finite dimensional and hence closed.

...........




48

2

y&
1 A) = 0, then Dz 1is constant on
?

(11) The right side: If ( ] |Dzl
AT,

each AGDO. On the other hand, if f I[Vz-'g]]2 ds = 0, then f[yz.nls=

0
To

0 on Pg, and so by Lemma 1.,3.7 z 1is bilinear on Qo. In

particular, Dz ¢ CO(QO). The net result being that Dz ¢ PO' a

We shall now relax the requirements of Lemmas 2.3 and 2.4 that Ry and
rg lie in the finite dimensional spaces Gop and gy. Instead we shall

require that they can be approximated from within these spaces.
Lemma 2.6. Let Gy and g; be as in Lemma 2.3, and suppose that

inf IR,=R*} + inf dr,~r*i < €.
R*EG0 Ro 0’QO r*GgO 0 O’PO

Then

(1) there is a constant C = C(B,QO,P ) > 0 such that

0°€0°8p

-1
c (IROIO’Q + il b e) < '“0'1,90 < C(IROIO’QO *+ 5l ¢ )

0 0 0
(2.8)
(11i) there 1is a constant C = C(QO,DO,PO,G0,30,¢0) > 0 such that if
é Rypp dx + £ ryog 48 = O (2.9)
(0] 0
then
|RO|0’QO < C(Irolo’r + inf IRO-pIO’QO +€). (2.10)

0 peﬂ)

Proof. Choose R* € G, and r* € g3 such that

. P
R M
R

DL O S S

.
)
.‘.‘4
-
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IR.=R*| + Nry=r*| < 2e. Let n* be the solution of (2.1)
0 0 O,Fo

O,Qo
corresponding to r* and R*. Applying Lemma 2.2 to the difference (no-n*)

we get

""o"”*'l,go < C(IRO_R*'O,QO + !ro-r*lo'ro) < Ce.

Using Lemma 2.3,

*
'ROlO,QO + “0'0,1‘ < IR IO,Q

+ Ir*) + 2¢
0 0,T

0

L. < Cln*t + 2¢

1,9,

< C(""0”1,Qo + ),

;j proving the left side of (2.8). The right side follows from Lemma 2.2.

L

For (2.10) we have

IRy g € MR*NG o + 2 ]
0 0 :
’; while Lemma 2.4 gives for any p € Py T
. 4
. * * - 2
: B o € c(nr Yo,r, * TR*Plo g * Ié R*, dx + { r*p, ds|) .
- 0 0 s
) R
< C("o'o,r + IRg=ply o+ 1/ Rgbg dx + [ rqeg dsl + ¢) o

0 0 Q r o

0 0 N

. c(nry + IR ,-p! + ¢€) o
< T -P € - —

) o'o,r, * "Ro7Plo,g, o
by virtue of the orthogonality relation (2.9). o :?i;

A

Y




M A ¥ SR

e T e T T

b(n,v) = [ Rvdx+ [ rv ds, Vv € Mp (3.1)
Cp Tp
where R € L,(Qp) and r € L,(Tp).
Lemma 3.l. Set
€ = pp inf IR—EIO a T pléz inf |r?n0 r (3.2)
RGGP i 4 rGgP P
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2.3. In the last section we considered a "standardized" form of the local

subproblems (l.l1). In this section we extend those results to the actual star
tuple <P, P,Fg).

For any proper node P with standard star tuple <Do,rg>, let

tp: R? + B? be the star transformation of P (see §1.4), that is
T (x) = l-(x-P)
Jof p

where p = p, = max |Al. (Notice that p < l.)

AGDP

Corresponding to the finite dimensional spaces G; and g, of §2.2 let us

define

= o -1
GP {v ¢ LZ(QP). vo, € Go} c LZ(QP)’

. , -1, -1
gp {ve Lz(rp). VoTt, € T g0}<: LZ(PP).

At this stage it is convenient to consider a more general version of (l.l):

Find n € Mp such that

then




1)

(11)

Proof. It 1s clear that My = {v € Hl(Qo): vo Tp € MP}. Define a bilinear

form AO: My x My > R by

It follows from the boundedness of b(e,*) on M, x Mp

14gCu,v)1

In addition, by the coercivity of b(e,*) over Mp,

51

there is a constant C = C(vb,PO,Go,go) such that

T )

-1 1 _ 1/
c (pPIRlo’QP + pp mo’r.P g) < lnll'QP < C(pPlRIO’QP + pg2 111 .

0

there is a constant C = C(DO,PO,GO,gO) such that if

/ Rip dx + f rép ds = O
T

Cp P

then

pplRly o < c(p1£2|r|0 r. *Pp Inf IR-pl) o +e¢)
»*p »'p p€Py(Qp) »p

where PO(QP) is the space of constant functions on Qp.

Ay(u,v) = b(uo Tps VO Tp)e

1b(u o Tps V © Tp)I

< Cluo | iv o i
Tp 1,9, Tp 1,9,

2
0,0

2, .2 2 1,
< c(prul + v
(p7ru 0,0, Vil,a)

2 fo 2
+ lul f (p“nvh
1,9 0 2

< c'u'l,QO'v'l,Qo'
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2
IAo(u,u)l = |b(u o Tpy U O TP)I > alfuo TP'I,QP

2
> ¢
'“'1,90

using lemma 2.1, noting that Fg # ¢. It is readily verified by a change of

variable of integration that for any v € M,

AO(n ° TP’V) = b(n,vo T;l) = é R(v o 1;1) dx + IF r(v o 1;1)d5

P P

= | (pZR o TP)V dx + [ (pr o tP)v ds.
% To

So we are in a situation covered by the analysis of §2.2 with Mg ™ N0 Tps

Ry = sz o Tp and rg = pr o Tpe Furthermore, for any R ¢ Gp and T € 8p»

we have p2 Ro Tp € Gp and p; ° 1 € 9 with

IpZR o T T p2 Ro 10 + llpr o Tp T p; o=

i
P O,QO P O,PO

= oiR~RI + 1"2nr-?-u
P 0,0, P 0,r,"

By virtue of (3.2) we are now able to apply Lemma 2.6 to infer from (2.8)

C-l(lsz N 4 | + ipr o rPn

plo,0 < Ino 1l

o,r. = ) P'1,Q

0 *°0 0

(3.3)

2
< C{ip"R © ] + 1 ° ] .
(10 Tp 0,8, PT © Tp O,ro)

Upon rescaling back to the actual star QP’
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while by Lemma 2.1 we also have the opposing bound

nopt o

< Clmo gl < Cinl < Cint .
) '1,9, 1,9 1,9,

Rescaling the other terms in (3.3) leads at once to (1) of the lemma.

To show (1i) note that ¢0 = ¢ 0<%

P P satisfies (2.2) and that

2
| (p°R o tp)¢0 + [ (pr oty = f Rgp dx + f ry, ds = 0.
% To Tp

Part (ii) of Lemma 2.6 then gives

+ inf Isz o 1 - Pl

2
lpR © p~ Plo,g
PP,

< C(wpr o

] T, 0 + ¢
Tp 0,9, ?0,T, )s

0

where, since ¢0 is determined by the standard tuple <QO,DO,P >, the
constant C of Lemma 2.6 (i1) is in fact C = C(QO,DO,PO,Go,gO). Rescaling
to QP gives the result. o

2 )2

. Th
1,9, e

2.4. We now return to the task of effectively estimating (X InPn
P

local subproblems (l.1) fit into the pattern of §2.3 if we set (see (1.2))

R = (f~L(W)) on each A
and

-[o(u)-n] on TI* (4.1)

r =
2
e - o@en o0 2(ODN
'.;i;;i;;irffsﬁf';ﬂ';fﬁﬁilf??yfffﬁi*fivﬁﬁiflﬁf@”HfOLf{f;ﬁ;f-ﬁ:j;35'*g7"t3
stuihatdomaluitainitolutifitebendbeunfinhioionioteiotedmeiuiohaninlb el ottt sinddutuinfotaiotitetohetoduny
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To complete the framework required for applying the results of §2.3 we define

Go = {v € LZ(QO): v 1is constant on each A € Do}.

g8 - {v € Lz(ro): v 1s linear on each primitive edge vy & Po}. ;1:
It is clear that Gy and gg; are finite dimensional and that they are E:l
determined completely by the standard star tuple <DO,I‘8>. .

Lemma 4.1:

(1) 7 lAlzlﬁng AT o(1) as h(@) + 0. -
AGD b o—
2 =2 2 S
(11) § pp inf IR-RAj o = o(h(D)?) as h(D) » 0. N
P REG »“p T
P e
(110) J pp inf 4r-E12 L = o(h(®)?) as n(D) + 0. -
»
P rég P .
P
(iv) There exists r* ¢ LZ(P) which is linear om each primitive edge v €T, Iff
which agrees with r at all nodes lying on I', and which ::
satisfies
n2 . 2 -
Y l1alir~r Paa o(h(D)“) as h(D) » 0. .
A nr
Proof. To prove (i),
I akiml o< onfonm? o+ 3 omidE . T
A€D ’ 1,2 A€D ’ -

By the projection property (1.1.5) of the finite element solution the first

terms obviously tends to 0. For the second term

---------




55

2 ~2
¥ 14l laly o

< cJ inf |G—v|f A
A¢p ?

Aep v
(v linear on A)

< ¢ ) (uu-Glf At inf nu-vuf A)
A€D ’ v !
(v linear on A)
~.2 2
< C(te-ul + 3 inf Tu=viy A)
1,2 A v ’

(v linear on A)

which certainly tends to zero as h(D) + O.

Now turn to (11) of the leﬁma. On each element A € Dp, R 1is a sum of
terms each of the form A(x)E(x) where A has bounded derivatives of all
orders on Q and f = 1,3,»13 or Dijz (1,3 = 1,2). We can find a constant

function 6 on A such that

=81, , < CIAIIAEY,
< clangr,
< ClAl(Iulz’A + 1A1).
Thus
- ~ 1
inf 4R-RM, o = c{ ] Umﬂm§A+mﬁH&.
REG »p A€D ’
P P
and so

2 =2
) pg inf IR-RI
P T REG, 0,9

< c) p% ) (|A|2u3|§ A+ IAIA)
P~ A€D ’
P
< ¢ @ I ki@l 4 wum?)

A€D

DERESS Jai abeh Sie Jven arus et Jou aoet ges sne o ol
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where we have made use of the fact that each element A ¢ 0 belongs to a

Dp for at least one, but no more than C = C(K), proper nodes P (Lemmas

1.3.6 and 1.4.1). Part (i1) of the lemma now follows immediately on using

1).

For part (1i1), observe that on each element edge Yy making up Tp,

is a sum of terms of the form A(t)E(t) where A has bounded derivatives of

all orders (independent of D) and £ =1 or a limiting value of Dig 1=

1,2) on the edge. There is no loss of generality in assuming tha D u is

i

linear on this edge. We can find a linear function B on y satisfying

2
INE-BI < C IAED

FPlo,y < ClYIMEL,

< Clylz(lgl )

2,Y

2 1
2 ~ /o
C D +
< Clyl (1_2_1 LRI )

where Di; is the limiting value on y from within an element A € Up. We

have
B VA
~ 2
IDiull,y < Clal nuuz’A
and so
1/ ~ 2
- 2
IE-Bly < Cla (lAlluﬂz’A+ a1y,

Therefore

- 1 ~ 1
inf dr-rhy L < CpI/,Z{ ) lAlzllullg At ml"}/z
régy i AeD, ’

and so, much as part (i), squaring and summing over all proper nodes

............................................

................
--------------
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2

O,PP

< Cgplz, ) (|A|2|E|§’A+ a1

AGDP

! pp Inf Ir-TI
P régy

< c(»(] |A|2|II|§ + n(D)?).

A 4

Again, on using (1), part (iii) of the lemma follows.
Part (iv) of the lemma likewise follows from (4.2) and (4.1), since we

may as well choose f to interpolate A at the endpoints of A. a

We are now able to state and prove the main results of this paper
concerning an equivalent estimator for the energy norm of the finite element
error. Because of the coercivity of b(e,¢) there is no need to distinguish
between equivalent estimators for (l:b(u-‘\-x.u-\.x))ll2 , oOr Iu-ﬁll’g. For

definiteness we shall phrase our result {. terms »f the latter.

Theorem 4.2. There ifs a constant C > O such that for any K-mesh

Iu-ﬁll’Q < CE (4.4a)
where
E o= (] DimPimed , + anm} aAnI,]1/2.
A€D ’ '
If in addition for some L > O
Iu-ﬁll,g > Lh(D) (4.5)

then there are constants C > 0, hy > O such that for any X-mesh D with

(D) < hy

clE < el (4.4b)

’Q

b




Froof. Consider a particular proper node P and its star Qpe By Lemma 3.1

-1 - L& -
C "(E,=pp, inf IR-RI + pcé inf Kr-rl ) < Ingh <CE (4.6)
PP Feg 0,0, P reg, 0,r, P'1,0, P
P

where

2 2,0,2 2

ES = Y [iat“aras , + 1a10x8 ].
P At 0,4 0,34 T,

P

Here we have used the fact that for any A ¢ DP’ C-IpP < 1Al < pp (see Lemma
1.4.1).

The constant in (4.6) depends only on the standard star tuple <DO,P8>
associated with the proper node P, but is otherwise independent of the mesh
or the node P, However, by Theorem 1.4.3, for any K mesh there are at
most C = C(K) { » posgible standard star tuples. We may therefore regard
the constant C in (4.6) as uniform for all proper nodes P and all meshes
of the specified class.

We claim that C~! E2 < XE% < C E2. To see this we need only rerall

(1) any element A €7D Pbelongs to a Tp for at least one but no more

than C = C(K) proper nodes P (see Lemmas 1.3.6 and 1.4.1)
(11) any edge contained in I is contained in a Fp for at least one,
but no more than C = C(K) proper nodes P (see Lemma l.4.1).
Thus squaring (4.6), summing over all proper nodes P, and using (ii) and

(111) of lemma 4.1 gives

Loy < [l o < cEl 4.7
P »p

Theorem l.1 allows us to conclude from (4.7)
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C'I(Ez-h(D)zo(l)) < |u-3|"1’Q < ¢ E%.
]

Making use of (4.5) gives the desired result. a

At first glance the estimate of (4.4a) may not seem too surprising since
it bounds the error in terms of a "residual." Note however a simple

integration by parts of (1.2) would only have yielded

lu-ull,a < C p*

+ e, )

*2- 2
where (E*) ) [|R|0’ 0,3ANT

A A

To obtain the extra powers of |A|l in (4.4) it was essential that we

were able to reduce the estimation of the global error lu-'ﬁl1 g to the con~
»

. sideration of a number of local subproblems.

The estimate of (4.4) is sharp in the sense that uniformly for all K-

3 meshes
0 < ¢t < E/te-T < c (4.8)
1,Q
(at least for h(D) sufficiently small). In contrast, for E*, although we
certainly have the estimate
: ¢t o« B
5 lu-ull’Q
no two-sided estimate similar to (4.8) can hold, since E*/E » » and so
f:_: -%_ + ® as h(D) » 0.
lu--ull’Q
o
.\' '\"\' o "-ys\:_ '\ '-:.s}\:.s:,\:,‘\‘_\:_\' “° s:,-\.:_-.:_'.:,-.:_-.:;.:,\'._-.:_-.:_-.:_-.:_\:.\:,-.:,.:;.;;.' .:.-_:.'-,'. __..' - .’..: -.‘-.-‘.
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Theorem 4.2 requires no extra assumptions on the regularity of the exact
solution u other than (4.5). However this requirement is hardly a
restriction at all being satisfied in all but trivial cases (see Lemma 1.5.4).

Although the estimate of Theorem 4.2 is sharp in the sense described
above, it can be simplified even further. It turns out that the Ly residual
contribution can be dropped from E, giving an expression solely in terms of
"line residuals," while still maintaining the two-sided estimate (4.4). This
will be shown in Theorem 4.5. It is natural to ask whether the "reverse"
simplification is valid, that is, can the "line residuals” be dropped from ¢
without affecting the estimate. It is not difficult to see that this cannot
be true. Consider the simple case where L(e«) 1is the Laplacian. Then for

bilinear elements, L(u) = 0, and the L, residual becomes just

]
(3 1a1% f 1012 ax)2 > enoyreng
A A ,

if the mesh D 1is quasiuniform. However, if the solution u has some
singular behaviour so that u ¢ HZ(Q) then llu--ﬁlll’Q must converge at a
slower rate than O0(h(D)). So the Ly residual alone cannot suffice for E
in (4.5) in this case.

For proving Theorem 5 we shall need the following lemmas:

Lemma 4.3. There is a mesh independent constant C > 0 such that for any

proper node P and any z C B(QP) = {z ¢ CO(QP)= z bilinear on each A€D;},

1 - 1
inf IDz-plO’QP < Clop( ] llazﬁ’A)/2 +p;(f [9zen 1° ds)/z}

P€P,(Qp) A€p, -3 RN

T

where Dz denotes any (element-by-element) zeroth (s = 3/2), first -
(8 =Yy) or second (s = -14) derivative of z.

R S S T T R e LIS T A P, N LA L S Y

« o~ T RIS I S A R I L St T SR S SR T e T » -
O g AN N N R I S N S R R S
PAIP SR I S S G T - ] MY ST Tl Wl S T NS0 LA SIPGIPN T SRR Sadendendc PR Y WA -




Proof. This is just the rescaled version of Lemma 2.5, taking note again that

there are only a finite number of standard star tuples. a

Lemma 4.4. Suppose y €Q 1s a straight horizontal or vertical line segment,

then for any z ¢ M(D),

) EVz-; Bz ds < Cf [d(z)-;) ]2 ds.
Y Y

Proof. For definiteness suppose

that vy 1s vertical and let super-

script (=) and (+) indicate limits

from the left and righthand sides

of y respectively. (See Fig. 5.)

Since all the aijkx are continuous

in Q, Figure 5. The scheme of notation.

lo(z)enl = ]
i’j)k’l

+) -)
O R S CPPWLILT. A

= 7 e, [ 0z0® + 0,200 S
1,3, 1312 o ok ]
since n, = 0, n£+) = -1 and n{") = 1. But Dyzy is continuous across vy, bu: '
<
o0 Do
Ha(z)°£ﬂ = 3 3311 [-(Dlzj)(+) + (Dlzj>(-)]

1,3

= all [vzen}

where
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But the matrix all is uniformly positive definite on Q (see l.1.4b) and

so det(all) > C>0 on Q. It follows then that onm Y
IIvzenll < Cllo(z)enl1,

and the lemma is proven in this case.

The case of y horizontal is treated similarly. o]
Theorem 4.5. Suppose that for some L > 0

Iu—ulll’Q > Lh(D)

then there are constants C,hg > 0 such that for any K-mesh 0 with

h(D) < hy
¢lE < neu < CE (4.9a)
1,0
where
- 2 f
E {3 'A"r'o,aAnrf . (4.9b)

A

Proof. First note that the left hand side of (4.9) follows trivially from

(4.4b) since E < E. To prove the right hand side it will suffice to show

2 2

) IAIZIRIO g S B4 o(h(D)?) (4.10)

A

with the o(l) term valid as h(D) » =,

For any interior proper node P we have (see (1.2), (1.3))

/ Ry, dx + J r$, ds = 0

g Tp

with R and r as in (4.1). Thus we may apply part (ii) of Lemma 3.1,
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1
plz Il +p, 4inf  IR-pI

1R < ¢( + eP), (4.11)

Pp'™0,0 0,8,

P
where PO(QP) is the space of constant functions on QP and

- L. -
£, = pp inf IR-RI + p/Zinf 1r-ti .
P Pe Rec, 0,2, °P reg, 0,Tp

We shall concentrate on the term inf lR-plo Q for a while. As
?
PEP(Qp) P

the coefficlents of L(s) are smooth on Q, let us write L(¢) for L(s)

but with its coefficients replaced by their averages over Qps If we then set

R = § (L)),

AEI%

we have
inf  IR-pl < §R-R» + inf  IR-p!
pePa) % 0,8 PEP(Q,) 0,9

< Cp, ¥l + inf  1R-ps
P58 pepy(ep)

O’QP (4.12)

< Cp,(un +1Q,1) + inf 1 )] L(W) - pt
PUUB% TP pep (@) 46D, 0,4

where 'E'Z,Qp is to be understood in an element—-by-element sense.

Now L(4) is just a sum of terms of the form A(DU) where A 1is a constant
and Du denotes a zeroth, first or second derivative of the funtion

u € B(QP)- (The congtant A is bounded independently of P and D). We may

clearly apply Lemma 4.3 to obtain

...........................................

ORI S Ry
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tnf 1] L@ -

“0 A
]
pGPo(QP) AGDP

~ -1 o~ ~
< C(p,lul +p 12 () [Vuen 2)ds)llz) (4.13)
p'a,0, TP TU
p

~

< C(pPlulz 0

+ p;l’z(f [o(@n 17 ds)2
’ P r!*

by Lemma 4.4.

Substituting (4.13) in (4.12), and then this in turn into (4.11) gives

1.
2 *
anRIO’Qp < c(pP 't'O,rP + eP) (4.14)
where
eX < e + pi(1T + 12,1)
P P~ Pp 2,0, p'/e

Squaring (4.14) and summing over all interior proper nodes P gives

2 2 2 2 X
1 1A1°0RR < C ) pg IRN -
(P an interior &
proper node) (4.15) g
< c(E2 +7 (e ) + h(v)Z(Z 1A120% + h(D)z))
£°p 5 2,

wvhere, much as in the proof of Theorem 4.2, we have used the following

properties of our meshes:

RN
I
kv

(1) for A € DP’ C-IPP < lAl € CpP (see Lemma l.4.1)

[

1

- et )
e .

. . L

(IR SR ISP D PSP

(11) any element A € D belongs to Up for at least one interior

proper node P (see Lemma 1.3.6) and at most C = C(K) proper

nodes P (Lemma l.4.1)
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(111) any edge contained in y 1is contained in FP for one more than C

= C(K) proper nodes P (Lemma l.4.1). o

The desired result (4.10) follows at once from (4.15) and the assumed

lower bound on Iu-\"il1 g upon appealing to (1), (114) and (1ii) of Lemma
14
4.1,

A slightly more computationally couvenient form of estimator than that
given by Theorem 4.5 would be obtained if the integrals involved in 'rlg,aAﬂF
could be replaced by discrete sums.

If g 1is a (sufficiently smooth) function defined on an edge, Yy say,
of an element, and if Q;,...,Q are the nodes which lie on y then let us

write

k

* 2
1gh = (iv1 I 1@l
0,y j=1 ]

12,

If A 1s an element and g 1s defined on 3A N I' then we shall write

* . Y2 )
'8l asar = g ety ) .
(y an edge of A)
ycl

Corollary 4.6. Theorem 4.5 remains true {f E 1is replaced by E* where

B = {] 1arGmg amr)zflz'
A »

Proof. Let r* be as in (iv) of Lemma 4.l1. Since any edge y can have no

more than C = C(K) nodes on it (see Lemma l.4.1)

fa ’. "x"."' .“.'..

- *
c 1lt*l

< Il < CIr®™) .
0,y O,y 0,y




a vertical edge of A)
ycT

.......................
.............

(y a horizontal edge of A)

......
.... WENE)
LI I WA T W e Y
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Thus
2 ) 1/ *
C E* < (g AlNr IO,aAﬂP) < CE*,
k But
‘ 2 2 2
* . .
g IAIT*IG oy on € C g 181(¥e8G aanp * 1E=T¥1G 2r) B
; .
; T
ORI o
< C(E“+ J |AalNr-t "o,aAnr) ».
A ]
< CE2 + oa(?) -
*
by (iv) of Lemma 4.l. Likewise S
B
2 W) 2 AR
E° < ¢(] ialr 10, 8anr + oCh(®) )). 5
A pp—
The corollary now follows by virtue of the assumed lower bound on ﬂu-ﬁﬂl Q fljf ;
’ RIS
in the theorem. o :“‘““
Z 4
Since we are only concerned here with equivalent estimators for Hu*ﬁnl Q i
»
e o
there are many other modifications that can be made to E or E* without AR
- T4
»
affecting their equivalent estimator property. Let us just mention one other S
such modification which we shall say a little more about in Part II. Using
the same notation as above, define
* 24
gy, ~ (1v1 max lg(Qj)I ) RO
’ J=l,ce4,k :';:._‘ *
rar™ (1 * )2 + (1 y )2 I, L
80,240 o 8o,y o glo,y .

Yer

St et

.........................




ramTe r o & T "

.........

67

Now set

1
Erx = { ] IAI(IIr“;faAnF)Z}/Z

A€D

Since there are at most C = C(K) nodes on an edge of any element, it is
immediate that C™lE* < E** < CE*., Thus E** is an equivalent estimator

under the same conditions that apply to E*.
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