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1. The Recognition and Localization Problem

A central characteristic of advanced applications in robotics is the presence
of significant uncertainty about the identities and positions of objects in the
workspace of the robot. In .simplest terms, if a robot is to interact intelligently with
its environment, it must know what objects are where. This normally necessitates

sensing of the external environment as a means of obtaining the information needed
to solve the recognition and localization problem. The process of sensing can be
loosely divided into two stages: first, the measurements of properties of the objects
in the environment, and second, the interpretation of those measurements. Since
the sensory information could come from a variety of very differe nt sources, for
example, tactile, ranging, sonar or vision, both binary and grey-:level, it is important
to derive recognition and localization techniques that solve the interpretation stage
of the sensing process with very few assumptions on the sensory measurements
themselves. In this article, we assume only that the sensory data is characterized as
sparse, noisy measurements of the local geometry of a small patch of the object's
surface, for example, the position and orientation of a small planar patch of the
surface in some coordinate frame defined relative to the sensor.

Given these simple data elements derived from the sensory data, the problem
of modcl-based recognition and localization essentially can be considered as one
of searching a space for a consistent matching between these data elements on
the one hand, and model elements representing known objects on the other hand.
Since the data elements are ;issumed to approximate the local geometry of a small
planar patch of the surface, initially we assume that the objects can be miodeled
as polyhedra having tip to six degrees of freedom relative to the sensor. The goal
is then to define a matching process whereby the space of possible interpretations
of the sensory data can be searched for a consistent matching of sensory data to
model elements.

Since, in general, the search space is far too largo to explicitly explore, the key
to the problem is to derive constrai ts on the data that will eflici ently rest rict the
portions of the search space that must be explored. In this paper, we present a set of
general criteria on these constraints and derive a specific set of such constraints for
the case of geometric sensor measurements. Using this particular example, we show
that these constraints are complete both for the simpler case of three degrees of
freedom (isolated objects in stable positions) and for the general case of six degrees
of freedom. We also show that the constraints are exhaustive for the three degree
of freedom case, but not for six degrees of freedoni, 1ly exhaustive, we nean that

modulo errors in the measurement process, the measured constraints arc sullicieit
to completely determine the relative conliguration of the sensory data.

The main result is establishing theoretical bounds on the eflect iveness of local
constraints in controlling the conbim atorics of the search process. We stress that
the results obtained hold in large part independent of the specific cons(raints used.
For the particular constraints derived here, we also comipute explicit values for
the predicted bounds and compare theim with enipiric: l vidence derived earlier



iiG 'inison and Lozaiio-INrez 19S.1 , . Finially, sevcral predia t iow, of I 1 0,( ury' are

d i~sc ssed , 'including (ft, &,gradlat ion of thle technzque with ziie.ised rror , aIli( the

ninher of' sensory point~s generally needled to guarantee at uinyjie Initerpretat ion of

the data.

The recogn itioni nm localiz~at ion of objects troai >el-,sory dl :d at centra.

probleir, of' most advanced robotics SItuation1s. It is lsiniy1) enuVOI lea11. to po.

the problein as one of' search, that Is, given a set of kinow a ;ii)icis \\e kik;Iri I
and locate, the particuiLar object, that we are scensing by seatr. .aaa jLc of
possil IouilSutl~ o one (or all solutions); that jui,1cie, th aoliat

available to us fromi the scinsors. One of tite liiu( diiCul0t& V.l h 1IC~ i~l true

of most search problemns, is that the space of possible solut ion, is i'Ll;,iy xt re

large. and one seeks methods that will ef-Lectively reduore tile out oo ,ulh s ac
bpace thA must be explicitly explored. The prolivemn is fuI ,1 or i tu;puar:iito
case con.sidered here oy the fact that the sensory data a&<i utos ;v i in ntc ii is
sought aire typically inacc a rate, so that the miatch: ag proco,,s iliust be -tolerant o
errors- Ini tile data.

Thie Critical issue inl searchllog for a mate 1. betw en s a () r daa d'Ifli

iid els is controlling tw pote i ital conubin at()r iai e xplosioni ol tile -sarcl V Tbhcre
hiave bven a wide variety of tech~iCiqes applicoi to thle r~coailapo all
attemuipting! in sonc niiinc r to control this exp~losion. %e cain Ois ng re
gerieral classes of ;ipproaches. althbough these istinctions atre i.() iariaio fat,
of coo rsce The th ree 11oC(ral classes are (ij) match Ilig comie ot o dsr. aSof tole

object obt ainled fromt the sensory data to coin110 p letc odl deiC r,!1 :ois. it iiatcuing
parti ,rto-,,a -al descpt ons iie data to partiL (ecriptions of to' iid.el and t ii

matching partial (iescr iptiotis of the dlata to comnplete (lsrptn.of :lw mnodel.

The basic Idea lbchimiatciiing complete descriptionls to coiPle- (*ioi

1to redtice thle combhiztorics, by comoputiiig compact rqprese a;o,:at ions (d a ia 1(,Ir > t
of senlsory (data and comiparing this represenitation to at similar objiet mod,,. Ii Oil

mannier, the mnatching, process i., constrained to a small nuniber ol' comilapmm t. and(
the co;iit)loatorics Is igicitlyreduced. lVIIIIa O n iesineludc generAlzro cy liror
rere-wiit itionis (see for oxaiiu~pfe. Ncvatiat 1974; Neva tia and I fi ford I 977 \ rr and
N. I ii:!r.t I t 7 ; i roo,,, I ' I ), ati e f xtende d G auss IaIl imtages, fie or xa;~ i .k if ou

10-3 Hor 183; Horn aiii Ikeuchi 1983; lkecii 1983) siete cori~lilitor ii

ldvnim agej of coliip~irinit, Hero, comic~te (descript ions have ,,everal othier potetilal
ro~u L(.Fimrst , by buildinig the repre-sentation from a large, , (itnse set of -enusory

rlatai, It 1, islne to hr ucnstv to errors tin tile iiiilm datal eIlments. .rcond,
eVCrn if wily parts of thn ol~j'r(t are( aLValale to the sen~sor, the ii L, of 0olte ~
represita ionts ma,'kes it ikeYty that recogizit iot, call stiil p)rocee d onl Itin partial
(data. (A' i'olrse, to onie extent, thre reducitioni iii comprirationmi ,o.st :irhicvvd by
nzatclig campact. dcr-cript ins Is of"Iset by the aiddit ional mi:, of prtrccssng tke
raw senso4rY data to ittn those rep;resenrt~it os. We also riot tiat not aill gljobal
represelitatins shareti advanae ('lved abmove. For eXanipie, one of thte eairliest
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techniques for recognition uses global properties of binary images, such as area,9 perimeter, elongation and tluler number, an approach comnon to many commercial

systems (see for example, Bausch and lomb 1976; Gleason and Agin 1979; Machine
Intelligence Corporation 1980; Reinhold and Vanderbrug 1980). These particular
parameters do not extend well to overlapping or occluded parts, arid thus such
techniques do not dlemonstrate the same versatility as the previous ones.

A second approach to the problem is to use input tokens (frequently called
features) to the matching process that are very distinctive. Typically, if one can
obtain distinctive features, then the search reduces to a straightforward depth first
exploration of an interpretation tree, with very little backtracking involved. For
example, if I wanted to recognize a soft drink can from visual data, I could process
the image to obtain the UPC bar code, which would uniquely identify the type of
can. Moreover, knowing the position of the UP'C code on the can and in the image
would allow me to determine the position and attitude of the can in the scene.
Of course, not all feat'.res will be as distinctive as a UI'C code. Simpler examples
might include corners, holes, notches and other local features. The idea, however,
is that very few such distinctive features should be needed to identify the object,
and the search space can be effectively collapsed. Examples of techniques in this
vein include the use of a few extended features [Perkins 1978; Ballard 1981], or the
use of one feature as a focus, with the search restricted to a few nearby features
[Tsuji and Nakamura 1975; lolland 1976; Sugihara 1979; Bolles and Cain 1982;
Bolles, lloraud and Ilannah 1983]

There are several drawbacks to such distinctive feature approaches, although
they also have many strong points. First, while the cost of the search process has
been greatly reduced in this case, it is usually at the expense of the processing of
the sensory data. In other words, the unique features required to straightforwardly
identify the object are usually not directly provided by the sensors. Rather, the data
provided by the sensors is typically point data, for example, local measurements
of the position and/or orientation of points on a surface. Each such local point
measurement is clearly not very distinctive, and to create distinct collections or
features requires additional preprocessing of the data. In the example of the UPC
code, the visual input must be processed to extract the code from the rest of the
data. Thus, feature driven recognition techniques usually reduce the computational
expense of searching a space of solutions at the increased cost of computing the
tokens to be matched between sensory data and model elements.

Not only is there additional computational cost for computing appropriate
features, but the computation may also be sensitive to sensor errors. In the example
of the UPC code, if the imaging device is out of focus, causing the image of the
bar code to blur significantly, the recognition process may no longer succeed. Our
preference is for recognition techniques I hat degrade gracefully with noise, rather

than suddenly collapsing under the influence of sensor error.

Clearly these problems do riot rule out feature driven recognition schemes, as
is evidenced in our example of the soft drink can, by the proliferation of automatic
check-out counters in supermarkets. A more critical drawback concerns the density,

3k



or rather, sparsity of such features in the sensory data. By definit ion, features well
suited for recognition and localization must be sparse on the object, since otiterwise

there would be multiple interpretations of the attitude of the object relative to
the sensor. 'While this eases the recognition task, it also reduces the situations in

which the process can be applied. In particular, it requires that. the initial sensory

data be dense, in order to have a reasonable expectation that the feat ure exI raction
stage will actually find a set of useful features from the data. This requircineit on
dense sensing modalities rules out some types of sensors, such as tactile, that arce

inherently sparse in nature. If possible, we would prefer a recognition technique
that is sensor-independent.

Tile sparsity of features is also a problem when dealing with occlusion. If an
object is presented to the sensor in isolation, then large portions of its surface
will be visible and the probability of detecting appropriate features is high. If the
object is partially occluded by other objects, however, this may not be true. in
our example of a soft drink can, if some other object occludes the UPC bar code
from the sensor, we will not be able to recognize the can. Note that this may occur
even though virtually all the rest of the can is visible to the sensor. This follows
in general from the sparsity of useful features. If possibie, we would like to use
recognition techniques that are not dependent on particular localized features of
the objects, and are thus, still capable to performing recognition and locaiization
on partially occluded objects.

In summary, our main concern with distinctive feature techniques is that

because they are matching partial descriptions to partial iescriptions, it may
occasionally be difficult to guarantee the computability of suci descriptions from
the raw data. This implies that the inherent sparseness of such features on an
object may cause problems for sparse sensors, such as tactile sensors, and may
cause problems in situations involving occlusion.

A third approach to the recognition and localization problem is to use the
local point measurements available from the sensors as the basic matcrhing tokens.
Of course, in some sense these are also features, but they do not suffer The same
problems due to sparseness, since they are dense on the object. Since these data
eiements are very simple, taken individually they are not likely to uniquely identify
the object being sensed. Thus the search part of the process becomes much more
critical, and we will need to use local constraints between such point measurmecnts
To restr:cXt fihe search pace. While the size of the search spie explored ii this
C.i, will be larger thi in Ole feature based methods, the expcctation is thai flhe
uit,. (os t of searchi ing the space can be reduced significantily enough to ow-roiiie
Oh nimher of addition ial elements tested in the search. lepresenia INv' exa pciJ of
such scheites include lVauteras and llebert [1983], Gaston and Loz ano-tl'rez 1I18,1,
(;ritson and lozano-l' 6 rez [I9841] and Stockman andl Esteva 't08].

The key distinc tion between schiemes that match partial descriptions using

iw h'cvl sensory ra-tit-rments and schemes that match part i rie~cript ions h:e'ed
(,n distinclive featulres lie's iII the computability of the scnsor data descriplioils.

Sin ple, low-level sensor measurements are likely to be denise over the object. As

4
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a consequence, recognition schemes based oi such simple itv aso relik I l houlh d be
applicable to sparse sensors, and should be inseiisitiv., to problems of occlusion arid

sensor error, since an input description can always be obt (iiri(cI air( in atched to tile
model. As the sensor features to he inatched become xiore disticlive, aind( hence
sparser on the object, the probability that they may riot be detected by the sensor,
either due to the characteristics of the sensor or to problems of occlusion rises. In
this paper, we will explore the use of recognition scheries that use low level sensor
primitives that can be computed over the entire object. W\e will, however, consider
using only a sparse set of such ireasurenrents, in order to keep the combinatorics

of the search process reasonably controlled.

1.2. Assumptions and Approach

As a consequence of this discussion, we will assume that the basic senisory data
available consists of local estimates of three-dimensional positions and orientations
of small patches c," the object surface. In this case, we can make very simple

assumptions about the elements of the object models needed for matching. In
particular, since the data elements are measuring the local geometry of small
patches of the object surface, we assume that the object models are also constructed

of small local patches. Thus, our two assumptions about the elements to be matched
between sensory input and object models are:

1. The objects are all modeled as polyhedra having six degrees of freedom.

2. The sensory data available to the process include positions of points on
the object, to within some voluxe of error, and surface orientations at
those points, to within some cone of error.

The basic approach to the problem is to determine the set of positions and
orientations of an object that are consistent with this sensed data. If there are no

consistent positions and orientations, then the object can be excluded from the set
of possible objects. The elements to be matched are thus simple local patches of a
surface.

The technique proceeds in two steps:

1. Generate Feasible Interpretations: A set of feasible interpretations of the
sense data is constructed. Interpretations consist of pairings of each sensed
point with some object surface on one of the known objects. Interpretations

inconsistent with local constraints, derived from the model, on the sense
data are discarded.

2. Model Test: ['he feasible interpretations are tested for consistency with
surface equations obtained from tile object models. An interpretation is
legal if it is possible to solve for a rotation arid translation that would

place each sense point on an object surface. The sensed point must lie
inside tire object face, not just on the surface defined by the equation.

There are several possible methods of actually searching for consistent matches.

For example, Crinison and l,ozano-PI6 rez {l!)S.IJ chose to structure the search as
the generation and exploration of an interpreT ation tree. That is, starting at a root



node, WCe coiistrILct a tree In a depth first fashion, aIssigingam apol to i~~e
faces. At the first level ol the tree, we considler assigning ih iir, -itpa ,o tIu

:d possi ble faces, at lie next, level, we assign the secondl data poit e) 11,(
faces, and so on.

Clearly, the first step is the key to this process. Tile i.i

interprctat ions given seii ,ed points and ?i surfaces is ait". ,rt il ;16
e'beto explore the entire search space in order to I- Ia P.

:i posh i ole 11terpret at ions. Moreover, since the connpu ta Liul i~ of a...

r.o ist omiationis tends to Iae expensive, We wanit to apply this pt rt I" ...... e
only as needed. Tie go) of OwClt recogrl t ion aigorithiii is Ohus I e,, i

,'Of "It IIts o II (i~ 0 el It: I S as Lo l1l 11i e t eILII b oi;iitin/. tt.nu b r o rj),1,it iii.

t1k,00 Le~ting \%rilil kvt' 01t the coinputationia cost of eaco o:.srli
caseZ Of the in terpretatiton tre n , neieed constraints bet weerin c an:t a io ) m

hw fnitolel i'lemieits 1,i tt I1 iiow us to remove entire SU btrees friw on ()ser :t i i

%%,!t iI hoxplici y h1ain g to search those subtrecs.

In sear~ch ing' for aipproprlate conistraits to appiy to the go no raItiOla
> alcrit eria a proprilate.

IThe Con.-; r~ln t s >"oti;( be coordinate I ramre inuependent. TII ill i, Xec NVui
iA, t( i~ crivo, ,orst:,..oa~s t at, retnove large potion01 of -, tr:h pace,
inir penitct of the par't u' aar orientation of the object. Tl S5 Ct t IIat

Ow(IJl t r.t-tinits sh ould (-body rest rictions ilue to the Th1;1 ap tte0 c
aiol not due to tiie <jclsof the sensing geometry.

2. 'I'li coist ra ift> 'ioui i be simple and have low coinputatt iona I kost.

3. The const rai lt shoulnd, ac the same timie, he as powerful1.1 Pks Oslie li
tt sense of renfoN ii, iirgo portions of the overall searchl ;p:oe.

.1. The colust mlits Lc iA h degrade gracefully in the presence of error in tne

T. I tku!e ruisriot so. I ririepenkicu-t of the specilies ;fow lb' ernor ;i
wilicih ie dat a cAine, so that they will apply eqinailly to dilfeini sensI ng

IflcdaleS.

These cortst rat, a rf very s~imilar to those su~ggested by Mfarr iii A tsn .ihF
7K&caiso MIar

2. A S-pecific Set of Loczti Constrainits

W(I il",Ii'i oiur anli by first dleriving a >cI( of coordinitc '1r~iln t2 pt -1t
* S r i Its, i! wetkvre fIr.st pr('s(n t ed III Gr I Iso n ar idt l...ilrni t -r .

I ieqt] t-Ion 1 ose vd is, wii: ty-)es of* rorint-tntt'inij ciii t oi:>t ri1Tils1

ire 1 io'.oibiIe. ,,Ive ii f Ii th e 4( tislry la1:0a is cliarac tei ,.d its ,i t. 1-. ti;s, .

Cilk 1-t 1< 01~ (4 . )it I() ti h i I,.i vi meniLTIt n id a it iI I stiritir iioriltii '0

It'lark 1 a s, nig'J Ia .(I ;Iii prOv id'. rio roust rinrit on t Ii'tsh ~l he ii

lilo I l hn oilld oiitoti he i'i.-,gfi('i to It. Thus, we 1,)) ;II ".ti" t 4 ,It,.
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Figure 1. The const ,aints bctcw.eu pairs of sensory poinits.

points, anid the basic in!'orrri atort availaable from these points Consists of a pair of

unit normals, as w!! its the vector separating their bases, as shown in Figure 1.

One way to get coortinate-fra t-inlependent constraints is to construct a local

coordinate frame relative to the coni u rat ion itself. Thus, we c:1t use each of the two

unit norm a. as a xes o' t.e C'oo i 0 i : I e irane. 1r, two U i I IhI Ie Ioeine a

local system, except in the degener a(e c se o!" the unit norm:iis being antI- )pmral lei.

In three dimensions, the third con porten't of the local co ordinate frame can be
taken as the unit vector in tlie direction of the cross product of the first twvo basis
vectors. Given such a !ocal bnsis, clearly ore set o0 f coordira te-Fra me- ii(lcperildcnt
meastirements provided by the corti,'uration of Figure 1 is the componentl of the
separation vector along each of the basis directions. (Note ihat the use of the
distance and two of the coin ponerits is eoti valent, tip to a po.,ible sign InibIguity,

to using the three corriponrents of the vector.) Additionally, the angle between the
two basis vectors is ilso specific only to the local coordinate frame. More formally, if

the unit vectors are oti ,oed by n . ri:, anld the vector sepa ratinr the two points is d,
then one set of coordmi tt' craie-inlepeilenitteasurements of t his configuration

is

ni ' n2

d nj

( n2

d u



where ii is a unit TCcLOr li In ii 1rection of n, X In., Not,- that ili ,e Ilwcts,,rcnIcIIts

are isoniorphic to the set used Ini rc rimson and Lozano-NI>rez 1 98 1

These arc c-oord iiit e m'rine- irdecndent ineasuremieii.- on .Lth1cotfg a i

dcline~d by a pair of sons ir,, points. To turn themn into constral ins ion the scarch
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1>1Io , ach ohbject Is iiiodftled as a comlix piolyhiedra, the i; ~
i~i~ trwril ir \ icconidr tu irst Ineasuremetiet,. it ,L *. i. !'~or

,rc x,2 t2 tiL& IY I., -,, ii o' ~ r I i 1 11~ List agTree!' W2IN iIt L 1 i t CC :1 ii..>

t v I~ *t11 ',1 T 1 S i ;CI t Iwee n :I I pa Irs o flaces o 1 ;1 u j c I[-o

ii S -.1 ra n thut >vea rch i'r a tiUI 1-1, 1, c : ii-. .

p irt's.iitr, 1:.1' ,.. ,r i1CISt~it with a pirt~cioiar Lc. 10>

T2' ctc of t te Iinterpretationt tree i\r- 1;tA o%'hfe notic

:1t 11 ifa h., t k''01 lit' 4norcd,, thercny3 rc(i.;citll . At of

C,. .01" 0. itI . I nIL U liIor~fiiVi. 120a is. oh p.j.Ir of
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Ind(epenrdent coordliuati f'rrie free, ((rrilris iwtwci peIir, of vrisor.\ Polthiat

are noit ailrc ad v iiieor po;rt' t- Int ttic pairticular coristrIiris. Thlis can 1wt ,

establlishied 1 tht,~ ii~ .trepiirri'i ( 'ihi('' the eci!fIgliratiori ;uird ri

Figure1.iiupo-e ce con'' riit ()irre mlit rarv glo!al eoordiniate trim, hxiav'p
rotaitional degree,; (t re,-dti o,(), .- ;oo th ree irinislationial degrees (I rt (oin,
grIVeOn by t he coponcritt I -,I' vc t or 1)1 relat Ive to th Iol-eser II) e( cooiigirrot 1i Tlo

comrplete' olesrihe the cw'iiur& lon shwn will require a total f equ:ti,it r

tospciy the hose lpisitionl 1)1 t hree more, to s pvcify the s pa it nvectir d, :Lid

two each to specif V the( relait ive attitudioes of n, , i.These tell vwii or ti, xlit

functi olls of' several parmeters. IinCluding the three angular aid( thr'e IraKt oma
dlegrees of fre('doryi des r Led above. Thus, to redu(ce this set of' 10 cont rntpl :ii

of coriaeCrm-m nnet(onstrair ts, We ni ist resolve the set of e( 's

to remove the explicit (dcpoencne onl the parameters related to the *,po'i

of global coordinate fr:imne- Clear ly this will reqire at least si XtroIt I .1 I

thItus t here :ire at roT)OSt Foi tr coordi' te- Frame- incependIIent eons'O r;i>t i L

particular pvo ir wise con li,-rt ion oJ senusory points.

Ini the Simpler ease of' two diresos We find that there are lihre!codiae

framie-inidependent constraints. Tihus. we see that Ii loth cases, t.'iot:xt

ou tirtied above are corn plete.

3.3. Exhauist iveness

Vvh ile the above anialvSIS Mud at es Itliat thle set of constraints Ill cornplet e, in

that there are rio adltt opal independent const rainuts possible, we can also exa i inc

the eXhauISt iVeS of these Const -ri s. In particular, we canl ask thle folowmrg

questionCie'th confl, trton of Figure 1, Suppose we know tiL p)051t.fl mid~o
orientation oF one of -Iie 11tpo(!an its 0renitmot :orl veCtor il 10:ile eordiuat'o

frame. losthe' in formj,!T 'on r ovidelI '.v the i -:d constraits of Ie above seofl
uniCTuely ( triu l' oyO im! orenlItamop! tit, e 0otid pol! ng:l "

other words, 1guitrrin ,<' of erro)r. how well do thre local 01emosuirenrts rest rot

the possmile ni'e1 rprc!:at1 us of9 the dataitn degrees of' Fredom , 'We 1-
expect the S'cunfd point 0o he uinqil *v (let(rrniried for the two dimeisionmil case,

but not for lie three (i r i onral onle. W\e now proceeda to estabilishi this claim.

WVe first consider tOe case of two ditnerisions. Given one sensory point, consistinlg
of a position Nec-t or ;mn ;ti air ssociatd l iiit norm al vector, we construct a rel at ve
cooririnate sv~teo wilthI ori,,in at the end of the position vector -nd With - y aIxis

)InCn ted alo0ng! th le 1111;i nor nria. T[hus, a secornd sensory point can 1,e cli aractcr: it'o
ti this spare ')N ;a uni~t vector in offset by some other vector p, ,0iclh we represent

10, the ordered pair

Toi oet ertini ne thle 'xlI loStivi'niess of the conist raints, we need to show t hat thle pair

a1) is) IStTIjW. dtric ,he __lwi~ mesrable para mieters:

I. T[le Airittl 0 betNweni O' iinit riormials.



2. T he coinpoiieri is tit ano( r!- of the vector p re'AtIVc 1'he wo (
:iorrnal!; respectively.

By' definlitionl of t 'ti. ' ACoordiinate system, Ill "0; -- i'_. 'A sii,' v lie :Ingic

0 cair be deteram ii froin tkle senisory oieaso reriients, tho ;o,,d oi :ma Is
completely deterri ie (isin 0, - cos 0)

To begijn, wigoetescaldegenerate case of

(n, n.)) 2  1

iii this case the vector p (,n Ibe represented by
p =-l 11 -t Ofl2

Where a andi are pa rai~ eter.s to be determined. By t akillog the, (jot pro i jct of p)

w ih ach of the oj it ::ornhjal vectors, we obtain thc followNV'T~ 0e ' ol eat ins:

X -t- '3 CosO0=

a cosO 0 - 3 inM2 .

Since cos 0 -4 1L, we can solve this system for re and 3, yielding

'M I - COS 07n2 7r.2 - CO 011
p +.I~

.111"0 sin2 0

Thius, the ordered pair p ,rI) is completely determrined by lie mn asured v.ol ucs.-

Geomeut rically, we niote that the componeitt rri corist rairs p 1.o fie on Lhe line
y- ml~ as shown in Figure 2. Since the orientation of the secoud~ uit normal is

known. the final coastr; itit cuirieS fromT the COrrl)OnClit of the vec'tor 1), t w('nr the
two .osesr j)oirit Mi thle dirrection of this 11or7mnh, ini 1arti'd;ir, that - - n - In,.

10
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In Figure 2, this corresponds to finding the ray perpendicular to n at a specifiedI distance that contains the origin. Yhis ray completely determines the geometry.

it the degenerate case of the two unit normals being (anti-)parallel, we can
use the magnitude of the distance vector d = \iip-" p as an additional constraint
in place of the now redundant constraint p • = n. . In this case, the distance
constrains 1) to lie on a circle of radius d. Combining this with the constraint given
by the component ?rnI restricts p to one of two positions, and there are two solutions

- M 1")
where IM1l = rM2.

Thus, over the set of all possible relative orientations of faces, the constraints
for the two dimensional case are almost always complete. This is illustrated in
Figure 2.

3.3.2. Three Dlimensions

We can consider a similar analysis in the three dimensional case. As before,
we construct a relative coordinate system with origin at the first. position vector

and with the -z axis point along the surface normal. The x and y axes can be
oriented arbitrarily. Here, we have a five degree of freedom problem, since we must
determine the ordered pair

(p,n)

where p has three degrees of freedom

p == (z,y,z)

and where n has two degrees of freedom

n= (sin cos0, sin 0 sin 0, cos 0) - 7r <0< 7r,O < < 7r.

The constraints in this case are:

1. The dot product between the two surface normals, E.

2. The components mi and M 2 of the vector p relative to the two unit
normals, nj and n2 , respectively.

3. The component m3: of the vector p relative to the cross product of the

two unit normals, n, X n2.

As in the two dimensional case, we exclude the degenerate case of

(ni " n2) 2 = 1.

A similar analysis holds in that case, using the distance constraint d = VP -
instead.

The constraints essentially supply four equations in five unknowns, z, y, z, 0,
that we wish to resolve. The equations are given by

!I
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sin O(x cos 0 + y sin 0) + z cos 0 i m2

sin O(z sin 0 - y cos 0) M3

- Cos0 E C.

Straightforward algebraic manipulation yields the following parameterized so6lion:
1

X(0) -I -(rn 3 sin 0 + [ -- mi] cos0)
sin 9p

y(0) ( - in :j cos 0 + [n. - f,,,lsin 0)
sin 9

n(0) (sin cos 0sin sin 0, -C)

where sin p can take on one of two values,

sin ± 1 -f2.

In niore geoinetric terms, this particular resolution of the equations restricts p to
lie on a circle, and for each point on that circle, there are two possible values for the
orientation of the surface normal i. Thus, we see that these pairwise constraints
alone do not completely determine the configuration of a pair of sensory points,
even in the general case.

4. A General Theoretical Basis

The key theoretical issue st ill to be settled is the combinatorial power of the

local constraints in reducing the number of consistent hypotheses. in this section,
we devedop a theoretical basis for analyzing the combinatorics of the recognition
process. We will see that while worst case bounds on the number of interpretations
consistent with sparse data tend to be very weak, expected case bounds turn out to
be very strong, and are in fact supported by empirical evidence. We will begin our
study by first considering the three degree of freedom case. We will then extend

the analysis is a straightforward manner to the full six degree of freedom ease. The
first question we consider is that of deriving theoretical bounds on the efficiency
of the cowi- raints in restricting the search space. We will derive bounds that are
independnr t of the specilic constraints described above, and then show how well
these particular constraints perform in restricting the search space.

4. 1. Relative Configuration Space (RC-space)

Onur general method of analysis can be summarized in the following roanner.
Since all of the constraints available to the recognition process are pairwise

constraints, we have no information to apply to the a.ssignment of a face to the first
sense point, P1 . IHence, we will arbitrarily a.ssign a face f, to this point, coinpite a
bound on the number of interpretations consi.tenlt with that choice, and then sum
over all such assignments of fi. To obtain a bound on the number of interpretations,

12
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We will use the notion of a relative configuration space (RC-space). Throughout
t the analysis we will consider two separate cases. The first is one in which the

objects are non-overlapping and lie in stable positions. This case is essentially a
two dimensional one, afid the objects have three degrees of freedom relative to
their models, two translational and one rotational. The second case is one in which
the objec's are arbitrarily oriented in space. This is a three dimensional problem
and the objects here have six degrees of freedom relative to their models, three
translational and three rotational.

In the two dimensional case, we define an RC-space inl the following manner.
Each face of an object is defined by a two-dimensional position (given by the
position of the midpoint of the face) and an orientation (given by the orientation of
the normal of the face). To ease the analysis, we will assume that all of the edges
of the object (or polygon) have equal length t. For a three dimensional object, we
assume that all of the faces are squares of side t.

Given a face f, assigned to the first point PI, we can define a three dimensional
coordinate system relative to this face, consisting of two coordinates of spatial
extent and one of angular extent. The origin of the two spatial dimensions is set
at the midpoint of the base face (fi) (with the face extending along the z axis and
with the normal of the face pointing in the -y direction) and the origin of the
angular dimension is set to the orientation of the normal of the base face. Thus we
have defined a configuration space relative to the orientation of a particular face.
The position of another face is completely specified by the position and orientation
of its midpoint in this RC-space.

In the three dimensional case, we construct a 5 dimensional relative configuration
space, based on the first face fi. This RC-space has three positional dimensions
and two orientation dimensions (since only two angles are needed to specify the
orientation of a unit vector). lere, the origin of the spatial components is defined
to be the midpoint of the base face, with the surface normal pointing in the -z
direction. The edges of the frace are aligned with the x and y axes. Thus, the position
of any other face is given by the position of its midpoint in this RC-space. The
rotational components of a face are defined by two different angles, -7r < 0 <

and 0 O < ir, where 6 describes the elvation of the unit normal relative to the
-z axis, and 0 describes the orientation of that unit normal in the x - y plane.

To obtain bounds on the effectiveness of local constraints in pruning the search
space of feasible interpretations, we need to map both the models and the sensory
information into this RC-space. By enumerating the intersection of these two
mappings, we will be able to analyze the combinatorial eliciency of the constraints.

Clearly, given a base face for the RC-spacc, each addidonal face of the model
is represented by the position of its midpoint in this space, and that is given by
the spatial offset of its midpoint relative to the midpoint of the base face, and
the angular variation of its normal, relative to the normal of the base face. Thus,
each face projects to a point in this lC-space, and the entire object is given by a
scattered collection of such points.

13
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('oc .ider now what the sensory constraints tell us abliot t liC JittOils of
possible faces in this RIC-space. With no sensory constraint, each face of tle object

could lie anywhere within the RC-space. [he sensory constraints on d istaCe and

relative angle, however, will restrict the set of possible faces to lie within a rtdued
voiluime irJ IRC-space. Thus, giv .i the assignment of the first JOiL to ftae fi, the
secoid fic,' can be restricted to lie within some finite volume of 1W-space. Clearly,
tiis should generally place a restriction on the number of faces consistuent with the
sensory data, and our goal is to obtain bounds on this restriction, by considering

the characteristics of this restricted volume in RC-space.

In More detail, we consider what the effects of the sensory con.trailts are An

the three degree of freedom case. In particular, given a second sense point P', we
know the following facts.

1. Distance. The measured distance between the two sense points clearly
restricts the position components of the second face to lie within a
restricted area. This follows from the observation that ii the base of the
vecitor connectitig the two sense points must lie somewhere on tile first
face, and the length of the vector is given by a measured distance d,
which is accurate to within a range c, then the set of positions in winch
the midpoint of the second face can lie is restricted to lie within an
area spcified by d and (. (We will see later one method for analytically

specifying this area.)

2. Angle of the vector. The measured components of the vector between
sensed points relative to the measured surface normals define the angle
between those vectors 0. This angie is subject to a range of values, which
in this case is a function of d,c and -, the bound on errors in measuring
surface normals.

3. Angle of the normal. The angle between the surface normals at the first
and second faces can be restricted to some measured value y) plus an error

range defined by -y.

As a consequence of these constraints, we see that if the first point lies
sonielvwbre on the base face fi, then the second point must lie within some volllnie

V ( d, (, , , 1P ,/,I)

of '( ;-spa ce. Note that tiree of the parameters defining this vowtone are iea'ou red
vahes amd hree are global parameters set by the object and the error sensitivities
of the iasiuring device. To reflect this, we rewrite the volume of lC-space as

V,,,,I (d, 0, 0).

Note that this symbol represents a region in a three-dimensional IC-space. We will
use

to enlote t lie InagnitltIde of this volume.

( iven that face f, is initially assigned to hle first sense point, we let

14
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t denote the distribution of faces relative to this assignment. Thus, pi is a sum of n
delta functions, each of which reflects the configuration of a face relative to fi, and

fjjJ ( p, (,y, 0)dx dy d =n.

If we let di3, 'Oj, O denote the sensed measurements between points P, and
Pj, then the number of interpretations consistent with k + I points of sensory data,
given face fi assigned to P, is bounded by

Hft J IV..d 1 , Pi(x, y, 0) dx dy do
j '2

and the total number of interpretations, over all possible assignments of the first

point is bounded by

Y H I J .fff Pj(x, y, ) dx dy d.()
i tj-,=, .

Clearly, in the worst case, this is bounded above by n- n k= n k 1 , as would be
expected. We now consider means for obtaining better bounds.

Note that the expression above only considers the effects of the sensory
constraints between the first and the 1 th point, and ignores the effects of intermediate

points in constraining the possible values for the Jth face. Clearly, a better bound
would be given by

n k, I
E kt ff [ ~p(x, y, 0) dx dy do. (2)
i =-2 f n' t

Even here, the worst case behavior is still nakI .

There are several ways we could obtain tighter bounds. One is to note that for
most realistic objects, there is a minimurr distance between) different faces, and thus
the density of faces in RC-space has an upper limit. This could be used to place
bounds on the expressions derived above. The second method is to seek expected
bounds, that is, bounds that will hold in general, so that the class of objects for
which the bound is exceeded is small, and hopefully, has measure zero, yielding an
almost everywhere bound. This relies in some sense on a lyp)e of limiting behavior
assumption as follows. Suppose we consid-r k different polygons, each with n faces
and diameter D. Then in the limit as k tends to o0, the distribution of the nk
faces tends towards a uniform distribution. If we then average over k, we can assert
that the expected distribution of faces is also uniform, over an area defined by the
diameter of the object, D.

Thus, we let vTr denote the magnitude of the total usable volume of lC-space,
given by

VT -.2 7r D 27r.

1 5. . . . I n n i 1 i N I I
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The key point of this assumption of uniforin di. tribut ion is lh1 L , mtI k ;I ft e

(istribu tion function will depend only on the magnitude of thie bwept volume, and
not on its specific position in RC-space,

vf,,-, (d,,,.,) 0111j) ),,M j)
Pi(x, y,0) dxdy do = n -

Thus, if we can bound the magnitude of the volume

v(,,',.(d 0...J ri, O-Aj

independent of the specific sensory measurements, say,

,,I, = sup,1,,;,, , (d, 0, V)',

then equation (1) leads to the expected bound of

L Vy.1

Thiis is stili a reiatively weak expected bound, since it i. basicil,, i ,I

U ness rc < I this ho)01111 will increase with increa>i- g k, ev, c , l\, , 'f .1

if' the volu oe ot l{C-space swept out by a single set of pair .%c ,,r or ,-s
than tinles the total available volume, the expecLed lilliliibcr Of i tcrPrut,r:.i,:ls'I

will decrease with increasing sensory information.

We should be able to obtain a tighter bound by uii , a: . ,' '

equation reflects that fact that while the constraits between ,Ih 1!it- I C

sensory ponrits yield a voliru e v, . for possible choicrs for ti,' i !',t, ,,i

tnt rpretation, the constraints between the second and third selsor , v,
gi nera, yield a second volumit of possible choices for Oie thir,i j't, it. r 0, t,,

intersection of these two volu mes will be a smaller volurie of, .>: , ,

for the third face. This observation, of course, exteuds [oF ,ii f',.f-I icr f.irc- 'k ,

in terpretation. In order to provide bounds on the niagnitutc o (d 11 i , .... , ,(
voluie, indeperident, of the position and orientation of the ad iia:i - r .

relative to the first, one, we consider the following tech inique.

First, we decouple the spatial and angular compontcis of th,, 1('V OiiI,'.
Vt, /Q Va,,V!,,. 0 V l

We let rn denote the niaxiiurn separation of poirits lying in thc >p,.if.r iof (i r ,I

the volume, V. Then we can (efine C,,e., to be the cibe (square in ti, ,.r>, ,, ' t.

spatial dimensions) of side rn centered about the center of mass of . F i.nil,

we let

In intoitiv terms, V" reprscnts a larger volume of lR(,-spaice ihat ,,I.iii> t ,

v(,lume of possible coniurations for a sensory point, independent ()f ilh, !;i" e fi"

orientation of previous sensory points. As a consequec'e,

It
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In order to bound the magnitude of this nw volume, we rely on the following two

lemmas.

Lemma 1. Consider a parameter range of extent a and a second parameter
range of extent b. If the two ranges must overlap and the ranges are otherwise
independent, the expected extent of overlap is

ab
~a+b

Proof: Without loss of generality, assume that b > a. Place the origin at the
beginning of the a range. Tlhen the right limit of the b range can lie between 0 and

a + b with uniform probability. Thus, the expected overlap is simply given by

f(" xdx i- (b - a)a 4 f;"b(a + b - x)dx

dx

which evaluates to

ab

a + b

as was originally claimed.*

Lemra 2. Given k > I constraints each of extent a, the expected range of
overlap is

k

Proof: The proof is by induction. Clearly the k = I is trivial. The k -- 2 case
follows straightforwardly from Lemnia 1. Now assume the induction hypothesis is

true for k - I and establkh it for k. fly Lemma 1, adding the 0k constraint yield
an expected range of

_O -i10

and this reduces to
a

thereby establishing the induction hypothesis.1

This second lemma implies that, in the three degree of freedom case being

discussed here,

Th-, using equation (2), the expected nurri r of interpretations is bounded by

17
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i=1j=2(j- 1) VT

If we le, v° denote this normalized volume

'V
VT

then tli expected number of interpretations is bounded by
[nv']k

Since it is well known that

k!

this reduces to an expected upper bound of

n a',*, kI

This is clearly a much tighter bound than that of equation (3). Indeed, for ixed n,
this behaves like

k
i -31

m ck

U d the k :' term is extremely important, since for iixed n this f wic tion I, ii n oodi l ,

rising to a peak for some value of k dependent on the values of the constants, and
tien drAmiatically decreasing as k is further increased. A sample plot is shown in
ligure 3. In Figure 4, the log of the number of expected interprel ations is plotted
as a function of k, with each plot corresponding to a doubling of the constait of
the previous plot.

It i worth noting that exactly this type of behavior was obscrved empirically
by I, rinson and Lozano, ltdrez 841. In Figure 5, we plot the nimber of con:-istent

interpr,.tations as a function of the number of data points for ;m iczt rxamtplie.

Note that he forim of the graph is very similar to that of I it ure 3. Th, ftct
ihat the nunher of iit,'rpretations does to asyniptoticilly approach I is due to

m'rnmetri's in the object Mich violate the assumptions of uniforin distr i i(IMI

of faces in RC-space. Evln so, the performance on real data closely riate h. s hat

predicted hy theoretical estimates.

Finaly, it is clear that none of the above discussion was cril cally ,'p,'1hid'nt
(n the fact that we were dealing with the two dimensional cais, altimil'h it \,as

easy to visalize n this case. Similar constraints in the three diniemsional ca will
also result in a restriction of the swept volume of RC space, app ropriat ey dletite,.

Iler,,, the spatial components of the lC-space will be similarly tind. In partiul:tr,

18
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F'igilrc 3. A :,arrpl plot of nrck 3 k for fixed n aid c and increasing k. The function is

11nilil odal, peaking for .ome small value of k.

1 6 e

Figire I. The logatrithmn of th, expected number of interpretations plotted a a function

of V Fach r;lijh cosrri'poiiid Io a doubling of the roii.tant used in thc previous plot.

if is thc number of independent constraints, defining the swept volume IVu,,ne!

then the expec ted bound on the number of interpretations for k ± 1 sensory points

is

I1
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C ri r s~~~oil (',,bIw , W Id i I,,,s d It. I-i~

raniges of paraiieters t fIat dcecribc relat Ionships bet ween faces o f :tiu ofhjcit .TI I uS,
providecd we cairt boii 0w v-ol ume of l{C-Space spannied by Such-I a coristr:int, the
resuIIlts deIrI%v (1ab)ove glIv( US aj 111ie:1iri o f tne:tsuring the eIc Iety of suchI (-on- t :I I Is
in restricting the srl Of ';il 01rpeatinso the data. arid h i beha;vior Of the
bounlds wit h inicre IS11ig' 111iniiler- of' (1ii points allow it., to Yncastire the ( lIjjcticN

of the cornstraints lin t riri tn the k,:irch "pace.

4.2. lPrcdktioiiM of' U 110I lii i

Several interestli ig fmet irs ca:n he decrived front these hon rids. 'We alre:?dv have

nioted! that. ( iis ho rifi 1 a o noc ion ]in k, We first de'ive an expression
for the value '%,j for \%' lj !I is1rI\:i; -li!T s II,!(,vcd. 8 ulppose we 1lC.

denote th.e nitL rrrhe r o," i' -(,'en?0 rratin r Pojflt of ersnsory Iinformnation,

where jis the nu rulir (0 d1 on si ron l Oe IRC-pace *Iat are cxp11;' itlv ronst ra~rned

by the focal costan !iI t' '' crl vat we of the logarith in1 of [,, to zero, we

find( thalt heI funeIt :ol F' r0;WcheS al nr:Y'X~iItrT for

At this point, the hound on hle e-,p--c te d num ber of fembl riterpretat ons is

simply

so that Is places a h0 unrd on 'tcO Tni axi( II min ber of interpret ations that miust
be conidered :it in v t mti the 0ncr a on of the( *,tc of ;iie rpretations.

Se-ondily, weV (-In rI ve2r'th 1 is 'booid to prea'diCt '.he ruio iher of d at a points
needed, in genera!, tr: ,,!;rant~cc a uiii que deterniI1nat;in of *,he objvct si rita tion.

In partl' ila r, ,Tve(n aI .-:Liv of' E (E.. < 1) we can use Newton's met hod to solve
for the no tuber of (il a Porn tnce e to redunce the Iboril in equation (-i' below
this level. Whliile nutmer ic solii.ion of this iniplicit equ at ion For k will1 yield thet best
results f'or specific vaiucs of' n, j and( v, we can als o derive an rupper bound on the
number of data poitwo reinu red to produce a uniqu e initerpretat ion. This is given
by a soluint for k of he Ffloinrg equation:

I) llogr -jk k :ogt1 '-k log k 0

or

~7 log, -"r a lI>

where we have replaced the variable v* by the variable a through the relat iornship

?* na e

Otte mnet) od of ensuring thItat- this; expression is true is to require that bothI terms
in the pm (1 dct. oin the !cft Ii nd sildr are greater than I. In particular, the scn
term tlien reduces to tie iniqualitv

h1LI
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OwC riticri f:tor i to iicn- !Ir( Hjwcu t rC1CtCl he cont r!J'w..

-111 1 ~ .115an t t c C' , 6 of !r~' he (C ont t ratti r. d i C -!c C rrr -olt V "N )t1111

tis rac eful rlegradmi:L imrorves in the Iirnhr'r ofI indIC 1 )iIC!{t cror~mrI'

increases.

5. Speific BOuII(I

N 'TIO'rY 1, iltr m O to : l rrtC1 ! r I! I or I, thel spv ic Ccon I r Ii !, t It ll r I

to our oart icu r c:1,:CCC;i 'erivv -xplicrt xpe('ted Counts Cit the or2 f C

.Tlterpret at ons conitiro \\2tli ~ 'CCF pOilnts, 1C C I)YI! '

paramte r

5.A1. The T'wo Di)ryloliM on a, (asp

We \%! !;r-;t con'oder She two-d(.irensional case of cbe jvcs "h t h ree drcgret s
,0'!O tlti !rokjel ',orrrjiote' a(IA wil.j' then1 cetrja!Tl 'hio '11,,

,irr' C~tCC~trC2. ,r< ol C"trrc, lh;lving Sx degirees o! Io<teoo drortt.

Fist %e will I~kte O ro!owiiutrsnuminCois abhout the objcC't 1)eing en-cd~t1

2. Ih CIIt'''er o Or f lu, 1)tv th contstanlt D.

Wer tak' the followir' g C's;'pnoti abrt he sentsory ino tion

The t'''- mw rosr~ CrC' - NO' O'> Air-t ar- known to Whin n ONi~ of'

Te IrCri i' I' ,rt dre Cr ok no wn to %v it i nin r i 1go t Iar errto - o f

"KrC)%v oirpos tat .vcohtrr~ cliooso sonic face on wich toi place the ! rst!

contaC' potitt (,'i \! %%c have nto constraints on ANhi arnvraV' Mai0 a 5(00th

o(W.-iC' , tt li t ( Ir ' ll Ci or tCon otr!i-'r i4 how molZnV Face-s ~ITC COTIrtTlt wilth the

C'O T1,4 rt iin's h''we t(, w se nsory poinits. To) answevr this, we fijrst reviw wh'rlat

1. \% ('ii t!C0re C'' 'f so'tt' error the anr!e!, 0( et-ween the niorTM11
OY~ r .e Mid1 'V' InorTVti o!l 'l1C se(-70Ntl faCe, Th~s is given by the

)!t'li C oCI r k x'i 0 1 ~ 0 C'* pr(,ltl(~ bet '-rj the two-( no l1S ajnd

th. rr" prottirt o! 'he !wo Crr'w rrhichi i, the simiplifiedi 'rrsion o

1iripl, tpror!irt I IW~rztrantl in the ease of tWo dirnertSirrInS) In r;1t, this

rrP1sl~r r!W it ; tn 'o to Wi!!!in A riiiigC Of ± y.

2 ';I "an i i'tire Owt lrt h il of the conltact vector v between the Iwo
0,.*-11 ;i Cr'' (. , rror o)f -40,



3. l"inallv, we can determine the angle between the contact vector v aiiu the
first face normal. To determine the range of possible error, we note that
Cach endpoint of v lies within a circle of radius (. It is straightforward
to ,;how, either algebraically or geometrically, that the maxin n angular
deviation of the true contact vector from its measured position is given
by

tan

Our general technique in estimating bounds on the combinatoriai ei'iciericy of
these constraints will be the following:

1 Coiistruct a relative configuration space (RC-space) centered at the
rIiidpoint of the first face.

'. Bound the volume of this space in which the second fece f. lie.

:i. i.>tIriate the Itlinib'r of !'aC.s lying within this voilui,. To ,io U ev will
,, that the face> art unifornov dist ributed over a VO 111,,, 01f I( >pace

wihin D of the ;Ii,.ipoil: of the first face. \Vhile tiiis \ '.i, ger cr dliy be
true over a large cohlc Ion of objects, clearly for any slngw oJJ, .iIS
wiii not be coinpleteiv vaildJ. We will argue that the bht )roi, r , iut, aieder
this assumption are ciLost cterywhere bounds. That is, w;iie there ,11ay
be certain degenerate cases which violate the bounds, ii, generai, over the
cla,,s of possible object. the bounds will almost always be true.

I. Ex: end the analysis to consii.er the combinatorial effect, of .k poin,t oI the
number of faces assignable to the k- Ist point.

We arbitrariiy as ign a face to the first sense point, and construct a reliltive
cur ( i) [-,atlon space about this face. The oriL'n of the spatial dirunsio t s f the
RC-space lies at the midpoint of the face. The normal of this fact deli vW the origin
of the- agular dinension of the RC-space. Thus, a face is r,'presenteJ inz ELC-space
by thie position of is.- midpoint relative to the midpoint of Ole base face, an(i by
the angle of its norrnal relative to the normal of the base face.

Suppose that the base of the contact vector v lies at one of the endpoints of
the first face. What positions could the endpoint of v take in RC-space. First, we
know that the angle of this vector relative to the sensed normal to within a range
tar.- (2c/d) and we know that the variation in the sensed normal relative to the
fice normal is given by ". '1Thus, the angle made by the contact vector relative to
tile face normal is defined by the range

tan'- (2E) +

Thus the area of RC-space swept out by the endpoint of v is given by

f -d Oe ±' I i-tn-I 2,

p-d f - 12 -an-1 2, pdpdO

which valuates to

24
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The tola! area of l;( '-spare 'ept out. :o 4 isthe base point of v is moved across the
base face 1s dia.,rarmwed if, Figure 6.

In order to ease the what foflows, we consider the problem of enscribing a
rectangle, with sides a'I.,mcd along Ki coordinate axes of the J}C-space, about this
volume. We let

,2c

a 4- tan- d

WVe will assume that -t < " and that we only consider contact points such that
d > 2(. In this case, 0 < o < 1. WO1 may assurne, without loss of generality, that
O0 lies in the ramoe '0. '1. In order to delermne bounds on the dimensions of the

enscribing recta:gle, we consider three case.

Consider first the case of O0 > '- a. ln this case, one can show that

Yrn (d Si I (00 - Y

Ynax (d -- isin (o - a)

27- (d-) cos (Oo + a)
Tiax zzz(d -(N; cos (Oo - a) + e

Similarly, if O0 < 7 -y then

min =(d - o) sin (Oo - a)

Y,,ax = (d 4 )sin (0o + ae)

Tmin (d - cos (Oo + a)

xriax AS- (d 4, f ) c o - a) + e,

115
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and if .- a < 0o <. -r a then

(d - )in {sin (0o - a), sin (00 -r a)}

Ymax =(d +

nin =(d - c) cos (0o + a)

x1 iax = (d t cos (Oo - a) +e.

Thus, for example, the range in y is given in these three cases by

AV = -2d cos 0) sin a -t 2c sin 00 cos a Case i

= 2d cos Oo sin a t- 2c sin 0( cos a Case 2

= d )- (d - c) min {sin (Oo - a), sin (0o -t ). Case 3

We want to consider the maximum extent of this range. Applying standard
minimization techniques, we find that the maximum value for both Case I and

Case 2 are given by

A = 2/d 2 sin a + C cos2 Ca

and for Case 3, the maximum occurs at

2(d sin 2 a - fcos 2 a)

Molreover, the extrernum observed in Case I and Case 2 is always greater than that
of Case 3, so we can bound the y component of the enscribing rectangle by

Ay = 2\/dsin2 ai + c2 cos af.

In a similar manner, we find that we can bound the z component of the
enscribing rectangle by

Az e± I + 2 d2sin2 a + C2 cos 2 a.

This gives us a rectangular bound on the area of RC-space in which the second
sensory point can lie, given that the first sensory point lies somewhere on the base
face. Since a face is described in RC-space by the position and orientation of its

indpoirit, relative to ibe base face, we need to expand this volume to cover the
po>..ibo positions of the midpoints of the face. Clearly the most straightforward
\%,iy to (d0 this is to expand this rectangle by on all sides, since a sensed point
must lie within that disarce of the midpoint of the face. This yields an area in
kk('-space of dimensions

2e' + 4V'd2sin2k +--t ccos2 af

by

f-+2\2 smfla + 2cos2a

26
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in which the nmpoint of a face muust lie iII order to be consiste nt with the sensory
t information.

Finally, we mutist account for the orientation of the Face. Clearly, the angular
component of (.-Spaclte ha< cxert 27r and the range of possible valiues for the

orientation of the second face relative to the first is given by 2-7.

Tiis defines a voltinie in l{C-space in which a face miust lie in order to
be consistent with the sen orv in for niat ion. In order to make usc'hi estimates
concerning this vohtiie, we n(d to tioriali,e this volume. To do so, we will make
the assumption that the faces have equiAl prohab litY ()F lying anyvwhere within
this RC-space (which spans :n area J')2 in tile spatial diTItlQisiois an(l 2,r in
the angular dimension). (Iev:rly this su mtion is not necessarily valid for any
particular object, although when ,iverag(ld over all possihbl, orientations of the
object, it becomes more arc urate. In Ohis case, the norm:dized volurme of C-'space

in which a face must lie is botulnd,,d above by

where

2 2"

2f sin a ( ) 1- 4-'I -4--- - co1) 2
L 

i

8 2 .4- .. .. . ..D . .
j7 ~\ 7, #D

The number of possible faces lying within this volume is given by

7. V".

Note that, as expected, V, is a dimensionless quantity, depending only of ratios
of parameters of the polygonal object. Also, we can restrict our conputation to
cases where d > 2c so that a call be bounded above by -' 4-

This normalized volume leads to a straightforward bound on the number of
interpretations consistent with k -- I sense points, namely

r, !f V2)k.

Of course, this ignores much of the combinatorial constraint available to the
technique, since it comes from simply using the constraints between the first sense
point and all additional sense points but ignores the fact that the kth face is
constrained by all k - I previous sense points, and not just the first. Nonetheless,
under the assumptions made previously, this bound represents a worst case bound,
in which the inclusion of additional sense points does not reduce the normalized
volume of RC-spare specified by the constraints between the first and the current
sense points.

We note that for fixed n, the expression for the constant nV 2 actually defines
a relitionship between the two error ranges as a function of the object parameters.

2 7
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r! n~on ('m hatu ric. of km fde -It", d It e,,griLian

edges. It iN str~ighiform:ird I,) how that the positional iopccts of the ilerivation
car be dciorlip icd re ,' onyo:ionts. both yieldini, normalized ranges of
size S. whi, the z ,., k.,, l ha s a f,)rriialized range give by O2, )nly one of the
two rotal onah patt:1lcr, can ' i'i! i r:alne! by he Imeasurements between the
t%\o u iiit siu rflc, nori lds, , Ii t , 11' ' i tlr Iii .!iz'(! v(o!tiniie iII this eas, is given by

Y 2
7r"

An expected lourd can be derivd in a man iiner similar to the two dimensional case,
where now the diagonal !' the fhr' dim(isional cube is given by

2 2

P ere the expected vo!Ir e is

k"7V

We have vt to al p,!y 'I, r' p>o ,r,,il or" constraint 'Grinison and Loz wun Prez
1 90. however. \ , .. ' ' in - fu :tpiY;i c onM to -,air- of imin for

triple, of point, it ,!o,- In'v b p r' - lar the ¢e'ollwin ', case l*ds. ('onsider

three ildepe' )) uri" r nT T I t.T : in assimit we know the (1o0 produrtq
etw,'een each f ',. , .. ," , , is w' a.- the 'ign ,r ,th,, riph. ,)rodtuct
II'n 1 I l.r.! hen

I .....

~~(2n2 !'2 a "/l 122U

where u is a init %,ctor surh tha tin 0. Similarly

--- ----------------I ------
S( 3 W

wer" w i, a in' vctor 'oth that w Ti 0. Now he ih)" prftct !',, ',, The
Sector ,  

', ki \Vii i,, Tiew:sijrernivnt,

-E-= f123.

Thus, the cosine of the angle between u and w is determined, say w u - cosO.
l'valuat ing the triple product gives

- ., - 1 3 s i n 0

and thus the angle 0 is (letermined. This irnplies that while there is a free degree of
freedom between i, ;,nd , F(rrvponid idn to a ro tation about ri,, the attitude of

r13 is completely f(rtm croo ne-rote rcd dot products anid triple product.

This iTmplies t hat while the i v\pectcd ,,imiie for the sc'onid point ik given by

for additional points, the second ro' at iona' degree of freedom is also rest ricted and

the expected volume I- u;Iven by

MI
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k-\ )\1

0 -"ccd r il ,pr~tolSfo i ~iov oi\si

Ti-) k 3

Ila" inii drvt t'ii onds on Ole effective prriininrg of the loa oen i r~itils,
it0 x to -t* 0. ,W 1 1: 1' -cnce Of sens;or error aff~ects the expecte rmi fwr of

ii l 'I ') dt'QM Li(irolilrate the griicefui (b gradaulor of the cornti its,

- ilic hillrr 11 the( iiiniber of expectedi ;fnslibic interprctnt ionis
I uuwi of 1ne ltini r oftI rinsory point s, for several dibjevre r rror CwurL 10TnS.

ill Fijtrv 7. WIt plot thc itluiber of Interpretat Ions whie vorying tOe ;inount,
ill uji,Ar,oriii .- irt~ite v oition-,. E oh plot. correspondIs to a doublinig of thi1)

olP~l i rr o Irujii t P previouls 0111.

11, ";Ire P14, Ie p to ;innih r of InterpretItlolls wle( v;lr\ ijig, hei :ij iil.l of

)r rni;n'oriii T 11 l'-lie -- it t loll - kach plot. corresporios to . i n h~ ibir, (,! f 1,Il

!r~I;ukr eiror fromj iihe pi t'vitiis one. Ill hoth 1Cases, we see tha1;t Ih tit cilittI(Mi

1,~if~ i rarease In a grjicet'u inanrinr.
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r te- -,p 1.(C . lp if ttttItr o,' intmulerpr t i q T. 8' a filitctioll of ?0If

ttimlw) 4f ,-'Ti' ,rV i:. tt. t~ Or ~~ t~i ai W tintli or~ ,rror i

Tit c;t,' rttt, i Irf;t. o~ih!'~ v' o7 iiv r

6. Applic'ationiof'the Theory

Wev begaln ouir uv )11 of, iil 111't prob~lemu of' Tiodel- h;,se&! recoga lit iol and

IoC; II /;IIo 1 )- by t~ es : '.ilt a 'ct iI r If (:1tr Ith :,t Oloti I~ -let! lt~it rain4

co 111) iiat rI r:] j - ,~ ii i yr -' r I,,c il v 'i~ cerror. \\o - avo S ni l 0

bulk (of' th* i):wer dt-.:v't ;,f tA .. v'rtu :Im! rm Olet'!cnIc011

grOUiitfs thatl os cri" -. 1 ar- ' i' i!t 'tv:1, ;III~~t oil!- WitN 1

of ea:rlier work '(;r:lmson hid In/io lt eC!( h9~ tm (Itstt!Ior'c '-cI tF

A,' frirt her folPttr r !!Ie, tlI'-'IrMet:d resut,; reported 'here, we b)rief1N revieW

sollie ,f' Oe r ,Sltls of ! ing t fiat litrt I n T irticular, :I Lirge cet O t~U.t~

were run (on t se ries of t e t. A1 c s for var\ uig ti/
1

)(
5 

of error U(!! ridtri: TI-i

fuo I inv, I he -I n II ,rizeq Shut' of ( hcse sirr i,t (Ir cYiribed iM more dc! :I In
(rivsouri d 1,(t 1 rrfo- IeYrv' 84, for !lI o l'e o ,;( ust 1 tt rat c, in l'1iure 9.
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i T:,hh v I, Iof ,I.-;r! l m .\ I r.,a I Lr1u) fI

()hjeei * rt , ])i.. \'.n .*'!h 6 6! !:I

Housing 1 .II - 1 2 _ 10

05 i _ It 10

M 10 1 4 17 .10
/ 10 .01 1 1 3 ,10

.05 1 2 9 -10

10 [ 8 .13 ,10
. . .. .<, 8 .01 1 1 .4 .10

.05 1 3 16 ,0

.10 12 9 2 ,80
Sinpe_ ]land ~ ,';,,2 .0i '2 2 8 2,8

.05 ',t ", "2

"9 .0 2 ' 'Sq ?
.05 2 28

:Q 28,'r - - - - /8 .0 l '2' :32 28

05 4 :i'2 28

Complex land .. . 2  .31 1 4 2.1 (A;
.1)5 1 10 (;

!0-1 .01 4 4 64
.05 1 15 9.1 6,1

. .. 1 .. ___ 2 _12 . 5 64

.05 2 18 13,, 61
8 Cylinder . i' .0 . 2 4 12 21

2 1 2) 21
:-' .0 )'2 S ;1-. 21

1 I 2 _ 16 1 hi 2
.. .. .. .. . . .. .. - /7 I)q I') iX9

_l_;C y i~st r .. . .. . ,/l! . : C' 4 . 1 6 . L if.; '21P;- CvTe '- 1 .01 4 "i; 2 ) 1

0 50 331 29

O I S0 5(11 29
r,<8 .O8 1 ,4 (;.12 2

The table above ilhl srates s' "tt ics I Ie i r form I:I ICC 0o f 1 r:1i ion ress.
Each row lists parameters of a Iii.t ogram of the number o htiorpretlaions consistent

with the local constraints, based oen 100 trials with the oh ran(omilv oriented
with 6 degrees of freedom. In each case, 12 sensorv data point -! were o'sed. in the
table, the normal chu in lists the radm of thl, error Cone about tb e measured
surface normal; the ,ist colimn !ist Ohe error range of the distance sensing; the
min column list the minimum number of iterprelat ions observed; the 50th column
lists the median point of the set of simult ions; the 95th column lists the 9 5 th

percentile of the set of simulations; and the faces column lists the number of faces
in the model.
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