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Abstract. The problem of recognizing what objects are where in the workspace of
a robot can be cast as one of scarching for a consistent matching between sensory
data clements and equivalent model elements. In principle, this search space is
enormous and to contain the potential combinatorial explosion, constraints between
the data and model elements are needed. We derive a set of constraints for sparse
sensory data that are applicable to a wide variety of sensors and examine their
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the number of interpretations cxpected to be consistent with the data under the
effects of local constraints. Thexe bounds are applicable to many types of local
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three-dimensional sensory data, explicit values for the bounds are computed and
are shown to be consistent with empirical results obtained earlier in ‘Grimson and
Lozano-Pérez 1984]. The results are used to demonstrate the graceful degradation
of the recognition technique with the presence of noise in the data, and to predict
the number of data points needed in general to uniquely determine the ohject being
sensed.
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1. The Recognition and Localization Problem

A central characteristic of advanced applications in robotics is the presence
of significant uncertainty about the identities and positions of objects in the
workspace of the robot. In simplest terms, if a robot is to interact intelligently with
its environment, it must know what objects are where. This normally necessitates
sensing of the external environment as a means of obtaintng the information needed
to solve the recognition and localization problem. The process of sensing can be
loosely divided into two stages: first, the measurements of properties of the objects
in the environment, and second, the interpretation of those measurements. Since
the sensory information could come from a variety of very different sources, for
example, tactile, ranging, sonar or vision, both binary and grey-level, it is important
to derive recognition and localization techniques that solve the interpretation stage
of the sensing process with very few assumptions on the scnsory measurements
themselves. In this article, we assume only that the sensory data is characterized as
sparse, noisy measurements of the local geometry of a small patch of the object’s
surface, for example, the position and orientation of a small planar patch of the
surface in some coordinate frame defined relative to the sensor.

Given these simnple data elements derived from the sensory data, the problem
of modci-based recognition and localization essentially can be considered as one
of searching a space for a consistent matching between these data clements on
the one hand, and model elements representing known objects on the other hand.
Since the data clements are assumed to approximate the local geometry of a small
planar patch of the surface, initially we assume that the objects can be modeled
as polyhedra having up to six degrees of freedom relative to the sensor. The goal
is then to define a matching process whereby the space of possible interpretations
of the sensory data can be searched for a consistent matching of sensory data to
model elements.

Since, in general, the search space is far too large to explicitly explore, the key
to the problem is to derive constraints on the data that will efliciently restrict the
portions of the search space that must be explored. In this paper, we present a set of
general criteria on these constraints and derive a specific set of such constraints for
the case of gcometric sensor measurements. Using this particular example, we show
that these constraints are complete both for the simpler case of three degrees of
freedom (isolated objects in stable positions) and for the general case of six degrees
of freedom. We also show that the constraints are exhaustive for the three degree
of freedom case, but not for six degrees of freedom. By exhaustive, we mean that
modulo errors in the measurement process, the measured constraints are sullicient
to completely determine the relative conliguration of the sensory data.

The main result is establishing theoretical bounds on the eflectivencss of local
constraints in controlling the combinatorics of the search process. We stress that
the results obtained hold in large part independent of the specific constraints used,
For the particular constraints derived here, we also compute explicit values for
the predicted bounds and compare them with empirical evidence derived earlier
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in Grimson and Lozano-Perez 1984). Finally, several predictions of the theury are
discussed, including the degradation of the technique with increased error, and the
number of sensory points generally needed to guarantee a unigue Interpretation of
the data.

1.1. The Basic Problem

The recognition and localization of objects {rom scnsory datic is w centra,
problein of most advanced robotics sttuations. It iy usually convenient to pose
the problem as one of scarch, that is, given a set o known modes. we identily
and locate the particular object that we are scensing by scarching a
possible solutions until we ftnd one {or all solutions) that mutches the tniarmation

avatlable to us from the sensors. One of the main ditlicuitios with Gie proviom, true
of most search problems, 1s that the space of possible solutions s usuudly ealreniely
large, and one seeks methods that will effectively reduce the portions of the =earch
space that must be expiicitly explored. The problem is furiher componnded i the
case considered here by the fact that the sensory dawa against which a maten is
sought are typically inaccurate, so that the matching process must be tolerant o
errors 1n the data.

The critical issue in searching for a match between =ensory duta and uaject
models s controiling the poteatial combinatorial expiosion of the search. There
have been a wide variety of techniques applicd 1o the recogmition probiem, all
attempuing in some manner to control this explosion. We can distinguishi three
general classes of approaches. although these distinctions wre not hard and fase,
of course. The three peneral classes are (i) matching compiete deseripiions of the
object obrained from the sensory data to complete model deseriptions, (i mateniag
partinl descriptions ol the data to partial descriptions of the model. and (i)
matching partial descriptions of the data to complete descriptions of the moded.

The basie idea behind matching complete descriptions to cotipiete deseriptions
15 to reduce the combinatorics by computing compact represceuiations of 4 den=e set
of sensory data and comparing this representation to a situilar object model. In this
:nanner, the matching process s constrained to a small number of components and
the commnatorics is sipnificantly reduced. Examples include generalized eylinder
representations (gee for exainple, Nevatia 1974; Nevatia and Binford 1977; Marr and
Nehihinra 19Ty Brooxs 19513, and extended Gaussian images [see for exumpic, Brou
E953; Hora 1983; Horn and Tkeuchi 1983; Tkeuchi 1983). Besides the combinatacial
advantage of comparing them, complete deseriptions have several other potential
advaniages. First, by building the representation from a large, dense set of sensory
data, it s Bkely to be insensitive to errors in the individual data elements. Second,
even if only parts of the objeet are available to the sensor, the use of complete
representiations makes it likely that recognition can stil proceed on the partial
data. OfF course, to some extent, the reduction in computational cost achicved by
matching compact deseriptions is offset by the additional cost of processing the
raw sensory data wo obtain those representations. We also note that not a4l ylobal
representiations share the advantapes eited above. For exampic, one ol the earliest

[
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techniques for recognition uses global properties of binary images, such as area,

' perimeter, elongation and Fuler number, an approach common to many commercial

systems (see for example, Bausch and Lomb 1976; Gleason and Agin 1979; Machine

‘ Intelligence Corporation 1980; Reinhold and Vanderbrug 1980). These particular

; parameters do not extend well to overlapping or occluded parts, and thus such
| techniques do not demonstrate the same versatility as the previous ones.

! A second approach to the problem is to use input tokens (frequently called

i features) to the matching process that are very distincetive. Typically, if one can

“ obtain distinctive features, then the scarch reduces to a straightforward depth first
exploration of an interpretation tree, with very little backtracking involved. For
example, if 1 wanted to recognize a solt drink can from visual data, [ could process
the image to obtain the UPC bar code, which would uniquely identify the type of
can. Moreover, knowing the position of the UPC code on the can and in the image
would allow me to determine the position and attitude of the can in the scene.
Of course, not all feat:tres will be as distinctive as a UPC code. Simpler examples
might include corners, holes, notches and other local features. The idea, however,
is that very few such distinctive features should be needed to identify the object,
and the search space can be effectively collapsed. Examples of techniques in this
vein include the use of a few extended features [Perkins 1978; Ballard 1981}, or the
usc of one feature as a focus, with the scarch restricted to a few ncarby features
[(Tsuji and Nakamura 1975; Holland 1976; Sugihara 1979; Bolles and Cain 1982;
Bolles, Horaud and Hannah 1983]

There are several drawbacks to such distinctive feature approaches, although
they also have many strong points. First, while the cost of the search process has
been greatly reduced in this case, 1t is usually at the expense of the processing of
the sensory data. In other words, the unique features required to straightforwardly
identify the object are usually not directly provided by the sensors. Rather, the data
provided by the sensors is typically point data, for example, local measurements
of the position and/or orientation of points on a surface. Each such local point
measurcment is clearly not very distinctive, and to create distinet collections cr
features requires additional preprocessing of the data. In the example of the UPC
code, the visual input must be processed to extract the code from the rest of the
data. Thus, feature driven recognition techniques usually reduce the computational
cxpense of searching a space of solutions at the increased cost of computing the
tokens to be matched between sensory data and model elements.

Not only is there additional computational cost [or computing appropriate
features, but the computation may also be sensitive to sensor errors. In the example
of the UPC code, if the imaging device is out of focus, causing the image of the
bar code to blur significantly, the recognition process may no longer succeed. Our
preference is for recognition techniques that degrade gracefully with noise, rather
than suddenly collapsing under the influence of sensor crror.

Clearly these problems do not rule out feature driven recognition schemes, as
is cvidenced in our example of the soft drink can, by the proliferation of automatic
check-out counters in supermarkets. A more critical drawback concerus the density,

3 i
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or rather, sparsity of such features in the sensory data. By definition, features well
suited for recognition and localization must be sparse on the object, since othierwise
there would be multiple interpretations of the attitude of the object relative to
the sensor. While this cases the recognition task, it also reduces the situations in
which the process can be applied. In particular, it requires that the initiai sensory
data be dense, in order to have a reasonable expectation that the feature extraction
stage will actually find a set of useful features from the data. T'his requirement on
dense sensing modalities rules out some types of sensors, such as tactile, that are
inherently sparse in naturc. If possible, we would prefer a recognition techinique
that is sensor-independent.

The sparsity of features is also a problem when dealing with occlusicn. If an
object is presented to the sensor in isolation, then large portions of its surface
will be visible and the probability of detecting appropriate features is high. If the
object is partially occluded by other objects, however, this may not be true. in
our example of a soft drink can, if some other object occludes the UPC bar code
from the sensor, we will not be able to recognize the can. Note that this may occur
even though virtually all the rest of the can is visible to the sensor. This follows
in general from the sparsity of useful features. If possibie, we would like to use
recognition techniques that are not dependent on particular localized features of
the objects, and are thus, still capable to perforining recognition and locaiization
on partially occluded objects.

In summary, our main concern with distinctive feature techniques s that
because they are matching partial descriptions to partial descriptions, it may
occasionally be difficult to guarantee the computability of such descriptions from
the raw data. This implies that the inherent sparseness of such features on an
object may cause problems for sparse sensors, such as tactile sensors, and may
cause problems in situations involving occlusion.

A third approach to the recognition and localization probiem is to usc the
local point micasurements available from the sensors as the basic matcning 1okeas.
Of course, in some sense these are also features, but they do not suffer the same
problems due to sparseness, since they are dense on the object. Since these data
eiements are very simple, taken individually they are not likely to uniquely identify
the object being sensed. Thus the search part of the process becomes much 1ore
eritical, and we will need to use local constraints between such point measurements
1o restrict the search space. While the size of the search space explored in this
case will be larger thun in the feature based methods, the expectation is that the
unit cost of searching the space can be reduced significantly enough to overcome
the number of additional elements tested in the scarch. Representative exampics of
siuch schemes include Faugeras und Hebert [1983], Gaston and Lozano-Pérez 1984,
Grimson and Lozano-Pérez [1984) and Stockman and Esteva [1984].

The key distinetion between schemes that match partial descriptions using
jlow level sepsory measurements and schemes that mateh partial deseriptions hased
on distinetive features lies in the computability of the sensory data deseriptions.
sunple, tow-level sensor measurements are likely to be dense over the object. As
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a conscquence, recognition schemes based on such simple measurements shounld be
applicable to sparse sensors, and should be insensitive to problems of ocelusion and
sensor error, since an input description can always be obtained and matched to the
model. As the sensor features to be matched become more distinetive, and hence
sparser on the object, the probability that they may not be detected by the sensor,
cither due to the characteristics of the sensor or to problems of occlusion rises. In
this paper, we will explore the use of recognition schemes that use low level sensor
primitives that can be computed over the entire object. We will, however, consider
using only a sparse set of such measurements, in order to keep the combinatorics
of the search process reasonably controlled.

1.2. Assumptions and Approach

As a consequence of this discussion, we will assume that the basic sensory data
available consists of local estimates of three-dimensional positions and orientations
of small patches cf the object surface. In this case, we can make very simple
assumptions about the elements of the object models needed for matching. In
particular, since the data elements are measuring the local geometry of small
patches of the object surface, we assume that the object models are also constructed
of small local patches. Thus, our two assumptions about the clements to be matched
between sensory input and object models are:

1. The objects are all modeled as polyhedra having six degrees of freedom.

2. The sensory data available to the process include positions of points on
the object, to within some volume of error, and surface orientations at
those points, to within some cone of error.

The basic approach to the problem is to determine the set of positions and
orientations of an objcct that arc consistent with this sensed data. If there are no
consistent positions and orientations, then the object can be excluded from the set
of possible objects. The elements to be matched are thus simple local patches of a
surface.

The technique proceeds in two steps:

1. Generate Feasible Interpretations: A sct of feasible interpretations of the
sense data is constructed. Interpretations consist of pairings of each sensed
point with some object surface on one of the known objects. Interpretations
inconsistent with local constraints, derived from the model, on the sense
data are discarded.

2. Model Test: The feasible interpretations are tested for consistency with
surface equations obtained from the object models. An interpretation is
legal if it is possible to solve for a rotation and translation that would
place cach sense point on an object surface. The sensed point must lie
instde the object face, not just on the surface defined by the equation.

There arc several possible methods of actually searching for consistent matches.
For example, Grimson and Lozano-Pérez [1984] chose to structure the search as
the generation and exploration of an interpretation tree. That is, starting at a root




Grinson Condinatones o) Mo taer b o, o

node, we construct a tree in a depth first fashion, assigning dain puinis (o moael
faces. At the first level of the tree, we consider assigning the first data point to
all possible faces, at the next level, we assign the second data point to al pos-itle
faces, and so on.

Clearly, the first step is the key to this process. The nwmber o Loasiiie
interpretations given s sensed points and 7 surfaces is n®. Thereiore, (s ot
feasible to explore the entire search space in order to appiv o wiodel test o
aii possible mterpretations. Moreover, since the computaiion of cooifdinaie sfame
transtormations tends to be expensive, we want to apply this part of the wotiiigue
only as needed. The goal of the recognition aigorithm s thus (o expioit oo
COL=Irants on the sensed dativso as to minimize the number of interpretatons tiat
need westing, while keepiigg the computational cost of each constritit stinn 1a tihe
case of the interpretation tree, we need constraints between the data cieinents and
the model elements that will atlow us to remove entire subtrees from consideration
wahout expiicitly having to search those subtrees.

In searching for appropriate constraints to apply to the gencration stage,
ral criteria are :1;){)(();)x‘i:nc.

SO

i. The conatraints suonid be coordinate frame independent. Thac is, we Wouia

dke to derive constraints that remove large portions of the search space,
incependent of the particuiar orientation of the object. It

r

His segrests that
the constraints shoum cinbody restrictions due to the shape of the objeet,
aud not due to tiie specifies of the sensing geometry.

2. The coastraints showat be simple and have low computationil cost.

3. The constraimts should, at the same time, be as powerfui as possivie 1
the sense of removing large portions of the overall scarch space.

1. The constraints should degrade gracefully in the presence of error in the

CHSOTY micasuremaonts.

b, The constraints shouid be independent of the speciies of the wensor from
which ihe data caune, so that they will apply equaily to different sensing
medalities.

These constraints are very similar to those suggested by Marr and Nishihara

™ (sec aiso Marr 16827,

A Specifie Set of Local Constraints

We bemin our analvsis by first d(‘nvm;_, a ~et of coordinate franwe ndepenaden

4 i

constrnts, that were first presented o Grimson and Lozano-Peéres cing - he
st question posed s what types of v()or«lmntv-lr:nnv-uul«-pvmlvni CORNTTATITS

are possible. given that the sonsory datais characterized as sparse points, caen

copststing of a position measurement and a unit surface normai oo Pioare
Clearly asingle data potnd provides no constraint on the possible ivees o the

modei that could consistentiy be assigned to it Thus, we look at s of sensory
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Figure 1. The constraints between pairs of sensory points.

points, and the basic information avatlable from these points consists of a pair of
unit normals, as well as the vector separating their bases, as shown in Figure 1.

One way to get coordinate-frame-independent constraints is to construct a local
coordinate frame relative to the confisuration itse!f. Thus, we can use each of the two
unit normals as axes of the loca’ eoordinate frame. In two dimensions, these define a
local system, except in the degenerate case of the unit normals being {anti-}paraliel.
In three dimensions, the third component of the local coordinate frame can be
taken as the unit vector in the direction of the cross product of the first two basis
vectors. Given such a local basis, clearly one sct of coordinate-frame-independent
measurements provided by the conficuration of Figure 1 is the components of the
separation vector along cach of the basis directions. (Note that the use of the
distance and two of the components s equivalent, up to a possible stgn ambiguity,
to using the three components of the vector.) Additionally, the angle between the
two basis vectors is also specific only to the local coordinate frame. More formally, if
the unit vectors are denoted by ny.no and the vector separating the two points is d,
then one set of coordinate frame-independent measurements of this configuration

18
np-ny
d-nl
(l-n2
d-u
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where 1 is a unit veetor in the direction of ny X nu. {Note that these measurements
are isomorphic to the set used in {Grimson and Lozano-Péres 1984,

These are coordinate-rrame-independent measurements on the configuration
delined by a pair of sensory points. To turn them into constraints on the search
process, we must map them into cquivalent measurements on the rodel elements
Sinee cacn object s modeled as a complex polyhedra, the inuppius i fair l)
stratghiforward. For exinple, consider the first measurement, o), - n,. ln order tor
these Dwo sChsOTY poatds 1o be consistent with a pair of Yaces on an objeel, tne dot

Drodact ol the coriesponding fee nornius must agree with dios easureiwnt, i s,
by procompuiing e aages between atl pairs of faces onoan cbject, (s sensory
Seas T faenD Can Do owsen Toocsaetnain the search {or aoconsistent aer pretation. in
partGouar, 1o e ol sots dsnconsistent with a particutar dssigniaent ol faces
Lo those points, the entre subizee of the interpretation tree lying below the node
corresponding to that as~ Cunont can be irnored, thereoy reducing © o nat ool

colsiralnts can be derived for the con nts of the

SOATCRUY rednili il Sl

enaratlon Veelor ohoihe Looenons of the unit normals. That is. o cweh pair of
Daces on the model, one v precompute the range of vadues of e o ent of a

VerTeT i UL Glec o o cnt sl Lhie TaCe DOTHAIS @8 TNAT VeelOr Grsdines o pussiiee

DOsCLns Aaviig o v nd i dhe first face and the other ciidpoit oo the second.

Ao Por s ass e nt of SoLSGIY Points 1o faces 1o e CGLactenit, 1T inust e
Tooas s ol tae coerdan e frame- .‘de PCNACNT SCRSOTY INCH>dICNe L Ty agioe
with the procompied mencs values, Thus, we have defined one possibie natctung

Grccees netwecn onsely e atements and models) siuniar oo that presentea i

Cr O ahod Locano-Dres 34

, 3. The Constraiuts Satisfy OQur Criteria

\ M PR A t : cilt IRV R TEU R 0 TR R e e 3 vl Rl R
Mo Loma wor theasercal anvesugation by estabishing that the consiraints

aertved above ot the ernitenia of simplicity, coordinate-{rame-inde pendence,

Tollipecleiosy e

testrenesy We will then consider their combinatonal power
ndd their degradation witn error.

3.0 Coordinate-trame-independence

ooy B e s e s of The Gerivaton, The CORSIIOES il Codiial -Tioi ¢
Gocperearnd. Moseoverstiey also satisfy our requirement of singpeoay Oty
Caeocensory houd ol dhe constoant ds stratehttorward, ool G oo haad oi the
vostraits e oo steeoy, aied dirceny frons the model The oo process

e then neccies ampde asle-lookap process, Which iso sati-acs (he notion of

st phieity and cotmpntatooneg case,
3.2, Completeness of the Constraints

: Wi vhe consironos snorivod above et our basic cniterion, s apsort sl

co cso domone e T oy fatme a complete set, that i e are no other
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independent coordinate frame free constraints hetween pairs of sensory points that

are not already incorporated nto these particular construints. This can be casily
established by the following argument. Consider the configuration iilnstrated in
Figure L. Suppose we construct some arhitrary global coordinate frame, having hree
rotational degrees of freedom o, 00 and three translational degrees of rocdom,
given by the components of the vector py, relative to the deseribed conbiguration. 1o
complete deseribe the configuration shown will require a total of 10 equations, theee
to specily the base position py, three more to specify the scparation veetor d, and
two each to specify the relative attitudes of ny, no. These ten cquations are «xplicit
functions of several parameters, including the three angular and three transvional
degrees of freedom deseribed above, Thus, to reduce this set of 10 constrain's to aset
of coordinate-frame-independent constraints, we must resolve the set of equotioes
to remove the explicit dependence on the parameters related to the specific Chnien
of global coordinate frame. Cleariy this will require at least six equatinns, and
thus there are at most fonr coordinate-frame-independent constrafnts given by *his

particular pairwise configaration of sensory points.

In the simpler case of two dimensions, we find that there are three coordinate-
frame-independent constraints, Thus, we see that in both cases, the constrainty

outlined above are complete.

3.3. Exhaustiveness

While the above analysis indicates that the set of constraints in complete, in
that there are no additional independent constraints possible, we can also examine
the exhaustiveness of these constraints. In particular, we can ask the following
question. Given the configuration of Figure 1, suppose we know the position and
orientation of one of the endpoints and its ortentation vector in <ome coordinate

Yconl constraints of the above section

frame. Does the information provided by the
uniquely determine the position and oricntation of the second peint uniguely” In
other words, tenoring issues of error. how well do the local measurements restrict
the possible interpretations of the data”? By counting degrees of freedom, we would

expect the seennd point fo be uniquely determined for the two dimensional ease,
but not for the three dimensional one. We now proceed to estabhsh this claim.

3.3.1. Two Dimensions
We first consider the case of two dimensions. Given one sensory point, consisting

of a position vector and an associated unit normal vector, we construct a relative
coordinate svstem with origin at the end of the position vector and with -y axis
oriented along the unit normal. Thus, a second sensory point can he characterized
in this space by a unit vector n offset by some other vector p, which we represent
by the ordered pair

/

{p,n).

To determine the exhaustiveness of the constraints, we need to show that the pair
fp.n)is uniquely determined by the following measurable parameters:

1. The anele # between the unit normals.




Grinson COliniaones w0 Mo, s o alicen e

tes?

Pirare 2 The conpicteness 6, ¢ construnts in two dimensions.

2 The compoients m; and e of the vector p relative w the two uait
normais respectively.
B3 definition of the oeal coordinate system, np = (U, -4, and sinee the angle
g can be determined from the sensory measurements, the sccond unit norial is
. S ‘-
aiso completely determined, ny == {sin 8, — cos 8).

To begin, we ignore the special degenerate case of
(ny my) = 1.
in this case the vector p cun be represented by
p = an; + Bny
where o and J are paraneters to be determined. By taking the dot procuct of p
with ecach of the unit pormal vectors, we obtain the following systenn ol equations:
0+ Fcosd == m
acosl + 3 = my.

Since cos8 54 =1, we can solve this system for «v and 3, yiclding

my — cosOma my — cos fmny
p== - o —Tnj+ - -—-=-—-nu
sin” 0 sin“ @

Thus, the ordered pair (p,n) is completely determined by the measured values.

Geometrically, we note that the component my constrains p to lie on the line
y =: - my as shown in Figure 2. Since the orientation of the second unit normal is
known. the final constraint comes from the component of the vector between the
two sensed points in the direction of this normal, in particular, that - p - n = ma.

10
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In Figure 2, this corresponds to finding the ray perpendicular to n at a specified
distance that contains the origin. Chis ray completely determines the geometry.

In the degenerate case of the two unit normals being (anti-)parallel, we can
use the magnitude of the distance vector d = /p - p as an additional constraint
in place of the now redundant constraint p - ny = my. In this case, the distance
constrains p to lie on a circle of radius 4. Combining this with the constraint given
by the component m; restricts p to one of two positions, and there are two solutions

\

! N [ my ]
(p,n) = ([Li\/dz — 771%, —my ', ;LO, T i)

my

where |my| = |my].

Thus, over the set of all possible relative orientations of faces, the constraints
for the two dimensional case are almost always complete. This is illustrated in
Iigure 2.

3.3.2. Three Dimensions

We can consider a simtlar analysis in the three dimensional case. As before,
we construct a relative coordinate systein with origin at the first position vector
and with the —z axis point along the surface normal. The z and y axes can be
oriented arbitrarily. Here, we have a five degree of freedom problem, since we must
determine the ordered pair

(p, n)
where p has three degrees of freedom
P =(z,9,2)
and where n has two degrees of freedom
n = {sin ¢ cos 0, sin @ sin d, cas ¢) —r <0< mo< < m.
The constraints in this case are:
1. The dot product between the two surface normals, e.

2. The components m; and mg of the vector p relative to the two unit
notmals, n; and ny, respectively.

3. The component my of the vector p relative to the cross product of the
two unit normals, n; X no.

As in the two dimensional case, we exclude the degenerate case of
(nl . n2)2 =1,

A similar analysis holds in that case, using the distance constraint d = \/p - p
instead.

The constraints essentially supply four equations in five unknowns, z,y,2,8,¢
that we wish to resolve. The equations are given by




Grimson Combinatorics of Modej Based Recogaition

-z =m
sin ¢(xcos 0 + ysin ) + zcosd = my
sin ¢(zsin 8 — ycos 0) = mgy

—cos P =e.

Straightforward algebraic manipulation yicelds the following parameterized solution:

1
z(8) = ;;;¢(’ﬂ13 sinf + [my — ¢my ] cos @)
1 . .
y(0) = s'm‘;p(_m:‘ cos 0 + [my — emy)sin 0)
T = —my

n(0) = (sin @ cos 0, sin ¢sin b, —¢)

where sin ¢ can take on one of two values,

sing = +\/1 —¢€2.
In more geometric terms, this particular resolution of the equations restricts p to
lie on a circle. and for each point on that circle, there are two possible values for the
orientation of the surface normal n. Thus, we sce that these pairwise constraints
alone do not compietely determine the configuration of a pair of sensory points,
even in the general case.

4. A General Theoretical Basis

The key theoretical issue still to be settled is the combinatorial power of the
local constraints in reducing the nuinber of consistent hypotheses. In this section,
we develop a theoretical basis for analyzing the combinatories of the recognition
process. We will sec that while worst case bounds on the number of interpretations
consistent with sparse data tend to be very weak, expected case bounds turn out to
be very strong, and are in fact supported by empirical evidence. We will begin our
study by first considering the three degree of freedom case. We will then extend
the analysis is a straightforward manner to the full six degree of freedoimn case. The
first question we consider s that of deriving theoretical bounds on the efficiency
of the constraints in restricting the search space. We will derive bounds that are
independent of the specific constraints described above, and then show how well
these particular constraints perform in restricting the search space.

4.1. Relative Conftiguration Space (RC-space)

Our general method of analysis can be sumnmarized in the following maunner.
Since all of the constraints available to the recognition process are pairwise
constraints, we have no information te apply to the assignment of a face to the first
sense point, 7). Hence, we will arbitrarily assign 2 face f; to this point, compute a
bound on the number of interpretations consistent with that choice, and then sum
over all such assignments of f;. To obtain a bound on the number of interpretations,
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we will use the notion of a relative configuration space (RC-space). Throughout
the analysis we will consider two separate cases. The first is one in which the
objects are non-overlapping and lie in stable positions. This case is essentially a
two dimensional one, and the objects have three degrees of freedom relative to
their models, two translational and one rotational. The second case is one in which
the objec's are arbitrarily oriented in space. This is a three dimensional problem
and the objects here have six degrees of freedom relative to their models, three
translational and three rotational.

In the two dimensional case, we define an RC-space in the following manner.
Each face of an object is delined by a two-dimensional position (given by the
position of the midpoint of the face) and an orientation (given by the orientation of
the normal of the face). To easc the analysis, we will assume that all of the edges
of the object (or polygon) have equal length £ For a three dimensional object, we
assume that all of the faces are squares of side £.

Given a face f; assigned to the first point I, we can define a three dimensional
coordinate system relative to this face, consisting of two coordinates of spatial
extent and one of angular extent. The origin of the two spatial dimensions is set
at the midpoint of the base face (f;) (with the face extending along the z axis and
with the normal of the face pointing in the —y direction) and the origin of the
angular dimension is set to the orientation of the normal of the base face. Thus we
have defined a configuration space relative to the orientation of a particular face.
The position of another face is completely specified by the position and orientation
of its midpoint in this RC-space.

In the three dimensional case, we construct a 5 dimensional relative configuration
space, based on the first face f;. This RC-space has three positional dimensions
and two orientation dimensions [since only two angles are needed to specifly the
orientation of a unit vector). Here, the origin of the spatial components is defined
to be the midpoint of the base face, with the surface normal pointing in the —z
direction. The edges of the face are aligned with the z and y axes. Thus, the position
of any other face is given by the position of its midpoiut in this RC-space. The
rotational components of a face are defined by two diflerent angles, —7 < 0 < x
and 0 < ¢ < 7, where & deseribes the elevation of the unit normal relative to the
—z axis, and & describes the orientation of that unit normal in the z — y plane.

To obtain bounds on the cffectiveness of local constraints in pruning the search
space of feasible interpretations, we need to map both the models and the sensory
information into this RC-space. By enumerating the intersection of these two
mappings, we will be able to analyze the combinatorial efliciency of the constraints.

Clearly, given a base face for the RC-space, each additional face of the model
is represented by the position of its midpoint in this space, and that is given by
the spatial offsct of its midpoint relative to the midpoint of the base face, and
the angular vartation of its normal, relative to the normal of the base face. Thus,
cach face projects to a point in this RC-space, and the entire object is given by a
scattered collection of such points.

13
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Consider now what the sensory constraints tell us about the positions of
possible faces in this RC-space. With no sensory constraint, cach face of the object
could lie anywhere within the RC-space. The sensory constraints on distance and
relative angle, however, will restrict the set of possible faces to lie within a reduced
volume in RC-space. Thus, giv n the assignment of the first point to fuce f;, the
secogqicd Face can be restricted to lie within some fimte volunie of RC-space. Clearly,
this should generally place a restriction on the number of faces consistent with the
sensory data, and our goal is to obtain bounds on this restriction, by considering
the characteristics of this restricted volume in RC-space.

In more detail, we consider what the effects of the sensory constraints are in
the three degree of freedom case. In particular, given a second sense point £, we
know the following facus.

1. Distance. The measured distance between the two sense points clearly
restricts the position components of the second face to lic within a
restricted area. This follows from the observation that i’ the base of the
vector connecting the two sense points must lie somewhere on the first
face, and the length of the vector i1s given by a measured distance d,
which is accurate to within a range €, then the set of positions in which
the midpoint of the second face can lie is restricted to fic within an
arca specified by d and €. {We will see later one method for analytically
specilying this area.)

2. Angle of the vector. The measured components of the vector between
sensed points relative to the measured surface normals define the angle
between those vectors @. This angle is subject to a range of values, which
in this case is a function of d, ¢ and v, the bound on errors in measuring
surface normals.

3. Angle of the normal. The angle between the surface normals at the first
and second faces can be restricted to some measured value y plus an error
range defined by ~.

As a consequence of these constraints, we see that if the first point lies
somewhere on the base face f;, then the second point must lie within some volunie

V(d, ¢,£,0,1,)

of RC-space. Note that three of the parameters defining this votume are measured
values and three are global parameters set by the object aud the error sensitivities
of the measuring device. To reflect this, we rewrite the volume of RC-space as

Vl,[, 7(dr o: 1/))

Note that this symbal represents a region in a three-dimensional RC-space. We will
use

vr,[q(d; 0; ¢)
to denote fhe magnitude of this volume.

Given that face f, s initially assigned to the first sense point, we let

14
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,01‘(1, Y, ¢)
denote the distribution of faces relative to this assignment. Thus, p; is a sum of n
delta functions, cach of which reflects the configuration of a face relative to f;, and

/1 4/; /qi:) p,'(z, y,9)drdydep = n.

If we let d;;, 5,0, denote the sensed measurements between points P; and
Py, then the number of interpretations consistent with & + 1 points of sensory data,
given face f; assigned to P is bounded by

k+l

J.H2///V._,,,(d.,,o,,,./»l,)p"(z’y’cs) dz dy dé

and the total number of interpretations, over all possible assignments of the [lirst
point is bounded by

n k+1

> I ///V,,,,,(d,,,o,,,.p,,)pi(z'y’é) dr dy dg. (1)

i 4 g2

k k+1

Clearly, in the worst case, this is bounded above by n-n® = n*"" as would be

expected. We now consider means for obtaining better bounds.

Note that the expression above only considers the effects of the sensory
constraints between the first and the jth point, and ignores the effects of intermediate
points in constraining the possible values for the jth face. Clearly, a better bound

would be given by
n ki1

j i(z,y, ) dz dy dé. 2
,‘;z::{ ]‘gz/‘/‘/ﬂ:..:_lqan»v(dmjrami:d’mi)p(I v d)) it ¢ ()

Even here, the worst case behavior is still nf+!,

There are several ways we could obtain tighter bounds. One is to note that for
most realistic objects, there is a minimum distance between different faces, and thus
the density of faces in RC-space has an upper Limit. This could be used to place
bounds on the expressions derived above. The second method is to seck expected
bounds, that is, bounds that will hold in general, so that the class of objects for
which the bound is exceeded is small, and hopelully, has measure zero, yielding an
almost everywhere bound. This relies in some sense on a type of limiting behavior
assumptinn as follows. Suppose we consider k different polvgons, cach with n faces
and diameter D. Then in the limit as &k tends to oo, the distribution of the nk
faces tends towards a uniform distribution. If we then average over k, we can assert
that the expected distribution of fices is also uniform, over an arca defined by the
diameter of the object, D.

Thus, we let v7 denote the magnitude of the total usable volume of RC-space,
given by

.
v <= §7r1)‘;21r.

;
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The key point of this assumption of uniforin distribution is that the wtegral of the
distribution function will depend only on the magnitude of the swept votume, and
not on its specific position in RC-space,

/// v(,l,’](d"l]lolllj)wllij‘}\
{z dzdyd¢ =n - — - -
v:.{, ,(l{vn)yo,ru,u’}mj) p‘( ' y’ ¢) J ¢ U'I'
Thus, if we can bound the magnitude of the volume
U(,f,'y(dmj) omjy lz)mj)

independent of the specilic sensory measurements, say,

f M

! , :
v(,[,*; == Sup!l,l),:,’r Ev(,’,’y(dr 07 d)) »

L J

then equation {1) ieads to the expected bound of

root, 3
R AR
Tl;n‘;’;"l . 2
L J

A

+

This is sl a retatively weak expected bound, since it is basicas o tae fon o
Uidess ne << 1 this bound will increase with increasing &, even tov iixee 0 Vs
il the volume of RC-space swept out by a single set of pairwise constranis is fess
than | times the total available volume, the expected nuniber of wnterpretations
will decrease with increasing sensory information.

We should be able to obtain a tighter bound by using ciuation (2. Uiis
equation rellects that fact that while the constraints between he ar-t ana o
sensory points yield a volume v o, for possible choices for the tnira faoe oif
iterpretation, the constraints between the second and third sensory poot-
general yvield a second volurnie of possible choices for the third face fn soieran ire
intersection of these two volumes will be a smaller volume of consistent choces
for the third face. This observation, of course, exteuds for aii furiher Taces o an

'

interpretation. In order to provide bounds on the magnitude off (L duteritia
volume, independent of the position and orientation of the additional ~casory o s
relative to the first one, we consider the following technique.

First, we decouple the spatial and angular components of the RC-volue,

— VS a
Vit = Vi, Q Ve,
We let m denote the maximum separation of points lying in the spaiad poison of
the volume, V*. Then we can define G, ¢4 to be the cube (square in the case of two
CFinady,

spatial dimensions) of side m centered about the center of mass of V7, .

we let
L] _— Al o
Vitn =C ®Vu=‘,1'
In intuitive terms, V° represents a larger volume of RC-space that contuns the

volume of possible configurations for a sensory point, independent of the specifie
oricntation of previous sensory points. As a consequence,
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J ! J-1

n v(,’,’y(dmj)omj)wmj) g n V:'[,',(dmjxamj»wmj)-

m =1 m-=1
In order to bound the magnitude of this new volume, we rely on the following two
lemmas.

Lemma 1. Consider a parameter range of extent a and a second parameter
range of extent b. If the two ranges must overlap and the ranges are otherwise
independent, the expected extent of overlap is

ab
a+b
Proof: Without loss of generality, assume that & > a. Place the origin at the
beginning of the a range. Then the right limit of the b range can lic between 0 and
a + b with uniform probability. Thus, the expected overlap is simply given by
fozdz +(b—a)a+ [ Pa+b—~1)dz

f(;“bdz

which evaluates to
ab
a+tb
as was originally claimed.n
Lemma 2. Given k > | constraints each of extent a, the expected range of
overlap is
o

i
Proof: The proof is by induction. Clearly the & = 1 is trivial. The k = 2 case
follows straightforwardly from Lemma 1. Now assume the induction hypothesis is
true for k — 1 and establish it for &. By Lemima 1, adding the Kt constraint yields
an expected range of

and this reduces to

thereby establishing the induction hypothesis.g
This second lemma implies that, in the three degree of freedom case being
discussed here,
v v
.

Th. -, using equation (2), the expected number of interpretations is bounded by
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n k+l n \‘v:'['»,‘;

e R

If we let v* denote this normalized volume

. .
ivf,l.vf
v — ———

v

then the expected number of iuterpretations is bounded by

Since it 15 well known that

ot

this reduces to an expected upper bound of

. k
{.’nes":}(,l,’] ‘ {
n{- k“‘ \ )

This is clearly a much tighter bound than that of equation (3). Indeed, for hxed n,
this beliaves like

. -k

nick™

L i
and the & ¥ term is extremnely important, since for fixed n this function s unintodal,
rising to a peak for some value of k dependent on the values of the constants, and
then dramatically decreasing as k is further increased. A sample plot is shown in
Figure 3. In Figure 4, the log of the number of expected interpretations is plotted
as a function of k, with each plot corresponding to a doubling of the constant of
the previous plot.

[t is worth noting that exactly this type of behavior was observed empirically
by ‘Grimson and Lozano Pérez 84). In Figure 5, we plot the number of consistent
interpretations as a function of the number of data points for an actual example,
Note that the form of the graph is very similar to that of Pigure 3. The it
that the nuinber of interpretations does to asymptotically approach 1 s due to
svminetries in the object which violate the assumptions of uniform distribution
of faces in RC-space. Fiven so, the performance on real data closely matches that
predicted by theoretical estimates.

Finafly, it is clear that none of the above discussion was critically dependent
an the fact that we were dealing with the two dimensional case, althoungh 1t was
easy to visualize in this case. Similar constraints in the three dimensional case will
also result in a restriction of the swept volume of RC-space, appropriately detined.
Here, the spatial components of the RC-space will be similarly bound. In particular,
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Figure 3. A sample plot of n[ck 31% for fixed n and ¢ and increasing k. The function is
nnimodal, peaking for some small value of k.

ne

Figure 4. The logarithin of the expected number of interpretations i~ plotted as a function
of k. Fach graph corresponds 1o a doubling of the constant used in the previous plot.
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if 7 is the number of independent constraints, defining the swept volume }V,",m[

then the expected bound on the number of interpretations for k + 1 sensory points

18
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Voo b vweodbimensional case, we have seen that j == 3 and for thie Lhree Giillenhiio
o, )
e Ul Lnousind Leinnid 2 1o esiablish these bounds, we nnphoiy s
ot vootnes of RO 0ce obtaned by ntersecting the swept voluties denicd
G o0y consTa s teist oe nonsempty. This must hold froes G cours

Co vase Gl dhe corfect utorpretation, but [or other Cases, (hC tiersecied volaine
wot b ernpry. This imphies that tighter bounds could be ontained by tuking
St nconnt. sinee Lnosuehocases, the expected overlap would be smaller thon
vy e derved s Lesnma 20 We also note that while the expected volue
Lhbed by equation O tends to 0 with increasing A, this does not imply that
C vt Do D feasibie scerpretations also tends o 00 This s sinee the faces of
Lojeet are representea by ¢ functions inothis space, and thus a Contiitegs
S process sach s equation Gpomay shil contain acd function wihin its scope,
i oas the volume decornibed by it shiriiks o an dnhadtesinal, So Jong as the 8
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o interpretations, and eqtation iy could be amended by adding a corhng, function
to the entire expression,
Finally, we stress that to this point. we nave not actiaadly used tie speeitc

forts ¢ f the patrsise constrmts, but onty the Taet that such constraints rostrict the
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ranges of parameters that deseribe relationships between faces of an object. Thas,
provided we can bound the volume of RC-space spanned by such a constraint, the
results derived above pive us a means of measuring the efliciency of such conctraints
m restricting the set of feasible mterpretations of the data, and the behuvior of the
bounds with increasing pumbers of data points allow us to measure the clliciency

of the constraints in restricting the <earch space.

4.2. Predictions of the Bounds

Several interesting fuctors can be derived from these bonnds. We already have
noted that this bound is a unimodal “anetion in k. We first derive an expression

for the value &y for which this maionim e achieved. Suppose we let
r : k
jnelvr,
e ARV IS
[4‘("3]-”"',./‘.\“““.\ -
‘ Y k?

denote the nummher of vxnected intorpretations "or k<1 points of sensory information,
where j s the number of dimeesions of the RC-epace that are explicitly constrained
by the local constraints, Ry werting he derivative of the logarithm of /7 to zero, we
find that the function /7 reaches a maximum for

1
J

r f %)
Ry == N !

At this point, the bound on the expected number of feasible interpretations is

simply

i

«
02

or

7 eXp Jny

so that this places a bound on the maximum number of interpretations that must
be considered at any point in the generation of the tree of interpretations.

Secondly, we can invert this bound to predict the number of data points
needed, in general, te ruarantee a unigue determination of the ohject’s orientation.
In particular, siven a value of £ {eg. I < 1) we can use Newton's method to soive
for the number of data points needed to reduce the hound in equation 13} helow
this level. While numeric sointion of this implicit cquation for k will yield the best
results for specific values of n, ) and v, we can also derive an upper hound on the
number of data points required to produce a uniaue interpretation. This is given
by a solution for k of the following equation:

(2 s )logn + jk + kiogv® — jklogk <0

or
“[lork -1 1
kit - a-112>1
N ogn |

where we have replaced the variable #* by the vartable ¢ through the relationship
v' = nl

One mett od of ensuring that this expression is true is to require that both terms

in the prcduct on the left hand side are greater than 1. In particular, the second

term then reduces to the inequality

[
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o the eritieal factor i derermining the graceful degradation of the constraints,

Provided this expression s cmdi the relative changes inthese parameters are also

stall and thus the combinarories of the constraiuts desrmdes procelutly Note that
this aracetul degradation tmproves as the number of independent constramnts
mereases.

5. Specific Bounds

Wo now turn to a carefn! consideration of the specific constraints thet anply

to our particular case, and derive expheit vxpected bounds on the nigher of

interpretations consi<tent with b+ 1 osensory points, by estimatirg the valinoe
parameter

v,

ST

5.0 The Two Dimensiona’ Case

We wil! fiest consider the two-dimensional case of objects with three degrecs
of freedom relntive 1o their model coordinates, and will then extend this to the

general three dimensional cose of abiccts having 9x degrees of positional frecdom.
Freseowe will maeke the following assumptions about the object being sensed

oA vhe odaes oF the ohifont have the same lengeth £,

20 The diumerer of the abiecr e denoted by the constant D.

We make the following a~oymptions abouy the sensory information
VoThe positions of contaet with the ohieet are known to within a circle of
radins e,

DO The porroads to the sensed odaes are known to within an angular error of

~
T

Now «uppose that we arhitrari!y choose some face on which to place the lirst
contact point fobviously we have no constraints on this anvway)l. Given a second
sense voint, *he firct questian to consider 1« how many faces are consistent with the

}

constraints Hetween 3

he “wo sensory points. To answer this, we first review what

constraints are available from fwo sensory points.

1. We enn meosure o within some error the angle 0y between the normal
of the fre fhee and the normal of the cerond face. This is given by the
combination of knowine the dot product between the two normals and
the eross product of the two normads (which s the simplified version of
the triple product constraint in the case of two dimensions). In fact, this

Mmeasnrement s aeonrate to within a range of 4y,

2 Wo san measure the length d of the contact vector v between the two

comped oty Awith o pesahle error of e,




Grimson Cumbinatoricn o Moue: Bica o ilecogn Gl

3. Finally, we can determine the angle between the contact vector v and the
first face normal. To determine the range of possible error, we note that
cach endpoint of v lies within a circle of radius ¢. It is straightiorward
to show, either algebraically or geometrically, that the maximum angular
deviation of the true contact vector from its measurcd position is given

by
tan ! (%€>
7/

Our general technique in estimating bounds on the combinatorial efliciency of

these constraints will be the following:
L. Construct a relavive configuration space (RC-space) centered at the
midpoint of the first {ace.
2. Bound the velume of this space in which the sccond fuce must lie.

3. Fstimate the number of faces iying within this volure. To do this, we wili
assame that the faces are unifornuy distributed over a voiuiie of RC space
within D of the madpoint of the first face. While this will gencrally be
true over a large codection of objects, clearly for any singie oijec this
wiil not be compieteiy valid. We will argue that the bounds derived under
this assumption are cirmost crerywhere bounus. That is, wiile there may
be certain degenerate cases which violate the bounds, i, general, over the
class of possible objects, the bounds will almost always be true.

t. Extend the anaivsis to consider the combinatorial effect of & points on the
number of faces assignable to the k + 15 point.

We arbitrariiy assign a face to the {irst sense point, and construct a relative
confizuration space about this face. The orig'n of the spatial dimensions of the
RC-space lies at the midpoint of the face. The normal of this face defines the origin
of the angular dimension of the RC-space. Thus, a face is represented in RC-space
by tue position of ity mudpoint relative to the midpoint of the base face, and by
the angle of its normal relative to the normal of the base face.

Suppose that the base of the contact vector v lies at one of the endpoints of
the first face. What positions could the endpoint of v take in RC-space? First, we
know that the angle of this vector relative to the sensed normal to within a range
tar, "'(2¢/d) and we know that the variation in the sensed normal relative to the
face normal is given by 4. Thus, the angle made by the contact vector relative to
the face normal is defined by the range

(1)
n 7))t

Thus the area of RC-space swept out by the endpoint of v is given by

/d+( /00+"l+t;m'l 2
,, pdpd0
p=d- ¢ J0::0g—~ -tan -} %‘ pap

which cvaluates to
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Figure 6 The swept volirne of possible positions for a seusory point, given that the first

sensory point lies on the base face.

2
4(7 ~ tan ! ;)cd.

The total area of RC-space swept out as the base point of v is moved across the
base face 15 diaerammed 2 Figure 6.

In order to ease the what follows, we consider the problem of enscribing a
rectangle, with sides aligned along the coerdinate axes of the RC-space, about this

volume. We let

4 tan-t 2¢
o =7+ tan”t —,
7 d
We will assume that v < 7 and that we only consider contact points such that

d > 2¢. In this case, 0 < a < 7. We may assume, without loss of generality, that
Oy lies in the range 0 ” In ordc‘r to determine bounds on the dimensions of the

enscribing rectangle, we consider three case.

Consider first the case of f; > 7 + . In this case, one can show that

Ymin = (d —)sin (0y + )
ymax = (d + ) sin (0p — a)
Tinin = (d + ¢}cos (0o + a)
rmax = (d — ¢ cos (0g — @) + L.

Similarly, if 8y < § — « then
Ymin = —¢)sin (0 — a)
ymax = (d + ¢)sin (0 + a)
)(()s (00 -+ a)
)

cos (00 - O() + £,

Tinin = (d—¢

Imax = (d + ¢
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and if J —a <0y < j +athen

Ymin = (d = min {sin (0p - @), sin (0g + )}
ymax = (d +¢)

Iniin = (d — ¢)cos (0 + a)

Tmax = (d + Jeos(Oy —a) + L.

Thus, for example, the range in y s given in these three cases by

Ay = —2d cos Oy sin a + 2¢ sin § cos a Case 1
= 2d cosfysin a + 2¢sin d) cos o Case 2
= d + €) — {d — ¢)min {sin (0 — «),sin {0y + a}}. Case 3

We want to consider the maximum extent of this range. Applying standard
minimization techniques, we find that the maximum value for both Case 1 and
Case 2 are given by

~

fo .2 .
Ay = 2V d?sin“a + 2 cos?
and for Case 3, the maximum occurs at
2(d sin? a + € cos? a).

Moreover, the extremum observed in Case 1 and Case 2 is always greater than that
of Case 3, so we can bound the y component of the enscribing rectangle by

Ay = 2\/d2 sin a + ¢2cos? .

In a similar manner, we find that we can bound the z component of the
enscribing rectangle by

Az = {+ 2\,/d2 sin? & + €2 cos? av.

This gives us a rectangular bound on the area of RC-space in which the second
sensory point can lie, given that the first sensory point lies somewhere on the base
face. Since a face is described in RC-space by the position and orientation of its
mudpoint, relative to the base face, we need to expand this volume to cover the
possible positions of the midpoints of the face. Clearly the most straightforward

£ on all sides, since a sensed point

wiy to do this is to expand this rectangle by
must he within that distance of the midpoint of the face. This yields an area in
RC-space of dimensions

2¢ + 2\/{1“’sinza +ecos’a
by

l+ 2\/(["’ sina + ¢ cos? a

26
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in which the midpoint of a face must he in order to be consistent with the sensory
information.

Finally, we must account for the orientation of the face. Clearly, the angular
component of RC-space has extent 27 and the range of possible values for the
orientation of the second face relative to the first is given by 27.

This defines a volume in RC-space in which a fiace must lie in order to
be consistent with the sensory information. In order to make useful estimates
concerning this volume, we need to normalize this volume. To do so, we will make
the assumption that the faces have equal probability of lying anvwhere within
this RC-space (which spans an area 70° in the spatial dimensions and 27 in
the angular dimension). Clearly this assumption is not necessarily vahid for any
particular object, although swhen averaged over all possible orientations of the
object, it becomes more accurate. In this case, the normalized volume of RC-space
in which a face must lic is bounded above by

P ki
Vo= sy M8
w
where
N
14 sin” « € \ o “
sy == - Z e = -5 ) CosTa
VD \ - VD I
. el
L 2
Lot sin? o \ "
. COS“ (0!

The number of possible faces lying within this volume is given by
71V2.

Note that, as expected, V) is a dimnensionless quantity, depending only of ratios
of parameters of the polvgonal object. Also, we can restrict our computation to
cases where d > 2¢ so that o can be bounded above by v + F.

This normalized volume leads to a straightforward bound on the number of
interpretations consistent with k + | sense points, namely

n[an]k.

Of course, this ignores much of the combinatorial constraint available to the
technique, since it comes from simply using the constraints between the first sense
point and all additional sense points but ignores the fact that the k' face is
constrained by all k£ - I previous sense points, and not just the first. Nonetheless,
under the assumptions made previously, this bound represents a worst case bound,
in which the inclusion of additional sense points does not reduce the normalized
volume of RC-space specified by the constraints between the first and the current

sense points.

We note that for fixed n, the expression for the constant nV, actually defines
a relationship between the two error ranges as a function of the object parameters.
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5.2, The Three Dimensional Case

We can expand the derivation of the previous section 1o deal with the three
duncusional ease. Here, the faces are squares of side ¢, rather than one dimensional




Grimson Combinatories of Modei-Baned Recoguition

edges. It is strajghtforward to show that the positional aspects of the derivation
can be decomposed oo soand 5 companents, both yielding normalized ranges of
size sp, while the = component has oo normadized range given by sa. Only one of the
two rotational paruneters can be canstrained by the measurements between the

two unit surface normals, so that *he normalized volume in this case is given by
v .
vy - Sf X §9.
m
An expected boand can be derived in a manner similar to the two dimensional case,

where now the diagonal of the three dimensional cube 1s given by

P
3y = \f‘.isf + 5.

Here the expeeted volume is
4
! )9
kr k3

v the tripte produet constraint Grimson and Lozano Pérez

We have yet to anp
L9847, however, While thes concrrain has no application to nairs of points, for
triples of points it does apply. In o parnienfar the following case holds, Consider
three independent unis norma’s o noong, and assume we know the dot nroducts

between each of them donared b o as we'l as the sign of the triple vroduct

nynong! Then

Do = fon: = "{l —<.62 u
2Totnng by 1o

where u is a nnit vector such that u-ny = 0. Simnilarly
o9
T gy =~ \/1 — (W

whiere w e a unit vector anch that weny == 0. Now the do® prodact hetwern these

veetors s known by measurement,

e
R R ST TSR I /1 - <‘I2\/1‘* ’»f:&u "W
== €93.

Thus, the cosine of the angle between u and w is determined, say w - u -= cosé.
Fvaluating the triple product gives

nynpngl == \,[l — (?3\/1 ~ ¢?3sin 8

and thus the angle 7 s determined. This irmplies that while there is a free degree of
freedom between ny and ny, correspondine to a rotation about ny, the attitude of
ny is completely determined from the mensnred dot products and triple product.

This implies that while the expected volume for the second point is piven by
PR
v 4
km k?
for additional points, the sccond rattiona! degree of freedom is also restricted and

the expected volume is eiven by
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5.3, Degradation with Noise

Having derived spesitic bounds on the effective praning of the local constrainss,
iois ey 10 see Lhow T presence of sensor error allects the expected number of
consisieni b catteses, To demonstrate the gracefui degradation of the constraints,
e bave pioited the wzaritha of the number of expected feasible interpretations
A~ tluncton of the naninber of sensory points, for several difierent error conuitions,

in {igure 7. we plot the number of interpretations while varying the amount

ercor o measunng surtace positions. Bach plot corresponds o a doubling of this
somriionad error fronn the previous one.

o oure X we piot the aumber of interpretations while varving the amount of
Coror in measuragt surtace onentation. Fach plot corresponds to a doubling of this
anpudar error from the previous one. In both cases, we see that the combinaternies

sentahy decrease ina gracelul manner.

30
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Ficare 8 The locarithin of the expected gamber of interpretations as a fupetion of the
mimber of sensory poicrs boeh arapth dlustrtes the Teers of doubling the amount of error Ty

meastringg surfice orient vion, with O other papaneters Sxed.

6. Applicationof the Theory

We began our investigation of the problem of model-based recognition and
localization by estab!isbing o sot of criteria that chonld he carisfed by constraints
1

between sensery davn nodd mode’ Clementss Tyoparticntar, we arened chat the

constraints should bhe coardinne frape independent, <imple, sonsor ndeperdont,
combinatariafly powe fal and deprcde prace™nle with error. We have spent the
bulk of this paper desivinge ooeb owr % constrainte and establishing on theoretiont
grounds that these entera are - ed s This shenretion! Basis was an onturowth
of eartier work "Crimson and Losano-Péres 1984 10 which an isomoerphic et of

constraints was proposed and tested,

As further support for the theoretical results reported here, we bricfly review
some of the results of testing that aleocithm, In particular, a large set of sirmulations
were run on a series of test objects, for varying tvpes of error conditions. The

following "ible summarizes some of these <tnutations, deseribed in more dotail in

Grimson and Lozano-Péreg 840 for the ohicet< linstrated in Figure 9.

1
|
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Table T No. of Interpretations After Loceal Praning

Object Normal o Dise Min dth 9hh Faces
lrlousin'g 7 LSS SR 2 10
- 05 i 140

10 1 1 17 10

- F00 w0t 1 300
o 05 12 9 40
10 1 8 1340

- A8 00 1 1 40
05 13 185 10

T d0 0 h 12 s 40
Stmple Hand 7,/ 0 2 2 3 25
S S B SR PO
T JRT I (U S B %
T 05 2 nooaw
7 O [ 1 32 28
) ) 05 2 4 98
F_(_ngﬁpl_qu”;md T/ Oy 4 4
05 1 10 64 64

I S AN R B S 61
i - e A T T F R '
I 72 PO N TN T N O
05 2 18 126 64

8 Cylinder * - Fh 08 2 412 21

KL 1 20 21

Y T T S - S TR
T R B T B T\ TR
I - T S T S T
T T R R L
(5 Cylinder S0 08 4 36 2l 29 |
B SR ' R (S
a8 0% R 1 g

The table above iflustrates seatisties in the performance of the ‘ocalization provess,
Each row lists parameters of a histogram of the number of interpretations consistent
with the local constraints, based on 100 trials with the obicet randomly oriented
with 6 degrees of freedom. In each case, 12 sensory data points were used. in the
table, the normal column lists the radius of the error cone abont the measured
surface normal; the dist colnmn lists the error range of the dictance sensing; the
min column hist the minimum number of interpretations observed; the 50th column
lists the median point of the set of simulations; the 95th column lists the 95t
percentile of the set of simulations; and the faces column lists the number of faces
in the model.
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