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Minimax Multiple t-tests for Comparin_ kNora-l -

Populati on, with a Control A-

by

Shanti S. Gupta Klaus J. Miescke
Purdue University Univerity of Illinois

at Chicago

,/ABSTRACT/

- Let - . .- he k norMi populations with unknown meansl.k. l , ' .'; K l: ...*I,.k
"2

and a common unknown variance 0 .. Based on independent samples of sizes

n , the populations are to be partitioned into two sets, where the

first one contains all with o. and where the other one contains

the rest. At first it is assumed that,?0 is known. Under an additive

ai-b , loss function a minimax procedure is derived which is of a simple

natural form. The proof of minimaxity makes use of the Bayes approach and

involves a sequence of nonsymmetric priors, which play a similar role as a

least favorable prior in sinpler problems. Analogous results are presented

for tne case that is not known. In this case, a control normal populatlon

is issurred to exist from which an additional ,ample of size n can be drdwn.
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M in1fldix Mult iple t-te',t', for CoMpirinq k Nord l

Popula t-i ons with a- Contrcl*

by

Shanti S. rupta Klaus J. Miescke
Purdue Ufliversity University of Illinois

at Chicago

1. Intrduction.

Let *l N( I, 2.... k' 2) be k normal populations with unknown

me'tfs k tdf common unknown variance A population is

considered to be "(;ood" if , O- and to be "bad" if r.i ! -0 i = ,k

The control value .[) snay either be known or unknown, where in the latter

case d control population ,I N(_ 0 ,1 ) is dssumed to be also available.

The ;ur;;,se of this paper is to derive statistical procedures which partition

the k populations into '(ood" and "bad" ones, respectively, under the minimax

1..............be a random sample from ,. i = 1,...,k. If

'n n. lot X ) be an additional sample from the

( ,yr, ,-. i( it1 ,r . A i a' ;1les are ,iss uix-d to be mutually independent.

f(r n(ot,tinndl convenien(ce, let X - (X1  ... OX ) if is known, and let

r) X, .... X) if ,. unknown. !n either case, a multiple decision rule

(,ar, bo represented in the for n (l.... k) , where, after having observed

X , >) denotes the ;)robability of deciding that is good", i = 1,...,k.

Let i, denote the class of all such rules which are Borel-measurable.

*Pe-.earch supported hy the Office of Naval Research Contrdct N00014-84-0167.

AKt% 19i'k; subject classifications. Primary 62C20; secondary 62F07.
,e,' .vor) hr5sCs-. -MultTp l-e comparisons with a control, simultaneous

t-tests, nihimax k-sample tests, Bayes tests, normal location problems.
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For a decision theoretic treatment of the problem a loss function has

to be specified. Assume that in each ith component problem a nonnegative

loss ai(b i) occurs if -i is "bad" ("good"), but wrongly classified as

'ood" ("bad"), and that no loss occurs if the classification is correct,

S 1,..., k. The overall loss is then assumed to be the total sum of these

k losses. Fornolly, the loss function is thus of the form

k k
(1) L( ,d) - . a. ( ) + b " ,i " )

d.<l :d.-O
1 1

where ( k l, d 0,1 ,' and di = 0(l) stands for the decision that

is "bad" ("good"), i 1 ... .,k.

rr .the c-ase of kn-own, let * be the following rule.

(2) : (M = 0(0 ) iff nil/ o)i-'..o)/S - ( )cis

where S2 i, the usual unbiased pooled sample estimator of c2 and ci is the

lower a.(ai+b. - quantile of a t-distribution with n l+...+k - k degrees of-

freedom, i . .

Analogously, for the case of .unknown, let , be given by

4

(3) -'*'X) 0(i) iff (noI+n- 1) l/2 (i-X)IS () cis
1 \ 0

o o.

where S2 is now derived from (_,Xl... ,A), and ci is the lower ai(a.4_b.)'

quantile of a t-distribution with n0 n I+...+n -k-i degrees of freedom,

i = 1,.... ,k.

iI
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he :1,ain result , to be proved below will confirm that these two

procedures are minima for their associated cases.

The problem of co:paring k normal populations with a control has been

con idv,;1 d by many authors. To mention a few of the earlier papers, Paulson
,,, and (obel 1958), and Tong (1969) have proposea

and 'tu:;ed ,or, natural procedure s. lehmann (1961) and 'pj~tvoll (1972)

have treited the oroblem with methods from the theory of testing hypotheses.

r iollander 17 1l) and Miescke (1981) have derived optimal procedures

under the -n'nimax approach. An overview of this area of research can be

found in Gupta and Panchapakesan (1979).

I; miny of the ;,aper, dealing with multiple comparisons with a control,

the su-,;illv. indiffe-rence zones have been adopted, which means that wrong

de( is1in witn respect to parameters sufficiently close to "0 do not result

Jr ir 1. 'ss. Tere b), intervals. around 0 have to be specified which, together

wit certain other parameters to be chosen by the experimenter, make the

pro;-(,),.; ;,ro,.vdures look sof,*,what complicated.

O ur ,iproach to th*:- ,robleri ny be More appealing to the experimenter

btnf I i,'t" P pi ,it, There, are only K pairs of losses to be chosen

ti .eft. U.. th. rs:, itiw Mpni -, n i , .r- rocedure: (a1 b I k (a.bk). These

I . .:, uit url interpretation which facilitates the experimenter's

i ., the ratio of a and b. represents the

relative importance of avoiding the two types--of possible errors in the ith

cori'ionent decision probleir. Aftp-r-nese k ratios are determined, each pair

may still be multiplir-ed by an individual factor. These k factors may then

be chosen in a way to reflect the relative importance of avoiding errors in

the k component decisions.

I,.
.- - - - - -
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The method used in this paper to prove minimaxity of , and ** for

their respective cases is an asymptotic extension of the standard method,

where a procedure is found to be minimax if it is Bayes rule with respect

to a least favurble prior. After two technical lemmas are proved in

Section 2, ninimaxity of A'* in the case of a known "0 will be proved in

section 3, and the analogous result for ,** will be derived in Section 4.

2. Two technical lermias.

These are twu main steps in the proof of minimaxity of -.* which will

be used later. since they are co.mmon for both cases, where "0 is known or

unknown, they (ire presented in this section to avoid repetitions. Also,

one may get a fairly clear idea about the proofs to come by just looking

at the two len'r's given below.

The first result holds in fact more generally for all k-decision

problems under additive loss. It has been proved in the F-minimax approach

4n Miescke 1981'. ky allowing , to consist of all priors, it can be used

also in the ',in,.a approach. For convenience, let us state it below in

i for- suitable for the present context.

Lepyna 1. A decision rule M C L is minimax if there exists a sequence

of priors p q), - 0-2 0, m = 1,... s-uch that for every

i • 1 r .... k the followin9- holds - t-rue: For .the ith component problem there

B
exist Byes-rul-es B with_ respe ct_ to pm' m C I, such that

,4) supr(R ((-,,q), "i I k q 0 O

firti inf r(i) B
, i m.,
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where :i and r denote the risk function and the Bayes risk, respectively,

for t he ith conponent_ problen.

Le.i:,a 1 can he used to reduce the k-decision problem under additive

lo%,, t.. k in,!, vi dual 1-decision problems, the only common link being the

"In' I,(-I, PT' " Z,, As can be anticipated, the second result will now

be wito respect to a single component problem. Since it may prove to be

useful also in other situations, it is qiven below in a more general form

than dctually needed in the present context.

Consider the followinq situation. Let Y be a sample from a parametric

family of probability distributions IP , E , where we wish to test

Gversus 10 Let the loss function be L(. ,l) = L() C

if L( 0) - L2 () 0 if * . and L(-,.) = 0 otherwise. This

includes as a special case the 0-1 loss function, where LI = L2 = 1.

Le"a Z. Let-- bed p r.or densit - yw.r.t .a i.-finite measure . defined on the

Borel sets of R, such tnat the following constant c exists and is not zero:

0"

'c Ll(,) ()d () + [ L2 () ( )d.(9).

0

L.et c )( ) if -" and -) = L2 (,)(,) .if 0 Then
the_ -aye~s_ rulIes un-der L(.,.) w.r.t. coincide with the Bayes rules under

the 0-1 loss function w.r.t. , and the TaLes risks are related to each other

th rou9h

(6) rL( ) = c rO,l(,,).

where the subscript of r indicates which loss function is assumed.

", ' .i
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Proof: Let b, t d % isoion rulev and assume. without lo-s of gjeneral i ty,

that it is non-randomized. Under the lo,,s function L, *he Bayes risk of

with respect o a prior , for which c 0 exists, is given by

(7) rL

0"
L- )P (r Y! ()d'()4 ' L2 ()P,'(Y)=0"()d()

0

- c P (Y)=l ( )d.() + J P '(Y) 0 (')d.(

0

from which the assertions follow immediately.

The above lemma will be applied in Section 3 in the following way. Let

LI(-) = a and L )- b, respectively. Consider a (normal) prior density

w.r.t. the Lebesgue measure, which is symretric w.r.t. 0* Under 0-1 loss,

its Bayes rule turns out to be very sinle. It will be used later for
B,

the J,'i s in (4). Under the loss function L, it is also Bayes rule w.r.t.

the prior density 7 given by r(-) = 2b(a+b) 1(.) it a0 and
(') 2a(a~b) () if .... In this case we have c 2ab(a+b,

-.Known. 0'tl O

As a natural first step, let us derive the Bayes rules for the given

k-decision problem with respect to the standard family of conjugate priors.

Although they are interesting in their own, only the Bayes rule for the case
I
I

-- V
Ar '
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of a.-b , i 1. k, wl'i prove to he useful for the problem under concern.

Reconsidering this rule through Lenma 2 as a Bayes rule w.r.t. a non-symmetric

prior, it will be used in connection with Lemma 1 to prove minimaxity of *

Following DeGroot (1970), ch. 9.6, let q -_ 2 be the precision, and

II, t i - -- 'k and Q denote the randoi parameters in the Bayes approach,

which are assumed to have the following prior density w.r.t. the Lebesgue

(,q) p(i i  q) ;Iq). .. r Rk ,  q 0,

lI -1

where (- q) is a Nk('.,(-iq) density with known C IR and -z i 0

i ,k and where

Sg(q) = , )- q,- e-. , q 0.

I, tnf. ,t0nmitv of d .r-distribution with known parameters 0 ( and 0.

Stdind,rd analysis leads to the following posterior distributions at

x . ;iv(,n , = ,l......'k are irdependent N((,W r x )( ,n

, ,) -
:  1..... k, and ",rina1ly, Q follows j ;'-distribution

&tn dpardieters .+2"in and :-', where n = n14...n k and

( lo) +2-X 3
n i  ,)2 + n)- - )2, _' (Xij- xi ) + ini(,i+ni ) ( i-- t. ,

and where x1 denotes the sample mean of x1, i 1,... ,k.

'

i ,
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On the right hand side of (4)• let BV and let p be equal to p

as given in (14) and (15) with Tn =  .. I k in, in EI1. Let i ( ],...,k:

be fixed for the rest of the proof. We will show below that

(17' irn (i) p 0 -1
1, 17', 1 ~~~~~iT- . L ( r. ibi( i bd

which clearly completes the proof since under the loss function y .ven in

0(1), K has been seen to be Bayes rule w.r.t. prier p. for Pverv ',

Under the U"-I loss function. I1C has allso been ;een to be P tvi-, r jlt

w.r.t. prior p. Say, which is Poual to i ,i-, (liven in a') dd ' withi

.1" 1'''= "k .0 and 1 = . k n;, and this for every m C IN. In this

setting, the Bayes risk of 10 can be written as
i 0i

(18) r i r r (p O0

,r O1 0,1( m,.i q)g(q)dq, say, where at q 0.

(i )r, (1
to, P~r' i q )

11) 2( o) (nq) 112 yIl(, ,o/2d
- ( ( n i q ) " i - '0( q i " 0 ) i

:1(niq)/ 2( )) (mq)I2 (q) 1/ 2 (12 -)) &'1-C i ,(m i-O )  1'

0

,I ', ((/ni/m) 11 2 w) ,P(w) dw + D * (-(ni/m)1/2 w) p(w) dw,

where and : denote the standard normal density and cumulative distribution

function, respectively. Clearly for every q 0, the sum of the last two

4f



inte,:r', tends to 11L d', m; tends to infinity. Sine tne value of this sur,

is always between 0 and 1, uniformly .n q 0 and m C h, it follows by

Lebes&,ues do;vinated Lonvergence theorem that

lir r0, 1  i) I 12.

A;pi./nq now Leryra 2. in the way described below of (13), we get

- 2 a b )a +b 0 r)p,
'r' ~ ~ i 2aii i r"0I , I )

Frn,: th; , it follows that (I/) holds, and therefore the proof of the theore.

is cor) ;eted.

it mhould be pointed out that Lehmann (1957) "as shown that the

mriniirT,-vilue nf tne ith component problem is equal to aibi(ai+b) - l 9

.. T.herefore fror (16) it follows that " is minimax for the itn

(c';,ponvrt prnt,ler,, i = 1,..., k. It is a well known fact that student's t-test

is ;rnil'x at the suitably chosen level of significance. However, this fact

is of no use in the present context, since the overall minimax value may

be less than the sur of the k minimax values of the k component problems.

A, a final rearK, let uS mention that -* remains minimax if S2 , the

pooled sample estimator of 2, is based on a subcollection of observations

from X, and if c1 .... Ock are properly adapted. However, such a modified

procedure would have a strictly larger risk, except at " .0'..

This follows from the fact that fr every i E il....k,, is the uniformly

moAt powerful unbiased test at it-, level, whereas the modified procedures'



Ith de, r,,n rule would ( l y' he , n inbiased test at the same level of

,, I,t, ' ' .. , i fIo(4 ;r( 'f,ir. would thus be i nadwi 'i hle. Ohother

, " v t * i, 4d" ' r,,'.ain,, iri (:,' guP'ti(n

'Jr knuwn (in f o)

Stn i. srt* , ,,,, ,, tdC ;.i(9fl, ",a't ' P , 1ret bo' Ui,:ti, ",

", 7 ?,qprv0 , L ridtlh 'IOjJ result,, to Tection - (dn bf, der', .,, '. ,r

" et is 1n the B 'a if'- , f . t. I ' -, ,. fV r , v  , o 'n,',j ato

liriu,'. n h:L ,,sent1i] the si', Is '8) and Q D. ut now with the

;)rouct in ') defined over the ranue i 9,1,...,k, since -O is now

n dddi tion 1  rd n r parameter. of course, p(O)(. q) is a N(.O,( J

densit9 with known U- <- W and 0 0. Fro, the results derived below of (9)

t an be ,.er t'lat the posterior distribution at X = x has the following

;roperte,. For every i - ..... k, river. Q q, 0- has, rarc,4nally, a

"'r-al i'st'buton with ',ian -. (, i i.i ni i ( 0 +nC

F , , nd virian(J) -l nr) 1 (, +nr) l). The posterior

,tr,,inal dvi,trib~ton of r.: is a T-di-,tribution with tarameters , n-ln n)

,1 where, ' i. trw ando, to given in (10), where the first sum is

O' o ver the r i P],1.... ,k.

For i ,.... k fixed, by looking at the posterior joint density of

-"nd t ( n be seen that the p,nsterior 1ar(inal density of -

is t-dJstributuon with no*r.+?, degrees of freedom with location :araneiter
2 "1-" ( , * - -1 -1

iO and (fE drafrwter . where IzI ( n (I'no) ) (n4 11 + )

For the ith component probleml the Cayes rule can be found by minimizing

tree ass)cand c'terior r rPctd loss. It is given by
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( )B, " X ( b ( i bi -1
(2).x) I()iff P X x. b(X (

or, by using the results derived above,

PI ) - 1k0) ff ( ) e
1 kO '0()

-1
where t! i the lowt.r a d.di ) quant" e of a t-distriuution with

nfln+Z, degrees of freedom.

For the special case of " n n T, a i i = 1....k,

00
the Bayes rule turns out to ,e of the si'p)le form , say, where

0,, , = 1 .J.,,)1 - ,o' Xi  - j (.) o, i : 1 . k .

Instead of following along the lines below of (13), there is a shorter

way to prove ninimaxity of -** in the -)resent case. The main result of this

section i,8

Theore;: . Under the loss function (1), the multipledecision rule *,

n niriax. The minirix-value of the problem is e ..
i, -v-(, i n ), e x.. d I o

d b~1 1. : 1

Proof. Again, standard argunents show that for every i . k, the left

Mhdnd side of (4) for is equal to

(24) sup:R1 )( ' ,q). ) IR k+, q 0 = ab(ai+bi)

where the dimension of the -parameter space is now 01.

4

-i-
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Bo
On the riqht hand side of k4), instead of chosin M to be , let

ra ther B ' , before in the proof of Theorem I. As to the priors of

I(). :1, ....-. , . and Q , assu rn thdt - 0 0 be a fixed known constint o.

say. ind adopt the same priors for-.-. . .  k' and Q as have been used in

the proof of 'heorev I1. Then for every 1 ..... ,17) holds true and

is Bayes rule with respect to prior p,, for all I. Therefore the

rcn 0' "hi,(r,:: io. '4'n ii i, tho -,irt, .,, the ;)rc()f of Theorv , 1.

0' lin n,, Peu" irr

h,, r'a ,' .hven ,,t the( end of Section .3 ho 1(1 ifl dn ,analoqous fo r for

te -ltuat~or crrsidered above. They are omitted for brevity.

rr t lu :roc's ef the two theorens, the proper choice of priors was crucial.

ne relevant oar3-" ters w ,ere dssumd to be independent, whenever the

nisnce ivaraTeter j was fixed. In the unknown control case, an attempt

;c ise the p'in,_i:,le of (location) invariance may not lead to the desired

' t su if one a. unv s that, aprior- ,?I- ", ..... -, 0 are independent.

%, ', die 1,) thf, f ,ct that at X x, the postiri or distribution of each

- would depend on all given observations. for the case of • known,

; andles anor H', onder (197') have qiven an in';trur tivo example.

Ilk
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Yl n 1,41, oi k t) nf IImp 14 n' at ji-, I Itorm. The proot of mrini mdx itj

1 Vl I iW i~'t yw ,r i n i nvolI Vfl0SAdtI'.f Int of non, Yirqit ri c priors

wich j1*. 2 ii ' OE1 eit f~h~dI pVj-jtj Jocjr inl im11plir problems.

AtTa Io.: ,,j, rf-,I " dtl, i r'se~nte d forw t h I ('" v U)I' i, riot known. In th is

I . (oflro1 norindl ;(pccw it con iP wwil1 to #PxiU from which ain dddi tiofl

"W1 If' Ot I a * i n he dt twn

-UNCLASSI F! [I)
MCUOIT?, CkqlAHVICA ro0,O OP0...6 o*&ceO. OWSiu

* - -. *. - 4



1ATE

=MED


