AD-A14B 306  MINIMAX MULTIPLE T-TESTS FOR COMPARING X NORMAL 18
POPULATIONS WITH A CONTROL (U} PURDUE UNIV LAFAYETTE IN
. oEpt OF S"AHSHCS S S GUPTA ET AL. NOV B4 TR-84-44
UNCLASSIFIED NOD014-84-C-016 F/G 12/1 NI

END
At
dumen
a8




L2 = =
== g 2z
@ .
g F
= uu 1-8
=

X228 it gue




———

S *®

o)
Q
™ Minimax Mul*iple t-tests for Comparing k “ormal
@ Populations with a Countroi*
e by
? Shant: . GLupte laus J. Miescl;(]*
e Lo ot versity of L
D Purdue 'nivers -ty Um:iytsjv]ﬁéa?;o 1inois
< Technical Report =84-44
PURDUE UNIVERSITY
e e DTIC
— 09%.4 ‘2 c!'u ECTE
3 J “'% % DEC4 184
4 . .
L_; ﬁ.’\ \'/ B
| -
£
= DEPARTMENT OF STATISTICS




8

o6

oS

peyruTup SORRGIAQ
Wevete: ofqnd 0y peaceddy

¥V INIKILVIS NOLNEIWSIQ

TJUaWUJBA09 S3IPIS PAILUN Y3 o 3sodand Aue a0y pajiumadd st
J4ed UL JO B|OYM UL UOLIONPOJdaY “AILSU3ALUR ANPUng e /910%y8 -t L OOON
30043U0) YdUP3SIY {PABN JO 321440 93Ul AQ pajsoddns sem Ydueasads SiLyj,

vRBL 4G DAON

AJLS4BALUN anpuny
$213513015 0 juauisedaq

¥ 330
310313

ol1d

v -p8s 34003y {ediuyday

obeoiyy 3e
SIOULL|] 30 AJLS43ALUN
3ISALY "L sney

A3 LS43A LU 3npuny
e3dng ‘g Ljueyg

Aq
#1043U07 ° y3LM suolleindogd

|PwuON ¥ butaedwo) 40§ $3533-3 I|d1INW Xewluly

L e

12




Minimax Multiple t-tests for Comparing k Normal

. . T
' [ a
Population, witn a Control thele 2
by
Shanti S. Gupta Klaus J. Miescke
Purdue University University of 11linois
at Chicago
AL
4
. , 4 A .
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/ABSTRACT ‘
-7 Let - - he k (i lati i th k ]
ei,r1"'jJ‘K € noan} populations with unknown meani.ﬁl"';ﬂlk'

“2 ) .
and & common unknown variance -~ - 0. Based on independent samples of sizes

Nyoeesal s the populations are to be partitioned into two sets, where the
et s
first one contains all " with

Y and where the other one contains

the rest. At first it is assumed thi&b’o is known. Under an additive

_"a;:0," loss function a minimax procedure is derived which is of a simple

natural form. The proof of minimaxity makes use of the Bayes approach and

involves a sequence of nonsymmetric priors, which play a similar role as a

least favorable prior in sinpler problems. Analogous results are presented

for the case that -, is not known.

0 [n this case, a control normal population
Sulr

15 assumed to exist from which an additional sample of <ize n
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Mininax Multiple t-test, for Conparing k Normal

Populations with a Contrcl*
by

Shanti S. Cupta Klaus J. Miescke
Purdue University University of I1linois
at Chicago

1. Introduction.

Let | T N('k’ 2) be k normal populations with unknown

2

ieans ..., | and 4 common unknown variance o°. A population i is

k

considered to be "good" if . - "0 and to be "bad" if AP i1,k

i 0

The control value T Ay either be known or unknown, where in the latter

case a control population g7 N(~O,u‘) is assumed to he also available.

The purpose of this paper is to derive statistical procedures which partition

the k populations intc "aocod" and "bad" ones, respectively, under the minimax

criterien,

NS S TN S » be a random sample from -., 1 = 1,...,k. If
3 il !'H i

i » X L X
fenown, et Y ‘AHY""'XOHO

) be an additional sample from the

control popuiation oo AL sarples are assumed to be mutually independent.

for notational convenience, let X - (X],....{k) if 0 is known, and let

o (X x ....X*) if nle unknown. In either case, a multiple decision rule

r)O )!
cafi be represented in the form - (-].....-k), where, after having observed
) S Y{;) denotes the probability of deciding that “"i is good”, i = 1,...,k.
Let £ denote the class of all such rules which are Borel-measurable.

C
*keearch supportecd by the Office of Naval Research Contract NO0014-84-0167.
AMS 197G subject classifications. Primary 62C20; secondary 62FQ7.

ey words and phrases.  Multiple comparisons with a control, simultaneous

t-tests, minimax k-sample tests, Bayes tests, normal location problems,

—————e e e .
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For a decision theoretic treatment of the problem a loss function has
to be specified. Assume that in each ith component problem a nonnegative
loss ai(bi) occurs if i is "bad" ("good"), but wrongly classified as
"good” ("bad"), and that no loss occurs if the classification is correct,
= ],...,k. The overall loss is then assumed to be the total sum of these

k losses. formally, the loss function is thus of the form

(1) L) = a;ly

where - ¢ WP‘]. dr ~O.1-k, and di = 0(1) stands for the decision that "

is “bad"” ("good"), 1 = 1,...,k.

For the case of _ o known, let ** be the following rule.

. . /2,
{ LR 4 = -t « >

(2} 1.(Jf.) 0(1) iff n, (X1 .0)/5 (>) Cio
where S2 is the usual unbiased pooled sample estimator of 02 and <y is the
lower ai(ai*bi)'] quantile of a t-distribution with n]+...4nk-k degrees of .

freedom, i = 1,....,k,

Analogously, for ;hg_;g;gﬂg[;4}Jq$pQ!g. let “** be given by

(3) B0 - 001) 1 (ng 01T VRG XS - 0 ey

1
2 . =]
where S* is now derived from (10.31.....5k). and <, is the lower ai(gﬁ*bi’
quantile of a t-distribution with no*n +...*nk-k-l degrees of freedom,

!
i=1,...,k,

- T ., vr
PR S ‘ . ol \v:u




The nain results to be proved beiow will confirm that these two
procedures are minimax for their associated cases.

The problem af comparing k normal populations with a control has been
considered by many autrors, To mention a few of the earlier papers, Paulson

Paneo.oannett 155500 Lupta and sobel (1958), and Tong (1969) have proposed

and <tuiied sore natural procedures. Lehmann (1961) and Spjétvoll (1972)
have trested the problem with methods from the theory of testing hypotheses.
#andles ard sollander (1471) and Miescke (1981) have derived optimal procedures
under the "-minimax approach. An overview of this area of research can be
found 1n Gupta and Panchapakesan (1979).

in many of the papers dealing with multiple comparisons with a control,
the su-called tndrfference zones have been adopted, which means that wrong
decisions with respect to parameters sufficiently close to 0 do not result

vuss. Tnereby, intervale around 0 have to be specified which, together

hoany
witn certain other parameters to be chosen by the experimenter, make the
proposes procedures 1ook somewhat complicated.

Jdur approach to the srobiem may be more appealing to the experimenter

because 0fF ats simpliaaty, There are only k pairs of losses to be chosen
te o deter e the resoe Live nanlza? procedure: (a].b]).....(ak.bk). These
Toaes tave g Jul&g artural nterpretation which facilitates the experimenter's

cc:l’g,.e‘fﬁ:;f’ For each 1 = 1,,..,k, the rat1o of a, ang bi represents the

-

,,,,,.,—,——”""relativu importance of avoiding the two types--of possible errors in the ith

corponent decision problem. A{Lar”fﬁéée k ratios are determined, each pair
may still be multiplied by an individual factor. These k factors may then
be chosen in a way to reflect the relative importance of avoiding errors in

the k component decisions.




The method used in this paper to prove minimaxity of :* and ** for
their respective cases is an asymptotic extension of the standard method,
where a procedure is found to be minimax if it is Bayes rule with respect
to a least favurahle prior. After two technical lemmas are proved in

Section 2, minimaxity of ** in the case of 2 known ', will be proved in

0
Section 3, and the analogous result for .** will be derived in Section 4.

2., Two technical lermas.

These are two main steps in the proof of minimaxity of “* which will
be used later. Since they are common for both cases, where 0 is known or
unknown, they are presented in this section to avoid repetitions. Also.
one may get a fairly clear idea about the proofs to come by just looking

at the two lemmas given below.

The first result holds in fact more generally for all k-decision
problems under additive loss. [t has been proved in the r-minimax approach
in Miescke (19&1', Ky allowing * to consist of all priors, it can be used
also in the minirax approach. For convenience, let us state it below in

a for suitable for the present context.

.. M . . . .
Lemma 1. A decision rule -~ ¢ § is minimax_if there exists a sequence

of priors pm(~.q), S R¥, g = S 0, m=1,2,... such that for every

16 -1,...,k- the following holds true: Ffor the ith component problem there

. B . - . .
exist Bayes rules . with respect top , mCN, such that

ACTRIE LN F

(a) supt R (),

G) 8y,

1im inf r v
. m*oim

L




where ' and rl') denote the risk function and the Bayes risk, respectively,

for the ith component problem.

Lerria 1 can be used to reduce the k-decision problem under additive
loss too k andividual 1-decision problems, the only common link being the
IRt riors poya s . As can be anticipated, the second result will now
be with respect to a single component problem, Since it may prove to be
useful aiso in other situations, it is given below in a more general form

than actually needed in the present context,

(onsider the following situation. Let Y be a sample from a parametric

family of probability distributions AP4~'36 R’ where we wish to test

He: o versus fy: ©uge Let the loss function be L{ ,1) = L](w) - 0
if e L W0) - LZ(“) S0 Af e g @nd L(+,-) = O otherwise. This
includes as a special case the 0-1 loss function, where L] = L2 = 1.

cewwa <. Let - be 4 prior density w.r.t.

a s-finite measure . defined on the

Borel sets of IR, such tnat the following constant c exists and is not zero:

(5) A R S L I R A PR B - H e
- 0
et (= c"L](‘.)?( ) if < g and -(v) = C"Lz(v):( ) 1f o > . Then

the 0-1 loss function w.r.t. -, and the Bayes risks are related to each other

through
(6) r(1) = e ().

where the subscript of r indicates which loss function is assumed.




Proof: Llet * be o decision rule and assume, without loss of qenerality,
that it is non-randomized. Under the loss function L, the Bayes risk of

t

with respect *o a prior , for which ¢ - 0 exists, is given by

(7) AUPE
o
=L R i ()de () 8 S L)LY =0t () d ()
: 0
0 ;
= |2 P o)=Y o 0)de() 4 P(Y) = 0 ()de()
- 0
= c rO ‘II—‘ )’

from which the assertions follow immediately.

The above lemma will be applied in Section 3 in the following way. Let
L](') = a and LZ{ ) = b, respectively. Consider a (normal) prior density 7
w.r.t. the Lebesqgue measure, which is symmetric w.r.t. QO' Under 0-1 loss,
its Bayes rule turns out to be very simple. It will be used later for

the d?m's in {8). Under the lToss function L, it is also Bayes rule w.r.t.

the prior density ™ given by ™(-) = Zb(ad'b)-1 n(ey it "pr And
() = 2«1(a*b)'l () if ‘g In this case we have c = 2ab(a*b}‘].
.. Known, Control .

As a natural first step, let us derive the Bayes rules for the given

k-decision problem with respect to the standard famfly of conjugate priors.

Although they are interesting in their own, only the Bayes rule for the case




of ai=h‘. i 1,...,k, will prove to be usefui for the problem under concern.

Reconsidering this rule through Lemma 2 as a Bayes rule w.r.t. a non-symmetric

prior, it will be used in connection with Lemma 1 to prove minimaxity of ‘*.
following DeGroot (1970), ch. 9.6, let q = 72 pe the precision, and

Tet Jreeee My and Q denote the randor parameters in the Bayes approach,

which are assumed to have the fcollowing prior density w.r.t. the Lebesque

megsure
\ ; . (]) . of ~r R .
(b)) "( ,Q) ) P ( 3 Q) 'Mq)o ot » 9 Ov

< g)is a N‘“\’(11Q)_]) density with known 5 £ R and T 0,

i e...,k, and where

1 the censity of a T-distribution with known parameters . - 0 and : - Q.

Standard analysis leads to the following posterior distributions at
-1

X~ x. fGiven Q = q, Asea oy are independent N((zj;i*nlii)(.‘*n]} ,
_1
L L oy s 1, ...k, and carginally. ) follows 4 -distribution
]
with pargneters z*2']n and ', where n = n]*...nk and
n.

_1’( ! —_ 2

(10) R A R C )
i=1 (3= N

and where xi denotes the sample mean of
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' anc .o 1t can be seen *hat the postertor marginal dencity of i a

t-distrihyt o with | nos dy derees 0of freedon, with location parameter
- P : S
L l.ri} , anc <cale narameter . where ,° = 2.° (-i*n; .
. & . ,
The Havee rvole far the “th cnmporent prob'em can be found hy
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' AR R R TR T B n : 1
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aier e the Yower d, ",‘2‘1" quantiie of a4 t-distribution with |
. o N v e .
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“r :v"," e - Qe e nenh len
et e gl cane of .ol o H Voo olb st By
" ‘ 1 1
. n
et e ot e of a oyery oo te fore L v, whore
: » o, R T
)
. voanr cand aite for the Sa, e eyles ysed on the richt hand <cde of (49,

raes fee oo disteibgtior given by (A) ane [9) . assure for a moment
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On the right hand side of (4), let ;2 = {0. and let 6m be equal to p

as given in (14) and (15) with T T s mem eN. Llet ic 1,...,k:

be fixed for the rest of the proof. We will show below that
(7 tim ) p

which clearly completes the proof since under the loss function L rven in

1), ‘? has been seen to be Bayes rule w.r.t. pricr P for every » ¢ [N,
Under the (-1 loss function, &? has also been seen to he Baves rule

w.r.t. prior D SAYs which is equal to p a5 given 1n (2 and "), with

= = = . and m, and this for every m ¢ N. In this

.‘] RS “k 0 Y] T lk -
setting, the Bayes risk of ‘? can be written as

(18) réi%(Dm,‘?) = é réi%(pm,ﬁg'q)g(q)dq. say, where at q - 0,
(i), 0 .
o1 ¥m )
2 ln.a) 172 1) (ma) 2 oUma) 20 )) e
! '3’( n‘q ("i"'o n‘Q) limq 5T o '
< attng@ gy (w1 oltmg) 2= 0)) o,
0
0 @
= 7 eling/m) 2wy plw) dw + [ s(-(n/m V2 w) o) o,

where ¢ and : denote the standard normal density and cumulative distribution

function, respectively. Clearly for every q > 0, the sum of the last two

T s e e



intearais tends to 1/ aw o tends to intinity. Since tne value of this sur
is always between 0 and 1, uniformly tnq - 0 and m ¢ N, 1t follows by

Lebesyues dominated uonvergence theorern that

\ 1 .
RN Thmor % (;»n,m

{(20) r (pT.'., = 2 ajbi(ai+bi)°] r(]%(pr,s‘).

Froo this 1t follows that (17) holds, and therefore the proof of the theore:.
15 conpeted.

It should be pointed out that Lehmann (1957) nhas shown that the
minimax-value of the ith component problem is equal to aibi(ai*bi)".
v oo V,...,k. Thercfore from (16) it follows that 3 is minimax for the itn
componert problem, 1 = 1, .. k. It s a well known fact that student's t-test
is miniraex at the suitably chosen level of significance, However, this fact
is of nc use in the present context, since the overall minimax value may
be less than the sur of the k minimax values of the k component problems.

A, a final rerark, let us mention that -* remains minimax if 52, the

:2. is based on a subcollection of observations

pooled sanple estimator of
from X, and if CyoereaCy 3re properly adapted. However, such a modified

procedure would have a strictly larger risk, except at BTt o T g ?
This follows from the fact that fcr every i € (1,...,k:, ; is the uniformly

most powerful unbiased test at it. level, whereas the modified procedures'
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1th dec . sion rule would only be «n inbiased test at the sane Tevel of
Dolaeh ol The eaditied procedure would thus be inadeissible.  whether

prorot s Yo adee o hde peraing an orer question.

1. YUrknown Cantrod 0

motnts settang, an addrtional sgmple L fror ponuiatior R J

“J ; . l))
csaerved,  The analogous results to Section 3 ocan he dertved o4 anilar

atv. o Tmaredgpe tan trepatrent 08 Yhi D cgqe will he rather condre

Fivat, Tet us fanc the Bases clTee wor bl e standard faetly 0% conguate
prives whion fs eqsentialiy the same as '8) and ‘%), but now with the

procuct in ©¥) defined over the rance i - 9.1,...,k, since A is now

an additiona! randor parameter. 0f course. D(O){' Q) is a N{ )']‘

Ov(r)q .

density with known .. <@ Kk and ", - 0. From the results derived below of (9)

J

"tocen be seen that the posterior distritution at X = x has the following

nproperties.  for every - 1, .k, niver § = q, i 7 has, marginally, a
. . . . ) - -
rartal Peteihution with mean © L - (. 4n, {7.ooenx ) - (o4
yut th e T T e T I I LY
: , -, - - . _
Lo, and varyance q (! ;‘ni) LI ('q+nn) 1). The posterior

aroanal distribution of 7 o1s a T-distribution with parameters . 4 ?_]("9*")
g T, where i tne angloy to ' given in (10}, where the first sum is
rew defirnd oyer the range | 00,... k.

For i 7 1,...,k fixed, by looking at the posterior joint Jdensity of

{7 P oand U, it can be seen that the pusterior marginel density of S

.)O
s oa t-distribution with no*n+?. deqrees of freedom with location narameter
< . 3"%3 ~er / 9. 0 ‘1 , ‘l\ . "
i #nd <cale paraveter ., where oo v ((r10ni) + | 00n0) ) (nO’HOZq)
For the ith component problem the fayes rule can be found by minimizing

the asscatatec petterior expected 1gss, [t is given by




(21) () = H0) 166 P . u Xk ()b (a4t

or, by using the results derived above,

>

(22) i(x) = Q) 1 ff “io (')'O €.

v

; -1 . ; ; ; i
where ¢ 1o the lower d‘\di’b‘/ quant e of a t-distribution with

nU'n*Zx dgegrees of freedom.

for sctal ¢ f wee M T, = D. T,y d: = b,y 1 = N '
or the special case o ; g et Ty 9 b1, i T .k

. 00
the Bayes rule turns out to he of the simple form -7, say, where

Instead of followiny along the lines below of (13}, there is a shorter
way to prove minimaxity of *** in the »resent case. The main result of this

section 15

Theore: <. Under the loss function (1), the multiple decision rule -**

au jiven an [%), s canirax. The mininas-value of the problem 15 equal to

Proot. Again, standard arguments show that for every i = 1,....,k, the left

hand side of {4) for M

it -;' is equal to

e

(28) suu;kf‘)((-,q), ) R q 0 - aibi(ai+bi)'],

where the dimension of the - -parameter space 15 now k+l,
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On the right hand side of (4), instead of chosing i to be 0 let

.
\
v

rather m a5 before in the proof of Theorem 1. As to the priors of

N N . p { o = 1> . .
AUEEREEREREA I ind 1), assume that 7 0 be a firxed known constant 0

say, and adopt the same priors for Dyreeee o and Q as have been uysed 1in
the proof of Theorem 1. Then for every * = 1,... .k, (17) holds true and

3l
's Bayes rule with respect to prior p, for all m« N. Thercfore the

craf of Theare: i essentially the sare oo the proof of Theore: |,

Lon luding Remark:

“he remars, civen at the end of Section 3 hold in an analoqgous form for
the <ituation corsidered above. They are omitted for brevity.

for the orocfs of the two theorems, the proper choice of priors was crucial.
“ne relevant paraveters ~, were assumed to be independent, whenever the

nuisance parameter ! = g was fixed. In the unknown control case, an attempt

.
?

n use the princinle of (location) invariance mav not lead to the desired
rosylts 1t one a4, umes that, aprior:, YT ey oy T 4are independent,
ray o duee ta the fect that at X », the posterior distribution of each

. - 2, wouid depend on all given observations. for the case of ¢

known,

Randles and ho'lander (1977 have given an instructive example.

‘ ol . \x
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Multiple cormarisons with a control, simultdneous t-tests, minimax k-sample
tests . bages tecto . normal loration problems.
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et be ko normal popuiations with unknown means S EEERREE and a common

].....'b
unkncwn variance 2 0. Based on indepensent samples of sizes Myees sl the 5

5

populations are to be partitioned into two sets, where the first one contains all

with g 0° and where the other one contains the rest. At first it is
assumed tha? 4 ‘o known. ‘'nder anr additive “a1-bi” loss function a minimax

[ XX 1) .
0D ,5ia% 1473 __UNCLASSIFIED

QECUR Ty CL A M1 ATim U8 Yosd B Al 1Bnes Dere bnte o




s e g ———— v
. g - Y
e I BT )

procedure 1 devived whoon o af a sample natural form. The pront of mimimaxity

ahpe e ut the Bayes aparoacn and involves a sequence of nopsymmetric priors,

whith olay o aantlar rale a0 o least favorable proior an simpler problems,

Analocna renults ave presented for the case that is not known. [n this

case, 3 contral normal population e assured to exast from which an additional

sdample ot c1le Hn can be drawn,
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