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ABSTRACT

This paper introduces a systematic approach for the derivation of

models that describe the behavior of composites with a periodic

structure. A technique for analyzing the accuracy of the models is

addressed. Although the theory has been developed for the general,

n-dimensional setting, the main ideas in this paper are presented for the

1-dimensional case only, for reasons of simplicity. The effectivity of

the approach is illustrated with numerical examples. Also, the approach

has the potential of being used to adaptively select the best

homogenization model.
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1. INTRODUCTION

The mathematical analysis of the behavior of composites that have a

periodic structure involves the solution of a partial differential equa-

tion that has highly oscillatory, periodic coefficients. Although the

structure and properties such as existence, uniqueness, and regularity of

solutions of this equations are well known, it is impossible to compute

the solution in a "standard" way due to the complicated "local" behaviour

of the solution. Therefore, various "averaging" techniques that separate

the "local" and "global" scales have been devised to develop approximate

solutions. These techniques fit under the general category of

homogenization, which refers to models of "equivalent", and perhaps

fictitious, homogeneous materials that are derived by averaging the

properties of the constituent materials of the composite.

Homogenization is widely used in various contexts, and has a long

history. One of the first papers ([I]) to address this question is more

than 150 years old. Today, there is a large literature dealing with the

mathematical and engineering aspects of composite-type materials. For

example, [2] and the survey paper [3] address the mathematical aspects of

the problem, whereas [4], [5], snd [6] are oriented more towards

applications.

Many models of composites are derived with the expectation that the

model will have a variety of applications. In general, however, the

homogenization should depend on the particular goals of the analysis. A

typical situation is discussed in [7] and [8] where it is shown that an

analysis of shear waves and longitudinal waves in a periodic medium

requires different homogenizations, or models. The relative merits of

various homogenizations are discussed in [9].
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In this paper, we will discuss the mathematical concepts and the

numerical aspects of an homogenization that is appropriate for a

particular application and that can be the basis for an adaptive model.

For the sake of presenting the ideas clearly, we shall restrict ourselves

to a one dimensional problem. The generalization to the n-dimensional

case is available in [10], [11], and [121.

2. THE MODEL PROBLEM AND A HOMOGENIZATION CLASS

We will study the solution of the ordinary differential equation

(1) L(u) - (a() u h  x)) +b() uh(x) _ f(x), xE dx h x ) h

where a and b are real, 2n-periodic functions satisfying

0 < a0  4 a(y) 4 a, and 0 < b0  4 b(y) 4 b,

for --n < y 4 n, and h a (small) positive number corresponding to the

period of the medium.

In order to discuss properties of uh, we need the following function

spaces:

Hk  (complex-valued, 2n-periodic functions 01
per

2 k a 2 d< 0,1k  f dy j ( dy < }, k
H ~ iJiO
per

R k (complex-valued functions u defined on
V

2k A~ 2 viX
lUI k f ( I (x) e dx < e} k 0,1

H -0 J0 dx
V
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where v is a real number. It is shown in [10] that there is a positive

number v0 (a0 ,a,b0 ,b) such that for any 0 < v < v0  there exists a

unique solution of (1) in 1 for every f E

Next, we introduce the formalism of an homogenization class. In

sections 4-5 we discuss several methods of selecting the various elements

in the homogenization class. We mention here that this formalism is

sufficiently general to include all of the homogenizations that are used

in practice. The homogenization of this class consists of (complex-

valued) 21c-periodic functions { k: k = 1,...,K} and the triples of

constant (complex) coefficient differential operators (Ak,Bk,Ck: k =

1,...,K}, along with the solution Vk of the equation

(2) AkVk = Bk f for k = 1,...,K.

The function w, defined by

K

(3)Wh(x) K
k-i

is then used as an approximation of uh, the solution of (1). The

dependence on h of WK is, for the most part, an explicit dependence

on h by some of 4k, Ak, Bk' and Ck, and not just on the argument

x
In the succeeding section we will often refer to the differential

operators Ak, Bk, and Ck by their respective Fourier symbols ak(t),

Pk(t), and Yk (t), which, by our assumptions, are polynomials in t

and may depend explicitly on h.

In general, {Vk: k = 1,...,K} exhibits the global behavior of the

composite, whereas (4k: k - 1,...,K} exhibits the local behavior of the

composite.
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The operators (Ak,Bk,Ck: k - 1,...,K} could be easily generalized to

pseudo-differential operators, although, for simplicity, we do not

consider this case.

3. THE FOURIER TRANSFORMATION

It is shown in [101 that the solution uh of (1) can be written in

the form

(4) uh(x) = -- f f(t) (-,h,t)eitx dt

where f is the Fourier transformation of f and y + 0(y,h,t) is a

2n-periodic complex-valued function that satisfies the differential

equation

(5) _e-ihty __ (a(y)dyy ((y ,ht)eihty)) + h2b(y)o(yh't) = h2.
dy d

The exact meaning of the integral in (4) is given in [101. Properties of

0(y,h,t) are studied in detail in [11]. It is shown in [11] that

0(y,h,t) is analytic in h and t, by which we mean that there is a

complex neighborhood of R2 in C2  such that about each point in this

neighborhood of R2, the function (h,t) + 0(.,h,t) can be expanded in a

power series, convergent in H , in which each coefficient is anper'

element of H1e. In [13], it is shown that 0(y,h,t) - O(it-11) as Itlper*

g o, Other representations of uh, developed in a different context, can

be found in [21 and [141.

Now, applying the Fourier transform to (2) and (3) yields

Wh()K Pk(t) x itx

(6)W ft K k Yk(t)(k(-) e dt.
V2%- k-t1 k
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The operators {Ak9Bk,Ck: k - 1,...,K} could be easily generalized to

pseudo-differential operators, although, for simplicity, we do not

consider this case.

3. THE FOURIER TRANSFORMATION

It is shown in (101 that the solution h of (1) can be written in

the form

(4) uh(x )  f i___ (t)$(-!,h,t)eitx dt

/2n -h

where f is the Fourier transformation of f and y * 4(y,h,t) is a

2%-periodic, complex, valued function that satisfies the differential

equation

(5) -e- ih t y j (a(y) -d ( (yht)eihty)) + hh2by)0(yht) h2.

The exact meaning of the integral in (4) is given in (101. Properties of

0(y,h,t) are studied in details in [il. It is shown in (111 that

0(y,h,t) is analytic in h and t, by which we mean that there is a

complex neighborhood of R2 in C2  such that about each point in this

neighborhood of R2, the function (h,t) - 0(-,h,t) can be expanded in a

power series, convergent in Hi in which each coefficient is anper'

element of Hi In (13], it is shown that 0(y,h,t) = 0(t-l) as Itl
per .

-P C. Other representations of uh, developed in a different context, can

be found in [2] and 114].

Now, applying the Fourier transform to (2) and (3) yields

(6) w.7 f 1 K k(t) e dt.- l =k(t) k~t)k(h ~ t r
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In section 2 we noted that any of Pk* akI Ok' and Yk may depend on

h. Upon setting

K Ok(t)
QK(Yht) =k=I Ik(t) Yktk

it follows from (4) and (6) that

h h 1 x itxu (x) - Wk(x) = f f(t)(0(!,h,t) - Qk(- ,ht))e dt.

Thus, the error that arises from approximating uh by h depends on the

difference

(8) 4(y,h,t) - QK(y,h,t).

Consequently, for a given h, we want to find 2n-periodic functions

{Ik: k = 1,...,K} and constant coefficient differential operators {Ak,

Bk, Ck: k = 1,...,K} so that (8) is small in the sense that

(9) f f 10(y,h,t) - QK(y,t)I 2ig(t)I 2 dt dy

is small, where either g = f or, considering a class of functions f,

g(t) = (1+t2)-n , for example. In particular, the quality of a given

homogenization and the range of its application are determined by (9).

4. THE FIRST HOMOGENIZATION: EXPANDING IN POWERS OF h

As we pointed out in section 3, 4(.,h,t) is an analytic function

of h and t. Consequently, we can write
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(10) *(-,h,t) 0,.O(.,t) + Ol(.,t)h + O2(.,t)h 2 +

The functions (0.(.,t): j = 0,1,...} can be determined by expanding (5)

in powers of h and substituting (10). Solving for the first few

(.,t) yields

,o(y,t) = go~t) 21
At 2+B

(11) *l(Yt) = it g0 (t)X1(Y)

cf2(y,t) = (it) g0(t)X2 ,2(y) + g0 (t)X2 ,0 (y) + 9 2 (it)

where

n= dXA = f (a(y) + a(y) - (y))dy
-2n n dy

(12)

B - 2 b(y)dy;

p2(it) is a fourth degree, even polynomial in it that has real

1coefficients; and XIV X2 ,0 ' X2 ,2 are real-valued functions in Hper

satisfying

d.a

d dX2 0
- (a(y) (y)) - -(y),

dy 'y

_d day d X 2 O 2y) dX 1bd

_7d (a(y) dX2 2(y)) -a(y)( + d- (y)) +T- (a(Y)X (y))) dy " '
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on (-nnt) and

f x1(Y)dy = X X2, 0(Y)dy = f X2,2(y)dy = 0.
-nt -it

Substituting (10) and (11) into (4), we can suggest the following

homogenization in terms of the homogenization class that we introduced in

section 2, because the variables y and t can be separated in each

%(y,t) and because j(y,t) is a rational function of t.

$i = 1, $2 - XIS 43 X 12 ,0' (4 = X2 ,2 , and )5 = 1.

The Fourier symbols of the differential operators are

al(t) = At2 + B, 51(t) = 1, Y1 (t) = 1,

a2 (t) = At2 + B, 02 (t) = 1, Y 2(t) = hit,

a3 (t) = At2 + B, 63 (t) = 1, Y3 (t) = h

a4(t) - At2 + B, 04 (t) = 1, Y4 (t) = h2 (it)2

a5(T) = (At2 + B)2 , 05 (t" = 1, Y5 (t) = h2.

This homogenization is accurate when f is smooth and h is small.

Also, only the Fourier symbols Yk(t) for k ) 2 depend explicitly on

h.

Setting K = 1 (i.e., using (1, al(t), PI(t), and yl(t) only)

yields the classical homogenization that is studied e.g. in [2], [15], but

is derived there by different means. The asymptotic rate at which Wh
K

approximates uh as h +0 is studied in [2] and [15] for K = 1,2.
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We will now illustrate some of these ideas with an example. Let

22

and

(14) b(y) = 1.

Figures la,b,c, and 2a,b,c contain graphs of Re sy,h,t) and

Im 4 (y,h,t) as a function of t > 0 [ (y,h,t) = (-yh,-t), (y,h,t)

4(-y,h,t) I for various values of y and h. We see that (y,h,t)

does not depend on y very much when h is small and when t is not

very large.

1.00

I 0.75 -

e 0.25

0.00-

02 0 2 3 4
t

Figure la: h -1.
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1.00

t 0.75

- 0.50 - y--r

-~0.25 <) 0 25 .,, .........

oo - 2=-
0.00- y=-

0 2 E5 I I I I I I i I I I I I i i I t i t

0 I 2 3 4
t --

Figure. lb: h /

1.0

t 0.8
0.6

' 0.6

- _2w4...w
0.

0.2- Y 5 3
_I y- -y

5 o

0 I 2 3 4

t

Figure Ic: h 1/10.
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0.3 , I , 1 1
2r

/ \ y_ 5
0.2 -

Iir-l..' "-. \ y: o y:-

,. .. ,\\ /"~ /Y
0.0 -.----

, i I i , , I t_0.10 , _. " "
0 2 3 4

t

Figure 2a: h I

0. 20 I

0.15 ,-

~- 5 ...." .0.10 2

0.05 4v/ ".. y7o yr-,,

0.00 ..- ,-

-0 .0 5 ".... . I -

0 I 2 3 4
t

Figure 2b: h - 1/2



0.04 i i l l - 1

-12 /Z3
0.02 --

o~o, /f _xT "- - .-.._ -

S0.01 / =4vA ' . _

•y=O y -T

0.00 1 1 i i I I I I I I I1

0 1 2 3 4

Figure 2c: h - 1/10.

For h - 1, -, figures 3a and 3b compare Re 0(-.8%,h,t) with

Re QK(-.An,h,t) when *0 (K - 1) and when 0(.,t) + 01 (
o ,t)h +

2(.,t)h 2  (K - 3) are retained in (10) (recall that Re -, = 0). If h

- 1, it is clear that it is best to use just one term in (10). However,

if h - 1/2, then adding the third term *2(-,t)h
2 , will improve the

approximation if Itl is not too large; this leads to increased accuracy

when f is sufficiently smooth. A similar situation occurs when

comparing Im 0 with Im QK; see figures 4a,b. As h decreases to 0

we see two effects. First, if f is sufficiently smooth, it will be

advantageous to include more terms in (10). Second, a given truncation of

the series in (10) will provide a good approximation of O(.,h,t) for

larger and larger values of Itl; i.e., the smoothness restrictions on

f can be relaxed as h - 0.



14

..

1 0.50

0.0-

0.0 90 M o..

0* 1 2 3 4
t-

Figure 3a: h 1.

1.0

t 0.5 Re0

e0.0-

0 I2 3 4
t-

Figure 3b: h ' /2
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20

' / -
+'.0,.t , +,Z

CY 10-

5- im[(0 , t)+ 3 (,t)] -

0- - m 0, (---4w..,') m. (-

-5 -I I I I I
0 I 2 3 4

t

Figure 4a: h = 1.

, I I , I , , I , I I , , '~ I 5 I ,

0. ", t) 1 43 1+ 05( +_ t) 1 5t 1

0.6 [-

0.2 - ---

o ~o........... ...............
0.0

Figue L I 4

Figure 4b: h - 1/2.
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5. THE SECOND HOMOGENIZATION: EXPANSION IN POWERS OF t

In section 4, we expanded *(.,h,t) in powers of h. Because

O(.,h,t) is also analytic in t we can write

(15) 0(.,ht) = 0(.,h) + it 1(.,h) + (it) 2 2(.,h) +

or

(16) 0(ht) = 0(-,h) + it 0 (-,h) + (it) 2  (.,h) +

Substituting (15) or (16) into (4) will specify the functions 4k and the

differential operators Ak, Bk, and Ck that should be used. Note that

in this case, the functions (Pk will depend on h, whereas the

differential operators can be chosen independently of h.

The approximation based on (16) is preferable to the one based on (15)

because 0(',h,t) - O(lti- ) as Iti - -. With a and b given by (13)

and (14) in section 4, figures 5a,b compare Re 0(-.8t,h,t) with

Re QK(-.gn,h,t) for h = 1 and h =1/2, using an increasing number of

terms in (16). Figures 6a,b compare Im 0(-.8n,h,t) and

Im QK(-.8n,h,t).

Comparing figures 3a,b with 5a,b and figures 4a,b with 6a,b, we see

that the quality of both of these homogenizations is about the same,

possibly with some preference for the homogenization based on (16).

In (121, the homogenizations that are described in sections 4 and 5

here, are analyzed in detail in the n-dimensional case. There, estimates

of *(*,h,t) - QK(.,h,t) in various norms; e.g., Hp and He are
per Pero

given.
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6. OTdER HOMOGENIZATIONS

Obviously, our approach gives rise to many other homogenizations.

Each one is motivated, more or less, by the desire to minimize (9). Here,

we mention some obvious choices.

1) Since O(.,h,t) is a 2n-periodic function, we write

(17) 0(y,h,t) i k ky(h,t)e

~ ck~hktte

Approximating ck(h,t) by the rational function ak and using only K

terms in (17) yields an homogenization that is in the homogenization class

described in section 2.

2) Instead of using the functions eiky as a basis, construct a

basis by applying the 'ram-Schmidt orthonormalization process to the

functions (0(.,h,tk): k - 1,...}, where tk is chosen, perhaps

adaptively, in an appropriate manner. Substituting this orthonormal basis

for {eiky: k - 0,*1,...} in (17), we can proceed as we did there.

3) For "each" y E C-ni), approximate 0(y,h,t) by a rational

function and solve AW =
a t)' Byf. Then

uh(x) - W (x) for y - -(mod 2n) and x E R.
y h

7. BOUNDED DOMAIN

Let Q+ - {xix > 0} and Q_ - {xlx < 0}, and let the differential

operator L be defined as in (1). Suppose that (1) were defined on Q+

with the boundary condition u(O) - 0. Then a solution can be developed

in the following manner. Extend the function f into Q_; select an
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("outside") function fox whose support is small, close to the origin,

and contained in Q_; and solve the equation

h 1
L(u) f + cf 0  on ,

where c is chosen so that uh(O) - 0. Note the choice of c and f0

do not affect the value of L(uh) on Q+ since f0 = 0 there. In two

or more dimensions the technique is similar.

This is the technique that is used, for example, in the theory of

elliptic equations, where the "outside" functions are Dirac functions and

the error on the boundary is minimized. This method appears to be

effective for solving harmonic or biharmonic equations, especially when

the position of the Dirac functions are comuputed during the minimization

procedure. See e.g. [161 and [17]. For problems in two or more dimen-

sions, this technique needs to be experimented with because the solution

exhibits a boundary layer (see [181).

8. NUMERICAL ASPECTS

The procedure we have outlined in this paper for deriving approxima-

tions of uh through approximations of (.,h,t), has certain advatantages

from the numerical point of view. A (single) finite element program can

be used to solve for 0(.,h,t) as defined by (5) (also in two dimensions),

where h and t are input parameters. Because (5) is defined on one

"cell" only, it is possible to solve for 0(.,h,t) with a high degree of

accuracy by using a sufficient number of elements. The derivatives of

*(.,h,t), with respect to h and t, can then be computed by numerical

differentiation. This avoids the need for deriving the analytic expan-

sions by hand, which is virtually impossible to do for higher orders. The

-- " . .. . . . . . . . . . ... . . . . . . . . . . . . . l III _I . . . . . I I I 
'
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graphs in this paper are based on results that were computed by this

method.

The rational functions that were introduced in this paper can be

computed in a standard way. The functions ak9 Pk' and Yk can then be

derived from these rational functions, and used to construct the differen-

tial operators Ak, Bk, and Ck  of section 2. Solving for Vk  in

equation (2) can be done by either of the finite element or finite dif-

ference methods. Furthermore, it would still be possible to solve (2) if

Ak and Bk were pseudo-differential operators.
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