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ABSTRACT

This paper introduces a systematic approach for the derivation of
models that describe the behavior of composites with a periodic
structure. A technique for analyzing the accuracy of the models 1is
addressed. Although the theory has been developed for the general,
n~dimensional setting, the main ideas in this paper are presented for the
l1-dimensional case only, for reasons of simplicity. The effectivity of
the approach is illustrated with numerical examples. Also, the approach
has the potential of being used to adaptively select the best

homogenization model.
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l. INTRODUCTION

The mathematical analysis of the behavior of composites that have a
periodic structure involves the solution of a partial differential equa-
tion that has highly oscillatory, periodic coefficients. Although the
structure and properties such as existence, uniqueness, and regularity of
solutions of this equations are well known, it is impossible to compute
the solution in a "standard" way due to the complicated "local" behaviour
of the solution. Therefore, various "averaging" techniques that separate
the "local" «nd "global" scales have been devised to develop approximate
solutions. These techniques fit under the general category of
homogenization, which refers to models of "equivalent", and perhaps
fictitious, homogeneous materials that are derived by averaging the
properties of the constituent materials of the composite.

Homogenization is widely used in various contexts, and has a loang
history. One of the first papers ([l]) to address this question is more
than 150 years old. Today, there is a large literature dealing with the
mathematical and engineering aspects of composite-type materials. For
example, [2] and the survey paper [3] address the mathematical aspects of
the problem, whereas [4], [5], snd [6] are oriented more towards
applications.

Many models of composites are derived with the expectation that the
model will have a variety of applications. In general, however, the
homogenization should depend on the particular goals of the analysis. A
typical situation is discussed in [7] and [8] where it is shown that an
analysis of shear waves and longitudinal waves in a periodic medium
requires different homogenizations, or models. The relative merits of

various homogenizations are discussed in [9].
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In this paper, we will discuss the mathematical concepts and the
numerical aspects of an homogenization that is appropriate for a
particular application and that can be the basis for an adaptive model.

For the sake of presenting the ideas clearly, we shall restrict ourselves

to a one dimensional problem. The generalization to the n-dimensional

case is available in [10], [11], and [12].

2. THE MODEL PROBLEM AND A HOMOGENIZATION CLASS

We will study the solution of the ordinary differential equation

h
M M 2 - @® @) e Sm = K, x € (=),

where a and b are real, 2n-periodic functions satisfying

0 < ag < aly) < a, and 0 < bo < b(y) < b,

for -t < y< 7, and h a (small) positive number corresponding to the

period of the medium.
In order to discuss properties of uh, we need the following function

spaces:

H;er = {complex~valued, 2n-periodic functions ¢]|

3

2 _ 8 il ay < e}, k=0,
et = [} ay

H -n j=0

per

ﬂt = { complex-valued functions u defined on (~=»,=)]|

@ k j
w? o= [ () 11-% 12 e 4x < =}, k=01
H - =0 dx

v

- —_— -




where v 1s a real number. It is shown in [10] that there is a positive

number vo (ao,a,bo,b) such that for any 0 < v < vg there exists a
unique solution of (1) in Hlv for every f ¢ Hgv.

Next, we introduce the formalism of an homogenization class. 1In
sections 4-5 we discuss several methods of selecting the various elements
in the homogenization class. We mention here that this formalism is
sufficiently general to include all of the homogenizations that are used
in practice. The homogenization of this class consists of (complex-
valued) 2rn—periodic functions {¢k: k=1,.0.,K} and the triples of

constant (complex) coefficient differential operators {Ak,Bk,C k =

K
l1,...,K}, along with the solution Vi of the equation

(2) Aka = Bk f for k = 1,.-.,1(.
The function wﬁ, defined by
£ X
(3 LRI N E TR ATES
k=1

is then used as an approximation of uh, the solution of (1). The
dependence on h of Wg is, for the most part, an explicit dependence
on h by some of dpes Ak’ Bk’ and Ck’ and not just on the argument
%z In the succeeding section we will often refer to the differential
operators Ay, B, and Cx by thelr respective Fourier symbols ak(t),
Bk(t), and vy, (t), which, by our assumptions, are polynomials in ¢t
and may depend explicitly on h.

In general, {vk: k=1,...,K} exhibits the global behavior of the

composite, whereas {¢k: k=1,...,K} exhibits the local behavior of the

composite.




The operators {Ak,Bk,Ck: k=1,,e.,K} could be easily generalized to

pseudo-differential operators, although, for simplicity, we do not

consider this case.

3. THE FOURIER TRANSFORMATION

h

It is shown in [10] that the solution wu" of (1) can be written in

the form

(4) ux) = —‘:j E()o(E,h, )™ 4t
Y2n -

where E is the Fourier transformation of f and y +» ¢(y,h,t) 1is a
2n~periodic complex-valued function that satisfies the differential

equation

(5) ‘ihty (a(y) (¢(y,h t)eihty)) + h b(y)@(y,h t) = nZ.

The exact meaning of the integral in (4) is given in [10]. Properties of
¢(y,h,t) are studied in detail in [11}. It is shown in [1l1] that
¢(y,h,t) 4is anmalytic in h and t, by which we mean that there is a
complex neighborhood of B? in C2 such that about each point in this
neighborhood of R?, the function (h,t) » ¢(¢,h,t) can be expanded in a

power series, convergent in Hl in which each coefficient is an

per®

element of a;er. In [13], 1t is shown that ¢(y,h,t) = 0(1t™1|) as iti
+ =, Other representations of uh, developed in a different context, can
be found in (2] and [14].

Now, applying the Fourier transform to (2) and (3) yields

|
® K B, (t) : H
W;(x) "fé: [ £(t) k

V21 —~

(6) () G Xy oltx g,

kzl a (e) T




The operators {Ak;Bk,Ck: k=1,...,K} could be easily generalized to

pseudo—-differential operators, although, for simplicity, we do not

consider this case.

3. THE FOURIER TRANSFORMATION
It is shown in [10] that the solution u of (1) can be written in

the form

) uP(x) = —i—_} E()o(E,h, e at
/2n =

where f is the Fourier transformation of f and y + ¢(y,h,t) 1is a
2n-periodic, complex, valued function that satisfies the differential

equation

(5) -e7ihty & = (a & = (8(y,h, £)el")y + n25(y)ety,n,e) = ni

The exact meaning of the integral in (4) {s given in [10}. Properties of
$(y,h,t) are studied in details in [11]. Tt is shown in [11] that
¢(y,h,t) 1is analytic in h and t, by which we mean that there is a
complex neighborhood of R? in c2 such that about each point in this
neighborhood of R?, the function (h,t) » 4(+,h,t) can be expanded in a

power series, convergent in Hl in which each coefficient is an

per’

element of H;er In [13], it 1is shown that ¢(y,h,t) = O(It—ll) as |tl

» », Other representations of uh, developed in a different context, can
be found in [2] and [14].

Now, applying the Fourier transform to (2) and (3) yields i

@ K B(t)

(6) L) == [ E(:) Lex

@, () 7 (D ) 77T de.




In section 2 we noted that any of ¢k’ @) Bk, and Y may depend on

h. Upon setting

K sk(c)
(N Qly,h,e) = kzl ry PO 1, (B, (¥)

it follows from (4) and (6) that

uh‘(x) = W;(x) = _;—.L (t)(¢(%,h,t) - Qk(%,h,t))eitx dt.

Thus, the error that arises from approximating uft by W& depends on the
difference
(8) ¢(y,h,t) - Qly,h,t).

Consequently, for a given h, we want to find 2x-periodic functions
{¢k: k= 1,...,K} and constant coefficient differential operators {Ak’

B, Cp: k= 1,...,K} so that (8) is small in the sense that

o 2 2
(9 [ ] 16(r,0,0) = Q(y,0)1718(e) 1< de dy

- -
is small, where either g = % or, considering a class of functions f,
g(t) = (1+t2)_“, for example. In particular, the quality of a given

homogenization and the range of its application are determined by (9).

4, THE FIRST HOMOGENIZATION: EXPANDING IN POWERS OF h
As we pointed out in section 3, ¢(+,h,t) {s an analytic function

of h and t. Consequently, we can write




(10) oCe,h,t) = oy(e,t) + ¢, (e,tdh + ¢2(—.c)h2 + oo,

The functions {¢j(-,t): j=0,1,s..} can be determined by expanding (5)
in powers of h and substituting (10). Solving for the first few

¢j(-,t) yields

1

Fq;o(y,t) = go(t) =

atl+B
(1) < ¢1(y,t) = it go(t)xl(y)
L¢2(y,t) = (it)zgo(c)xz’z(y> + go(t)xz,o(Y) + g ,{18)
where
1 " dxy
A = r {ﬂ (aly) + a(w) Fea (y))dy
(12)
L "
B = E.Tt:,_ b(Y)dy;

pz(it) is a fourth degree, even polynomial in it that has real

are reali-valued functions in Hl

coefficients; and y, X2,0° %22 per

satisfying

dy
d 1 da
& (a(y) T (y)) = iy (y),

d

X
-5 GO L o = by,
dy dy
- F @ RN - a1 o + & Gk o),




on (~n,n) and

big T T
[ xyndy = Xy oy = / X (v = 0.
-1 -7 -1

Substituting (10) and (11) into (4), we can suggest the following
homogenization in terms of the homogenization class that we introduced in
section 2, because the variables y and t can be separated in each

¢j(y,t) and because ¢j(y,t) is a rational function of t.
‘bl = 1, ¢2 = Xl’ ¢3 = X’Z,O’ G, = Xz’z, and WS = 1.

4

The Fourier symbols of the differential operators are

a (t) = At + B, 8,(t) = 1, e = 1,
ar(t) = At2+B, Bo(t) = 1, v,(t) = hit,
ay(t) = ac® + B, By(t) = 1, ¥4(t) = n?,
a () = ac? + B, g, () = 1, v (t) = ni(io)?,
ag(D = (ac? + B2, Bs(t, = 1, Ys(t) = n,

This homogenization 1s accurate when f {s smooth and h is small.
Also, only the Fourier symbols Y(t) for k > 2 depend explicitly on
h.

Setting K =1 (i.e., using ¢, al(t), Sl(t), and Yl(t) only)
yields the classical homogenization that is studied e.g. in [2], [i5], but
is derived there by different means. The asymptotic rate at which WQ

approximates u? as h >0 1is studied in {2} and [15] for K =1,2.
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We will now illustrate some of these ideas with an example. Let

1, -1 < y <& = %
T T
(13) a(y) 10, 5 < vy < 7
1, -g <y < =
and
(14) b(y) = 1.

Figures la,b,c, and 2a,b,c contain graphs of Re ¢(y,h,t) and
Im ¢(y,h,t) as a function of t > 0 [&(y,h,t) = ¢(y,h,-t), o(y,h,t) =
¢(-y,h,t) ] for various values of y and h. We see that ¢(y,h,t)

does not depend on y very much when h 1s small and when t 1is not

very large.
'.OOP | S| 1 1 l ] 1] ) 1 l { 1 1 T l LR _
C ] !
-t -
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Figure la: h = 1. ’
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For h =1, %3 figures 3a and 3b compare Re ¢(-.8%,h,t) with

Re QK(-.Sn,h,t) when ¢5 (R = 1) and when ¢0(-,t) + ¢l(~,t)h +
¢2(-,t)h2 (K = 3) are retained in (10) (recall that Re ¢1 =0). 1If h
= 1, 1t is clear that it is best to use just one term in (10). However,
1f h=ly, then adding the third tem ¢,(+,t)h, will fmprove the
approximation 1f (t{ {1s not too large; this leads to increased accuracy
when £ 1is sufficlently smooth. A similar situation occurs when
comparing Im ¢ with Im Qg; see figures 4a,b. As h decreases to 0
we see two effects. First, If f 1s sufficiently smooth, it will be
advantageous to include more terms in (10). Second, a given truncation of
the series in (10) will provide a good approximation of ¢(e,h,t) for
larger and larger values of |t|; {.e., the smoothness restrictions om

f can be relaxed as h + 0.
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5. THE SECOND HOMOGENIZATION: EXPANSION IN POWERS OF t
In section 4, we expanded ¢(+,h,t) 1in powers of h. Because

¢(+,h,t) 1is also analytic in t we can write

(15) ¢(e,h,t) = oo(-,h) + it ¢,(+,h) + (it)2¢2(-.h) + oo
or

1 * * 2 %
(16) CaD ¢0(~,h) + it ¢1(-,h) + (it) ¢2(-.h) + eee

Substituting (15) or (16) into (4) will specify the functions ¢ and the
differential operators Ay, By, and C, that should be used. Note that
in this case, the functions ¢, will depend on h, whereas the
differential operators can be chosen independently of h.

The approximation based on (16) is preferable to the one based on (15)
because $(*,h,t) ~ O(Itl-l) as |t] » o, With a and b given by (13)
and (14) 1in section 4, figures S5a,b compare Re ¢(~.8m,h,t) with
Re QK(-.Sn,h,t) for h=1 and h =1& » using an increasing number of
terms in (16), Figures 6a,b compare Im ¢(-.8n,h,t) and
Im QK(-.Sn,h,t).

Comparing figures 3a,b with 5a,b and figures 4a,b with 6a,b, we see
that the quality of both of these homogenizations is about the same,
possibly with some preference for the homogenization based on (16).

In [12], the homogenizations that are described in sections 4 and 5

here, are analyzed in detail in the n-dimensional case. There, estimates

of ¢(+,h,t) - QK(-,h,t) in various norams; e.g., ngr and Héer' are

given.
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6. OTHER HOMOGENIZATIONS

Obviously, our approach gives rise to many other homogenizations.

Each one is motivated, more or less, by the desire to minimize (9). Here,

we mention some obvious choices.

1) Since ¢(*,h,t) 1is a 2n-periodic function, we write

an o(y,h,t) = 7} ck(h,t)eiky.

k=

B, (t)
ak(t)’

terms in (17) yields an homogenization that is in the homogenization class

Approximating ck(h,t) by the rational function and using only K

described in section 2.

2) 1Instead of using the functions eiky as a basis, construct a
basis by applying the Sram—-Schmidt orthonormalization process to the
functions {¢(-,h,tk): k = 1,...}, where t, is chosen, perhaps
adaptively, in an appropriate manner. Substituting this orthonormal basis

for {eiky: k = 0,f1,...} 1in (17), we can proceed as we did there.

3) For "each" y ¢ (-n,n), approximate ¢(y,h,t) by a rational
B.(t)

function ay(t)’

and solve Aywy = Byf. Then
h X
u(x) = Wy(x) for y = E-(mod 2r) and x € R.

7. BOUNDED DOMAIN

Let Q. = {xIx > 0} and Q_ = {xIx < 0}, and let the differential
operator L be defined as in (1). Suppose that (1) were defined on Q_
with the boundary condition u(0) = 0. Then a solution can be developed

in the following manner. Extend the function f {nto Q_; select an
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("outside") function f;, whose support is small, close to the origin,

and contained in Q_; and solve the equation
h
L(u) = £+ cfo on R,

where ¢ 1s chosen so that uh(O) = 0. Note the choice of ¢ and £y
do not affect the value of L(uh) on Q, since fy =0 there. In two
or more dimensions the technique 1is similar.

This is the technique that is used, for example, in the theory of
elliptic equations, where the '"outside" functions are Dirac functions and
the error on the boundary is minimized. This method appears to be
effective for solving harmonic or biharmonic equations, especially when
the position of the Dirac functions are comuputed during the minimization
procedure. See e.g. [16] and [17]. For problems in two or more dimen-

sions, this technique needs to be experimented with because the solution

exhibits a boundary layer (see [18]).

8. NUMERICAL ASPECTS

The procedure we have outlined in this paper for deriving approxima-
tions of uh through approximations of ¢(e,h,t), has certain advatantages
from the numerical point of view. A (single) finite element program can
be used to solve for ¢(+,h,t) as defined by (5) (also in two dimensions),
where h and t are input parameters. Because (5) is defined on one
"cell" only, it is possible to solve for ¢(e,h,t) with a high degree of
accuracy by using a sufficient number of elements. The derivatives of

¢(*,h,t), with respect to h and t, can then be computed by numerical

differentiation. This avoids the need for deriving the analytic expan-

sions by hand, which is virtually impossible to do for higher orders. The
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graphs in this paper are based on results that were computed by this

method.

The rational functions that were introduced in this paper can be

computed in a standard way. The functions @y s Bk, and Y, can then be

derived from these rational functions, and used to construct the differen—
tial operators Ak’ Bk’ and Ck of section 2. Solving for Vk in
equation (2) can be done by either of the finite element or finite dif-
ference methods. Furthermore, it would still be possible to solve (2) if

Ay and By were pseudo-~differential operators.
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