
AD-fi148 191 BENCHNRRKING DATABASE SYSTEMIS IN MULTIPLE BRCKEND i/i
If CONFIGURATIONS U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLAS S A DEMURJIRN ET AL. NOV 84 NPS52-84-08

NCASIFIED F/G 9/2 NI

EE h hEE hhD

lihlin M 2IIIn ~ A

MICROCOPY RESOLUTION TEST CHART
NATIONM BUREAU OF STANAM-1963-A

ikl

NPS52-84-020

NAVAL POSTGRADUATE SCHOOL
Monterey, California

l "P T
I

DEC 4 094 , /
-- " A

BENCHMARKING DATABASE SYSTEMS IN
MULTIPLE BACKEND CONFIGURATIONS

Steven A. Demurjlan and David K. Hsiao

November 1984

Approved for public release; distribution unlimited

Prepared for: Chief of Naval Research
Arlington, VA 22217

84 12 03 028

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker 0. A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided by
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

DAVID K. HSIAO
Professor of Computer Science

Reviewed by: Released by:

f L-±UT
RUCE J. MAC LENNAN KNE MARHALE. IHAL[

Acting Chairman Dean of Information ah*
Department of Computer Science Policy Sciences

Unclassified
SIECURITY CLASSIFiCATION OF THIS PAGE U. boo Engeo ________________

REPORT DOCUMENTATION PAGE S37 0 co"'rmo ON.

DVACCESSON NO. a. RECIPIENT'S CAT ALOG; NUMBER

14. TITLE (and Subteue) S. TYPE OF REPORT & PERIOD COVERED

Bencbuarking Database Systems in Multiple
Backend Configurations

S. PERFORMING 0RG. REPORT NUMBER

7. AUTNOR(e) II. CONTRACT ON GANT NUUCWG)

Steven A. Demurian: David K. Hsiao NOD0l 4-8y)\R-24O58

9- PERFORMING ORGANIZATION NAME AltNO ES SO.15 @ P0GRAMELEMENT PROJE2CT. TASK
AnI A a WORK UNIT NUNASER

Naval Postgraduate School 61152N: RR00-fl1--10
Monterey, California 93943 NO 00 1)"tWP 41001

11. CONTROLLING OFFICE NAUR AND ADDRESS 12. REPORT DATE

Chief of Naval Research November 1984
Arlington, Virginia 22217 IS. NUN8ER OF PAGES

IS. MONITORING AGENCY NAME & ADDRESSQif difforot from CenmOlla Office) 1S. SECURITY CLASS. (of this reporlj

Unclassified
1S.. DEC,.A$SIFICATION,DOWNGRA-DING

SCHEDL

Ill. DISTRIBUJTION STATEMENT (of this Repart)

17. DISTRIBUTION STATEMENT (.1h a. bstractentrlate I ck 2. Hdi ft.,... Ifte Repe)

18. SUPPLEMENTARY NOTES

It. miEy WORDS (Ceolnu.w On Faors*. DE 0dw oe am lI.neufpp block nmobe.)

20. ABSTRACT (Conthe o n reveurse eit noood M ad nuiftp bloWek mmboe
4 The aim of this performance evaluation is twofold: (1) to devise benchmarking

strategies for and apply benchmarking methodologies to the measurement of a
prototyped database system in multiple bacicend configurations, and (2) to
verify the performance claims as projected or predicted by the designer and
implementor of the multi-backend database system known as MBDS.

Despite the limitation of the backend hardware, the bencimiarking experiments
have proceeded well, producing startling results and good insignts. By

DO I 1;= 73 .EDIcoTION1 oF I Nov 6S Is OSSOLIRTI Unclassified
SAN 0102- I.,. 01.IOSChuYCASIIATO F HSP60rinDl D.

Unclassified
SGCUMTY CLAMPCAION Of VMIS PA"S ft= 80 Rae Bam

F collecting maroscopic data suc as thefisp ,onse time of'the reqest, the,
external performance measurements of MBDS have been conducted. The per-.
formance evaluation studies verify that (a) when the database remains
the same the response time of a request can be reduced to hearly half,

ifthe nmnber of backends and their .disks is, doubled; (b) when-the.
response set of a request doubles, the response time of the qury remins
nearly constant, if'the number of backends and their disks is doubled.
These were the performance claims of lIDS as predicted by its designer
and implementor.

S, 14 012 01-60

SN O12~ L.@Id6401Unclassified

SECUE?, CLAMPICAYIOWOP TNIS PAUOReU aSS Bafmd

BENCiIMARKING DATABASE SYSTEMS IN

MULTIPLE BACKEND CONFIGURATIONS

Steven A. DemuriUan
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

V (408).64-S391

and

David K. Ilsiao
Department of Computer Science

Naval Post graduate'School
Monterey, CA 93943

(4o8).64-2253

November 1984

VABSTRACT
",The aim of this performance evaluation is twofold: (I) to devise benchmarking strategies for and

apply benchmarking methodologies to the measurement of a prototyped database system in multiple back-
end configurations, and (2) to verify the performance claims as projected or predicted by the designer and
implementor of the multi.backend database system known as MIBDS.

Despite the limitation of the barkend hardware, the benchmarking experimentsihave proceeded well,
producing startling results and good insights. By collecting macroscopic data such as the response time of
the request, the external performance measurements of MBDS have been conducted. The performance
evaluation studies verify that (a) when the database remains the same the response time of a request can
be reduced to nearly half, if the number of backends and their disks is doubled; (b) when the response set
of a request doubles, the response time of the query remains nearly constant, if the number of backends
and their disks is doubled. These were the performance claims of MBDS as predicted by its designer and
implementor.

• The work reported herein is supported by Contract N00014-84-WR-24058 from the Office of Naval
Research and conducted at the Laboratory for Database Systems Research, Naval Postgraduate
School, Monterey, CA 93943.

o1-

1. INTRODUCTION
The multi-backend database system (MODS) is a database system designed specifically for capacity

growth and performbuce enhancement. MBDS consists of two or more minicomputers and their dedicated
disk systems. One of the minicomputers serves as a controller to broadcast the requests to and receive the
results from the other minicomputers, which ae configured in a parallel manner and are termed as back-
ends. All the backend minicomputers are identical, and run identical software. The database is evenly
distributed across the disk drives of each backend by way of a cluster-based data placement algorithm
unknown to the user. User access to the MODS is accomplished either via a host computer, which in turn
communicates with the MBDS controller, or with the MBDS controller directly. Communication between
the controller and backends is accomplished using a broadcast bus. An overview of the system architec-
ture is given in Figure 1.

There are two basic performance claims of the multi-backend database system, which have been pro-
jected in the original design goals Ilisia8la, HsiaSlb. The first claim states that if the database sise
remains constant, then the response time of requests processd by the system is inversely proportional to
the multiplicity of backends. This claim implies that by increasing the number of backends in the system
and by replicating the system software on the new backends, MBDS can achieve a reciprocal decrease in
the response time for the same requests. The second claim states that the response time of requests is
invariant when the response set and the multiplicity of backends increase in the same proportion. This
claim implies that when the database size grows, the response set for the same requests will grow. By
increasing the number of backends accordingly, MBDS can maintain a constant response time.

In this paper we provide a preliminary evaluation of the validity of the MBDS performance claims.
The main focus of this paper is on the external performance measurement of MBDS. The external per-
formance measurement evaluates a system by collecting the response times of requests. External perfor-
inance measurement is a macroscopic evaluation of the system. Ingres, Oracle, and the Britton-Lee
II)M/SO, have all been evaluated using external performance measurement techniques Stra84, Schig4i.

The remainder of this paper is organised as follows. In Section 2 we provide a brief overview of the
multi-backend database system. In Section 3 we discuss the general testing strategy that was used to
evaluate the system. In Section 4 we examine the evaluation results. Finally, in Section A we conclude
this paper and summarize the results.

2. THE MULTI-BACKEND DATABASE SYSTEM (MODS)
The current hardware configuration of MBDS consists of a VAX-11/780 (VMS OS) running as the

controller and two PDP.11/44s (RSX-lIM OS) running u backends. Intercomputer communication is
supported by three parallel communication links (PCL-1!Bs), which is a time-divisioned-multiplexed bus.
An overview of MBI)S can be found in iKerr82J. The implementation efforts are documented in (HeS2,
Boyna3b, Demu84I. MBDS is a message-oriented system (see IBoynSSaJ). In a message-oriented system,
each process corresponds to one system function. These processes, then, communicate among themselves
by passing messages. User requests are passed between processes as messages. The message paths between
processes are fixed for the system. The MBDS processes are created at the start-up time and exist
throughout the entire running time of the system.

MBDS provides a centralized database system where the database itself is evenly distributed across
the backend processors. Only a single copy of the database is stored. The underlying data model for
MBDS is the attribute-based data model IllsiaTOl. The attribute-based data model stores data in files of

N records. MBDS stores records of a file in clusters. A cluster is a group of records such that every record
in the cluster satisfies the same set of attribute-value pairs or ranges. Thus, a file is divided into one or
more clusters. The distribution of the database is accomplished using a cluster-based data placement
algorithm.

The cluster-based data placement algorithm is arbitraed and managed by the controller. When a
new cluster is defined, the backend processor notifies the controller. The controller then decides which
backend will insert the new record. Under the direction of the controller, the chosen backend will con-
tinue to insert records of the new cluster, until the backend processor fills a block of secondary memory
storage. When this occurs, the backend processor notifies the controller that the block is full. The con-
troller then directs another backend for the insertion of new records of the cluster. In a multiple-backend
configuration, the controller attempts to achieve a bkock-parallel-and-record-serial operation for any subse-
quent ae*= to the records of the cluster.

.-

one or more
Backedi 1

dis drives

Backnd 2one or more
disk drives

To the
host -Controller
com~pute

one or more
'~isk drives

Broadcastinug
bus

Figure 1. The DS Hardware Organization

-3-

Let's trace through an example. Suppose that our system has four backend processors, the average
sine of a record is 200 bytes, and the size of a block of secondary storage memory is 4K (so, each block
contains approximately 20 records). A new cluster of 100 records, say C, is difined. The controller picks
say, Backend 3, for inserting records of cluster C. Backend 3 will insert 20 records into a block for the
cluster C under the direction of the controller. Then the controller will have Backend 4 insert records of
cluster C. After Backend 4 has inserted 20 records, the controller will cycle to Backend 1, and continue
the round-robin process until all 100 records are placed on the secondary storage blocks. For the next new
cluster, say, C', the controller will then pick Backend 4, since Backend 3 is the last backend used by the
previous cluster in the algorithm.

S. THE BENCHMARK STRATEGY

In this section we analyse the basic benchmark strategy for the preliminary performance evaluation
of the multi-backend database system. The benchmark strategy focuses on collecting macroscopic mes-
urements on the systems performance. Macroscopic measurements correspond to the external performance
measurement of the system, which collects the response time of requests that are processed by the system.
To adequately conduct the external performance measurement of the system, software was developed to
collect timing information and data. The performance software was bracketed in conditional compilation
statements to facilitate an easy transition between a testing system and a running system.

The rest of this section is organized as follows. First, we give a high-level description of the test
database organization and system configurations used in the performance evaluation. Next, we examine
the request set used to collect the timings. Finally, we review the relevant tests that are to be conducted,
and the measurement statistics that are collected and calculated.

3.1. The Test Database Organization and Testing Configuratios
The test database was constructed using a record size of 200 bytes. A total of 24 clusters are

defined for the test database. The virtual and physical memory limitations of each backend restricted the
database size to a maximum of 1000 records per backend. This limitation, coupled with the need to verify
the two performance claims, led us to the specification of three different system .configurations for the
MODS performance measurements. Table I displays the configurations.

Test A configures MODS with one backend and one thousand records in the test database. Test 8
configures MODS with two backends and one thousand records split evenly between the backends. The
transition from Test A to Test B is used to verify the first performance claim (see Section]). Tests A
and B have 23 clusters that contain 40 records and one cluster that contains 80 records. In Test A, all of
the records are stored on the single backend. In Test H, each backend stores 20 records for the rust 23
clusters and 40 records for the last cluster.

Test C also configures MODS with two backends, but, the size of the database is doubled to two
thousand records. The transition from Test A to Test C is used to verify the second performance claim
(see Section 1). Test C has 23 clusters that contain 50 records each and one cluster that contains 160
records. In Test C, each backend stores 40 records for each of the first 23 clusters and 80 records for the
last cluster. Notice that the record totals per cluster per backend are the same for Test A and Test C.

3.2. The Request Set
In this section we review the retrieve requests that are used to benchmark MODS. The retrievals,

shown in Table 2, are a mix of single and double predicates. There are two directory attributes and
thirty-one non-directory attributes in each record. The directory attributes, INTEI and INTE2, are

TEST No. of Backends Records/Backend Database Size

R2 500 200K bytes

Table I. The Measurement Configurations

-4-

itege-vakled, and ae sued for the cluster defiaition and formation. INTEI is defined usian $ attribute-
value ranUges, while INTE2 is defined using 24 attribute-value ranges. The naewdirectory.attributes are
used an fillers for the Il0byte record. The retrieve requests given in Table 2 awe specified using equality
and inequality predicates, to control the search space when accessing the database records.

In Table 3 we present a high-level analysis of the request set given in Table 2. We focus on specify-
ing two characteristics for each retrieve request in the request set; the number of clusters examined by the
particular retrieve request and the volume of the database information that is retrieved. The values in
Table 3 apply to the three testing configurations, A, B, and C, with one exception. The numbers in
parenthesis in the thiud column represent the number of records retrieved for Test C.

3.3. The Measurement Strategy, Statistics and Limitations

The basic measurement statistics used in the performance evaluation of MBDS is the response time
of request(s) that are processed by the database system. The response time of a request is the time
between the initial issuance of the request by the user and the final receipt of the entire request set for the
request. The response times are collected for the request set (see Table 2) for each of the three configura-
tions (see Table 1). Each request is sent a total of ten times per database configuration. The response
time of each request is recorded, We determine that ten repetitions of each request produce an acceptable
standard deviation. Upon completion of the ten repetitions for a request, we calculate the mean and the
standard deviation of the ten response times. There are two main statistics that we calculate to evaluate
the MBDS performance claims, the response-time improvement and the response-time reduction.

The response-time improvement is defined to be the percentage improvement in the response time of
a request, when the request is executed in n backends is opposed to one backend and the number of

Request Number Retrieval Request

S....T... 10)o(INTE 230)
2 (INTE2 =< 250)
3 _ (INTE2 =< 500)
4 (INTEI =< 1000)
s (INTEl =-< 200) or (INTEl >= 801)

6 (INT l =< 400) or (INTEl >= 601)
_ (INTEI <= 201)
8 (INTEi <= 401)

9 L(INTEl <= 201) or (INTEl >= 800)

Table 2. The Retrieval Requests

Request Number of Volume of
Number Clusters Database

Examined Retrieved
-- 2 2(4)records

2 7 25%
S IS 50%
4 24 100%
5 9 40'%
6 1 -9 ___

7 10 20% + 1(2) record
8 15 40% - 1(2) record

S9 4 4 2(4) re.ord

Table 3. The Number of Clusters Examined and the
Percent of the Database Retrieved

4-

records in the database remains the same. Equation I provides the formula used to calculate the
response-time improvement for a particular request, where Configuration Y represents a backends and
Configuration X represents one backend. The response-time improvement is calculated for the eonfigurv
tion pair (A, B). The configuration pair (A, B) is evaluated for the retrieve requests (1) through (9) (see
Table 2).

The Response

The (Time of

Response Time = 100% C 1- TirRion X

I'mprovement The Respone| Time of

Conof iguration Y

Equation I. The Response-Time-Improvement Calculation

The response-time reduction is defined to be the reduction in response time of a request, when the
request is executed in a backends containing nx number of records as opposed to one backend with x
number of records. Equation 2 provides the formula used to calculate the the response-time reduction for
a particul , retrieval request, where configuration X represents one backend with x records and configura-"
tion Z represents n backends, each with x records. The response-time reduction is calculated for the confi-
guration pair (A, C), for the retrieve requests (I) through (9).

(The Response
TeTime ofRsThe iCon/ zainr

Response Time = 100% C figuRation e
Reduetion The Response

Time o
Configuration X

Equation 2. The Response-Time-Reduction Calculation

Finally, we examine the limitations of the testing strategy. The last two versions of MBDS differ in
the implementation of the directory tables. The newest version of the system, called Version F, imple-
ments the diretory tables on the secondary storage. The previous version, called Version E, stored the
directory tables in the primary memory. The major roadblock that we have encountered in the perfor-
mance measurement of MBDS has been the hardware limitations of the backend processors (PDP-1l/44).
With only 64K of virtual memory per process and a total of 256K physical memory, we found that we
could not increase the MAIDS system parameters to permit an extensive test of the system on a large
database. These restrictions have forced us to benchmark the primary-memory-based directory manage-
ment version of the system which, excluding the directory table management routines, is nevertheless
equivalent in functionality to Version F.

4. THE BENCHMARKING RESULTS

In this section, we present the results obtained from the performance measurement of MBDS. In
particular, we review the results of external performance measurement, in the hope of verifying the MODS
performance and capacity claims. One final note, the units of measurement presented in the tables of this
section are expressed in seconds.

Table 4 provides the results of the external performance measurement of MBDS. There are three
parts to Table 4. Each part contains the mean and the standard deviation of the response times for
requests (1) through (9), which are outlined in Section 3.2. The three parts of Table 4 represent three dif-
freent configurations of the MUDS hardware and the database capacity. The first part has configured
MBDS with one backend and the database with 1000 records on its disk. The second part has configured
MUDS with two backends, with the database of 1000 records, split evenly between the disks of the back-
ends. The third part has configured MAlDS with two backends and with a database doubled of 2000
records, where the disk of each backend has 100 records.

.(-6-

One Backend Two Backends Two ackends
Request 1K Records IK Records 2K Records
Number (A) - -_ -) (C)..

mean sider mean stdev mean stdev

1 3.208 0.0189 2.051 0.0324 3.352 0.0282
2 13.691 0.0255 7.511 0.0339 14.243 0.0185
3 26.492 0.0244 14.164 0.0269 26.737 0.0405
4 52.005 0.0539 26.586 0.0294 52.173 0.0338
5 - 21.449 0.0338 11.309 0.0375 21.550 I 0.0237
6 42.235 0.0326 21.622 0.0424 42.287 0.0400
7 12.285 0.0408 6.642 0.0289 12.347 0.0371

_ 8 22.532 0.0290 11.764 0.0300 22.583 0.0110
9 -i i 0 -5 12.62410.0350 2.6 0

Table 4. The Response Time Results.

Given the data presented in Table 4, we can now attempt to verify or disprove the two MBDS per-
formance claims. We begin by calculating the response-time improvement for the nine requests. In Table
5 we present the response-time improvement for the data given in Table 4. Notice that the response-time
improvement is lowest for request (1), which represents a retrieval of two records of the database. On the
other hand, the response-time improvement of request (4), which retrieves all of the database information
is highest, approaching the upper bound of fifty percent. In general, we find that the response-time
improvement increases as the number of records retrieved increases. This seems to support a hypothesis
that even if the response set (therefore the database) is larger, the response-time improvement will remain
at a relatively high level (between 40 an 50 percent).

Requ-es Response-Time
Number Improvement

1 36.07
2 45.14
3 46.53
4 48.94
5 47.27
6 48.81
7 45.93
8 47.79
9 47.21

Table 5. The Response-Time Improvement Between
Configurations A and B.

Next, we calculate the response-time reduction for each of the nine requests. In Table 6 we present
the response-time reductions for the data given in Table 4. Notice that the response-time reduction is
worst for request (1), which represents a retrieval of two records of the database. On the other hand, the
response-time reductions for the requests which access larger portions of the database, requests (4) and
(6), have only a small response-time reduction. In general, we found that. the response-time reduction
decreases as the number of records retrieved increases, i.e., the response time remains virtually constant.
Again we seem to have evidence to support the hypothesis that, as the size of the response set increases
for the same request, the response-time reduction will decrease to a relatively low level (0.1% or less).

i -7-

Request Response-Time
Number Reduction

1 4.49
2 4.03
3 0.92
4 0.32
5 0.47
6 0.12
7 0.50
8 0.23
9 _1.07

Table 6. The Response-Time Reduction Between
Configurations A and C

5. CONCLUSIONS AND FUTURE WORK
valid.We have shown that the two basic performance claims of the multi-backend database system are
valid. While these results are preliminary, they are encouraging. Overall, the response-time improvement
ranged from 36.07 percent to 48.94 percent, when the number of backends and their disks s doubled for
the same database. The low end of the scale represented a request which involved the actual retrieval of
only two reeorde. The high end represents a request which ha to access all of the databse informatina.
The response-time reductions were also impressive, ranging from a 4.49 percent change to a 0.12 change.
In other words, when we double the number of backends and their disks, the response time of a request is
nearly invariant despite the fact that the response set for the request is doubled. Another crucial
discovery that we made was that the results were consistent and reproducible. The tests were conducted
at least twice for most of the request set, with the testing done on different days by different people. The
resulting data was consistent and reproducible. The data presented in this paper represents the last set of
tests for the request et.

The next logical step in the performance evaluation of the multi-backend database system is to
extend the testing to include the other request types, update, insert and delete. Additionally, there are
still some more tests to run on the retrieval request. We also seek to provide some insight into the inter-
nal performance of MBDS. Internal performance measurement provides a microscopic view of the system,
by collecting the times of the work distributed and performed by the system components, i.e., in our cae,
individual processes.

Because MBDS is intended for microprocessor-based backends, winchester-type disks and an
Ethernet-like broadcast bus, we will not continue our benchmark work on the present VAX.PDPs confi-
guration. Instead, we plan to download MIlDS to either MicroVaxs or Sun Workstations. With either
choice, we can utilise a broadcast bus, which was not available when the work began in 1981. We may
also eliminate all the physical and virtual memory problems. In the new environment we can perhaps
obtain a more thorough benchmarking of MlDS, and study various benchmarking strategies.

ACKNOWLEDGEMENTS
We would like to thank all of those who have helped us with the performance evaluation of the

Imuti-backend database system. Robert C. Tekampe and Robert J. Watson were involved with the
development and implementation of the testing software for our system ITeka84j. Prof. Douglas S. Kerr
and Dr. Paula R. Strawser provided valuable advice and assistance on the benchmark srategy. Finally,
Albert Wong and the technical staff at the Naval Postgraduate School provided assistance with configur-
ing the computer systems for testing.

..

Ai ,..-AMI

ilA7.T

REFERENCES

[Boynsa Boyne, R., et aL, "A Message-Oriented Implementation of a Multi-Backend Database System
(MBDS)," in Database Machines, ILeillick and MissikoT (rds), Springer-Verlag, 1983.

[Boynlb Boyne, R., et at., "The Implementation of a Multi-Blackend Database System (MBDS):
Part IIIl- The Message-Oriented Version with Concurrency Control and Secondary- Memory-Based Direc-
tory Management," Technical Report, NPS-52-83-00S, Naval Postgraduate School, Monterey, California,
March 1983.

IDemul Demurjian, S. A., et al., "The Implementation of a Multi-Backend Database System (MODS):
Part IV - The Revised Concurrency Control and Directory Management Processes and the Revised Defini-
tions of Inter-Process and Inter-Computer Messages" Technical Report, NPS-52-84-005, Naval Postgradu-

ate School, Monterey, California, March 1984.

IHe82I lie, X., et al., "The Implementation of a Multi-Rackend Database System (MBDS): Part 11 - The
4 First Prototype MBDS and the Software Engineering Experience," Technical Report, NPS.52-82-0OS,

Naval Postgraduate School, Monlierey, California, July 1982; also appeared in Adv'anced Database Afarcina
Architecture, Ilsiao (ed), Prentice flail, 1983.

IHsia7OI Ilsiao, D. K., and Ilarary, F., "A Formal System for Information Retrieval from Files," Comn
municatione of the A CM, Vol. 13, No. 2, February 1970, Corrigenda, Vol 13., No. 3, March 1970.

[Ilsiagial lsiao, 13K. and Menon, M.J., "Design and Analysis of a Multi-Backend Database
System for Performance Improvement, Functionality Expansion and Capacity Growth (Part IV, Techni-
cal Report, OSU-CISRC-TR-81-7, The Ohio State University, Columbus, Ohio, July 1981.

Illsiagibi Ilsiao, D.K. and Menon, M.J., "Design and Analysis of a Msulti-Backend Database

System for performance Improv~ement, Functionality Expansion and Capacity Growth (Part 11)," Techni-
cal Report, OSIl.ClSltC-Tit-81-8, The Ohio State University, Columbus, Ohio, August 1983.

Ilerr8I rr D.S., et al., "The Implementation of a Niulti-Backend Database System (MBDS): Part I -
Software Engineering Strategies and Efforts Towards a Prototype MODS,"1 Technical Report, OSU-
CISRC-TR-82-l, The Ohio State University, Columbus, Ohio, January 1982; also appeared in Advanced
Database Alsehine Architecture, tlsiao (ad), Prentice flall, 1983.

ISchi84I Schill, J., "Comparative DBMS Performance Test Report," Naval Ocean System Center, San
Diego, CA, August 1984.

IStra84l Strawser, P. R., "A Methodology for Henchmarking Relational Database Machines," Ph. D.
Dissertation, The Ohio State University, 1984.

[TekaS41 Tekampe, R. C., and Watson, R. J., "Internal and External Performance Measurement Metho-
dologies for Database Systems," Master's Thesis, Naval Postgraduate School, Monterey, California, June
1984.

4O.ll.

10

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2Cameron Station

Alexandria, VA 22314

Dudley Knox Library 3
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A
Naval Postgraduate School
fonterey, CA 93943

Chairman, Code 52M1 20
Department of Computer Science

1%Naval Postgraduate School
Monterey, CA 93943

DAVID K. HSIAO 150
Professor
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

4

DTIC

"' 0 1I

