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INTRODUCTION

The rapid discharge of propellant gas froma a weapon produces a strong

shock wave which propagates into the environment. Several shocks, contact

surfaces, and vortices form within the developing plume and separation occurs

at the weapon exit plane (see Figure I). Further, the physical properties of

the plume gas are often sufficiently different from those of air that it is of

interest to take this into account. This report describes a model for such a

flow based upon the Ruler equaLtons for a mixture of two gases. Harten's

Total Variation Diminishing (TVD) scheme (ref 1) is used as the equation

solver. For verification, the classic problem of shock diffraction around a

corner is computed and compared with the experimental data of Skews (refs

2,3). In Reference 4, the model is used to analyze the origin of secondary

shock waves frequently observed in the blast signature of shoulder fired

weapons.

THE EULER EQUATIONS

Written in conservation form, the Euler equations Lake the form

JU dF(U) G(U)
-------- I-------.-w(U) =0 (l)

t 3x ay

IHarten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

2-Skews, 1. W., "The Shape of a Diffracting Shock Wave," Journal of Fluid
Mechanics, Vol. 29, Part 2, 1967, pp. 297-304.

'Skews, B. W., "The Perturbed Region Behind a Diffracting Shock Wave," Journal
of Fluid 4echanics, Vol. 29, Part 4, 1967, pp. 705-719.
4Carofano, G. C., "Secondary Waves From Nozzle Blast," U.S. ARDC Technical
Report No. ARLCB-TR-84028, Benet Weapons Laboratory, Watervliet, NY, October
1984.
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where

2/ +I p
m+ m

U= n F(U mn/ P

E (E+P)m/ P

S Sm/ p

nI

mn/p rn/p

G(U) - n 2 /p + p W(U) in- n/ P

(E+P)n/p (E+P)/ p

Sn/ p S/P

In these equations, P is the mixture density; m =Pu, n -pv, are the momentum

components and u, v are the velocity components In the X- and Y-dlrections,

respectively; P is the pressure; E is the total energy per volume and is

related to the specific internal energy, e, of the mixture by the expression

E (,n Z4n2)
2p (2)

S is the mass concentration of gas species "a" -it has the same units as

density; e is zero for planar flow and aintty for axisymmetric flow; X and Y

are the axial and radial directions, respectively. All variables have been

non-dimensionalized with respect to a reference state Po, Po, and length R.

Thus, p p'/p~o, m -m,/(p 0 p0 )1/2, n =n'/(po)1/ 2, E -E'/P 0 , P P- Po

2
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S S'/P 0, X -X'/R, Y =Y'/R, and t=r,(po/po)1/2/R where the primed

quantities are the dimensional counterparts of those defined above.

The pressure is related to the thermodynamic state variables p and e

*through the equation of state. Rather than carrying the details of this

Mrelationship through the algebra of determining the eigenvalues and eigen-

* vectors of the Euler equations, the equation of state will be written In the

general form

3P P(p,m,n,E,S) =P(;),e,Mf) (3)

where Hf is the mass fraction of species "a" defined as

M S/P()

S. The acoustic speed, c, is determined from the equation of state by

aP SMf

where s is the specific entropy. Using the following general relationship for

partial -derivatives --

ap ap aeap
ap SMf ae P,'lf 'f aP eMMf

and the thermodynamic identity (ref 5)

3 e

ap S, mf

* the acoustic speed becomes

P ap ap
P2 3e pMf aP eMf(5

5OberL, E. F. ocjtofTherodn~amiics, McGraw-Hlill Book Co. Inc., New
York, 1960, Equation 11-lb.



The subscript "Hf" is used to indicate that the partial derivatives are

evaluated for a specific mixture.

In what follows, other partial derivatives of pressure appear and some

useful relationships exist among them. From Eq. (3),

ap 3P ap 3e aP f--'Pp .. + --- -- --... (6a)

ap m,n,ES ap e,Mf 3e PMf ap m,n,E aHf P,e ap S

ap ap 3e
P) =(6b)

am p,n,E,S ae P,Kf am P,n,E,S

ap ap 3e
Pn (6c)

an P,m,E,S e P,Mf an P,m,n,S

aP ap 3e
PE=--) = ) -- (6d)

P,m,n,S e P,Mf E P,Imn,S

ap ap atlfPS ; =;- (6e).-
Pm,nE 3Mf Pe a .:,

Equations (2) through (6) can be combined to give

Pm + u PE 0 (7)

Pn + v P 0 (8)

c 2  PP + MfPs + (1 - U2 V 2 )PE (9)

where H is the total enthalpy per unit mass, defined as

+...P (10)
p

The matrix manipulations required to determine the eigenvalues and

elgenvectors are straightforward and will not be presented here. Suffice it

to say that the combinations of variables and derivatives In Eqs. (7) through

(10) appear frequently and lead to the compact and recognizable forms given

4
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below*.

Let A denote the Jacobian matrix 3F(U)/3U, or

0 1 0 0 0

-u 2 + P 2u + Pm Pn PE PS

A= -uv v u 0 0 (11)

-uH + uPP H + uPm  vPn  u(l+PE) UPS

-uMf Mf 0 0 u

tting the determinant IA-axIt equal to zero, where I is the identity

matrix, and solving for the vector aX of elgenvalues gives

1 2 3 4 5
(a a , a , a , a ) (u-c, u, u, u+c, u) (12)

*The author began this study based on a report written In early 1982 by Harten

at the Courant Institute, New York University. That report, dealing costly
with theory, eventually appeared as Reference 1 in 1983. Subsequently, two
more reports were written by Yee, Warming, and Harten (refs 6,7) which
emphasized applications of the theory. Thus, as an aid to the reader, the
present report will conform to the notation of the later works where
convenient, but some of the symbols, indices, and even the "arrangement" of
the arrays follow the preliminary work performed by the author in developing
his computer program.

lHarten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"

Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.
6Yee, H. C., Warming,: R. F., and Harten, A., "A High-Resolution Numerical
Technique For Inviscid Gas-Dynamic Problems With Weak Shocks," Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, June 1982.
'Yee, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations," NASA Technical %

Memorandum 84342, March 1983.
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1 2 3 4 5
The right-eigenvectors RX (RI, R2, Ri RI R )are

1 1 0 1 C

U-C Li 0 UrIc 0

Ry v v v 0 (13)

H-uc l-C 2/pE v 11-1uc r

Mf Mf 0 Mf

1 2 3 4 5
and the left-eigenvectors LX =(L , L X, L X, L X L ) are

(u/ + r0/2 -(1/c + uq)12 -vqf2 q/2 -l'q/2

1-r uq vq -q rq

LX= -v 0 1 0 0 (14)

(-u/c +I 0)/2 (1/c -uq)/2 -vq/2  q/2 -rq/2

-Mf 0 0 0 1-

where
1' PSP (15)

and

q P/c 2  ,r pc 2  1-q(H-u 2 -v 2 ',If f) (16)

Sim iarly, the Jacobian matrix B =aG(U)/DU is

o 0 1 0 0

-uv v u 0 0

B = 2P pm 2v+P ~ Pg P (17)

-vHi-vP 0  vPm I1 + Vpn v(l+PE) VP5

-V~f 0 Mf 0 v

6



with eigenvalues ay given by

1 2 3 4 5
(a ,a ,a a a, a ) (v-c, v, v, V4-c, V) (18)

1 2 3 4~ 5
*The right-elgenvectors Ry =(R , R , R R R, R ) are

110 1 0

U U1 u

Ry v-c v 0 V4-c 01 (19)

H-vc TI-c 2 /RE u !I+vc

Mf Hf 0 Hf1

1 2 3 4 5
and the left-eigenvectors Ly =(L Y L Y L Y L Y L ) are

(v/c + 0)/2 -uq/2 -(i/c + vq)/2 q/2 -lq/2

1-r uq vq -q I'q-

Ly - U 10 0 0 (20)

(-v/c + r)/2 -uq/2  (1./c -vq)/2 q/2 -rq/2

t f0 0 0 1



THE ALGORITHM

Operator splitting was used to solve Eq. (1) on a uniform grid. Harten's

TVD scheme (refs 1,6,7) was applied to the two flux terms and Euler's

predictor-corrector method was used to handle the source term. The solution

n
at time T, Ui,j, was advanced to time T + 2AT using the following sequence of

operations:

n+2 n
Ui,j LX Ly LS LS Ly LX Ui,j (21)

where

* n AT ^n n
LX: Ui,j = Ui,j - A (Fi+1/2,j - Fi-1/2,j) (22a)

** * AT *".

Ly: Uij = Ui'j - -Y (GiJ+1/2 - GiJ-1/2) (22b)

-** ** "-_,

Ui,j Ui,j - AT W(Ui,j) .22c)
LS: (22c) ..-

n+l ** -
Ui,j [Uij + Ui,j AT W(Ui,j)]/2

The flux Fi+I/2 ,j is given by

S 5  k k

Fi+l/2,j [F(Ui,j) + F(Ui+I,j) + (AX/At) 1 1 +1/2,j Ri+l/2,11/2 (23a)
k=l

k k k k k k
Bi+I/2,J = (gi,j + gi+l,j) - Q(vi+1/2,j + Yi+/2,j)a+I/2,j (23b)

IHarten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

6 ee, H. C., Warming, R. F., and Harten, A., "A High-Resolution Numerical

Technique For Inviscid Gas-Dynamic Problems With Weak Shocks," Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, June 1982.

7Yee, 11. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations," NASA Technical
Memorandum 84342, March 1983.

8
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k k k k k
gtj 9 1i+/2,j max[O,min(cLa+ 1 /2 ,J1, (i-1/2,j si+1/2,jl/ 8  (23c)

k k '
si+12, = s1tn(c i+11 2 ,.1 ) (23d)

k k k k

(st+i,j gj,)/t+1/2,j , i+1/2,j * 0
k-

yi+1/2,j = (23e) .

1 k
0 , ai+/2,j =0

k k
vi+i2, j = (AT/AX) at+l1/2,j (23f)

Q(z) z 2 + 1/4 (23g)

k k
where at+ 1/2 ,j and Ri+ 1/2 ,j are given iii 9qs. (12) and (13), respectively.

The subscript 1+1/2 signifies that all of the values in the functions are to

be evaluated at some average state (Ui,j, Ui+lj). In this study, this state

was taken to be

u Cuij + uj~.1 j)/2 (24a)

v (v1 ,j + vj+l,j)/2 (24b)

c (cj,j + ci+l,j)I2 (24c)

R= (l j + tit,)/ 2  (24d)

hf = ( , j + i.ft+1,j)/2 (24e)

PE= (PEI,j + P1 i+l,j)/2 (24f)

f = (r ,j + r~l~, 1 )/2 (2 4g)

k
The vector ai+1/2,j is coputed as foLlows:

6 p+),j - Pi,j (25a)

6111 =, j+j,j - rot,j (25b)

6n =1+1,j - ni,j (25c)

9
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E = I - Ej,j (25d)

63 Sjj - (25e)

C, rp + q 6i u6,m v 6n -- '63) (26a)

C2  (n - u6p).C (26b)

=L (Cl - 2)12 (26c)
i+l/2,j

2  
-X - Cl (26d)

i+1/2,j

3- v6p (26e)
i+1/2,1

a4 (CI + (n2)/2 (26f)

1-+1.2.1

=5 - -" f6) (26g)
i+t/2, j-

The flux Gi,j+1/2 is given by expressions similar to Eqs. (23), only with

k k
the subscript j varying; ai,J+1/2 and Ri,J+1/2 are given by IEqs. (18) and

k
(19), respectively. The vector ai, 1 -/2 uses te analogues of Eqs. (24) and .

(25) with j varying. Finally

Cl r6p + q(SE -u~m -v'Sn -r&s) (27a)

= (6n -v6p)/c (27b)

I(Cl C 2)/2 (27c)
i,J+1/2

, -C- (27d)
1, J+I/2

OL 11- u 6 P (27e)

= (CI + C2)/2 (27f)
iJ+1/2

5.L = - "if 6P (27g)
i+2, j+i /-2

*.4 ........................................ . . ........



The time step, AT, was calculated from the expression

0.85 AX
AT - ----------------------------------- all ij.*.'!" ~ ~~~~maxi, j [ ma x ( Iui,jl' Ivi,jlI) + ci,j]] 'i: ,,.

The CFL factor of 0.85 was suggested in Reference 1.

For axisymmetric calculations (c = 1), the coefficient (n/Y) in the

vector W(u), Eq. (1), becomes indeterminant on the axis because the radial

component of momentum and Y both vanish. To overcome this difficulty,

L'Hospital's rule is applied to Eq. (1). Since all of the terms are well

behaved at Y = 0 except the coefficient (n/Y), only this factor is changed in

the limiting process. It becomes

all/ ay an

The following second order accurate Lagrange differentiation formula is used:

ano .-
aY 2AY (-n-I +  n l )  

"
ay 2tAY-

where the it.1 , no, and nI are the three points at j = -1, 0, and 1,

respectively. By symmetry .1 = -nl, therefore,

3no Il

DY AY

COt.'-MENT: Che reader familiar with Marten's scheme will recognize that

the "artificial compression" terms have been omitted from the flux expression

in Eq. (23). These terms were found to be quite useful for "squaring the

corners" at shocks and contact surfaces but frequently caused an entropy

violation in regions where a shock was followed by an expansion or where an

expansion was terminated by a shock. Reducing the amount of artificial

IHarten, A., "Iligh Resolution Schemes for Hyperbolic Conservation Laws,"
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.
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compression, as suggested in Reference 7, would alleviate the problem in one

circumstance only to have it reappear in another. Because such regions are

common to the problems of interest, the decision was made, quite reluctantly,

to omit the compression terms over the entire flow field.

Secondly, the reader will note that the "average state" defined above

differs from the two choices suggested in References 1, 6, and 7. One choice,

Roe's method, uses a "mean value Jacobtan" such that

F(Ui+I,. ) - F(Ui,j) = A(Ui,j,Ui+l,j)(Ui+l,j - Ui,j)

For an ideal gas it is not difficult to calculate the proper u, v,... from

this expression, but for more general equations of state the required result

is difficult to obtain.

The second choice, (Ui,j + Ui+l,j)/ 2
, occasionally produced poor results

when used with more general equations of state. It first averages the

conserved variables, then calculates the required quantities, u, v, c,..* from

the average state.

The method used here, Eq. (24), evaluates the variables at each location,

then forms the required average. This worked consistently well for various

state equations; for an ideal gas, it produced essentially the same solutions

as were obtained with Roe's averaging.

IHarten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

6Yee, H. C., Warming, R. F., and Harten, A., "A High-Resolution Numerical
Technique For Inviscid Gas-Dynamic Problems With Weak Shocks," Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in

Fluid Dyn.amics, Aachen, West Germany, June 1982.
7yee, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations," NASA Technical
Memorandum 84342, March 1983.

12..
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"* THE STATE EQUATION

The present model was developed as an aid for interpreting some

experimental results obtained with a blast simulator (ref 4). Mixing of the

helium driver gas with air occurs in the system and an equation of state for

the mixture is needed.

The state variables in the Euler equations are the density, P, and the

specific internal energy, e. The latter has units of energy per unit mass,

but the properties of a mixture of gases are best determined on a molal basis

(ref 8). Molal units will therefore be used in the intermediate steps leading

to the desired function P - P(p,e,Mf).

Consider a mixture of two ideal gases containing mass ma of species "a"

and mass mb of species "b". The mass fraction, Hf, of species "a" is then
ma

Mf - -------

ma +m b

The number of moles, n, of each species is

ma mb
na-- nb

Ma 4b

where Ma, 4b, are the respective molecular weights. The mole fractions are

na nb-

Xa- - - , Xb------- .na + nb na + nb

For the mixture

H = XaMa + xbMb

4Carofano, C. C., "Secondary Waves From Nozzle Blast," U.S. ARDC Technical
Report No. RLCB-TR-84028, Benet Weapons Laboratory, Watervliet, NY, October
1984.

80bert, E. F., Concepts of Thermodynamics, McGraw-ill. Book Co. Inc., New
York, 1960, Chapter 8..

13. -
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cv =xacva + xbcvb

Cp =XACpa +xbcpb

where c.1 and c p are the inotal specific heats at constant volumue and constant

pressure, respectively. For each gas

Cva-------- Cvb = --- 0...

where R% is the universal gas constant in molat units. The specific internal

energy of the mixture Is (xca+ xbcvb)T

e-----------------------------

where T is the temperature; the reference state is taken as absolute zero.

The state equation for the mixture is

or, using the above definitions,

P--------------- (8
Xa xb

The specific heat ratio for the mhcture is defined as

Y =Cp)/Cv

With a little al.-,ebra the following restilts are obt-ired:

-- -- -- (29)
Y-1 'Ya- Yb-1

Mf(Ya - Grb) + 0Y

---- ---- ---- --- (30)
!l~-)+ a

3Y 00a- Yb)

Mf 3Mf [4f(L-0) +12(31)

14
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Ma( Ya-)
a - - (32)

Mb( Yb-l)

P - (y-l)Pe (33)

PE "(-I) (34) t

Ps eY (35)
Mf

c yP/P (36)

-eY

r Mfr ---- (37),,.

(y-1)

where Eqs. (5), (6), and (15) have been used to obtain the last four

equations. The specific internal energy is calculated from the conserved

variables using Eq. (2).

For a given pair of gases la, Yb, Ma and Mb are constants along with a in

Eq. (32). Therefore, only 9qs. (30), (31), and (33) through (37) are actually

used in the algorithm given in the previous section.

When Ya Yb and Ma M 1b all of the results reduce to those given in

References 1, 6, and 7, and the last of Eqs. (1) for S is not needed.

4owever, as will be shown below, even for a single gas species some useful

information can often be obtained by retaining it.

1Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

6Yee, I. C., Warming, R. F., and Harten, A., "A High-Resolution Numerical
Technique For Inviscid Gas-Dynamic Problems With Weak Shocks," Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, June 1982.

'Ye, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations," NASA Technical
Memorandum 84342, March 1983. -.
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BOUNDARY CONDIT[ONS

Along the X-axis the symmetry condition was applied in the usual manner

by using mirror images of points in the active mesh but with the sign of the

v-component of velocity changed. The inflow boundary was handled either by

using a known solution, as in the test problem of the next section, or by .-

zeroth-order extrapolation of characteristic variables (refs 9,10) as will be

explained below.

For the X-sweep along the vertical wall (see Figure 1), the reflection S
method was used. 'or the Y-sweep flow separation was assumed and an extra

point was added at the corner - point "b" in the sketch below. The wall

boundary condition dictates that i 0 0. Since there can be no flow across the

contact surfsce, v = 0 ntit apply. Therefore, the same particle remains there

point "a"-%* 0 \-separited flow
0 boundary

point"b"

0 0

9 llarten, A., "On a Large Time-Step High Resolution Scheme," ICASF. Report No.
82-34, N4ASA Langley Research Center, Hampton, VA, November 15, 1982.

1 0 Yee, 4. C~., Ream, R. M.., and Warming, R. F., '*Boundary Approximations for
Implicit Schemes for One-Dimensional Inviscid Equations of Gas Dynamics,"
AMA Journal, Vol. 20, No. 19, September 1982, pp. 1203-1211.

16
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and its mass fraction remains constant, i.e., Mf - 1 if the particles in the

environment are identified as species "a". The remaining unknowns are density

and energy so two equations are needed. Because v -0 at the corner,

information should reach it from point "a" only through the (v-c) character-

isLic variable. The characteristic variables for the Y-sweep are w = LyU

where Ly is given by Eq. (20). The first characteristic variable correspond-

Ing to the (v-c) eigenvalue is

w1 = [(v/c+r)p - uqm - (i/c + vq)n + qE - rqS]/2

The approximation w i 
= w i is used at time I + A* with P, c, ... evaluated at

b a

the average of the two states.

The second characteristic variable corresponding to the (v) eigenvalue

is assumed to remain constant. It is given by'

w 2  (l-r)p + uqm + vqn - qE + rqs

The assumption is that w2 at Lime T is equal to w 2 at r + AT. The average
^ b^ b

state values of u, v, and f are always zero.

The procedure is as follows:

1. Apply the operator Ly to the points along the wall starting with

point "a". This requires information at point "b" at time T, which is

available, and information at a second point below "b" because Iarten's method

k
is a five-point scheme; it is needed to calculate gi,j-I at "b". Since it is

k
not available, gi,j at point "a" is used.

2. Solve the 'two characteristic relations listed above to obtain Pb and

Eb at time T + Ar. Iteration is required because the average state values

depend on the new solution at "b".
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One final note: It was found through experience that the X-sweep

generally could not be applied to the first one or two points along the wall

without generating physically unrealistic results there. It will be seen in

the next section that this extremely crude handling of the corner flow does

not seem to have a drastic impact on the rest of the flow field. This may be -

true because the inflow boundary condition is so dominant.

A TEST PROBLEM

The classic shock diffraction experiments of Skews (refs 2,3) contain S.

many of the features of the flow sketched in Figure 1 and afford an excellent

test problem. Superimposed upon the density contour plot in Figure 2 are

Skews' data for a planar shock (e 0) with Mach number Mo = 3 diffracting .

around a 90 degree corner. The flow behind the shock is supersonic for this

case so the disturbed region lies entirely downstream of the corner. The

inflow boundary conditions upstream were constant during the calculation.

The construction of Figure 2 is facilitated by the self-similar nature of

the planar flow (ref II). Thus, the unsteady numerical solution can be

compared to the unsteady laboratory experiment at arbitrary times if the data

are scaled using the similarity variables

x X y Y
J, --- fi --- , q =f ---- = -- -:':,

cot /jT Cot /jY T

2 Skews, B. W., "The Shape of a Diffracting Shock Wave," Journal of Fluid
Mechanics, Vol. 29, Part 2, 1967, pp. 297-304.

3Skews, B. 1., "The Perturbed Region Behind a Diffracting Shock Wave,"
Journal of Fluid Mechanics, Vol. 29, Part 4, 1967, pp. 705-719.

LJones, P. M., Martin, P. M. E., and Thornhill, C. K., "A Note on the
Pseudo-Stationary Flow Behind a Strong Shock Diffracted or Reflected at a
Corner," Proceedin of the Royal Society, A09, 1959, pp. 238-248. .*..
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Here co is the acoustic speed in the undisturbed environment; for an ideal gas

co ij/ . The factor /yappears in the denominator because T is non-

ditmensionalized with /P 0 in the present study. The numerical data in

Figure 2 were obtained after 135 cycles on a uniform grid with 150 cells in

the X-direCt ion and 190 cells in the Y-dtrection; Y was taken as 1.4 for air.

The predicted shock position agrees with Skews' measurements (see Table

1) to Within three percent everywhere. 4~ote that the inflection point in the

experiluentsil lata near the wall is also present in the numerical solution. It

corresponds to a Mach reflection.

TABLE~ 1. SHOC POSIT[ON (Esr[MATKO FROM FIGURE 3 OF REF 2)

2.75 0.00

2.41 0.65

1.99 1.15

1.48 1.48

0.95 1.65

0.44 1.64

0.00 1.58

The disturbance which propagates downward into the uniform flow behind

the shock consists of two segments, the Mach line or leading edge of the

Praridtl-Meyer e'pansion centered at the corner and a circular soundwave.

Using expressions given by Skews (ref 2) and the nomenclature of Figure 3

2Skews, B. W4., "The Shape of a Diffracting Shock Wave," Journal of Fluid
Mechanics, Vol. 29, Part 2, 1967, pp. 297-304.
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the following can be written:

Clt C1 2( Y-1) 2 2

1+-------(M0-1)(Y-I-/%O)cot c0  y+)

u 2 (O 1

c0  UlC u

U 1  UCo Up

sin 1(l/ML)
2 3

tan 2 a up[(Y-l)MO/2 + I]/M0

-t El sin Pi nt =-K COS

where K Is the ratio of acoustic speeds across the shock and up is the

dimensionless particle velocity behind then shock. Points along the Mach line

are computed from
ri- tan P

* and intermediate points on the circular arc are given by -

(~l2 + r12 _ =

The numerical solution smears the leading edge of the Prandtl-Meyer

* expansion slightly so that the first contour line does not exactly coincide

with the Mach line. The corner approximation may also have influenced the

* result. Elsewhere the agreement Is satisfactory.

The terminator angle, 6, was estimated to be 20 degrees ((ref 3), Figure

3Skews, R. W., "The Perturbed Region Behind a Diffracting Shock Wave," Journal
* of Fluid Mechanics., Vol. 29, Part 4,1 1967, pp. 705-719.
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6). It marks the end of the expansion fan and the beginning of a small region

of uniform flow as discussed in Reference 11. The contours in Figure 2

conform to this description.

The slipstream angle, w, was estimated to be 40 degrees ((ref 3), Figure

5). Skews used it as a reference line along which was measured the

intersections of the second (recompression) shock and the contact surface.

The contact surface in Figure 2, indicated by the thin solid line following

the shock, represents the boundary separating the particles which were

processed by the shock before it reached the corner from those processed after

it diffracted. It is obtained from the numerical solution by "tagging" one

set of particles as "species b" and assigning them a mass function Mf = 0.

Both sets of particles are given the same molecular weight and specific heat

ratio so F is zero everywhere. The solution evolves independently of the

species equation. The contact surface, initially a vertical line at C 0, is

simply convected downstream by the velocity field. Note that it passes

through the low point 4I, ni of the soundwave. This is correct because all of

the particles below the soundwave move at the particle velocity behind the

shock, Up =

The intersection of the contact surface with the slipstream angle,

indicated by the asterisk in Figure 2, was estimated to be 1.65 ((ref 3),

Figure 8 c). Its coordinates 4 c, nc are

3 Skews, B. W., "The Perturbed Region Behind a Diffracting Shock Wave," Journal
of Fluid 4echanics, Vol. 29, Part 4, 1967, pp. 705-719.

1 TJones, P. M., Martin, P. M. E., and Thornhill, C. K., "A Note on the
Pseudo-Stationary Flow Behind a Strong Shock Diffracted or Reflected at a
Corner," Proceeiinas of the Ro al Society, A209, 1959, pp. 238-248.
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Ec 1.65 cos 40°  1.264

nc = 1.65 sin 400 1.061

The numerical solution comes very close to passing through this point.

It should be noted that the contact surface described above and that

discernible in a shadowgraph are not the same. The contact surface discussed

by Skews actually represents the boundary separating those particles which

were processed by the planar shock from those processed by the diffracted

shock. It is associated with the entropy gradient along the curved portion of

the shock and can be identified in Figure 4 as the entropy contour which

intersects the point where the shock ceases to be planar. This contour

coincides with the "kink" in each of the density contours in Figure 2 which

renders it visible on a shadowgraph. At the point where Skews' measurement

was taken the entropy contour and the contact surface nearly conicide which

accounts for the agreement noted above.

The second shock location, indicated by the star in Figure 3, was

- estimated to be 1.2 ((ref 3), Figure 7c). Its coordinates s, ns are

Es - 1.2 cos 400 = 0.919 -

r. = 1.2 sin 400 = 0.717

Again, the numerical solution does fairly well.

The vortex angle, @, and its location indicated by the diamond in Figure

2, were estimated to be 48 degrees and 1.15, respectively ((ref 3), Figure 9).

Its coordinates, &v, nv are

"-'--
3 Skews, B. W., "The Perturbed Region Behind a Diffracting Shock Wave," Journal
of Fluid Mechanics, Vol. 29, Part 4, 1967, pp. 705-719.
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&v 1.15 coB 48 = 0.669

nv 1.1.5 sin 480 0.743

Judging by the density contours, the proper vortex angle seems to have been

* .computed but its position appears somewhat closer to the corner than measured

by Skews. However, identifying the vortex center from a shadowgraph involves

a greater degree of uncertainty than the other measurements so the apparent

discrepancy may not be serious.

CONCLUSION

The test problem of the last section demonstrates that Harten's TVD

method can be used to obtain reasonably accurate solutions for the flow

problems of interest. In a companion report (ref 4), the method is applied to

a problemi involving two gases.

4Carofano, G. C., "Secondary Waves From Nozzle Blast," U.S. ARDC Technical
Report No. ARLCB-TR-84028, Benet Weapons Laboratory, Waterviet, NY, October
1.984.
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