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INTRODUCTION

The rapid discharge of propellant gas from a weapon produces a strong
shock wave which propagates into the environment. Several shocks, contact
surfaces, and vortices form within the developing plume and separation occurs
at the weapon exit plane (see Figure 1). Further, the physical properties of
the plume gas are often sufficlently different from those of air that it is of
interest to take this into account. This report describes a model for such a
flow based upon the Fuler equations for a mixture of two gases. Harten's
Total Variation Diminishing (TVD) scheme (ref 1) is used as the equation
solver. For verification, the classic problem of shock diffraction around a
corner is computed and compared with the experimental data of Skews (refs
2,3). 1In Reference 4, the model is used to analyze the origin of secondary
shock waves frequently observed in the blast signature of shoulder fired

weapoas.

THE EULER EQUATTONS

Written in conservation form, the Euler equations Lake the form

au F(U IG(U
- S_S-Z -;é-l +W(U) =0 (L)

— . 22 o o 2y e i

1Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,”
Journal of Computational Physics, Vol. 49, 1983, pp. 1357-393.

2Skews, B. W., "The Shape of a Diffracting Shock Wave," Journal of Fluid
Mechanics, Vol. 29, Part 2, 1967, pp. 297-304.
3Skews, B. W., ”The Perturbed Region Behind a Diffracting Shock Wave,” Journal
of Fluid Wechanlcs, Vol. 29, Part 4, 1967, pp. 705-719,

*Carofano, G. c., Secondary Waves From Nozzle Blast,” U.S. ARDC Technical
Rggzrt No. ARLCB-TR-SAOZS, Benet Weapons Laboratory, Watervliet, NY, October
1 .

i
‘,
(]

.. PR TR R . . . R
I, ..$ ﬁ;\A IR WA AT S




Ty T T T Y T T,

" . LT LRy T
e T T T o

where
) m
m m2/p + P
U=1nl|], FU = mn/ p ’
E (E+P)m/p
S Sm/p
n 1
mn/p m/ p
6wy = | n20 40 | , W) = 5'—' o/ p
(E+P)n/p (E+P)/p
Sn/p s/e

| In these equations, p is the mixture density; m = pu, n = pv, are the momentum
components and u, v are the velocity components in the X- and Y-directionms,
respectively; P is the pressure; E is the total energy per volume and 1is

related to the specific internal energy, e, of the mixture by the expression

e = (= = ==eeset ) (2)

<

~N

©
N

S is the mass concentration of gas species "a" = it has the same units as

density; € is zero for planar flow and unlty for axisymmetric flow; X and Y

are the axial and radial directions, respectively. All variables have been
non-dimens{onalized with respect to a reference state py, P,, and length R.

Thus, p = p'/pg, m = m'/(PoPo)L/2, n = n'/(pyPg)1/2, € = E'/P,, P = P'/P,,
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S =8"/py, X = X'/R, Y = Y'/R, and T = 1"(Po/Pg)L/2/R where the primed
quantities are the dimensional counterparts of those defined above.

The pressure i{s related to the thermodynamic state variables p and e
through the equation of state. Rather than carrying the details of this

relationship through the algebra of determining the eigenvalues and eigen-

vectors of the Euler equations, the equation of state will be written in the i“;€
general form

P = P(p,m,n,E,S) = ;(p,e'Mf) (3) =
where Mg is the mass fraction of species "a” defined as

Mg = S/p (4)

The acoustic speed, ¢, is determined from the equation of state by
- I«---‘
, op
e = =)
Ip s,M¢

where s 1s the specific entropy. Using the following general relationship for

partial derivatives - - -
) ap de P
0w 3 5a e |38
P g,Mg ¢ pMe 9P g Mg P e,Mg
and the thermodynamic identity (ref 5)

de

P = p? --)
9 g, Mg ,
B A
the acoustic speed becomes
P oapP P
2w n) 4 o) (5)

5 -
pe de ?,M¢ 3p e,M¢

5Obert., E. F., Concepts of Thermodynamics, McGraw-iill Book Co. Inc., New
York, 1960, Equation l1l-1b.
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The subscript "Mg" 1s used to indicate that the partial derivatives are

i evaluated for a specific mixture.

useful relationships exist among them.

From Eq. (3),

L Y

o In what follows, other partial derivatives of pressure appear and some

l’ ap P ap de ap Mg
P = =) O T TR B § RO
% ' m,n,E,S P eMy % oM ¥ mn,E M pe s .
ap ap de
, Py = =) - — - (6b) o
. dm p,n,E,S %e P Mg o P,n,E,S N
- - T
b P P de 0
o Py = =) = =) --) (6c) -3
' p mE,5 %€ p M M pan,s :
“. ap 3p de
| Pg = =) == = (6d)
; % p.m,n,s ¢ p M % ppon,s
- ap) ap | Mg ;
( Pg = == B ——— —-—— (6e
F 9 o m,n,E Mf pe 3 )
- Equations (2) through (6) can be combined to give
r-
~ Pp+uPg =0 (7
N
..
. Pn + v PE =0 (8)
- c? = Py + MgPg + (H - u? - v2)pg €]
% where H is the total enthalpy per unit mass, defined as
" E+P
b R (10)
- b

The matrix manipulations required to determine the eigenvalues and

eigenvectors are straightforward and will not be presented here. Suffice it
to say that the combinations of variables and derivatives ia Eqs. (7) through

(10) appear frequently and lead to the compact and recognizable forms given

0 & 4 AT A LA VAL LT e
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below*.

Let A denote the Jacobian wmatrix 9F(U)/3U, or

0 1 0 0 0
-u? + P, 2u+ Py, P, PE Ps
A= | -uv v u o 0 (11)

-ull + uPp H + uPy vPy u(1+Pg) uPg

-uMg M¢ 0 0 u

$-tting the determinant |A-axI| equal to zero, where I is the identity
matrix, and solving for the vector ay of eigenvalues gives

? »

1l 2 3 4 5
(a ax ax, ax, ax) = (u=-c, u, u, utc, u) (12)

*The author began this study based on a report written in early 1982 by Harten
at the Courant Institute, New York University. That report, dealing mostly
with theory, eventually appeared as Reference 1 in 1983. Subsequently, two
more reports were written by Yee, Warming, and Harten (refs 6,7) which
emphasized applications of the theory. Thus, as an aid to the reader, the
preseant report will conform to the notation of the later works where
convenient, but some of the symbols, indices, and even the "arrangement” of
the arrays follow the preliminary work performed by the author in developing
his computer program.

1Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,”
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

6Yee, H. C., Warming, R. F., and Harten, A., "A High-Resolution Numerical
Technique For Inviscid Gas-Dynamic Problems With Weak Shocks,” Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, June 1982,

/Yee, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations,” NASA Technical
Memorandum 84342, March 1983.
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The right-eigenvectors Ry = (R;, R;, R;, R;, R;) are
1 1 0 1 )
u-c u 0 utc 0
Ry = | v v 1 v 0 (13)
H-uc H-c%/pg v H+uc r
Mg Mg 0 Mg 1 e
and the left-eigenvectors Ly = (Ll, LZ, L3, Lu, Ls) are 5;?
X X X X X i
(u/c + 1)/2 -(1/c + uq)/2 -vq/2 q/2 -TIq/2
1-r uq vq -q Iq R
; Ly = | -v 0 1 0 0 (14) ’
: (~u/c + 1)/2 (1/¢ = uq)/2 -vq/2 q/2 -Iq/2
-Mf 0 0 0 1
where
['= -Pg/pg (15)
and

Pp/c? = 1-q(H-u?-v2=g ) (16)

[}

= PE/c2 , T

Similarly, the Jacobian matrix B = 3G(U)/3U is

o 0 1 0 0o
-uv v u 0 0
B = | -vi+p, Pn 2v+P, Pg Pg a7
~vH+vP, VvPn i+ vP, v(1+Pg) vPg
-vMg 0 Mg 0 v
6

p
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with eigenvalues ay given by

1 2 3 4 5 .
(aY, aY, aY, aY, aY) = (y=c, v, v, vc, V) (18) —

1 2 3 4% 5
. T t-eigenvectors Ry = (R, R°, R, R , R) are
e he righ gen Y ( v Xy R R By

u u 1 u 0
- Ry = | vec v 0 ke 0 (19)
* H-ve H-c ?/Pg u Hve r .o

Mg Mg 0 Mg 1

- ~ —_— —

. 1 .2 3 4 _5 T
- and the left-eigenvectors Ly = (L , L , L, L, L) are e
Y Y Y Y Y
4
y
-

(v/c + 1r)/2 -uq/2 -(1/c + vq)/2 q/2 -Tq/2

l-r uq vq -q Iq e
LY = -u 1 0 0 0 (20) T
(-v/c + 1)/2 -ugq/2 (1/c - vq)/2 a/2 -Tq/2 s

-ig 0 0 0 1 e

.o DT N e e e e e e e e e AT T T ATt R et e e et
e e e e e e e '-'.\-""v‘..-' A '.'\.'\.'.','\_-. B v T LI A S L A R SR AR
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THE ALGORITHM

1
y
]
<4
Operator splitting was used to solve Eq. (1) on a uniform grid. Harten's f‘jﬂ
ey
TVD scheme (refs 1,6,7) was applied to the two flux terms and Euler's .

predictor—corrector method was used to handle the source term. The solution

n
at time T, Ui,j’ was advanced to time T + 24T using the following sequence of

operations:
ot+2 n .
Uj,j = Lx Ly Lg Ls Ly Lx Uy j (21) =
where :_34
* n At “n “n
Lxs Wi,3 = Ut,3 - = (Fi+1/2,3 = F1-1/2,§) (22a)
h kk * AT % % ——— i
} Ly: Ug,j = Up,j = 5o (Gi,1#41/2 = G1,3-1/2) (22b) - o
- *k *k M
Ui = Ui’ - AT W(Ui ) ‘:
Lg: » 3 b »J (22¢) R
ntl *k - -
Ui, = [Ug, 3+ Vg, 5= AT WU, pI/2
The flux Fi41/7, 4 is given by

2 0k k
Fi+1/2,5 = [F(Ug §) + F(Ug4, ) + (AX/LT) kEI Bi+1/2,§ Ri+1/2,31/2 (23a)

k k k k k k
Bi+1/2,3 = (81,5 + 81+41,9) = AVp+1/2,3 + Yi+1/2,9) %4+1/2, (23b)

1Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

6Yee, H. C., Warming, R. F., and Harten, A., "A High-Resolution Numerical
Technique For Inviscid Gas-Dynamic Problems With Weak Shocks,” Prepriant for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, June 1982,

'Yee, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations,” NASA Technical
Memorandum 84342, March 1983.

..................................
.........




k k k k k
8L, = si+1/2,3 maxl9,minClagyy /o 41, ag-1/2, 4 sg+1/2,41/8 (23c)
. . .
Si+1/2,3 = sizn(ag4y/2,4) (234) .
LI
K K K K S
(8i+1:j - gi»j)/a1+1/2,j ’ a1+1/2,j #0 .i,?
k .
Yi+1/2,4 = (23e) .
k s
0 » Y441/2,5 =0 g
k k .-
Vi+1/2,§ = (BU/X) aqe1/2 5 (23£) o
Q(z) = 2% + 1/4 (23g) _'_.’;'f
k k L
where a(41/2, 4 and Ri+1/2, ¢ are given in Fqs. (12) and (13), respectively. ;,,-«;

The subscript {+1/2 signifies that all of the values in the functions are to

be evaluated at some average state (Ui,j, Ut+1,j)'

was taken to be

>

(ug, § + ugey, §)/2
= (vg, 3+ Vg1, §)/2

= (cqg, 4+ cq4,9)/2

» 0O > 4 > g

i

-~

Me = (Mgq, 5 + Heger, §)/2

(Hy 5 + gy, 4)/2

Pg = (Pgy, 3 + Pogel,§)/2

~

{ = (Fi’j + Fi+1’j)/2

k
The vector ajs1/2,4 is computed as follows:

8p = 141, 5 - b1,y
Smo= e, gt omy g

Sa = ny41,9 - 0y,

In this study, this state

(24a)

(26b) o
(24c) -’-:-:-:
(244) S
(24e) B
(245)

(24g)

(25a)
(25b)

(25¢)
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3
: E=Ljy1,5 - 34,3 (25d)
ﬁ 85 = Si41,4 = 51,3 (25e)
. CL = rdp+ q(88 - uém - vdén - T65) (26a)
. Cy = (6m - udp)/e (26b)
3 | o
a = (C; - C2)/2 (26c)
i+1/2, ] 1 2)
a? = dp - C (264) Lo
1+1/2, § SR
a’ = 8n ~ vép (26e) N
i+1/2,7 M.
.
at = (Cp + C9)/2 (26f)
w2,y R
a® = i3 - MgSp (26g) .
i41/2, § £ 8 .

~ ! [
The flux Gi,j+1/2 is given by expressions similar to Eqs. (23), only with ";:
k k S
the subscript j varying; aj j+1/2 and Ri,j+l/2 are given by Eqs. (18) and o

k
(19), respectively. The vector o, j+1/2 uses the analogues of Eqs. (24) and

(25) with j varying. Finally

€L = tdp + q(SE - udm - vdn - T3S) (27a)
Cp = (6n - vép)/c (27b)
1
a = (Cy - C2)/2 (27¢)
i, j+1/2 L
2 s
a =8§p-cC (274) S
1,§+1/2 1 2
R »
a’ = Oom - uép (27e) oo
i,j+1/2 :
4 e
a = (C; + Cp)/2 (27£) o
i,j+1/2 ! 2 i
. ]
5 e
a = §5 - Mebp (27g)
1, §+1/2 £ &
10
.:‘ .
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The time step, A1, was calculated from the expression

0.89% AX

The CFL factor of 0.B5 was suggested in Reference 1.

For axisymmetric calculations (& = 1), the coefficient (n/Y) in the
vector W(u), Eq. (1), becomes indeterminant on the axis because the radial
component of momentum and Y both vanish. To overcome this difficulty,
L'Hospital's rule is applied to Eq. (1). 3ince all of the terms are well
behaved at Y = 0 except the coefficient (n/Y), only this factor is changed in

the limiting process. It becomes
an/ 3y an

1 oY
The following second order accurate Lagrange differentiation formula is used:

Ing 1 )
=== = === (~p_1 + n
wzay ML T M

where the n.y, ngy, and ny are the three points at j = -1, 0, and 1,

respectively. By symmetry u., = -nj, therefore,

Ing 0y
Y Ay

COMMENT: The reader familiar with Harten's scheme will recognize that
the "artificial compression” terms have been omitted from the flux expression
in Gq. (23). These terms were found to be quite useful for "squaring the
corners” at shocks aad contact surfaces but frequently caused an entropy
violation in regions where a shock was followed by an expansion or where an
expansion was terminated by a shock. Reducing the amount of artificial

1Harten, A., "tligh Resolutfon Schemes for Hyperbolic Conservation Laws, "
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

1t
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compression, as suggested in Reference 7, would alleviate the problem in one
circumstance only to have it reappear in another. Because such regions are
common to the problems of interest, the decision was made, quite reluctantly,
to omit the compression terms over the entire flow fleld.

Secondly, the reader will note that the "average state” defined above
differs from the two cholces suggested in References 1, 6, and 7. One choice,

Roe's method, uses a "mean value Jacobian” such that

-

F(Ug+1, §) = F(Ug 5) = AU, 5,041, ) (Ui+1, 3 - Uilj)A
For an ideal gas it is not difficult to calculate the proper u, v,... from
this expression, but for more general equations of state the required result
is difficult to obtaln.

The second choice, (Ui,j + U1+1’j)/2, occasionally produced poor results
when used with more general equations of state. It first averages the
conserved variables, then calculates the required quantities, u, v, c,... from
the average state.

The method used here, %q. (24), evaluates the variables at each location,
then forms the required average. This worked consistently well for various

state equations; for an ideal gas, it produced essentially the same solutions

as were obtained with Roe's averaging.

1Hart.en, A., "High Resolution Schemes for Hyperbolic Conservation Laws,”
Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.

6Yee, H. C., Warming, R. F., and Harten, A., “"A High-Resolution Numerical
Technique For Inviscid Gas-Dynamic Problems With Weak Shocks,” Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, June 1982,

/Yee, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation
Diminishing (TVD) Schemes for Steady-State Calculations,” NASA Technical
Memorandum 84342, March 1983,

-
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- THE STATE EQUATION i

il The present model was developed as an aid for interpreting some ' T‘
g experimental results obtained with a blast simulator (ref 4). Mixing of the :
; helium driver gas with alr occurs in the system and an equation of state for

i . the mixture is needed.

Ff The state variables in the Euler equations are the density, p, and the

specific internal energy, e. The latter has units of energy per unit mass,

i‘ but the properties of a mixture of gases are best determined on a molal basis - ‘"1
(ref 8). Molal uaits will therefore be used in the intermediate steps leading -;;Qg
e
to the desired function P = P(p,e,M¢). :Eﬁﬂi
IR
Consider a mixture of two ideal gases containing mass m, of species "a” N
-
and mass m, of specles "b". The mass fraction, Mg, of species "a” 1is then B
ny
Mg = ——=—ew-
my + my

The number of moles, n, of each species 1s

m a My
ng = -- np = --
a M, ’ b My

where M,, M, are the respective molecular weights. The mole fractions are

For the mixture

“Carofano, G. C., "Secondary Waves From Nozzle Blast,” U.S. ARDC Technical
Report No. ARLCB~TR-84028, Benet Weapons Laboratory, Watervliet, NY, October
1984,

<) e,
.

o o

£ 5

(2
P

R

}:1

8Obert, E. F., Concepts of Thermodynamics, McGraw-lli1l Book Co. Inc., New s;;}a
York, 1960, Chapter 8. ?#?#Q
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Cy = XaCya + XpCyh
Cp = XaCpa + Xpcp)
where c, and ¢p are the molal specific heats at constant volume and constant

pressure, respectively. For each gas

Ro Ro
C [ S c = e
va Ya-1 » Svh 1y=1

where R, is the universal zas constant in molal units. The specific internal

energy of the mixture is
e =

M

where T is the temperature; the reference state is taken as absolute zero.

The state equation for the mixture 1is

- PR,GT
P = weema
or, using the above definitions,
- Pe
P = —mmmmeemmaeee (28)
Xa Xy
(=== + ===2)
Ya—1 Tp-1

The specific heat ratio for the mixture is defined as
Y = cpley
With a little aljzebra the following results are obtiined:

1 Xa Xb
——— X amee | eme- (29)
¥-1 Ya-l Yyl

ME(Ya = Orp) + oYy
Y = - - (30)
Mg(l=-0) + o

dy 9(¥a = Yp)
Y = = = (31)
Mg Mg [Mg(l-0) + 0]?

LT Lt L S A _'..,:, _-.‘ ,:..,'.._‘.._-._,". AT




T T —— TTT——— achas RGRC R e e b
. e
':—‘ .':n\
) F-‘
M . v
Ma( Ya’l)
2 0 % —mm—eea- (32) C
. Mp(Yp-1) el
- 4
P = (y1)pe (33) ;]
2 Pg = (v-1) (34)
g . Pg = eY 35
. S M (35)
c?= /o (36) .
-eY 2
: Mg a2 sl
[ = ————- (37) T
(v=1)
::-ﬂ
where Eqs. (5), (6), and (15) have been used to obtain the last four g
i: equations. The specific internal energy 1s calculated from the conserved
variables using Eq. (2).
For a glven pair of gases Y,;, Yy, Mg and Mp are constants along with o in
ii Eq. (32). Therefore, only Eqs. (30), (31), and (33) through (37) are actually
used in the algorithm given in the previous section.
When Y, = Yy and Mg = My all of the results reduce to those given in
' References 1, 6, and 7, and the last of Eqs. (1) for S is not needed.
;- Yowever, as will be shown below, even for a single gas species some useful
f” informatinn can often be obtained by retaining it.
) e -y

1Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,”
Journal of Computatfional Physics, Vol. 49, 1983, pp. 357-393.

6Yee, H. C., Warmlng, R. F., and Harten, A., "A High—-Resolution Numerical
Technlque For Inviscid Gas-Dynamic Prvoblems With Weak Shocks,” Preprint for
Proceedings of the Eighth International Conference on Numerical Methods in
Fluid Dynamics, Aachen, West Germany, june 1982.

N ’Yee, H. C., Warming, R. F., and Harten, A., "Implicit Total Variation

-,
‘.
,
L
-
T
.

- Diminishing (TVD) Schemes for Steady-State Calculations,” NASA Technical

- Memorandum 834342, March 1983,
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BOUNDARY CONDITLONS

Along the X-axis the symmetry condition was applied in the usual manner
by using mirror images of points in the active mesh but with the sign of the
v—-component of velocity changed. The inflow boundary was handled either by
using a known solution, as in the test problem of the next section, or by
zeroth-order extrapolation of characteristic variables (refs 9,10) as will be
explained below.

For the X-sweep along the vertfical wall (see Figure 1), the reflection
mecho& was used. ¥or the Y-sweep flow separation was assumed and an extra
polnt was added at the corner - polat "b" in the sketch below. The wall
houndary condition dictates that u = 0. Since thera can be no flow across the

contact surface, v = 0 must apply. Therafore, the same particle remains there

‘\\-separated flow

boundary

point

polat "b"

———— e e ... .-

9“arten, A., "On a l.arze Time-Step High Resolution Scheme,” ICASE Report No.
82-34, NASA Langley Research Centar, Hampton, VA, Noveamber 15, 1982.

lOYee, H. ©., Beam, R. M., and Warulng, R. F., "Boundacy Approximatfons for
Implicit Schemes for One-Dimensional Inviscld Equations of Gas Dynamics,”
ATAA Journal, Vol. 20, No. 9, September 1982, pp. 1203-1211.

16

AT e ? e a® s e H e, A LI S S R e e -
ﬁ'..'-..\,'.‘.‘a..‘c..\'.'- .:.‘--.'-' N v . .'-':"'.‘c'.'-'.‘.','- SRR RN :.' :' CRLEA RS




T N TN MBut S S age g acm A e e T v -~
e . R O S T R T - . toen et

. e

and its mass fraction remains constant, i.e., Mg = 1 if the particles in the
l environment are identified as species "a". The remaining unknowns are density

and energy so two equations are needed. Because v = 0 at the corner,

s information should reach it from point "a" only through the (v-c) character-
I . istic variable. The characteristic vartables for the Y-sweep are w = LyU
where Ly is given by Eq. (20). The first characteristic variable correspond-

ing to the (v-c) elgenvalue is

A A A ~ PN AA ~ AA

= w! = [(v/ctr)p - ugm - (1/c + vq)n + qE - TgsS}/2

a

The approximation w! = w! is used at time T + AT with P, C, «e. evaluated at
a

the average of the two states.

The second characteristic variable corresponding to the (v) eigenvalue

1
7 is assumed to remain constant. It is given by
wl = (1-t)p + uqm + vqn - qE + IqS
i The assumption lf t?at w? ?t time T i3 equal to w; at t+ At. The average
i state values of u, v, and [ are always zero.
:; The procedure is as follows:
i 1. Apply the operator Ly to the points along the wall starting with

point "a”. This requires information at point "b" at time T, which is
available, and information at a second point below "b" because llarten's method

is a flve-poiant scheme; it is needed to calculate gj j-} at "b". Since it is

"”_ e

not avaflable, 81,5 at point "a" 1is used.
2. Solve the two characteristic relations listed above to obtain pp and
Ep at time T + At, Iteratfon is required because the average state values

depend on the new solutfon at "b".
’
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One final note: It was found through experience that the X-sweep

generally could not be applied to the first one or two points along the wall
without generating physically unrealistic results there. It will be seen in
the next section that this extremely crude handling of the corner flow does

not seem to have a drastic impact on the rest of the flow field. This may be

true because the inflow boundary condition is so dominant.

A TEST PROBLEM

The classic shock diffraction experiments of Skews (refs 2,3) contain
many of the features of the flow sketched in Figure 1 and afford an excellent
test problem. Superimposed upon the density contour plot in Figure 2 are
Skews' data for a planar shock (& = 0) with Mach number M; = 3 diffracting
around a 90 degree corner. The flow bhehind the shock is supersonic for this
case so the disturbed region lies entirely downstream of the corner. The
inflow boundary conditions upstream were constant during the calculation.

The construction of Figure 2 is facilitated by the self-similar nature of
the planar flow (ref 1l1). Thus, the unsteady numerical solution can be
conpared to the unsteady laboratory experfment at arbitrary times if the data

are scaled usiag the similarity variables

x' X y' Y

C &M esesres X e I] B e B e

1]
cot Yt cot /Yt

2Skews, B. W., "The Shape of a Diffracting Shock Wave,” Journal of Fluid
Mechanics, Vol. 29, Part 2, 1967, pp. 297-304, -
3Skews, 8. W., "The Perturbed Region Behind a Diffracting Shock Wave,"
Journal of Fluid Mechanics, Vol. 29, Part 4, 1967, pp. 705-719.

113ones, P. M., Martin, P. M. E., and Thorahill, C. K., "A Note on the
Pseudo~Stationary Flow Behind a Strong Shock Diffracted or Reflected at a

18




Here c, is the acoustic speed in the undisturbed environment; for an ideal gas
Co = /;337;;. The factor VY appears in the denominator because T is non-
dimensionalized with /F;f5; in the present study. The numerical data in
Figure 2 were obtained after 135 cycles on a uniform grid with 150 cells in
the X-direction and 190 cells in the Y-direction; Y was taken as l.4 for air.
The predicted shock position agrees with Skews' measurements (see Table L" _
I) to within three percent everywhere. Note that the inflection point in the i;; ﬁ
experimental data near the wall {8 also present in the numerical solution. It ;_j - Q
corresponds to a Mach reflection. ?.'{fii
TABLE I. SHOCK POSITION (ESTIMATED FROM FIGURE 3 OF REF 2) 3
J n s
' I
2.75 0.00 S
2.41 0.65 L
1.99 1.15
1.48 1.48
0.95 1.65
0.44 1.64
0.00 1.58
The disturbance which propagates downward into the uniform flow behind
the shosk consists of two segments, the Mach line or leading edge of the
Prandt1-Meyer expansion centered at the corner and a clrcular soundwave.
Using expressions given by Skews (ref 2) and the nomenclature of Figure 3
2Skews, B. W., "The Shape of a Diffracting Shock Wave,"” Journal of Fluid
Mechanics, Vol. 29, Part 2, 1967, pp. 297-304.
19
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the following can be written:

.2 [+ 201 g (/)

K = === = wwe 3 J ]| 4+ =e=ace- -
cot ¢ (v+1)? Mo Yo

uy 2w - Ly

I e A

=

= sin’l(llMl)
2

R
[

= up[(-1)Mp/2 + 1]/M,
= M, n=-L, tan a

§1=up n = -«

'—v T

Er =& - ksin N = -K cos M

where <« is the ratio of acoustic speeds across the shock and up is the

dimensionless particle velocity behind the shock. Points along the Mach line

are computed from
n=-f tan M

and intermediate points on the circular arc are given by
(E-£1)% + n? = nf

The numerical solution smears the leading edge of the Prandtl-Meyer

- expansion slightly so that the first contour line does not exactly coincide

with the Mach line. The corner approximation may also have influenced the E

result. Elsewhere the agreement is satisfactory.

.
.

. B 0
D ORI e )

The terminator angle, 6, was estimated to be 20 degrees ((ref 3), Figure j:{{i

k 3Skews, B. W., "The Perturbed Region Behind a Diffracting Shock Wave," Journal o
% of Fluid Mechanics, Vol. 29, Part 4, 1967, pp. 705-719. el
RO
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6). 1t marks the end of the expansion fan and the beginning of a small region
of uniform flow as discussed in Reference 1l. The contours in Figure 2
conform to this description.

The slipstream angle, w, was estimated to be 40 degrees ((ref 3), Figure
5). Skews used it as a reference line along which was measured the
{atersections of the second (recompression) shock and the contact surface.
The contact surface in Figure 2, indicated by the thin solid line following
the shock, represents the boundary separating the particles which were
processed by the shock before it reached the corner from those processed after
it diffracted. It is obtained from the numerical solution by "tagging” one
set of particles as "species b" and assigning them a mass function Mg = 0.
Both sets of particles are given the same molecular weight and specific heat
ratio so ' is zero everywhere. The solution evolves independently of the
species equation. The contact surface, itaitially a vertical line at £ = 0, is
simply convected downstream by the velocity field. Note that it passes
through thc low point &), ny of the soundwave. This is correct because all of
the particles below the soundwave move at the particle velocity behind the
shock, up = &1.

The intersection of the contact surface with the slipstream angle,
indicated by the asterisk in Figure 2, was estimated to be 1.65 ((ref 3),

Figure 8c). 1Its coordinates &., n. are

3Skews, B. W., "The Perturbed Region Behind a Diffracting Shock Wave,” Journal
of Fluid Mechanics, Vol. 29, Part 4, 1967, pp. 705-719.

lT:!_?)nes, P. M., Martin, P. M. E., and Thorahill, C. K., "A Note on the
Pgeudo-Stationary Flow Behind a Stroag Shock Diffracted or Reflected at a
Corner,” Proceedings of the Royal Society, A209, 1959, pp. 238-248.
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1.65 cos 40° = 1.264

&e

1.65 sin 40° = 1.061

e
The numerical solution comes very close to passing through this point.

It should be noted that the contact surface described above and that

discernible in a shadowgraph are not the same. The contact surface discussed

by Skews actually represents the boundary separating those particles which :ﬁA,«

. were processed by the planar shock from those processed by the diffracted

H‘ shock. It 1is associated with the entropy gradient along the curved portioa of ‘%;;;

the shock and can be identified in Figure 4 as the entropy contour which
- intersects the point where the shock ceases to be planar. This contour
’_ coincides with the "kink” in each of the density contours in Figure 2 which l: xS
i. renders it visible on a shadowgraph. At the point where Skews' measurement 57 -

was taken the entropy contour and the contact surface nearly conicide which

accounts for the agreement noted above.
The second shock location, indicated by the star in Figure 3, was
estimated to be 1.2 ((ref 3), Figure 7¢c). 1Its coordinates &g, ng are

£g = 1.2 cos 40° = 0.919

Ng = 1.2 sin 40° = 0.717

Again, the numerical solution does fairly well. 1:i€j
The vortex angle, ¢, and its location indicated by the diamond in Figure

2, were estimated to be 48 degrees and 1.15, respectively ((ref 3), Figure 9).

Its coordinates, &, Ny are

3Skews, B. W., "The Perturbed Region Behind a Diffracting Shock Wave," Journal
of Fluid Mechanics, Vol. 29, Part 4, 1967, pp. 705-719,
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£y = 1.15 cos 48° = 0.669

ny = 1.15 sin 48° = 0.743
Judging by the density contours, the proper vortex angle seems to have been
computed but its position appears somewhat closer to the corner than measured

by Skews. However, identifying the vortex center from a shadowgraph involves

a greater degree of uncertainty than the other measurements so the apparent

discrepancy may not be serious.
b CONCLUSION -—
The test problem of the last section demonstrates that Hartean's TVD '{;

maethod can be used to obtain reasonably accurate solutions for the flow

problems of interest. In a companion report (ref 4), the method is applied to -

a problem involving two gases.

4Carofano, G. C., "Secondary Waves From Nozzle Blast,” U.S. ARDC Technical

Report No. ARLCB-TR-84028, Benet Weapons Laboratory, Watervliet, NY, October
1984, ¥
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SMCAR-LCW 1 US MILITARY ACADEMY
SMCAR-SCM-0 (PLASTICS TECH 1 ATTN: GCHMN, MECH ENGR DEPT 1
EVAL CTR, WEST POINT, NY 10996
BLDG. 351N)
SMCAR-TSS (STINFO) 2 US ARMY MISSILE COMD
DOVER, NJ 07801 REDSTONE SCIENTIFIC INFO CTR 2
ATTN: DOCUMENTS SECT, BLDG. 4484
DIRECTOR REDSTONE ARSENAL, AL 35898
BALLISTICS RESEARCH LABORATORY 1
ATTN: AMXBR-TSB-S (STINFO) COMMANNDER

US ARMY FGN SCIENCE & TECH CTR

ATTN: DRXST-SD 1
MATERIEL SYSTEMS ANALYSIS ACTV 220 7T STREET, N.E.

ATTN: DRXSY-MP 1 CHARLOTTESVILLE, VA 22901

ABERDEEN PROVING GROUND, MD 21005

ABERDEEN PROVING GROUND, MD 21005

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
JS ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.

.
P N T R
N ':L'A.-'\o. :.':_l. ;q'..f '.'..-‘ A ARREAE




RS e ARl e i A i S AN

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

COMMANDER

US ARMY MATERIALS & MECHANICS
RESEARCH CENTER

ATTN: TECH LIB - DRXMR-PL

WATERTOWN, MA 01272

COMMANDER

US ARMY RESEARCH OFFICE

ATTN: CHIEF, TIPO

P.0. BOX 12211

RESEARCH TRIANGLE PARK, NC 27709

COMMANDER

US ARMY HARRY DIAMOND LAB
ATTN: TECH LIB

2800 POWDER MILL ROAD
ADELPHIA, MD 20783

COMMANDER

NAVAL SURFACE WEAPONS CIR

ATTN: TECHNICAL LIBRARY
CODE X212

DAHLGREN, VA 22448

NOTE:
US ARMY AMCCOM, ATTN:

COPIES

DIRECTOR
US NAVAL RESEARCH LAB
ATTN: DIR, MECH DIV
CODE 26-27, (DOC LIB)
WASHINGTON, D.C. 20375

COMMANDER
AIR FORCE ARMAMENT LABORATNRY
ATTN: AFATL/DLJ
AFATL/DLJG
EGLIN AFB, FL 32542

METALS & CERAMICS INFO CTR
BATTELLE COLUMBUS LAB

505 KING AVENUE

COLUMBUS, OH 43201

PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
BENET WEAPONS LABORATORY, SMCAR-LCB-TL,

WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
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