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/ The purpose of this research has been to further develop a simple efficient grid
generation procedure for external aerodynamics aplication. The grid generation
scheme is based on solving hyperbolic partial differential equation constraints of grid
angularity and mesh incremental volumes. The grid generation scheme has been

previously used in two dimensional applications to generate grids about smooth

body shapes. The main thrust of this AFOSR supported research has been to

extend the hyperbolic partial differential equation procedure to three dimensional
applications and to study ways of applying the procedure to body shapes that have

discontinuous derivatives.
The main part of this report, Part I, is devoted to describing the three dimensional

hyperbolic grid generator. This Section first reviews the hyperbolic grid generation

procedure in two dimensions and then describes the extension to three dimensions.1
The numerical solution algorithm, mesh control functions and treatment of axi

singularities are then described. Computed meshes od.even are calculated flow
fled result are shown tohelpe.luete-hegrids.Part I of this report is essentially

. a sell-contlned technical report that is being readied for submission to a Journal.

4-Part II of this report is both brief and sketchy in its presentation. In this section

we describe some of our success in treating bodies with sharp edges and bodies

that are exceptionally concave. The hyperbolic grid generation tends to propogate

discontinuities and some bodieslare not compatible with the imposed orthogonality

and volume constraints that at user imposed. When this happens, the hyperbolic

grid generator breaks dow What must be done in this case is to relax these

constraints. We some success doing this, but this process remains still an

. artfam-
' /The last part of this report describes a flow field algorithm development. During -

the course of this research we had some considerable interaction with AFWAL,

and at one point became 'side-tracked' into a successful approach of improving the

efficiency of our general implicit Euler aad Navier-Stokes code. art I of this

" paper contains a preliminary paper describing this development.
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FOREWORD

The purpose of this research has been to further develop a simple efficient grid
generation procedure for external aerodynamics aplications. The grid generation
scheme is based on solving hyperbolic partial differential equation constraints of grid
angularity and mesh incremental volumes. The grid generation scheme has been
previously used in two dimensional applications to generate grids about smooth
body shapes. The main thrust of this AFOSR supported research has been to
extend the hyperbolic partial differential equation procedure to three dimensional
applications and to study ways of applying the procedure to body shapes that have
discontinuous derivatives.

The main part of this report, Part I, is devoted to describing the three dimensional
hyperbolic grid generator. This Section first reviews the hyperbolic grid generation
procedure in two dimensions and then describes the extension to three dimensions.
The numerical solution algorithm, mesh control functions and treatment of axis
singularities are then described. Computed meshes and even are calculated flow
fled result are shown to help evaluate the grids. Part I of this report is essentially
a self contained technical report that is being readied for submission to a Journal.

Part II of this report is both brief and sketchy in its presentation. In this section
we describe some of our success in treating bodies with sharp edges and bodies
that are exceptionally concave. The hyperbolic grid generation tends to propogate
discontinuities and some bodies are not compatible with the imposed orthogonality
and volume constraints that are user imposed. When this happens, the hyperbolic
grid generator breaks down. What must be done in this case is to relax these
constraints. We have had some success doing this, but this process remains still an
art form.

The last part of this report describes a flow field algorithm development. During
the course of this research we had some considerable interaction with AFWAL,
and at one point became 'side-tracked' into a successful approach of improving the
efficiency of our general implicit Euler and Navier-Stokes code. Part Mf of this
paper contains a preliminary paper describing this development.
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PART I. GENERATION OF
THREE DIMENSIONAL BODY FITTED COORDINATES

USING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

INTRODUCTION
Body conforming curvilinear grids are often used in finite difference flow field

simulations. One reason for this is that the application of boundary conditions
can be simplified in finite difference calculations because grid lines coincide with

boundary lines. This is especially important in high Reynolds number viscous flow
simulation in which high flow gradients near the body surface must be resolved.

The task of generating a satisfactory body conforming coordinate system is not
easy. The grids must not be too distorted, they should have smooth variation,
and they should be clustered to flow field action regions - typically near boundary
surfaces. Moreover, the grids should be generated in an automatic manner that
requires a minimum of user input.

One approach for generating body conforming grids with minimum user input
has been to solve a set of partial differential equations. In this technique level lines
of f(z, y, z), ii(z, y, z), and t(z, y, z) that have monotone variation are sought as a
solution of a set of partial differential equations. Generally values of q, rg and C
are user specified on the boundary surface and constraints expressed as differential
equations are used to develop the grid away from the boundaries. The most pop-
ular such approach requires the solution of a set of elliptic equations that satisfy
the maximum principle 11-51, however, hyperbolic [6,71 and parabolic [81 governing
equations have been used as well, at least in two dimensional applications.

In this report one way of extending the hyperbolic grid generation method of

Steger and Chaussee [6] to three dimensions is developed. In two dimensions the
two differential constraints

(Xqz + ~gy((Ia))

- = (AV)' ((ib))

or in C, q computational space

-ezq + yJie 0 ((2a))

X(Y', - X'jI( A V ((2b))

have been solved by marching in q from an initial data plane 9 (z, y) - constant.
The first equation is a constraint of orthogonality. The second equation controls
the mesh spacing with the user specifying the mesh control volume AV (actually
area in two dimensions). A linearized version of equations (2) is readily shown to be

N . . . ... . ..



hyperbolic and suitable for marching in '1. Equations (2) are solved in computational
space to give the z, y location of the constant and , = constant grid lines.

The two partial differential equations, expressed as either Equations (1) or Equa-
tions (2), have been referred to as a mesh cell volume procedure for grid generation.
In the next section a three dimensional extension of this procedure is developed.

THREE DIMENSIONAL GRID GENERATION EQUATIONS

A body fitted exterior grid about an arbitrary closed boundary surface is desired.
Only a simple topology such as that illustrated in Figure (1) will be considered
here. The body surface is chosen to coincide with (z, Y, z) = 0 and the surface
grid line distributions of - constant and q = constant are user specified. The
outer boundary (z, V, z) = 'maz is not specified, it is only required to be sufficiently
far removed from the inner boundary. Using f as the marching direction, partial
differential equations are sought which produce planes of constant f, i/ and to
form a nonsingular mesh system.

An extension of the mesh cell volume procedure to three dimensions is proposed.
In three dimensions, however, there are three orthogonality relations and one cell
volume constraint. At any point four equations are available to predict the three
unknowns z, V and z so one equation must be discarded. Because C is the marching
direction it is natural to use only the two orthogonality relations that involve C, this
leads to the governing equations

wCx-f+ yo + zfzt = 0 ((3a))

X"-'t + iUc + z.rZ = 0 ((3b))

z L41 Zt + z4f z it + zV -9 Cz C1 Zil - qfzgUZ f Z f IZe A ((3c))

or with F defined as (z, V, z)'

e -. =o, 4, C 0, ,AV

The first two equations represent orthogonality relations between and f and be-
tween 9 and C, while the last equation is the volume or finite Jacobian constraint.

Equations (3) comprise a system of nonlinear partial differential equations in
which z,y and z are specified as initial data at f = 0. As developed below, lin-
earization and analysis of Equations (3) about a nearby known state reveals that
the system is hyperbolic with r as the marching direction.

Let z, Y0 , z° represent a nearby known state so that

2 = ° + (z - z°) =z ° +

1=0+

0Z=z +i

2
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where 2, and i are small. Substitution of these expressions into Equations (3) and

elimination of products of tilde terms results in the locally linearized system

Ao(- o), + Bo(- fo),, + Co(F- o), = f ((5))

with

A=0 0 0 ((6a))

B = (zC . ) 1((6b))

(Yc z -Y(z) (x-z( - Zzez) (XcV, - --f )

= or oe I
- -. . =0 ((6dl)):-Z (AV -AV AV - AVo

Letf R 9- F, then (5) is rewritten as

A4 + B j,, +c0 , = if ((7))

Now Co1 exists unless (AV)- -- oo, which we will not impose, so (7) can be
rewritten as

C-'AoA + C' o + , = C' (())
Although the verification is nontrivial, Co'Ao and Co'Bo are found to be symmet-
tic matrices (this was carried out by Dennis Jesperson of the NASA Ames Research
Center, who used MACSYMA). The linearized system Equation (8) is therefore

hyperbolic and can be marched with serving as the "time-like" direction.
It can be pointed out that an analysis was attempted for the three orthogonality

relations alone. These equations, however, are found to be improperly posed for
marching with initial data in r. Indeed, as best as we can discern, the three rela-
tions do not lend themselves to unique solutions regardless of the type of boundary
conditions specified.

3
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SOLUTION PROCEDURE
The nonlinear system of grid generation equations given by Equations (3) are .

solved with a noniterative implicit finite difference scheme. An unconditionally
stable implicit scheme is chosen so the marching step size in C can be arbitrarily
selected based only on considerations of accurately generating the grid. Iterative
solution of the nonlinear grid generation equations is avoided by expanding the
equations about the previous marching step. As a consequence Equation (7) is 0.
solved with the nearby known state 0 taken from the previous C step.
a) Numerical Method

Let I= Aq A = suchthat f=j-1,rq =k-1 and =l-1. Central
spatial differencing of Equations (5) in and q with first order backward implicit
differencing in f leads to

Aj6c(Fi+zj -F) +E,5s,(Fi. 1 - iF) + CLV(ji+ A+di,(9)

where
0S

and
F 12 'j1F+ 2 1I

V1F1+1- o..., F

Note that C6aii was subtracted from A+t to produce ji+1 in the above. Throughout
only those indices that change are indicated, thus r1+1 =P rj,kj+i, r+l :+j,
etc.

Multiplying through by C0"j gives

Cr'A45e(1+i - A) + CTIBOV(4+ - F) + [(Fl+i F f)= '+ ((10))

where I is the identifying matrix. lb reduce the inversion cost the difference equa-
tions are approximately factored as

(I + C'A6) + C'LAVFj - F= CT'&+,

so that F+t is obtained by solving sequences of one-dimensional-like block tridiag- -
031 systems

(r + C'A a )#a+i =#I+, ((12a))

(I+Or 15)Vf Fi+L 4+ ((12b)) I

* . -. -.



F8 + V(FI+, ((12c))

In practise numerical dissipation terms are added in the and q directions. Typi-
cally we have used a combination of fourth and second differences which are explic-
itly and implicitly included into the basic algorithm as

11 + C- 1 Aj6t - e,(AV)eJI + Cr-'B1 6,1 - ej(AV)j](i + - i) =

ci-' d+,- + v)+

where e, is order - and ei is 2.5 or more larger than e.. As an alternative to fourth
differences, second order terms such as

eAVr'IA

have been used both implicitly and explicitly.
The coefficient matrices A1, B1 and C1 contain and q derivatives which are

IL formed using central differences. These matrices also contain derivatives for Zx, y"
and z, which are obtained from Equations (3) in terms of f and 9 derivatives. That
is, Equations (3) are linear in the unknowns xf, yC and z.. They are easily solved
for as

(Dc e)( IbZ( ((13)= (D. ,,,e- , 1e,,(3)

with
wDS(C) = (Y~:,-V ' + (,VZe - Z( Z,)' + (Za, -,

Note that AV//(zc + uf + q) - Det(C) so that Det(C) will be zero if and only

if the user specified AV = 0. Hence, 0 -C will exist.
b) Cell Volume Specification

The user has control of the grid by means of the initial surface point distribution
and by specification of the cell volumes, AVj,,j. Through the cell volumes the
extent and clustering of the grid can be essentially controlled. Because the cell
volume at each point must be specified, it is clear that the user must devise some
kind of method for determining volumes. There are many possibilities, here one
such approach is illustrated.

Suppose we had & sphere to grid. A reasonable grid might have uniform angle
spacing and have a radial grid distribution that is exponential. For this special
geometry and grid we can analytically determine the control volumes by a simple
formula. Now take the problem at hand, perhaps an aircraft fuselage, which we
want to mesh as a warped spherical-like grid. We can find a sphere that has the
same surface area as our fuselage and use the grid cell volumes of the sphere to

; .
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specify the cell volumes of the fuselage grid. However, the fuselage will not have
the same kind of surface area distribution as a sphere with equal angle distribution.
So here we need an adjustment, something like

= r i'~~,kiephere (1)
Aia (Av'j,)SPjaeie 1-6) + IA .A(AAjk)fi wattage

where 6 - I for small 1 and 6 -- 0 for large 1. That is, the volumes would be
*" adjusted initially to the local boundary surface increments. But as we march out

the uniform spherical volumes would gradually be specified. Such an approach has
been used, and, as a result, the far field portion of the grid tends to be uniformly
spherical. The results shown later will illustrate this behavior.

C) Axis TREATMENT

A coordinate singularity will be encountered whenever a regular grid is mapped
over a closed body such that C - 0 corresponds to the body surface. Here we
will generate warped spherical grids, so equation (5) becomes singular at the axis.
Using C as the marching direction with 4 and ri as sketched in Fig.2 (i.e. f from
pole to pole and 9 equatorial ) then the axis at = 0 and = 6 represent
singularities. In particular, 9 derivatives approach zero at the pole and equations
(2b) and (2c) are lost. If there are KMAX points in the 9-direction, however, the
difference equation corresponding to Eq.(2a) can be imposed KMAX times to solve
for three axis unknowns, namely x,y, and z. Thus the axis points are overdetermined
and can be solved for via a generalized inverse scheme. Such an approach has been
coded. However, it is difficult to implement implicitly, and it has not proved to be
reliable for severely distorded axis cases, for example, when the axis extends from .-

a wing tip.
Rather than try to compute the axis as the solution evolves, we have instead

prespecified the axis position. For now a fixed straight axis has been used that is
aligned with a coordinate. Typically a y-coordinate line has been chosen so that x
and z are zero along the axis. Values of y along the axis are obtained as part of the
solution process by imposing the orthogonality conditon, which in this degenerate
came is simply aq, = 0. This condition is imposed using second order accurate three
point difrerencing, and it is implicitly implemented into the q-block tridiagonal

solution process using a slightly modified block solver.

RESULTS

To demonstrate the hyperbolic grid solver a series of grids were generated about
ellipsoidal and 'super ellipsoidal' body shapes. The body generating function is
given by

planform
(X/,M..)" + (/Yr.s)" = 1"

• ". .'.



thickneo"

(U m + (t/ 3 )=

profile

(-/Xmas)' + (Z/Zm.1' = 1
where n, m and I are 2 for ellipsoids and 4 or 6 or 8 etc. for super ellipsoids. By
chosing very high aspect ratios the ellipsoid can minick a practical wing planform,
or, for more moderate aspect ratios, a fuselage. In either case an axis singularity
exists.

The right half of an elliptic wing planform with the user specified body surface
grid point distribution is shown in Fig.2. This 'wing' has a 16:1 planform aspect
ratio with a 20 per cent thick ellipse serving as the airfol. Thus the body is an
ellipsoid with ratios 16 : I : 1/5. A uniform grid spacing of 1/2 per cent thick
maximum chord was specified as the first grid spacing off the body. Figures.4 to 6
show various segments of the generated grid for e and q = constant planes. Figure
4 shows an q =constant plane ( here in the plane of the wing trailing edge) at the
wing tip. As seen, the grid is very smooth, uniform off the body, and the axis at
x = 0 is well behaved. A lower half of the grid at the wing midspan ( y = 0) is shown
in Fig. 5. This is a f = constant plane. Again the smoothness and grid clustering
control is illustrated. Also in the far field the grid is tending to be spherical because
spherical mesh incremental volumes have been specified. Finally, views above the
wing in the z = 0 plane are shown in Figs. 6a and 6b. These views are focused at
the wing tip and again illustrate satisfactory axis treatment.

A similar grid was computed as illustrated by Figs. 7 to 10. The wing in this
case used a more realistic airfoil shape that has a thickness ratio of 15 per cent.
The grid views Figs. 7 and 9 give an indication of the wing and airfoil section. Note
that the airfoil has a rounded trailing edge.

It must be remarked that if the airfoil trailing edge radius is continuously reduced
that the method breaks down. "Pretty bows" get tied within the grid. Provided
the trailing edge radius is not zero, break down can usually be avoided by clustering
grid points in this region and adjusting the specified volumes. In lieu of good surface
clustering functions one can sometimes obtain an adequately resolved trailing edge
by generating an overall much finer grid than what is desired for the flow solver.
In this case we simply discard, say, every other grid point to obtain the final grid.
Because the hyperbolic grid solver is quite efficient, we can readily operate in this
manner. Ultimately the scheme does break down when subject to a truely sharp
trailing edge.

The above grids have grid spacing that is adequate for inviscid low simulations.
The hyperbolic grid generation procedure can also directly generate grids suitable
for high Reynolds number viscous low simulation by simply having the user specify
a much finer mesh spacing going out away from the surface. In Figs. 11 and 14 we

7
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show views of a grid generated about a bluff body fuslage. The body in this case
is defined as a 2: 1 ellipsoid in the x-y and y-z planes ( see Fig. 11). In the x-z
plane a 1: 1 super ellipsoidal cross section in specified by seting m = 4 ( see Fig.
14). The first grid spacing off the body in this case was specified as 0.00002 of the
body cross sectional diameter. Magnified grid lines coming into the axis are shown
in Fig. 13 to indicate this fine grid spacing just off the body.

Although a less interesting configuration, a similar viscous grid was generated
about a 6: 1 : I ellipsoid. To demonstrate that the grids being generated with this
approach are indeed useful, Figs. 15 to 16 show calculated particle paths and surface
'oil flow' simulations on this 6 : I : I ellipsoid. These Naiver Stokes calculations
were carried out by T.H. Pulliam using ARC3D. The free stream conditions were
chosen as Mach number of 0.74, angle of attack of 25 deg., and 0 yaw angle with
a plane of symmetry imposed. The Reynolds number was 44 x 106 based on the
diameter and laminar flow was assumed.

- .. . . . . .- f



CONCLUSION
A procedure has been developed for generating body fitted coordinates in three

dimensions using hyperbolic partial differential equations. In this report the scheme
has been used to generate warped spherical-like grids about simple ellipsoidal wing
and fuslage configurations. The hyperbolic grid generator can fail whenever the
body surface is discontinuous or the user specified surface grid distribution is too
irregular. For simple continous body shapes, however, the hyperbolic grid genera-
tion scheme can be very fast and reliable. It requires a minimum of user interaction,
and it can be used to generate grids suitable for either inviscid or viscous flow sim-
ulation.
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PART II. EXTENSIONS TO HYPERBOLIC GRID GENERATION

In this very brief section we shall simply make mention of some problem areas
and some 'fixes' in dealing with configurations with sharp edges or exceptionally
concave cross sectionals. In these situations the hyperbolic grid generation scheme
generally breaks down. Figure 1 indicates what breakdown can look like. Only two
dimensional results are considered here with f the coordinate along the body and
q the marching coordinate.

For exceptionally concave bodies T. J. Barth found that he could often make the
hyperbolic grid generator still perform by multiplying the t-difference by a factor
greater than one. This ad hoc fix seems to allow the generated grid lines more
flexibility to adjust in f, yet does not seem to too adversely effect orthogonality.
The success of this approach is indicated by Figures 2 to 4 which show cross sectional
grid views about the X-24c which where generated for AFWAL. Barth and Risk have
also generated grids about cross sections of the Shuttle, a grid is shown in Fi- 5.

The hyperbolic grid generation scheme will also break down when a grid must be
wraped around a sharp edges such as the trailing edge of an airfoil meshed with an
"O-grid" (i.e. warped cylindrical grid). However by treating the grid line leaving
the trailing edge as a special surface at which orthogonality is not imposed, airfoil 0-
grids have been generated. Figures 6a and 6b show a grid about a cambered airfoil
is which the C=constant line emanating from the trailing edge is specially treated.
Near the body this line is determined so that it has a slope that bisects the trailing
edge angle, while the arc length increments between points is user specified. Away
from the body surface this special logic is blended into the usual grid generation
formula. As the grid views indicate, such trailing edge logic can work well, but
proper specification of the arc lengths along the special plane is still very much an
art. We are also working on special logic that uses slope and volume information,
and this is evolving into a more automatic process. A result obtained by Risk and
Barth is shown in Fig.7. Some irregularity can still be obtained, but this process is
becoming reliable and automatic.
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PART III. An Efficient Approximate Factorization Implicit Scheme

for the Equations of Gasdynamics

TIMOTHY J. BARTH* AND JOSEPH L. STEGER t

NASA Ames Research Center, Moffett Field, CA 94035

L Introduction

Numerical algorithms for solving the compressible Euler and Navier-Stokes
equations have received considerable attention over the last decade. Both im-
plicit and explicit time advance and iterative techniques have been ultilized.
Explicit methods typically have lower arithmetic operation counts but more
restrictive stability bounds than implicit methods. Use of implicit methods is
generally advantageous for flow situations where an explicit time step limita-
tion would be much less than the time step neccessary for the desired ac-
curacy. This situation frequently arises in the solution of unsteady flows
that are characterized by low frequency motion, boundary condition forcing,
and high Reynolds number viscous effects. Implicit algorithms can often be
readily adapted to be efficient relaxation schemes for steady state applications
as well. -

The purpose of this paper is to present a technique that substantially
reduces the arithmetic operation count, but otherwise retains the stability
characteristics of a Beam-Warming approximate factorization implicit al-
gorithm for the Euler equations. This new method extends a matrix splitting
of Steger[1], previously restricted to Cartesian coordinates, such that equa-
tion decoupling is achieved for the conservative form of the Euler equations.
The equation decoupling ( or matrix reducibility ) results in a significant im-
provement in the efficiency of the algorithm. By ultilizing a local transforma-
tion, the equation decoupling techniques are extended to the Euler equations
in generalized coordinates. Computation of transonic flow about a NACA
0012 airfoil is used to verify that no numerical stability is lost with the new

,lnformatics General Corporation.
tsenior Staff Scientist
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reducible implicit algorithm. Extension of the technique to the Navier-Stokes
equations is also indicated in the Appendix A. P

IL Background

In this section we review a sound speed and velocity splitting concept
for an approximate factorization implicit algorithm in Cartesian coordinates
and describe how it can be used to improve computational efficiency. The
extension for general coordinate systems is described in the following section.

a) Beam and Warming Algorithm

The conservative form of the Euler equations for a perfect gas can be
written in Cartesian coordinates as

OtQ tE OyF -0 (2.1)

where [ POU 1rPV 1

Q E= / += | F (2.2)

L .J We + I e ~
and

-(' a)- lP(U2+ V2) (2.3)

Here p is the fluid density, u and v are the Cartesian velocity components, e
is the total energy per volume, and p is the pressure.

A general purpose implicit finite difference scheme (c.f. Refs. 2 and 3) for
equation (2.1) that can be readily adapted to either steady or unsteady flow S
applications is given by

+ h6,An + D (2)1[I + h6,Bn + D() Qn-
1(2.4)"

-&[,n+ 6,F +D D(4)QII (.4

where ': ''D (4) 
- e.At[(VA), + (VA) I (2.5a)

-8
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and
(2) -iAt(VA) 3 , D(2 ) = -- At(VA), (2.5b)

Here 64 and 6. are three-point, second order accurate central space difference
operators, while A and V denote forward and backward space differences.
Either first or second order accurate time differencing may be used with h=At
or At/2, alternately the time step may be used as a relaxation parameter
and may vary in space as well. With the use of central space differencing
numerical dissipation is needed and implemented with the second and fourth
order differences given above. The parameters c, and e, control the amount of
numerical dissipation. These parameters may be constants or may vary with
the solution gradients ( in which case they are moved inside the operators so
as to maintain conservative form). Steady state convergence can be greatly
enhanced by more implicit treatment of the dissipation terms and by use of
space varying scaling parameters.

In equation (2.4), local time linearizations have been ultilized to avoid
solving nonlinear equations between time or iterative levels n to n+1 by
expanding E and F in terms of AQ as

n+1- E n - A(Qn+l - Qn), A - OE/OQ (2.6a)

F n+  - Fn + Bn(Qn+l - Q"), B = F/ Q (2.6b)

The left hand side operators of equation (2.4) form a linear system of
equations that must be solved at each time or iteration level. Although
the matrix band structure of this system has been altered by approximately
factoring into one-dimensional-like operators, the inversion process has been
simplified. The approximate factorization (AF) reduces the inversion work
but sometimes at the cost of limiting the time step At because of either
time accuracy considerations or because of reduced inefficiency in relaxation
applications.

In practice the difference equations (2.4) are solved in the ADI algorithm
form

"-- RHS(2.4) (2.7a)

LAQ" = AQ (2.Th)

Variants of this algorithm include higher order difference approximations
(including pseudo-spectral right hand side-operators (4) ), space varing At
for steady state applications, addition of viscous terms, etc [c.f. 5-9 ].

3. ",-o'.



b) Diagonalization
Efforts have been made to reduce the inversion work over and above

what is obtained with approximate factorization. In particular, Pulliam and
Chaussee7 have used eigenvector-similarity transforms to reduce the block
tridiagonal matrices to scalar tridiagonals( see also Chaussee and Pulliam8 ,
Steger, Pulliam and Chima , Coakley t0). Specifically, the eigenvectors of the
A and B Jacobian matrices, denoted as X and Y, are further approximately
factored into the left hand side of equation (2.4) as

XI+ hg,,AA~ n+ (2)]X-1Y I + h6 yAB~ n+ (2)]Y_1Qn(28
• (2.8)

-At[6E n + 6 Fn + D(4)Qn]

where
AA- X-AX and AB= Y -'BY

As Figure 1 illustrates, the number of operations in solving a block tridiagonal
( that uses only L-U decomposition ) increases with the cube of the block
size, a formula given by Merriam I' indicates the work increases as Ym3 +

m2 - im where m is the dimension of the block. Specifically our own coded
4 x 4 block solver requires 370 operations per entry (i.e. grid point) while the
1 x 1 tridiagonal needed in (2.8) requires only 9 operations per entry (or 36
operations for 4 scalar tridiagonals). Although the eigenvector matrices must
be formed and multiplied through (each 4 X 4 multiply requires 28 operations
per entry), the arithmetic operation count of equations (2.8) is considerablly
reduced from that of equations(2.4). For block tridiagonal matrices subject
to periodicity conditions and for block pentadiagonal matrices the saving is
even more significant.

c) Sound Speed and Velocity Splitting
An alternate method for reducing the inversion (i.e. solution ) work was

proposed and demonstrated in reference [1.This method was also motivated
by similarity transforms, but it does not explicitly use them in the algorithm.
Instead, it involves splitting the Jacobian matrices A and B into velocity and
sound speed ( or pressure parts) as

A -Au +A& (2.9a)

B=Bu+Bc (0.9h)

e....
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such that the eigcnvalues or(A) and or(B) are

or(A) or(Au) + c(Ac) (2. 1Oa)

or(B) = 7(Bu) +o,(Bc) (2.10b)

w ith

o,(Au) =(u,ut, u, u), r(Ac) =(0, c,0, - c) (2.11la)

or(B.) = (v, v, v,v), o,(Bc) =(0,0, c,- C) (2.11b)

The matrices Au, A,, B, and B, were round from a natural reduced form of
the equations in nonconservative from. Specifically Ac and Bc were split, as

0 o 0 0 0 0 01

(U2 + V2)/2 -u& -v1 0 0 0 ol
A.2 0 0 0 0 B, (U{ + V2 )/2 -u -v

CV

where
j~~~ =U [u2 + V2)/1--)2

4 yp-p, 1)21-

=[u 2 + V2 )/]--12
b~~c= PyU )217p/[p (,y -

while A. and B., are

Aw =A-Ac(2.13a)

B,=B- Be (2.13b)

This splitting produces matrices A. and B,, that are more complex than A
and B. However, Steger [1] noted that Qis an eigenvector of both matrices,
i.e.

AuQ =uQ (2.14a)

Q vQ (2.14b)

which prompted the ad hoc substitution

S
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AQ ( uI+ A)Q (2.15a)

BQ (vi1 + Bc)Q (2.15b)

The matrices uI + A, and vI + B, have a reduced form that simplifies
inversion compared to A and B.

Insertion of equation (2.15) into the equations for local linearization of the
Jacobians (2.6) produces *

En+l - En + (Ul +Ac)n(Qn+l - Qn) (2.16a)

F -
+ 1 = F n + (vI + Bc)n(Qn+l - Qn ) (2.16b) -

S
Uitilizing these linearizations in the basic algorithm equation(2.4)

LZL AQ = RHS(2.4) (2.17)

gives new left hand side operators L, and L. that are easier to solve

L= I + h6x(u! l A,)n + D (2) (2.18a)

L1  I + h6(vi + B,)" + D 2) (2.18b)

The end result of this splitting is that the new operators L, and L, form
matrices that no longer require 4 x 4 block tridiagonal inversions. Leaving
out the dissipation terms to illustrate the structure of these operators, we
obtain

'1 0 0 0f u 0 0 0o 1 0 0 a, u+aO2  a', a

Lx- 0 0 1 0 +At6z 0 0 u 0 (2.19a)

0 0 0 1 a4 a42  a43 u+a 4

'1 0 0 0" v 0 0 0

0 1 0 0 0 v 0 0

Ly 0 0 1 0 + At6, b 1  be2 v-+b, b 4  (2.19b)
0 0 0 1 b 1  b42  b3 v+ b 4

- ..

t ~. . . . . . . . . . . . . . . .
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where a' and b' are the respective elements of A, and B, given by equation
(2.12).

For the L, operator, for example, the first and third rows decouple from the
system and can be solved as scalar tridiagonal matrices with their respective
right band sides. Once these rows are solved, the elements of the first and
third columns can be moved to the right hand side. The second and fourth
equation remain coupled and are solved as a 2 x 2 block tridiagonal matrix.
The dissipation terms also form diagonal tridiagonals and so do not alter the
structure. The block decoupling of the L. operator is even more conspicuous
and is inverted (i.e. solved for ) in a similar manner.

Substitution of the left hand side operators given by (2.18) in place of
those of (2.7) results in a substantial reduction in arithmetic operations. Our
typical 2 X 2 block tridiagonal requires 55 operations per point, so the overall
inversion, including the two scalar tridiagonals, requires 73 operations per
entry. Because the two scalar tridiagonals have identical coefficients this work
can be even further cut by solving them together.

The matrix splitting (2.15) produces the flux vectors

E AQ uIQ + AcQ =E + Ec (2.20a)

F zBQ= vIQ +BcQ F+ F (2.20b)

where

rpu pV 0[j [ye
,~V 0,-- t,,V 2c 0o F" |P|F- (2.21) :-

,L Ue .J t P VC J p-

Note that we do not reproduce the matrix splitting (2.9) ( with A, and B,
defined from (2.12)) by taking the Jacobians of (2.21). Surprisingly, linear
stability analysis ( see Appendix B) as well as numerical experiment have
shown that the use of the Jacobian matrices for AC and B, is unsatisfac-
tory. However, the same stability analysis and numerical experimentation
have confirmed that no numerical stability degradation occurs by using the
substitute linearization matrices (2.15). But, the linearization (2.16) is only
first order accurate because of the substitution (2.14).

The matrix splitting concept can be extended to three dimensions. In this
case the difference equations can be represented by

LL,L(Qn+l - Q") -- At[6 8E" + 6,F" + 6xGn + D(4)Qnj (2.21)

43
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Associated 'with each operator are 5 x 5 block tridiagonal matrices, wvith each
matrix inversion requiring about 700 operations per grid point. Typically the
inversion represents 70 to 80 per cent of the overall work per point. Replacinge
each Jacobian A by 0l + A, etc. reduces the inversion cost from 700 to
82 operations per entry of each block tridiagonal. By combining the scalar
tridiagonals, this can be cut to 74 operations.
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MI. Sound Speed and Velocity Splitting in Steady Generalized Coordinates

The two - dimensional Euler equations can be transformed from Cartesian
coordinates to steady curvilinear coordinates using- new in dependent variables

The Euler equations written in steady generalized curvilinear coordinates
are

Oro atk+ 0,P 0(3.2)

pU [ pV 1
PUpvU + &4'P J-Ij J-1pL'V + VxP

eU(e+ p) JV(e + p)

where J is the Jacobian Gj7 - y7 and

U=G2 U+ 1 V, V=,,xU+77yV

are unscaled contravariant velocity components.

Application of the AIF implicit scheme (2.4) to equation (3.2) is given by

I h( D +5,g't+D 2 ] &o3a

'where =E~J'vA) V,,)J
D s)2 (V r,&,72j j(3-3b)

and

Dr fi~tJVA.J q eAJV,&, (3.3c)

The Jacobian matrices of Pand P can 'be given in terms of the Jacobian
matrices A and B as

A = .A+e.yB (3.4a)



B = YpA + ?yB (3.4b)

Making the substitutions of (2.15) into A and BQ results in

= (UI + CAc + CyB)e (3.5a)

f3Q (VI + ?izAc + ?1 Bc)Q (3.5b)

Because of the linear combination of both Ac and Bc being present in
Eq.(3.5), only 3 x 3 reducibility is achieved. When applied in the implicit
AF algorithm, this results in a savings as indicated in Ref.1, but not as great
a saving as what was achieved in Cartesian coordinates. Moreover, in three
dimensions one can only reduce to a 4 X 4 block tridiagonal. --

The transformed equations given above have only been transformed in their
independent variables. That is, Cartesian velocity or momentum components
have been kept, and, as a result, the so called strong conservation law form is
maintained. Suppose, for example, we had used orthogonal body coordinates
s and n, and that we transformed the momentum components as well. We
'would then obtain equations with coordinate source terms, but otherwise
the equations would look like their Cartesian counterparts and the Jacobian
matrices could be reduced as before. We can achieve this same effect with
equation (3.2) by multiplying through by the matrix

::'1 0 0 0 -':

C (3.6)

':LO 0 0 .'-.

This matrix transforms uv momentum components to UV components.
With multiplication of (3.2) by C we obtain

- PUU + P(V.V) I PUV + p(Vc. V,)
.-. + OfJ- + , 1. j- H (3.T)P" PVU + Ave. V) j pV, + p(V, ).-

t'i IL Ul+ P) J L V(ep)

with
H -C[(Ce)-'E + (C -F)

These equations look much like their Cartesian counterparts except for
the coordinate source term and the appearance of two extra pressure terms.

::: -.
• 
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However, for orthogonal coordinates, V . = 0, and the extra pressure
terms then drop out. Although we will not give the details here, one can
anticipate from the form of the equations that the flux Jacobians in the
implicit algorithm are 2 X 2 reduciable ( here the Jacobian matrices are formed
with respect to pU and pV components, not pu and pv components). So if
the coordinate generated source term is either treated explicitly or properly
distributed in the LC or L, operators, the inversion efficiency of the previous
section can be obtained.

Generally the transformed coordinates will not be orthogonal and multi-
plication through by C will not lead to the 2 X 2 reduced matrix operators.
However, if we use a transform matrix that brings out a mixture of con-
travariant and covariant velocity components, the extra pressure terms will
also disappear. Although it may not be immediately obvious, we can again
obtain the reduced matrix operator structure without requiring the coor-
dinates to be orthogonal.

Consider the transform matrix C! given by

= 0 (3.8)

LO 0 0 -'

where

4: 2 VV V-

and the inner 2 x 2 of C transforms u and v into the covariant velocity
components

U =q£ 1(vyU - izV), V - C 1 (- ~U + GV)

Since the determinant of C is JI j1 1 , its inverse exists for all mappings of
interest and is

.1 0 0 0"
0.O-- _.. 2a - I 0(3.9)

0 0
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Multipling equation (3.2) by C we obtain

OQ + OCE + 0F = H (3.10)

where H = + : F)H{ -c(cC E + Cq- F)  '-

and Q = CQ, £ = CE, F -- P. The flux vectors written out are

SpU 1PV/1
A,.IuI +~ ,1 p Jp 2  pUrV j
~~I Pl Th=Ju pUpVV + Jp/e1

ILe k U(e+p) " V(e+p)
(3.11)

Unlike equation (3.7) extra pressure terms are not picked up in the momentum
equations.

The previous numerical algorithm extended to equation (3.10) is given by

+ h5 A" + + h61,B" + D(2)]A =(.2

-At 6CR" + 6,FP + i' + D(4)Q"]

where we have lagged the source term and where A OE/OQ andB =-

It can be verified that A = CAC - 1 and B = CBC -. Using these
relations as well as (3.5) we find

AQ = (U! + Ac)Q BQ - (VI + B)Q (3.13)

with

0 0 0 01
.I(u2-,+- 2)/(2t2 ) -U -VIz/f2 J/121a ¢"

.; ( (7 - (8.14a)

641 642 643r 0 0 0 01

B. = 0 Oj(3.14b).b, - 1 z .u2 + ,,,2)/(29,L) -oI2/1 -V .rIL : -
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where

a,= U[(u 2 + v2)/2 - p(p(- 1)2)]

a42 - e2[,tpe/(p(, - 1)2) -U2]

a43 = e [ 1,e 2 (p(_ - 1)2) - UVII

bc - vr(u2 + v2)/2 - 'yp/(p(' - 1)2)]

=b2 - 2[')'Pte2/(P('7 - 1)2) - jJ-]/J

b43 t- eI"pe2/(p('_, - 1)2) -V2lj

and
f 12 -- /V 1

Making these substitutions into equation (3.12) we obtain the reduced form
of the algorithm

I[+ h6,(UI + AJrD ) + + h6,,(VI +,), + D(2) AQB)--

+-At 6t J,+pn +r 4 )+ (3.15)

Finally, to avoid the source term as well as to take advantage of existing
codes, one can rewrite these equations in the form

+ h~(U +A,)n + p + h6q(VI + b)n +D
-.,t-- E " + 6,,P + D(4)]

(3.16)

The right hand side of this equation is the same as equation (3.3a), while

the left hand side maintains the update for Q quantities rather than Q.
The advantage of this last form is that one can readily take an existing
code for equation (3.2) and modify only the left hand side operators so as to
take advantage of the reduced inversion work. The steady state solution of
equation (3.16) is clearly identical to that of equation (3.3a).

-2>-.7 z ":-<.... -..-: -.: ...< .-....... ,-:-..-.....-.° .,.: .....- .-:....... -... . . . . .. . . . . . . . . . . . . .-. .-...-....... ., .,.-.......,. ...... . . .. . .--



IV. Results
The algorithm given by equation (3.16) was tested on a NACA 0012 airfoil

under transonic flow conditions in order to verify that no adverse stability
effects are incurred by using the matrix reductions. Versions of the basic
NASA Ames Research Center AIR2D/ARC2D, which solve equation (3.3a),
were modified to the form of equation (3.16). As noted earlier, only that
portion of the code which deals with the left hand side operator has to be
altered in order to implement the new algorithm. The basic code is described
in Refs. [5,6].

A "C-type" topology was used for the airfoil calculations. The grids were
generated with either a hyperbolic grid solver 12,13 that imposes orthogonality
up to numerical errors of truncation and smoothing, or an algebraic construc-
tion that uses a method similar to the control function approach of Eiseman14 .
In all cases, the far field boundaries were placed approximately 20 chords
from the body. Boundary conditions on the body, wake, and freestream are
further described in Refs.[5,6].

As a first calculation, a relatively coarse grid was used which was generated
with the hyperbolic grid solver. This grid has 157 points in the -direction
and 33 points in the i7-direction (see Figures 2a-2b). The pressure distribution
on the NACA 0012 for M,,- = .8 and a = 0. is shown in Figure 2c. This
distribution was computed using both the standard algorithm (3.3a) and the
reduced matrix form (3.16). Both algorithms were run using Euler implicit
differencing which is first order accurate in time. As shown in figure 2d, the
residual histories are virtually identical. However, the standard algorithm
required 120 CPU seconds of CRAY-XMP time per 1000 iterations while the
new algorithm required 54 CPU seconds per 1000 iterations.

Numerical experimentation, in which At was adjusted over a wide range,
has confirmed that the new algorithm is as stable as the standard algorithm.
As an example of the robustness of the formulation using (3.16), a much finer
grid was used to compute the previous case. Figures 3a-3b show a view of
the grid with 249 points in the c-direction and 50 points in the -direction.
The solution on this grid (Figures 3c-3d) was computed using a spacially
varying time step scaled by __L_ where J is the metric Jacobian. For

this calculation, the drag coefficient was both converged to 5 digits in 600
iterations or 68 seconds of CRAY-XMP time. Figure 3e shows the residual
history for this calculation.

Recently, Beam and Bailey have reported in private communication [see
also 6] that significantly faster convergence can be obtained by incorporat-

- . .
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ing the fourth order smoothing terms implicitly into the Beam and Warming
algorithm. For the standard algorithm, imposing fourth order dissipation im-
plicitly necessitates 4 X 4 block pentadiagonal inversions which are relatively
expensive. The reduced matrix algorithm, however, requires only scalar and
2 x 2 block pentadiagonal inversions which are much less costly. In fact,
a special 2 X 2 block pentadiagonal inversion algorithm, coded for this al-
gorithm, requires only 107 arithmetic operations per entry.

In testing the sound speed-velocity splitting algorithm with implicit fourth
order dissipation, a more advanced form of numerical filter was implemented.
This filter uses both second and fourth order differences such that the second
order difference is dominant near shock waves. The spectral radius of the
flux Jacobian matrices is used as a scaling to the smoothing coefficients in an
attempt to mimick the dissipative nature of second order flux split upwind
schemes 15 Full details are given in reference [6].

As a test case, an algebraic grid was used to compute the flow field around
a NACA 0012 airfoil at M.. = .8 and a = 1.25 degrees. The grid has
193 points in the C-direction and 33 points in the V-direction. The grid and
flow field solution are shown in figures 4a-4d. The residual history (figure
4e) shows the rapid convergence. For this particular case, the CPU time on
the CRAY-XMIP was 93 seconds per 1000 iterations. This compares with 65
seconds per 1000 iterations using the tridiagonal version of the new algorithm
with constant smoothing coefficients which had much slower convergence. It
should be noted that the smoothing filter used for the pentadiagonal version
required 16 seconds more CPU time than the same smoothing with a constant .
coefficient filter.

Our computational results verified that the reduced algorithm was every bit
as numerically stable as the standard algorithm. This experience is similar to
what was observed previously by Steger on a algorithm version that reduced
to a 3 x 3 block and a scalar. Here, with reduction to the 2 x 2 block, just
over a factor of two was saved in overall computer time by using the reduced
algorithm (3.16) in place of (3.3a). The precise savings that can be obtained
is, of course, machine and coding dependent and a larger improvement should
be obtained in three dimensions.

V. Conclusions

By substituting similar reducible matrices for the Jacobian matrices of
the flux vectors, a substantial reduction has been achieved in the arith-
metic operations needed in solving approximate factorization implicit al-

........-. •- °
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gorithms such as Beam-Warming. Numerical calculations indicate that the
new similarity split matrices can apparently be used without any loss of p
numerical stability, although time accuracy can be degraded unless additional
steps are taken. The new method can be readily retrofit within existing codes,
and can likely be extended to viscous flow calculations as well. .•-.

o
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Appendix A. Extension of Sound Speed and Velocity Splitting to the Navier
* Stokes Equations

The sound speed and velocity splittingr concept can be applied to the Navier
Stokes equations because of the special form of the viscous Jacobians. The
Navier Stokes equations in strongr conservation law form can be represented
as

tOtQ + e9E + OYF i 9zEvz ± z + 'yFvz +OyFvy (A.1)

where Q, E, and F have their previous definitions, the viscous flux terms are
given by

rw0 0

Ev E,, y (A.2a)

,Pu!

F, =[(2/3)uuj , (4/3)jpv, A.

L F~z4 J[ F,,4 j1
with

BV354 =(jp/2)0j[4/3)u
2 +V 2] +. po 2

E,Y4 =pvu, - (2/3)puv,

F,3 4 P V - (2/3)pvu,

FV, 4 =(p/2)19y[u2  (4/3)v2j + P85,C

and
Pr= ( - 1)-,

Beam and Warming have developed a general class of integration techniques
for equation (A.1) which is illustrated here for Euler implicit time differencing

An- At[68 AEB" + 6,&F" - l&E,- 8AMY

p.., = - At[6zE" + 6yFn - 832(En + En) - 3(Fn Fn) A3

r-.



where AQn - Q,+I_ Qn and is a midpoint operator. In this algorithm the
cross derivative flux terms E,, and F, are treated explicitly. As discussed by
Beam and Warming, this circumvents the need to include an implicit viscous
Jacobain for these cross terms, and it also maintains unconditional stablility
for the scalar model equation.

The spacial flux terms have been locally linearized in time. In locally
linearizing these terms Beam and Warming expand the viscous terms in a
Taylor series using both the function and its derivative, as for example

- En = [n) - Qn) + oE] .(Qn+l - Qfl)A Z E . -- EV-E, - OQ JLOQZ

(A.4)
Alternately, these terms can be expanded in terms of Q alone, for example

AE' == [-9 -]-(Qn+l Qn) (A.5)

where 28 is now a differential operator. This latter from will be used here.
Typically y is not linearized in time and the Prandtl number is treated as if
it where a constant value as far as time linerization is concerned. For a term
such as #Ou, i is frozen in time and / 0 yu expanded such as

p 14Y(pu/p) = Ioy[(poUo/Po) - (pouo/Po2 )(P - PO) + pO-'(pu - pouo)]

or in general

OxE,,= 8[EvxIo + poOZ(A,,jo(Q - Qo))]o (A.6a)

OyF ,y ,y[Fy1 o + poOy(ByIo(Q - Qo)) (A.6b)

with

0 0 0 01 0 0 0 0

-(4/3)(u/p) (4/3)p- 0 -(ulp) p0 0 0 0

= -(/p) p -(4/)(/p) 0 (4/3)p-1 0
. 1 0,I ,2 ps3 P/P b, 42= 4z3 P/.(A.T).---

and
a., = -(4/3)[u 2 /p]- [v2/pl + #[-(e/p) + (u2 + v2)p]

2 
41



* . -' :.-. --. -,"

a=2 [(4/3) - P(u/p)

a3 = (1 - fl)(v/p)

byl - [U2/p]- (4/3)[v2/p] + ,[-(e/p) + (u2 + v2 )/p"

by2 (1-)(up)

by3 = 1(4/3) - P](v/p)

With introduction of the sound speed and velocity matrix substitutions for
the convection Jacobian matrices, we can obtain operators L. and Ly that - -

are as reducible as before because of the form of Av_ and Bvy. To illustrate
this we will drop the numerical dissipation terms as before. Then Eq.(A.3)
becomes

nn

LxLyAQ" -At[6zEn + 6yF" - (E 2 + Ez )- Y ( +z fY
(A.8)

where

U 0 0 0 '0 0 0 0'

821 U+ 22 823 04 41 a2 0 0

Ls=I+-At5 0 0 U 0 431 1] 0 83 0

G14 4142 43 U +844 *4 42 843 d4

V, 0 0 0 '0 0 0 0)

0 0 0 V2 b2  0 0

L4=+At5 b " .b--2 'U+ bf, +U, b" 0 b3  0

be 2 bT 3 v+b 4  b 41 bb 3 b 44
L 4 J L

Here I is the identity matrix and a' etc are elements of A' etc. Keep in
mind that the viscous terms have been second order accurate differenced to

maintain tridiagonal structure using midpoint operators .

We can now examine the structure of L. for example, and show that the
equations uncouple to two scalar and one 2 x 2 block tridiagonal. The first
row of L, is clearly uncoupled and can be solved for as a scalar tridiagonal.
Its solution is then used to update the right hand side (RHS) of rows 2, 3, and
4. With the first column of the matrices brought to the RHS, the third row
is seen to be uncoupled and can thus be solved as another scalar tridiagonal.
The RHS terms of the second and fourth rows can now be updated and what t

14
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remains is a 2 x 2 block tridiagonal to be solved. The L. operator inverts in
a similar fashion.

Thus, the addition of the viscous terms in Cartesian coordinates does

not prevent the decoupling technique that was successfully used for the

inviscid gasdynamic equations. Preliminary work shows that, using the local

transformation of Section IT[, the same decoupling may be possible for the

Navier Stokes equations in generalized coordinates. This matter is being

further investigated.
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Appendix B.Stability of Sound Speed and Velocity Splitting

In order to study the stablility of the algorithm proposed in Section II,
the one dimensional Euler equations will be tested for linear stability using a
Fourier ( or matrix) analysis.

The one dimensional Euler equations in Cartesian coordinates are given by :

otQ + .,E =0 (B.1)

where

Q [PU], E [PU +P (B-2)
u(e + p)

A frozen coefficient form of Eq.(B.1) is given by

tQ A'OE -0 (B.3)

where A is the true Jacobian, [OE/OQ], and * denotes that A is evaluated
using a frozen value of Q, Q'. Implicit first order accurate differencing of
Eq.(B.3) is given in delta form as

I + hA "+ Q-) = hA*6Q (B.4)

In our sound speed - velocity splitting scheme we replace the A matrix of
the left hand side operator with the similarity matrices u I + A,7 to obtain

I h(u'I + A:)6](Qn+, - Q") -hA'6Q n  (B.5)

The right hand side matrix A* is not altered in our procedure, and must not
be changed in Eq.(B.5) as it represents the correct linearization of E about

Q. The question to be addressed is Eq.(B.5) as stable as Eq.(B.4) now that
the implicit operator as been altered?

If we were to perform a stability analysis of Eq.(B.4) we would diagonalize
A' using its eigenvectors. We can then readily perform the stability analysis
for difference equations corresponding to scalar partial differential equations.
For Eq.(B.5) we can use the eigenvectors of A* to diagonalize u'I+A, but the
right hand side matrix will not be brought into diagonal form. Nevertheless,
we find that the resulting equations can still be analyzed.
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The matrix A, for one dimensional flow is given by

- 1u/2 -u ] (B.6)

1a a42 ..,
where

a4- ulu 2 2- c2/(- 1)2]

a 2  -u 2 + c2/(,y 1)2
Eigenvectors matrices of A, are given by

[(-'y - 1)u2 + 2cu]/(4c) [(y - 1)u + c]/(2c) -(y -y 1)/(2C)]
X-- [(y7- 1)u2- 2cu]/(4c) 1-[(- l)u- c]/(2c) (y7- 1)/(2c)

1 0 0
(B.T)

0 0

X= 1 (B.8)
:.. u-(Cl(, - 1)) U -(c/('-- 1)) U221 i-'

and
-C 0 0

AA. X-AX 0 c (B.9)
00

Multiplying Eq.(B.5) by the frozen-coefficient inverse of the eigenvectors--
(X*)-I gives

,....'""1-4- hl~l J 6.X*)-,(Qn*+ l Qn) __h(*-'A*X*6z(X,)_IQn .-.. .
+ h(u*I + A;6)6]Xr(B1-Ql h(X)AX6 xln

_ (B.10)
or in nondelta form with W - (X*)-IQ

+ h(u* + A%)6, Wn+'- I-h(X*)-AX*-u*I-Aj6.W W (B.11)

However, (X*)-A*X* - u*I - A% is a very simple matrix
-'A*X* -roooi

(X*)-AX- - = 0 0 (B.12)
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Assuming periodic boundary conditions so as to use a Fourier stability
analysis (or the matrix stablity method using circulant matrices), the finite
difference operator b.. can be transformed to

2isin(Oj)

2 A z 

" "

and W denotes Fourier transformation of W { i.e. transformation via the
eigenvectors of a circulant matrix).

Applying the Fourier method to Eq.(B.11) and taking the inverse of the
left hand side operator gives

I

l+ihc( o 1 0 01

--" 01 ]17" (B.13)

0+ h0u -ilrt -ihic

or
0 01wn+l --1+h(+) n ::. -

S+sh 0 0(-c W (B.14)

The amplification matrix associated with Eq.(B.14) is lower triangular.
Therefore, its eigenvalues are the diagonal elements, and these clearly have
modulus less than one for any positive value of h = At. In fact, these eigen-
values are identical to those obtained with the standard scheme given by..-
Eq.(B.4). Thus the necessary condition for stability is met for any values of
h. A sufficient conditionfor stability requires bounding the norm of the 3 x 3
amplification matrix. Observing the 3,1 and 3,2 elements it is clear that the
t. norm can be unbounded for u -. 0 and h --, o, however, even in this
norm powers of the amplification matrix will be quickly bounded unless u is
identically zero.

It is interesting to note that if one were to form A, using the Jacobian of
Ec, the resulting algorithm is unconditionally unstable. In this case A. is
given as

0 0 0
Ac=()-1) u212 -u 1 (B.15)

a4, a42  U]

where
= U[u 2/2 - C2 - )'""

1..2:
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a 2 - --u 2 +-1c 2 fr(W - 1) ...

Proceding in a similar fashion as above, the resultant representation in Fourier
space for (B.5) is

2i#+ihrcc ihxcc 0

-- 2 i= e 29-ihcc o W (B.16)

where

The maximum eigenvalue of the amplification matrix in (B.16) can be shown
to be greater than one for all At's greater that zero and the necessary
condition for stability can not be met. In actual numerical experimentation
where numerical dissipation is added, small values of At could be used to
obtain stable results.
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FIGURES

Figure 1. Arithmetic operation counts of block .tridiagonals using
L-U decomposition.

Figure 2a. Overview of 157 x 33 -rid generated about NACA -A 2
airfoil using hyperbolic grid generator.

Figure 2b. Detail near body of 157 x 33 grid.

Figure 2c. Pressure distribution on NACA 0012 airfoil (M -- .80
and a -0.0)

Figure 2d. Residual history comparison between reduced matrix
form and standard algorithms.

Figure 3a. Overview of 249 x 50 grid generated about NACA 0012
airfoil using hyperbolic grid generator.

Figure 3b. Detail near body of 249 x 50 grid.

Figure 3c. Pressure distribution on NACA 0012 airfoil (M -- .80
and a 0.0).

Figure 3d. Pressure contours near airfoil.

Figure 3e. Residual history for reduced matrix algorithm with scaled
At. L-5=

Figure 4a. Overview of 193 X 33 grid generated about NACA 0012
airfoil using hyperbolic grid generator.

Figure 4b. Detail near body of 193 x 33 grid. j.

Figure 4c. Pressure distribution on airfoil (M. - .80 and a =

1.25).,::: '

Figure 4d. Pressure contours near airfoil.

Figure 4e. Residual history for reduced matrix algorithm with scaled
At and pentadiagonal inversions.
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OPERATION COUNTS FOR BLOCK SOLVERS
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