ļ	AD-A148	848	0CT C00	ANE RE RDINAT	QUIRE ING R	MENT I ESEARC	NCREAS H COUN	E OF 1 CIL IN	1982 M Ic Atli	ODEL C Anta g	ARS(U) A SEP	84	17:	
Ĺ	UNCLASS	IFIE		-540							F/G 2	21/4	NL	
			• •											
ļ														
					END									
ļ														
														i
Ŀ	- kurker											_		

А.

.....

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

CRC Report No. 540

OCTANE REQUIREMENT INCREASE 048 **OF 1982 MODEL CARS** AD-A148 September 1984 FILE COPY 0 1984 310 **COORDINATING RESEARCH COUNCIL, INC.** 219 PERIMETER CENTER PARKWAY, ATLANTA, GEORGIA 30346 028 29 11 84

COORDINATING RESEARCH COUNCIL

219 PERIMETER CENTER PARKWAY ATL'ANTA, GEORGIA 30346 (404) 396-3400

OCTANE REQUIREMENT INCREASE OF 1982 MODEL CARS (CRC Project No. CM-124-82)

IN FORMULATING AND APPROVING REPORTS, THE APPROPRIATE COMMITTEE OF THE COORDINATING RESEARCH COUNCIL, INC. HAS NOT INVESTIGATED OR CONSIDERED PATENTS WHICH MAY APPLY TO THE SUBJECT MATTER. PROSPECTIVE USERS OF THE REPORT ARE RESPONSIBLE FOR PROTECTING THEM-SELVES AGAINST LIABILITY FOR INFRINGEMENT OF PATENTS.

Prepared by the

1982 Octane Requirement Increase Analysis Panel

of the

CRC Light-Duty Octane Technology and Test Procedures Group

September 1984

Light-Duty Vehicle Fuel, Lubricant, and Equipment Research Committee

of the

Coordinating Research Council, Inc.

This document has been approved f r public release and sale; its b tribution is unlimited. Adonastina

10

TABLE OF CONTENTS

	<u>P</u>	Page
Ι.	SUMMARY	1
II.	INTRODUCTION	2
III.	EXPERIMENTAL	2
	A. Cars Tested B. Mileage Accumulation C. Unleaded Average Sensitivity Full-Boiling Range	2 2
	Reference Fuel (FBRU) D. High Sensitivity Unleaded Full-Boiling Range	2
	E. Primary Reference (PR) Fuel F. Test Technique	3 3 3
IV.	DISCUSSION OF RESULTS	3
	 A. Data Analysis Technique B. Comparison of 1975 through 1982 ORI Studies C. ORI Versus Initial Octane Requirements 	3 5 5
	REFERENCES	8

TABLES

TEVT

Table	I	-	Initial Octane Requirements and ORI at	
			Various Mileages FBRU Fuel	10
Table	II	-	Initial Octane Requirements and ORI at	
			Various Mileages FBRSU Fuel	11
Table	III	-	Initial Octane Number Requirements and ORI at	
			Various Mileages PR Fuel	12

FIGURES

La

<u>P</u>	9	g	e

and the second second

21111111

Figure	1	-	Best-Fit-Curve ORI Analysis	13
Figure	2	-	Distribution of Initial RON Requirements for	
-			1982 Model Cars	14
Figure	3	-	Distribution of RON ORI for 115 1982 Model Cars	
			at Various Mileages on FBRU Fuel	15
Figure	4	-	Distribution of MON ORI for 115 1982 Model Cars	
_			at Various Mileages on FBRU Fuel	16
Figure	5	-	Distribution of (R+M)/2 ORI for 115 1982 Model	
			Cars at Various Mileages on FBRU Fuel	17
Figure	6	•	Distribution of RON ORI for 86 1982 Model Cars	
- ·	_		at Various Mileages on FBRSU Fuel	18
Figure	1	-	Distribution of MON ORI for 86 1982 Model Cars	10
Fi	0		at various mileages on FBKSU Fuel	19
rigure	Ö	-	Care at Variaus Milaaces on SPDSU Fuel	20
Figure	0		Lars at various mileages on rokou ruel	20
Figure	7	-	at Various Miloagos on PD Eugl	21
Figure	10	_	Effect of Initial Actang Requirement on ARI	¢ 1
inguie	10	-	at 15,000 Miles - FRRI Fuel	27
Figure	11	-	Effect of Initial Octane Requirement on ORI	
			at 15.000 Miles - FBRSU Fuel.	23
Figure	12	-	Effect of Initial Octane Requirement on ORI	
			at 15,000 Miles - PR Fuel	24

APPENDICES

APPENDIX A -	Laboratories Reporting Octane Requirement Data at Various MileagesA-1
APPENDIX B -	Membership: 1982 Octane Requirement Increase Data Analysis PanelB-1
APPENDIX C -	Reference Fuel DataC-1
APPENDIX D -	Octane Requirement DataD-1

ብ ብር እና በማስሻ እና እና እር **በ**ር እና እና እር በር እ

\$\$\$\$\$\$\$\$

I. SUMMARY

۶C

A

1:

- Octane requirement increase (ORI) was determined for one hundred fifteen 1982 model cars operated on unleaded gasoline. All ORI values were determined from the increase in maximum octane requirements irrespective of whether requirements were obtained at full- or part-throttle.
- At 15,000 miles, the mean ORI for all cars with full-boiling range unleaded (FBRU) fuels was 4.9 Research octane numbers, 3.0 Motor octane numbers, and 3.9 (R+M)/2 numbers.
- At 15,000 miles, the mean ORI with full-boiling range unleaded (FBRU) fuels for the eighty-six car subset tested on all three reference fuels was 4.7 Research octane numbers, 2.8 Motor octane numbers, and 3.8 (R+M)/2 numbers.
- At 15,000 miles, the mean ORI for eighty-six cars with fullboiling range high sensitivity unleaded (FBRSU) fuels was 5.1 Research octane numbers, 3.4 Motor octane numbers, and 4.3 (R+M)/2 numbers.

Motor Octary Numbers

At 15,000 miles, the mean ORI for ninety-six cars with primary reference fuels (PRF) was 4.0 octane numbers. The mean ORI for the eighty-six car subset tested on FBRU and FBRSU fuels was 4.1 octane numbers. Full-boiling range unleaded Research Octane numbers

Compared with 1981 models (86 cars), the mean ORI for all cars in the 1982 program with FBRU) fuels was 0.2 lower on a RON) basis, and 0.34(MON)lower.

- In general, the mean ORI with FBRU fuel exhibits a slight downward trend for the 1975 through 1982 model cars.
- ORI decreases about 0.3 to 0.4 octane number per octane number increase of initial octane requirements; this relationship is statistically significant.

II. INTRODUCTION

The need to study octane requirement increase (ORI) with unleaded fuel became evident in 1970 when manufacturers announced that future cars would use unleaded gasoline of at least 91 RON quality, and that they would require catalytic converters to meet emission standards in 1975 models. The Coordinating Research Council, Inc. (CRC) initiated a series of ORI programs in 1971 to study the effect of these changes. Since that time, manufacturers have made many engine and car modifications to meet both exhaust emission and fuel economy standards. Because of continuing engineering changes and the now exclusive use of unleaded fuel, the ORI programs have been continued.

The ORI data from 1971 and 1973 through 1981 model cars have been reported previously. $^{(1-9)}$ This report will summarize ORI data for 1982 model cars.

III. EXPERIMENTAL

A. Cars Tested

In the 1982 program, one hundred two US and thirteen imported cars were used to determine the ORI of 1982 model cars. Cars tested were not selected to represent the distribution of vehicles produced in that model year; rather the data base consists of information volunteered by participants. Data on cars that did not complete 15,000 miles of testing were excluded from the analysis. Participating laboratories are listed in Appendix A.

B. Mileage Accumulation

Mileage accumulation was conducted from the fall of 1981 through the summer of 1983. All test cars were operated in customer-type service using unleaded fuels typical of commercially available gasoline. No attempt was made to separate the data so that laboratory-to-laboratory effects could be determined.

C. Unleaded Average Sensitivity Full-Boiling Range Reference Fuel (FBRU)

In general, octane number requirements of 1982 mode! cars were defined initially with 1981 FBRU fuel. As mileage increased, the reference fuel was replaced with the 1982 FBRU fuel. Some laboratories, however, used 1980 or 1981 reference fuels for requirements. Laboratory X used a third FBRU reference fuel series for all octane requirements it submitted. The RON-to-MON conversions used in the data analysis for 1982 cars are shown in Appendix C, Table C-I.

reference and a second state of a second state o

D. <u>High Sensitivity Unleaded Full-Boiling</u> Range Reference Fuel (FBRSU)

> Octane requirements of eighty-six cars were defined initially with 1981 FBRSU fuel and later with 1982 FBRSU fuel as well as with FBRU and Primary Reference (PR) fuels. Some laboratories used either 1980 or 1981 FBRSU fuels. The RON-to-MON conversions used in data analysis are shown in Appendix C, Table C-II.

E. Primary Reference (PR) Fuel

Standard ASTM PR fuel were used in two octane number increments from 76 to 82, and in one octane number increments from 82 to 100, to cover the range of car requirements.

F. Test Technique

Fi r

A c

Ć

Octane number requirements were determined at incremental mileages from zero to 15,000 miles by the CRC E-15-82 technique.⁽¹⁰⁾ Maximum octane number requirements were determined on one hundred fifteen cars with FBRU fuel, on eighty-six cars with FBRSU fuel, and on ninety-six with PR fuel.

IV. DISCUSSION OF RESULTS

A. Data Analysis Technique

For this program, octane requirements were to be obtained at 0, 5,000, 10,000, and 15,000 miles; however, not all the data were obtained exactly at these mileage intervals. To compare the ORI of all cars at the same mileage, results were determined from best-fit curves of actual reported octane requirements. Research octane number requirements (RON) reported by the participants were plotted at the mileages at which they were obtained. Requirements at 0, 5,000, 10,000, and 15,000 miles were then read from best-fit curves as shown in Figure 1. ORI at 5,000, 10,000, and 15,000 miles were determined from these best-fit-curve requirements.

ORI on a Motor octane number (MON) basis was determined from best-fit-curve RON requirements that were translated into MON requirements according to the RON-to-MCN conversions in Tables C-I and C-II. Similarly, ORI on an (R+M)/2 basis was determined from (R+M)/2 requirements that were calculated from best-fitcurve RON and corresponding MON values. The appropriate RON-to-MON conversion was determined by the fuel series used to determine the actual reported requirement that was closest to the 0-, 5,000-, 10,000-, or 15,000-mile interval. In general, requirements were determined initially on 1981 fuels and later on 1982 fuels; however, some laboratories measured requirements with either 1980 or 1981 fuels. Laboratory X used a third FBRU reference fuel series; all data reported by this laboratory were translated according to the Laboratory X RON-to-MON conversion in Table C-I.

Best-fit-curve octane requirements at 0, 5,000, 10,000, and 15,000 miles are listed for each car in Appendix D, Tables D-I, D-II, and D-III for FBRU, FBRSU, and PR fuels, respectively. Copies of raw octane requirement data and best-fit curves are on file with CRC.

Distribution of initial RON, MON, and (R+M)/2 requirements, as well as ORI values for each mileage interval, are summarized in Tables I, II, and III for FBRU, FBRSU, and PR fuels, respectively. The numbers in parenthesis in Tables I and III are the average FBRU and PR ORI values of the eighty-six cars for which data on all three reference fuels were reported. These tables also include a breakout by manufacturer and engine type where sufficient samples exist.

Distributions of initial RON requirements are plotted in Figure 2 for all three fuel series. Distributions of ORI at various mileages for RON, MON, and (R+M)/2 on FBRU fuels are shown in Figures 3, 4, and 5, respectively, and on FBRSU fuels in Figures 6, 7, and 8. Similarly, distribution of ORI on PR fuels at various mileages are shown in Figure 9.

Because some laboratories tested cars on two different reference fuel series, the MON ORI may be different from that determined from a single reference fuel series. The difference in sensitivity (RON minus MON) ranges from 0.0 to 1.3 and 0.0 to 0.9 for the four FBRU and three FBRSU fuel series, respectively. Although an estimate of the error cannot be made from these data, work by other researchers suggest it may be as much as 0.5 MON. (11)

Members of the Analysis Panel are listed in Appendix B.

B. Comparison of 1975 through 1982 ORI Studies

The mean ORI values for 1975 through 1982 model cars are:

Model	Accumulated	Mean ORI	
Year	Miles	FBRU, RON	PRF
1975	16,000	5.8	4.4
1976	15,000	5.4	3.6
1977	15,000	4.9	2.9
1978	15,000	6.0	4.2
1979	15,000	5.4	4.1
1980	15,000	5.1	3.9
1981	15,000	5.1	4.1
1982	15,000	4.9	4.0
1975-1982	Unweighted Average:	5.3	3.9

ORI with FBRU fuel exhibits a slight downward trend from 1975 through 1982. ORI with PR fuel is unchanged over this period.

C. ORI Versus Initial Octane Requirements

Initial RON requirements are plotted against ORI at 15,000 miles in Figures 10, 11, and 12 for FBRU, FBRSU, and PR fuels, respectively. The correlation between initial requirements and ORI was determined by linear least squares regression analysis. The general form of the equation was:

ORI = a + b (Initial Octane Requirement)

The best-fit lines are also shown in Figures 10, 11, and 12.

Equations for the three reference fuel series are:

Defense		a		<u>b</u>	
Fuel Series	Estimate	l Value of <u>Estimate</u>	Estimate	i Value of Estimate	2
FBRU	33.0	5.1	-0.32	4.3	0.14
FBRSU	33.8	4.3	-0.32	3.6	0.14
PR	35.7	6.2	-0.37	5.5	0.24

In general, ORI decreases about 0.3 to 0.4 units per unit increase of initial requirements. Although the correlation coefficients (R^2) are small, the analysis indicates that the estimates of the slope (ORI/Initial Requirement) are statistically significant. This phenomenon was observed and reported in the recent CRC ORI studies.^(8,9)

REFERENCES

. 4

<u>ርሎች የርጭ እስእን እ</u>ን እንደ እንደር እንደ እንደ እ

. . .

SECTOR

REFERENCES

- 1. Coordinating Research Council, Inc., "Influence of Leaded and Unleaded Fuels on Octane Requirement Increase in 1971 Model Cars," CRC Report No. 445, March 1971.
- Coordinating Research Council, Inc., "Octane Requirement Increase in 1973 Model Cars," <u>CRC Report No. 476</u>, February 1975.
- 3. Coordinating Research Council, Inc., "Octane Requirement Increase in 1974 Model Cars," <u>CRC Report No. 485</u>, June 1976.
- 4. Coordinating Research Council, Inc., "Octane Requirement Increase in 1975 Model Cars," <u>CRC Report No. 498</u>, July 1978.
- 5. Octane Requirement Increase in 1976 Model Cars, CRC Road Test Group Informal Study by J. D. Rogers, Jr., October 1979.
- 6. Coordinating Research Council, Inc., "Octane Requirement Increase in 1977 Model Cars," CRC Report No. 513, April 1980.
- 7. Coordinating Research Council, Inc., "Octane Requirement Increase of 1978 and 1979 Model Cars," CRC Report No. 526, April 1982.
- 8. Coordinating Research Council, Inc., "Octane Requirement Increase of 1980 Model Cars," CRC Report No. 531, June 1983.
- 9. Coordinating Research Council, Inc., "Octane Requirement Increase of 1981 Model Cars," <u>CRC Report No. 535</u>, November 1983.
- 10. Coordinating Research Council, Inc., "1982 CRC Octane Number Requirement Survey," <u>CRC Report No. 533</u>, July 1983.
- Correspondence to R. K. Nelson (CRC) from L. M. Gibbs (Chevron Research Company), May 16, 1983, "1980 CRC Octane Requirement Increase Program."

-8-

TABLES

and a subsection of the subsection of t

AND

FIGURES

an an ann an Anna an Anna ann an Anna Anna an Anna an Anna an Anna ann an Anna an Anna ann an Anna an

INITIAL OCTANE REQUIREMENTS AND ORL AT VARIOUS MILEAGES -- FBRU FUCL **TABLE I**

T,

Ø

					RON							NOM						(R•I	M)/2			
Group	No. of Cars Tested	Init: Reguire Nean	a l	5.000-N 0RI Nean		0,000-MI 0RI Mean SD	e 15,0	000-Mile 0RL In SD	Init Require Mean	al S0	5,000-M 0R1 Mean		0,000-Mil 0RI Mean SD	15,00	00-Mile RI SD	Initial Reguireme Mean S	5. 0 #	00-Mile ORI san SU	10,10 Mean	0-Mile RI SD	15,000 Nean	Ni le
All Cars	115 (86)	87.2 (87.2)	3.1 (3.1)	3.4 (3.2) (9.1 (6.1	4.5 2.5 4.3) (2.5	(4.7	() (2.7) (2.7)	80.9 (81.0)	2.0 (1.8)	2.1 (1.9) (1.2	2.7 1.6 2.5) (1.5	3.0 (2.8)	(1.7)	84.0 2 (84.1) (2	.5 2 .5) (2	8 1.6 5) (1.5)	3.6 (3.4)	2.0 (2.0)	3.9 (3.8) (2.2
All Make A	24 (22)	88.2 (87.9)	3.3 (3.0)	2.8 (2.7) (1.4)	3.6 2.6 3.5) (1.9) (3.9) (2.3)) (2.3)	81.7 (81.5)	1.9 (1.7)	1.6 (1.5) (9.9 (8)	2.0) (1.1	2.3 (2.3)	1.2 (1.3)	84.9 2 (84.7) (2	.6 2 .3) (2	2 1.2 1) (1.1)	2.8 (2.8)	1.5 (1.5)	3.1) (3.1)	1.7 (1.8)
All Make B	18 (11)	85.9 (85.8)	2.5 (2.5)	2.9 (2.7) (1.1	4.0 2.0 3.8) (1.9	(4.5	5 2.2 5) (2.2)	80.3 (80.2)	1.5 (1.5)	1.8 (1.6) (2.4 1.2 2.3) (1.1	2.8 (2.7)	(1.3) (1.3)	83.1 2 (83.0) (2	.0 (0)	.4 1.3 (1.1)	3.2 (3.1)	1.6 (1.5)	3.7 (3.6) (1.8 1.8)
All Make C	68 (M)	87.2 (87.5)	3.0 (3.0)	3.7 (3.3) (1.8)	4.9 2.9 4.7) (2.7	() (5.2	2.7 (2.9)	80.9 (81.2)	2.0 (1.8)	2.3 (1.9) (1.2	3.1 1.6 2.7) (1.6	3.3 (3.1)	1.7 (1.8)	84.0 2 (84.4) (2	.5 3 .4) (2	.0 1.5 .6) (1.4)	4 .0 (3.7)	2.0 (2.2)	(1.1) (1.1)	-10
All Others	14 (13)	86.7 (86.9)	3.6 (3.7)	4.1 (4.3)	2.6	4.8 3.2 5.1) (3.2	() (5.4	; 3.4 () (3.4)	80.7 (80.8)	2.4 (2.5)	2.5 (2.6) (8.1	2.9 2.2 3.0) (2.2) (3.2)	2.3 (2.3)	83.7 3 (83.8) (3	.0 (1)	.3 2.2 5) (2.3)	3.9 (4.0)	2.7 (2.7)	4.2 (1 .3)	2.8 2.9)
Engine Al6	8	90.7	3.1	2.0	1.7	2.3 2.(2.4	1 2.0	83.1	1.7	1.1	6.0	1.1 1.1	1.5	1.2	86.9 2	•	5 1.3	1.9	1.5	1.9	1.6
Engthe A23	6 0	85.9	1.3	3.4	1.3	4.4 1.4	[.+	1.7	80.3	0.8	2.0		2.5 0.8	2.7	0.9	83.1 1	.0 2	7 1.0	3.4		3.7	1.3
Engine B22	Ξ	84.8	2.5	2.8	1.7	4.0 2.4	4.4	1 2.7	79.6	1.5	1.6	0.1	2.4 1.4	2.7	1.6	82.2 2	.0	2 1.3	3.2	1.9	3.5	2.1
Engine C18	2	85.6	1.4	3.4	2.0	4.7 2.6	5.1	1 3.0	79.9	1.2	2.2	1.3	3.0 1.8	3.2	1.9	82.8	.3 2	8 1.7	3.8	2.3	••	2.4
Engine C25	61	0.68	2.5	4.1	2.0	5.4 2.9	6.0	1.2 (82.0	1.6	2.4	1.3	3.3 1.6	3.9	1.8	85.5 2	.0	2 1.6	4.4	2.1	4.9	2.3
Engine C28	6	87.6	3.1	3.3	1.6	4.7 2.7	5.0) 2.6	81.2	1.9	1.9	6.0	2.8 1.6	3.0	1.6	84.4 2	.5 2	6 1.3	3.7	2.2	4.0	2.1
Engine C38	œ	87.7	3.7	3.9	1.9	4.6 2.6		0.6	81.2	2.3	2.4	0.1	2.9 1.6	3.0	1.8	64.4 3	.0	1 1.4	3.8	2.2	3.9	2.4
Engine C41	ŝ	83.8	1.3	4.5	1.4	6.0 1.9	6.5	8.I.S	78.4	1.2	3.1	:	1.0 0.8	4.3	0.8	81.1	.2 3	8 1.2	5.0	1.1	5.4	1.3

() Numbers in parentheses represent FBRU data on cars that were also tested on FBRSU and PR Fuels.

- -

٠,

TABLE II

). |-

Ø

Į.

€.

Ęc

2.6

INITIAL OCTANE REQUIREMENTS AND ORI AT VARIOUS MILEAGES -- FBRSU FUEL

					ROA	_							Š	*							(R+M)/3	~			
	No. of Cars	Require	fa) ments	5.000 000	-Nile 21	10,000 00,000	-	15.000- 081	Hile Nile	Reguire	al ments	2.000 2.000	- I	10,00	HITe	15,000- 0RI	Mile	Initia Regulates	Ports	5,000-M	lle	10,000- 190	Hile	15,000-	li le
Group	lested	Nean	8	Rear	8	hean	8	Mean	8	Hean	8	Nean	8	Nean	20	Mean	8	Mean	8	Nean	<u>80</u>	Mean	20	Hean	12
All Cars	86	88.2	3.2	3.5	2.0	4.6	2.5	5.1	2.8	79.5	2.2	2.4	1.4	3.1	1.7	3.4	1.9	83.9	2.7	2.9	1.7	3.9	2.1	6.4	4.9
All Make A	22	89.0	3.1	3.0	1.5	4.0	2.0	4.4	2.4	80.0	2.2	2.0	1.0	2.1	1.4	2.9	1.6	84.5	2.7	2.5	1.3	3.3	1.7	3.6	0.
All Make B	2	87.2	2.2	2.9	1.3	4.2	1.7	4.8	2.0	78.8	1.6	2.0	0.9	2.8	1.1	3.1	1.3	83.0	1.9	2.5	1.1	3.5	1.4	4.0	-]
All Make C	Ħ	88.7	3.2	3.6	2.0	5.1	2.8	5.6	3.1	79.8	2.2	2.5	1.4	3.4	1.9	3.8	2.1	84.2	2.1	3.0	1.7	6. A	2.3	4.7	۱ <u>-</u>
All Others	13	87.4	4.2	4.5	2.8	5.3	3.4	5.5	3.6	78.9	2.9	3.1	2.0	3.6	2.4	3.7	2.5	83.2	3.5	3.8	2.4	4.4	2.9	4.6	
Engine Al6	10	91.3	2.5	2.4	1.6	2.9	1.8	3.1	1.9	81.6	1.7	1.6	1.0	2.0	1.2	2.0	1.2	86.5	2.1	2.0	1.3	2.4	1.5	2.5	ŝ.
Engthe A23	1	86.9	2.2	3.1	1.3	4.3	1.9	4.8	2.5	78.6	1.6	2.2	0.9	2.9	1.4	3.3	1.7	82.7	1.9	2.6		3.6	1.6		
Engine 822	н	86.5	2.3	2.9	1.4	4.1	2.1	4.6	2.5	78.3	1.6	2.0	0.9	2.8	1.4	3.1	1.6	82.4	1.9	2.4	1.2	3.4	1.7	3.8	0.
Engine C18	80	87.5	1.1	2.9	2.1	A .3	3.2	4,8	3.5	79.1	0.8	2.0	1.5	2.9	2.2	3.3	2.4	83.3	0.9	2.5	1.8	3.6		9.6	1.0
Engine C25	æ	91.3	Э.О	3.2	2.1	4.5	2.5	5.0	2.9	81.6	2.0	2.2	1.4	3.0	1.7	3.4	2.0	86.4	2.5	2.7	8.1	3.8	۶. I	4.2	•
Engtne C28	6	88.7	3.2	3.8	2.0	5.1	2.9	5.6	2.8	8.61	2.2	2.5	1.3	3.4	1.9	3.6	1.9	84.3	2.1	3.2	1.7	4.2	5. 4	4.6	-

٠.

- 1

~ر.

TABLE III

ALL CALLER .

15

4

INITIAL OCTANE NUMBER REQUIREMENTS AND ORI AT VARIOUS MILEAGES -- PR FUELS

		Initi	al		100				
Group	NO. OT Cars Tested	Mean	SD SD	Nean Mean		IU,UUU-M Mean	SD	Hean	SD
All Cars	96 (86)	86.3 (86.2)	3.3 (3.3)	2.8 (2.8)	1.9 (1.9)	3.6 (3.7)	2.3 (2.4)	4.0 (4.1)	2.5 (2.5)
All Make A	24 (22)	88.0 (87.7)	3.4 (3.1)	2.3 (2.2)	1.3 (1.3)	3.1 (3.0)	1.7 (1.7)	3.4 (3.4)	2.0 (2.0)
All Make B	18 (17)	84.4 (84.4)	2.2 (2.3)	2.8 (2.8)	1.7 (1.8)	3.8 (3.8)	2.1 (2.2)	4.2 (4.2)	2.2 (2.2)
All Make C	40 (34)	86.1 (86.0)	3.1 (3.3)	2.7 (2.7)	1.7 (1.7)	3.6 (3.7)	2.2 (2.3)	3.8 (4.0)	2.4 (2.4)
All Others	14 (13)	86.4 (86.6)	3.7 (3.8)	4.0 (4.1)	2.9 (2.9)	4.7 (4.9)	3.4 (3.5)	5.0 (5.2)	3.6 (3.6)
Engine Al6	11	90.6	3.0	1.5	1.2	1.9	1.5	2.0	1.6
Engine A23	8	85.5	1.4	3.0	1.2	3.9	1.3	4.3	1.4
Engine B22	11	83.5	2.0	2.9	2.1	3.9	2.6	4.2	2.7
Engine C18	6	84.3	3.3	2.5	1.5	3.4	2.1	3.7	2.3
Engine C25	10	87.3	2.0	2.3	2.4	2.8	3.0	3.1	3.2
Engine C28	6	86.4	3.6	2.9	1.2	4.0	1.4	4.4	1.5

() Numbers in parentheses represent PR Fuel data on cars that were also tested on FBRU and FBRSU Fuels.

87 (G.

-

-12-

FIGURE 2

FOR 1982 MODEL CARS

-14-

fic

C

¥. •. •.

÷.,

				FI	GURE	E 3						
		D	ISTRI	BUTIC)N 01	= ROI	N ORI	FOR				
		VΔI	115 115	1982 MTI F	MODE	EL CA	ARS A	NT I FIIFI				
10												1
												15,000 Mil
9												10 000 Mil
8												10,000 811
_									1			
7								7		/		
								1			/	5,000 Mil
6							/	/		/		
5						/	/		/			
					/	/						
4				/			/					
2			1	/	7							
3			[]	7								
2		4	\angle									
		4										
1												
n												

નંતો

Τ.

Ð

4

0

115 1982 MODEL CARS AT				
10	VARIOUS MILEAGES ON FBRO FOEL			
9	Constanting files i statu ang 20 pang pang kang kang kang kang kang kang kang k			
8				
7				
6	15,000 Mile	s		
5	10,000 Mile	S		
4	5,000 Mile	S		
3				
2				
1				
0	3 10 20 30 40 50 60 70 50 50 56			

Octane Requirement Increase

% Cars

-16-

FIGURE 4

DISTRIBUTION OF MON ORI FOR

Octane Requirement Increase

% Cars

-19-

FIGURE 7

1

-20-

FIGURE 8

-21-

FIGURE 9

DISTRIBUTION OF ORI FOR 96 1982 MODEL CARS AT ARIOUS MILEAGES ON PR FUE

من المراجع الم المراجع المراجع

APPENDIX A

LABORATORIES REPORTING OCTANE REQUIREMENT DATA AT VARIOUS MILEAGES

(

LABORATORIES REPORTING OCTANE REQUIREMENT

Amoco Oil Company Naperville, Illinois

Exxon Research and Engineering Company Linden, New Jersey

General Motors Research Laboratories Warren, Michigan

Gulf Research and Development Company Pittsburgh, Pennsylvania

Phillips Petroleum Company Bartlesville, Oklahoma

Shell Development Company Houston, Texas

Shell Canada Oakville, Ontario

Standard Oil Company (Ohio) Cleveland, Ohio

Union Oil Company of California Brea, California

APPENDIX B

l'here to be a state to the second second

MEMBERSHIP:

1982 OCTANE REQUIREMENT INCREASE DATA ANALYSIS PANEL

1982 OCTANE REQUIREMENT INCREASE

DATA ANALYSIS PANEL

Name	Company
J. C. Callison, Leader	Amoco Oil Company
J. B. Baker	Shell Development Company
D. P. Barnard	Standard Oil Company (Ohio)

B

()

()

1

Ø

APPENDIX C

10

ANNAL CONTRACTOR

A PRINT REAL STRUCTURE STRUCT

R.C.

REFERENCE FUEL DATA

NATARA DE LA CALENCIA LA CALENCIA DE LA CALE

Contraction of the second s

.

0

TABLE C-I

AVERAGE SENSITIVITY FULL-BOILING RANGE UNLEADED REFERENCE FUEL SERIES (FBRU)

1	U	n	U	

Research Octane No.	1982 Motor <u>Octane No.</u>	1981 Motor <u>Octane No.</u>	1980 Motor <u>Octane No.</u>	Lab X Motor <u>Octane No</u> .
78.0	74.0	74.3	74.5	73.2
80.0	75.8	76.1	75.9	74.9
82.0	77.6	77.8	77.5	76.6
84.0	79.2	79.2	78.9	78.2
85.0	79.9	79.8	79.7	79.0
86.0	80.5	80.4	80.4	79.7
87.0	81.1	81.0	81.0	80.4
88.0	81.7	81.6	81.7	81.1
89.0	82.2	82.1	82.3	81.8
90.0	82.8	82.7	83.0	82.5
91.0	83.3	83.2	83.6	83.2
92.0	83.7	83.7	84.2	83.9
93.0	84.2	84.3	84.8	84.6
94.0	85.0	84.9	85.5	85.4
95.0	85.7	85.5	86.1	86.2
96.0	86.4	86.0	86.7	87.1
97.0	87.1	86.7	87.3	87.8
98.0	87.8	87.4	88.1	88.5
99.0	88.5	88.1	88.8	89.3
100.0	89.3	88.8	89.6	90.1
101.0	90.2	89.6	90.3	90.8

THE REPORT OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T

C-2

TABLE C-II

HIGH SENSITIVITY FULL-BOILING RANGE UNLEADED REFERENCE FUEL SERIES (FBRSU)

Research Octane No.	1982 Motor <u>Octane No.</u>	1981 Motor <u>Octane No.</u>	1980 Motor <u>Octane No.</u>
78.0	71.8	72.2	72.5
80.0	73.2	73.6	74.1
82.0	74.7	75.1	75.6
84.0	76.2	76.5	77.0
85.0	76.9	77.3	77.7
86.0	77.7	78.0	78.4
87.0	78.4	78.7	79.0
88.0	79.1	79.4	79.6
89.0	79.9	80.1	80.1
90.0	80.8	80.8	80.6
91.0	81.4	81.4	81.2
92.0	82.1	82.1	81.8
93.0	82.7	82.8	82.4
94.0	83.3	83.4	83.0
95.0	83.9	84.1	83.5
96.0	84.6	84.8	84.1
97.0	85.3	85.5	84.7
98.0	86.0	86.2	85.4
99.0	86.8	86.9	86.3
100.0	87.6	87.6	87.3
101.0	88.3	88.3	87.9

Ø

APPENDIX D

and a second becaused the representation of the second becaused and the second becaused and the second because

OCTANE REQUIREMENT DATA

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - FBRU FUEL

<u>.</u>					
ΫC					
			D-1		
			TABLE D-I		
Ìe					
	<u>0CTA</u>	NE REQUIREME	INTS FROM BEST-F	IT-CURVES - FBRU	FUEL
	CDC		RON-Reg	uirements at	
	Car Code	0 Miles	5,000 Miles	10,000 Miles	15,000 Miles
0	N.IG 218	87 0	89 9	90.9	91.0
F	N.16 218	89.0	89.0	89.0	89.0
	H.IG 218	86.0	88.5	89.9	90.6
	NJG 218	84.0	90.3	93.9	95.0
	IXR F25	90.0	94.3	96.1	96.8
	I XR F25	90.0	97.5	99.6	100.2
	1 XR F25	92.0	96.0	96.0	96.0
	NXR F25	86.0	93.3	95.0	95.0
-	IXX F25	87.0	89.3	90.0	90.0
	1 XX 228	91.0	94.4	95.0	95.0
	LAE 230	84.0	87.7	88.9	89.0
Ľ	GC8 F41	83.0	86.3	88.5	88.9
Î.C.	GK8 F41	85.0	90.6	93.4	94.7
K.	0A2 216	88.0	92.0	92.0	92.0
	0A2 216	91.0	91.0	91.0	91.0
	ODA 223	85.0	89.4	90.7	90.9
	ODA 223	84.0	87.0	89.8	91.5
	ODA 223	86.0	89.5	90.6	91.0
	ODA 223	88.0	90.2	91.0	91.0
6	ODA 223	86.0	89.2	89.9	90.0
Ê.	0D3 238	84.0	87.1	89.5	90.9
	KKB 222	86.0	91.6	93.6	94.0
	KKB 222	85.0	86.6	87.0	87.0
	PKD 222	85.0	86.0	86.0	86.0
	RB5 242	94.0	94.0	94.0	94.0
<u>.</u>	E 215	89.0	94.0	94.0	94.0
	J 315	88.0	90.4	91.0	91.0
	J 315	83.0	90.5	92.9	93.7
	T 218	86.0	89.2	90.0	90.0
F	T 218	85.0	90.0	90.0	90.0
	T 218	88.0	90.8	91.2	92.8
	HTC 216	90.0	90.0	90.0	90.0
	PKC 222	89.0	91.9	94.0	95.2
	CDB 133	88.0	92.9	94.2	94.6
	LB4 450	90.0	93.8	94.7	95.0
ст. С	LGA 238	88.0	95.5	97.9	98.4
R	J 315	88.0	96.0	96.0	96.0
Ŀ	E 215	89.0	92.0	92.0	92.0
Γ.	LXX 228	85.0	89.0	90.0	90.2
È i	0A2 216	90.0	94.8	95.9	96.0
	HJG 218	84.0	86.8	87.8	88.1
	HJG 218	85.0	88.5	89.8	90.5
K	110 010	01 0	90 0	01 0	91 0

La substant and the second of the second of the second states and the second states and the second s

Ec

TABLE D-I (Continued)

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - FBRU FUEL

CRC		RON-Reg	uirements at	
<u>Car Code</u>	0 Miles	5,000 Miles	10,000 Miles	15,000 Miles
HJG 218	84.0	90.5	91.8	92.0
NJG 218	86.0	88.1	89.2	89.8
HXR F25	86.0	90.9	92.0	92.1
IXR F25	86.0	92.2	93.7	94.1
LXR F25	90.0	93.1	93.9	93.9
LAE 230	84.0	88.7	90.0	90.0
LAE 230	85.0	90.0	90.0	90.0
LAE 230	84.0	90.0	90.0	90.0
HGA 238	90.0	93.0	93.0	93.0
HGA 238	88.0	92.0	92.0	92.0
HGA 238	92.0	94.0	94.0	94.0
GC8 F41	85.0	87.8	89.3	90.1
GC8 F41	84.0	88.9	89.9	90.0
GC8 F41	82.0	88.0	88.0	88.0
HFI F50	94.0	94.0	94.0	94.0
NFH F50	92.0	95.3	96.0	96.0
0A2 216	89.0	89.7	90.0	90.0
0A2 216	93.0	94.7	95.2	95.2
0A2 216	87.0	87.8	88.1	88.1
UA2 216	88.0	88.0	88.0	88.0
NJG 218	86.0	88.4	89.0	89.0
NJG 210 NAD 525	80.0	80.8	8/.0	8/.0
NAK FZD NAD F25	89.0	90.3	91.3	91.9
NAK F20 DVD 222	84.0	90.0	91.2	91.4
PKD 222	82 0	87.0 87.0	85 9	86.0
PKD 222	82.0	84.1	85.6	86.8
PKD 222	84 0	84 6	85.0	85 0
	04.0	04.0	00.0	05.0
NGA 238	81.0	83.8	84.6	84.9
PME 252	87.0	89.0	90.5	91.7
PME 252	87.0	89.2	89.9	90.0
PME 252	89.0	91.3	92.9	93.9
MXX 228	90.0	92.0	92.7	92.9
NAX 228	86.0	92.7	96.9	97.0
NBJ 244	90.0	92.9	93.0	93.0
E 215	89.0	91.8	92.6	93.0
UA2 216	96.0	97.6	98.0	98.0
LGA 238	87.0	90.9	92.0	92.0
NIC 216	86.0	91.0	91.0	91.0
UCA 223	8/.0	93.0	93.0	93.0
UUS 258 7 215	88.0	91.0	97.Q	92.0
L 213 IAD 525	85.0	8/.0	0/.U	8/.0
TAK LZP	87.0	AT*2	95.Z	9/.0

Ø

e

Level 2 and

TABLE D-I (Continued)

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - FBRU FUEL

CRC	RON-Requirements at					
<u>Car Code</u>	0 Miles	5,000 Miles	10,000 Miles	15,000 Miles		
HIC 219	95 0	01 7	95.0	05 0		
	00.0	91./	95.0	95.0		
PLA 21/	88.0	95.0	95.0	95.0		
PKB 222	89.0	92.7	93.8	94.0		
1 215	86.0	89.3	90.5	91.0		
NXR F25	94.0	96.1	98.1	100.5		
OA2 216	90.0	93.0	93.9	94.3		
PKB 222	85.0	87.7	89.7	90.7		
NXR F25	91.0	94.6	95.4	96.2		
OA2 216	90.0	93.8	94.6	94.6		
PKB 222	82.0	87.6	90.1	90.6		
NXX 228	86.0	89.2	90.6	91.5		
OBA 223	85.0	87.7	88.4	88.9		
PLA 217	86.0	88.7	90.2	92.8		
NXX 228	87.0	89.2	89.5	89.6		
OBA 223	86.0	88.3	88.5	88.5		
PLA 217	89.0	92.4	92.6	92.8		
NJG 218	86.0	89.3	90.7	91.8		
OD3 238	87.0	90.3	91.1	91.6		
NJG 218	86.0	89.4	89.9	90.4		
OD3 238	85.0	88.4	90.0	91.7		
NXX 228	90.0	94.4	95.7	96.0		
0A2 216	96.0	97.0	97.0	97.0		
NXX 228	82.0	83.1	83.9	84.5		
NTS 228	91.0	93.8	95.7	96.0		
TBY 450	90.0	93 1	95.8	97 0		
IBY 450	88.0	92.3	97.0	98.0		
7 215	78.0	87 7	90 3	91 0		
T 220	86.0	89 3	90.3	90 7		
PME 252	87 0	89.9	90.2	Q1 Q		

0

0

0

Ø

TABLE D-II

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - FBRSU FUEL

CRC	RON-Requirements at					
<u>Car Code</u>	<u>O Miles</u>	5,000 Miles	10,000 Miles	15,000 Miles		
NJG 218	89.0	91.9	92.9	93.0		
NJG 218	89.0	89.0	89.0	89.0		
HJG 218	87.0	89.3	90.9	91.9		
NJG 218	86.0	93.2	97.1	98.0		
LXR F25	90.0	95.1	98.1	99.9		
LXR F25	92.0	96.0	96.0	96.0		
NXR F25	87.0	93.9	95.0	95.0		
LXX F25	88.0	90.3	91.9	91.9		
LXX 228	93.0	96.2	97.0	97.0		
LAE 230	85.0	88.6	89.9	90.0		
GC8 F41	84.0	87.3	89.6	90.0		
GK8 F41	86.0	91.6	94.3	95.7		
OA2 216	89.0	93.0	93.0	93.0		
0A2 216	92.0	92.4	92.9	93.0		
ODA 223	85.0	90.1	91.5	92.0		
ODA 223	84.0	87.4	90.5	92.5		
ODA 223	86.0	90.0	91.3	91.9		
ODA 223	89.0	90.2	91.0	91.0		
ODA 223	90.0	91.9	92.0	92.0		
OD3 238	84.0	87.8	90.3	91.9		
KKB 222	88.0	93.1	94.8	95.0		
KKB 222	86.0	87.7	88.0	88.0		
PKD 222	86.0	89.0	89.0	89.0		
RB5 242	95.0	95.0	95.0	95.0		
E 215	89.0	94.0	94.0	94.0		
J 315	89.0	92.0	92.0	92.0		
J 315 T 910	83.0	91.8	94.1	94.8		
1 218	86.0	90.0	91.0	91.0		
T 218	85.0	90.0	90.0	90.0		
1 218	88.0	91.8	93.0	93.9		
HIL 210	90.0	91.0	91.8	92.0		
PRU 222	89.0	94.0	96.0	97.2		
	88.0	94.0	95.4	96.0		
LD4 430 LCA 220	91.0	95.9	95.3	97.0		
1 315	09.0	90.9	99.0	100.2		
0 315 E 916	00.0	90.0	90.0	90.0		
1 4 4 2 2 2	91.U	34.U 00 0	94.U 02 2	94.0		
LAA 220 ΩΔ2 216	00.0	JU.J 05 0	92.J 07 0	92.9		
ΩΔ2 216	90.0	77.0 02 2	J/.U 02 0	3/.1		
$\Omega \Delta 2 216$	94.0	96.2	92.9 97 N	7J.1 07 1		
0A2 216	88 0	88 8	80 0	20 O		
0A2 216	89.0	00.0 QQ_Q	00.0	00.0		
THE RAY	02.0	20.V	20.0	30.0		

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - FBRSU FUEL

CRC	<u>RON-Requirements_at</u>					
Car Code	0 Miles	5,000 Miles	10,000 Miles	15,000 Miles		
NJG 218	87.0	90.1	91.0	91.0		
NJG 218	87.0	88.1	88.8	89.0		
NAR F25	91.0	92.4	93.3	93.8		
NAR F25	92.0	92.3	92.8	92.9		
PKD 222	85.0	87.1	87.9	88.0		
PKD 222	84.0	86.9	88.0	88.2		
PKD 222	84.0	85.4	86.7	87.7		
PKD 222	85.0	85.8	86.0	86.0		
NGA 238	81.0	84.8	85.6	85.4		
PME 252	87.0	89.4	91.3	92.7		
PME 252	87.0	90.9	91.9	92.0		
PME 252	89.0	90.3	92.9	93.9		
MXX 228	90.0	92.0	92.7	92.9		
NAX 228	87.0	93.8	97.8	98.0		
E 215	91.0	93.2	94.0	94.1		
OD3 238	89.0	92.1	9 3.0	93.0		
PKB 222	91.0	94.8	95.8	96.0		
T 215	87.0	90.0	91.0	91.2		
NXR F25	96.0	98.0	99.8	100.4		
0A2 216	93.0	95.1	96.2	96.8		
PKB 222	88.0	89.8	91.6	92.6		
NXK F25	94.0	97.5	98.8	99./		
UAZ 210 DKD 222	92.0	95.2	95.8	95.1		
PND 222	85.0	88.8	92.1	93.5		
NAA 220 NBA 222	85.0	91.0	92.2	94.2		
DIA 217	20.0	07.0	90.2	90.5		
NXX 228	89.0	92.0	94.0	95.5		
	03.0	92.0	23.1	55.1		
OBA 223	88.0	90.7	91.6	92.0		
PLA 217	91.0	95.0	95.2	95.4		
NJG 218	88.0	90.8	93.1	94.4		
OD3 238	89.0	92.6	93.2	93.4		
NJG 218	87.0	91.1	91.7	92.2		
OD3 238	86.0	90.1	91.8	93.3		
NXX 228	90.0	95.9	97.5	98.0		
UA2 216	96.0	97.8	98.4	98.5		
NXX 228	83.0	84.3	85.1	85.8		
NIS ZZO	92.0	94.2	90.U	. 96.1		
101 430 107 450	31.0	94.5	91.3	70.7		
101 400 7 215	07.U 79 A	74.J 07 7	70.J 00 2	33.0		
T 220	86 0	0/./ 80.2	50.3 QA 2	00 C		
PMF 252	88 0	07.3 Q1 1	90.5	90.0 Q2 G		
	~~.~		af ha t fa	J61J		

No.C

D-6

KAR KIP WAY KARANA KARANA KARANA KANANA K

6.

Ð

Ο.

TABLE D-III

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - PR FUEL

CRC		uirements at		
Car Code	0 Miles	5,000 Miles	10,000 Miles	15,000 Miles
		~ ~ ~	00.0	01 0
NJG 218	87.0	89.9	90.9	91.0
NJG 218	86.0	86.0	86.0	80.V
HJG 218	84.0	86.3	8/.9	88.0
NJG 218	76.0	80.9	82./	83.0
LXR F25	88.0	88.0	88.0	88.0
LXR F25	89.0	89.0	89.0	89.0
LXR F25	91.0	95.0	95.0	95.0
NXR F25	85.0	92.4	94.0	94.0
LXX F25	85.0	87.2	87.9	88.0
LXX 228	88.0	92.2	93.0	93.0
LAE 230	84.0	87.7	88.9	89.0
GC8 F41	82.0	85.8	88.3	88.9
GK8 F41	85.0	89.3	90.8	91.1
0A2 216	89.0	90.5	91.0	91.0
042 216	92.0	92.0	92.0	92.0
004 223	85.0	88.7	89.0	89.1
000 223	84.0	86.5	88.9	90.6
000 223	86.0	88.7	89.6	89.9
004 223	88.0	90.2	91.0	91.0
000 223	84 0	88.6	89.9	90.0
007 229	84.0	87.1	89.5	90.9
VVB 200	84 0	89 7	91.0	91.0
NND 222 VVD 222	82 0	93.6	84.0	84.0
NND 222	94.0	84 0	84.0	84.0
PRD 222	04.0	04.0	04.0	0110
RB5 242	94.0	94.0	94.0	94.0
E 215	88.0	91.1	91.9	92.0
J 315	88.0	91.4	92.0	92.0
J 315	83.0	90.5	92.9	93.7
T 218	86.0	88.2	89.0	89.0
T 218	85.0	88.0	88.0	88.0
T 218	88.0	90.8	91.2	92.8
HTC 216	90.0	90.0	90.0	90.0
PKC 222	86.0	89.3	90.4	91.0
ODB 133	88.0	92.0	93.0	93.2
1 B4 450	89.0	90.1	90.8	90.9
1 GA 238	88.0	91.4	92.7	93.3
.1 215	88 0	97.0	97.0	97.0

TABLE D-III (Continued)

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - PR FUEL

CRC	RON-Requirements at				
<u>Car Code</u>	<u>O Miles</u>	5,000 Miles	10,000 Miles	15,000 Miles	
F 016	00.0				
E 215	89.0	94.0	94.0	94.0	
	86.0	88.3	88.9	89.1	
UA2 216	91.0	94.2	95.3	96.0	
UA2 216	89.0	89.7	90.0	90.0	
UA2 216	92.0	93.7	94.2	94.2	
0A2 216	86.0	87.4	88.1	88.1	
0A2 216	88.0	88.0	88.0	88.0	
NJG 218	86.0	87.9	88.3	88.3	
NJG 218	86.0	86.8	87.0	87.0	
NAR F25	88.0	88.0	88.0	88.0	
NAR F25	87.0	87.0	87.0	87.0	
PKD 222	84.0	85.6	86.1	86.1	
PKD 222	82.0	84 9	85.9	86.0	
PKD 222	81 0	83.1	84 6	85.8	
PKD 222	84 0	84 6	85.0	85.0	
NGA 238	79 0	81.8	82 7	83.0	
PMF 252	85.0	87 5	89.2	90.5	
PMF 252	86.0	87.6	88 4	88.8	
PME 252	89.0	07.0	Q1 2	01.0	
MYY 228		90.5 01 2	01 0	02 2	
NAY 228	90.0 94 0	88.6	80 8	92.2	
NR.1 244	88 0		Q0 0	90.1	
E 215	90.0	90.0 00 E	00.0	90.0	
	05.0	90.5 06 5	90.9	91.0	
UNZ 210	95.0	90.5	37.0	97.0	
LGA 238	87.0	90.0	90.0	90.0	
NTC 216	85.0	89.0	89.0	89.0	
OCA 223	87.0	91.9	92.0	92.0	
OD3 238	88.0	89.9	90.4	90.5	
Z 215	84.0	86.0	86.0	86.0	
IAR F25	85.0	88.5	90.1	92.0	
HJG 218	86.0	88.3	89.0	89.0	
PLA 217	85.0	88.0	88.0	88.0	
PKB 222	86.0	90.2	91.0	91.0	
T 215	85.0	87.8	89.0	89.9	
NXR F25	87.0	90.4	91.4	91.8	
042 216	89 0	91 0	91 9	92 5	

KO

£

0

Į,

¢

TABLE D-III (Continued)

OCTANE REQUIREMENTS FROM BEST-FIT-CURVES - PR FUEL

CRC	RON-Requirements at			
<u>Car Code</u>	0 Miles	5,000 Miles	10,000 Miles	15,000 Miles
PKB 222	85.0	87.7	89.7	90.7
NXR F25	88.0	90.3	90.8	90.9
0A2 216	90.0	93.6	93.9	93.9
PKB 222	80.0	87.1	89.0	89.0
NXX 228	84.0	87.8	89.7	90.9
OBA 223	85.0	86.5	87.3	88.0
PLA 217	84.0	87.0	88.9	89.6
NXX 228	85.0	87.4	88.1	88.4
OBA 223	85.0	87.1	87.8	88.0
PLA 217	87.0	90.7	91.3	91.8
NJG 218	84.0	88.0	89.1	89.8
OD3 238	86.0	89.2	90.1	90.3
NJG 218	84.0	87.4	88.4	89.3
OD3 238	85.0	87.6	88.8	90.0
NXX 228	90.0	93.7	94.7	94.9
OA2 216	96.0	96.5	96.5	96.5
NXX 228	80.0	81.7	82.5	83.1
NTS 228	91.0	93.4	95.1	95.5
IBY 450	89.0	91.5	93.5	94.0
IBY 450	87.0	92.0	94.5	94.5
Z 215	78.0	87.7	90.3	91.0
T 220	85.0	88.3	89.3	89.5
PME 252	86.0	89.0	90.2	90.9

