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Signal Reconstruction from Fourier Transform Sign Information® _
Susan R. Curtis, Jae S. Lim, and Alan V. Oppenheim
b Research Laboratory of Electronics '

Massachusetts Institute of Technology
Cambridge, Mass. 02139 Ty

b Abstract e H /

In ‘this paper, we present-new results on the reconstruction of signals from only
the sign of the real part of the Fourier transform. Specifically, we_develop new
theoretical results which state conditions under which two-dimensional signals are
b uniquely specified to within a scale factor with this information and show_that q:ese

conditions include a broad class of signals. Furthermore, we apply this result '(o the
problem of reconstructing two-dimensional signals from their zero crossings. ,We also .,
>-present- two algorithms for reconstructing a signal from sign information in either the
time or frequency domain. . __

.

ks

1. Introduction

? Signal reconstruction from partial Fourier domain information has been of

interest to a number of different authors both for particular applications and for its
inherent theoretical value [1]. Previous work in this area has involved developing con-
P ditions under which signals are uniquely specified with Fourier transform magnitude or
phase [234] or signed-magnitude [5] information and developing practical algorithms
for recovering signals from this information. In this paper, we consider the problem of
N recoanstructing signals from only Fourier transform (or inverse Fourier transform) sign
information. This sign information can be viewed as one bit of the Fourier transform
E phase, without any magnitude information. Alternatively, this information can be

viewed as the zero crossings of the real part of the Fourier or inverse Fourier

transform. This latter viewpoint suggests a number of practical applications pertaining

b *This work has been supported in part by the Advanced Research Projects Agency monitored by
ONR under Contract N00014-81-K-0742 NR-049-506 and in part by the National Science Foundation under
Grant ECS80-07102, .
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to the reconstruction of signals from zero crossing information. One such application

occurs when a signal is clipped or otherwise distorted in such a way as to preserve the
zero crossing or level crossing information, and it is desired to recover the original sig-
nal. Another application occurs in the theory of vision where studies have stressed the
importance of edge detection as a means of classifying and identifying images but have
not succeeded in developing a strong theoretical basis for this work [6]. A third appli-
cation occurs in some design problems where one might want to specify a filter
response [7] or antenna pattern (8] in terms of zero crossing or null points (such as for

interpolation) and derive the remainder of the response from these.

In our previous work, we have established the importance of the sign of the real
part of the Fourier transform (also referred to as one bit of Fourier transform phase)
both experimentally and theoretically [1]. On the experimental side, we have shown
with images that if the correct one bit of phase is combined with a unity or average
magnitude, the resulting image maintains many of the features of the original image,
and in fact, is identical to the phase-only version of the even (symmetric) component
of the image. Furthermore, if an image is synthesized from the correct magnitude and
phase with the most significant bit of the phase randomized, the result is unintelligible.
On the theoretical side, we have demonstrated that much stronger results cﬁ be
obtained for unique specification of signals with signed Fourier transform magnitude

than with Fourier transform magnitude alone.

We have also previously established conditions under which a one-dimensional
signal is uniquely specified to within a scale factor with Fourier transform sign infor-
mation [1), although these conditions are fairly restrictive. One-dimensional signals are

uniquely specified with this information only if the real part of the Fourier transform

R P 0 SECNE M N R S, S S S TG TR SRR S S SR SR AT
OVCL LY RN eV G R N 'fll.l'}sf\fs':\'..z'f;t\.'.'_ms.\_xfsf.xfs.‘_s'_\‘:\‘_s'.\;
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contains a sufficient number of sign changes, or zero crossings. In the two-dimensional
® case, a "zero-crossing” is actually a contour m the (w,, ;) plane and thus consists of an
infinite number of points. Thus, it is reasonable to expect that in the two-dimensional
problem, sign information in the Fourier domain is more likely to uniquely specify a
® signal than in the correspending one-dimensional problem.
In this paper, we present new resuits® on the unique specification of two-
e dimensional signals with Fourier transform sign information. Specifically, we develop
conditions under which a two-dimensional signal is uniquely specified to within a scale
factor with sign information alone. Furthermore, we show that these conditions
| include a broad class of signals. These results are presented in section 2. We also
develop a number of extensions to these results and discuss the problem of unique
specification with sign information available only at a finite set of discrete frequencies.
* In section 3, we apply our results to the problem of .recovering a two-dimensional
signal from its zero crossings and more generally, from its threshold crossings. A con-
@ siderable amount of research has been devoted to the problem of reconstructing one-
dimeasional signals from zero crossings [13,14] and much less to the corresponding two-
dimensional problem. The problem of reconstruction from zero crossings is a dual to
¢ the problem of reconstruction from one bit of phase since it involves recovering a sig-
nal from sign information in the signal domain rather than in the Fourier domain and
. thus the results developed in section 2 are directly applicable. In section 4, we discuss
two potential algorithms for recovering a signal from sign information in either
domain.
¢
*Some of the results presented here were first presented at the Int1 Conf. on Acoustics, Speech, and
Signal Processing in March 1984 [9)].
¢
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. ;E: 2. Unique Specification with Fourier Transform Sign Information
CA0
BN In this section we present new theoretical results on the unique specification of
\ L3
two-dimensional signals with Fourier transform sign information. After introducing
some notation, we will present a number of results which apply when the sign informa-
J tion is available at all frequencies and then extend these results to situations where the
9 sign information is available only at a discrete set of frequencies.
')-'. .
2 Notationally, we will use x[s;,n,] to denote a two-dimensional discrete-time
;: sequence, X (z,,z,) to denote its z-transform, and X (w;, @;) to denote its Fourier
":‘_ transform, ie:
A X(@pz2) =3, 3 =iy, n3l " P I8))
e "1 %
- X(w,0) =3 3 x[ny, 53] P P
Rt LT
,-_'_ The Fourier transform sign information, or one bit of phase, will be defined as:
A
oy 1 if Re {X (0, &)} =0
9 S:(@p @) =| _1 otherwise @
.'_-;. We will also refer to the even (symmetric) and odd (antisymmetric) components of a
-
EZ;:: signal, defined as:
T

x([ny,n3] +x[-n4,n,]

3,lng,na] = ; ©)

i l. A a4ty
.' l' n. +
e

l.

o zny, ] —x[nyn
o fulnyny] = [y, 22] —x(-n1,7m,]
o 2
il Similarly, X,(zq,2,) will denote the z-transform of x,[n;,n;]. We will refer to z-
Z:;;Z transforms as symmetric if they correspond to symmetric sequences, that is, X (z;, z,) is
- symmetric if X (z;,25) =X (z;,251). A factor of X (z,,2,) will be said to be a real
'ﬁ symmetric factor if it is symmetric as defined above and if all of its coefficients are
S
o

e
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real. This does not imply that X (z,,2,) will take on only real values but does imply

that X (z,, z,) will be real on the unit surface |z;| = |z;| =1 Furthermore, the set of
real symmetric factors of a z-transform includes all possible factors which satisfy the

definition above and is not limited to irreducible factors.

2.1. Unique Specification with S;(wy, ©,)

In this section, we will develop resuits on the unique specification of signals with
the Fourier transform sign information S, (@, @;), when this information is available
for all frequencies. These resuits can be stated in a number of different forms since it
is possible to uniquely specify a signal Qith Fourier transform sign information under a
number of different sets of constraints. After stating and proving our primary resuit,
we develop a number of extensions for differeant types of sequences and different
definitions of S, (w,, w;). We also show that the result.s developed here apply to a

broad class of two-dimensional signals.

2.11. Primary Resuit

Since our uniqueness theorem relies primarily on a well-established result from
algebraic geometry, we shall first state this result without proof. The detailed proof is
available in references [10] and [11].

Theorem 1 [10,11]. If X (z,,2,) and Y (z;,z;) are two-dimensional poly-

nomials of degrees r and s with no common factors of degree > 0, thea
there are at most rs solutions to the following equations:

X(z4,29) =0 (8)
Y(zy,25) =0

D R S A AR R e TR SN TN O
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a. In this theorem, the degree of a polynomial in two variables is defined in terms of
. the sum of the degrees in each variable (for each term), that is, the degree of a two-
_:f dimensional polynomial p(x,y) is equivalent to the degree of the one-dimensional
::-f; polynomial p(x,x). For example, a two-dimensional sequence with support over
. 0 < ny,n; <N would have a z-transform which is a polynomial of degree 2V .
‘_‘ Essentially, Theorem 1 places an upper bound on the number of points where two
e
‘ two-dimensional polynomials can both be zero if they do not have a common factor.
.::. As we state and prove in Theorem 2, this result can be applied directly to the problem
f of unique specification of signals with S, (w;, ®;). Coasider, for example, two signals
x[ny, n;] and y [ny, n,] for which S, (wy, @) =S, (wy, wy). First of all, we note that since
_;: the real part of the Fourier transform only contains information about the even com-
~:: ponent of the sequence, we must require that x [s,, n,] be even or be defined only over
; a nonsymmetric half-plane® so it can be recovered from its even part. Also, we note
\ that if Re{X(wy,@)}>0 for all (w;,®;), then we could not expect
:1' sign (Re {X (0y, wp)}) to be sufficient to reconstruct the original signal. Thus, we will
" also assume that Re {X (v, @;)} and Re {Y (w;, w,)} are positive in some regions of the
-' (wy, w;) plane and negative in other regions. The boundary between these regions is a
. contour where Re {X (w,, w;)} = Re {¥ (wy, @;)} =0. With some algebra, we can show
that this implies two polynomials in (z,,z;) are zero over the same infinite set of
;:::: points, and thus from Theorem 1, these polynomials must contain a common factor. If
::"' we also assume that these polynomials are nonfactorable, then they must be equal to
5-\, within a scale factor, and x [s,, n,] and y [r,, ;] must be equal to within a scale factor.
LNy

°A nonsymmetric half-plane (NSHP) region of support is defined to mean that if (n,, »,) is ia the re-
gion of support, then (-m,, -n,) is not ia the region of support unless n, =, =0.

' 'p;'_. "'- P et T e T " "’ ‘:.‘ " u' q'.:-","f -!..;-“:ql'-cn'.;.'.:ﬂ..:'\. .;~ ;-'.;-‘.;-' —‘. \!'\' f \"\-'\-‘u't
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Specifically, we state the following theorem:

Theorem 2. Let x[n;,n,] and y[m;,n,] be real two-dimensional
sequences with support over a finite non-symmetric half-plane, with

S, (@), @;) = S, (01, ). If Re {X (0, @)} takes on both positive and nega-
tive values and X,(z,,z;) and Y,(z;,2;) are nonfactorable, then
x[n1, n3) =cy [y, ny] for some positive constant c.

Proof: From the theorem statement, we know that S, (4, @) =5, (04, 0); we will
show that x{n;, n;] =cy [, n,] for some c. Since we know that Re {X (w,, w,)} takes
on positive and negative values, there must be some region of the (w, w,) plane where
Re {X (0}, @)} >0 and another region where Re {X (v, w;)} <0. The boundary

between these regions is a contour where Re {X (0}, wp)} =0, or equivalently,

X, (wy, @) =0. Thus,

Xz 1’12”:,-"".:,-'"‘ =0 *)
if w, and w, are on this contour. Since S, (@, @7) =S, (v}, @) for all (w;, wy), equation
(5) alsc holds for Y, (z4,z;). Thus, we have an infinite set of points where

X (z1,22) =Y,(21,22) =0 ©)
Since x,[n;, #,] is nonzero for positive and negative values of n, and n;, X, (z3,25) is a
polynomial in the variables z,, 25, 2,~, and z,™". However, if x[n,n,] and y [ny, ;]
have finite support, then we can find integers Ny and N, such that z,"' zzxv, X,(25,29)
and z,"‘ 22"’ Y,(z, z5) are polynomials in only z, and z;. Furthermore,
N

223 2 X, (21,2 =0 @

21N| ZzN: Y,(Il,Zz) =0

over the contour in the (@, w;) plane where Re {X (), w;)} =0, and therefore, over an

infinite set of points. Thus, by Theorem 1, X,(z,,z,) and Y,(zy, z;) must have a com-
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mon factor. If furthermore, we assume that X,(z,, z,) and Y, (z,, z,) are noafactorable,
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Instead of constraining the signals to be real and to have support over a nonsym-
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metric half-plane, we could just as easily permit complex signals or signals symmetric
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about the origin. We will state one alternate form of Theorem 2 as a corollary since it
will be needed later in this paper (see Appendix 1 for proof):

Corollary 1. Let x[n,, n,] and y[n,, n,] be complex two-dimensional
conjugate-symmetric*® sequences with finite support with
S (@, wy) =S, (01, w3). If X (wy,w;) takes on both positive and negative

values and X(zy,z) and Y(z;,z;) are nonfactorable, then
x[ny, n3] = cy [ny, n,] for some positive constant c.

Note that in this case X (w,, w,) is real and that Corollary 1 directly constrains
X (w;, w;) and X (z4,z;) rather than the corresponding transforms of the even com-

ponents.

2.12. Extensions

Although Theorem 2 states a particular set of constraints under which a signal is
uniquely specified with S, (w,, @), a number of different sets of constraints are possi-
ble. In this section, we shall introduce three extensions to Theorem 2. The first result
imposes most of its constraints on only one sequence, as opposed to imposing a number
of constraints on both sequences x {n,, 2,] and y [n,, n;). This result will be convenient
to use when discussing algorithms for reconmstruction from S, (w,, w;). The second

result generalizes the concept of Fourier transform sign information to include a

°A sequence x [, »,] is conjugate symmetric if x (., 8;] = z*[~n,, -n,].




n

{
|
E

broader class of definitions than that given in equation (2). The third result extends

Theorem 2 to include sequences with factorable z-transforms by replacing the nonfac-

torability constraint with a constraint on each factor.

Let us start by considering a case where it would be convenient to have a result
which imposes most of its constraints on only one sequence. Suppose a sequence
x[ny, n4] is known to satisfy the conmstraints of Theorem 2, and we would like to
develop an algorithm to recover x [n4, a,] from S, (w,, w;). It would be convenient to
have a set of constraints which guarantee that there are no other sequences y[a;, n,]
with S, (@, ;) =S5, (wy, w;) whether or not y(my,n;] satisfies the constraints of
Theorem 2. While it is simple enough to guarantee that a recovered sequence y [n, 5,]
has the correct region of support, it is extremely difficult to guarantee that Y, (z,, z,) is
nonfactorable. Without this restriction, Y,(z;, z,) might contain a real symmetric fac-
tor which is positive on the unit surface, a;nd thus we could have
S, (wy, @) =8, (wy, @) but x[ny,n3] # cy [ry, n;). To avoid this problem, we note that
since multiplication by an additional factor in the z-domain corresponds to a coavolu-
tion in the space domain, the sequence y [#,, n,] would then have a larger region of
support than x[n;,n,]. Thus, if the exact size of the region of support of x [y, n;] is
known, then this information, together with §, (,, w,), is sufficient to uniquely specify
z[nq, n4). Specifically (see Appendix 1 for proof):

Theorem 3. Let x[ny,n;] and y[n,, n;] be real two-dimensional
sequences with support over a finite non-symmetric half-plane contained in
N sa,n,sSN with S, (0, 0y) = 5, (0, 0y). If =x[N,N]#0,
Re {X (w;, w,)} takes on both positive and negative values, and X,(z,,z;) is
nonfactorable, then x [n, n,] = cy [r,, n;] for some positive constant c.




Thus, if a sequence x [n,, 5,] satisfies the constraints of Theorem 3, then we know
that there are no other sequences y [r,,n,] with the same region of support and the
same Fourier transform sign function. Therefore, in a somewhat more general sense
than was possible with Theorem 2, we can say that a sequence satisfying the con-
straints of Theorem 3 is uniquely specified to within a scale factor with the Fourier
transform sign information and the known region of support.

It is also possible to generalize Theorems 2 and 3 to allow unique specification
with broader classes of sign information than the S, (w;, @;) as defined in equation (2).
Since S, (w,, @;) can be viewed as one bit of Fourier transform phase, we could gen-

eralize S, (w,, w;) to allow quantizing the phase in different ways. Specifically, we

could define:
- =
o lﬂa-zs¢x(ﬂl’«&)sa+2 (8)
Sz, @) = -1 otherwise
or equivalently,
5, (wy, 0p) =sign (Re {X (v;, 0y) ¢’} )

The case a =0 corresponds to the definition of S, (@,, ;) given in equation (2). Alter-

natively, since S, (w;, w;) can be viewed as the zero crossings of the real part of the

Fourier transform, we could generalize S, (w,, w,;) to allow crossings of an arbitrary
threshold as follows:

5wy, wy) = sign(Re {X (w;, wp)}—B) (10)

To develop a result on unique specification with generalized sign information, we

will combine these two ideas and define:

S:’ (w1, wp) = sign(Re {X (w, w)e/*} — B) (1)




Co

We can then develop a result similar to Theorem 2 for this definition of sign informa-

tion (see Appendix 1 for proof):

Theorem 4. Let x[ny,n,] and y[s,,n;] be real two-dimensional
sequences with support over a finite non-symmetric half-plane, with

528wy, w;) ™ 5,*%(wy, w;) for any a and B such that Re {X (w;, wy)e/%} — B
takes on both positive and negative values. Also, let:

x[ny, n,] els +x*[-n,, n,] e’e

i[ngy,ny] = > - B 8[ny,n4) (12)
i[nl,nﬂ - y["b"l] eja *yz.[_"lv _"2.] e® —98[’31,“2]
where

1 if (nyn0) = (0,0)
¥r1m2l =10 otherwise

If X (z4,2;) and ¥(z,,2,) are nonfactorable, then x[r,,n,] = cy [, n,] for
(ny,n5) #(0,0), and x[0,0]cosa —B =c(y[0,0] cos « —B) for some posi-
tive constant c.

The ambiguity at (ny, n;) =(0,0) is not just a scale factor; it is a scaling of the

kw

) for some odd integer &,

value with respect to a threshold —L. Note that if a =

then 52 (w,, w,) contains no information about x [0, 0], and even if B =0, x [0, O] can-

not be recovered.

A further extension to Theorem 2 involves replacing the nonfactorability con-
straint with a constraint on each factor. Let us express X, (z,2,) as a product of real
symmetric factors F,(z,,z;). Observe that if F;(z4,z,) =0 for any i, then
X,(zy,27) =0; similarly, if X,(z;,2;) =0, then at least one of the factors F,(zy,23)
must be zero. Thus, if each factor contributes a set of zero crossing contours, each fac-

tor will be uniquely specified by its own zero crossing contours, and thus we can

develop a set of conditions under which X,(z,,2z,) will be uniquely specified by the

-
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complete set of zero crossing contours. Specifically, we state (see Appendix 1 for

proof):

Theorem 5. Let x[n,n;] and y[n;,n;] be real two-dimensional
sequences with support over a finite non-symmetric half-plane, with
S; (0, wy) = 5, (0, w3). Consider the factorization of X,(zy,z;) and
Y,(z,,2z,) into real symmetric factors which are irreducible over the set of
real symmetric factors. If each of these factors has multiplicity one and
takes on both positive and negative values on the unit surface, then
x [ny, n4] = cy [n4, n,] for some positive constant c.

Theorem 5 can be easily modified to permit complex signals or symmetric signals,
to impose most of its constraints on one sequence, or to permit different definitions of
the Fourier transform sign information S, (w,, w,) as was done earlier in developing
exteasions to Theorem 2. This theorem could also be stated in a slightly different
manner by considering all possible factorizations of X,(z,,z,) and Y,(z,,z,) rather
than one particular factorization. In this case, the requ.irement would be that every
possible factor of X,(z4,2,) and Y,(z,z,) must take on both positive and negative
values on the unit surface. The multiplicity constraint is then unnecessary since if a
factor F (z,,z,) occurs with multiplicity two (or higher), thea there will also be a fac-
tor F2(z,,2,) which is nonnegative on the unit surface and violates the constraints of

the theorem.

Theorem 5 is related to a result developed in [1] on the unique specification of
one-dimensional signals with Fourier transform sign information. The one-dimensional
result states constraints on the zeros of the z-transform X (z) which guarantee that
X,(z) has zeros only on the unit circle (and that these zeros are simple zeros) and thus
that sign {X,(w)} is sufficient to uniquely specify x[s]. This resuit could be stated in a

form similar to Theorem 5 by considering the factorization of X,(z) into real
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symmetric factors irreducible over the set of real symmetric factors. In this case, the

factors will all be second-order and will have either two complex conjugate zeros on
the unit circle or two real zeros. Restricting each of these factors to have simple zeros
on the unit circle is then equivalent to requiring that each factor take on both positive
and negative values on the unit circle, as in Theorem 5. In addition, we require each
factor to have multiplicity one so that we can guarantee that there is a sign change in
X,(w) corresponding to each zero on the unit circle. The primary difference, then,
between the one-dimensional problem and the two-dimensional problem is not in the
type of constraints imposed but in the likelihood of a signal satisfying these con-
straints. While only a small class of one-dimensional signals will satisfy the appropri-
ate constraints, we will show in the next section that a broad class of two-dimensional

signals will satisfy these -onstraints.

2.13. Applicability

Having established a set of conditions which guarantee that a signal is uniquely
specified by some partial information, it is worthwhile to determine whether or not
these conditions are likely to apply to a typical sequence encountered in practice.
While it is difficult to answer this question without making some assumptions about
the type of application involved, it is still possible to show that a broad class of signals
will satisfy the constraints of the resuits developed earlier. In this discussion, we will
refer primarily to Theorem 3 since this is the basic result which states constraints pri-
marily upon the actual signal we are trying to recover; similar resuits can be easily

developed for the other extensions developed in the preceding section.
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e Let us first note that in many applications, the assumed region of support of a

S0

':.'-, finite-length signal is somewhat arbitrary and thus signals can often be considered to
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' have any desired region of support. However, since the real part of the Fourier

.
'y
e, s

transform is modified when the assumed region of support of a sequence is modified,
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care must be taken to ensure that the data available as S, (w;, ®;) truly corresponds to

a sequence with a region of support as specified in Theorem 3. In the remainder of

; this discussion, we will assume that the region of support constraint is satisfied.
::::E With some informal argumeats, we can next show that the probability of a ran-
:_,% dom signal satisfying the remaining constraints of Theorem 3 very rapidly approaches
?: unity as the number of points in the signal increases. First, we note that since "almost
,;f;_, all" two-dimensional polynomials are nonfactorable, the nonfactorability constraint is
?";' satisied with probability one [4,12]. Similarly, almost all sequences will have
: z[N,N]#0. Next, consider the condition requiring Re {X (4, @)} to change sign. If
(: the coefficients of the sequence were random, there would be some small, but finite,
chance that the first coefficient, x [00], would be greater than the sum of the magni-
:: tudes of the others, and thus S, (@, ®,) = sign (x [00] for all (wy, @;). Thus, we cannot
;'E claim that almost all sequences satisfy the sign-change constraint, but we can argue
.:, _ that the probability of a random first-quadrant sequence satisfying this coastraint very
‘\ rapidly approaches unity as the number of points in the signal increases.
:-."E To see this, assume that x [n,, 5,] is a first quadrant sequence with support N ;XN ,
- and form the one-dimensional sequence
afny +Nny] =x[ny, 0, (1)
: If A(z) has at least one zero outside the unit circle, then Re {A (w)} is guaranteed to
E,’. have at least one sign change over the interval (0,x) [1]. Since A (w) is a slice of
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X (wy, @7), Re {X (0, »,)} must change sign somewhere in the (w;, ;) plane. If we

assume that the zeros of A (z) are equally likely to be inside the unit circle as outside,
then the probability of A (z) having at least one zero outside the unit circle is

p =105 4
since a[n] is N N, points long. Since this condition is sufficient but not necessary for
Re {X (w,, w;)} to change sign, p represents a lower bound on the probability that a
random first-quadrant sequence would satisfy the sign-change coastraint of Theorem 3.
We can also note that p approaches unity very rapidly even for small two-dimensional
sequences. For example, for a 3>3 sequence, p =09961, and for a 4x4 sequence,

p =0999969. For a 64x64 sequence,p = 1-1072%,

Thus, we have shown that the probability of a random first-quadrant signal satis-
fying the constraints of Theorem 3 very rapidly approaches unity as the number of
points in the signal increases. Although this does not guérantee that a particular signal
in some particular application will satisfy the coastraints of Theorem 3, it does show

that the result applies to a broad class of signals.

22. Unique Specification with Samples of S,(w;, wy)

Many types of signals or functions can be uniquely specified with a finite set of
samples evaluated on a fixed grid. For example, the DFT is a method of sampling the
Fourier transform of a sequence and DFT points are known to uniquely specify a
finite length sequence. Also, in phase-only reconstruction problems, it has been shown
that samples of the phase function will, for the most part, uniquely specify any

sequence which is uniquely specified by its complete phase fuaction [2,34).
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In the problem considered here, kowever, the information in S, (w;, @) is con-

tained in the exact location of the zero crossings and ﬁis information is lost when
S, (wy, w,) is sampled. From another point of view, we can say that a finite set of sam-
ples of S, (w,, w,) contains a finite number of bits of information and thus cannot be
expected to uniquely specify a signal to infinite precision. This is distinctly different
from typical sampling problems where each sample is of (theoretically) infinite preci-
sion and thus does aot contain a finite number of bits of information. (Note, however,
that we are referring strictly to theoretical sampling problems; in practical applications
signals are generally represented with a finite number of bits, and it may be possible
for a signal to be represeated to sufficient accuracy with a finite set of samples of
S (w1, 7))

In this section, we shall take a somewhat different approach to sampling
S, (01, ). Instead of using the values of S, (wy, w,) over a fixed grid, we shall use the
location of points on the zero crossing contours of Re {X (w;, w;)} as the “samples”.
Since these contours consist of an infinite number of points, it is worthwhile to deter-
mine if a finite set of such points will uniquely specify a signal. Since Theorem 1
specifies the number of points where two two-dimensional polynomials can both be
zero, we can use this theorem to establish that a particular number of arbitrarily-
chosen zero crossing points is guaranteed to be sufficient for unique specification. We
shall also show that this number of points may not be necessary for unique
specification; in particular, if the zero crossing points are not chosen arbitrarily but are

chosen in some particular way, a smaller set of zero crossing points can be sufficient

for unique specification.
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Since rectangular regions of support are common in applications, we will develop
a result which states requirements in terms of such regions. The result could be easily
modified for different regions of support or could be applied directly to a problem
involving a different region of support by simply assuming a rectangular region of sup-
port large enocugh to enclose the actual region of support. If reference to a region of
support R(N) specifies only that a sequence is zero outside the region
-N =<n,n,; <N, then we can state:
Theorem 6. Let x[n,, n,] and y [n,, 5;] be two-dimensional sequences
with region of support over a nonsymmetric half-plane contained in R (N ).
If X,(z1,22) and Y, (z1,27) are aonfactorable and

Re {X (03, w)} = Re {¥ (@), @)} =0 at more than 16N? distinct points, then
x [n4, n4] = cy [n4, n,] for some real constant c.

Proof: Recall that the proof of Theorem 2 requires stating that two polynomials
2V Y X,(z4,25) and z¥ ¥ ¥,(z,, 2,) are equal to within a scale factor given that they
are both zero at an infinite number of points. In the case of Theorem 6, we know that
2¥ z2¥ X,(z;,2;) =2¥ 2¥ ¥,(z4,25) =0 at more than 16N? points. These polynomials

are of degree 4N and thus, by Theorem 1, can have at most 16N ? common zeros. Thus,

¥ ¥ X,(zy,2;) = czY 2% ¥,(z,,2,) and the theorem follows.

As we did with Theorem 2, we can modify this result slightly so that only one

sequence is required to have a nonfactorable z-transform:

Theorem 7. Let x[ny, n,] and y [n4, 22] be two-dimensional sequences
with region of support over a nonsymmetric half-plane coantained in R (V).
If X, (zy,29) is nonfactorable, x[N,N]+#0, and
Re {X (w;, @,)} = Re {¥ (w3, @)} =0 at more than 16N ? distinct points, then
x[ny, n3] =cy [ny, n,] for some real constant c.
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c‘.\ The proof is analogous to the proof of Theorem 3.

. S Note that for this result, it is necessary to assume the nonfactorability constraint
-" of Theorem 2. If a sequence satisfies the conastraints of Theorem 5 but not the con-
'\ straints of Theorem 2, then a finite set of zero crossings is not guaranteed to uniquely
‘ specify the sequence since these zero crossings may all correspond to the same factor.
:‘. However, a similar result is easily developed by constraining the set of zero crossings
"E- to include N, zero crossings of the i* factor, where each N ; is chosen in accordance
- with degree of the factor.

* Next, note that the number of arbitrarily-chosen zero-crossing points sufficient to
" r uniquely specify a signal is somewhat greater than the number of points in the signal.
:S Specifically, if a sequence x [, #,] has support over the largest possible nonsymmetric
S'* half-plane contained in R (N ), then it has 2¥2 + 2N + 1 distinct points. According to
Theorem 6, x [y, n,] is uniquely specified with m zero crossing points if m > 16V 2. If
:‘:J x[mq, »,] is real, then due to symmetries in the Fourier transform, x [»,, n,] is uniquely
. . specified with m > &8V ?2 points if these points are chosen over an appropriate range of
frequencies. This means a sequence consisting of p real points is uniquely specified
\": with approximately 4p zero crossing frequencies. If a sequence has support over only

one quadrant, then it has approximately N2 points, and approximately 8V 2 zero cross-

Call N - 1Y A

. [ 3
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ing points are sufficient for unique specification.

- Although Theorem 6 states that a particular number of zero crossing points is
sufficient for unique specification, it does not state that this aumber of points is neces-
> sary for unique specification. In particular, as we show next, it is possible to specify a
signal consisting of p samples with p —1 zero crossing points if the zero crossing points

are not chosen arbitrarily but are specifically chosen so that they uniquely specify the

-
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signal. To establish this result, note that we can write a set of linear equations of the

form:

3, 3, x[ny, n3) cos (0ym) +wyny) =0 as)

®, A,
where each equation uses a different pair of frequencies (w;, w;) on a zero crossing
contour, ie., where the equality is known to hold. If we assume that x[n,, n,] satisfies
the constraints of Theorem 7, then x [N ,N ] # 0, so we can substitute x [NV ,N] =1 and
obtain a non-zero solution. Thus, if x [n,, n,] consists of p points, these equations con-
tain p -1 unknowns. Although we have not shown that p —1 equations of this form are
guaranteed to have a unique solution, we know from Theorem 7 that if a sufficient
number of equations is used (say, m equations) then these equations are guaranteed to
have a unique solution. If we have m equations in p —1 unknowns and m > p -1, then
some of the equations must be dependent and can be eliminated. Thus, it is possible
(theoretically) to find p —1 independent equations from the set of m equations, and
thus the correspoading p —1 zero crossing frequencies are sufficient to uniquely specify

x[ny, n,). This result, however, does not suggest a practical algorithm for choosing the

P —1 zero crossing points so that these points uniquely specify the signal.

3. Application to Reconstruction from Zero Crossings

As mentioned in the introduction, one promising application for the results
presented in section 2 involves recoastructing a two-dimeasional signal from its zero
crossings, or more generally, from its threshold crossings. Considerable research has
been devoted to the problem of reconstructing one-dimensional signals from zero

crossings (see Requicha [13] for a survey.) Most of this work has concentrated on iden-

tifying types of one-dimensional signals which have a sufficient number of zero cross-
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: ings for unique specification. The most recent work in this area is by Logan [14], who
;‘: states a set of conditions under which one-dimensional bandpass signals are uniquely
‘ specified by zero crossings. However, no corresponding work has been reported on the
problem of reconstructing two-dimensional signals from zero crossings. In addition,
- the constraints imposed in [l4] are distinctly differeat from the coastraints to be
2 imposed in this section.

-

\ By interchanging the roles of the signal and transform domains in Theorem 2,
o that is, by exploiting the duality of the Fourier transform in a straight-forward way, we
-, can develop a new result on the unique specification of two-dimensional signals with
:: zero crossings. Specifically, if a continuous-time signal corresponds to the Fourier
'_.;_3 transform of a finite-length discrete-time sequence, and if this finite-length sequence
‘é satisfies the conditions of any of the theorems developed earlier, then the signal is

uniquely specified to within a scale factor by its zero crossings. To illustrate this in

.
.

3
PR

more detail, consider a real, band-limited, continuous-time, periodic signal f (x,y) with

P B

periods T, and T, in the x- and y- directions, respectively. With the substitution of

variables @, = 2;,’: L0y = 2;,'2" ,f will be periodic with period 2w in each of the vari-

ables w;, w, and will correspond to the Fourier transform of some complex conjugate-

symmetric finite-length discrete-time sequence F (n;, n,):

T T - -
F G ) =S S F g 77 (16)
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f(x,y)=33F(ap,n)e ' e ? 1)
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E:: From this equation, F (ny, n,) can be considered to be coefficients of a Fourier series
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expansion of f(x,y). By the resuits developed earlier, F(n,, n,) will be uniquely
specified by sign {f (x,y)} if the z-transform of F (ny,n,) is nonfactorable. The z-
transform of F (ny, n,) can be obtained from the right-hand side of (16) with the substi-

tution of (z{1,z57) for (¢ 7™, e ™), (or equivalently, from (17) with the substitution

2= _2n
of (z;1,257) for (e Ty ¢ " T3)) and thus represents a complex extension of the sig-

nal f(x,y), where f(x,y) is considered to be known over the unit surface in the
(z,z5) complex space. Therefore, the z-transform of F (n;,n,) will be factorable if

and only if f (x,y), expressed as a polynomial in equation (17), is factorable.

Let us state our dual result as a theorem:

Theorem 8. Let f(x,y) and g(x,y) be real, two-dimensional,
doubly-periodic, continuous, band-limited functions with
sign f (x,y) =sign g(x,y), where f (x,y) takes on both positive and nega-
tive values. If f(x,y) and g(x,y) are nonfactorable when expressed as
polynomials in the form (17), thea f (x,y) =cg(x,y).

Proof: This theorem follows directly from Corollary 1 to Theorem 2. Since
f(x,y) and g(x,y) have Fourier Series coefficients which are complex conjugate sym-
metric, have finite support, and have nonfactorable z-transforms, they satisfy the con-
straints of Corollary 1. Thus, the Fourier series coefficients must be equal, and
fx,y)=cg(x,y).

Although we have coanstrained the signals in Theorem 8 to be real, this result is
easily extended to include complex analytic signals (in this context, signals with no
energy for negative frequencies). In this case, the signais would be uniquely specified

by the sign of their real part. However, as one might expect, it is not possible to

uniquely specify arbitrary complex signals with independent real and imaginary parts
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with only the sign of the real part.

Since many two-dimensional signals encountered in practice are not periodic but
have finite support, we will next modify Theorem 8 so that it applies to these signals.
We will consider the case where f (x,y) is a finite segment of a periodic signal satisfy-
ing the constraints of Theorem 8. For example, if f (x,y) represents one period of a

band-limited periodic function:

fGa,y)=33 f& +mTyy +n,Ty) (18)

LA R ]
then it is possible to recover f(x,y) from its zero crossings provided that f (x,y)
satisfies the constraints of Theorem 8, even though f (x,y) itself is not band-limited.
In general, it is not necessary for the duration of f (x,y) to be equal to one period of
the corresponding periodic function. Thus, f (x,y) can represent a finite segment of a
variety of different periodic functions. In order for f (x,y) to be uniquely specified
by its zero crossings, we only need one periodic function containing f(x,y) to be
band-limited. Specifically, let us state (see Appendix 1 for proof):
Theorem 9. Let f(x,y) and g(x,y) be two-dimensional continuous
functions defined over the same known region R of finite extent with
sign f (x,y) = sign g(x,y), where f (x,y) takes on both positive and nega-
tive values. If f(x,y) =f,(x,y)in R and g(x,y) =g,(x,y) in R for any
periodic, continuous, band-limited functions f,(x,y) and g,(x,y) which

are nonfactorable when expressed as polynomials in the form (17), then
f(x,y) =cg(x,y) for some positive constant c.

Note, however, that Theorems 8 and 9 do not imply that an arbitrary (non-
periodic) band-limited continuous function, or a finite segment of one, is uniquely
specified by its zero crossings. These results would be equivalent to developing a result

similar to Theorem 2 for continuous-time signals.
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Although Theorems 8 and 9 were developed from Corollary 1 to Theorem 2, the

other extensions developed for Theorem 2 can also be useful here. Of particular
interest to us is the fact that the definition of sign information can be extended to
include crossings of an arbitrary threshold instead of just zero crossings. This result is
important since in a number of applications, particularly image processing, signals are
constrained to be nonnegative and thus have no zero crossings. Nevertheless, it might
be desirable to recover such a signal from knowledge of the points where it crosses
some particular level. The same procedure used to establish Theorem 4 can also be
used to show that Theorems 8 and 9 can be extended to include reconstruction from
sign(f (x,y )-8) provided that 8 is chosen so that the signal actually crosses the thres-
hold B. In this case, if we have sign(f(x,y)B) =sign(g(x,y)-8), then

f(x,y)-B=c(g(x,y) —B)forsomec.

4. Recoastruction Algorithms

Having established that particular classes of signals are uniquely m&ﬁed by some
partial information, it is of interest to develop algorithms for recovering the original
signal from this information. One common approach to developing algorithms for
reconstruction from various forms of partial information is to develop an iterative
algorithm which alternately impose coastraints in the space and frequency domains.
Another approach is to express the solution as a set of simultaneous linear equations.
In this section, we will discuss each of these methods and present experimental results

obtained with each method.
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i 41 Rerative Algorithm
00
-'* The class of iterative algorithms mentioned above can be applied to the problem
\ ::jIj of reconstruction from Fourier. sign information by imposing the correct sign of the
S\ real part of the Fourier transform in the frequency domain and imposing the known
‘t region of support in the space domain. It can also be applied to the problem of recon-
“ struction from sign {f (x,y)} by imposing the correct sign (perhaps with respect to
\, some threshold) in the space domain and the band-limited constraint in the frequency
: - domain. For the sake of clarity, in this section and the one that follows we will pri-
:; marily refer to the reconstruction from S, (@, w,); however, it should be realized that
.::. the same algorithms can be applied to reconstruction from sign {f (x,y)} by inter-
; i changing the roles of the two domains.
vy
\ Since knowledge of the exact points of discontinuity is necessary for the signal to
_. be uniquely specified (in either problem), the convergenée of an iterative algorithm to
{"‘_ the correct solution necessarily depends upon the use of the exact zero crossing points.
:: Thus, an algorithm for reconstruction from S, (w,, ;) which uses a DFT and thus
_1 makes use of only those values of S, (w,, »;) corresponding to DFT poiats cannot be
*:". guaranteed to converge to the correct solution. However, it can be shown that the
'.: continuous-frequency version of the algorithm (that is, a similar algorithm imposing
: the correct value of S, (w,, w;) for all frequencies and thus using an actual Fourier
’:-'::E transform and not a DFT) will converge to the correct sequence. It is also possible to
" show that the sampled-frequency version of the algorithm will converge to a sequence
-5 which satisfies both the space and frequency domain constraints (provided such a solu-
l tion exists), although the solution is not unique. These resuits can be developed within
"::E the theory of projections onto convex sets, as was used in [15] to establish the
2
A
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convergence of a number of different signal recoastruction algorithms. Specifically,
PY the resuits developed in [15] apply directly to this problem provided the constraints in
each domain are imposed in such a way as to be projections onto convex sets; the
details will be presented in Appendix 2.
¢ Once the theoretical properties of a reconstruction algorithm have been deter-
mined, it is important to empirically determine the effectiveness of the algorithm in
e recovering an actual signal. In particular, it is worthwhile to determine if a practical
size DFT limits the set of solutions to a sufficiently small set and if convergence (or a
good approximation) can be obtained with a practical number of iterations. It is also
L) worthwhile to investigate the effect of using different initial estimates in the iteration.
Experimentally, we have found that if the DFT size used is at least 4 times the signal
size and an initial estimate is chosen which in some sense resembles the original signal,
¢ then reasonable results can be obtained with a small number of iterations. Specifically,
we have had good success when using an initial estimate formed from the correct one
© bit of Fourier transform phase and a Fourier transform magnitude which is the aver-
age of a number of unrelated images. Although a large number of iterations are
required for the algorithm to converge to a sequence satisfying the time and frequency
¢ domain coastraints, the improvement of image quality after the first 20 iterations or so
is somewhat negligible even if the image at this stage does not satisfy the frequency
. domain constraints at every point. An example is included in Figure 1, where we show
the original image (a) and the image reconstructed from one bit of Fourier transform
phase (b). In this example, the original image is 6464 points. 256>256 DFTs were
6 used, and the results shown were obtained with 25 iterations.
Y
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42. Linesr Equation Method

As mentioned earlier, it is also possible to express the solution to the problem of
reconstruction from one bit of phase as a set of linear equations. Thus, another possi-

ble reconstruction algorithm would involve solving the set of equations:

?‘Ex[nx,ndcos(@xﬂx+“‘z"z)=° (19)

where each equation uses a different pair of frequencies (w,, w,) for which the equality

is known to hold.

As mentioned earlier, if we assume that x|[n,, n,] satisfies the constraints of
Theorem 7, then x [N ,N ] # 0 and we can substitute x [V ,N ] =1 and obtain a non-zero
solution. If the number of equations is chosea in accordance with this corollary, then
these equations are guaranteed to have a unique solution. However, this number is
significantly higher than the number of equations usually required in practice. Our
experience is that for a sequence with p noanzero points, p —1 equations in p —1 unk-
nowns will generally have a unique solution, although the resuits are particularly sensi-
tive to numerical errors in the values of the zero crossing frequencies. If the values of
@, and w, are obtained to four- or five-digit accuracy and if the number of equations
used is only slightly greater than the number of unknowas and a least-squares solution
is obtained, results indistinguishable from the original signal can be achieved. We have
used this procedure to reconstruct a number of different images of varying sizes which
satisfy the constraints of the results developed earlier and have always successfully

recovered the original image provided enough equations were used.

An example of results obtained with this method is shown in Figure 2, which

shows the original image (a) and the image reconstructed by solving the above equa-
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tions (b). In this example, the original image is 158 (120 points) and 122 equations in
119 unknowns were used. The real parts of the Fourier transforms of these images are
shown in Figures 3 (a) and (b). If the image of Figure 3 (a) is considered to be the ori-
ginal image, then Figure 3 (b) represeats an image reconstructed from its zero cross-
ings. For comparison, an image showing only the zero crossings of the image in Figure

3 (a) (ie-, Figure 3 (a) quantized to one bit) has been included as Figure 3 (c).

» S. Conclusions

In this paper, we have developed conditions under which two-dimensional signals

can be recoanstructed from Fourier transform sign information. We have also shown

U
that these conditions apply to a broad class of signals by showing that if the
coefficients of the signal are random, the probability of a sequence satisfying these
» conditions very rapidly approaches uanity as the num..bet of points in the signal
approaches infinity. From the basic result, we have developed a number of extensions
to different types of signals, different constraints, and different types of sign informa-
v tion. We have also applied these results to the problem of reconstructing a two-
dimensional signal from the zero crossings of the signal itself. In addition, we have
to discussed some possible algorithms for recomstruction from one bit of Fourier
transform-phase or from the signal zero crossings. Examples of images reconstructed X
with these algorithms have also been included. ]
Es
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Appendix 1. Proofs
‘ This appendix contains proofs of some of resuits presented earlier. ‘
Y
‘ Proof of Corollary 1 to Theorem 2. This proof follows the proof of Theorem 2,
b with a few modifications. First of all, since the sequences are permitted to be complex, (
the real part of the Fourier transform corresponds to the conjugate symmetric com-
E ponent of a sequence, ie., (keeping the notation x,[n,, #,])
{
A
xny,nqe +x4[nyn
E: £l ngl = [y, 52] - [-#1,m2) (AD)
With this substitution, the proof of Theorem 2 is then directly applicable to the case of
causal complex signals, with the exception that Im {x[00]} is aot recoverable from ‘
> x.[ny, n,). For conjugate symmetric signals, we note that x, [#,, 8;] = x [, n,], and thus
:-I Theorem 2 and its proof are directly applicable with the substitution of x[n,, n,] for
. 4
\
z,[m1,n3)
O\
:2 Proof of Theorem 3. Following the proof of Theorem 2, we know that since
] 5, (01, @) =S, (0, 0y), X, (24, 2,) and ¥, (z,,2,) must contain 2 common factor. Since ‘
b X, (z21,27) is nonfactorable, then if x[ny,n,] #cylry, n,l, |
] Y. (z1,22) =X,(21,2,) F (24, 25) for some real symmetric factor F (z4, z;). Equivalently, \‘
[ {
= y.[ny, 02l =x.[ny, 8] * £ ny, #,), where £ [ny, n5] is even. Thus,y,[n,, #,] # 0 for some |
values n; >N or ny >N, violating the constraints of the theorem. Thus,
h x["lr"l] =cy[nb "2]' ‘
*
'_ Note that since the convolution involves x,[n,, #;] and not x[r,, n,;], knowledge
2 that x[0,0]) #0 is not sufficient to guarantee unmiqueness, but knowledge that
{
o x[N,N]#0 is sufficient. The information required is the exact size of the region of
o
)
S
)
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support of x,[s,, 8.}, which is the same regardless of the value of x [0, 0}.

» Proof of Theorem 4. Note that with the definitions given in the theorem state-

ment,

X (w;, 5y) =Re {X (0}, wp)e/*} - B (A2)

¥ (wy, »y) = Re {Y (0y, wp)e’"} - B
Then, we note that S %w;,w,) =5,(w),w,), and since 5%y, 0;) =5,°%w;, @),

r S (0y, @) =5;(wy, w;). Since i(ny, 5] and y[n;, n;] are complex conjugate symmetric
sequences and satisfy the constraints of Corollary 1 to Theorem 2, i [, n5] = cy [, 85}

for some positive constant c¢. Then, with some algebra, x{n,, 5;] =cy[ny,n,] for

[ (ry,n3) #(0,0), and x[0,0]cos a —B =c(y [0,0] cos a — B) for some positive constant
c.

b Proof of Theorem S. Recall from the proof of Theorem 2 that if X,(z,,2;) and
Y,(z, z;) have common zero contours on the unit surfaée then they must have a com-
mon factor. We will assume that x [n,, ;] # cy [#,, 5,] and attempt to reach a contrad-

L iction. For convenience, let us assume that there is some irreducible factor of
X,(z,,22) which is not a factor of Y,(z,,2;). First of all, note that if this factor,

‘o denoted F (z,, 2,), is complex, then F*(z,,z,) will also be a factor of X,(z,,z,) and
thus X,(zy, z,) will contain a real symmetric factor F (z,, z,)F*(z,, 25) which is noane-
gative everywhere, violating the constraints of the theorem. If this factor F(z4,z,) is

Eo real but nonsymmetric, then F(z;?,257) will also be a factor since X, (z,, z,) is sym-
metric. In this case, X,(z;,z;) will contain a real symmetric | factor

b F(z,29)F (z,25), which on the unit surface is equal to F (@, w)F* (wy, w,), 8 nON-

negative function, again violating the constraints of the theorem. Thus, the factor
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F (2, 2,) must be real and symmetric, and since according to the theorem hypothesis, it

has both positive and negative values and has multiplicity one, then we must have
S, (w;, @y) # 5, (wy, @) for some values of (w, w;), and we have reached a contradic-
tion. Thus, there cannot be any factor of X,(z4, z;) which is not a factor of ¥,(z,,2,)
and thus, x [n,, n5] =cy [, 53]

Proof of Theorem 9: First we note that if f,(x,y) and g,(x,y) are not simply
periodic replications of f(x,y) and g(x,y), then f,(x,y) and g,(x,y) may contain
zero crossings that cannot be obtained from the zero crossings of f(x,y)and g(x,y).
Thus, Theorem 9 does not quite follow directly from Theorem 8. However, as we saw
in the proof of Theorem 6, unique specification in terms of zero crossings does not
require knowledge of all the zero crossing points; it requires only a finite set of them.
In this case, as long as f (x,y) contains both positive and negative values, it will con-
tain at least one zero crossing contour with an infinite nun;ber of points. Thus
fp(x,y)=g,(x,y) =0 at an infinite number of points, and using arguments taken
from the proofs of Theorems 2 and 0, f,(x,y) =cg,(x,y). Since f (x,y) and g(x,y)

are both known to be defined over the same region R and over R, f(x,y) =f,(x,¥)

and g(x,y) =g,(x,y), then f (x,y) =cg(x,y)
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Appeandix 2. Couvergence of Iterative Reconstruction Algorithm

In this appendix, we establish the convergence of our algorithm for recoastruction
from one bit of Fourier transform phase by using the theory of projection oato convex
sets, using the approach presented in [15] for establishing the convergence of a variety
of signal reconstruction algorithms. Specifically, the result we shall be using is as fol-
lows®:

Theorem AL [15,16] Let H be a Hilbert space, G be a composition of
projection operators onto closed convex sets, at least one of which is finite-

dimensional, and G* denote the intersection of these sets. If G* is
nonempty, then for all x € H , the sequence G"x converges to a point in G*.

The results developed in [15] include showing that a wide variety of constraints
often imposed in signal reconstruction algorithms can be imposed in such a way that
the transformations will satisfy the constraints of Theorem 1. In fact, the constraints
used in our algorithm for reconstruction from S, (v, ®,) differ from some of those dis-
cussed in [15] in only trivial ways. The basic approach shall be repeated here aithough

the mathematical details shall be omitted.

To show that Theorem 1 applies to our iterative algorithm, we must first carefully
define the transformations applied in the time (or space) and frequency domains at
each iteration so that they can be characterized as projection operators onto closed
convex sets. First let us note that although the continuous-frequency variables (w,, w,)
will be used throughout the discussion below, the properties of the transformations in
the time and frequency domains apply equally well if the discrete frequencies (k,, k,)

corresponding to a DFT are used. The only difference is that in the coatinuous-

*Theorem Al is a weak form of the results in {15,16] but it is sufficient for our purposes here.

LW NN NN | “_‘_ff[l"
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frequency case, the set G* will contain exactly one sequence (provided the proper con-
g::", straints are satisfied), whereas in the discrete-frequency case, the set G* will contain an
¥ infinite number of sequences.
Let h[ny, n5] denote the sequence we are trying to recover which is known to

k satisfy the constraints of Corollary 1 to Theorem 2 and is thus uniquely specified by
u“\

’::‘; S, (wy, ). Let T* denote the set of sequences which satisfy the time domain con-
5

N straints:

& x[n,n] =0 for my,n, € [ON] (A3)
= sV, N]=hN,N]
P and F* denote the set of sequences which satisfy the frequency domain constraints:

= Re {X (o;, )} = 0 if 5, (g, ) =1 .
A Re {X (@}, )} SO if S (@), ) = -1

o .
| Note that the set T* is finite-dimensional evea if the space H includes infinite-
TN

,s length signals. Also note that the definition of the set F* is not precisely the same as
sf.'

'.;:';I stating S, (wy, @) =S, (wy, w;); the difference occurs if Re {H (0}, w)} <0 and
\ Re {X (wy, @)} =0 at some point. It is necessary to use the definition of F* given in
- (4) in order for F* to be a closed set (a set which includes its limit points.)

Next we will define the operators T and F to be projections onto the sets T* aand
A
N F*. For T and F to be projections, we need:
\:_ [ITx=]|]| s||ly=]|| forally ¢ T* (AS)
¢

sj:

2 l1Fs=z|| s |ly=]] torally ¢ F® (a6)
Teo

s Thus the operator T we need to impose time domain coastraints is:

l

>

~
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x(my,ny) 0Sny,ny SN (ny,m)) *#(N,N) 4

Th@uad]l = AV ,N) (n,n) =0V, N) A7 |
g 0 ny,ny >N

or in words, simply substituting the known values of &(ny, n;]. The operator F we i

need to impose frequency domain constraints is:

»
!
F[x(ny, n3)] <= F/ [X (0, @), (A8) !
where
o X (o) if S5, (0, @) =S5, (ay, @)
Fr X (01, 02)] = | 1m (X (@, )} otherwise
or in words, keeping the imaginary part constant and setting the real part to zero if its
In sign is incorrect.
Next, we express our iterative algorithm in the form
x4 =G (A9)
P where G=TF is a composition of projection operators. Then, by Theorem 1, the

sequence in equation (9) will converge to a point in G*, that is, a sequence which
satisfies the time and frequency domain constraints. Thus, if &[n,, n,] satisfies the con-
straints of Theorem 3, and the iteration imposes the correct S, (wy, @,) for all frequen-
cies (ie. actual Fourier transforms are used), then G* coantains exactly one sequence,
Ko and the iteration must converge to that sequence. If S, (w;, ;) is sampled (ie., a DFT
is used), then the iteration must converge to a sequence in G*, ie, a sequence which‘
L satisfies the time and frequency domain constraints, although this solution is not

unique and the solution actually obtained depends on the initial estimate.

b
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Figure L Reconstruction with Iterative Method
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Figure 2. Reconstruction with Linear Equation Method
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(a) original image

(b) recovered image
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Figure 3. Reconstruction from Zero Crossings

(b) recovered image

(c) image showing zero crossings of (a)
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