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I. Introduction

We consider here the following problem: a student, with a limited

time budget, must study for an examination. The examination will consist

of several questions, one from each of several fields. The student will

be successful (pass the exam) if he answers a majority of the questions

correctly. The problem is to decide how much time to spend on each of

the several fields.

Mathematically, we assume the subject is divided into n fields.

For i=l, ..., n we assume a function

Pi = fi(xi)

th
gives the probability that the question on the i-field will be

correctly answered if the student spends xi units of time on that

field. For obvious reasons, we shall assume each fi is monotone

non-decreasing and continuous, and bounded below by 0 and above by 1.

Let N = {l,2,...,nl be the set of all questions. If the student

has probability pi of answering question i correctly, and if all

these probabilities are independent, then, for given S C N,

() PO(lt .00.,pn =d 2 pH Pi (l-Pi)

icS ifS

is the probability that the student answers all the questions in fields

[r i c S, and none of the others, correctly.

Let m, now, be the required number of correct answers. If so, then

the student's probability of passing the test is

P.- * - % %q .
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(2) F(Pl, ....pn = d II Pi -pi)
iS ic S i s

S>M

where the summation is taken over all sets S with at least m elements.

The student's problem, is, then, to maximize expression (2) subject

to (1) and the budget constraint

(3) ax t <a

(4) xi > 0 i - 1, ... , n

where a is the student's available time. The first order conditions

for this problem are

aF dpi
(5) .6.- - = X if Xi > 0

(F dpi
p(6)I dxi < if xi =0

In the general case, of course, this presents a complicated

computation. We will consider the special case where

x~ 0 < xl<~~(7) Pl ( x ) .{ •x

This is not an unreasonable probability function: it represents the

case where the student requires unit time (the time can of course be

suitably normalized) to read each section of the textbook. In less than

unit time, he can only read a proportional fraction of the section, and

the probability of a correct answer is in turn proportional to that.

' ' , -- ,, aw
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In this case, the first-order conditions take the form

I -X if 0< pi< 1
, ~~~aF ifP I

>X if 

< X if Pi s0

Now, it can be seen that

(8) aF 1 1 I n (1-p.)
(Pi S JES j¢S~iES j~i

s =m

where the sum is taken over all sets S, containing i and exactly m-i

other elements. We shall use Fi to denote this partial derivative.

We prove, now, that we need only consider points (p1,... pn) in

which each pi has one of the three values 0, 1, and some other p.

Lemma 1: The maximum of the function F , subject to the constraints

(3)-(4), is attained at a point (pl,...pn) whose component; have only

one value other than 0 or 1;

Proof: Let us consider the expression (8) for Ft . Lettinq

ti, we can write this as

F i  S El p1 i (l-'p) + II HI (1-)Sis fsS JEs jqrS
L joi VS joi

where the first sum is taken over all S with ICS, ifS, s-m-l ,

and the second over all S with i,R¢S, s-m-1 . We rewrite as

i ,i n jilt ) + (-p.) [E p ( 3-pj
S its JI . j.,,ts

I Joe 0 % )Ill

L%
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or equivalently,

(9) Fi  pt E np nIpj ) + pj 1(l-p.)
S jspJ

where the first sum is taken over all S with i,tfS, s=m-2 , and the

second over all S with i,1¢S , sam-I . In each case the first

product is over all jES , the second over all jeN-S-{i,t).

We have, then,

F.- Ft L (p - p.)FZ Upj 11(l-pj) - Z .pj 11(1-p.

where the two sums are as in (9), or equivalently,

(10) F1 - Ft = ( pi) Hit

where

(11) H S 11S p. 1 (i-p.) E n pj (1-p.)
it S jesJ 3 jos S jcs jfS
szm-2 jol, s-m-1 j~i,

where the sums in (11) are over all subsets SCN-{i,t)} with m-2

and m-I elements respectively. We note, inter alia, that Hit

depends on pj, ji,t, but does not depend on pi or pt.

Let X be the set of all p'(pi,...,pn) which maximize F

* subject to (3)-(4). By continuity of F , X will be compact and

non-empty. Then C(X) , the convex hull of X , is compact and convex;

moreover, the extreme points of C(X) are all points of X (though not

all points of X are necessarily extreme in C(X)). We claim, now, that



5

if p*(pl*,...,pn*) is extreme in C(X) , the components pj

will have at most one value other than 0 or 1.

In fact, suppose there is some pair of indices i,t, such that

0 Pi* < P * < I.

Since peX , then by (7-ii), we have

Fi(p*) - F(p*)

Now, by (10)

Fi-F ,(p*-p#) H (p*).

However, pi* < P, and so we must have Hit -0.

As was pointed out above, however, Hit is independent of both

pi and p z thus, for any t , the point p'(t) , given by

Pl(t) - Pi* + t

p'(t) = P * - t

pl(t) = pj* for all other j

will also have H it(p') -0. For sufficiently small t (both

positive and negative) p'l(t) will satisfy the constraints (3)-(4).

Moreover, the directional derivative in the direction of increasing t

is Fi-F., and this will be 0 for all values of t. Thus, for

sufficiently small t,

d.
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F(p'(t)) = F(p'(-t)) = F(p*).

Since p* maximizes F , so do p'(t) and p'(-t). But this means

both p'(t) and p'(-t) belong to X , and, since

1I (p(t) + p(-t))

we conclude that p* is not extreme in C(X) . This contradiction

proves the lemma.

We see, then, that the maximum of F will always be found at a point

of the form

(12) pj= p Mejm2

0 CM
3

I where MI, M2, M3  are disjoint sets whose union is N , with

4 cardinalities ml, m2, and m3 , while 0 < p < 1 . We have then

(13) ml + m2 + m3 = n.

(14) m1 + m2P =Ot.

It is easy to see that, in this case, we will have

M2 (m )S m 2-2

(15) F a (2 2 (l-p)

In fact, all members of M are always correct, and all members of

M3  are always wrong. Thus the student will pass the exam if and only

if at least m-m1  of the members of M2  are answered correctly.

-S -' 0 'T ' ' ' ' *..........- ' ",'; '; i ,, - , w *" "
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Lemma 2: If _>m, then F is maximized by setting ml>m. If

then F is maximized by setting m1=0, i.e., M 1 .

Proof: if a > m, it is easy to see that F can be made equal to 1

simply by letting ml>m. This is clearly a maximum.

Suppose, in fact, that a<m, but M1 VV. Then ml<a<m, so

m2 >O as otherwise we would have F=O . Let iE M1, LEM 2 : then

Pi=1 and O<pe<l , so assuming p is optimal, we must have

F, > F.

Now, however,

Fi =(mm21) p m Mml (l-pmlI+M2-

- .1 m2 -m

F m 2 - 1,) pm-m - 1 (,Pm 1+m2 - m

F = (rm 2ml) l  mm l-p

(since as we saw before, F. is simply the probability that exactly m-l

answers other than j be correct). Thus we have

m-2,)pm'ml ( lP),+m2-m (m- 1 1) pm m l  ( p)ml+m2"m(l-) - M-ml -( -)

which reduces to

MI-
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or

m2P > m-ml

By (14), however, this gives us a > m which is a contradiction. Thus,

if a < m, then at the optimum, M, = 0 as claimed. Q.E.D.

From Lemma 2 we see, then, that in the "difficult" case, a < m, we

have mI =0. Denote M2 by K, then M = N-K, and so the optimum

will be obtained at a point
'S

if je K
Pj k

0 if jfK

where K has k elements. In this case

F= k ( ( ) S (k5 k
s--m

and we look for the value of k, m < k < n, which maximizes this expression:

(16) Fk-maxs
(16) Fmax = mFlxc S~J) 5.. x m < k < n s-m

,.-

In general, we can obtain this number from tables of the cumulative

normal distribution. To get an idea of its behavior, however, we let

(17) qs(s) - (k (7c) ( k-s

.%.

" -L,,,., .. ,-. .,,-,~~~ ~ ~~- --.o.-¢,,.,.- .y.,, -. , .,,,, N ,. _.a. ,: 'V
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a'.-

be the probability of exactly s correct answers, assuming that the

student divided his time among k sections. Then

_- -q k ( s ) k ( k - 1 )k - 1 ( k -a ) k - s

kl kks

qk-l(S) k-s k (k-a-l)k-s- 1

As a +0, this expression approaches the limit

(19) Lk(S) k k
- k-s kJ

Now, it is easy to see that, for k > 0, and s > 1,

..
k - (< -k)

and so Lk(s) > 1 for s > 1. We conclude that, for small values of

(is qk(s) > q kl(s) for all k and all s > 1, and so k should

be chosen as large as possible, i.e. k = n. On the other hand, if a

is large, i.e., sufficiently close to m, we know it is best to choose

km.

0 We conclude, then, that for small a the student should study some

of each section; for large a (i.e., near m) he should concentrate his

studying on m of the sections. What is not clear is (a) whether any

intermediate values of k (i.e., m < k < n) are ever optimal.

To look at this problem in some detail, we consider the case n = 13,

m = 7. Figure 1 shows the result of our calculations: k a 13 is optimal

for all a 6.16, while k 7 is optimal for a > 6.30. In between

: q '. _-.- a. *-p
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there seem to be five small subintervals where k = 12, 11, 10, 9, 8 are

successively optimal.

It is not clear whether this type of behavior always holds, though in

the several cases studied by the authors this is indeed the case. If we

look at expression (18), we note that, as a function of a, these ratios

are convex, i.e.,

ai (qkI s ) ) <

This suggests (though it does not prove) that this type of behavior will

usually hold.

For small values of m, it is not difficult to show that this is

indeed the case. For example, in the case n-3, m=2, we find k=3 is

optimal for a < 1.125, with k=2 optimal if a > 1.125.

For n=5, m=3, we find that k-5 is optimal if a < 2.117; k=4 is

optimal for 2.117 < ci < 2.173; finally, k=3 will be optimal if a >

2.173.

The number of correct answers--assuming all study was concentrated

*on k sections of the course--is a binomial random variable with

parameters k and a ; its mean is therefore a, and its variance is

.(l-f). For large values of m and n, this can generally be approximated

by using either the normal or the Poisson distribution.

If a is close to m, say a - m-X. Then letting k-m, we wouldI have

Idl



1"p. = -- for jCK

j -m

and so the number of incorrect answers among the m sections studied is

a binomial variable with mean X. If we use the Poisson approximation,

the probability of r incorrect answers will be

In particular, the probability of passing the exam is Q(O), or P-X.

As against this, if the student studies m+l sections, the number of

incorrect answers among the sections studied will also be approximately

Poisson with mean X + 1. To pass, at most one can be incorrect; the

probability of passing is then

xq+l(0) + qX+l( 1) = (l+x+l)

and this will be greater than P'X only if X>Z-2, i.e., if a<M+2-L, or

about <M-0.718. Thus k=M is optimal if c>M-0.718.

Suppose, on the other hand, a is considerably smaller than M. In

this case concentration on k sections gives us a binomial variable

which can best be approximated by a normal variable with mean a and

p variance a(l -). To pass the examination, the student requires at least

m correct answers, i.e., the variable must have a value at least equal to

m-z (the fractional modification is standard in such cases). If a,

the mean of the variable, is more than slightly below m-7, this probability

will be maximized by making the variance as large as possible. With

IN
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a fixed, this is done by setting k as large as possible, i.e., k=n.

The probability of passing the exam will then be given by

where 0 is the cumulative standard normal distribution function.

One interesting observation remains to be made, and it concerns the

person who makes up the exam. If, instead of asking one question on each

section of the course, he were to choose n questions at random

(independently) from the entire subject matter of the course, then the

student who devotes a units of time (where n units would be

required to knuw the entire subject) would have probability a/n on each

question. In effect, this is the same as if the student had devoted

a/n units to each of the n sections of the course. But we have seen

that this is precisely the optimal study strategy for the student who

spends a relatively small time preparing for this exam. Thus, such a

strategy on the part of the examiner will penalize only the students who

spend a relatively long time preparing, i.e., the conscientious

o students. In other words, the student who knows, e.g., 80% of the course

material will get a grade of 80% if there is one question from each

section, but might fail if the questions are chosen randomly from the

entire course matter. The student who knows only 30% of the course

matter has the same probability of passing under either mode of

examination.
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Figure I

The Impact of Concentrating Competence on Pn for n=13

4--

9

IsO3

- .3671

6.00 6.10 6.20 6.30 6.40 6.5

Total Competence (n)



Footnotes

I 1. The problem we consider here is mathematically analogous to problems

considered by the early French mathematician, Condorcet. For

• . historical background and parallels, see Grofman, Owen and Feld,

~1982, 1983 (forthcoming).
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