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I. Introduction

We consider here the following problem: a student, with a limited
time budget, must study for an examination. The examination will consist
of several questions, one from each of several fields. The student will
be successful (pass the exam) if he answers a majority of the questions
correctly. The problem is to decide how much time to spend on each of
the several fields.

Mathematically, we assume the subject is divided into n fields.

For i=1, ..., n we assume a function
pi = filxy)

gives the probability that the question on the il field will be
correctly answered if the student spends X; units of time on that
field. For obvious reasons, we shall assume each fi is monotone
non-decreasing and continuous, and bounded below by 0 and above by 1.
Let N = {1,2,...,n} be the set of all questions. If the student
has probability P; of answering question i correctly, and if all

these probabilities are independent, then, for given S C N,

(1) Pe(Pys cees b)) = Wp, T (1-p,)
L T jes tigs
is the probability that the student answers all the questions in fields

€S, and none of the others, correctly.

Let m, now, be the required number of correct answers. If so, then

the student's probability of passing the test is




i€S ¢S

(2) Flpys +ees b)) = SZ'

s>m

where the summation is taken over all sets S with at least m elements.
The student's problem, is, then, to maximize expression (2) subject

to (1) and the budget constraint
(3) zxi <a

(4) x; >0 iz1, ceey N

where a is the student's available time. The first order conditions

for this problem are

ios o,
(5) ma-x? A if Xi>0
of dpi
(6) -Eb?d—xii)‘ if x; =0 .

In the general case, of course, this presents a complicated

computation. We will consider the special case where

X 0<x<l
(7) py(x) = {
1 x>1.

This is not an unreasonable probability function: it represents the
case where the student requires unit time (the time can of course be
suitably normalized) to read each section of the textbook. In less than
unit time, he can only read a proportional fraction of the section, and

the probability of a correct answer is in turn proportional to that.
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In this case, the first-order conditions take the form

‘ = if 0< P, 1
oF X =
Now, it can be seen that
oF
(8) . =L O ey I (1-py)
i S jes jes
€S j#i

S=m

where the sum is taken over all sets S, containing i and exactly m-1
other elements. We shall use Fi to denote this partial derivative.

We prove, now, that we need only consider points (p1,...,pn) in
which each Py has one of the three values 0, 1, and some other p.

Lemma 1: The maximum of the function F , subject to the constraints
(3)-(4), is attained at a point (p],...pn) whose components have only
one value other than 0 or 1;

Proof: Let us consider the expression (8) for Fy . Letting

£#i, we can write this as

Fa I (1-p,) + E T (-
s jes Pi s Py) s 3es °3 jes Py)
L€S 3 743 JA

where the first sum is taken over all S with 4%€S, 1¢S, s=m-1 ,
and the second over all S with 1{,8¢S, s=m-1 , We rewrite as

F.=p [Z 0 p (1-p;) + (-p,) [T W I (1-p;)
U [s jes ’Jr] "3 b [s ses ) ses p’]
jri, ¢

it A




or equivalently,

= - + - -
(9) Fi=py g I n(1 pj) (1 pz) LM n(1 pj)

J S 7J
where the first sum is taken over all S with i,0£S, s=m-2 , and the
second over all S with i,2¢S , s=m-1 . In each case the first
product is over all jeS , the second over all jeN-S-{i,e}.

We have, then,

Fi- F!' = (pz = p1)[§ HDJ H(]'pJ) 'g an H(]-p.])]

where the two sums are as in (9), or equivalently,
(10) Fi = Fy = (py = py) Hyy

where

AR A jes 3 gfs ey - & jes™d ges (1-9;)
s=m=-2 j#1, s=m- j¥i,

where the sums in (11) are over all subsets SCN-{i,2} with m-2
and m-1 elements respectively. We note, inter alia, that Hil
depends on pj, J#i,2, but does not depend on Py or p,.

Let X be the set of all ps(pi,...,pn) which maximize F
subject to (3)-(4). By continuity of F , X will be compact and
non-empty. Then C(X) , the convex hull of X , is compact and convex;

moreover, the extreme points of C(X) are all points of X (though not

all points of X are necessarily extreme in C(X)). We claim, now, that
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if p*=(p]*,...,pn*) is extreme in C(X) , the components P;

will have at most one value other than Q0 or 1.

In fact, suppose there is some pair of indices 1,2, such that
0< pi* <Py * < 1.
Since peX , then by (7-ii), we have
Fi(p*) = Fy(p*)

Now, by (10)
Fi-F =(pg-py) Hyp (P*).

However, pi* < p; , and so we must have Hiz = 0.

As was pointed out above, however, Hiz is independent of both

P; and Py thus, for any t , the point p'(t) , given by

pi‘(t) = pi* +t
p'(t)=p*-t
pj'(t) = pj* for all other j

will also have Hiz(p') = 0. For sufficiently small t (both
positive and negative) p'(t) will satisfy the constraints (3)-(4).
Moreover, the directional derivative in the direction of increasing t
is Fi'Fz' and this will be O for all values of t. Thus, for

sufficiently small t,
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. F(p'(t)) = F(p'(-t)) = F(p*).
\ Since p* maximizes F , so do p'(t) and p'(-t). But this means
both p'(t) and p'(-t) belong to X , and, since
’ p* = 5 (p'(t) + p'(-t))
we conclude that p* is not extreme in C(X) . This contradiction
. proves the lemma.
' We see, then, that the maximum of F will always be found at a point
of the form
l
1 jcM]
2 (12) pj = p :thz
:‘ 0 J¢M3
) where M], Ms, M3 are disjoint sets whose union is N , with
£ d
b cardinalities m,, m,, and my , while 0 < p < 1. We have then
‘
" (13) m +my +my=n.
2%
“ It is easy to see that, in this case, we will have
‘ m,-2
> m 2
S (15) a2 ()t
s=m-m
3 1
i ”
> In fact, all members of M] are always correct, and all members of
; M3 are always wrong. Thus the student will pass the exam if and only

if at least m-m, of the members of M2 are answered correctly.
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Lemma 2: If a>m, then F is maximized by setting my>m. If eam,

then F is maximized by setting m]=0, i.e., M]=¢.

Proof: if @ >m, it is easy to see that F can be made equal to 1
simply by letting my >m. This is clearly a maximum.

Suppose, in fact, that a<m, but Mlia. Then m,<a<m, soO
m2>0 as otherwise we would have F=0 , Let i€ M], LGMZ: then

pi=l and 0<p2<1 , SO assuming p is optimal, we must have

Now, however,

m m-m m,+ m,-m
- 2 1 1 "2
Fi-(m-m]>p (]-p)

m,=-1 m-m, -1 m, +m,-m
F¢=(m2 )p 2

‘m]-]

(since as we saw before, Fj is simply the probability that exactly m-1]

answers other than j be correct). Thus we have

mo - _ mz-l o] o
(m-mI )pm m (]-p)m1+"'2 m_’. (m-m]-l) pm my (]_p)m] my=m

which reduces to

«a N . Qo « ot . o® ” o L e W oL W
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or

m,p > m-m

By (14), however, this gives us a > m which is a contradiction. Thus,
if a < m, then at the optimum, M] = P as claimed. Q.E.D.

From Lemma 2 we see, then, that in the “"difficult” case, a < m, we
have m, = 0. Denote M2 by K, then M3 = N-K, and so the optimum

will be obtained at a point

o . .
{E’ if jekK
0 if JEK

where K has k elements. In this case

- 506 ®”

and we look for the value of k, m< k < n, which maximizes this expression:
s k-s
k a k-
(16) F .. =  max P ( ) ( ) (T) .
max m<kgn s=m \S J

In general, we can obtain this number from tables of the cumulative

normal distribution. To get an idea of its behavior, however, we let
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o be the probability of exactly s correct answers, assuming that the
,:gl N student divided his time among k sections. Then
20
o k-1 k
AR q,(s) k (k-1) (k-a)*"3
J - = . y Ten
R ar(s)  kes KK (k-o-1)*"5"!
o
ési As o + 0, this expression approaches the limit
o -1\ 3
:'n': k"S k
/)
¥ 4
Now, it is easy to see that, for k >0, and s > 1,
2%
< :
O
:.:: ]-§<]-l)
; k k
-‘xa
Af;: and so Lk(s) >1 for s >1. We conclude that, for small values of
-t
> a, qk(s) > qk_](s) for all k and all s > 1, and so k should
J be chosen as large as possible, i.e. k = n. On the other hand, if a
\‘.\
:;4 is large, i.e., sufficiently close to m, we know it is best to choose
o~
::'_.: k = m.
»?7 We conclude, then, that for small a the student should study some
S
:;f of each section; for large a (i.e., near m) he should concentrate his
3i£; studying on m of the sections. What is not clear is (a) whether any
» intermediate values of k (i.e., m< k < n) are ever optimal.

To look at this problem in some detail, we consider the case n = 13,
m=7. Figure 1 shows the result of our calculations: k = 13 is optimal

for all a < 6.16, while k = 7 is optimal for a > 6.30. In between

- . N - e
» ‘-'l,c.lq",. AL N e




there seem to be five small subintervals where k = 12, 11, 10, 9, 8 are
successively optimal,

It is not clear whether this type of behavior always holds, though in
the several cases studied by the authors this is indeed the case. If we
look at expression (18), we note that, as a function of a, these ratios

are convex, i.e.,

2

3 qk(s) < 0 .
;2. qk-](S)

This suggests (though it does not prove) that this type of behavior will
usually hold.

For small values of m, it is not difficult to show that this is
indeed the case. For example, in the case n=3, m=2, we find k=3 is
optimal for a < 1.125, with k=2 optimal if a > 1.125.

For n=5, m=3, we find that k=5 is optimal if a < 2.117; k=4 is
optimal for 2.117 < a < 2.173; finally, k=3 will be optimal if a >
2,173,

The number of correct answers--assuming all study was concentrated
on k sections of the course--is a binomial random variable with
parameters k and %-; its mean is therefore a, and its variance is
a(l-%). For large values of m and n, ihis can generally be approximated
by using either the normal or the Poisson distribution,

If a is close tom, say a = m=-A. Then letting k=m, we would

have
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= - L i
l-pj 1 - for jeK

and so the number of incorrect answers among the m sections studied is
a binomial variable with mean A. If we use the Poisson approximation,
the probability of r incorrect answers will be
-\ r
. e
G(r) =
In particular, the probability of passing the exam is Q(0), or P2,
As against this, if the student studies m+1 sections, the number of
incorrect answers among the sections studied will also be approximately

Poisson with mean A + 1. To pass, at most one can be incorrect; the

probability of passing is then
Qeq(0) + Gy (1) = £ 1)

and this will be greater than P™ only if A>g-2, i.e., if acM+2-2, or
about a<M-0.718. Thus k=M is optimal if a>M-0.718.

Suppose, on the other hand, a is considerably smaller than M. In
this case concentration on k sections gives us a binomial variable
which can best be approximated by a normal variable with mean a and
variance u(1-%). To pass the examination, the student requires at least
m correct answers, i.e., the variable must have a value at least equal to
m-% (the fractional modification is standard in such cases). If a,

the mean of the variable, is more than slightly below m-%, this probability

will be maximized by making the variance as large as possible. With
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f a fixed, this is done by setting k as large as possible, i.e., k=n.

zg The probability of passing the exam will then be given by

I

)

2 P=2¢ “"'"%

3i where ¢ is the cumulative standard normal distribution function.

:?N One interesting observation remains to be made, and it concerns the

ig; person who makes up the exam. If, instead of asking one question on each

JF section of the course, he were to choose n questions at random

a; (independently) from the entire subject matter of the course, then the

S% student who devotes a units of time (where n units would be

_zﬁ required to knuw the entire subject) would have probability a/n on each
question. 1n effect, this is the same as if the student had devoted

*Ei a/n units to each of the n sections of the course. But we have seen

?; that this is precisely the optimal study strategy for the student who

,f- spends a relatively small time preparing for this exam. Thus, such a

:_3 strategy on the part of the examiner will penalize only the students who

?S spend a relatively long time preparing,.i.e., the conscientious

" students. In other words, the student who knows, e.g., 80% of the course

Eﬁi material will get a grade of 80% if there is one question from each

é? section, but might fail if the questions are chosen randomly from the

.,; entire course matter. The student who knows only 30% of the course

§§ matter has the same probability of passing under either mode of

.ﬁs examination,
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Figure |

The Impact of Concentrating Competence on Pn, for n=13

|27

.3399

6.00 6.10 6.20 6.30 6.40
Total Competence (np)

6.5




- U AULCE SRR SO 8

w e
o
]

0>
’
L4

"

B0

Ly

15

P i
N B

POl A B

Footnotes

- .
-

¥

1. The problem we consider here is mathematically analogous to problems

k) '
Py ~v"::_f >

considered by the early French mathematician, Condorcet. For
historical background and parallels, see Grofman, Owen and Feld,

1982, 1983 (forthcoming).
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