PHOTOLUMINESCENT AND ELECTROLUMINESCENT PROPERTIES OF CD·SUB 095 Mn SUB 0. (U) WISCONSIN UNIV-MADISON DEPT OF CHEMISTRY A A BURK ET AL. 28 SEP 84 UWIS/DC/TR-84/2
Photoluminescent and Electroluminescent Properties of Cd$_{0.95}$Mn$_{0.05}$Se Electrodes

A. A. Burk, Jr.†, Arthur B. Ellis†, Dana Ridgley‡ and Aaron Wold‡

Prepared for Publication in Journal of Luminescence

Department of Chemistry
University of Wisconsin-Madison
Madison, Wisconsin 53706

and

Department of Chemistry
Brown University
Providence, Rhode Island 02912

September 28, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release: Distribution Unlimited

†University of Wisconsin
‡Brown University
Photoluminescent and Electroluminescent Properties of Cd$_{0.95}$Mn$_{0.05}$Se Electrodes

A. A. Burk, Jr., Arthur B. Ellis, Dana Ridgeley and Aaron Wold

Department of Chemistry, University of Wisconsin, Madison, WI 53706 and Department of Chemistry, Brown University, Providence, RI 02912

Prepared for publication in the Journal of Luminescence

Quenching of photoluminescence (PL) and initiation of electroluminescence (EL) from n-type Cd$_{0.95}$Mn$_{0.05}$Se electrodes is used to map the electric field in these solids, grown by a modified Bridgman method.
PHOTOLUMINESCENT AND ELECTROLUMINESCENT PROPERTIES OF Cd$_{0.95}$Mn$_{0.05}$Se ELECTRODES

A. A. BURK, JR. and Arthur B. ELLIS

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA

Dana RIDGLEY and Aaron WOLD

Department of Chemistry and Materials Research Laboratory, Brown University, Providence, Rhode Island 02912 USA

Quenching of photoluminescence (PL) and initiation of electroluminescence (EL) from n-type Cd$_{0.95}$Mn$_{0.05}$Se electrodes is used to map the electric field in these solids, grown by a modified Bridgman method.

1. INTRODUCTION

Photoluminescence (PL) and electroluminescence (EL) can be used to characterize electric fields in semiconductor electrodes through their influence on electron-hole (e^-h^+) pair recombination. Solid solutions of II-VI compounds such as n-CdS and n-CdSe have provided a useful family of tunable band gap materials for such studies. We have extended these studies to emissive electrodes derived from a solid solution of MnSe and CdSe. In this paper we report that PL from n-Cd$_{0.95}$Mn$_{0.05}$Se electrodes used in photoelectrochemical cells (PEC's) can be used to map the electric field in these solids, and that EL obtained from the electrodes originates, on average, nearer the semiconductor-electrolyte interface than PL.

2. SYNTHESIS AND CHARACTERIZATION

Single-crystal samples of n-Cd$_{0.95}$Mn$_{0.05}$Se were grown by a modified Bridgman method; samples with carrier concentrations, n, ranging from 10^{16}-10^{18} cm$^{-3}$ (Hall method) were etched with 1:20 (v/v) Br$_2$/MeOH prior to use. When excited with ultraband gap light ($E_g 1.75$eV4), the samples emit with λ_{max}-694nm, Fig.1. The spectral maximum is near E_g and blue-shifts to -665nm at 77 K; radiative quantum efficiencies, ϕ_r, for the edge emission generally range from 10^{-5} to 10^{-4}.

*Address correspondence to these authors.
†Work at the University of Wisconsin-Madison was generously supported by the Office of Naval Research.
‡Work at Brown University was generously supported by the Office of Naval Research and the Materials Research Laboratory, funded by the National Science Foundation.
3. PL PROPERTIES IN A PEC

When the solid serves as the photoanode of a PEC employing diselenide electrolyte, its PL intensity can be quenched by applied potential. Figure 1 presents photocurrent - PL intensity - voltage data (iLV curves) for a n-Cd$_{0.95}$Mn$_{0.05}$Se-based PEC; the potential-independent spectral distribution permits PL to be monitored at λ_{max}. Quenching of PL in PEC's has been described using a dead-layer model originally applied to semiconductor-metal, Schottky barrier systems: e^-h^+ pairs formed within a distance on the order of the depletion width do not contribute to PL; this model thus relates PL intensity to the thickness of the electric field in the electrode5,6. The quantitative form of the model is given by eq. (1), where ϕ_r and ϕ_{rFB} are radiative efficiencies in circuit and at flat-band potential (assumed to be open circuit), respectively; D is the dead-layer thickness; and $\alpha' = \alpha + \beta$ with α and β the solid's absorptivities for the exciting and emitted light.

Although ultraband gap absorptivities have not been measured for n-Cd$_{0.95}$Mn$_{0.05}$Se, values of α can be estimated by blue-shifting the CdSe absorption spectrum by -25nm, since the solids have similar electronic structures. The PL quenching resulting from a given excitation wavelength then leads, in conjunction with the estimated value of α and eq. (1), to a value for D. For the Fig. 1 data, D is calculated to be -1200Å (α is taken to be 1.7 x 10^5 and 0.63 x 10^5 cm$^{-1}$ for 458 and 646nm, respectively) at -0.7V vs SCE in accord with a calculation of the depletion width. In general, good agreement of PL quenching with the dead-layer model was found and a consistent set of values for α was obtained for all samples. When the experimental curves were compared to curves calculated by assuming that all of the applied potential appears in the semiconductor5, good accord was found, indicating that applied potential appears predominantly in the solid.

4. EL PROPERTIES

When used as a dark cathode in aqueous, OH$^-$/S$_2$O$_8^{2-}$ electrolyte, samples of n-Cd$_{0.95}$Mn$_{0.05}$Se exhibit red EL. The electrode's EL spectrum, Fig. 1, is similar to its PL spectrum, but exhibits a spectral mismatch in the high-energy tail. As with n-Cd$_x$Se$_{1-x}$ (0 \leq X \leq 1) samples, we attribute this mismatch to self-absorption effects: the enhanced intensity at short wavelengths is consistent with the origin of EL, on average, nearer the semiconductor-electrolyte interface than PL2. Measured EL efficiencies are ~10$^{-5}$ to 10$^{-6}$.2
FIGURE 1

Left: Uncorrected PL (solid curve) and EL (vertical lines) spectra of n-Cd_{0.95}Mn_{0.05}Se obtained in the same sample geometry in OH-/S_{0}^{2-} electrolyte (295K). The PL spectrum (632.8-nm excitation) was taken out of circuit; the EL spectrum, scaled to match the PL intensity at \(\lambda_{\text{max}} \), was acquired by repetitively pulsing the electrode between 0.0 V (1.5 s) and -1.3 V vs. SCE (1.0 s).

Right: Relative photocurrent (bottom panel) and PL intensity (top panel; monitored at \(\lambda_{\text{max}} \)) as a function of potential for an n-Cd_{0.95}Mn_{0.05}Se-based PEC employing diselenide electrolyte. The electrode (n-4 \times 10^{16} cm\(^{-2}\)) was excited with 457.9- ("A" curves) and 646-nm ("B" curves) light in an identical geometry. PL intensities and photocurrents were arbitrarily matched at "100" open circuit; photocurrent densities (quantum yields) at -0.7 V vs. SCE are 7mA/cm\(^2\) (0.7) and 3mA/cm\(^2\) (0.5) for curves A and B, respectively. These IV curves were swept at 10mV/s.

REFERENCES

