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FOREWORD

This document is based on a paper presented st the thirty-seveath

- annual meeting of the Institute of Navigation, June 9-11, 1981, at
Annapolis, Maryland. This paper s based upon navigation system
engineering studies performed by MITRE for the FAA's Systess
Research and Development Service. The contents of this paper
reflect the views of the author and do not necessarily reflect the
official views or policy of the FAA.
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1. INTRODUCTION .

i The Federal Aviation Adaintstration {s evaluaziag alternative R
! radio navigation systems for :ivil aviatf{on In the 2o6t=-1995 ’ 4
' tize period. The systeas under consideratinr for CON'S
navigation are LORAN-C, VOR/DME, and NAVSTAF GPS. Relfabflitv
N of a candidate system has been adopted as one nf the evaluation
. criteria. This paper describes a technique for evaluating the
reliability of LORAN-C over the CONUS.

VN S EPaE

The reliadbility analysis of the network of LORAN-T 2voun? ’
stations for civil aviation is concerned witrn tne a»il:i:ty of the

LORAN-C system to provide cont{nuous and usa’le raviiitinn

signals for airborne applications. Covera,- is Zeline? Sv

transmitted signal strength, geometric relazir-ship hetween the

user and the ground stations, and the receiver capa“lifzles. Ia ]
the event of fatlure of one or more of the wrsund s:3ziorns, (]
there would be an outage 1f there are not ennu:zh rezatning

statfons satisfying the coverage criterion.

There are several aspects to LORAN-C syste= reiflabilitv that
affect the interpretation of results. These inclule the size of
the area affected by an outage, location of the user, and RS
receiver design capabilities. LORAN-C 18 a long-ranaee [] )
navigatinn system and therefore an outage of a singie critical

station may diminish the system coverage area significaatiy. 1f

there are a large number of users of LORAN-C, the operation of

the civil afr traffic contrcl systea would be adversely

affected. Another aspect of the LORAN-C gystem reliabilfity fs o
that it {s location dependent, due to the varfation of coveraze -
across the CONUS. The LORAN-C gystem reliabilitv also depends !1;‘1
heavily on the operational capabilities of the recefver set DRI
since receiver capabilities, such as the master {ndependent mode R
and low acquisition SNR, affect syctem coverage directlv. For A
example, & receiver that acquires at s lower SNR generally C
yields a wider selection of usable triads and therefore better
system relfability through ground station redundancv.
Furthermore, a recefver capable of master {nderendent zode can
gsually reconfigure itself to provide navigaticrn {1 the event
that the master station currently used by th:s receiver for
position determinaticn fafls.

Previous analyses on the system relfabilitv ={ navication .
systems have been presented for LF/VLF navil!. ‘Reference 1), | B
LCRAN-C (Reference 1, 2) and GPS (Reference } . In Reference 1, C ]
a probadilistic method is given to analyze the ri,k assoclated R
with the loss of transmission of the LF/VLF nivaids. However, ) 1
signal strengths and geonetric properties of the LF ViF navaids
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Reference (1) is also limited to certain flight durations. S
Reference (2) is concerned vith the estimation of the nuamber of

additional CONUS stations needed for providing redundant : 1
coverage. The probabilistic measure of systam reliability {s T
not included. The reliability model pressoted herein is siailar
to that for GPS, given in Reference (3), in that a Markov Chain
wodel s utflized. The formulation of the model {s differenr
since the receiver destigns and coverage criteria for the two
systems are differznt.

are not considered. The applicability of the method in ;F;ii

Section 2 presents an overview of the anslysis technique.
Section 3 describes the computerized LORAN-C coverage model
which is used extensively fn the relfability analywis. Section
& describes the probsbilistic approach to reliability analysis.
The overall methodology for the anslysis of LORAN-C system
reliability in the CONUS {e¢ {llustrated in Section 5 by an
exasple using a previously proposed station configuration for
full-CONUS coverage, a simplified low-cost sitrborne receiver
model, and the station reliability statistics based on a
preliminary analysis of the ground station dsta.*

TSR CY T B |

* Presentiy, detailed analysis is being performed on the actual .
ground atation relfabiitty date, to be used {n the relfabtlfty e
analysis. -
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2.

OVERVIEW OF ANALYSIS TECHNIQUE

Figure 1 depictes the overall technique and the required inputs
for the analysis of LORAN-C systea reliability in the CONUS.
Three major inpute are required for this analysis; namely, the
LORAN-C station configuration for full CONUS coverage, receiver
model, and station reliability parametars in the form of MTBF
(Mean-Time-Between-Failures) and MTTR (Mean~-Time-To-Restore).
The station configuration is opecified by the locations,
radiated powers, chain identification, and master/secondary
categorization of the stations.

The receiver model shown in Figure 1 {s used to represent those
features of the receiver which have a significant impact on the

system coverage. The description of the receiver model includes
the following:

o Hyperbolic or multi-rho navigation mode

o Master independent/dependent for the hyperbolic mode
0 Cross-chain capability

o Minimum receiver signal-to-noise ratio {SNR)

o Back-up navigation mode.

The first step in the analysis is to identify the coverage, in
terms of the set of usable triads, at regularly-spaced locations
throughout the CONUS, based on a particular receiver andel and
station configuration. This is accomplished by means of a
computerized coverage model (Section 3).

The next step is to examine the geographic impact of station
outages on LORAN-C coverage area for the specified station
configuration and receiver model. This is shown in Figure 1 as
the deterministic component of the relfiatility analysis. 1In
this approach, the effect of an outage of a single station {s
first evaluated. Since the areas of redundanc coverage result
in higher system relfability, areas of redundant and
nonredundant coverage in the CONUS are also identified.

The probdadbilistic analysis of LORAN-C system reliability is
concerned mainly with the assessment of the risk of the loss of
LORAN-C coverage over various time intervals. The reiiability
and maintainability performance of the ground stutions are
sccounted for in the analysis by the parameters MTBF and MTTIR of
the stations. The evaluation technique is based on the Markov

2-1
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Chain model. Usually one model needs to be developed at each
location because LORAN-C coverage varies from one location to
another. However, an alternative procedure is developed in thise
paper to simplify the oversll system reliability calculations.
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3. LORAN-C COVERAGE MODEL

hl A computerized coverage model has been developed to analyze the
adequacy of LORAN-C coverage for arbitrary station
configurations, receiver capabilities, and system parameters.
This model essentially evaluates the coverage at
regularly~spaced geographic points throughout the CONUS. For a
. geographic location to have LORAN-C coverage, a minimum of three
:: . statfons* must be available that meets the following conditions:

(1) Signal strength from each of the three stations yields
at least a specified minimum signal-atmospheric
noise-ratio at the receiver. This level mainly

b concerns the ability to acquire the signals.

:- (2) Geometric relationship between the receiver location

) and the triad 1is satisfactory. This relationship is
known as Geometric Dilution of Precision (GDOP). The
expression and derivation of this measure can be found
in Reference 4. -

To evaluate the first condition, sigual strengths at the
receiver location from all ground atations are computed. This
requires the computation of the propagation loss of the LORAN-C
signal gound wave from its transmitting source to the receiver
location. The exact calculation is complex because it depends
on a variety of factors such as ground conductivities, terrain
variation, and atmospheric condition along the propagation path
(Reference S). To make the propagation model tractable, it has
been assumed that the signal attenuation depends only on the
ground conductivities. The ground conductivities of the CONUS
are approximated by dividing the CONUS into cells of average
conductivity values. For propagdtion over a path of constant
conductivity, the signal attenuation curve as a function of
distance is employed (Reference 6). Since the propagation may
be over mixed conductivity paths, the Millington method I. ‘ised
(Reference 5). 1

The noise calculation procedure used in the coverage model RN
follows that of the CCIR (Reference 7). The noise source o
considered i{s the atmospheric radio noise. A detailed L
discussion on the CCIR procedure can be found in Reference (2). ]'q
The application of the CCIR procedure yields the 95-percentile

* The aoulti-rho mode of navigation is not addressed in this paper. jQ”:
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value of the noise pover for esch 4-hour time block of the day
and for each season. The noise power in the time blocks of the
sumner season is on the average higher than those of the other
seasons.

For civil aviation, systea coverage ies required for all
seasons. Therefore, the noise power in the SNR calculation s

conservatively based on the average of the noise powers (95%) of
the six time blocks in the susmer season.
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RELIABILITY ANALYSIS

The reliability of tlie LORAN-C system to provide coverage is
dependent upon the user's location within the CONUS. Therefore,
the overall reliability assessuent of the LORAN-C system will
require the reliability analysis at individual locations within
the CONUS. This approach is the same as the NAVSTAR GPS
reliability analysis (Reference 3).

4.1 Reliabilty Model

This section discusses the technique developed for evaluating
the system reliability of LORAN-C at a given location. The main
objective i1s to calculate the probability of a system outage
during a specific time period. This technique deviates from the
previcus methods (References 1 and 3) in that signal strength
limit, geometiy, and receiver capability, such as master
independent /dependent modes and minimum SNR, are taken into
account. Similar to Reference 3, a Markov Chain model fe
utilized, but the formulation of the model is different due to
the above considerations.

Figure 2 illustrates the Markov Chain model used for analyzing
LORAN-C system reliability. One of the inputs to this model is
the combinations of triads that satisfy the coverage
requirement. Without loss of generality, let N be the number of
usable triads and M be the number of stations involved. In
general, N 1s smaller than the coubination of M {tems taken 3 at
a time, due to geoumetry and SNR restrictions. Each circle in
this figure denotes a state in the Markov Chain. For this
model, a state is defined ags one of the possidble sets of usable
triads. The time-to~fail distribution of the stations {s
assumed to be identical, independent, and exponential. The
time-to-restore is also assumed to be exponentially distributed.

Figure 2 describes basically the sequential deterioratfon of
system coverage from the initial state (left-hand side of
figure) to the outage state (extreme right-hand side).
Infttally, all N triads and M stations are assumed to be
available. After a small interval of time, one of the M station
fails and this results in a smaller set of triads. However, at
a particular state, the repair of the affected station by the
maintenance crev reverts the system to the previous coverage
state. As time goes un, the failure of the stations lea’s to
the coverage by only one triad. When one of the stations in
this remaining triad fails, a system outage results.
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Consicer the case in which a given location is provided coverage
by & chain of 4 stations, A, B, C, and D, where A is the master
station. Figure 3 shows the Markov model for the master
dependent case. The top half of Figure 3 depicts the failure
paths. It can be noted the fallure of the master station leads
to an outage whereas the failures of two secondaries are
required for system outage. The bottom half of Figure 3 shows
the complete model with restoration paths included. 1In
addition, the middle three states (ACD, ABD, ABC) in the top
half of this figure have been combined to form one state (1
triad vorking), thus reducing computation effort.

The case {llustrated is an example of nonredundant coverage
because an outage of a critical statfon, the master in this
case, causes system outage. Figure 4 shows a case of redundant
coverage, in which 5 stations and 5 triads are faovolved. It can
be observed from this example that the number of states can be
quite Zarge as the number of stations and triads increases.

Analytical solution of the Markov Chain reliability model for
cases containing more than three or four states is cumbersowme.
Therefore, a numerical method (Reference 8) is used to derive
unreliab{lity, which e defined as (1 - reliability).

4.2 Bounds in Relisbility Performance

The description of coverage at a given Jlocation in terms of the
number of usable triads can be misleading for conveying
reliability performance. The reasou is that soame stations are
more critical than others with respect to their contribution to
an outage. As shown previously, for the master dependent mode,
the master station is more critical 1f 1ts chain is the only one
providing coverage. However, tha failure of a secondary station
in this chain does not necessarily lead to system outage if the
chain contains more than two secondary stations.

The term, level of redundancy, {s used here to quantify the
relative reliability of coverage. It assigns a numerical value
to each coverage type. It is defined as:

level of redundancy = (Smallest number of fafled stations
leading to system outage) - 1

Therefore, the coverage by one chain in the master dependent
mode i3 assigned the redundancy level of zero, or no redundancy
regardless of the number of secondarfes. Redundancy levels of 1
and 2 are also called single and double redundancy, respectively.

43




STATIONS - A (MASTER), B, C, D ]
TRIADS - (ABC), (A8D), (ACD) A FALLS _

4
.
| R
. o 3
A (ah) 1
. " "
y .
F -
b
- ( ) - State Transitional P
A\ - Faflure Rate of Stat
B - 1/MTTR, Repair Rate
h - Small Time Interval 1
E FIGURE 3 ,
MARKOV MODEL FOR MASTER DEPENDENT MODE— : 1
NO REDUNDANCY CASE .

V-

P
aaLA a_ o' a4 . ..

J
-k

S MRS IL DA MM
*
-
PEOT UV S E Si




r * T~ T Yp——— —— pp—— ——
Np————— ——————

: ¥
) 3
:

YT p— v
L N
F -

\ ]
STATIONS: A, B, C, D, E
TRIADS: (ACD), (ABD), (ADE), (ABC), (BDE)
i <
A FAILS
}

L -
;‘ d

&~ -t

& [

3
' L
FIGURE 4 S
MARKOV MODEL FOR EXAMPLE OF SINGLE REDUNDANCY CASE K
-
]
V-‘J
N

]
)
]
]
L 1
3
.“4
B
. R — ISP e




The identification of redundancy level for a given coverage
requires a failure mode analysis of the usable triads, {.e., all
possible conbinations of stations leadfng to system outage.
Since the Markov Chain model of Figure 2 describes the outage
process, it can be used directly to derive the redundancy
level. After the Markov model is formuisted for a particular
coverage situstion, visusl inspection zan identify the smallest
nuber of paths (station failures) leading to outage. For the
example in Figure 4, the ainimua number of station failures is
two and, therefore, the redundancy level is 1, or single
redundancy.

Since each location can be characterized by a level of
redundancy and many areas share the same value, another approach
is to find the reliability bounds corresponding to the
redundancy levels. Most likely only redundancy levels of two
and less need to be considered because higher levels of
redundancy would produce sstisfactory reliability performance.

Consider the zero redundancy case. The worst reliabilicy
performance for this cese is wvhen only three stations satisfy
the coverage requirement, i.e., when one of the stations fails,
& system outage results. The top half of Pigure 5 shows the
block diagram of this scenario as a series connection of three
stations, as well as the corresponding Markov Chain model. The
upper bound in reliability occurs vhen two of the stations each
have multiple back-up stations. If the number of back-up
stations is large, the portion of the system as represented by
the dotted lines in Pigure 5 can be considered as approaching
100 percent reliadility. Therefore, only one station is used to
represent the best case. This satisfies the constraint of the
zero redundancy since, by definition, the failure of one
critical station results i{in a system outage. It should dbe noted
that this s not a physical realization of coverage, but is used
as & mathematical bound.

The reliability bounds of the single redundancy case is s“own in
Figure 6. The worst scenario is composed of two independant
triais such as two separate LORAN-C chains. This is & oinimal
configuration for single redundancy because the fsfilure of one
atation from each triad leads to an outage of that triad and
that each of the six stations does not have oeckups. When the
outage state is reached, two failures have occurred. Since f{t
is assumed that only one station {s restored at a time, the
factor of two in the restoration path is used to account for the
restoration of either one of the failed stations. By the same
argument 28 in the zero redundancy case, the beat scenario
corresponds to the parallel combination of two stations.
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Proceeding similarly, th: reliability bounis as represented by
Markov Chain models for :he double redundancy csse cau be found
and they are shown in Figure 7. This procedure can be similarly
extended to higher levels of redundancy. It can be noted from
Pigure 7 that only four states are required to represent the
Markov model. Therefore, the computation is easily managesble.
Another property of these derived bounds is that they are not a
function of master independent or dependent aovdes, thereby
providing further savings in computation.

The reliability bounds can be used in the following fashion to
simplify the overall LORAN-C system reliability evaluation. I1f
the unper bound of the reljability performance (i.e.,
reliability of best scenario) corresponding to a redundancy
level does not satisfy the reliability performance criterion,
then every geographical location with thiz level of redundarcy
is unsatisfactory. For example, {f che reliability of the best
scenario for zero redundancy is judged as unsatisfactory, then
it can be concluded, without further calculation, that all areas
in CONUS with zero redundancy are unsatisfactory in reliability
performance.

On the other hand, 1f the reliability of the worst scenario for
a particular level of redundancy provides satisfactory
reliability performance, then all locations with this level of
redundant coverage can be considered as sat{sfactory in
reliability performance. Furthermore, the same conclusion also
applies to higher levels of redundancy.
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APPLICATION

This section i{llustrates the reliability analysis precedure with
a nuaerical example, based on a previously proposed station
configuration for full-CONUS coverage, a simplified model of the
low-—cost receiver, snd a preliminary analysis of the reliabilicy
data from statfons with solid~state transaitters.

Presently, approximstely two-thirds of the CONUS are provided
with LORAN-C coversge. Several station configurations have been
proposed to cover the mid-continent, which is currantly without
LORAN-C coverage. One past proposal was to install five
additional mid-continent stations to fill the current coverage
gap. The locations of the five proposed and the .urrent CONUS
stations are shown in Pigure 8., The radiated power of the five
additional ststions ie assumed to be the¢ same as the maximum

radiatad power of the existing solid-state trarsmitting stations
(800 KW).

The receiver model used in this analysis is assumed to be
lov-cost, operating only in the hyperbolic mode with master
dependent or master independent capabilities. The minimum
acquisition SNR is assumed to be 1/3 or ~-10 dB. The equivalent
receiver noise bandwidth 1is assumed to be 20 KHz. The noise
povers in the CONUS are the same as those of Reference 2. The
accuracy limit of LCRAN-C coverage for this low-cos: type of
receiver {s taken as 1500 feet (2 dRMS) with standard deviatfon
of TD (time difference) error 0.1 usec. This corresponds to a
maxisum GDOP of:

GDOP = dRMS/standard dev. of TD
« 750 ft/0.1 usec.
= 7,500 ft/u sec.
The MTBF and MTTR of the statfons used {n this example are 20
days and 9 minutes*, respectively. It must be emphasized that

these values are preliminary estimates and used for filustrative
purposes only.

Transfent or momentary station outages that last less than a-
airute are not included.
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S.1 Effect of a Single Station Outage on Coverage Area

The coverage diagram of the proposed full-CONUS coverage station

- configuration is shuwn in Figure 9. The plotting increment is
two degrees in latitude and longitude. Blanks within the CONUS
boundary denote satisfactory coverage. The symbols 'S, 'G', 'E'
and '*' are used to identify different causes of coverage
deficiency.

'S' denotes inadequate signal strength only. 'G' signifies
inadequate GDOP only. ‘E' indicates efither a signal or GDOP
deficiency, 1.2., there exist at least 2 triads at this location
where one triad satisfies SNR threshold but not the GDOP
threshold whereas the other triad has the opposite deficiency.
‘%' denotes deficiencies in both signal and GDOP. It can be
seen from this figure that based on the assumed powers of the
proposed stations, there are still a few small areas without
coverage. The difference in coverage areas for the master
dependent and master independent modes is insignificant. As
indicated Jn Figure 9, this is due to signal strength
limitation, rather than geometry.

Figure 10 shows the effect of an outage of tte Seneca LORAN-C
station on the CONUS system coverage. The Seneca station is a
dual-rated station which serves as a master to the Northeast
Chain and also as a secondary to the Creat Lakes Chain. Since
this station contains equipment common and necegcsary for the
transmigsions of the two rates, such as antenna and power
system, the outage at Seneca can impact the operatfons of the
two chains. The shaded areas of Figure 10 show the areas of no
coverage as a result of the Seneca ststion outage. For the
master dependent mode, the area affected can be substantial,
about 500 NMI in the north direction. As expected, the master
independent mode is superifor in redundant coverage as compared
vith the master dependent mode. However, the area affected can
be close to 300 NMI i{n one direction. Similar conciusions can
be drawn concerning the effect of outage of the dual-rated
Malone station, Figure 11. 7This station is the master for the
Southeast Chain and secondary for the Great Lakes Chain.

Figure 12 presents the consequence of outage of the Fallon
station, raster of West Coast Chain. Again, the atrcraft whose
receiver operaces only on the master dependent mode will not be
provided with navigati{on capability {n a large porticn of the
western CONUS. However, users with master 'ndependent mode
recefver would not be afrected.
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In summary, the addition of five mid-continent stations of the
assumed radiated power to the existing network of LORAN-C ground
stations would provide nearly full coverage to the CONUS when
all ground stations are operational. Howvever, wvhen one of the
CONUS stations fails, a large area of seversl hundred nautical
wiles aay be devoid of coverage and users in these areas would

be without navigation service unless additional redundancy is
provided.

5.2 Areas of Redundant Coverage

For convenience, redundancy in coverage is defined as the
existence of at least one usable triad (satisfying coverage
criterion) regardless of which station fails. This.means that
the airborne user is protected against an outage due to the
failure of a single ground station.

Figure 13 shows the aress of redundant and nonredundant coverage
within the CONUS for the master dependent and master independent
modes with the proposed five additional mid-continent ground
stations. The shaded area in this Figure identifies the areas
of nonredundant coverage. As expected, the msster indepeadent
mode provides significantly more redundant coverage areas than
the master dependent mode. Approximately 50 percent of the
CONUS contains redundant coverage for the master dependent amode,
vhereas the master independent mode provides 75 percent of the
CONUS with redundant coverage.

5.3 Illustration of the Probabilistic Analysis

The probability of system outage within a time interval, or
unrelfiability, is 1llustrated in Figure 14. In this example,
the time interval of interest is for the on route flight segment
and hence the time scale is on the order of hours. Similar
results in unrelfability performance (1.e., as time increases,
unreliability also increases) as those shown in Figure 14 have
also been calculated for shorter (on the order of minutes) and
longer (on the order of days) time intervals. The shaded
portion of this figure indicates the unreliadility performance
regions for the zero redundant and the single redundant
coverage. The upper and lower limits* {n uareliability for

The upper and lower limits in unreliabilty corresponds to the
lower and upper limits in reliability, respectively.
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these twvo types of redundancy levels have been calculated using
the Markov Chain models shown {a Figures 5 and 6. It can be
observed that unreliability in areas of single redundancy is
significantly lower than that of the zero redundancy. For s
flight duration of five hours, the average unreliability
(mid-point between the worst and the best scenarios) in area of
zero redundant coverage is approximately one thousand times
larger than that in area of single redundant coverage.

Figure 14 also displays the unreliability for the master
dependent and master independent mode when the coverage s
provided by a chain of four stations. This figure shows that
the master independent mode out perforas the master dependent
mode in reliability by a factor of approximately 250. It can
also be seen from this figure that the unrelfability of a four
station chain in the master dependent mode is almost the same as
the best scenario for zero redundancy.

The application of the unreliability bounds such as those shown
in Figure 14 to facilitate the reliability analysis for the
entire CONUS has been discussed in Section 4.2. An alternative
but equivalent procedure is provided as follows. This is bssed
on the assumption that a threshold for unreliability
(time-dependent) has been pre-determined via an independent
method such as the result of an investigation of the relfability
of the VOR systea or consensus voting among experts. The
develorad unreliability threshold line can then be drawn
directly on the unreliability curve such as Figure 14 to
determine the adequacy of reliability for various redundant
coverage levels.

Consider the example of the redundant coverage provided by the
proposed station configuration and the receiver capable of
oaster independent operation. The redundant coverage map 1is
shown i{in Figure 13. If the unreltiability threshold line 1is
above the unreliability bounds of zero redundancy, then it can
be concluded immediately all redundancy levels (zero and higher)
are satisfactory in reliability performance throughout the
entire CONUS.

Consider the next case {n which the unreliability threshold line
1ies between, but not intersecting, the unreliability region of
zero redundsncy and that of single redundancy, then the shaded
areas in CONUS of Figure 13 can be viewed as unsatisfactory in
reliadility performance. However, the blank areas of Figure 13
with redundancy levels of one and higher would be considered as
satfisfactory in rellability performance. These conclusions are
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dravo simply by visual observation of the unreliability bouads,
without resorting to computatica.

The unreliability threshold line may also lie inside the
unreliability region of a particular redundant coverage type.
The developed unreliadility bounds cannot be used directly to
deternine the adequacy of the reliability for this coverage
level. Instead, the generalized Markov Chaia model shown in
Pigure 2 needs to be applied. However, since the unreliability
regions of higher redundancy levels are below the threshold
line, geographic areas with higher redundancy levels can be
concluded as satisfactory in reliabilicy performance.
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6.

SUMMARY AND DISCUSSIONS

This paper hss described an anslytical technique for the
assessmeat of the LORAN-C vystem reliability in the CONUS. This
technique can be utilized to investigate the sensitivity of
LORAR-C systen reliability due to warfous proposed station
configuration scenarios for full-CONUS coverage, dif ferent
airborne receiver models, and different ground station
reliability performance parameters. This technique has been
illustrated by a numerical exanmple.

Currently, the FAA {s sponsoring an effort to develop a
laboratory model of s low-cost General Aviation (GA) receiver.
The planned operational capabilities of this receiver will be
incorporated in the future analysis of LORAN-C system
reliabilicty. A datu reduction and analysis effort is undervay
to estimate the MTBF and MTTR of the solid-state statfions from
the historical data supplied by the USCGC. The MTBFs of the
individual equipment in a station such as antenna, transmitter,
and power gystem vill also be extracted.

The ultimate objective of the LORAN-C system reliability
assessnent is to determine the ground station configuration that
vould meet the civil aviation reliability requirement in the
post-1995 time period. The determination of such a
configurstion would most likely be an {terative process that
also i{nvolves the low-cost GA receiver model. A particular
station configuration scenario for CONUS coverage and s specific
set of station MTBF and MTIR are initislly used 1in the
analysis. If system reliability based on these two assumptions
{s found to be unsatigfactory, two alternatives can be used to
improve reliability performance. Omne alternative is to change
the station configuration and this may increase the number of
ground stations. This corresponds to the improveament of system
reliability through ground station redundancies. The other
alternative 1s to {ncrease the religbility of the atation by
adding equipment redundancies (above the present equipment
configuration) to the station, subject to the constraint that
some equipment such as transamitting anteana should not be
duplicated at a station site due to interference
congfderations. These two alternatives will be analyzed bs the
analytical technique presented in this paper.
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