

NATIONAL BUREAU OF STANDARDS-1963-A

	UNCI ASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Day Maries 4)	. (3
	REPORT DOCUMENTATI	READ INSTRUCTIONS BEFORE COMPLETING FORM
	1. REPORT NUMBER ONR-TRI	3. RECIPIENT'S CATALOG NUMBER
	"Chemical Derivatization of an Array of Three Gold Microelectrodes with Polypyrrole: Fabrication of a Molecule-Based Transistor"	S. TYPE OF REPORT & PERIOD COVERE
		Interim Technical Report
		6. PERFORMING ORG. REPORT NUMBER
221	7 Authom(*) Henry S. White, Gregg P. Kittlesen and Mark S. Wrighton	N00014-84-K-0553
\146	PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry, Rm. 6-335 Massachusetts Institute'of Technology Cambridge, Massachusetts 02139	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-051-579
	11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217	12. REPORT DATE September 10, 1984 13. NUMBER OF PAGES 14
A	14. MONITORING AGENCY NAME & ADDRESS(IT dillorent from Controlling Office)	IS. SECURITY CLASS. (of this report) UNCLASSIFIED
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
	17. CISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different to Distribution of this document is unlimited	ram Rapori)
	18 SUPPLEMENTARY NOTES Prepared for publication in the <u>Journal of th</u>	e American Chemical Society.
FILE CO	19. KEY WORDS (Continue on reverse elde if necessary and identify by block number molecule-based transistors, chemi gold, microelectrodes	cal derivatization,
	20 ABSTRACT (Continue on revorce elde il necessary and identity by block numbe See reverse side.	B
	DD 1 JAN 73 1473 EDITION OF 1 NOV 68 18 DESOLETE UN S/N 0102-014-6401) SECURITY C	CLASSIFIED LASSIFICATION OF THIS PAGE (Mon Doin &
	94	1925 003

UNCLASSIFIED

LLUMTY CLASSIFICATION OF THIS PAGE (When Date : fored)

An array of three Au microelectrodes each 3 μ m wide x 140 μ m long x 0.12 um thick and separated from each other by 1.4 um can be derivatized with polypyrrole in a manner such that an electrical connection is made between the three electrodes when the polypyrrole is in its oxidized and conducting state. Typical coverage of polypyrrole is 10^{-7} mol/cm² of exposed Au. Properties resembling those of a solid state transistor can be obtained when the device is immersed in CH3CN/0.1 M [n-Bu4]ClO4 solution. Taking one electrode to be the "gate" and the other two electrodes to be the "source" and "drain", the resistance between the source and drain can be altered dramatically by varying the potential of the gate. The current between source and drain is a function of potential between source and drain, as expected. The key result is that the small signal needed to turn the polypyrrole from its reduced and insulating state to the oxidized and conducting state can be amplified. In absolute terms, the charge needed to turn on the device is some fraction of 10^{-8} C to give a steady-state drain current of -4×10^{-5} C/s at a source-drain potential of 0.2 V.

/			
Í	DIE		
	COPE		
Acces	Sion For	1	
NTIS	CRARI	K	
PIIC	TAB	ā l	
Upannounced			
Justi	fication_		
Bv			
Distribution/			
Availability Codes			
	Avail and	/or	
Dist	Special		
	1 1		
1.1			
П (

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. OFFICE OF NAVAL RESEARCH

CONTRACT N00014-84-K-0553

Task No. NR 051-579

TECHNICAL REPORT NO. 1

"CHEMICAL DERIVATIZATION OF AN ARRAY OF THREE GOLD

MICROELECTRODES WITH POLYPYRROLE:

FABRICATION OF A MOLECULE-BASED TRANSISTOR"

by

Henry S. White, Gregg P. Kittlesen and Mark S. Wrighton

Prepared for Publication

in the

Journal of the American Chemical Society

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

September 10, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

-Communication to the Editor-

CHEMICAL DERIVATIZATION OF AN ARRAY OF THREE GOLD MICROELECTRODES WITH

POLYPYRROLE: FABRICATION OF A MOLECULE-BASED TRANSISTOR

Henry S. White, Gregg P. Kittlesen, and Mark S. Wrighton"

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Abstract

the states is the second states and

An array of three Au microelectrodes each 3 μ m wide x 140 μ m long x 0.12 im thick and separated from each other by 1.4 μ m can be derivatized with polypyrrole in a manner such that an electrical connection is made between the three electrodes when the polypyrrole is in its oxidized and conducting state. Typical coverage of polypyrrole is 10^{-7} mol/cm² of exposed Au. Properties resembling those of a solid state transistor can be obtained when the device is immersed in CH₃CN/0.1 M [n-Bu4]ClO4 solution. Taking one electrode to be the "gate" and the other two electrodes to be the "source" and "drain", the resistance between the source and drain can be altered dramatically by varying the potential of the gate. The current between source and drain is a function of potential between source and drain, as expected. The key result is that the small signal needed to turn the polypyrrole from its reduced and insulating state to the oxidized and conducting state can be amplified. In absolute terms, the charge needed to turn on the device is some fraction of 10^{-8} C to give a steady-state drain current of ~4 x 10^{-5} C/s at a source-drain potential of 0.2 V.

-- We wish to report the fabrication of a chemically derivatized microelectrode array that can function as a transistor when immersed in an electrolyte solution. The key finding is that we have been able to show that a small signal (charge) needed to turn on the device can be amplified. The device to be described mimics the fundamental characteristics of a solid state transistor, $\frac{1}{2}$ since the resistance between two contacts can be varied by a signal to be amplified. \prec Figure 1. illustrates the device fabricated and the external circuit elements needed to characterize it. The chemical transistor is the set of three (drain, gate, and source) Au microelectrodes covered with polypyrrole. Three features are essential: (1) the three independent Au microelectrodes are closely spaced, 1.4 _m apart, allowing an easily measurable current to pass between the source and drain when V_0 is significant and V_0 is above the threshold, V_T ; (2) the polypyrrole exhibits a sharp change in conductivity upon oxidation;² the potential at which this occurs is V_T ; and (3) each of the microelectrodes can be individually contacted. The input signal to the gate to be amplified is that needed to oxidize the polypyrrole.³ Importantly, V_T and the magnitude of signal needed to achieve Vr can be manipulated by variation of the molecule-based material. Conceptually, the device described here stems from the molecule-based "diode" and "triode" fabricated by derivatizing a macroscopic electrode with a redox polymer and a porous metal outer contact.⁴ Additionally, the device represented in Figure 1 is a type of "chemiresistor"⁵ where an electrical signal can change the resistance of the chemical layer.

Experiments have been carried out using "chips" consisting of a microelectrode array of eight individual Au electrodes deposited on a 1 um thick SiO2 insulator grown on <100> Si. Each of the eight microelectrodes can be addressed independently and is generally 3 um wide x 140 um long x 0.12 um thick

the Arcument squares

separated from each other by 1.4 μ m.⁶ Microelectrodes can be functionalized with controlled amounts of polypyrrole by oxidizing 50 mM pyrrole in CH₃CN/0.1 M [<u>n</u>-Bu₄N]ClO₄ at +0.8 V vs. SCE, as described for macroscopic electrodes.² Microelectrodes derivatized in this manner can be characterized by cyclic voltammetry in CH₃CN/0.1 M [<u>n</u>-Bu₄N]ClO₄, revealing the typical response expected for surface-bound polypyrrole.²

When the microelectrode array is derivatized with a sufficiently large coverage of polypyrrole the individual microelectrodes can be electrically connected by the polymer.⁶ The experimental evidence for this is that all of the connected electrodes show the same cyclic voltammetry response (peak position, shape, and area), when measured individually and when they are externally connected together and driven as one electrode. When three microelectrodes are connected together with the polypyrrole as in Figure 1 the charge associated with the oxidation and reduction of the bound polymer is of the order of 10^{-2} C/cm² of exposed Au. Examination of derivatized microelectrode arrays by scanning electron microscopy confirms the presence of the polymer.

Characterization of a derivatized three electrode array shows that a transistor characteristic can be obtained, Figure 2.⁷ In this set of measurements the two outer electrodes are wired as source and drain and the middle electrode is the gate, Figure 1. Figure 2 shows the current between source and drain, I_D, as a function of the potential between source and drain, V_D, at various fixed gate potentials, V_G. When V_G is held at a negative potential where the polypyrrole is expected to be insulating the device is "off" and I_D is small at values of V_D < 0.5 V. When V_G is moved to potentials more positive than the oxidation potential of polypyrrole, ~-0.2 V vs. SCE, the device "turns on" and a significant steady-state value of I_D can be observed for modest values of V_D. We take the

ዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ

-3-

redox potential of polypyrrole to approximate the value of V_T , the gate potential at which the device starts to turn on. For V_G more positive than V_T the value of I_D increases at a given value of V_D , in a manner consistent with increasing conductivity of polypyrrole with an increasing degree of oxidation. At sufficiently positive values of V_G , $\geq +0.5$ V vs. SCE, I_D becomes insensitive to further positive movement of V_G at a given value of V_D , a result consistent with measurements⁶ of the resistance of the oxidized polypyrrole coated on a microelectrode array. We typically use only a small range of V_D values because we seek to minimize electrochemical reactions at the source/polymer and drain/polymer interfaces. All measurements are for deoxygenated solutions, owing to problems stemming from irreversible oxidation of the polymer. However, in the absence of J_2 good durability (several days of use) can be achieved. Shelf-life in the dry state exceeds one week for derivatized arrays.

For the devices studied, some fraction of 10^{-8} C of charge is required to obtain the maximum steady-state value of I_D at V_D = 0.2 V; the value of I_D achieveable with the device represented in Figure 1 is -4×10^{-5} C/s. Thus, a small signal to the gate can be amplified in much the same way that a small electrical signal can be amplified with a solid state field effect transistor.¹ A major difference, of course, between the solid state device and the molecule-based device is that the turn on/turn off time in the molecule-based system depends on the rate of a chemical reaction whereas no chemical reactions take place in the solid state devices. For the devices fabricated the on-off time is of the order of 10 s; the curves in Figure 2 are steady-state curves. For the molecule-based system the properties such as V_T and minimum turn on signal can be adjusted with rational variation in the monomer used to prepare the polymer. Smaller dimensions can lead to faster switching times and different molecule-based gate materia's may nave superior rates of switching compared to polypyrrole.

-4-

The molecule-based transistor reported here has no immediate practical application. The fundamental accomplishment is the demonstration of the synthesis of an interfacial chemical system that has a specific function. There is presently considerable interest in interfacing microelectronic devices with chemical and biological systems for sensor applications⁵ and in "molecular electronics" in general.⁸ Our work establishes that principles learned from the study of polymer-modified macroscopic electrodes⁴, 9-1⁴ can be applied in a much smaller dimensional regime to achieve specific functions where the molecule-based material is the active element.

<u>Acknowledgments</u>. We thank the Office of Naval Research and the Defense Advanced Research Projects Agency for partial support of this research. Use of the M.I.T. Microelectronics Laboratory in the Center for Materials Science and Engineering is gratefully acknowledged.

References

- Sze. S.M., "Physics of Semiconductor Devices", 2nd ed., John Wiley & Sons: New York, 1981.
- 2. (a) Kanazawa, K.K.; Diaz, A.F.; Geiss, R.H.; Gill, W.D.; Kwak, J.F.; Logan, J.A.; Rabolt, J.; Street, G.B. <u>J. Chem. Soc., Chem. Commun.</u>, <u>1979</u>, 854-355;
 (b) Diaz, A. <u>Chemica Scripta</u>, <u>1981</u>, <u>17</u>, 145-148; (c) Salmon, M.; Diaz, A.F.; Logan, A.J.; Krounki, M.; Bargon, J. <u>Mol. Cryst. Liq. Cryst.</u>, <u>1982</u>, <u>83</u>, 265-276; (d) Diaz, A.F.; Martinez, A.; Kanazawa, K.K. <u>J. Electroanal. Chem.</u>, <u>1981</u>, <u>130</u>, 181-187; (e) Bull, R.A.; Fan, F.-R.F.; Bard, A.J.
 J. Electrochem. Soc., 1982, 129, 1009-1015.
- 3. The particular arrangement shown in Figure 1 has been used for clarity. Any one of the three electrodes could be used as a "gate" with the other two being "source" and "drain". Use of the gate electrode allows a quantitative determination of the amount of charge necessary to turn the polypyrrole from insulating (off) to conducting (on). Thus, the "gate" allows a quantitative assessment of the behavior of a two electrode device where the input "signal" could be a redox reagent that equilibrates with the polypyrrole to turn it on. The arrangement in Figure 1 explicitly differs from solid state transistors where both the gate and drain potentials are fixed relative to the source.¹ The crucial fact is that polypyrrole undergoes a dramatic change in conductivity upon transfer of a small amount of charge.
- 1. Pickup, P.G.; Murray, R.W. J. Electrochem. Soc., 1984, 131, 833-839.
- 5. For a recent overview of sensors that depend on microstructures see: Wohltjen, H. <u>Anal. Chem., 1984, 56</u>, 87A-103A.
- 5. Kittlesen, G.P.; White, H.S.; Wrighton, M.S., submitted. [This article is a full account of the procedure used to fabricate, characterize, and derivatize the microelectrodes used in this work.]

- 7. A 3 V battery and voltage divider were used to vary V_D from 0.0 to 0.2 V. The gate electrode was connected in a conventional 3 electrode potentiostatic arrangement employing a Pine Model RDE 3 bipotentiostat. A Pt wire and saturated calomel electrode, SCE, were used as the counter and reference electrodes, respectively. I_D was measured by recording the potential drop across a 100 ⁷ resistor resulting from the steady-state current between the source and drain electrode. All curves are for the microelectrode array, Pt and SCE electrodes immersed in CH₃CN/0.1 <u>M [n-Bu4N]Cl04</u> at 25°C under N₂.
- 8. See, for example, the special issue on "Molecular Electronics": IEE Proceedings-I, Solid State and Electron Devices, 1983, 103, 197-253.
- 9. (a) Murray, R.W. <u>Acc. Chem. Res.</u>, <u>1980</u>, <u>13</u>, 135-141; (b) Facci, J.; Mur ²²
 R.W. <u>J. Electroanal. Chem.</u>, <u>1981</u>, <u>124</u>, 339-342; (c) Daum, P.; Murray, R.M.
 <u>J. Electroanal. Chem.</u>, <u>1979</u>, <u>103</u>, 289-294; (d) Daum, P.; Lenhard, J.R.;
 Rolison, D.R.; Murray, R.W. <u>J. Am. Chem. Soc.</u>, <u>1980</u>, <u>102</u>, 4649-4653.
- 10. (a) Peerce, P.J.; Bard, A.J. <u>J. Electroanal. Chem.</u>, <u>1980</u>, <u>108</u>, 121-125;
 (b) Rubenstein, I.; Bard, A.J. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 512-515;
 (c) Abruna, H.D.; Bard, A.J. <u>J. Am. Chem. Soc.</u>, <u>1982</u>, <u>104</u>, 2641-2645;
 (d) Henning, T.P.; White, H.S.; Bard, A.J. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 3937-3941; (e) Daum, P.; Murray, R.W. J. Phys. Chem., 1981, 85, 389-396.
- 11. (a) Kaufman, F.G.; Schroeder, A.H.; Engler, A.H.; Kramer, S.R.; Chambers,
 J. J. Am. Chem. Soc., 1980, 102, 483-488; (b) Kaufman, F.S.; Engler, E.M.
 J. Am. Chem. Soc., 1979, 101, 547-549; (c) Lau, A.N.K.; Miller, L.L. <u>J. Am.</u>
 <u>Chem. Soc.</u>, 1983, 105, 5271-5277; (d) Lau, A.N.K.; Miller, L.L.; Zinger, B.
 <u>J. Am. Chem. Soc.</u>, 1983, 105, 5278-5284; (e) Van DeMark, M.R.; Miller, L.L.
 <u>J. Am. Chem. Soc.</u>, 1978, 100, 3223-3224; (f) Landrum, H.L.; Salmon, R.T.;
 Hawkridge, F.M. J. Am. Chem. Soc., 1977, 99, 3154-3158.

-7-

- 12. (a) Tsou, Y.-M.; Anson, F.C. <u>J. Electrochem. Soc.</u>, <u>1984</u>, <u>131</u>, 595-601;
 (b) Shigehara, K.; Oyama, N.; Anson, F.C. <u>Inorg. Chem.</u>, <u>1981</u>, <u>20</u>, 518-522;
 (c) Shigehara, K.; Oyama, N.; Anson, F.C. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 2552-2558; (d) Buttry, D.A.; Anson, F.C. <u>J. Am. Chem. Soc.</u>, <u>1983</u>, <u>105</u>, 685-689; (e) Oyama, N.; Anson, F.C. <u>J. Am. Chem. Soc.</u>, <u>1979</u>, <u>101</u>, 3450-3456.
- 13. (a) Harrison, D.J.; Daube, K.; Wrighton, M.S. <u>J. Electroanal. Chem.</u>, <u>1984</u>, <u>163</u>, 93-115; (b) Dominey. R.N.; Lewis, T.J.; Wrighton, M.S. <u>J. Phys. Chem.</u>, <u>1983</u>, <u>87</u>, 5345-5354; (c) Wrighton, M.S.; Palazzotto, M.C.; Bocarsly, A.B.; Bolts, J.M.; Fischer, A.B.; Nadjo, L. <u>J. Am. Chem. Soc.</u>, <u>1978</u>, <u>100</u>, 7264-7271; (d) Bolts, J.M.; Wrighton, M.S. <u>ibid.</u>, <u>1979</u>, <u>101</u>, 6179-6184; (e) Bocarsly, A.B.; Walton, E.G.; Wrighton, M.S. <u>ibid.</u>, <u>1980</u>, <u>102</u>, 3390-3398; (f) Calabrese, G.S.; Buchanan, R.M.; Wrighton, M.S. <u>J. Am. Chem. Soc.</u>, <u>1982</u>, <u>104</u>, 5786-5788; (g) Bookbinder, D.C.; Bruce, J.A.; Jominey, R.N., Lewis, N.S.; Wrighton, M.S. <u>Proc. Natl. Acad. Sci.</u>, <u>USA</u>, <u>1980</u>, <u>77</u>, 6280-6284.
- 14. (a) Pickup, P.G.; Kutner, W.; Leidner, C.R.: Murray, R.W. J. Am. Chem. Soc., <u>1984</u>, <u>106</u>, 1991-1998; (b) Abruna, H.D.; Denisevich, P.: Umana, M.; Meyer, T.J.: Murray, R.W. J. Am. Chem. Soc., <u>1981</u>, <u>103</u>, 1-5; (c) Denisevich, P.; Willman, K.W.; Murray, R.W. J. Am. Chem. Soc., <u>1981</u>, <u>103</u>, 4727-4737.

Figure Captions

La contraction de la c

Figure 1. Cross-sectional view of the device fabricated and representation of the circuit elements used to characterize it. The SiO₂ layer is -1 μ m thick and is on a -0.3 mm thick <100> Si substrate. The source, gate, and drain are Au, -3 μ m wide x 140 μ m long x 0.12 μ m thick coated with -10⁻⁷ mol/cm² of polypyrrole. When characterized, the derivatized microelectrode array, counter and reference electrodes are immersed in electrolyte solution.

ดถึงกันทั่งหวัดถึงกันทั่งที่หวัดที่สถิ่งที่หวัดถึงกันทั่งที่เหมือก็หวัดที่สาวไปที่จะไม่ได้ไม่ได้ไม่ไม่ไม่ไม่ไม่ไ

Figure 2. Output characteristics of the transistor shown in Figure 1 in $CH_3CN/0.1 \ M \ [n-Bu_4N]ClO_4.$

