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PreF Ifa ce

It may seem presumptuous to attempt to model so fundamental a human
behavior as sleep. The time when one falls asleep appears to be so complexly
dependent on subjective decisions (how absorbing a book one is reading), on
prior behavior (how hard one worked that day), and on one's constitutional
predilection as a "morning" or "evening" person that the very idea of
mathematical description may seem preposterous to all but the most foolhardy.

Yet, what leads us to resort to mathematical modeling are the data
themselves: the striking regularity of the circadian rhythms in sleep and
wakefulness, body temperature, hormone levels, and many other functions
especially in environments where human subjects have no knowledge of the time
of day. Even more intriguing are the characteristic but complex patterns in the
timing of sleep episodes that can develop in environments devoid of 24-hr time
cues. Different physiological variables may display different, "free-running,"
non-24-hr periods that interact within the same individual, providing glimpses of
internal counterpoint within the human body.

In 1972, a cluster of neurons in the hypothalamus, the suprachiasmatic nuclei
(SCN), was identified as a key pacemaker of the mammalian circadian timing
system. When the SCN are destroyed, circadian rhythms in a variety of
physiological and behavioral functions are lost. This finding has stimulated aI rapid increase in research activity on the anatomy and physiology of the
circadian timing system. It has become apparent that it is a multioscillator
system, with oscillators in different tissues coupled by neural and endocrine
pathways.

The identification of endogenous oscillating systems within the body has led
to a search for useful analogies to aid in the conceptualization of possible
mechanisms that could account for the biological phenomena being observed.
Hence, circadian physiologists have become increasingly interested in oscillator
theory-a subject that has long been the province of the mathematician and
engineer. Just as the engineer has a need to understand oscillations in complex
systems, so too does the biologist; yet, there is very little in the biological
literature to aid in this effort.

Attempts to model circadian systems have been made since 1960. However,
only a few individuals had made serious theoretical efforts until 1973, when
Pavlidis wrote Biological Oscillators: Their Mathematical Analysis. Since
that time, there has been an intensification of interest in oscillator models that
can describe circadian phenomena. Recently, books by Winfree, Enright, and
Wever and articles by each of the other contributors to this volume have
presented coupled-oscillator models of the circadian timing system.

V



vi PREFACE

These works have represented major syntheses of oscillator theory and
physiological evidence, with attempts to develop mathematical models of the
circadian timing system that will help define experimental questions and
conceptualize the potential mechanisms that may account for the behaviors
being observed. It is now possible to model many aspects of periodic human and
animal behavior. Indeed, any model of a physiological system thai does not take
into account the system's periodic nature may have major limitations.

The author of each of the mathematical models of the circadian timing system
that has been proposed has typically presented a prima facie case with little
consideration of other modeling attempts. When each model has been presented
at a scientific conference, it usually has been presented to an audience that has
not included other investigators who have modeled circadian systems. Although
each model has attracted much interest from biologists who are concerned with
the strengths and the failures of prediction of the models, usually there never has
been more than one proponent of a circadian mathematical model at any given
meeting. Thus, it has been impossible to get a productive interaction and
meaningful debate at such meetings, particularly because the mathematical
subtleties are not readily appreciated in a brief presentation.

Hence, the modeling of circadian systems has been an isolated activity, with
none of the normal interaction that should occur between those who have
thought most about a scientific problem. The reason for this is that the
proponents of the models belong to different scientific disciplines and normally
never meet at national or international meetings. The Satellite Symposium at
the Association for the Psychophysiological Study of Sleep, which forms the
basis for this volume, brought together the various investigators who have
developed models of the circadian system and allowed them to interact in a
productive environment where there were also many circadian biologists who
could help focus the discussion as to whether or not the various models
accurately depicted the research data gathered in actual experiments.

This volume provides a review of the state of the art of circadian modeling.
Discussions at the end of every chapter also provide critical insights into the
strengths and weaknesses of each approach. The reverberations of the debate
will be heard for many years, and this book should provide a stimulating starting
point for all those who wonder what determines when we sleep and when we
wake.

Martin C. Moore-Ede
Charles A. Czeisler
Boston, Massachusetts
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Mutual Excitation of Damped Oscillators and

Self-Sustainment of Circadian Rhythms

J. T. Enright

Scripps Institution of Oceanography, University of California,
La Jolla, California 92093

When an animal is placed under constant environmental conditions that are
appropriate for the expression of endogenous circadian rhythmicity, the rhythm
will usually persist indefinitely without any appreciable damping. This property
of circadian systems, known as self-sustainment, is so general that when a
circadian rhythm is seen to damp out under a given set of circumstances, one is
apt to suspect that the wrong experimental conditions have been chosen, i.e.,
too cold, too much light, inappropriate monitoring equipment, and so on. It
therefore seems entirely appropriate that the various sorts of single-oscillator
models that have been proposed for circadian systems have embodied the
capacity for self-sustainment as an essential characteristic. From a mathe-
matical point of view, this represents a strong assumption; it focuses our
attention on a relatively restricted set of oscillatory systems to the neglect of the
much broader class of mechanisms and processes that can give rise only to
damped oscillations.

As the modeling of circadian systems has become more sophisticated, many
researchers have been led by their experimental data to propose two-oscillator
models. In this case as well, it seems perfectly natural to assume that at least
one of those oscillators is capable of persistent, self-sustained rhythmicity
(2,10,11). Building on that tradition, it has also become customary, when
proposing formulations for larger ensembles of mutually coupled oscillators, to
assume that each element in the array has the capacity for self-sustainment
(4,5,8,14,15). The question this article addresses is whether or not that
assumption remains necessary in a multioscillator model. Suppose, instead, that
each oscillator of a mutually coupled group, if it could be observe4 in isolation,
would show only strongly damped rhythmicity: Given an impulse that sets it in
motion, its rhythm will completely decay within a few cycles. Suppose, further,
however, that when an oscillator is in resonance with the mutually synchronized
activity of other elements in the ensemble, it receives a "push" that enhances its
amplitude. Can the ensemble then show self-sustained rhythmicity? This
question has both relevance and importance for circadian systems, but I will not

1
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2 MUTUAL EXCITATION OF DAMPED OSCILLA TORS

initially invoke any evidence whatever on that point, postponing such matters to
the Discussion.

METHODS: COUPLED STOCHASTIC SYSTEMS

In order to address the question of interest, I begin with a class of coupled-
oscillator models that has proved useful in other contexts and propose
additional assumptions in order to speculate, "What if things were built one way
rather than another?" The initial objective of these models, which I have called
coupled stochastic systems, was to determine whether or not mutual coupling
among oscillators can provide a plausible explanation for the precision often
observed in circadian systems. Because the models and simulations have been
described in detail in a recent monograph (4), only a sketchy and qualitative
explanation is necessary here.

Consider first a group of mutually triggered relaxation oscillators, for
example, an array of elements, each consisting of a capacitor, a voltage source,
and a neon glow tube, with these units so interconnected that as soon as any one
element discharges, the whole ensemble is triggered and reset to phase zero. If
stochastic variability is small, the whole array will flash along at the frequency
(and the level of regularity) dictated by the fastest element present. If stochastic
variation is large, the role of leadership will be exchanged on a cycle-to-cycle
basis among the faster elements, and such a system can behave somewhat more
regularly than any single element; however, as shown elsewhere (5), this is not a
particularly efficient way to gain temporal reliability from sloppy components,
unless one is willing to provide an inordinate number of elements.

Because precision of system output was of central interest, I have elaborated
on this scheme. Consider now an array of relaxation-oscillator-type elements in
which group triggering arises not because of the first element to discharge but
because of the nth element, where n is some appreciable fraction of the entire
ensemble. It is easy to envision interconnections by which first-element
triggering could be achieved, but how might nth-element triggering be
accomplished? An engineer might well propose a scheme involving counting,
but for a physiologist a more plausible alternative is to assume that the
individual elements do not complete their discharges instantaneously, but
instead continue to discharge over some appreciable fraction of each cycle.
Then the sum of the outputs, from all active elements, can serve as the stimulus
that, when of sufficient magnitude, triggers the other nondischarging ele-
ments.

This is, in very schematic outline, the kind of model, the sort of mutual
coupling in which I have been interested. One of the important merits of such
models is that they represent an efficient way of improving precision of the
system, even when based on very sloppy oscillators (5). In order to gain some
qualitative insight into how such a system functions, let us briefly look into the
question of which oscillators in the ensemble will be entrained, given that they
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have a broad range of intrinsic periods. It turns out that only the lower-
frequency elements oscillate with a single, common average period; only the
slower units are fully entrained by mutual interactions. Let us suppose that there
are N elements in the array; define threshold for the triggering interaction as n9,
a number that is ad appreciable fraction of N; and set all elements into motion at
the start of their charging phase. The higher-frequency elements will eventually
start to discharge spontaneously, but from n, up to no there is no interaction;
only those from no to N will be accelerated in that cycle. In their next cycle, the
high-frequency elements will discharge even earlier, relative to the main group,
and the long-term result is that the high-frequency elements "scan" repetitively
through the oscillations of the mutually entrained ensemble rhythm.

Two other aspects of my simulations also deserve clarification: (a) A large
measure of stochastic variability has been incorporated into the cycle-to-cycle
behavior of each element Any single element has an intrinsic period, '., that
defines its cycle length averaged over many cycles, but even in isolation from
the ensemble, a very sloppy performance is assumed. Randomly timed events
can greatly alter the realized cycle length of an element (b) Instead of assuming
that triggering of all nondischarging elements is an immediate consequence of
discharge by a suprathreshold number of elements, I have treated the interaction
in a probabilistic manner, which takes into account also the phase of the
responding element, i.e., the time since its last discharge (Fig. 1). Extensive

/a(:.. LO,

~ ~IF ENSEMBLE IS """"

.5 SUPRA - THRESHOLD/,F'NS 
M

['FEEDBACK SUB - THRESHOLD

0 e

TIME SINCE END OF LAST OISCHARGE, HOURS
FIG. 1. Probabilistic treatment of ensemble interactions. Age-specific failure rate (aterm from renewal theory) is the probability per unit time that an element will begin to
discharge, given that it has not yet begun; it is here plotted as a funtion of the time
since the end of its last preceding discharge. Either of the two functions illustratedwill lead to a Gaussian distribution of intervals, with mean interval determined by
position along the abscissa. Greater stochastic variation In performance would be
associated with curves with lesser slopes. Feedback sensitivity corresponds to the
parameter. in the simulations leading to Fig. 2.

. . ... .. .. . .. .. . . .. . ..... .... . ... " . .. . , . < ,



4 MUTUAL EXCITATION OF DAMPED OSCILLATORS

background from neurophysiology, involving concepts like absolute refractory
time and relative refractory time, underlies this choice of formulation (4), but for
present purposes, we need only recognize that this is the calculational scheme
invoked by the models.

Although a verbal description of such a coupled svstem embodies simple-
sounding ideas, translation of these ideas into a quantitative model for computer
simulation requires a surprisingly long list of parameters-seven in all. Even to
specify the simple concept of "an ensemble of sloppy circadian oscillators"
requires four parameters: (a) the number of elements in the ensemble, (b) their
overall mean period length (i.e., a scaling factor), (c) a coefficient of intrinsic
variability to quantify differences among elements in their average periods, and
(d) a coefficient of stochastic variability to quantify the intraelement, cycle-to-
cycle unreliability. Three more parameters are required for the sort of
nth-element coupling envisioned here: a charge-dscharge factor that deter-
mines the fraction of its total cycle length that an element will be discharging; a
threshold value, the equivalent of ng described earlier, at which interaction
arises; and the magnitude of this interaction, designated "feedback sensitivity"
in Fig. 1. (In most of my simulations, I have, for the sake of realism
incorporated an additional parameter, so that the elements will differ from each
other not only in mean period but also in the fraction of the cycle devoted to
discharge; however, that parameter is largely a luxury. I have been unable to
discern significant ways in which it qualitatively alters system performance and
have done many simulations without it.)

These seven parameters represent the skeleton for a coupled stochastic/ system. With the supplementary assumption that light alters threshold (no), the
models prove to be extremely versatile as descriptors for many sorts of
circadian rhythm data involving responses of higher vertebrates to light
regimes, as summarized elsewhere (4). This is the kind of model I have used to
examine the question as to whether or not the constituent elements of a
mutually coupled ensemble must be assumed to be self-sustained oscillators. To
rephrase the question initially posed, "Can self-sustained rhythms in system
performance arise even if each of the constituent elements, is, by itself, only
capable of damped oscillations?"

RESULTS

Simulations have demonstrated that the answer to the foregoing question is
"yes."~ The initial incorporation of damped-oscillator behavior into the models
involved a very modest change in formulation. The generalized models assume
that each element, when discharging, contributes a value of 1.0 to a sum, and
that interaction arises when this sum is greater than threshold. Assume now,
instead, that each element, if examined in isolation, will have an output during
its discharge phase (recognized as its potential contribution to the sum) of 1.0 in
the initial cycle in which it receives a triggering impulse, a value of k in the next
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cycle (where k < 1), a value of kc2 in the next, and so on- a process equivalent
to an exponential decay of amplitude. Further, assume that if an element has
been triggered by ensemble activity (i.e., has had its phase reset) during the time
when most resetting occurs (within, say, the first hour after the system reaches
threshold), then that element receives a stimulus that forces its amplitude back
to the initial level, so that its discharge can again contribute 1 .0 to the sun. The
consequence of this treatment is that when any element is brought to discharge
in phase synchrony with most other elements in the group, and is therefore in
full resonance with the ensemble, it is not only reset in phase but also reset in
amplitude, to a maximum value of 1.0.

Incorporation of this rule into simulations with coupled stochastic systems
results in ensemble rhythms that show some initial damping; however, if k (the
cycle-to-cycle damping factor) is not too large, the ensemble soon reaches a
steady state in which its rhythm persists indefinitely with constant amplitude.
Examples of the resulting trends in "amplitude" of the system oscillation are
shown in Fig. 2. From these simulation data, it appears that cycle-to-cycle
damping of 50% is just barely tolerable for self-sustainment of the system
rhythm, but this critical value depends on several other parameters of the model.
Somewhat greater damping (smaller values of k) would be acceptable if any of
four parameters were to be decreased in value: stochastic, intraelement
variability in period, intrinsic, mnterelement variability in average period;
threshold for onset of feedback-, or duration of the phase at which amplitude
resetting occurs. The important point of Fig. 2 is only that the intrinsic damping
of the constituent oscillators can be surprisingly large, provided that resonance
with the ensemble provides a strong impulse and thereby restores large/ amplitude to the elements.

There are many obvious ways in which the simulations of Fig. 2 are
unrealistic in the extreme. For example, a damped oscillator that is almost in
resonance with the system should perhaps receive a large measure of amplitude
excitement; I have given it none unless it is in nearly perfect resonance. Also, a
damped oscillator that is in full antiphase with the ensemble should perhaps be
damped to an unusual extent in that cycle; I have not incorporated that feature
into the simulations. It is my opinion that these particular refinements would not
alter the qualitative conclusions, but this interpretation rests on intuition rather
than empirical demonstration.

'One other matter of realism has, however, been of concern (arising from
discussions with Dr. A. Winfree). For the simulations of Fig. 2, the phase-
shifting effect of the ensemble on each element (" feedback sensitivity" in Fig. I1)
was kept constant, regardless of that element's concurrent amplitude. This has
the implausible consequence that even if an element were, through successive
cycles, to reach a point of vanishingly low amplitude, it would be no more
susceptible to phase resetting than when at full amplitude. I have therefore
examined the consequences of several alternative formulations that seem
somewhat more realistic in this regard and incorporated the idea that sensitivity

-w.
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6 MUTUAL EXCITATION OF DAMPED OSCILLATORS
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FIG. 2. Cycle-specific amplitude of ensemble oscillation (range between maximum
and. subsequent minimum of summed system discharge) from simulations of a
coupled stochastic system in which discharge output of an element was assumed to
damp in successive cycles unless discharge began in complete resonance with the
ensemble rhythm. Parameter values, as defined elsewhere (4), were assigned as
follows: ATU= V hr, N= 100; X=17 hr, a= P= 1 hr, 8=0.5; y= 1/24; a=8 hr,
9 = 0.2N; values for k (the per cycle damping factor for output of each element) as
indicated. Amplitude was reset to 1.0 If the element began to discharge during the
first hour after the system reached threshold. In parts B and C, the pairs of solid and
broken lines with the same k values refer to separate simulations with identical
parameters, with differences in outcome resulting from stochastic factors.

of an element to phase resetting by the ensemble is inversely related to that
element's concurrent amplitude. The left side of Fig. 3 illustrates the
formulations investigated, and the right side shows the consequences of these
formulations on trends in amplitude of the system oscillations. The data of Fig.
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ensemble oscillation resulting from these formulation,,, All parameters except~feedback sensitivity (e) were assigned the same values as for the simulations of Fig.
2, with k = 0.5. Two Independent simulations of case III are shown by solid and
broken lines.
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3 were obtained with the damping factor k set at 0.5, and the resulting rhythms
were even more robust than under the initial assumptions, in the sense that there
was less damping of the system oscillation (cf. Fig. 2, for k = 0.5).

DISCUSSION

Theory

My primary purpose in the project described here has been to focus attention
on an assumption that underlies most current thinking about multioseillator
models for circadian systems and to demonstrate by means of some examples
that this assumption may be unnecessary. Demonstration by counterexample is,
of course, an approach with many pitfalls. It is conceivable that the undamped
rhythms of Figs. 2 and 3 depend critically on some unrealistic aspect of the way
in which I have formulated the simulations, or on some peculiar property of

m



8 MUTUAL EXCITATION OF DAMPED OSCILLATORS

coupled stochastic systems-but I think not. Basically, the results do not now
seem to be at all counterintuitive, and they have, in fact, been qualitatively
anticipated by Pavlidis (9, p. 326). Suppose that the individual oscillators of an
ensemble, when left to themselves, had rhythms that were subject to very weak
damping tendencies (say, with k =0.98), and suppose further that when
coupled together, this damping process could be overcome by some very
generalized sort of intense resonance effect In this situation, regardless of the
details by which the coupling mechanism produces mutual entrainment of the
ensemble, it should not be surprising to find that the system could show
undamped rhythmicity, provided that the restoring force at resonance is
sufficiently large. Here I have represented that restoring force as immediate
saturation, given complete phase synchrony; the only somewhat unexpected
aspect of the results is that the potential damping of the individual elements can
be quite large and still permit undamped rhythmicity of the ensemble.

Applications

Why should the issue of damped versus undamped oscillators be of interest to
those studying circadian rhythms? As emphasized elsewhere (3), one of the
properties of circadian rhythms that is most puzzling for an evolutionist is their
self-sustainment. Dozens of ways can be easily imagined in which a daily timing
ability might be useful to an organism, and there are, in addition, a variety of
situations imaginable in which a rhythmic timing ability that persists for three or
four cycles might be of ecological value. But the evolutionist has no answer
when asked about the adaptiveness of a rhythm that persists indefinitely under
constant conditions. As I admitted more than 10 years ago," .... to propose in
concrete terms some plausible selective advantage which could account for this
persistence is an unmet challenge" (3, p. 236).

The reality of the phenomenon is unquestionable, but the full ecological needs
for endogenous timing of behavior and physiology appear, in principle, to be
potentially soluble by a damped circadian rhythm, which could be regularly
entrained, and even reinitiated, by the daily environmental cycle. Because an
ecological need for self-sustainment is so difficult to imagine, one would seem
forced to the interpretation that this property is only an accidental by-product of
the way in which the rhythms are generated. Apparently, one must assume that
those physiological mechanisms that can result in a circadian rhythm that
functions reliably for three or four cycles will automatically lead to self-
sustained rhythms (at least under some sorts of constant conditions), but "this
makes severe demands on our credulity" (3, p. 236). A great many different
biophysical and biochemical feedback systems can be proposed that would have
oscillatory output; of these, only a very restricted subset would result in self-
sustained rhythms. Consider, for example, a generalized second-order feedback
loop shown schematically in Fig. 4, for which many physiological counterparts

____ ___
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FIG. 4. Schematic diagram of a second-order linear system that can produce
damped oscillatory output. Two low-pass filters, F1 and F2, are connected in series,
Sinusoidal oscillations result from step or pulse input, provided that the damping
coefficient () is less than 1.0, meaning that A 1A2 < (al - a2)2 /4, where a, and a2 are
the rate constants of the two filters and A1 and A2 are proportional to their gains.
Magnitude of output to the brief pulse is plotted with fourfold vertical exaggeration
in the "F1 or F2" case and the overdamped case.

can easily be imagined, e.&, sequential, self-inhibiting chemical reactions.
Neither of the low-pass filters alone will lead to oscillations, but if the two are
connected in series in such a loop, the system will produce damped sinusoidal
oscillations with constant period following pulsed input, over a broad range of
parameter values for the filters. Even the sequence of the two filters (ie.,
whether the slower or the faster is first in series) is irrelevant. Note that this type
of generalized system seems to be automatically excluded from consideration as
a basis for circadian rhythms because its oscillations are not self-sustained. This
kind of system could, however, provide the building blocks, the damped-
oscillator type of elements, that might participate in a coupling scheme
resembling the one considered here (as I have demonstrated by further
simulations). The fixation on the undamped rhythm of the whole animal has
automatically, and mistakenly, led to the acceptance of the idea that the

p -
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constituent oscillators of a circadian ensemble must also have the intrinsic
capacity for self-sustainment.

Most researchers in the field of circadian rhythms are now willing to entertain
the idea that in higher animals the pacemaker may well consist of a system of
mutually entrained oscillators. Stripped to its essentials, mutual entrainment
implies a sort of interaction that produces appropriate phase shifts of the
individual component rhythms, so that they are kept in synchrony. All previous
considerations of mutually entrained oscillators as models for circadian systems
have emphasized this phase shifting, with little attention, if any, to the
possibility of effects on amplitude. The result of that approach is that the
puzzling phenomenon of self-sustanment remains unexplained, it is a property
that then must be taken as an assumed property of the constituent oscillators.
However, if one entertains the hypothesis that the phase shifting of mutual
entrainment may also have systematic effects on amplitude of constituent
oscillators, so that those in resonance with the ensemble are subject to
amplitude enhancement, then one can potentially account for self-sustainment
of the whole-animal rhythm as an emergent property associated with coupling of
an array of oscillators that by themselves need not be self-sustaining.

It is worth emphasis that the required hypothesis is a very modest
assumption. One can, of course, imagine schemes in which phase shifting will
have no effect on the amplitude of an oscillation (4), but generalized sorts of
oscillatory dynamics, such as those associated with the scheme shown in Fig. 4,
will ordinarily have exactly the property hypothesized here: Any input that can
shift the phase of an ongoing rhythm automatically also has the capacity to alter
oscillatory amplitude.I The outcome of these considerations is the following set of propositions:

1. There are clear ecological advantages associated with circadian rhythms
that will persist reliably for several cycles.

2. For a multiceilular organism to achieve this goal, a plausible mechanism
would be environmental synchronization of an ensemble of mutually entrained
oscillators.

3. Mutual entrainment can be reasonably assumed to involve amplitude
enhancement for those oscillators that are most closely in resonance with the
ensemble.

4. If this amplitude enhancement is sufficiently strong, the result should be
self-sustainment of the ensemble rhythm (ije., at the whole-animal level), even if
the constituent oscillators do not have this property.

Another way of summarizing these propositions is to say that once circadian
rhythms are viewed as the output of a coupled multiosciflator system the
observation that the rhythms are self-sustained need not be regarded as
particularly surprising; but the experimentalist has every right to ask how such
speculation can be useful. What is the empirical evidence in favor of or against
this interpretation, and what experimental tests can be proposed to distinguish

among alternatives? One important piece of evidence that deserves attention here
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is the demonstration that isolated single cells of the alga Acetabularia are
capable of many cycles of apparently undamped circadian rhythmicity under
constant conditions (6). Hence, multicellular interactions are not essential to
self-sustained circadian rhythms. (One cannot be fully certain, on the available
evidence, that the rhythms of Acetabularia are truly self-sustained, as are those
of higher vertebrates, but they are at least not strongly datnped.) Acetabularia
is, of course, an extremely large cell-large enough that one could speculate
about an ensemble of mutually entrained, intracellular oscillatory systems and
still remain within the context of the viewpoint considered here. But it remains
important to recognize that circadian rhythms, which are apparently undamped,
can be observed even at the level of the single celL One cannot, therefore,
legitimately ignore the possibility that the self-sustainment observed in the
circadian rhythms of higher animals is simply an evolutionary inheritance from
unicellular ancestors that had already developed that capacity.

There are a good many cases in the literature in which clear damping of an
overt circadian rhythm has been empirically observed, cases that might be taken
as evidence in favor of the conceptual scheme described here, but unfortunately
these examples are usually open to alternative interpretations. If one assumes
that an animal's pacemaker is a multioscillator ensemble, then damping of an
overt rhythm could represent decreases in amplitude of a non-self-sustained
circadian oscillator or group of oscillators, the sort of phenomenon postulated
here. It could, however, also represent the gradual loss of synchrony within an
array of self-sustained oscillators because of the absence of adequate entraining
stimuli, either those stimuli leading to mutual entrainment of the ensemble or
those associated with external synchronization. This problem proves to be very
general; in most cases, it will be very difficult to distinguish between these two
alternatives. However, the problem is not completely hopeless.

One of the experimental techniques for producing complete damping of a
circadian rhythm is to expose a diurnal bird to constant bright light. The usual
result of this treatment is that overt rhythmicity vanishes over a few days, during
which the amplitude of the circadian cycle rapidly diminir.:,': This phenomenon
seems to be readily interpretable (4) as indicating los:s of phase synchrony
among constituent elements of a multioscillator ensemble in which the elements
are normally mutually entrained. A subsidiary experiment, however, indicates
certain difficulties with this interpretation: The subsequent transfer of such an
arrhythmic bird into constant dim light or darkness usually results in immediate
recovery of rhythmicity, with phasing roughly determined by the time of the
bright-to-dim transition; moreover, the recovered rhythm usually begins with its
full, steady-state amplitude (1, and J. T. Enright, unpublished data).

If one assumes that the constituent oscillators of the hypothesized ensemble
continue their undamped, self-sustained rhythms under bright light, eventually
achieving a random distribution of phases relative to each other but having
otherwise unchanged properties, then it is surprising to find that the restored
system rhythmicity immediately recovers to its full amplitude. Instead, one
would expect a gradual buildup of the whole-animal rhythm as the constituent

9 ' ... ,. '
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oscillators are gradually drawn back into full synchrony with others in the
group. A possible remedy for this difficulty is to postulate that the constituent
oscillators of the hypothesized ensemble are capable only of damped rhythms,
once mutual entrainment is lost, and that therefore all are completely resettable
to a common phase at the onset of system rhythmicity. It should be noted,
however, that this sort of interpretation does not necessarily demand amplitude
damping. It invokes, instead, a progressive increase, during constant light, in
responsiveness to resetting stimuli, an increase in feedback sensitivity (Fig. 1),
such as was proposed as a likely concomitant of damped-oscillator behavior.
However, such change in sensitivity could, of course, also arise in self-sustained
oscillators during constant light. Damped oscillators could account for the
experimental results, but undamped oscillators would also be adequate, granted
an ad hoc supplementary assumption.

Another potentially relevant line of evidence is contained in the data
illustrated in Fig. 5, from recent elegant experiments with isolated chick pineal
organs ( 13). In the presence of an entraining light cycle, the rhythmic output
continues without significant damping for at least four cycles, demonstrating the
adequacy of the culture conditions. Under constant dark, however, the rhythm
shows rapid decrease in amplitude: "it was ... heavily damped compared to the
rhythm present under light/dark conditions" (13). This result is initially a
disappointing one for the hypothesis (7) that the pineal organ may be the
"master oscillator" of the bird circadian system because a capacity for self-
sustained rhythmicity is one of the key properties by which a master oscillator
would presumably be identified However, the recognition that an ensemble of
damped oscillators could, through their coupling, produce a self-sustained
rhythm suggests that the search for a master oscillator, a dominant, discretely
localizable driver for the whole-animal circadian system, may be a search for a

600- A 600- B
400- 400-
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phantom. Perhaps the interactive pacemaker system consists only of damped
ensembles, with behavior in isolation that resembles that of the pineal organ.
Hence, the bird pineal organ may turn out to be a more important component of
the circadian system than the initial consideration of the results shown in Fig. S
would lead one to suspect.

It should be noted that the results of Fig. 5 are open to at least one other
alternative interpretation. The data in Fig. SC are typical of what would
ordinarily be expected of a damped oscillator, with progressive decline in
amplitude over successive cycles; however, the data of Fig. SD are somewhat
different. No clear sign of further decrease in peak height was evident after the
second peak in melatonin. Hence, it is not well established that the steady-state
behavior of the organ in constant darkness should be considered a damped
rhythm. Figure SD is compatible with the idea that the amplitude of the first
free-running peak is enhanced by the last-seen light treatment and that the
rhythm thereafter shows no damping greater than that under light/dark
conditions (K. Hoffmuann, personal communication).

Even if one is willing to set aside such reservations and accept that the
isolated pineal organ behaves as a true damped oscillator, the question remains
as to whether this result indicates that cellular rhythms that are self-sustained
and undamped rapidly get out of synchrony with each other in the absence of
entrainment by light, as suggested by Takahashi et al. (13), or whether it
indicates instead the damping of the rhythms of individual cells of the tissue. A
definitive answer to this question will depend on measurements of rhythmicity

~ in single, isolated pineal cells, a demand that goes far beyond present-day
experimental techniques. Nevertheless, the implications of the desynchroni-
zation interpretation can be examined. If we assume that the rhythm of the
whole organ, during entrainment and the first free-run peak, accurately reflects
the fully synchronized rhythms of the single cells, an extremely broad range of
free-running periods among the individual cellular oscillators would be required
in order to produce damping that is as intense as that observed under
constant conditions. Rough calculations based on Fig. SC suggest that the
required distribution of free-running periods would have a standard deviation on
the order of 6 hr, that is, the "circadian" periods of the cells would range from
about 12 to 36 hr. [Because the width of the first, presumably synchronized,
melatonin peak is about 12 hr, assume that the single cell's melatonin output has
a Gaussian distribution in time, with standard deviation on the order of about 3
hr. Assuming additivity of variances, the second peak would have a variance of
(9 +0 4) hr 2, the third a variance of (9 + 4q2 ) hr 2, the fourth a variance of
(9 + 90' 2) hr 2, where or, is the standard deviation of free-running period. Noting
that the peak height of a Gaussian distribution is inversely proportional to its
standard deviation, we ind that if o,, is taken to be 6 hr, the heights of the
second, third, and fourth peaks should be about 45%, 24%, and 15%,
respectively, of the height of the first peak. Such values are in reasonable
agreement with the data of Fig. 5C.] There are, of course, no empirical data to
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indicate whether such a broad distribution of period values is either plausible or
very unlikely, but it is my intuition that natural selection would have led to
circadian oscillators appreciably less variable in period. Hence, an interpreta-
tion based on damped circadian oscillators is more appealing with such data as
in Fig. 5 than is the idea of loss of phase synchrony among undamped
oscillators.

Neither of the two examples considered here can be taken as strong evidence
that the circadian systems of higher animals include strongly damped oscillators
as components of a mutually coupled system, and other more persuasive
evidence is not presently available. Nevertheless, I am optimistic that such
evidence may well be found. Recent research has demonstrated that restricted
feeding regimes, although usually unable to entrain in an animal's entire intact
circadian system, are nevertheless often able to induce persistent activity
patterns that are most easily interpreted in terms of entrainment of a subset of
oscillatory components within the circadian system. The results of such
experiments are particularly clear-cut when undertaken with animals in which
the suprachiasmatic nucleus-a presumed site for the light-sensitive circadian
pacemaker-has been ablated (12). However, such rhythmic patterns of
activity, induced by food regimes, do not persist as self-sustained oscillations
when food is thereafter offered ad libitum; instead, they show acute damping
within a few cycles. Whether or not this damping should be interpreted as true
damping of circadian oscillators or as some other phenomenon, such as loss of
mutual synchrony among self-sustained oscillators, remains to be established,
but this experimental system appears to be ideal for further study of this
question. Perhaps the concept of damped oscillators will prove to be superfluous
for the interpretation of circadian systems; nevertheless, it is a possibility that at
least deserves more thorough exploration than has been attempted to date.
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DISCUSSION

Dr. Czeisler Do you view the different neurons to which you referred as residing
together in one location in the central nervous system, thus forming a precise pacemaker
that then drives the rest of the circadian rhythms of the organism? Or do you view these
separate elements as being located in different parts of the whole organism, which in its
entirety produces one observable rhythmicity?

Dr. Enright- For the general purposes of the model it does not matter. My own
interpretation of the data from birds suggests that the pineal organ may be a part of the
pacemaker, probably a component of the discriminator which I have proposed here. But
the whole pacemaker is not located in the pineal organ. I think there is strong reason to
suspect the suprachiasmatic nucleus as being the site of many such oscillators which may
represent the entire ensemble of the pacemakers that I have talked about here. It would
not disturb me at all to entertain the idea that many of these oscillators are located in the
suprachiasmatic nucleus. There may be other ensembles elsewhere. So I am simply not
going to pin myself down. Sorry.

Dr. Edmunds: We were treated at a recent Gordon conference to some data showing
that cockroaches entrained to particular non-24-hr periods were apparently able to free-
run but retain the non-24-hr period for several weeks. Do your simulations show this?

Dr. Enright. The simulations show aftereffects comparable in direction, but not in
magnitude to the phenomenon you are describing. This corresponds to the mammalian
data on aftereffects. If you entrain a hamster to a 22-hr fight/dark cycle, you will not
subsequently see a free run that has a 22-hr period. You will see one that has perhaps a
23-hr free run, rather than the normal 24 hr. Similarly, the aftereffects that I have been
able to simulate usually do not display the full "memory" of the period to which the
animal has previously been subjected.
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Dr. Dirlich: In your book you emphasize one crucial property of your model, that is,
that the cycles are so slow they are circadian in nature, while the firing of neurons mostly
is at a much higher frequency. What can you do to explain this problem?

Dr. Enright- It is indeed one of the most outrageous assumptions of the model that a
single neuron can show a circadian periodicity. It is an outrageous assumption because
there are no data that I know of from isolated neurons to support this interpretation.
There are excellent data from unicellular organisms, algae in particular, that show that a
single cell is a sufficient physiological entity for circadian rhythmicity to develop. But in
terms of circadian rhythms in single cells, there are no data that are available. The
original claims by Strumwasser that he had found such circadian rhythms in the'single
cells of Aplysia have, I think, largely been retracted. There is evidence for aftereffects of
the prior light/dark cycle which persist for the first subsequent postoperative peak, but
thereafter a persistent rhythm in a single cell has not been demonstrated.

Dr. Weitzman: Is your model really getting at the mechanism of the oscillator rather
than being a model of complex multioscillator function?

Dr. Enright:. That is right. It is a one-oscillator model.
Dr. Weitzman: It does not assume there is only one oscillator. You are looking at an

oscillator and trying tc understand how it works rather than showing that all behavior is
based on one oscillator.

Dr. Enright. Yes. But this interpretation is justified by the animal and bird data. For
nearly all experimental results, a single oscillator is sufficient to account for the data.

Dr. Weitzman: In blinded birds with feathers intact on top of the head, there was a
very significant difference in the activity/rest ratio when the birds were free-running as
compared to when they were entrained by a light/dark cycle. Not only did the
entrainment process change, but also there was a very significant difference in the
activity/rest ratio from one to the other. Now, how would a single-oscillator model
explain such changes?

Dr. Enright. Without trying to go into detail, that is one of the questions that rve
looked into in great detail in my simulations. I have not been concerned simply with the
period, but with the distribution of activity time and rest time. I have not attempted to
simulate this particular result in the blinded sparrow, but I do not think I would have any
difficulty.

Dr. Kronauer: Woody Hastings has spent a lifetime studying Gonyaulax, a single
cell with circadian rhythmicity, which at constant temperature has an accuracy in its
free-running period of a few percent. So it seems to me that within a single cell you can
have a very accurate pacemaker.

Dr. Enright. Hastings has, in fact, in his very beautiful work, studied entire
populations of cells in a test tube, in which there remains the residual concern that there
may be some interaction within the ensemble-I know that he has tried to rule that out-
and so I am more impressed with the data from Acetabularia, where one knows one has a
single cell. One finds a rhythm which persists and which shows a cycle-to-cycle
variability with a standard deviation of about 2 hr.

Dr. Kronauer Beatrice Sweeney has actually isolated single Gonyaulax cells.
Dr. Enright: Sweeney did a couple of experiments which were published in the Cold

Spring Harbor Symposium (Cold Spring Harbor Symp. Quant. Biol, 25:145, 1960).
Let me simply say that I have recognized for a while that circadian rhythms can exist
within a single cell. We see it unequivocally in Acetabularia. We see it on a very
probable basis when one looks at assembled populations of unicellular organisms like
Gonyaulax and Euglena.

i4",.
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Toward a Mathematical Model of
Circadian Rhythmicity

Rutger A. Wever

Chronobiology Laboratory Max Planck Institute for Psychiatry,
D-8138 Andecks, West Germany

The efficiency of a model describing biological phenomena, such as circadian
rhythmicity, can be measured by the ratio between the basic preconditions put
into the modeling process and the predictions deduced from different model
applications and confirmed by the results of biological experiments. No single
model can describe all the different aspects of a biological phenomenon
equally well; rather, there will be several models complementing one another,
each of which will describe specific aspects of the system. In order to critically
examine any model, the basic preconditions used for constructing the model
should be listed, and the predictions tested through biological experimentation.
If possible, these predictions should be formulated quantitatively.

Models have been developed that simulate the dynamics of biological
systems; these are usually "hardware" models that consist of mechanical,/ hydraulic, or electrical devices. Their mechanisms have, in principle, no direct
relation to biological mechanisms. Such models are rarely flexible enough to
simulate all biological conditions, and applications of such models run the risk
of inappropriately representing biological mechanisms. Other models are based
on features of the biological systems under consideration, e.g., on neuronal
interconnections, properties of membranes, or structural transformations. These
simplifications of the structural processes of the biological phenomena under
consideration can lead to a more thorough understanding of them. However,
there is a danger in such models that correlation between model predictions and
experimental data may suggest a similar correlation between the structural
mechanisms of the model and the biological system; knowledge of the mecha-
nisms underlying circadian rhythmicity is as yet insufficient to apply these
hardware models effectively.

Thorough understanding of the dynamics of biological processes is a
precondition for subsequent analysis of their underlying mechanisms. It is
therefore advantageous to use "software," or mathematical, models that
describe these dynamics without assuming their anatomical basis. Of relevance
here are kinetic models that render the dynamics of the system;, special wave
shapes are then the result of computations describing the behavior of the system
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18 MATHEMATICAL MODEL OF CIRCADIAN RHYTHMS

under varying external conditions. The mathematical expression of such a
dynamic type of model is a differential equation, and the expressions of
peculiarities in biological results are nonlinearities.

A mathematical model describing circadian rhythmicity will be presented
based on a simple differential equation. The method of deducing the model is
that of trial and error. Alternative models and modifications are formulated and
tested, based on relevant biological experiments, in successive iterative steps
(31). After establishing the relevant model equations, solutions of this model
will be presented, as computed under varying external conditions, constituting
predictions for the behavior of the biological system under various environ-
mental conditions. Different types of equations have the capacity to describe
correlations between separated rhythm parameters and experimental conditions
when the coefficients are selected properly. More powerful is the prediction of
summarizing multifold correlations and, in particular, of interdependences
between different rhythm parameters in both the steady state and during
transient states. Therefore, of special relevance is the determination of many
different rhythm parameters in both the mathematical analysis and the
biological experiment

DEDUCTION OF THE MODEL EQUATION

/ The Initial Equation: Stochastic versus Oscillatory Approach

In establishing a model of circadian rhythmicity, the first step is to decide
whether this model should be based on stochastic or oscillatory processes;
however, the two methods lead to remarkably coinciding results. The modeling
process cannot culminate in a deterministic model, because all endpoints of
rhythms to be determined in biological measurements show random fluctua-
tions; most rhythm parameters, the interdependences of which are of special
concern, do not yield absolute values, but rather variabilities of rhythm
endpoints.

In the analysis of long-term variations in autonomous rhythms, a negative
serial correlation between the duration of successive cycles within a circadian
time series is a consistent result (15,45,49). Such a correlation is achieved
between a relatively stable "pacemaker" that might be of stochastic or
oscillatory origin and an "overt rhythm" that is controlled by the pacemaker via
relatively labile coupling processes. As an alternative, a serial correlation is
obtained by a special type of oscillator that generates those correlations under
the influence of random noise. Discrimination between these concepts is
possible by analyzing the increase of the "relative stability," or the ratio
between long-term variability (calculated as twice the standard deviation of
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successive reference phases around the computed linear regression-the
reciprocal value of "stability") and short-term variability (calculated as the
standard deviation of the durations of successive cycles-the reciprocal value of
"4precision") with increasing length of the time series under consideration.
Results from long-term human experiments and various animal experiments are
compatible only with the oscillatory concept (56). Simultaneously, these
analyses indicate that overt rhythms reflect, to a great extent, properties and
variabilities of pacemakers and that the interconnecting coupling processes are
rather negligible in their effects on these rhythms.

Using the oscillator instead of the stochastic process as the basis for further
modeling evaluations, a differential equation is formulated, beginning with the
simple oscillation equation of the second order

y+2p +W(1)

In this equation, y represents the oscillating variable, which is a function of time
t; and y~ are the first and second time derivatives of y. The variable z

represents the "external force" controlling the oscillation, i.e., the independent
variable; it may be constant or likewise may depend on time t. fi and W are free
parameters. With a constant value of z, equation 1 has the solution

y = Z/W + A e-1 sin(Vfw_ .: t+ ) (1la)

This solution shows that, in the long run, y approximates z/w2 as either
oscillatory (if 0 < P < 1) or aperiodically adapting (if fi> 1). In case of
oscillatory adaptation, the coefficient of ' in equation 1, iLe., the "damping,"
determines the rate of fading away of the oscillation per unit time, and the
coefficient of y in equation 1, L~e., the "restoring force," determines-with great
values of P together with the coefficient of $'-the frequency of the damping
oscillation; the parameters A (initial amplitude) and 0' (phase) depend on the
initial conditions. In the case of Pi = 0, iLe., when the term with j is missed in
equation 1, the oscillation remains running infinitely, with the frequency w and
a constant amplitude that is determined exclusively by the initial conditions. In
the case of a negative value of P, equation 1 describes an oscillation with
infinitely increasing amplitude. In the case of a negative value of w2, the
system is not pushed back to its neutral position after every elevation but is
pushed even father away, becoming unstable.

If z in equation I is not temporally constant but is a periodic function of time,
y does not approximate a constant value, but a periodic function: z operates as a
forcing oscillation that synchronizes the forced y oscillation. The frequency of
the forced oscillation equals that of the forcing oscillation, independent of , its
steady-state amplitude and the phase-angle difference between the z and y
oscillations are essentially determined by the ratio between the frequency of the
z oscillation and the intrinsic frequency of the y oscillation.



20 MATHEMATICAL MODEL OF CIRCADIAN RHYTHMS

Nonlinear Damping

Circadian rhythms are considered to be endogenously generated, Le., based
on self-sustaining oscillations (1,13). The only alternative to this concept has
been discussed by Brown (8,9). He assumed all rhythms to be products of
environmental influence. Under "constant conditions" with "free-running'
rhythms (having periods independent of environmental time cues), he postu-
lated influence by "subtle stimuli" operating via frequency transformation.
However, it has been shown that synchronization of a rhythm by environmental
stimuli, including "subtle stimuli" (49), is effective because of phase control,
not frequency control. Because phase control is not compatible with frequency
transformation (46), this sole alternative to the concept of self-sustainment has
been ruled out.

The next alternative concerns the initial behavior of self-sustaining oscilla-
tors. Such oscillators either can be self-excitatory, i.e., capable of starting to
oscillate from rest spontaneously, or can depend on external stimuli to initiate
the mechanism. In other words, the self-sustainment mechanism either is
permanently in operation or is in operation only after the system is elevated
above a certain threshold by an external stimulus. It is only recently that
circadian rhythms have been shown to be self-excitatory (51); therefore, the
modeling process must start with an oscillator that is both self-sustaining and
self-excitatory.

A damping term fulfilling these conditions had been specified by Van der Pol
(17-19). At this level, other types of damping terms are appropriate as well
(e.g., according to the Raleigh differential equation); it is only because of the
following supplementations that the Van der Pol type of damping is sufficient
exclusively (22). The Van der Pol equation (with the coefficient of frequency! taken for unity) reads

y + e(y 2 -I)); +y=o (2)

Solutions of this equation describe self-sustaining and self-excitatory oscilla-
tors. When the amplitude (and hence y2) is small or even zero, the damping is
negative, and the amplitude of the oscillation increases; when the amplitude is
large, the damping is positive, and the amplitude decreases. After every
perturbation, therefore, an intermediate steady-state amplitude adjusts, where
the damping is, on the average, zero (21). The character of the resulting
oscillation is determined by the "coefficient of damping increment" e. The case
of e >> 1 ("relaxation oscillation") is characterized by a large energy
dissipation into the environment (by "friction") during parts of the cycle (when
the elevation from the zero position is large) and, correspondingly, by a large
energy restitution (by the "feedback mechanism") during other parts of the
cycle (when the elevation from zero is small). On the other hand, the case of
e << I ("pendulum oscillation") is characterized by a small energy exchange
with the environment. To illustrate the dependence of the oscillation parameters

- .p l '.1
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FIG. 1. Solutions of equation 2 with nine different e values. Initial conditions:
y(O) = 0.2; y(0) = 0. (From Wever, ref. 22, with permission.)

on e, Fig. I presents solutions of equation 2 with nine different values of e. The
frequency and waveform of the generated oscillation, as well as the duration of
transient processes, depend on e (22).

When the external force in equation 2 is not zero but is periodically varying,
the generated self-sustaining oscillation becomes separately excited, or forced.
The frequency of this generated oscillation equals that of the varying
environmental stimuli only when the frequency of the forcing oscillation is
within a limited range of entrainment. Outside this range the oscillation shows
(on the average) its natural frequency (or free-running period). The limitation in
the capability to become synchronized is a general property of all self-sustaining
oscillations.

To be more general, the "external force" is assumed not to be zero as in
equation 2 butz (cf. equation 1). Again, z may be a finction of time, e.g., it may
vary periodically. The extended Van der Pol equation is then

p + e(y 2 - I) +y = z (3)

If z is temporally constant, equation 3 describes self-sustaining oscillations

--74
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within a limited range of external forces, or mean values, respectively:
-1 <z <+1 (21). Inside this "oscillatory range," all parameters of the
oscillation depend on z as well as on e. To illustrate this dependence, Fig. 2
presents solutions of equation 3 computed with the medium value e= 1 and
with nine different z values. As can be seen in this figure, the oscillation loses its
symmetry when its mean value deviates from zero; apart from the waveform, the
frequency, amplitude, and duration of transient processes depend on z.

With z values outside the oscillatory range, the system remains at rest. When
elevated by any disturbance, the oscillation damps out. The return to the
original steady state is oscillatory only inside the larger "range of periodic
adaptation," I z I < (1 + 2/e)". With external forces outside the latter range, the
system approximates z by a periodic adaptation (22).

In the case of periodically changing z, equation 3 describes an oscillation that
is not only self-sustaining but also externally excited; within a limited range of
frequencies, it becomes synchronized to the z oscillator. Outside this "range of
entrainment," the y oscillator runs on its natural frequency but is rhythmically
modified by "relative coordination" with z. The periodic external force affects
the oscillation by putting energy into the system; to equalize the energy balance,
the amplitude of the forced oscillation enlarges, as does the energy output.
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FIG. 2. Solutions of equation 3 with e = 1 and nine different z values. Initial range of
oscillation = 10% of the steady-state range. (From Wever, ref. 27, with permission.)
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Consequently, under the influence of a forcing oscillation, the energy exchange
between the oscillating system and environment increases, and every oscillation
tends toward a relaxation oscillation, in spite of unchanged e and meanz values.
Figure 3 illustrates the superelevation of the amplitude under the influence of
external excitation; it shows various solutions of equation 3 computed with and
without the influence of a rectangular Zeitgeber. As can be seen, the amount of
"resonance superelevation" is greater as e is smaller and as z deviates from
zero.

Solutions of the Van der Pol equation may, in some respects, be appropriate
to simulate biological rhythmicity;, they are, in other instances, not very well
suited to certain biological variables. This is partly due to the fact that the
resulting oscillations run either symmetrically around zero (original equation 2,
Fig. 1) or at least with changing signs (extended equation 3, Fig. 2). Obviously,
when representing biological variables like temperature, concentrations of
hormones, or rates in cellular growth, negative values of the variables are
meaningless. The absolute value of a variable may be insignificant in a linear
oscillation; however, it is of great importance in a nonlinear self-sustaining
oscillation where all parameters have been shown to depend considerably on the
mean value. Therefore, the model equation must be modified in a manner that
excludes alternations in signs:

yp + E(y2 + y-2 - a)j + y = z (4)

According to this equation, the damping of the resulting oscillation will increase
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FIG. 3. Steady-state solutions of equation 3 with three different e values and two
different z values; each diagram shows at left the oscillation with constant z value
("autonomous") and at right the oscillation under the influence of a rectangular
Zeitgeber with Az = *0.5 and a period each coinciding with the corresponding
autonomous period ("heteronomous"). Dotted lines, mean values. (From Wever, ref.
27, with permission.)
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infinitely when y approximates zero, wherein the system would become
immovable. The system, therefore, can never transgress zero. In equation 4, a
specifies (together with E and z) the steady-state amplitude of the oscillation, or
its "'oscillatory strength"; a < 2 is a precondition for self-sustainment. If a = 3
is set, the minimum value of the net damping is -1, as in the original Van der
Pol equation (equation 2); using this value, the oscillatory range is
0.618 < z < 1.618. To illustrate the effect of the modified damping on the
rhythm behavior, Fig. 4 presents solutions of equation 4 in the steady state, with
three different e values and five different z values. Solutions of equation 4 with
negative signs are possible as well; then the oscillating variable can never
become positive. Consequently, there is another oscillatory range: -1.618 <
z < -0.618.

In a last step, the value of e in the nonlinear damping term must be specified
numerically, according to biological results. Many independent evaluations
meet in the statement that circadian rhythms are positioned close to the middle
within the continuum of pendulum-relaxation oscillation; an appropriate
average approximation to biological results seems to be e = 0.5. With this value
(and, furthermore, a = 3), the range of periodic adaptation is 0.382 <
z < 2.618. In special cases, deviating e values may better fit biological facts; in
these cases, of course, e may be subject to variations.
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FIG. 4. Steady-state solutions of equation 4 with a = 3, three different e values, and
seven different z values. Dotted lines, mean values. (From Wever, ref. 22, with
permission.)

I

• , > ''.
._.,._...,.- -- *----=



MATHEMATICAL MODEL OF CIRCADIAN RHYTHMS 25

Nonlinear Restoring Force

In all oscillation equations discussed thus far, the restoring force is linear, that
is, the force driving the system back to its neutral position is proportional to the
actual elevation from that position. A consequence in the linear equation 1 was
the mutual independence of the different rhythm parameters, mainly frequency
and mean value. In self-sustaining oscillations (equations 2-4), at least with
small e values, the frequency is independent of the mean value and therefore of
the external force. With large - values, in fact, the frequency varies with the
mean value; however, the correlation has an inconsistent sign, even when
damping is asymmetrical (cf. equation 4). Conversely, one of the first
generalizations derived from biological testing of circadian rhythms in various
organisms was that changes in frequency and mean value are consistently
positively correlated; this statement constituted the "circadian rule" (1,20). To
realize the circadian rule mathematically, a nonlinear restoring force has to be
introduced (according to the Duffing differential equation). The least arbitrary
way is to replace the frequency coefficient in equation I for a power series
of Y:

Wj2  l+ gly+ g 2 y 2 +g 3 yl+ .. .

In a system oscillating around zero, there is a fundamental difference in the
meanings of terms with even and odd powers in this series; the resulting
restoring force is either symmetric or asymmetric. However, if the oscillation is
restricted to values with unchangeable sign, this difference disappears. In this
case, therefore, the power series can be broken off after the first term without aI relevant loss in specificity. Then the resulting equation reads

y + ~yl y- - a + I +gy~y= z(5)

Averaging the results of free-running circadian rhythms in various animal
species and in humans, a value of g = 0.6 seems to be appropriate to describe
the experimentally observed correlation between changes in frequency and
mean value. Again, this value is a rough average from various experiments, and
in special cases other g values may be more suitable to special biological data.
With a nonlinear restoring force, as in equation 5, the external force z is no
longer identical with the mean value; with g = 0.6, the oscillatory range is
0.847 < z < 3.189, and the range of periodic adaptation is 0.470 <
z <6.730.

An alternative to this model may be an oscillation that violates the circadian
rule. In such a model, the term describing the restoring force, (I + gy) in
equation 5, must be exchanged for (1 - gy). Such a model, however will not
lead to stable oscillations, because the coefficient of frequency will be
imaginary, yielding an infinitely increasing or decreasing function (24).
Therefore, an oscillation violating the circadian rule cannot be used in this way.



26 MATHEMATICAL MODEL OF CIRCADIAN RHYTHMS

Rather, a precondition for such an application would be a coefficient of
frequency that, in fact, decreases with increasing y but can never become
negative. A term fulfilling this condition, for instance, would be w2 = e-y.

The external excitement by a forcing oscillation is no longer only non-
parametric; in addition, it gains a parametric component. It is clear that stable
synchronization is possible only if both components of the phase-control
mechanism lead to the same phase relationship; this condition is guaranteed
only when the circadian rule is fulfilled (20). Even if it seems to be possible to
violate the circadian rule in autonomous oscillations, as just discussed, every
violation of the rule leads to instabilities in heteronomous rhythms (24). The
contribution of a parametric component in separate excitation has, in addition,
another consequence. Normally, i.e., in oscillations around zero, parametric
excitation leads to periodic solutions with half the period of the forcing
oscillations (according to the Mathieu differential equation). However, if the
oscillating variable does not change its sign, parametric excitation leads to 1:1
synchronization, like nonparametric excitation. If components of both excita-
tion modes operate in a combined action, the restriction of the oscillating
variable as introduced in equation 4 is a precondition for stable synchroni-
zation.

The most general expression for the restoring force is the power series
mentioned. In fact, if all coefficients g, to g. always equal zero, the result is a
stable oscillation with linear restoring force. However, if these coefficients
fluctuate randomly in the course of superimposed noise, it may happen that the
net value of the nonlinearity becomes negative, and therefore the oscillation
becomes unstable (vide sup ra). In order to prevent the system from such/ instabilities, it is advantageous to set the coefficients mentioned slightly positive
in the sense of equationS5; in this case, the oscillation then remains stable even
with fluctuating values of the coefficients under consideration.

Another source of stabilization is the continuing mutual interdependence
between rhythm parameters effected by the nonlinear restoring force. It effects a
negative serial correlation between the durations of successive cycles that
stabilizes the frequency of the generated rhythm when exposed to random noise
(vide infra). Consequently, a nonlinear restoring force, as introduced in
equation 5, protects the generated rhythm from disturbing influences of random
fluctuations in various respects.

Structure of the External Fore

The model equations 3-S are controlled by an external force. In the
modifications of equations 4 and 5, this force must deviate from zero; if the
external force varies periodically, constituting a forcing oscillation, its mean
value has to deviate from zero. Biological rhythms are, on the average, more or
less in phase with the controlling environmental cycles; with a varying ratio

between forced and forcing rhythms, the external phase relationship changes its
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sign. Depending on the definition of the external stimuli, biological rhythms can
also simply run counterphase to the environmental cycles; in this case, also, the
external phase relationship changes with varying ratios of the frequencies. Such a
phase relationship could be quantified when the external force is not constituted
by the environmental stimuli themselves but by their first time derivatives.
Then, however, the system would be immovable, because the time derivative is,
on the average, zero. Consequently, a combination of z and its time derivatives
must be applied.

To achieve mathematical stability, the appropriate combination is that of z
with its first and second time derivatives (25). If, to simplify matters, all
relevant coefficients are taken for the unit, the resulting model equation reads

y+ E(y 2 + y--a)y + ( I+gy)y =2+ i+ z (6)

The Resulting Model Equation

The previous sections started with the simple oscillation equation of the
second order, and subsequently the two relevant terms were modified by
nonlinearities, (a coefficient of the term with yj can always be abolished by
division). The two nonlinearities were compelled by very general summaries of
biological experimental results; alternatives to the basic equation, as well as to
the modifications, were tested at every step, but all had to be expressly rejected.
Finally, the controlling external force was specified with the same method.
Through previous deductions, the iterative process of discriminating between
alternatives resulted in the model equation 6. For the three free parameters
included in this equation, r, a, and g, numerical values were proposed. Setting
these values, the equation constituting the model for circadian rhythmicity
reads

Y +0.5(y + -- 3)j'+ (I+O.6y)y + i+ z (7)

In this model equation, the independent variable z represents the external force
controlling the system, and the dependent variable y represents the biological
variable under consideration. Because equation 7 does not contain any other
free coefficient, there is an unambiguous dependence in the behavior of y on z,
whether it is constant or varying.

It is evident that solutions of this simple equation 7 can describe only general
properties of circadian rhythmicity. Peculiarities of single species, or even of
individual organisms, cannot be reproduced by this simple model. Several
modifications are necessary when describing properties of a specific rhythm, the
first of which involves varying several coefficients. Second, additional terms
must be introduced, and the coefficients must be adapted to specific experi-
mental findings. Examples of possible extensions of the models discussed thus
far will be given in the following sections.
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Systems of Coupled Oscillators
A simplified system of two coupled oscillators can be explained by the

following equation:

IF +y+e(y 2 -1)+y=z (8)

It depicts an oscillator of the second order capable of self-sustainment and a
simple oscillator of the first order that is capable only of damped oscillations. In
such a case, it is preferable to speak not of a multioscillator system but of one
oscillator generating an oscillation of a more complicated wave shape. Figure 5
presents several solutions of equatior- 8, computed with various E and z values.
As can be seen, the generated oscillation has, in the case of e << 1, an enlarged
amplitude, but it keeps its monomodal shape; the case of e = 1 results in a
bimodal oscillation wherein the relation between the two peaks depends on z;
in the case of e >> 1, the result is a multimodal oscillation in which the basic
oscillation seems to be superimposed by a damped oscillation of a much higher
frequency. A great variety of different wave shapes can be generated when, in
addition, the term of third order in equation 8 is varied by corresponding
coefficients; more details are given elsewhere (22).

It has been mentioned in the context of equation 7 that the external force z
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represents all those external stimuli that control the generated oscillation.
However, it is not cogent that these be solely environmental stimuli; rather, it is
possible that they may originate from the output of another oscillator within the
same organism (21). This means that the oscillating variable y, generated by one
oscillator, is simultaneously a part of the external force controlling another
oscillator, x, which, in return, participates in the control of the first oscillator.
Starting with equation 6, but with an additional coefficient of frequency
according to equation 1, the two-oscillator system is formulated:

y~r1y 2 +f-a 1  + +W2(l + gly)y.p el(y2 +y-' -a); + Io ( + l)

= W[c 1(x + + x) + 2 + j + z]
+ s 2 (x 2 + X- 2  ). +o(l +Wg2 x)x

((9)=t2[e2(Y + ; + Y) + 2 + ' +Z] (9)

The only additional coefficients that must be introduced are the coupling
coefficients c. Mathematically, this system of two coupled equations of second
order each is equivalent to one equation of fourth order. It is arbitrary,
therefore, whether solutions of this system are considered as two interacting
simple oscillators or one oscillator that is more complex. In the general
formulation of equation 9, the environmental input z is fed into the system
twice, into the y and the x oscillators; however, the separate control is apparent
only because the equivalent fourth-order equation includes only one environ-
mental input (in a more complicated term).

* Extension of the Model to Other Frequencies

Complementing the term withy in equation 7 by a frequehcy coefficient (cf.
equation 1) may enlarge the range of applicability of the model equation. With
w = 1, solutions of the model equation have been normalized to result in a
period corresponding to about 1 day (vide infra). With deviating w values, they
may be applied as models of biological rhythms with other frequencies. The
manner in which the meanings of the other terms in equation 7 change with
variable w must be considered.

The external force z keeps its meaning only when multiplied by the same
coefficient as the term with y; in particular, the z values defining the oscillatory
range keep their numerical values only in this case. The coefficient e determines
the position of the resulting oscillation within the relaxation-oscillation-
pendulum-oscillation continuum only with w = 1; with deviating w values, this
position is determined by e/t0. This will mean that, with increasing w, the
frequency of the resulting oscillation increases, and, simultaneously, the type of
oscillation changes in direction toward a pendulum oscillation. However,
evaluations of biological rhythms show that high-frequency rhythms tend more
to the relaxation type and low-frequency rhythms more to the pendulum type of
oscillation (25). With necessary modification, the equation then becomes

"*" . , .. 1

- II - I



30 MATHEMATICAL MODEL OF CIRCADIAN RHYTHMS

Y + 0.5WI.2 5 (y 2 + y-2 - 3) + &)2 (l + O.6y)y = w2(f + j + Z) (10)

This model equation will be applied to describe biological rhythms with high
frequencies, particularly the rhythm of the central nervous system (24).

Summary of Preconditions of the Model

The model equation describing circadian rhythmicity is based on a few
preconditions:

1. Circadian rhythmicity is based on a feedback mechanism that leads,
within a certain range of external conditions, to self-sustaining and self-
excitatory oscillations; under all conditions, the oscillating variable does not
change its sign.

2. In autonomous rhythms, changes in frequency and mean level are
consistently correlated; in heteronomous rhythms, parametric and nonpara-
metric components contribute simultaneously in separate excitations. As a
consequence of the intrinsic correlation, the generated oscillation is insensitive
to fluctuations in its decisive coefficients.

3. When circadian rhythms are synchronized by external periodicities, the
phase-angle difference between biological and environmental rhythms is, where
the periods of both rhythms coincide, zero, or the rhythms run counter-
phased.

These preconditions are sufficient to establish the model equation applicable to
single circadian rhythms. If the model should be extended to a system of

mutually coupled rhythms, another precondition must be added:
4. If one oscillation influences another, it does so equivalent to the external

influence on this oscillator.

If the model should be extended to biological rhythms of very deviating
frequencies, e.g., to rhythmic activities of the central nervous system, yet
another precondition must be added:

5. If the frequency of the generated rhythm changes considerably because of
the introduction of a coefficient of frequency deviating considerably from unity,
the position of the resulting oscillation within the continuum of relaxation-
pendulum oscillation will change in direction to the relaxation type with
increasing frequency.

SOLUTIONS OF THE MODEL EQUATION:
PREDICTIONS FOR CIRCADIAN RHYTHMS

In this section, computed solutions of the model equations will be discussed.
Because circadian rhythmicity is the main topic, solutions of equation 7 will
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be considered first. This equation includes the external force z as the only
free parameter, therefore, the solutions to be considered differ only in the
environmental conditions controlling the rhythm. If the model is applied to
animal rhythms, where light is the most effective environmental stimulus, z can
be taken as an analogue to the intensity of illumination. In the version
applicable to light-active organisms, z must then be accepted as positively
correlated to light intensity (e.g., proportional to the logarithm of light
intensity); for nocturnal species, z is negatively correlated to light intensity. If
the model is applied to human rhythms, where light is marginally effective, z
may be correlated to the amount of social stimuli or to behavioral functions. In
any event, every external stimulus affecting circadian rhythmicity is reflected in
z.

To enlarge the range of applicability, in what follows we shall consider not
only the behavior of the resulting oscillation itself. In this case, y will represent a
steadily varying variable, such as body temperature, locomotor activity, or
excretion of any substance in the urine. In addition, a square wave will be
considered that is derived from the course of the oscillation by introducing a
threshold, separating sections where the oscillation runs above threshold
("activity") from sections where it runs below threshold ("rest"); in this case,
the derived variable alternating between two discrete states may represent the
activity-rest rhythm (20). Moreover, in this case the area between threshold
and oscillation during "activity time" may represent the amount of the
performed activity. If applied to animal rhythms, where the temporal ratio
between activity and rest (ct/p ratio) is mostly in the range of unity, it seems to/ be appropriate to set the threshold at y = 1. If applied to human rhythms, where
the alp ratio is commonly in the range of two, the threshold has to be set lower,
at about y = 0.5. Finally, solutions of equation 7 have periods in the range of
four units of time. Because this period should correspond to the circadian
period, all solutions of equation 7 are normalized so that the unit of time
corresponds to 6 hr, of four units of time correspond to 24 hr.

Autonomous Rhythms

Rhythms under Constant Conditions

When the external conditions are considered to be constant, only z itself has a
finite value, whereas i and -* are constantly zero. Under this condition, equation
7 describes a remaining oscillation only as long as z is within the limited
oscillatory range, 0.847 < z < 3.189. Figure 6 presents solutions of equation 7
with seven different constant z values, all within the oscillatory range; from
every solution, three steady-state cycles are drawn. With increasing z value,
the period shortens, the amplitude transgresses a maximum, and the wave
shape changes from skewed to the right ("form factor" < 1) to skewed to the left
(form factor > 1). The separation of activity and rest by a threshold constitutes
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additional rhythm parameters. Only in the two most extreme diagrams, such a
separation is not possible, though the rhythmicity persists. In the lowermost
diagram the persisting rhythm remains below threshold, describing "continuous
rest," and in the uppermost diagram the similarly persisting rhythm remains
above threshold, describing "continuous activity." In the remaining diagrams,
the activity time a lengthens with increasing z, despite the shortening period.
The amount of the performed activity increases over the full range with
increasing z (25). Figure 6 does not show that the duration of transient states
also depends on z, being shortest in about the middle of the oscillatory range.

Outside the oscillatory range, the system remains at rest. Only when pushed
by any stimulus does the system move, but it returns to its constant steady state.
Inside the range of periodic adaptation, i.e., with 0.470 < z < 0.847 and
3.189 <z < 6.730, the feedback mechanism is sufficient to compensate for
friction to such a degree that the system returns to its steady-state value
of oscillation. In other words, inside these two ranges adjacent to the oscillatory
range, the system is capable of damped oscillations. Only outside these ranges,
i.e., with 0 < z < 0.470 and z > 6.730, is the net damping so large that the
system adapts to its steady state aperiodically.

Rhythms Under the Influence of Random Noise

The assumption of the deterministic model, as applied in the preceding
section, was not realistic; it was presented only to make obvious the
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interdependences between different rhythm parameters. In nature, the observed
rhythms are always disarranged by superimposed random fluctuations. There-
fore, of special interest is the computation of solutions of the model equation
under the influence of random noise. All following presentations are based on
random fluctuations of the external force. Preliminary computations show that
the results are similar when other coefficients of equation 7 fluctuate
randomly.

Figure 7 shows two solutions of equation 7, computed with different mean
values of the external force z but with equal random fluctuations of z. From both
solutions, we present not only the generated rhythms themselves but also the
square-wave rhythms derived by using the threshold that separates activity a
and rest p; for once, the threshold is taken at y = 0.5 to describe rhythms with
an ct/p ratio generally larger than unity, as is the case in human rhythms. As can
be seen in this figure, not only the means of the period and amplitude are
different in the two rhythms (Fig. 6) but also the variabilities of these two
parameters. Generally, the rhythm with the longer period and the smaller
amplitude is much more sensitive to standard random disturbances, or it is
less precise (38).

Successive cycles within the time series, when fluctuating because of random
noise, are not independent of each other. Rather, there are serial correlations
between corresponding phases in successive cycles. At first, the durations of
successive cycles are negatively serially correlated; this holds true with the
maximum and minimum values for reference, as well as with "activity onset"
and "activity end" for reference, i.e., with the passings of the threshold. This
internal stabilization causes an accumulation of the cycle-to-cycle variations
that is much smaller than it would be with randomly distributed deviations of the
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FIG. 7. Two solutions of the model equation 7 with different mean z values and
superimposed random fluctuations of z with equal variabilities; from every solution,
10 successive cycles are drawn. In addition to the courses of the rhythms, the
derived square waves (with the threshold at y = 0.5) are drawn. (From Wever, ref. 38,
with permission.)
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same magnitude; in other words, it causes a ratio between stability and precision
that increases much less with increasing duration of the time series than with a
random series (56). In addition, there is another negative serial correlation
between activity time and rest time. This correlation can be observed between
an activity time and the following rest time, but also with a slightly smaller
probability between a rest time and the subsequent activity time. Consequently,
the stabilization mechanism just mentioned operates on the full cycle, and it
does not stabilize the separated sections within a cycle (36).

In particular, the serial correlation between successive cycles deserves
attention, because such an internal stabilization mechanism is commonly
attributed exclusively to a coupled system consisting of "pacemaker" and
"overt rhythm" (vide supra). In equation 7, however, it is an inherent property
of the isolated system, due to the nonlinear restoring force. This becomes
obvious in Fig. 8, where two different solutions of the model equation are
presented, with a linear restoring force (left) and a nonlinear restoring force
(right). In all respects except the coefficient of nonlinearity in the restoring
force, the two solutions are equivalent; in particular, they are computed with
equivalent superimposed random noises. They are only normalized to equal
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FIG. 6. Two solutions of the model equation 7 under the influence of the same
random noise (random fluctuations of z), however with linear restoring force (g = 0)
(left) and normalized to the same period as the solution with the nonlinear restoring
force (right). The rhythms are presented in the manner of biological data (double
plots); "activity" is represented by bars, and from the course of the rhythm only the
temporal positions of maximum (open triangles) and minimum values (filled triangles)
are given. Successive cycles are drawn one beneath the other.
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periods (without the normalization, the period with the linear restoring force
would be slightly longer than that with the nonlinear). The solutions are
presented in the same manner in which human rhythms are frequently
presented: The rhythm's courses are separated into "activity" and "rest" by a
fixed threshold, and the maxima and minima of the rhythms are indicated. As
can be seen, the two solutions behave differently with regard to long-term
fluctuations: The model with the nonlinear restoring force is, in the long run,
much more stable than the model with the linear restoring force, despite the
slightly larger cycle-to-cycle variations. This stability is due to the negative
serial correlation between the durations of successive cycles (r, = -0.409) in
the model with nonlinear restoring force; the correlation is zero in the other
model.

The stabilization mechanism mentioned is based on the intrinsic coupling
between changes in the actual values of frequency and amplitude. The coupling
that is due to the nonlinear restoring force compensates for the effects of
perturbations on the phase of the rhythm. Therefore, the stabilization mecha-
nism can be effective only in the range around e = 1 (i.e., the middle between
pendulum and relaxation oscillations), where both frequency and amplitude are
subjected to changes following any perturbation (42). Neither in pendulum
oscillations (e << 1), where the amplitude is changed by a perturbation but not
the frequency, nor in relaxation oscillations (v >> 1), where the frequency is
changed but not the amplitude, can the intrinsic coupling be effective.
Therefore, the demand for long-term stability of the generated oscillation
restricts the coefficient of damping increment to values close to e = 1. It is
remarkable that just these values are also demanded by the results of biological
experiments.

The solutions of the model equations shown in Fig. 8 are accidental realiza-
tions out of a great variety of possibilities. However, all the different
realizations show the same essential results: Solutions with a nonlinear
restoring force consistently show a negative serial correlation, whereas
solutions with a linear restoring force show a serial correlation close to zero.
The accidental differences in the patterns of the generated rhythms reveal a
pitfall in the analysis of circadian time series. Comparing the first 10 cycles and
the second 10 cycles (as frequently performed in biological analyses) in the
solution with a linear restoring force (Fig. 8, left), the mean cycle durations
differ, and the short-term, or cycle-to-cycle, variations re,;ul in standard
deviations to guarantee statistically significant differences in periods. Of course,
such a statement is completely meaningless, because two accidental samples
from the same basic entity are considered; it is based on an inadequate appli-
cation of statistics neglecting fundamental preconditions. Because of mutual
interdependence, successive cycles within a time series cannot be used
for statistical purposes, although such a consideration may be of a high
descriptive value; a "period" is defined only by considering a total time series
consisting of many successive periodically repeated intervals, not by con-
sidering single intervals. Of course, a correct period analysis of any type does
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not allow differentiation between the periods of the first and second 10 days of
this example.

In the contrast to the serial correlation among successive cycles, that between
adjacent sections within a cycle is independent of the structure of the restoring
force. With linear as well as nonlinear restoring force, an activity time and the
following rest time are negatively correlated, as are (but to a lesser degree) a rest
time and the following activity time. The level of these negative serial
correlations depends on the slope of the rhythm at the point where it crosses the
threshold. In the relevant range, this slope is flatter during the descending part in
the rhythmic course of the variable, where the threshold crossing marks "end of
activity" or "onset of rest," than during the ascending part. Consequently, the
variability of "end of activity" is larger than that of "onset of activity," and the
serial correlation between an activity time and the following rest time is more
negative than that between a rest time and the following activity time.

Interdependence of Rhythm Parameters

In preceding sections, the dependences of several rhythm parameters on the
external force have been discussed. In fact, the same 'correlation between
isolated rhythm parameters and certain external conditions can be realized with
various types of model equations if the free coefficients are selected in a proper
way. Therefore, agreement between model predictions and experimental data
yields very little information about the structure of the system as long as it is
restricted to a few points. Of relevance is simultaneous experimental confir-
mation of many diverse predictive modes. Therefore, each model must/ determine as many different rhythm parameters as possible and also the mutual
interdependence between all these parameters.

Figure 9 summarizes, necessarily incompletely, the dependences of various
rhythm parameters on z as calculated from equation 7; several of these
parameters have already been mentioned with the discrete solutions of this
equation as presented in Figs. 6-8. It is characteristic that many of these
parameters are positively correlated to z within the largest part of the oscillatory
range; simultaneously, this means that within this range the parameters
mentioned are positively correlated with each other. It is only close to the limits
of this range that opposite correlations occur. In the following, the parameters
presented will be discussed separately.

The range of oscillation, or the rhythm's amplitude, deviates from zero only
inside the oscillatory range; its maximum is not in the middle of this range, but
close to its upper end, at z = 2.5 8. The sensitiveness of the amplitude against a
standard noise is not least when the amplitude is largest, but at a lower z value.
Even if the power of the superimposed noise is not constant but is a fixed
percentage of the amplitude, the variability is least at about the middle of the
oscillatory range, and it increases toward the ends. The course of the mean
value had been presupposed in the modeling process; it is always positively
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correlated to z and therefore cannot be rated as a prediction. The positive
correlation of the rhythm's frequency to the mean value is the substance of the
"circadian rule" (vide supra); it is worth noting that the course of frequency
passes a weakly marked minimum close to the lower end of the oscillatory
range. The sensitivity of this frequency to the standard noise is least at about the
z value where the amplitude is largest, i.e., at a distinctly higher z value than the
sensitivity of the amplitude. If the power of noise is a fixed percentage of the
respective rhythm amplitude, its influence on the variability of the frequency is
nearly independent of z, again in contrast to that of the amplitude. The
difference in the sensitivities of amplitude and frequency against standard noise
is especially obvious in the diagram showing the "precisions" (ratios between
means and standard deviations) of these parameters depending on z.

Apart from the common rhythm parameters, several more parameters can be
considered and are therefore included in Fig. 9. The next parameters are the
"form factor" (ratio between descending and ascending parts of the cycle) and
the "ratio of deviations" (between the variations of end and onset of activity);
these two parameters are closely related. With small z values, the shape of the
rhythm is skewed to the right; under the influence of random noise, the onset of
activity varies more than does the end of activity. With higher z values, the
shape of the rhythm is skewed to the left, and the end of activity is more affected
by superimposed random noise than is the onset of activity. Close to the limits
of the oscillatory range, both parameters tend toward unity (like other
parameters defined as ratios, both of these parameters are drawn on logarithmic
scales)./ The introduction of a threshold separating activity time and rest time creates

( additional rhythm parameters. The ratio between activity time and rest time
(alp ratio) increases, with common threshold at y =1, continuously with
increasing z; it approaches zero close to the lower limit and approaches an
infinite value close to the upper limit of the oscillatory range (Fig. 6). With
alternative thresholds, however, the course of the alp ratio deviates. With a
lower threshold (i.e., with generally high alp ratios) it becomes negatively
correlated to z when z is small: with a higher threshold (i.e., with generally low
alp ratios) it becomes negatively correlated to z when z is large. The amount of
activity increases steadily with increasing z; because this statement is valid with
all thresholds, the amount of activity is presented only with the medium
threshold at y =1.

Particularly interesting is the course of the "internal phase-angle difference"
between the oscillation itself and its square-wave derivative. It is evident that
the "true" phase-angle difference can only be zero, independent of z, because
the two rhythms represent different manifestations of the same oscillation.
Nevertheless, the diagram shows that the formally computed phase-angle
difference between these two manifestations is not constantly zero (positive
phase-angle differences mean that the acrophase of the complete rhythm leads
that of its square-wave derivative). With the "standard threshold" (y =1), the
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phase-angle difference is always positive, but it varies with z. With the higher
and lower thresholds, in fact, the phase-angle differences show even changing
signs depending on z, although the courses of the correlations are different in the
two cases. Inconsistencies in formal computations are clearly understood to be
due to the combined changes in wave shape and in the a/p ratio. This
inconsistency should be a warning about extrapolating from such a formal
computation (which, in principle, is based on sine waves) to "true" phase-angle
differences without reference to a special model (43).

Finally, the uppermost diagram of Fig. 9 illustrates the "energy exchange"
per cycle between an oscillating system and the environment, expressed in the
coefficient el; it is calculated according to previous models (25). This diagram
demonstrates that the model oscillation as derived from equation 7 tends more
to the relaxation type near the middle of the oscillatory range and more to the
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pendulum type toward the limits of this range; this result is in agreement with
Fig. 2. It is remarkable that this analytical estimation of the feedback coefficient
from equation 7 coincides with an empirical estimation based on the behavior of
the oscillation under the influence of random noise: It has been shown that the
coefficient of damping increment equals the ratio between the coefficients of
variability (reciprocal value of precision) in period and amplitude (42). In a
pendulum oscillation (el <<1), the amplitude is relatively more altered than is
the frequency by superimposed distortions, and in a relaxation oscillation
(e' > 1), the frequency is relatively more altered than the amplitude.

Rhythms under Special Conditions

In addition to the conditions discussed thus far, there are other states in which
rhythms run autonomously, but in which the external conditions are neither
constant nor randomly fluctuating (vide supra) but instead are regularly
changing.

In experiments excluding the natural day-night cycle, it may be the case that
the external conditions are not really constant but are self-controlled by the
activity-rest cycle of the experimental organism. An example is a self-
controlled light-dark cycle in which it is light during the activity time and dark
during the rest time. Of course, other external stimuli (e.g., ambient tempera-
ture) can be self-controlled as well. Beyond this, the hypothesis has been offered
that the self-control mechanism can also be behavioral. This is, for instance, the
case if an organism in constant illumination has open eyes during activity time
and closed eyes during rest time and if the eyes have been shown to be the/ pathway in the entrainment of the circadian system by the light (3 5,44).

A self-controlled cycle of environmental stimuli necessarily lags behind the
controlling biological rhythm; i.e., light can be switched on only after the onset
of activity, not before. Because of the strong correlation between period and
phase relationship (vide iira), this lag slows down the period of the controlling
rhythm, until a shifted equilibrium between period and phase relationship has
been adjusted. Consequently, according to equation 7, self-control always
lengthens the autonomous period of a free-running rhythm.

The period-lengthening effect of this self-control is stronger where the
amplitude of environmental stimuli is larger (e.g., the larger the difference in the
intensities of illumination in a light-dark alternation). Because lower values of z
are frequently limited in their potential to vary (e.g., total darkness), the mean
value of z usually increases with the amplitude. Under "constant conditions,"
the period will shorten with increasing z (cf. Fig. 6). There are, therefore, two
opposite effects: the continuous-action approach, in which the correlation
between z and the period is negative; the self-control effect, in which the
correlation is positive. These effects may neutralize each other, more or less.
The self-control effect concerns only the period, without affecting the other
rhythm parameters like mean value. Therefore, changes in these parameters
hold their original correlations to changes in the external force also in the
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presence of self-control. Although fulfillment of the circadian ruile is a
precondition for the general stability of the oscillating system (vide supra), this
inconsistency may explain why this rule seems to be violated in some
organisms. However, this inconsistency is valid only with diurnal behavior, with
nocturnal behavior, the continuous-action approach is reversed, but the self-
control effect is not, so that both effects operate in the same direction. If the self-
control effect should be evaluated separately, without being obscured by the
effects of possible changes in the mean of z, solutions of an equation with a
linear restoring force (cf. equation 3 or 4) should be computed.

Another state in which rhythms run autonomously under regularly changing
conditions is realized in an experimental environment in which the light
intensity (or the ambient temperature) is slowly but consistently changing (5 1).
Whereas under constant conditions the time derivatives of z in equation 7 are
constantly zero, under steadily changing conditions 1 is no longer constant but
has a value deviating from zero. In a self-sustaining oscillation, the limits of its
oscillatory range are defined by the sum of z and its time derivatives.
Consequently, the limits of the oscillatory range under steadily increasing z
(i.e., with a positive value of i) are reached with a lower absolute z value than
under constant conditions (where i = 0); they are reached with a higher
absolute z value with steadily decreasing z values. Therefore, because of the
effects of the time derivatives of the external force, the influence of steady
changes in the external force on the system will be opposite to that assumed
when hysteresis is presupposed (51).

/ Heteronomous Rhythms

The number of possible predictions increases considerably when equation 7
is computed with a periodically changing external force. Already, in auton-
omous rhythms, in which the external force has only one degree of freedom in
which it can vary, numerous different predictions have been derived from the
solutions of the model equation. In heteronomous rhythms, the external force
has several more degrees of freedom in which it can vary. Therefore, the variety
of possible predictions to be made is difficult to survey. Within the scope of this
brief summary, only some samples of predictions can be presented.

Influence of Djfferent Zeirgeber Parameters

In this section, variations in the temporal course of a periodically changing
external force will be considered, i.e., the dependence of the forced rhythm on
the shape of the forcing oscillation, or Zeitgeber. In accordance with most
experimental studies of circadian rhythmicity, a trapezoidal shape of the
Zeitgeber is presupposed, i.e., the external force alternates, with interposed
"twilight" transitions, between two fixed states. With such a Zeitgeber, five
different parameters can be varied: (a) the difference (or the ratio) between the
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values of the external force during the two states; (b) the period of the
alternation between the two states; (c) the mean level of the external force; (d)
the temporal ratio ("LD ratio") between the two states; (e) the duration of the
twilight transitions between the two states. Effects of variations in the respective
parameters of the Zeitgeber will be considered in this sequence. To keep the
number of solutions to be presented within reason, each of the other Zeitgeber
parameters is kept constant at a medium value (or at two values, in case of the
range of the Zeitgeber): Unless explicitly stated otherwise, the range of the
Zeitgeber is set at Az = ±0.1 and ±0.5, the period is T = 24 hr, the mean level
is T = 2.1 [when z = 2.1 is set continuously, the autonomous rhythm has a
period of 24.9 hr (cf. Fig. 6)], the LD ratio is 1:1, and the twilight duration is
5% of the period (1 hr 12 min in the 24-hr day). The conclusions to be drawn
from the different solutions are restricted, in this section, primarily to the phase
relationship between the forced rhythm and its forcing Zeitgeber (25).

Figure 10 illustrates the influence of the range of the Zeitgeber, it indicates
the influence of the Zeitgeber's strength. In this and the following figures, the
strip below the rhythm indicates the course of the Zeitgeber. White means
higher z values ("light"), and black means lower z values ("dark"); the
transitions between white and black indicate the twilights. Figure 10 demon-
strates that, apart from drastic changes in the wave shape, the phase of the
rhythm advances relative to that of the Zeitgeber with increasing Zeitgeber
strength. In order to keep the energy input affected by the Zeitgeber comparable
to that affected by the feedback mechanism (vide supra), the two strongest of
the five different Zeitgeber strengths presented will not be used in the
following.

Figure 11 illustrates the influence of the Zeitgeber period. With the weak
Zeitgeber (left), synchronization takes place only for periods between about 22
and 28 hr (25 ± 3 hr); secondary ranges of entrainment of about half this width

FIG. 10. Solutions of the model equation
7 under the Influence of a Zeitgeber, with
five different ranges of the forcing (trap-
ezoidal) oscillation. (From Wever, ref. 25,

10 with permission.)
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FIG. 11. Solutions of the model equation 7 under the influence of a Zeitgeber, with

13 different periods and two different ranges of the forcing (trapezoidal) oscillation.
The ranges of periods where the rhythms are synchronized ("ranges of entrainment")
are indicated by vertical lines. (From Wever, ref. 25, with permission.)

are positioned around 12.5 hr (synchronization to half the Zeitgeber period) and
around 50 hr (synchronization to twice the Zeitgeber period). With all other
Zeitgeber periods, the rhythm free-runs but is affected by the Zeitgeber
("relative coordination") (vide iqtfra). With the strong Zeitgeber (right), the
ranges of entrainment are about three times broader. The range of periods seems
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to be unlimited to short periods, at first glance; however, closer inspection
shows that the rhythm is only apparently synchronized to the shortest periods
(vide infra). Within the ranges of the entrainment (in Fig. 11 indicated by
vertical lines), the phase of the rhythm advances relative to that of the Zeitgeber
with lengthening period, and the amplitude is largest in the middle of these
ranges.

Most evident in Fig. 11 are the limitations of the ranges of entrainment.
However, it must be considered that the statement of an unambiguous size of
this range is a simplification. In nonlinear oscillations, one must differentiate
between a larger "range of holding" and a smaller "range of catching" a rhythm
(21). When the period of a Zeitgeber that previously synchronized a rhythm is
slowly changed, the limits of entrainment are expanded, depending on the
changing speed. When, on the other hand, a previously free-running rhythm is
exposed to a Zeitgeber, or the period of a Zeitgeber that previously did not
synchronize the rhythm is changed in the direction of the intrinsic period, the
Zeitgeber is capable of starting synchronization of the rhythm only within
considerably narrower limits. This behavior may resemble "learning," although
it is but a mathematical consequence of nonlinearity (27).

Figure 12 illustrates the influence of the level of the Zeitgeber. It shows that
the phase of the rhythm advances relative to that of the Zeitgeber when the level
increases. This change in the external phase relationship is more obviously
marked with the weaker Zeitgeber than with the stronger Zeitgeber, with the
stronger Zeitgeber, changes in its intensity are primarily expressed in variations

/
Mean level

2.1 4  yj y
- ,- - I-Z

F.1. 6ouin ftemdleuto nerteifuneo eteewt7;:, - :1 - a T.

FIG. 12. Solutions of the model equation 7 under the influence of a Zeltgeber, with
five different mean levels of the forcing (trapezoidal) oscillation. (From Wever, ref. 25,
with permission.)
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of the wave shape. With the lowest Zeitgeber level, a special phenomenon is
indicated: When a variable with an already low level is influenced by a strong
signal, lowering it even more, it can be "frozen" for a while. It does not return to
the original wave shape with the next upward push, but only with the second;
consequently, activity occurs only during every second light time.

Figure 13 illustrates the influence of the LD ratio. With the weak Zeitgeber,
the phase of the rhythm relative to that of the Zeitgeber is most nearly
coinciding when the Zeitgeber is symmetric (LD = 12:12), and it delays with
both increasing and decreasing LD ratios. This change in the external phase
relationship is mainly due to a change in the strength of the Zeitgeber with the
LD ratio (the Zeitgeber is strongest when symmetric). With a strong Zeitgeber,
there is a consistent advancing of the rhythm's phase relative to that of the
Zeitgeber when the LD ratio increases. This change in the external phase
relationship is due to the preponderance of changes in the mean level of the
Zeitgeber with changing LD ratio over changes in the Zeitgeber strength (the
mean level is 1 = 2.1 only with a symmetric Zeitgeber; it varies between Y
= 2.48 with LD = 21:3 hr and 1 =-1.72 with LD---3:21 hr when the

Zeitgeber is strong, but only between Y = 2.18 and 2.02 when the Zeitgeber is
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FIG. 13. Solutions of the model equation 7 under the influence of a Zeltgeber, with
seven different LD ratios (temporal ratios between sections with higher and lower z
values) and two different ranges of the forcing (trapezoidal) oscillation. (From Wever
ref. 25, with permission.)
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weak). Again, with a strong Zeitgeber, variations in wave shape with changing
LD ratios are considerable.

Finally, Fig. 14 illustrates the influence of twilight duration on the rhythm,
computed with three different LD ratios but only with the stronger Zeitgeber
(Az = ±0.5). Independent of the LD ratio, the phase of the rhythm advances
relative to that of the Zeitgeber with increasing twilight duration. In addition,
the twilight duration has a remarkable influence on the dependence of the
external phase relationship on the LD ratio. With the shortest twilight, the
phase relationship is nearly independent of the LD ratio; conversely, there is
strong dependence with the longest twilight-the larger the LD ratio, the earlier
the rhythm's phase. Therefore, in addition to this advancing effect, it is
suggested that a lengthening of the twilight duration operates like a strength-
ening of the Zeitgeber (25).

The influences of the various Zeitgeber parameters on the phase relationship
between rhythm and Zeitgeber can be summarized by a few generalizations: (a)
A stronger Zeitgeber yields a closer phase relationship; conversely, with a
weaker Zeitgeber the absolute value of the phase-angle difference between
rhythm and Zeitgeber is larger, independent of its direction. (b) A shorter
intrinsic period of the rhythm relative to the Zeitgeber will phase-advance its
period relative to that of the Zeitgeber, the rhythm's intrinsic period is
determined by the level of the external force (vide supra). (c) With lengthening
of the twilight duration, the relative weights of z and its time derivatives (vide
supra) are shifted so that a phase advance results.

When speaking of light and dark, usually we are referring to "light-active"
behavior (vide supra): The external force is positively correlated to the intensity
of illumination. When "dark-active" behavior is to be considered, several of the
analogues to biological behavior are reversed. This especially concerns the
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FIG. 14. Solutions of the model equation 7 under the influence of a Zeitgeber, with
three different "durations of twilight" (sections of transitions between constantly
higher and lower z values) and three different LO ratios of the forcing (trapezoidal)
oscillation. (From Wever, ref. 25, with permission.)
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influence of the LD ratio: In nocturnal organisms, the phase of the rhythm
should be earlier the smaller this ratio (provided the twilights are sufficiently
long). This reversion, however, does not concern the influence of the twilight
duration. In the course of nature's seasons, there are variations in not only
the LD ratio but also the twilight duration; the course of the external phase
relationship (depending on the season), as computed for nocturnal behavior, is
therefore not simply a reflection of that for diurnal behavior. On the basis of
data for LD ratio and twilight duration from 45 degrees of latitude, computa-
tions for diurnal behavior result in a marked early phase in midsummer and a
consistently late phase for nearly half a year during winter. Computations for
nocturnal behavior result in two moderate but nearly equal phase advances in
midsummer and midwinter and, correspondingly, late phases in spring and fall
(30).

The Masking Effect

Under the influence of a forcing oscillation, or a Zeitgeber, with varying
parameters, the rhythm changes its wave shape. This is especially obvious in
Figs. 10- 14 with a stronger Zeitgeber. These changes in wave shape are due in
part to a phenomenon that is caused by the cooperation of time derivatives of
the external force (vide supra). If solutions of equation 7 are considered where
the rhythm and Zeitgeber are considerably out of phase, it suggests that the
rhythm would be composed of two components: an endogenous component of a
shape not unlike the sinusoidal shape and an exogenous component that runs
directly parallel to the Zeitgeber. Of course, the solution of equation 7 describes
a homogeneous rhythm, and the two components are inherently inseparable.
However, with a very rough approximation, the solution of equation 7 can be
separated into two components by splitting the equation:

yj + 0.5(y I+y- 3). 1 + (1 + 0.6y)y, i + (7a)

Y2 + 0.6y 2 = z - Y (7b)

In these equations, F is the mean level of the external force. In this system, Yj as
the solution of equation 7a will describe the endogenous component, and Y2 in
the solution of equation 7b will describe the exogenous component: y = yi + Y2
then describes the combined rhythm.

A "masking effect" has frequently been observed in circadian experiments
(1,49). This term describes a course of the observed variable (e.g., locomotor
activity) that reflects directly changes in the Zeitgeber (e.g., light intensity). For
instance, in a diurnal organism, introducing light during the organism's natural
nighttime can evoke a burst in locomotor activity at a phase where the organism
should be at rest; similarly, enforcing darkness during its "day" can block
locomotor activity. This masking effect is especially obvious when the
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locomotor-activity rhythm and the light-dark cycle have different periods; it
then tends to superimpose itself over the organism's "true" clock rhythm.

It is a reasonable assumption to set the apparent superimposition of
endogenous and exogenous rhythm components described by equation 7 as
analogous to the apparent combination of the "true" rhythm with a masking
effect. In fact, the similarities are striking. If the biological rhythm is considered
as being composed of two components (with and without using the clock),
instead of being a uniform system, the mathematical equivalent will be the
system of equations 7a and 7b. The solutions of equation 7 and the sums of the
solutions of equations 7a and 7b are similar, but they differ in several details.
For instance, the feedback is controlled by y in equation 7 but by y, in equation
7a, i.e., only by one of the two components constituting y. Moreover, the
contribution of the second time derivative of the external force is missed in
equation 7a and, hence, the influence of the twilight duration on the rhythm
(Fig. 14) is different in the two alternatives. More important, according to
equation 7 the degree of the masking effect depends on the movability of the
system, which is a function of its elevation. The movability is highest with
medium elevations, where the "friction" is smallest (vide supra); consequently,
the masking effect is largest with medium elevations, i.e., around the turning
points of the oscillation. The movability (and hence the masking effect) is
smallest around the maximum and minimum values of the oscillation. On the
other hand, according to the combined system described by equations 7a and
7b, the amount of the masking effect is independent of the phase of the rhythm/ where it occurs.

( The masking effect, according to experimental evidence, seems to be phase-
dependent, with maximum values around the turning points and minimum
values around the extremes of the oscillation (6). This means that the masking
effect actually seems to be an inherent property of the "clock system," therefore
using the same physiological pathways as the rhythm itself. The alternative
explanation-a separate pathway of the masking effect bypassing the clock, as
expressed in equations 7a and 7b-must be rejected. The masking effect can
therefore be stated as the direct and obvious reflection of a Zeitgeber. Certainly
the masking effect is by no means restricted to self-sustaining oscillations; it is
also present outside the oscillatory range where the system is not self-sustaining
but is capable of exerting forced oscillations.

Borderline Cases of Entrainment

Self-sustaining oscillations can be synchronized by external periodicities only
within limited ranges of entrainment. Inside these ranges they are synchronized
to a forcing oscillation; outside these ranges they maintain their own endog-
enous period, in spite of the presence of the forcing oscillation. Consequently,
the transition from inside to outside the oscillatory range results in a
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considerable change in the measurable period of the rhythm. The change in
period, however, should not be considered an abrupt alteration between two
constant period values; rather, close to the limits of the range of entrainment,
special phenomena occur that manifest themselves in the regular modulations in
phase and amplitude of the rhythm. Because these phenomena are general
properties of all self-sustaining rhythms, they can be verified with the original
Van der Pol equation; to simplify matters, therefore, the following demon-
strations are calculated as solutions of equation 2.

Outside the range of entrainment, the energy exchange between Zeitgeber
and oscillating system (vide supra) is not sufficient to synchronize their
periodicities. This interaction leads to relative coordination (12) that is more
pronounced as the period approaches the limit of the range of entrainment.
Relative coordination means that, in fact, all phase-angle differences between
rhythm and Zeitgeber occur successively but are not equally distributed. When
the period is closest to that of the Zeitgeber, the amplitude of the rhythm is
maximal; it is minimal at the opposite phase, when the period deviates most
from the Zeitgeber period. Figure 15 presents two examples of relative
coordination. The left diagram shows the solution of equation 2 with e = 0.2,
with a Zeitgeber period slightly shorter than the lower limit of the range of
entrainment; the right diagram shows a rhythm with E = 5 under the influence of
a Zeitgeber whose period is slightly longer than the upper entrainment limit.
Figure 15 shows that the phenomenon of relative coordination is independent of
the type of the self-sustaining rhythm (39).

Inside the range of entrainment, but close to its limits, a regular modulation of
period and amplitude can occur. Figure 16 shows two examples of "relative
entrainment" (39). Here, the phase-angle difference between rhythm and
Zeitgeber fluctuates, but covering only a part of the full cycle; in the left
diagram, no less than 1800 are covered, and in the right diagram 650. Again, the
Zeitgeber period is, in the left diagram, close to the lower limit and, in the right
diagram, close to the upper limit of the range of entrainment. In both examples
the rhythm seems to free-run for several cycles, but with continuous reduction in
its amplitude; then it returns to its original phase within one or two cycles,
while the amplitude increases again. In the left diagram, the amplitude is
reduced to such a degree that it is difficult to differentiate whether the phase
jumps forward or backward, or to distinguish between relative entrainment and
relative coordination; in the example shown at the right, however, there is no
doubt about its classification. Finally, there are borderline cases between
relative and absolute entrainment. The right diagram of Fig. 17 shows, for
comparison, the normal type of absolute entrainment; after a phase shift of the
Zeitgeber, the phase of the rhythm adjusts to its original phase aperiodically, or
asymptotically. In the left diagram the rhythm adjusts, after the same phase
shift, periodically fluctuating to its steady-state phase, i.e., the phase adapts in
the course of a damped oscillation. There are important differences between
these two examples; at the right, the period of the Zeitgeber is close to the
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FIG. 15. Two solutions of equation 2 under the influence of a rectangular forcing
Zeitgeber, with periods just outside of the range of entrainment. Left: E = 0.2; period
of the Zeitgeber shorter than the lower entrainment limit. RIght: e = 5; period of the
Zeitgeber longer than the upper entrainment limit. The dotted line combinescorresponding phases of successive cycles. (From Waver, ref. 39, with permission.
Copyright: Academic Press Inc., London, Ltd.)

middle of the range of entrainment, whereas at the left, it is close to the upper
limit of this range. It is another consequence of this difference in the Zeitgeber
period that the final phase relationship between generated rhythm and Zeitgeber
differs, in the two diagrams, about 900.

The borderline cases of entrainment, as shown in Figs. 15-17, can be
observed in all self-sustaining oscillations; for instance, they are present in
solutions of equation 7 as well as those of the simple equation 2. Therefore, the
mere existence of the phenomena just described tells little about the underlying
equation except that it describes self-sustaining oscillations. There is only a
weak dependence on the coefficient e: The larger e, the smaller is the range of
Zeitgeber periods where these phenomena occur. Moreover, the same phenom-
ena occur when a limit of the range of entrainment is transgressed not because
of a change in the Zeitgeber period (or, with fixed Zeitgeber period, because of a
change in the intrinsic period of the oscillation) but because of a change in the
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FIG. 16. Two solutions of equation 2 under the influence of a rectangular forcing
Zeitgeber, with periods just inside of the range of entrainment; e = 0.2. Left: Period
very close to the lower entrainment limit. Right: Period close to the upper entrain-
ment limit. The doffed lines combine corresponding phases of successive cycles.
(From Wever, ref. 39, with permission. Copyright: Academic Press Inc., London,
Ltd.)

amplitude of the Zeitgeber, or its "strength"; also in this case, the limits of the
range of entrainment shift relative to the period of the oscillation. Further details
of the borderline cases mentioned are given elsewhere (39).

Influence of Self-Sustainment

Phenomena near the limits of the range of entrainment have been considered
where self-sustainment of the rhythms has been a precondition; only self-
sustaining rhythms have finite limits of entrainment. On the other hand,
rules derived from the numerous solutions with varying Zeitgeber parameters
are valid, as well with rhythms that are not self-sustaining but are capable of
damped oscillations. In fact, many properties as observed under the influence of
a Zeitgeber are very similar to self-sustaining and non-self-sustaining rhythms;
this is true, for instance, for the three rules determining the rhythm's phase (vide
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FIG. 17. Two solutions of equation 2 under the influence of a rectangular forcing
Zeitgeber, with periods inside of the range of entrainment; e = 0.2. Left: Period close
to the upper entrainment limit. Right: Period in the middle of the range of
entrainment. In both diagrams, the Zeitgeber had been phase-shifted for 90o at day 0.
The dotted lines combine corresponding phases of successive cycles. (From Wever,
ref. 39, with permission. Copyright: Academic Press Inc., London, Ltd.)

supra). The precondition for fulfilling the mentioned rules is that the system be
within the range of periodic adaptation. Outside this range, a system can react
only passively to changes in external forces; consequently, in heteronomous
rhythms the larger range of periodic adaptation is more important than the
smaller oscillatory range. In autonomous rhythms, however, the latter range is
more important, because it is only within this oscillatory range that the system
maintains a self-sustaining oscillation, whereas it comes to rest outside this
range.

Figure 18 shows the behavior of a rhythm (as the solution of equation 7)
under the influence of a wide range of external forces. On the left, the behavior
under the influence of a Zeitgeber is shown. As can be seen, there are steady
transitions in phase relationship, amplitude, and wave shape as long as the
system is inside the range of periodic adaptation; only after leaving this range
(uppermost diagram) does the behavior alter considerably. At the right side of
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~FIG. 18. Solutions of the model equation 7 with six different external forces z
(increasing from bottom to top), at left under the influence of a 24-hr Zeitgeber
(Az--+±0.5) and at right under constant external forces, with transient states in
between. At the right border, the revelant ranges of z values are indicated. (From
Wever, ref. 50, with permission.)

Fig. 18, the behavior of the same rhythm under constant conditions is shown.
Evidently, the range of periodic adaptation is without relevance (at least, after
the transients), and only the oscillatory range is important In between both
heteronomous and autonomous rhythm states, transient states are demon-
strated; they last longest as the rhythm approaches the limits of the oscillatory
range. Of course, Fig. 18 covers only a part of the possible external forces z.
With further decreasing external forces, the other limit of the oscillatory range
(and then that of the range of periodic adaptation) is transgressed until,
eventually, with very low z values, a range of aperiodic reactions to external
stimuli is again reached.

It is sometimes overlooked that most circadian experiments are performed
within a range of experimental conditions that is relatively small in comparison
with the range of external conditions present in the natural environment This is
partly due to the fact that in larger ranges of constant experimental conditions
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(e.g., when the intensity of illumination is too high or the ambient temperature is
too low), most organisms become arrhythmic-conditions that are frequently
stated to be "insufficient" for circadian experiments. However, it has been
shown that even under the latter conditions, circadian rhythms are present when
the conditions vary periodically, in which case all properties of the synchro-
nized rhythms correspond to properties observable under conditions where the
rhythms free-run (50). As shown in Fig. 18, these conditions must correspond
to external forces inside the range of periodic adaptation but outside the
oscillatory range.

Considering only the behavior of the system inside the smaller oscillatory
range, the circadian system has been described as an "oscillator." Considera-
tion of the whole range of conditions where circadian phenomena can be
observed, which includes the larger range of periodic adaptation, leads rather to
the description of it as a "resonance amplifier" (50). In fact, this amplifier be-
comes "overmodulated" in a certain range of conditions (the oscillatory range)
where it initiates a self-sustaining oscillation; however, it holds its amplification
capacity within a much larger range. The mathematical basis of this system is
the active reduction of the "net damping" by a feedback mechanism, expressed
in the negative value of a in equation 6, or the term "-3" in equation 7. Within
certain ranges of external forces this mechanism overcompensates the positive
damping due to "friction," with the result of self-sustainment. In larger ranges,
however, the feedback mechanism reduces the net damping to the extent that
the system remains capable of oscillating under the influence of periodically
varying external conditions, in spite of relatively high "friction." Without the
feedback mechanism in operation (i.e., with a = 0), the system would react
periodically only in a relatively small range (and even then only with e values
smaller than unity).

Zeitgeber Phase Shifts

In the previously presented solutions of equation 7 describing heteronomous
rhythms, the Zeitgeber was always temporally constant, and the rhythm was
always shown in the steady state; only in the borderline cases of entrainment
was there no steady state, but rather regular fluctuations. However, it is of
special interest to see in what way a steady state is reached-specifically, to
look for the transients. A particularly appropriate and reliable way to do so is to
look for the behavior of the rhythm following a phase shift of the Zeitgeber (28),
which may also be of practical interest (53). In the following, therefore, solu-
tions of equation 7 are presented based on a phase shift of the Zeitgeber; in all
computations, the mean level of the Zeitgeber is = 2.1, and unless otherwise
stated, its range is Az = ±0.2.

At first, solutions with phase shifts of the synchronizing Zeitgeber for 6 hr are
computed. Figure 19 shows some different possibilities. Columns A and C show
6-hr delays, and columns B and D show 6-hr advances; in columns A and B

lot,,
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FIG. 19. Solutions of the model equation 7 under the Influence of a 24-hr Zeitgeber,
the phase of which Is shifted for 6 hr at the third day. In particular, equation 7 is
modified by a "frequency coefficient," resulting in five different intrinsic periods r.
The phase of the Zeitgeber is shifted by lengthening a single "light time" for 6 hr
(column A) or shortening it for 6 hr (column 9), or by lengthening a single "dark time"

~for 6 hr (column C) or shortening it for 6 hr (column D). Successive "activity episodes!'

are Indicated by bars, drawn one beneath the other. Marks at the bars: maximum
values of the oscillation. (From Wever, ref. 28, with permission. Copyright: Academic
Press Inc., London, Ltd.)

once a "light time" had been altered, and in columns C and D once a "dark
time." Deviating from the previous computations, a coefficient of frequency is
added in equation 7 and set so that the autonomous rhythms have periods of
exactly 22, 23, 24, 25, and 26 hr, it is therefore possible to study the influence
of the intrinsic period r on the reentrainment behavior (the Zeitlgeber always
has a period of 24.0 hr). In Figl. 19, the bars indicate activity time (oscillating
variable above the threshold at y - 1), and the marks at the bars indicate the
maxima of the rhythms. At first glance, reentranment is not symmetric
following delays and advances. With the 24-hr rhythm, the duration of
reentrainment is clearly shorter after 6-hr advances than after 6-hr delays, in
spite of a coincidence in the periods of rhythm and Zeitgeber, only with the 25-
hr rhythm are the durations equivalent. The delaying phase shifts are always
answered by regular reentrainment: The duration of reentrainment decreases
steadily with increasing intrinsic period of the rhythm. In contrast, reentrain-
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ment after advancing phase shifts is not so regular: The duration of reentrain-
ment is shortest with medium intrinsic periods, and it increases with changes in
the period of the rhythm; with the slowest rhythm, advancing shifts are
answered by an overshooting reentrainment. When the intrinsic period is still
slower (r = 27 hr), the 6-hr advancing Zeitgeber shifts are accompanied by 18-
hr delays of the rhythm; delaying Zeitgeber shifts does not result in comparable
behavior change. Finally, reentrainment is expedited in all cases when the
Zeitgeber shift is released by a single alteration of a dark time instead of a light
time.

To describe the irregular reentrainment behavior after advancing Zeitgeber
shifts, Fig. 20 presents longitudinally the courses of the rhythms from column B
in Fig. 19. Here, particularly with the 26-hr rhythm, the amplitude is drastically
reduced for some cycles following the Zeitgeber shift. It has been shown that a
temporary reduction of the amplitude below its steady-state value speeds up the
rhythm during the transient state (22). This indicates that the duration of
reentrainment is shortened after advancing shifts and lengthened after delaying
phase shifts when the amplitude of the rhythm is reduced during reentrainment
(53). In general, a closer inspection of the reentrainment with regard to wave
shape shows that during reentrainment the rhythms are significantly altered.
The result is, in general, faster reentrainment of "end of activity" than of
"activity onset" and faster reentrainment of the minima than of the maxima.

FIG. 20. Solutions of the model equation 7 under the influence of a 24-hr Zeltgeber,
the phase of which is advanced for B hr at the second day by shortening a single
light time" for 6 hr (cf. column B in FIg. 19). In particular, equation 7 is modified by a
4frequency coefficient," resulting In five different Intrinsic periods r. The courses of
the oscillations are presented for six successive cycles. (From Wever, ref. 28, with
permission. Copyright: Academic Press lncu, London, Ltd.)
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Zeitgeber shifts of other varying degrees have also been examined. With
advancing Zeitgeber shifts, the probability of reentrainment via the longer
pathway is greater the larger the Zeitgeber shift. Consequently, 12-hr phase
shifts of the Zeitgeber are always responded to by delays of the 24-hr rhythm,
whether the Zeitgeber shift occurs by doubling a light time or a dark time (Fig.
21). The same Zeitgeber shifts are always responded to by phase advances of
the 22-hr rhythm; with the 23-hr rhythm, the amplitude is reduced after the 12-
hr Zeitgeber shift to such an amount that the interpretation is ambiguous.

All computations discussed thus far have been computed with the same
Zeitgeber of medium strength; there remains the influence of the strength of the
Zeitgeber. Figure 21 shows two solutions with a 24-hr rhythm and a 12-hr
phase shift of the Zeitgeber (by a doubling of light time) with a common
Zeitgeber and a Zeitgeber 2.5 times stronger. As can be seen, reentrainment is
obviously faster with the stronger Zeitgeber than with the weaker Zeitgeber.
Also, in the diagram with the stronger Zeitgeber the influence of the "masking
effect" (vide supra) is particularly obvious. Shortly before the 12-hr-delayed
"lights off'" the system becomes active by passing the threshold; the im-
mediately following "lights off" forces down the variable by masking (and hence
blocking the activity) to such an extent that it transgresses the threshold again
only about 6 hr later. Similar results concerning the influence of the strength of
the Zeitgeber can be observed experimentally with all other Zeitgeber shifts.
More details of these computations are given elsewhere (28).

Influence of Random Fluctuations

The deterministic model is not realistic for heteronomous rhythms, just as
little as for autonomous rhythms; circadian rhythms are, in addition, influenced
by random noise when under the influence of a synchronizing Zeitgeber.
However, with heteronomous rhythms, the number of meaningful predictions is

FIG. 21. Solutions of the model equation 7 under the influence of a 24-hr Zeitgeber,
the phase of which is delayed for 12 hr at the second day by doubling a single "light
time." in particular, equation 7 Is modified by a "frequency coefficient," so that the
intrinsic period is 24 hr. In the two solutions presented, the strengths or the ranges of
the Zeitgeber are different. The courses of the oscillations are presented for six
successive cycles. (From Wever, ref. 28, with permission. Copyright: Academic Press
Inc., London, Ltd.)
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already great when refraining from the additional influence of such stimuli. In
the interest of brevity, only some of the possible indications will be given; they
concern effects where the influence of superimposed random noise deviates
from that with autonomous rhythms (vide supra) and where it qualitatively
changes the properties of heteronomous rhythms, as discussed in the previous
sections.

In heteronomous rhythms, long-term stability is controlled by the Zeitgeber
(which has, at least in laboratory experiments, no variability in itself). Those
rhythms show, therefore, a negative serial correlation. It is for this reason that
serial correlations tell little, if anything, about the mechanisms of generating the
rhythms as they do in autonomous rhythms (vide supra).

A rhythm that is synchronized to a Zeitgeber with a period close to an
entrainment limit and is superimposed, in addition, by random fluctuations may
transgress this limit spontaneously because of an accidental elevation of
excessive amount. The result is a rhythm that is no longer synchronized to the
Zeitgeber. In this case (leaving the range of entrainment), the entrainment limit
is defined by the larger "range of holding" (vide supra). However, for
spontaneous resynchronization (reentering the range of entrainment), the
smaller "range of catching" will be applicable; here the entrainment limit for
spontaneous resynchronization is shifted closer to the intrinsic period of the
rhythm. Therefore, spontaneous resynchronization would need another acci-
dental elevation of a larger amount and would therefore be more improbable
than spontaneous desynchronization. In summary, it is probable that a
previously synchronized rhythm spontaneously loses its synchrony to the/Zeitgeber rather than becoming spontaneously resynchronized by the same
Zeitgeber.

The range of periods where spontaneously external desynchronization can
occur as a consequence of random fluctuations is similar to that range where the
borderline cases of entrainment occur (vide supra). This means that the latter
range can be overcome when random fluctuations are especially large; in this
range, the borderline cases cannot occur, and they are therefore restricted to
rhythms with relatively small variability. Because the range where the
borderline cases can occur becomes smaller with increasing values of e (vide
supra) the probability for the occurrence of the borderline cases decreases with
increasing e values of the constituting equation.

Phase Response Curves

Solutions of equation 7 have been computed describing undisturbed auton-
omous and heteronomous rhythms. Of interest also is the behavior of an
autonomously running rhythm after exposure to single perturbations. Every
temporary change in the external force, or every "stimulus" that synchronizes
the rhythm when given periodically, is capable of phase-shifting the rhythm. It is
the expression of the phase-control mechanism on which the synchronization is
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FIG. 22. Solutions of the model equation 7 under the influence of solitary "light
pulses" (increase of z for Az= 2, lasting for 2 hr). In the upper diagram, the
undisturbed oscillation with z = 1.1 is presented for comparison. In the lower
diagrams, the courses of the oscillation are presented with the single "light pulse" at
14 different phases of the oscillation. The dotted lines combine "activity onset" in the
different oscillations that are differently phase-shifted by the single perturbations("phase response curves"). (From Wever, ref. 25, with permission.)

based that a phase shift released by the stimulus depends in amount (and mostly
also in direction) on the phase of the rhythm hit by the stimulus (20). In
circadian experiments, phase response curves have indicated that the released
phase shifts are a function of the phase of the releasing stimulus. In the
following, corresponding computations based on equation 7 are presented.

Figure 22 demonstrates the generation of a phase response curve. The same
autonomous rhythm (z = 1.1) is pushed by a solitary increase of z (Az = 2)
lasting 2 hr, repeated successively 14 times at different phases. As can be seen,
the single perturbation causes, at several phases, a delay of the rhythm and, at
other phases, an advance; simultaneously, the amplitude of the rhythm is partly
increased and partly decreased because of the stimulus. If the stimulus hits the
rhythm shortly before activity onset, the first cycle following the stimulus is
advanced, but after the transients fade, the rhythm is delayed relative to the
control (uppermost diagram). As a rule, when the stimulus effects an increase in
amplitude, the transients cause an additional delay, and when the stimulus
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effects a decrease in amplitude, the transients cause an additional advance of
the rhythm; only when the amplitude is not affected at all will there be an
absence of transients in the resulting phase shift. As a result, the direction and
amount of the phase shifts of the rhythm depend on the phase of the rhythm hit
by the stimulus; different phase response curves result when the phase shifts are
measured either immediately after the stimulus or in the steady state several
cycles later.

The phase response curve, in total, depends primarily on the initial state of
the rhythm. Figure 23 shows phase response curves (dotted lines, measured
immediately following the stimulus; solid lines, measured in the steady state),
measured with the same stimulus, in rhythms with three different constant levels
of z (the left diagram originates from Fig. 22). The rhythm with the medium
level, which has the largest amplitude and is least sensitive against perturbations
(Fig. 9), shows the phase response curve with the smallest amplitude and the
most sinusoidal shape. Moreover, the phase response curve is dependent on the
parameters of the stimulus. Figure 24 shows phase response curves measured in
the same rhythm (with z = 2. 1) but with stimuli of varying duration (above) and
intensity (below). In summary, the stronger the stimulus (in the duration and/or
intensity), the larger is the amplitude of the generated phase response curve, and
the more its shape deviates from the sinusoidal and tends to be sawtooth; with
very strong stimuli, the range of the curve covers a full cycle, and at a certain
phase it is ambiguous whether there is a phase delay or a phase advance.

From a phase response curve, some general statements can be made about
the ability of the rhythm to become synchronized by corresponding periodic

4/ stimuli. For example, the amplitude of the phase response curve is positively
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FIG. 23. Solutions of the model equation 7. Phase response curves (upper diagrams)
computed according to Fig. 22, from oscillations with three different initial conditions
(I values; lower diagrams, for comparison) but with Identical stimuli. Solid lines,
phase response curves measured many cycles after the perturbations (in the steady
state). Dotted lines, phase response curves measured within the first cycle after the
perturbations. (From Wever, ref. 25, with permission.)
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correlated to tJe width of the range of entrainment (26). Or, the slope of the
response curve at a certain phase indicates the mode of synchronization at this
phase: with a slope less than 1, aperiodic adaptation to a steady state in the
phase relationship is described; with a slope between I and 2, alternating but
fading phase-angle differences are described; with a slope greater than 2, a
steady state in the phase relationship cannot be realized (22).

These general statements are based on the fact that phase response curves
and synchronization are both expressions of the phase-control ability of
external forces. Special statements have also been made concerning phase
response curves. The assumption is that from the phase response curve of an
organism (as measured in the manner demonstrated in Fig. 22), one can
compute phase-angle differences of circadian rhythms of the same organism to a
stimulus given periodically. This assumption is based on two preconditions: (a)
the phase response curve that is valid under the influence of a Zeitgeber is
identical with that measured under constant conditions (as in Fig. 22), or can be
derived by rules to be stated from the measured curve. (b) Preconditions
concerning phase relationship with a special organism fit better when computed
from a phase response curve of the same organism (or at least the same species)
than when computed from any other phase response curve. The second
precondition has been demonstrated only in special cases among very different
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species. The first precondition can be shown to be doubtful on the basis of
computations just discussed.

Phase response curves can be measured directly, not only under constant
conditions but also under varying conditions (2). When doing so under the
influence of a Zeitgeber, the most efficient method is to use a Zeitgeber outside
the range of entrainment, hence producing relative coordination (vide supra).
Figure 25 presents a population of computed phase response curves that are all
based on the same rhythm (upper panel) and that are all computed with the
same periodic alternation of the external force, but with slightly varying
Zeitgeber periods. The solid lines represent computations with Zeitgeber
periods outside the range of entrainment where relative coordination occurs; the
dotted line comes from a Zeitgeber period inside the range of entrainment
(computed during reentrainment after Zeitgeber shifts). It is obvious that all
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FIG. 25. Solutions of equation 2. Phase response curves from Identical oscillations
(upper diagram), computed under the Influence of Zeitgebers with Identical strengths
but different periods laccording to Aschoff (2), type IV]. Solid lines, Computed with
Zeitgeber periods outside the range of entrainment (i.e., In the state of "relative
coordInation"). Dotted line, Computed with a Zeitgeber period In the middle of the
range of entrainment after phase shifts of the Zeltgeber. (From Wever, ref. 39, with
permission. Copyright: Academic Press Inc., London, Ltd.)
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phase response curves differ considerably in amplitude, wave shape, and mean
value; the differences between the individual curves are greater than differences
in phase response curves when based on different rhythms (39). The width of
the range of entrainment cannot be derived, as there is only one range of
entrainment but many different ranges of phase response curves. The reason for
the great differences within the population of phase response curves, measured
with the same original rhythm and released by the same external stimulus, is the
differential change in the rhythm's amplitude under the influence of these
stimuli. All parameters of a phase response curve depend strongly on the
amplitude of the original rhythm. And during the course of relative coordina-
tion, the amplitude of the original rhythm varies considerably (cf. Fig. 15) and
very differently with different Zeitgeber periods.

SOLUTIONS OF EXTENDED MODEL EQUATIONS

Systems of Coupled Oscillators

A system consisting of two or more mutually coupled oscillators has a great
degree of freedom and hence is capable of describing much more specific details
of circadian rhythmicity than a single oscillator. Every additional degree of
freedom reveals a great variety of possibilities in describing additional
properties, Only to avoid ambiguities have the possibilities of a one-oscillator
model been stressed in the preceding sections; this does not mean that
multioscillator models should be neglected. Sufficient experimental evidence
demands recognition of the multioscillator system (47).

Undoubtedly, every detail that can be described by one oscillator can be
described as well by a two-oscillator or even a multioscillator system. The
relevant question becomes how complicated details can also be described by a
simple one-oscillator model having only one degree of freedom. Starting with
the more complicated model raises the possibility of overlooking essential
features of the simple model that, while being essential parts of the complicated
model, cannot be studied reliably when only the complicated model is
considered. It is therefore only after all possibilities of the one-oscillator model
have been exhausted that, in a subsequent step, two or even more mutually
coupled oscillators should be studied.

Out of the variety of solutions, which is much greater in the complex model
than in the simple model, only some few examples, according to extensions of
the simple model equation of the second order, will be presented. Much more
than in previous discussions, the solutions cannot be complete; they can only
suggest the directions in which the referred model extensions will lead. With this,
of course, the rule is violated that the number of predictions deduced from the
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solutions must be greater for several orders of magnitude than the number of
preconditions put into the modeling process.

Third-Order Systems

In circadian rhythms of many organisms, a bimodal or even a multimodal
wave shape is observed, rather than a monomodal one (4). Such shapes cannot,
in principle, be described by an equation of the second order. Preceding the
application of a multioscillator system, which is defined by the cooperation of at
least two self-sustaining oscillators, the possibilities of the more simple
extension to the third order should be evaluated. In Fig. 5, the most simple case
of a self-sustaining oscillation of the third order (extended Van der Pol
equation) has been shown. It shows the characteristics of the third-order
supplementation; these characteristics maintain when the more appropriate
equation 6 is supplemented by a corresponding term. It is characteristic that
with a large enough e value, the monomodal shape of the rhythm is exchanged
for a multimodal shape. In general, the primary rhythm is superimposed by a
secondary rhythm that has a higher frequency, where it is not capable of
persisting self-sustainingly but damps out; the secondary rhythm starts
oscillating only after it is pushed by the primary rhythm, and that is stronger the
steeper the slope of the primary rhythm. In particular, this means in the case of
e = 1 (an appropriate approximation to biological results), that the shape is
bimodal; with increasing external force (with shortening period), it alters from/an "alternans" (secondary maximum preceding the primary) to a "bigeminus"
(secondary maximum lagging behind the primary) (3).

Revised solutions to equation 8 are presented in Fig. 26 (slightly modified by
a nonlinear restoring force) in the form of a multiple "actogram," as results from
animal experiments are mostly presented; it shows the transient behavior of an
activity-rest rhythm during a decrease of the external force (analogue to a
decrease in light intensity). At day 10, the "activity episode" splits into two
components. The stronger primary component holds its general pattern during
the whole course; even before the split, the activity episode shows a bimodal
pattern, with the higher peak at its beginning. The secondary component
becomes smaller and smaller until it eventually disappears; it moves steadily
away from its original primary component and gradually approaches the
primary component of the following cycle. Consequently, the intervals between
successive secondary components are, from its occurrence until its dis-
appearance, consistently longer than the intervals between successive primary
components because of the transiential change in the wave shape. With slight
modifications of the coefficients, particularly an enlargement of e, the originally
uniform activity episode splits into three or more components (Fig. 5, with
e = 10); the general course of the then multiply split rhythm is similar to that
shown in Fig. 26.

X
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FIG. 26. Solutions of equation 8 (with e 1, and modified by slightly nonlinear
restoring force) with a slight decrease in the external force. From the oscillation, only
the "activity episodes" (above a threshold at y = 0) are drawn in the manner of
biological data (quadruple plot).

Figure 26 resembles a phenomenon frequently observed in animal ex-
periments, i.e., the "splitting" phenomenon. Either spontaneously or after
changes in light intensity, a freerunning activity-rest rhythm splits into two (or
more, in rarer cases) activity components, with a simultaneous change in the
overall period (10,11,13,14,16). After the splitting of the activity episode, the
different components shift apart from each other, but never more than 1800. In
the final steady state, therefore, the different components are synchronized writh
a constant mutual phase relationship. Consequently, these components show
different intervals between successive cycles during the transient state (as they
do in Fig. 26); if the precision of the rhythm is sufficiently high, the difference in
intervals may be statistically significant. Correct period analyses do not result in
separable periods; it would therefore be misleading to speak of different periods
to be measured from the different components. The pitfall in the apparent
estimation of a period is not readily obvious as it is in the comparable
mathematical computation (Fig. 26). Its estimation would be based on
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misapplication of statistics and on an inadequate definition of a period, similar
to the error in period estimation mentioned in the context of Fig. 8. Extensive
demonstration of both these cases should prevent incorrect conclusions being
drawn from faulty analyses.

The diversity of possible solutions for model equations of the third order
increases considerably with additional variations of the coefficient; then, the
ratios in both period and amplitude of the primary and secondary components of
the bimodal or multimodal rhythm vary (22). With further variations in other
coefficients of equation 8, numerous phenomena can be described that are
frequently coordinated to multioscillator systems. However, a third-order
equation cannot generate a rhythm with two (or more) separate periods within
the circadian range. Third-order systems should be classified, therefore, as one-
oscillator systems.

Fourth -Order Systems

There have been experiments with humans clearly demonstrating the
persistence of two or more steady-state oscillators with different periods, hence
shifting apart from each other for multiples of 360' (47). To describe these
results, both the simple equation 7 and the third-order equation 8 are
insufficient; here, two (or more) separately self-sustaining oscillators have to be
accepted that are mutually coupled; therefore, the system of equation 9 must be
applied.

In order to reasonably restrict the number of free parameters in equation 9,
ratios between the various coefficients will be determined from results of human/ experiments. With an iterative process, then, the application of these ratios will
be tested with regard to their agreement with results of diverse experiments.
Again, it is remarkable that consideration of but a few different complementary
experimental results leads to the determination of such ratios. In this way, the
establishment of an appropriate system of equations yields a reduction in the
degrees of freedom.

In the case of spontaneous internal desynchronization, the periods of different
overt rhythms shift in opposite directions, with a ratio of change always close to
1: 12. Of course, the precondition for the occurrence of internal desynchroni-
zation is different intrinsic periods (or coefficients of frequency w~) of the two
rhythms. The differential change in periods, however, can be described in
alternative ways, with additional consequences. First, assuming corresponding
different coupling coefficients c, the intrinsic amplitudes (or the coefficients a)
will then be equal in both rhythms. Alternatively, equal coupling coefficients
will lead to differing intrinsic amplitudes. With regard to the periods, both
alternatives are compatible with biological results as well. Therefore, additional
types of experiments must be considered in examining additional aspects of
rhythms.

With a synchronizing external Zeitgeber, the external force either can affect

lot 
le



66 MATHEMATICAL MODEL OF CIRCADIAN RHYTHMS

only one of the underlying oscillators (i.e., the "sleep-wake oscillator") or can
affect both simultaneously. In the first case, the Zeitgeber will affect another
oscillator (i.e., the "temperature oscillator") only indirectly, via the first
oscillator. This assumption will necessarily lead to a correlation between the
combined periods of the two rhythms and their mutual phase relationship, which
is independent of the presence of a synchronizing Zeitgeber. In fact, human
circadian rhythms consistently show a change in internal phase relationship
when the period of a synchronizing Zeilgeber changes; on the other hand, a
constant internal phase relationship i, ahown when the period changes under
constant conditions (43). Therefore, these results do not agree with the
necessary consequences of the first assumption. However, they are in
agreement with the second assumption when the intrinsic amplitudes of the two
rhythms are assumed to be different. Consequently, one can now discriminate
between these alternatives concerning the opposite changes in period during
spontaneous internal desynchronization.

Simultaneous consideration of both types of experiments leads to an
unambiguous conclusion: In the two subequations of the system (equation 9),
the right sides are equivalent; the environmental stimuli z, as well as the
coupling coefficients c, are identical (or nearly identical). Apart from the
frequency coefficients, the amplitude coefficients a must be larger in the
"temperature oscillator" than in the "activity oscillator." Moreover, the
coefficient of damping increment e is set slightly larger in the "activity
oscillator" (e % 2) than the common value of e = 0.5. The consequence of this
selection of coefficient ratios is that they may be tested independently, under
conditions where subjects are exposed to competing external stimuli of different
modes, operating with different temporal schedules (49).

Figure 27 shows a solution of equation 9 where the two oscillations are
presented separately. Because both oscillations are self-sustaining, the mutual
interaction leads to mutual synchronization only within limited ranges of
periods, similar to the effect of a Zeitgeber. In this special case, the two
coefficients of frequency deviate from each other to such a degree that they are
close to the mutual entrainment limit. In the upper diagram, both oscillations
are synchronized. After 14 days, a small decrease in their amplitudes (a) leads
to drastic alterations in periods, which no longer coincide (lower diagram). This
decrease in amplitude and therefore in the mutual interaction is sufficient to
deviate from the mutual range of entrainment. If the system were to be affected
by random noise, there would be a great probability that the system would
deviate from the mutual entrainment limit and become internally desynchro-
nized. This behavior would be analogous to that of a single rhythm under the
influence of a Zeitgeber with a period close to the entrainment limit (vide
supra). Again, it would be unlikely that the internally desynchronized system
would resynchronize spontaneously, as a consequence of another excessive
random fluctuation, because of the difference in the ranges of holding and
catching a rhythm (vide supra).

t
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FIG. 27. Solutions of equation 9 computed with el < e2, 81 > a2, W1 > W'2, and
C1 = c2 . The courses of the two suboscillations are drawn separately; the course of
the type II oscillation is divided by a threshold in "activity" (hatched areas) and "rest."
Top: both oscillations run in synchrony. Bottom: both a values are slightly decreased,
and the oscillations do not run in synchrony.

In several respects, the separate rhythms in Fig. 27 behave as if under the
influence of a Zeitgeber. In fact, there is no external Zeitgeber; however, each
rhythm affects the other as an "internal Zeitgeber." Inside the mutual range of
entrainment, the internal phase relationship between the two rhythms depends
on the ratio between the intrinsic periods of the two rhythms (vide supra).
Outside the mutual range of entrainment, the rhythms show the phenomenon of
"internal relative coordination" (32) (vide supra), as expressed in the
scalloping patterns of their phases; this is especially obvious in Fig. 28, where
the same data are presented in a manner commonly used in human circadian
rhythms. In special cases, even "internal relative entrainment" can be observed;
this state presupposes sufficient differences in the amplitudes of the different
rhythms. Moreover, as synchronization by an external Zeitgeber via phase-
control is another expression for the existence of a "phase response curve"
against the external stimulus under consideration (vide supra), mutual
synchronization among different rhythms presupposes the existence of "mutual
phase response curves." This means, the internal phase relationship between
two rhythms (e.g., rhythms of deep body temperature and sleep-wake)
determines the probability for the occurrence of special phases (e.g., minimum
in temperature or sleep onset) and determines the duration of actual cycles and
sections within a cycle. For instance, the interval between two successive
minimum values in temperature (and the range of the temperature cycle)

_ _ _I ,
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FIG. 28. Same solutions of equation 9 as in Fig. 27, but drawn in the manner of
human data. The "activity rhythm" is represented by bars (solid, activity; open, rest),
and the "rectal temperature rhythm" is represented by triangles indicating the
temporal positions of the extremum values (upright triangles, maxima; inverted
triangles, minima; open triangles, temporally correct redrawings of corresponding
solid triangles).

depends on the actual position of the temperature cycle within the sleep-wake
cycle; the duration of a sleep or wake episode depends systematically, i.e., in a
predictable manner, on the actual position of sleep or wake onset relative to the
minimum in deep body temperature. The corresponding correlations as
measured in human circadian rhythms (60) are, therefore, consequences of the
existence of mutual phase response curves and, hence, are necessary conse-
quences of the ability of the rhythms to synchronize mutually.

In addition to the "oscillatory interaction" between the two rhythms, each
rhythm affects the other directly via the "internal masking effect" (55) (vide
supra). For instance, body temperature is generally higher during wakefulness
than during sleep, independent of the mutual phases; this is particularly obvious
when comparing corresponding extremumn values of temperature during both
states (Fig. 27). Also the internal masking effect contributes to the phenomenon
of scalloping in the pattern of the phases.

Figures 27 and 28 demonstrate that this interaction leads to mutual
synchronization only when the oscillators that are involved in the coupled
system remain close in period (within a mutual range of entrainment). Because
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these oscillators are nonlinear, there are also secondary ranges of entrainment
(vide supra). Outside the primary and secondary ranges of entrainment, the
mutual interaction does not lead to mutual synchronization. When the
hypothesis is introduced that the separable oscillators originate from two
different populations with different "oscillatory strengths" and, correspond-
ingly, different standard deviations in their coefficients of frequency (47), the
mutual interaction according to equation 9 leads to a concentration of the
periods. Figure 29 demonstrates this effect. The dotted lines represent the
hypothetical normal distributions in the periods of the oscillators of types I and
11 (nomenclature according to ref. 47) when the mutual interaction has ceased
(i.e., with cl = c2= 0). After initiating the mutual coupling, the stronger
oscillators of type I ("temperature oscillators") do not considerably alter the
distribution of their periods. Conversely, the weaker oscillators of type 11
("activity oscillators") alter the distribution of their periods considerably, as
shown by the solid lines in Fig. 29. The arrows indicate the synchronizing
influence of type I oscillators on type 11 oscillators within limited primary and
secondary ranges of entrainment. In the distribution, the corresponding ranges
of periods become empty, -whereas other parts of the previous normal
distribution are left. The result is a multimodal distribution of periods of type 11
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oscillators. It is obvious that the multimodality of the resulting distribution is
possible only because of their self-sustainment capacity, not only of the stronger
type I oscillators but also of the weaker type II oscillators (47).

The self-sustainment capacity of the two oscillatory components is achieved
in a manner similar to that for simple oscillators (vide supra), only within a
limited oscillatory range. This range, however, is no longer defined by only that
part of the external force that comes from the environment (z) but, in addition,
by the influence of the other oscillator. In special solutions, only one oscillator
is self-sustaining; it will drive the other rhythm, producing a mutual masking
effect independent of its self-sustainment capacity.

As solutions of equation 9 are applicable to human circadian rhythms, they
must be computed with the constant external force and with periodically
alternating z. The total system of the two coupled oscillators (or oscillatory
components) is then under the influence of an external Zeitgeber. Synchroni-
zations of the two oscillators do not necessarily occur simultaneously;
depending on the frequency of coefficients and the period of the Zeitgeber, only
one of the two subsystems can be synchronized, while the other free-runs
("partial synchronization") (49). This state is mainly based on the differential
widths of the ranges of entrainment of the two subsystems due to the differential
oscillatory strengths.

Finally, the frequency coefficients in the two components of equation 9 must
not be of the same order of magnitude. It is also possible to describe the mutual
interaction of components with considerably differing periods. Here, the
interaction between circadian and ultradian rhythms in humans (e.g., the 90-
min sleep rhythm) is considered. The higher-frequency rhythm is then
necessarily modulated in frequency and amplitude by the slower rhythm.
Moreover, there exist solutions where the higher-frequency rhythm oscillates
only at certain phases of the slower rhythm, e.g., during rest time, or during
phases with lower (or higher) temperatures; it damps out at other parts of the
cycle.

In summary, the number of possibilities with the multioscillator system
(equation 9) is a high multiple of that with the one-oscillator system (equation
7). Additional solutions of the larger system that were necessary in order to
reach a similar degree of completeness as in case of the single system would be
far beyond the scope of this chapter. Moreover, they would not be meaningful,
because they would lead to a host of predictions even for relatively simple
problems, whereas the one-oscillator model (equation 7) offers one testable
prediction for every problem.

Last, but not least, a very different aspect of the multioscillator system should
be mentioned. A system of two mutually coupled oscillators according to
equation 9 had been shown earlier to be of great interest in solving problems of
homeostasis (23,29). The same terms that assist in stabilizing the period of the
generated rhythms (vide supra) likewise guarantee stabilization of the mean
value; in particular, this is the nonlinearity in the restoring force. Considering
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this equivalence, two main (and apparently contradictory) principles in the
dynamics of biological systems, rhythmicity and homeostasis, appear to melt
into one another. They seem to be rather two complementary aspects of one
general biological principle.

High-Frequency Rhythms

The purpose of this chapter is to establish a mathematical model for circadian
rhythmicity; the deduced model equations, in fact, have the capacity to describe
the dynamics of this rhythmicity. However, of additional interest is to examine
the same model in its efficiency to describe different biological rhythmicities as
well. In this regard, the applicability of the model will be extended, and its
soundness can be confirmed as well. In order to examine this possibility, an
extension of the original model equation had been offered that includes a
coefficient of frequency (vide supra). In the following, solutions of equation 10
with high frequencies are presented that may describe phenomena of the central
nervous system (24).

At first, solutions of equation 10 will be presented with 0) = 108. Solutions
inside and outside of the oscillatory range are of equal interest; the limits of this
range are identical with those of equation 7, i.e., the lower limit is at z = 0.847.
Because of the high value of the effective coefficient of damping increment
(e = 100), the lower limit of the range of periodic adaptation is nearly identical
(z = 0.846). Figure 30 shows solutions inside the oscillatory range with four
different z values; it shows a series of spikes, the shape of which is independent
of z, and the frequency or rate of which varies considerably with slightly varying
z. Figure 31 shows solutions outside the oscillatory range (and the range of
periodic adaptation) with z = 0.65, under the influence of different stimuli
(short increases of z; the length of the arrow indicates the strength of the
stimulus). The upper row shows the effects of a single stimulus: If a stimulus is

,2 .... FIG. 30. Solutions of equation 10
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/' stimuli are too frequent to affect one reaction per stimulus, there is frequency
demultiplication. In summary, equation 10, with to 108, seems to be an
appropriate model for describing the activity of nerve cells, either spontaneous
(Fig. 30) or reactive (Fig. 3 1).

Reactive and spontaneous actions can merge into each other when the
external force z is still closer to the limit of the range of entrainment. Figure 32
shows solutions of equation 10 with z = 0. 848 (this time, (o is slightly smaller).
The different lines show the effects of different stimuli (arrows) where the first
stimulus remains the same. The comparison of lines (a) and (b) once more
demonstrates the existence of a refractory phase. In line (c), a weaker stimulus
at the same position as the second stimulus in (b) does not produce a reaction;
however, it does release a reaction when occurring still later, as demonstrated in
line (d). When no second stimulus follows at all (e), eventually a reaction
occurs spontaneously (idle action). In lines (a) and (c), the dotted lines indicate
the occurrence of the next reaction that was not released, in these cases, by a
stimulus. They demonstrate that the second stimulus, though not releasing a
direct reaction, was not completely ineffective; it releases a spontaneous
reaction that is earlier than it would be without the stimulus [compare line (e)].
In summary, the readiness for the release of a reaction by a stimulus increases
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with increasing interval following the preceding reaction, or the threshold for the
release of the reaction lowers, eventually down to zero. These solutions may be/ adequate models for the release of instinctive actions (24).

CONCLUSIONS

In summarizing the results of the preceding sections, a simple oscillation
equation that is based on very few preconditions is capable of predicting
numerous features of circadian rhythmicity under a great variety of external
conditions. The model equation has been deduced using alternative hypotheses
tested in biological experiments. It is therefore meaningfuil to ask only to what
degree it is sufficient, rather than if it is right or wrong. The equation in its simple
form contains only one free parameter when all other coefficient values are fixed
according to results of relevant experiments.

A sound agreement between model predictions and experimentally derived
properties of circadian rhythms indicates that simple laws of oscillation theory
govern the apparently very complex rhythmicity in the behavior of living
organisms, including humans. It is tempting to conclude from this result that the
basic structural mechanisms of generating and controlling circadian rhythms are
also simple; and the evaluated dynamics of biological systems should assist in
discovering these mechanisms. Therefore, it should not be hopeless to transpose
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the mathematical parameters to structural properties. An example of such a
correlation may be the coordination of the "oscillatory strength," or the
rhythm's amplitude, to the number of cells cooperating in the establishment of a
"4pacemaker" in the circadian system (49). Following Wiener (57), the larger
the number of mutually synchronizing "oscillatory cells," the more precise is
the resulting "oscillatory center"; this principle has been introduced in circadian
research by Barlow (7). In the human multioscillator system this principle
means that the differential oscillatory strengths of different types of oscillators
are due to the differential numbers of oscillatory cells cooperating in the
constitution of an oscillatory center (49).

The primary basis for the modeling considerations as discussed in this
chapter is the one-oscillator system. It is only such a simple system, with not
more than one degree of freedom, that leads to unambiguous, testable
predictions. Evidently, results from human experiments necessitate the concept
of two-oscillator or even multioscillator models. The increasing degree of
freedom in such extended systems can only lead to ambiguous predictions; with
small variations in free parameters, a great variety of rhythm patterns can be
verified. Within a multioscillator system, the properties of the single oscillators
determine the behavior of the combined system. Therefore, thorough knowledge
of all properties of the constituent single oscillators is a necessary precondition
for the understanding of a multioscillator system. In addition, the interactions
between the single oscillators determine the behavior of the combined system.
This is why the degrees of freedom increase considerably when the increase in
the number of participating oscillators is slight.

If predictions should be made concerning a two-oscillator system, the degrees
of freedom must be considerably reduced. In the single-model equation, the
coefficients of the various terms were set according to results of many diverse
biological experiments, so that only the external force was a free parameter.
Correspondingly, it has been shown in human experiments that in this way the
determination of ratios between corresponding coefficients in the two equations
is possible. Here, the coefficients in an equation that corresponds to "type I
oscillator" rhythms can be set according to the coefficients in the single-model
equation. Continuing in this manner, the use of results from more sophisticated
experiments will eventually lead to unambiguous predictions from the two-
oscillator model. Because in humans behavioral aspects control to a significant
degree circadian rhythmicity (3 7,48), their consideration is of special relevance
when the multioscillatory character of the circadian system is examined (54).

The model equation with all its extensions, as discussed in this chapter, was
established in a series of papers about 20 years ago; simultaneously, the
mathematical bases have been developed (20-29). The system of two coupled
oscillators had been introduced originally to describe complicated (multimodal)
wave shapes (21) and special problems of homeostasis (23,29). The model
solutions presented here originate in large part from that time; the original
solutions concerned the behavior of rhythms in the steady state. Several aspects
of the model solutions were discovered only several years later (38-47),
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including the application of the two-oscillator model to internally desynchro-
nized rhythms; and interesting new properties of generated model rhythms
continue to be developed (52-56). Hence, the process of evaluating solutions
under continuously varying conditions is still in progress. It facilitates the
selection of preferences for time-consuming experimental resenrch, and it
assists in formulating new hypotheses about the substantial basis of circadian
rhythmicity.

It is remarkable that until the present time there has been no need to modify
the original model equation, in spite of the fact that new experimental
approaches have continually been applied to test the model predictions.
Nevertheless, the model equation must be subject to further specifications. For
example, when squares of the variable y are given, the only meaning is that the
term under discussion has to increase more than proportional to y; differing
powers, or even other functions like an exponential (with, of course, corre-
spondingly differing numerical coefficients), may fit the experimental results as
well. More important, the appropriateness of the mathematical model presented
in this chapter must not preclude its being subjected to rigorous criticism. It is
the aim of this chapter to demonstrate that this kind of successive trial-and-error
modification will lead to a successful model equation; the same method when
starting from a fundamentally differing base may lead to a very different but
likewise sufficient model. The modeling process, in general, however, can never
be assumed to be completed, because it is dynamic in itself.

/
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DISCUSSION

Dr. Kronauer: I would like to make one comment and ask a question. The comment is
in defense of the mathematician. The phenomenon that you describe as relative
entrainment was actually described in Stokler's very excellent book on nonlinear
oscillators in 1949, and, for all I know, it may have been described earlier. There is one
question I would like to ask you that has always puzzled me, because you use as the
excitation on the right-hand side of your equation a combination of z, its first derivative,
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and its second derivative. If you put a square wave in, of course, that gives you a delta
function and a second-order delta function at every place the square wave comes. And
so, first of all, do you really think that there is a mechanism that converts steps of light
into impulses, and, second, how do you handle it mathematically in your differential
equation routine?

Dr. Wever: The answer is simple. I cannot deal with step f'unctions. But in nature we
never have steps, so we have only more or less slow increases, and then I can calculate
the duration of a twilight; and in fact from biological experiments we have clear
indications that the twilight transition has a remarkably large influence on many different
parameters of the entrained rhythm. You are right that I cannot compute a rectangular
cycle, but I don't see any reason for trying to do it.

Dr. Edmunds: It may be heresy, but I do not think unicells ever sleep or wake or
either do all one or all the other. In your models dealing with the activity-rest ratio,
would you eliminate the threshold in order to model unicells?.

Dr. Wever: The threshold had been introduced secondarily to describe additional
features like sleep-wake alternation; it is not a constituent of the original model. I have
the feeling that introduction of a threshold separating these two states is a very late step
in evolution. I do not need the threshold for 90% of what I am saying, but for the last
10% dealing with the sleep-wake cycle, I need such a threshold.

Dr. Moore-Ede: I would like to have you clarify why you see it as so unacceptable to
have a function which goes alternately negative and positive as an oscillation. You made
the point that you do not see negative values in body temperature. I agree with you, but
on the other hand, in neural systems we clearly see changes in membrane potential which
can be either positive or negative during the course of an action potential. So I see no
fundamental reason why you cannot have a fuinction that moves either side of a zero
line.

Dr. Wever: We have secured entrainment because of the second nonlinearity. As a
result, we have simultaneously parametric as well as nonparametric entrainment. When
you look solely for the loss of parametric entrainment, you can see that you have a'I bistable phase when the rhythm is alternating between positive and negative values, but

$ you have an unambiguous phase relation when you have a consistent sign. That is one of
the reasons. All these modifications assist in stabilizing the generated rhythm in spite of
the superimposed value fluctuations.

Dr. Weitzman: Along those lines, just for clarification, you know that some
physiological functions do reach zero values for periods of time. For example, cortisol is
totally not secreted for many hours and therefore remains at zero, even though it never
goes negative, obviously. How do you deal with that?

Dr. Wever~ I cannot give you an answer. Please consider that my equations are more
than 20 years old. At that time we knew nothing about cortisol, so we were surprised that
most of the data fit. Maybe it would be a good idea to modify the equations, but I don't
think that is a very important point in the general picture. This equation should show
nothing but the very general behavior-nothing more, not specifically cortisol or
anything else.

Dr. Moore-Ede: You made the comment that you do not like coupled oscillators, if I
understand what you said. Could you explain that?

Dr. Wever: What I do not like is to apply coupled oscillators before the potentialities
of single oscillators have been exhausted. That is, because they have such a tremendous
number of free parameters. What I would like is a model with only one free parameter.
Then we get an unambiguous answer. A system of two coupled oscillators has six free
parameters. The combination of these six parameters gives us such a tremendous number
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of answers, so when we get a fit between a model simulation and a biological result, it is
hard to decide whether or not it is only due to a good choice of the parameters with a very
poor equation.

Dr. Moore-Ede: You are saying that you view the human system as a multioscillator
system, but at the same time, you are not modeling a multioscillator system?

Dr. Wever: Of course, results of human experiments force the assumption of a
multioscillator system, and my multioscillator model fits the data very well. However,
the consideration of only coupling properties says nearly nothing about the structure of
each single oscillator. It says, in this respect, much more when parameters of a one-
oscillator model are estimated, as the basis also of combinations of oscillators.

Dr. Edmunds: You do not like multioscillator systems because they are hard to
model, but in reality the experimental data clearly show coupling interactions. Therefore,
it is a problem in trying to model these things. Just because you cannot model them does
not mean that they are not good.

Dr. Wever: Multioscillator systems are not hard to model, but agreement between
model simulations and biological results is hard to interpret in multioscillator systems.
Rather, multioscillator systems are easy to model, because agreement with every
experimental result can be achieved with various combinations of the many parameters.
My only point is that we need a great amount of biological data to differentiate between
all these possibilities; and in several respects, we have not yet enough of them.
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Are Separate Temperature and Activity Oscillators
Necessary to Explain the Phenomena of Human

Circadian Rhythms?
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TWO TYPES OF MULTIPLE-OSCILLATOR THEORIES

It is generally accepted that circadian systems are composed of multiple
oscillators. This chapter describes a single-oscillator model of human circadian
rhythms. This does not necessarily represent a contradiction. The potential for
confusion stems from the fact that there are two different types of multiple-
oscillator theories based on different types of experimental evidence.

In the first type of theory, multiple oscillators interact to control a single
rhythmic variable, usually locomotor activity (17,18,23,24,28,35-38,42,
50,51). Evidence for this type of organization is provided by various sets of
data, including the "splitting" of locomotor-activity rhythms in various animal
species (37), the breakdown of circadian rhythms after lesions of the
suprachiasmatic nuclei (SCN) (38,42), coexisting free-running and food-
entrained activity rhythms in rodents (12), and the demonstration of circadian
rhythms in isolated mammalian organs and tissues (13,26,39,43).

In the second type of multiple-oscillator theory, separate oscillators are
responsible for the control of different physiological and behavioral circadian
rhythms. The strongest evidence for this type of multiple-oscillator organization
has been "spontaneous internal desynchronization" in the human, which has
been attributed to the uncoupling of separate temperature and activity
oscillators (9,10,30,34,48,49) (see R. E. Kronauer, this volume).

The single-oscillator model presented here is an alternative to the second type
of multiple-oscillator theory, in that all the various circadian rhythms are
controlled by the same circadian oscillator. This model does not dispute the
multiple-oscillator organization proposed by the first type of multiple-oscilator
theory; in fact, the single oscillator may itself be composed of multiple
oscillators (23,24). However, the model demonstrates that spontaneous internal
desynchronization, as well as other human circadian phenomena, can be
explained with the single oscillator remaining intact, i.e., without a desynchro-
nization or breakdown of the circadian system into its component parts.
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SPONTANEOUS INTERNAL DESYNCHRONIZATION

Humans in temporal isolation, like other animals, usually show synchronized,
free-running circadian rhythms in all the various physiological and behavioral
measures (9,10,34,49). An example is shown in Fig. 1, section A. For the first
14 days, the circadian rhythms of temperature and activity were internally
synchronized; they free-ran with the same period (25.7 hr) and maintained
fairly fixed internal phase relationships. Then, at about day 15, spontaneously,
for no apparent reason, the rhythmic patterns changed dramatically. The
periodograms in section B show that two periods were present in each rhythm,
one at 33.4 hr that was dominant in the activity rhythm and one at 25.1 hr that
was dominant in the temperature rhythm. The daily chart (Fig. 1, top) shows
activity plotted to emphasize the 33.4-hr period and temperature plotted on the
I -ft (solid triangles) to emphasize the 25.1-hr period. Over the course of days,
Lme activity and temperature rhythms assumed radically different internal phase
relationships.

For many years, patterns like these have been known as spontaneous internal
desynchronization, from the extensive work of Aschoff's group (9,10,48,49).
Other investigators have found similar aberrations in the activity rhythm (other
variables were not always measured), but they have not always labeled these
patterns as spontaneous internal desynchronization (15,16,27,32,44,45).
Aschoff's group has found that only about one-third of subjects become
internally desynchronized. These investigators isolated subjects in constant
conditions for about a month (9,10,48,49). Czeisler claims that when subjects
are isolated for longer periods of time, at least 2 months, they all eventually
desynchronize (16,30,45).

A summary of all the major periods revealed by periodograms from over 100
subjects isolated from time cues by Aschofls group is shown in Fig. 2. During
synchronized free runs (Fig. 2, top) the average period was about 25 hr. For
each subject, both temperature and activity free-ran with the same period.
During "true" spontaneous internal desynchronization (Fig. 2, bottom) the
periodograms usually revealed two periods in each rhythm (Fig. 1). One was
about 25 hr, falling into distribution C. This period was usually dominant in the
temperature rhythm. The other was either very long, between about 30 and 40
hr, falling into distribution D, or very short, between about 15 and 20 hr, falling
into distribution B. This period was usually dominant in the activity rhythm.
Twenty-four percent of the subjects showed "true" internal desynchronization
in which the two periods were not multiples of each other. Another 8% showed
"6apparent desynchronization," in which a bicircadian period (about 50 hr) or a
semicircadian period (about 12.5 hr) appeared with the circadian period (of
about 25 hr) (10,49).

The type of internal desynchronization described here has been seen only in
humans. Moore-Ede's group has reported spontaneous internal desynchroni-
zation in squirrel monkeys maintained in constant light. However, in their
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studies, desynchronization occurred between the renal rhythms, on the one
hand, a-d the temperature and feeding rhythms, on the other. Although the
activity rhythm was not measured, it would very likely follow the temperature

and feeding rhythms. Thus, there was no evidence for a desynchronization
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FIG. 2. Diagrammatic representation of all the major periodogram peaks produced
by the human subjects who showed internally synchronized free-running rhythms
and true spontaneous internal desynchronization when isolated in the underground
bunkers by Aschoff's group. Apparent desynchronization is not included. Although
these distributions resemble the histograms of Wever (ref. 49, Fig. 37; ref. 48, Figs. 4,
5), they are not the same. Wever separates the periods according to whether they
are dominant in temperature or activity, i.e., on the basis of the tallest periodogram
peak for each rhythm. In this figure the periods are separated according to the type
of pattern, synchronization or desynchronization.

between the temperature and activity rhythms in the monkey. Furthermore, none
of the rhythms showed the extremely long or short periods, of more than 30 or
less than 20 hr, seen in the human (34,40,41).

THE TRADITIONAL MODEL OF SPONTANEOUS
INTERNAL DESYNCHRONIZATION

Wever (48,49) has developed a comprehensive multiple-oscillator theory of
human circadian rhythms based on the phenomenon of spontaneous internal
desynchronization. Recently, a similar model has been elaborated by Kronauer
(this volume, and 30). In these models, which will be referred to as
"traditional," temperature and activity are controlled primarily by separate
oscillators, although each oscillator exerts some croitrol over all the rhythms. In
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Wever'smodel these oscillators are termed group I and group 11; in Kronauer's
model they are termed x and y; for simplicity, we shall refer to them as the
temperature and activity oscillators. According to the traditional models, the
temperature and activity oscillators are coupled and free-run together during the
synchronized free runs. Eventually these oscillators uncouple and free-run
more or less independently, revealing their own natural frequencies. This
uncoupling is the cause of internal desynchronization. When the two oscillators
are mutually synchronized, they assume a compromise period between the
periods they would assume when free-running independently. This compromise
period is closer to the period of the temperature oscillator than to the period of
the activity oscillator, because the temperature oscillator is stronger. (For
example, in Fig. 1, the compromise period of 25.7 hr is closer to 25.1 than to
33.4 hr.)

In Wever's theory, there is a broad, normal distribution of activity oscillators
ranging from less than 15 hr to more than 40 hr, depending on the individual
subject, whereas the temperature oscillators of all the subjects have a period
close to 25 hr, ranging from about 24 to 26 hr. Those subjects who have activity
oscillators in the circadian range, between about 20 and 30 hr, never
desynchronize. Their activity oscillators always remain coupled to their
temperature oscillators. Only those subjects who have activity oscillators on the
fringes of the distribution, less than about 20 hr and greater than about 30 hr,
show internal desynchronization. For these subjects the disparity between the
period of their activity oscillator and the period of their temperature oscillator is
so great that the oscillators eventually uncouple during constant conditions. This/ theory explains the multimodal distribution of periods seen during spontaneous

* internal desynchronization (Fig. 2) and accounts for the finding that the
majority of subjects never desynchronize. In Kronauer's theory, the activity
oscillators start out with a period in the circadian range, but this gradually
lengthens over days in isolation, reaching values of 30 hr or more. All subjects
will eventually desynchronize when the disparity between the periods of the
activity and temperature oscillators becomes too great.

Wever's theory has served over the years to help organize and analyze the
complex data on human circadian rhythms, and Kronaue's model follows in
this tradition. A major drawback of these models is that it is necessary to
postulate that humans have activity oscillators with unusually long or short
periods outside of the usual circadian range. These extreme periods are not seen
in other animals, not even in the squirrel monkeys who are described as
internally desynchronized (41). Even in "splitting," where two distinct periods
temporarily appear in the activity rhythm, both periods are in the circadian
range (37). Some authors have been skeptical that human circadian rhythms
can be controlled by oscillators with such periods, and they have suggested that
these periods might represent some type of artifact (2,7,31,32,40). Neverthe-
less, most of us have accepted the idea that in this respect the circadian system
of humans differs from that of the other animals.
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THE PHASE-SHIFT MODEL OF SPONTANEOUS
INTERNAL DESYNCHRONIZATION

The phase-shift model is a single-oscillator model that is an alternative to the
traditional model of spontaneous internal desynchronization. It represents the
convergence of various observations about human circadian rhythms and
various computer models of circadian oscillators. Some of these observations
will be summarized briefly before the phase-shift model is described.

In most cases of spontaneous internal desynchronization the activity rhythm
shows a scalloped pattern (Fig. 1, section B) that has been described as
consisting of "phase jumps" (49) or "clusters" (15). Czeisler pointed out that
the free-running period of each cluster is the same as the period displayed during
the synchronized free run preceding the desynchronization (15). This raises the
possibility that the activity rhythm continues to free-run during internal
desynchronization with the same period as during synchronization, but with the
addition of occasional phase shifts. Figure 3 shows a computer model used to
help interpret the data on rats exposed to non-24-hr light-dark (LD) cycles (20-
22). This model shows the pattern produced by a sine wave (representing a
circadian oscillator) that free-ran until it reached a certain phase relationship to
the LD cycle, at which point it was abruptly shifted; then it free-ran again until
the same phase relationship was reached. Then it was shifted again, etc. For this
particular model, the free-running period of the oscillator was 24 hr, but this
period did riot appear in the periodogram (Fig. 3, bottom). Instead, there was a
period at 22 hr, corresponding to the period of the LD cycle, and a period at
25.2 hr, which can be considered a mathematical artifact in the sense that it
does not correspond to an oscillator in the model. This model shows that when

4/, time-series analyses are used on nonstationary data, the periods indicated do
not necessarily reveal the periods of the underlying oscillators. If internal
desynchronization consists of an alternation between free running (with a
circadian period) and phase shifting, then the unusually long or short (i.e.,
noncircadian) periods in the periodograms will be considered mathematical
artifacts. For example, the long period of 33.4 hr in Fig. 1 will be an artifact
analogous to the period of 25.2 hr in Fig. 3.

During synchronized free runs, sleep begins near the minimum of the daily
temperature cycle (47,49) (Fig. 1, section A, or Fig. 7, top). This is the phase at
which subjective alertness and performance efficiency are the lowest, the phase
at which sleep-deprived subjects feel the most sleepy (1,14,25,29). During
internal desynchronization, sleep usually begins near the temperature minimum
as well. However, there are also many sleep episodes that begin at unusual
phases of the temperature cycle (15,16,52,53). Sleep does not always occur
near the temperature minimum, even though subjective alertness has also
reached its minimum (e.g., ref. 15, Fig. 62).

During internal desynchronization, the length of a sleep episode depends on
its phase relative to the temperature rhythm. Most wake times occur on the

lt. , .- , . ,
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I
rising phase of the temperature cycle. Therefore, the longest sleep episodes are
possible when sleep begins well before the rising phase. Accordingly, sleep
episodes that begin near the temperature maximum are the longest (up to about
18 hr), sleep episodes that begin on the rising phase of the temperature cycle are
the shortest, and sleep episodes that begin near the temperature minimum are of
normal length (15,16,52,53). Czeisler's graphics (15) revealed that internal
desynchronization consists of a repetitive pattern of long sleep episodes
alternating with clusters of normal-length episodes.

In addition to these recent findings that show how sleep and waking depend
on the temperature rhythm, it is well known that sleep and waking affect body
temperature through "masking" effects (4,10). Sleep lowers body temperature,
and being awake and active raises body temperature. The magnitude of these
masking effects depends on the circadian phase (33). Aschoff (6) emphasized
this bidirectional mode of interaction between the sleep-wake rhythm and the
body-temperature rhythm.

These and other observations led to the phase-shift model of internal
desynchronization, as illustrated in Fig. 4. A single circadian oscillator controls
both the temperature rhythm and the activity (sleep-wake) rhythm. For
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ADVANCE
TEMPERATURE

OSCILLATOR I I
I i I I I

WAKE . .. .
SLEEP

FIG. 4. Method for producing computer phase-shift models of spontaneous internal
desynchronization. A single oscillator (thick sine wave) controls the temperature
rhythm (dotted line) as well as the activity or sleep-wake rhythm (square wave).
Masking is added to the temperature rhythm; temperature is raised during waking
and lowered during sleep. Sleep usually begins on the minimum of the oscillation (in
this case, sleep episodes 1, 2, 4, and 5), but sleep is occasionally misplaced (sleep
episode 3). The misplaced sleep episode may have an unusual length, and it causes
a small feedback shift (advance) in the circadian oscillator. (From Eastman, ref. 21,
with permission.)

simplicity, the circadian oscillator is represented by a sine wave. Temperature
follows the oscillator, but in addition masking is simulated; temperature is
raised by a constant amount during waking and lowered by a constant amount
during sleep. Sleep usually begins on the minimum of the temperature cycle.
The signal to go to sleep, or the desire to go to sleep, might be a direct result of
the falling body temperature. Alternatively, the signal could be transmitted from
the circadian oscillator along other pathways, in which case the temperature
cycle would merely serve as a convenient marker for the rhythm of sleepiness.
Occasionally, sleep does not occur when temperature reaches its minimum. The
subject may override the signal from the circadian oscillator for many reasons:
he may want to finish an interesting book, or in his distorted sense of time it is
not nighttime and he has been told to avoid naps, or he drank too much coffee, etc.
The subject finally goes to sleep, perhaps because of the perception that enough
time has passed and/or because of an accumulation of sleep "need." As a
result, the onset of the subsequent sleep episode is misplaced, occurring later
than the temperature minimum. This misplaced sleep episode will usually last
until the next upward swing in body temperature and alertness (15,16,53) or,
less frequently, may end early, perhaps because of hunger, some other
discomfort, or sleep satiation.

In the phase-shift model, the misplaced sleep episode causes a small advance
shift in the circadian oscillator (Fig. 4). In other words, the model proposes
feedback from the activity (sleep-wake) rhythm to the circadian oscillator.
Thus, there are actually two types of shifts in the phase-shift model, a shift in the
activity rhythm because of the misplaced sleep episode and the subsequent shift
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FIG. 5. Phase-shift model of the case of spontaneous internal desynchronization
shown in Fig. I made by the method shown in Fig. 4. See text for parameters. Top:
Symbols as in Fig. 1. Bottom: Periodograms (19) of the model data from section B.

in the circadian oscillator. The feedback from the activity rhythm to the
circadian oscillator could be caused by sleep per se or, as suggested by A. Lewy
(personal communication), could result from the light the subject is exposed to
on awakening.

Variations of the simple method shown in Fig. 4 were used to mimic specific
cases of spontaneous internal desynchronization. Figure 5 shows the phase-shift
model designed to match the case of internal desynchronization shown in Fig. 1.
For this model, the single circadian oscillator free-ran with a period of 25.7 hr
throughout sections A and B. In section A, sleep episodes of 8 hr started on the
minima of the oscillation. In section B, sleep onset skipped every fourth
minimum, and then sleep began on the subsequent maximum. The mis-
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placed sleep episodes were 14 hr long and advanced the circadian oscillator
2.34 hr. The sixth parameter specified the masking factor. Clearly, this model
bears a close resemblance to the empirical data. The periodograms of the model
are also a good match. The periodogram peaks reveal the same periods with
similar relative heights, i.e., the 33.4-hr peak is taller for activity, and the 25.1-
hr peak is taller for temperature.

Figure 6 shows the phase-shift model designed to match another case of
spontaneous internal desynchronization. With this method of graphing, it is
easy to see the pattern of long and normal-length sleep episodes during internal
desynchronization that started at day 36. Eight long sleep episodes occurred out
of phase with the clusters of normal-length sleep episodes. For this model,
normal-length sleep episodes began on the minima of the circadian oscillation
for about the first month. On day 36 the minimum was skipped; sleep finally
began much later, and its duration was very long, causing the circadian
oscillator to be shifted (advanced). Then skips and subsequent long sleeps
recurred at more or less random intervals matched to the behavior of the
subject. Notice how each cluster of normal-length sleep episodes is slightly
advanced compared with the preceding cluster because of the advanced shifts of
the circadian oscillator. The periodogram from the section of internal desyn-
chronization (Fig. 6, bottom) has two main peaks. In the traditional model, the
peak at 24.6 hr would be interpreted as the period of the temperature oscillator,
and the peak at 29.2 hr would be interpreted as the period of the activity
oscillator. In terms of the phase-shift model, all of the periodogram peaks are
considered artifacts, because none corresponds to the period of the circadian
oscillator, i.e., the period of the sine wave that was fed into the model, at 25.3
hr.

In conclusion, the phase-shift model demonstrates that spontaneous internal
desynchronization can be produced while the circadian system is controlled by
a single oscillator. It is not necessary to hypothesize separate temperature and
activity oscillators. It is not necessary to hypothesize that activity is controlled
by oscillators with periods outside of the usual circadian range. Finally, it is not
necessary to hypothesize that spontaneous internal desynchronization is caused
by an uncoupling or desynchronization between component oscillators.

THE PHASE-SHIFT MODEL: FURTHER DESCRIPTIONS
AND SPECULATIONS

In the phase-shift model, spontaneous internal desynchronization is viewed
as a sequence of normally placed and misplaced sleep episodes. Normally
placed sleep episodes begin near the minima of the circadian temperature
rhythm, and misplaced sleep episodes begin at other phases. The exact
sequence of the normal and misplaced sleep episodes and the phase of the
misplaced sleep episodes depend on the individual subject. The phase-shift
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models produced thus far are crude representations of a few individual patterns
of spontaneous internal desynchronization. If this line of modeling were to be
pursued, several refinements could be made. For example, the model might be
improved by changing the constant masking factor of sleeping and waking on
temperature to one that varies with the phase of the circadian cycle (33). For
each specific model developed thus far, all the misplaced sleep episodes have
started at exactly the same phase. More realistically, the phase of the misplaced
sleep episodes for any individual subject probably varies somewhat. Phase-shift
models can be made to mimic more complex patterns of internal desynchroni-
zation in which clear phase jumps or clusters are not seen. For example, the
phase-shift model for one subject (not shown) consisted of two misplaced sleep
episodes in a row, which appeared fairly regularly within a string of normally
placed sleep episodes. Some subjects sleep, or at least take a nap, on almost
every minimum, but in addition have some misplaced sleep episodes. Phase-
shift models of these subjects would produce the extremely short periods
between about 15 and 20 hr (Fig. 2).

The phase-shift model of internal desynchronization proposes a feedback
shift from the activity rhythm to the circadian oscillator. This feedback shift was
included not because of any direct evidence or preconceived notion that
feedback should occur but merely because the shift was necessary to make the
computer simulations match the empirical data. In the model, only the
misplaced sleep episodes produce feedback, not the normally placed episodes
that start near the minimum of the temperature cycle. If feedback from the
activity rhythm to the circadian oscillator really exists, then it should occur in
other situations, besides internal desynchronization, in which sleep does not

1 occur near the minimum. Therefore, during entrainment to the 24-hr day,
feedback should occur, because sleep begins about 900 before the temperature
minimum (Fig. 7, middle) (47,49). It appears that the circadian oscillator is
shifted during entrainment to the 24-hr day. There must be an advance shift of
about 1 hr per day, because the average free-running period is about 25 hr. This
advance could be due to feedback from the activity rhythm. Perhaps this
placement of sleep several hours before the minimum helps advance the
oscillator by the amount necessary for entrainment. In other words, one of the
functions of sleep may be to help entrain the circadian oscillator. Alternatively,
the perception of light on awakening may be the important factor in entrain-
ment. During prolonged sleep deprivation there is a slight delay of circadian
rhythms such as the temperature rhythm (5,6,49). These delays may result from
the lack of normal sleep episodes, or normally timed awakenings, which could
advance the circadian oscillator.

The phase-shift model for each subject was made by choosing several
parameters based on a careful scrutiny of the subject's data and a trial-and-error
process to better approximate the individual's pattern of deaynchronization.
Two of these parameters were the phase of the misplaced sleep episodes and the
amount the circadian oscillator was shifted. A graph relating these two

4

IpI I~n .. H•n"";



ARE SEPARATE OSCILLATORS NECESSARY? 93

FREE
RUN

S

24 HR
DAY

26 2/3 HR

FIG. 7. Diagram of phase relationships during synchronized free runs (top), entrain-
ment to a 24-hr day (middle), and entrainment to a 26%h-hr day (bottom). The sine
wave represents the temperature rhythm (T). The square wave represents the rhythm
of sleeping (S) and waking (W). The shaded area represents the dark portion of the
LD cycle. The dotted line emphasizes the phase at which the sleep episodes begin.
The free-run diagram (top) is made from the average of many subjects, as shown by
Wever (ref. 49, Fig. 17). The 24- and 26%-hr diagrams are redrawn from the data of a
single subject isolated in an underground bunker. He was exposed to an overhead
LD cycle with twilights and periodic gongs and could use reading lamps during the
dark phase [subject 72a in Aschoff et al. (8); also known as subject S.R. in Wever (ref.
49, Fig. 69)]. This subject's data can also be seen in the work of Aschoff and Wever
(ref. 10, Fig. 78) and Kronauer (ref. 30, Fig. 108). Other subjects show similar
changes in internal phase relationships (8).

parameters from a few specific phase-shift models and the case of normal
entrainment to the 24-hr day showed that the amount of shift appeared to be
related to the phase of the misplaced sleep episode. In principle, it should be
possible to generate a full phase response curve (PRC) using a large sample of
phase-shift models of desynchronized subjects. In other words, the shifts of the
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circadian oscillator might be shown to vary in magnitude and direction
(advances or delays) depending on the phase of the sleep episodes, or of the
awakening light.

The phase-shift model was the first to demonstrate that there are alternatives
to the traditional model of spontaneous internal desynchronization. The
strategy has been to show that the most typical, most publicized, individual
cases of spontaneous internal desynchronization can be mimicked with a single-
oscillator model. In the phase-shift model there are several determinants of the
overt circadian rhythms, including the circadian oscillator, masking, "volun-
tary" behavior (behavior that cannot be predicted in these experiments), and a
process of sleep need and recovery. However, the sleep-need-and-recovery
factor was invoked in only the most rudimentary fashion. Daan and Beersma
(this volume) have developed a more sophisticated single-oscillator model that
includes a precise description of a sleep-need-and-recovery function based on
Borbely's model (11). In contrast to the activity oscillator of the traditional
model, this cycle of sleep need and recovery is a relaxation process. It is not
controlled by a true self-sustained, fixed-period oscillator. In the more
conventional style of modeling, a set of general solutions was produced by
varying one parameter at a time. Their model can account fairly well for a wide
range of human circadian phenomena. Feedback from the activity rhythm to the
circadian oscillator was not included.

Earlier versions of the phase-shift model (20-22) proposed that a second
shift-inducing oscillator, either internal or external to the subject, might be
invoked to explain cases of internal desynchronization in which the misplaced

* sleep episodes occurred regularly (Fig. 1). There was no reason to postulate a
second oscillator in cases with irregular patterns (Fig. 6). Daan and Beersma
(this volume) have shown that regularly misplaced sleep episodes can arise
from a single oscillator plus a cycle of sleep need and recovery. Their
demonstration shows that there is little need for a shift-inducing oscillator.

In the phase-shift model, spontaneous internal desynchronization occurs
when the subject ignores the signal from the circadian oscillator and does not go
to sleep near the minimum. We might ask why some individuals become
desynchronized while others do not, or, if all subjects eventually desynchronize,
why some subjects become desynchronized before others. One possibility might
be that some subjects become highly motivated to stay awake, for example, to
continue work on some important project, and thus tend to ignore the internal
signals to go to sleep. Another possibility is that some individuals have weaker
circadian oscillators that produce oscillations of smaller amplitude, so that they
tend to misjudge the right time for sleep. Daan and Beersma (this volume)
include amplitude changes as an important part of their model. By gradually
decreasing the amplitude of the circadian oscillation, they show how synchro-
nized free running can abruptly change to internal desynchronization and that at
the extreme a very small amplitude can produce a bicircadian pattern. This type
of progressive change from synchronization to desynchronization to a bicir-
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cadian pattern was first described by Czeisler (15). In the phase-shift model this
change occurs when the minimum is skipped more and more frequently. In
Kronauer's model (this volume; and 30) this change is accounted for by a
gradual lengthening in the period of the activity oscillator. In Daan and
Beersma's model, a gradual decrease in amplitude can account for the changing
pattern of desynchronization. Daan and Beersma have also pointed out that the
amplitude of circadian rhythms free-running in constant conditions is typically
lower than during entrainment. This can explain why desynchronization occurs
more frequently in constant conditions than in normal life.

The phase-shift model of spontaneous internal desynchronization does not
refute the traditional model; it is merely offered as an alternative. Hopefully,
some tests or experimental manipulations will be designed to distinguish
between the two models. Meanwhile, there is one component of the phase-shift
model that can be tested, the feedback shift from the activity rhythm to the
circadian oscillator. Temporally isolated subjects showing synchronized free-
running rhythms could be instructed to sleep at various phases of their
temperature cycle, and the resulting course of the free run could be determined.
In other words, misplaced sleep episodes could be experimentally produced to
determine if they shift the circadian oscillator. This would be the equivalent of
generating a PRC. The phase-shift model is a crude first step in the development
of alternative models of internal desynchronization. Even if many of its
propositions become obsolete, at least it has served to remind us that the
traditional model is still open to question, and it has prompted the development
of other single-oscillator models (S. Daan and D. Beersma, this volume).

CHANGES IN INTERNAL PHASE RELATIONSHIPS
BETWEEN FREE RUNNING AND ENTRAINMENT

Although spontaneous internal desynchronization has been considered the
best evidence for the theory of separate temperature and activity oscillators,
other observations of human circadian rhythms have often been cited as further
support for the traditional theory. These observations include the internal phase
relationships between the temperature and activity rhythms-how these change
between synchronized free runs, entrainment to the 24-hr day, and entrainment
to Zeitgebers of other periods (8-10,47,49). Figure 7 schematically shows the
phase relationships between the temperature and activity rhythms during three
conditions. As discussed earlier, during synchronized free runs (top diagram),
sleep begins around the minimum of the temperature cycle, whereas during
entrainment to the 24-hr day (middle diagram), sleep begins about 900 before
the minimum. The traditional model can easily account for this change in the
internal phase relationships. According to the model, the temperature and
activity oscillators are mutually synchronized during the free-running condition,
but they assume different phase relationships to the Zeitgeber during entrain-
ment because they have different characteristics (10,49).
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The bottom diagram shows that both the temperature and activity rhythms
show an advanced phase to the LD cycle when entrained to the 26 i-hr day, as
compared with entrainment to the 24-hr day. The maximum of the temperature
rhythm advances from around "lights off" in the 24-hr day to many hours before
"lights off" in the 26i-hr day. The activity rhythm also advances. This subject,
who is a "night owl" in the 24-hr day, waking up around "noon," becomes an
"early bird" in the 26W-hr day, waking at the crack of "dawn." These advances
are predicted by oscillator theory, which states that as the period of the
Zeitgeber increases, the phase of circadian rhythms advances (3,46). Notice,
however, that the temperature rhythm advances more than the activity rhythm.
This difference in the amount of advance results in different internal phase
relationships between temperature and activity in the 26%-hr day as compared
with the 24-hr day. Sleep begins near the minimum of the temperature cycle in
the 265-hr day, whereas it begins about 90 before the minimum in the 24-hr
day. Once again, this change in the internal phase relationships can be
explained by the traditional model in which the temperature oscillator advances
more than the activity oscillator as the Zeitgeber is lengthened, because the
temperature oscillator is stronger (49).

Let us explore one of the ways in which these changes in internal phase
relationships might be explained with a single circadian oscillator. The
synchronized free-running condition (Fig. 7, top) is easily accounted for by a
single oscillator that drives the temperature rhythm and triggers sleep near its
minimum. Given this mechanism, how can we explain the fact that sleep begins
about 900 before the temperature minimum during entrainment to the 24-hr day
(Fig. 7, middle)? We can assume that the phase of the circadian oscillator and
the rhythms it drives, such as the temperature rhythm, is set by virtue of its

/ entrainment to the 24-hr Zeitgeber. If sleep were to begin at the temperature
minimum, when the subject feels the most sleepy, then sleep would begin too
late; it would begin during the light phase and would occur entirely within the
light phase. This subject is a "night owl"; the phase of his temperature rhythm is
delayed. For other subjects, the temperature minimum occurs somewhat earlier,
near the end of the dark period, but sleep triggered at the minimum will still
occur too late. These late sleep times will not be adaptive ecologically or
socially, in most circumstances.

We can account for the earlier onset of sleep in the 24-hr day by considering
other factors. The subject may go to bed before the minimum because he knows
it has been dark for a long while and believes it is the proper time for sleep. This
could be called masking by the LD cycle, or behavior prompted by the
knowledge of time. In addition, he has been awake all day, has built up some
sleep need, and may feel tired. Finally, his temperature has started to drop; so
he is beginning to feel sleepy. All these factors, circadian rhythm, masking, and
sleep need, may contribute to his desire and ability to go to sleep before the
minimum. In the 26%-hr day, the circadian oscillator and therefore the
temperature rhythm assume a new entrained phase relationship to the
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Zeitgeber. The temperature minimum occurs shortly after "lights out." At this
point the subject is the most sleepy, and he knows it is nighttime. All factors
converge to make it a perfect time for bed. In conclusion, only one oscillator is
necessary to explain these various phase relationships if we assume that other
factors in addition to the circadian oscillator can influence the scheduling of
sleep and wake in the human.

FORCED INTERNAL DESYNCHRONIZATION

Although internal desynchronization may never occur spontaneously in some
subjects, at least during the time in isolation, it can be reliably forced by
Zeitgebers with periods near the limits of entrainment. Figure 8 shows a subject
who was entrained to the 24-hr Zeitgeber, but became desynchronized (as
defined by the presence of more than one period in the activity periodogram)
when a 28-hr Zeitgeber was applied. According to the traditional theory, 28 hr
was outside the range of entrainment for the temperature oscillator, so that it
free-ran with a period of 24.8 hr. On the other hand, the activity oscillator had a
larger range of entrainment, so that it remained entrained, or relatively
entrained, to the 28-hr Zeitgeber (9,10,48,49).

Once again, let us explore one of the ways these results can be explained with
a single circadian oscillator. This oscillator could drive the temperature rhythm
and free-run in the 28-hr day because 28 hr is beyond the limit of entrainment.
The activity rhythm, on the other hand, could have been partially controlled by
the circadian oscillator and partially influenced directly by the LD cycle. The
daily chart (Fig. 8) shows that the onsets of activity followed the free-running
temperature rhythm. On each day, activity started a little before the temperature
maximum. On the other hand, the onsets of rest did not follow the free-running
rhythm, but tended to occur near the beginning of the dark phase. This is
perfectly understandable, because this subject did not have access to reading
lamps and had little choice but to go to bed when the overhead lights were off. In
this view, then, the activity rhythm consists of two components (both of which
appear in the activity periodogram), a free-running component produced by the
circadian oscillator and a masking component due to the LD cycle. According
to this single-oscillator theory, the range of entrainment of the activity rhythm
was not larger than the range of entrainment of the temperature rhythm; it only
appeared to be larger because of masking by the 28-hr LD cycle. In conclusion,
only one oscillator is necessary to explain forced internal desynchronization if
we assume that other factors in addition to the circadian oscillator can influence
the activity rhythm of humans.

CONCLUSIONS

The traditional model of human circadian rhythms, developed over the years
primarily by Wever (48,49), can explain many phenomena, including spon-
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FIG. 8. Top: Daily chart of a subject isolated in an underground bunker and exposed
to Zeitgebers consisting of an overhead LD cycle with twilights and periodic gongs.
Solid bars, activity. Open bars, rest. Triangles, maxima and minima of the daily
temperature cycle. Shaded areas, dark phase. For the first 8 days the subject was
entrained to a 24-hr Zeitgeber. Then internal desynchronization was forced by a 28-
hr Zeitgeber. Notice that this graph is plotted on a 28-hr time axis. Bottom:
Periodograms during entrainment to the 24-hr day (A) and during forced internal
desynchronization (8). (From Wever, ref. 49, with permission.)
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taneous internal desynchronization, changes in internal phase relationships, and
forced internal desynchronization. This theory relies on the concept of an
activity oscillator that can have an extremely long or short free-running period
and is weaker (and therefore has a larger range of entrainment) than the
temperature oscillator. However, we have also seen that the same human
circadian phenomena can also be explained by a single circadian oscillator.
Rather than invoking a separate activity oscillator to explain the divergent
pattern of activity, the single-oscillator model employs "voluntary" behavior,
masking, and sleep need, in addition to the basic circadian oscillation.

In the excitement of unraveling the components of multiple-oscillator systems
in recent years, we may have overestimated the need for multiple oscillators to
explain much of the data. Any apparent dissociations or desynchronizations
between rhythms are often ascribed to the uncoupling of component oscillators.
We might learn more about circadian rhythms by considering how these
patterns could be produced while the oscillators of the circadian system function
synchronously as a single unit.
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DISCUSSION

Dr. Czeisler: Most of your phase-shift data seem to be based on free-running patterns
of human subjects in which there is a reversion after each phase jump to the period seen
during the internally synchronized free run. Have you modeled subjects who consistently
have a 30- or 40-hr free-running period?

Dr. Eastman: The more often the subject skips the minimum, the longer the periods
become, and you can get all the way up to bicircadian days if you skip every other
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minimum. There are two patterns of bicircadian days. In one, the subject sleeps on a
minimum, skips a minimum, sleeps on a minimum, etc., and you can explain that easily
with this model. Another pattern is when the subject skips a minimum and then goes to
sleep a little past the time where the temperature starts to drop, has a very long sleep, and
then skips the next temperature minimum since it has not been that long since he has
been up.

Dr. Czeisler: When you model these shifts, do you have to take the original data,
program each shift into a computer, and then say, "Now, there is another shift"? If so, it
would then become a question of whether you have a model or whether you are just
telling the computer to reproduce the actual data.

Dr. Eastman: Well, the model predicts that the subject will usually go to sleep on the
minimum, and it will soon, I hope, predict how much feedback there is. Of course, if the
subject skips the minimum because of some reason that only he knows (for example, if he
is reading a book), we could never predict that. So, of course, I have to copy that from the
real data.

Dr. Czeisler: Dr. Wever said in his talk that he does not like two oscillators because
six parameters must be defined, but at least those are defined at the beginning, before the
program is run.

Dr. Eastman: My parameters are all set for the whole model. There is only one
parameter that changes, and that is the day on which there is a shift.

Dr. Czeisler But that is the key thing, the thing that needs to be explained.
Dr. Eastman: What if that happens because of the subject's behavior?, You cannot

hope to predict that. That is the cognitive factor that people want to explain.
Mr. Pilato: To what extent is the pattern of skipping sleep periods systematic, and

what kind of mechanism would you use to explain it? Does the subject have to count
every 4 days? Is it a sleep-debt system, and is that an oscillator?

Dr. Eastman: Well, I think whatever you have, you have to introduce noise in terms
of the subject's behavior. Serge Daan has what I consider to be a beautiful,
sophisticated version of my model. [See S. Daan and D. Beersma, this volume. D.Wiza:Itiktepitta btesm oti h ocp fa

unknowable, not unknown, but unknowable, factor. That is, from a scientific point of
view, not acceptable. You rule out the search for causality by saying that the subject just
decided to do some particular action and that is his "behavior."

Dr. Eastman: In my view you have got two things going. You have got an oscillator
which induces a tendency to go to sleep at the minimum, but which the subject can
ignore to a certain extent.

Dr. Czeisler: In our studies we are in frequent contact with the subject and have asked
ourselves why they stay up late on some nights. The first few times subjects stayed up
past their temperature troughs and remained awake for an extended length of time, we
searched for things that might be keeping the subject awake. Was he trying to finish a
crossword puzzle, or was he trying to read a book, as you suggest? The remarkable thing
is that in the vast majority of cases they were not working on anything in particular. They
were not in the middle of a project that was keeping them awake, as we might have
thought. We have the subjects on a video monitor, and we can sit there quietly and watch
them. They may prepare lunch or do something else. It is very hard to imagine while
watching them that something is directly keeping them up.

Dr. Eastman: But is it not true that when they skip sleep they still feel tired when that
minimum comes along?

Dr. Czeisler. Yes, according to their subjective assessments of alertness.
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Dr. Borbely: Dr. Czeisler, do you discourage the subjects from napping?
Dr. Czeisler: Yes. As you know, the instructions to the subject were that they could

go to sleep at any time that they desired, but we asked the subjects not to nap. When they
chose to go to sleep, we ask that it be for the night.

Dr. Kronauer: I would like to make a mathematical comment. Dr. Eastman, first I
would like to compliment you on the two-oscillator model that you have introduced using
two periodicities. It is an ingenious way to take two periods that are both close to
circadian and end up with one that is quite far removed. But because the one-oscillator
model involves a skip every 3 or 4 days, you must recognize that what comes out of that
at peak periods in ratios are the ratios of low integers, like 4 to 3. In other words,
basically what you are generating is one oscillation with something on top of it which is a
type of super subharmonic, and I think that the data simply do not support the fact that
these desynchronized periods are the ratios of low integers.

Dr. Wever: In one experiment there was a subject in our bunker who was free-running
during the first 2 weeks and then became synchronized to a 24-hr Zeitgeber. He was the
first case we ever had of unintended social cues. The Zeitgeber was the female technician
who was taking out the urine samples and who did not follow our instructions to go to the
locked outer chamber once a day at very irregular intervals, if possible when the subject
was sleeping. Later on, I found that the technician had fallen a little bit in love with the
subject before the experiment She left some letters in the locked chamber at a regular
time. [Laughter So the subject went into his outer chamber every 10 min until he found
that his urines were removed, and there on some days was a letter. He was not aware, of
course, that his rhythm changed. That was the first case we really had of social
synchronization.
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Modeling Principles for Human Circadian Rhythms

Richard E. Kronauer

Division of Applied Sciences, Harvard University,
Cambridge, Massachusetts 02138

The objective of this chapter is to present a review of features of human
circadian rhythms that must affect any attempt to model the human circadian
system. It is unfortunate but true that direct physiological knowledge of this
system is so rudimentary as to afford almost no basis for model construction.
This means that models are merely mathematical constructs that serve to
organize our view of system performance. One model has an advantage over
another only if it matches more data features or is more economical in form.

ESSENTIAL MODEL COMPLEXITY

Perhaps the most important single experimental observation is that the sleep-
wake cycle and the body-temperature rhythm of the free-running human can
exhibit two different circadian periods at the same time (1). Furthermore, these/ periods do not appear to be related by any ratio of low integers, so that one
oscillation cannot be supposed to derive from the other by any relatively simple
frequency multiplication/demultiplication scheme. Within the family of models
described by ordinary differential equations it is possible to generate two
incommensurate oscillk ';ng frequencies with a third-order system (2), but only
when special care is exercised. The ordinary third-order system generates
frequencies that are rationally related. The mathematical distinction between
these two situations is that in the former the limit set is a toroidal surface,
whereas in the latter the limit set is a line that spirals about the torus and
ultimately closes in a finite number of cycles. If one wishes to avoid
mathematical oddities and still retain the differential equation form, it makes
sense to advance to the fourth-order system. This also permits a kind of parity
between the two rhythms in that each can be viewed as originating principally in
its own second-order system, while mathematically identifiable mechanisms
generate interactions between these two subsystems. Thus, whereas a general
fourth-order system is intrinsically more complex than a third-order system, the
reduced fourth-order system represented by two coupled second-order systems
can actually be the more economical form. Furthermore, the idea that the full
system is a conjunction of two oscillatory subsystems is given physiological
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support by studies in which lesions destroying the suprachiasmatic nuclei
(SCN) in squirrel monkeys disrupt the rest-activity cycle but leave a persisting
body-temperature rhythm (3). Other experiments in rats have shown that knife
cuts in the hypothalamus that isolate the SCN neurally do not abolish circadian
rhythmicity within the SCN (4). Thus, the SCN appear to act as a discrete
pacemaker, but other oscillating centers also exist in the organism. When the
sleep-wake cycle and body-temperature rhythm show different circadian
periods, the two subsystems are understood to have lost internal synchrony.

FUNDAMENTAL VARIABLES AND THEIR
PHYSIOLOGICAL REPRESENTATIONS

Following the nomenclature introduced earlier (5), we shall refer to xandy as
the fundamental variables of the oscillatory subsystems. In so doing it is not
necessary that the system be describable by differential equations, although
some of the evidence to be cited later strongly suggests that such a description is
realistic. When the x and y rhythms display different periods, it is possibkc to
identify these periods in a variety of physiological variables in human subjects.
It would be ideal if two readily measurable quantities could be found that would
directly represent one or the other of the primary rhythmic variables x and y.
Two quantities usually suggested for these roles are core body temperature, T~,
and sleep-wake itself (which we shall call the variable SW; SW 1
corresponds to sleep, SW = 0 corresponds to wake). From the data it is evident
that T, and SW each contain a mixture of the two rhythms, but T, is dominated
by the period close to 24 hr (which we call x), whereas SW is dominated by the/ other period (typically 30 hr or more, which we call y).

At this point it is necessary to address a very important functional distinction:
intrinsic summation versus output summation. It is the same distinction that is
drawn between feedback and feedforward in control theory. Suppose, for
example, that the x subsystem affects a particular physiological variable such as
plasma cortisol. If cortisol then affects the y subsystem, a mechanism is
established for x to exert a drive onto y, or to couple x and y. Either the cortisol
or some other variables can similarly couple y into x. Given the numerous
variables that display strong circadian variation, it would be most surprising if
significant coupling of both kinds did not exist in the human circadian timing
system. Consequently, even within the subsystems there would always be a
mixture of the two rhythms. Neither x nor y will display a pure periodicity. The
mere fact that a physiological variable exhibits both rhythms is no grounds for
rejecting that variable as being a possible "perfect" representation of either x or
y. On the other hand, a quite different situation can be envisaged. Suppose that
the coupling (internal feedback) is weak, so that x and y are almost pure
rhythmic variables (only slightly contaminated). It is possible that some
variable other than x or y can receive strong drives from both subsystems and
yet have little effect back on the subsystems. This third variable is in a
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feedforward position with respect to x and y. It can also be said to combine or
sum the outputs of the subsystems.

Using the foregoing definitions, when the system is internally desyn-
chronized, the dominant period in T, is that of x, whereas the dominant period in
SW is that of y. The question remains how well T, represents x and SW
represents y. The previous discussion shows the question to be essentially
unanswerable unless interventions can be made that either isolate the sub-
systems or drastically alter the coupling between them.

The only way this unanswerable question can be approached at present is
through arguments of plausibility and consistency, based on additional data.
Individual subjects are often observed to progress from internal synchrony to
desynchrony during prolonged temporal isolation. During synchrony the
composite rhythm has a period lying between the periods that T, and SW show
during desynchrony, and this period is heavily biased in favor of T,. (6). The
implication is that the drive of x onto y is much stronger than the drive of y onto
x [a ratio of about 4, according to a model of coupled Van der Pol oscillators
(5)]. A measure of the overall strength of the interoscillator coupling is afforded
by the differences of x and y periods when desynchrony first appears (typically
an 18% to 30% difference).

Putting these observations together, we are led to expect that the intrinsic y
variable will necessarily contain a significant component with the period of x,
while x itself will remain relatively pure. It is therefore highly improbable that
any observed rhythmic variable will have only the y periodicity (unless, by

perverse chance, output summation puts just the correct amount of negativeta x~cnan infcn opnn wt h eididctsotu
into some variable so as to cancel the component of x already within y). Thus,
SW becomes a plausible candidate fory itself (insofar as timing is concerned),
and some simulations support this hypothesis (5). On the other hand, the fact
summation and suggests that T, is not a straightforward indicator of x. Another
way in which this output summation is characterized is to say that there is a
component of core temperature that is "evoked" by activity or suppressed by

sep(7). This concept is quite widely accepted, but it is important to note that
hidnwithin it is the assumption that the drive from y onto the x subsystem is

not important in this context.

THE CHARACTER OF SYNCHRONY LOSS

A very important feature of human free-run data is that synchrony and
desynchrony are not the only states observed. A condition commonly exists in
which the SW rhythm has, on average, the same period as the T, rhythm, but
SW has large excursions of phase with respect to T, Although some of these
phase variations are undoubtedly random, there are also significant regular
components that modulate the phase with periods in the range of 4 to 7 days.
This phenomenon is called phase trapping (5). Three examples are shown in
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Fig. I. The middle of each sleep episode is marked, and a slightly smoothed line
is drawn through or near these points to emphasize the fundamental regularities.
Observe how in each case most of the variations of phase can be accommodated
by this regular modulation. Note that the modulation periods are comparable to
the beat periods between x and y that are observed early in desynchrony (see
Figs 2 and 4A). Phase trapping is often encountered as an intermediate stage
between synchrony and desynchrony; this suggests that phase trapping and
desynchrony are related and that desynchrony may be the further development
of a process begun with the initiation of phase trapping. Phase trapping actually
represents the failure of the free-running system to enforce synchrony between x
and y, and in this sense phase trapping bears a closer relation to desynchrony
than to synchrony.

There is a simple explanation of phase trapping within the context of
quasilinear oscillators that, although specialized, is worth summarizing here,
because it may possibly have more universal implications. The explanation
begins with the idea that there is a progressive reduction of the tendency of x
and y to synchronize, either because of a reduction in coupling strength or
because of an increase in the disparity of the oscillatory periods intrinsic to the x
and y subsystems. (I shall offer evidence to suggest that it is more likely the
increase in disparity of period that reduces the tendency to synchronize.) At
some point, synchrony is lost, and the y subsystem begins to develop a small
component at or near it intrinsic period, in addition to the large component
already imposed on it by x. Further reduction of the tendency to synchronize
causes progressive growth of the intrinsic component, with concomitant growth
in the amplitude of phase-trapped modulations. All the while the average period
is that of x, because the imposed x component is still the larger. The transition
to desynchrony occurs when the intrinsic component becomes larger than the
imposed component, whereupon the average period of y becomes that of the
intrinsic component.

This explanation is extremely economical in terms of modeling. Furthermore,
phase trapping appears to be very difficult to explain in any other way. In any
event, phase trapping is a phenomenon that any credible model must be able to
accommodate. A consequence of this interpretation of the relationship between
phase trapping and desynchrony is that the transition from the former to the
latter is the result of a minor change in the relative strengths of imposed and
intrinsic components. The overt effect of the transition is a dramatic lengthening
of the average period of SW (typically to 30 hr from a previous value of 25 hr),
and usually with an exceptionally long subjective day-night cycle at the very
beginning (often 40 hr). It is also possible to imagine that in some subjects the
circadian system might remain poised at or very close to the transition threshold
and under small extraneous influences might cross and recross the transition
boundary. An example of this kind of system behavior is shown in Fig. 2. This
subject lived in isolation from temporal cues for 170 days at the Laboratory of
Human Chronophysiology, Montefiore Hospital, New York City. The subject
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FIG. 2. Activity-rest cycle pattern plot: The sleep record of a subject allowed to run
free for 170 days. These data were taken at the Laboratory of Human Chrono-
physiology, Montefilore Hospital, New York City, by C. A. Czeisler, J. M. Zimmen,
and E. D. Weltzman. Internal desynchronlzation occurs first at day 82, but the subject
returns from time to time to the phase-trapped state. After day 145, the subject
remains permanently in the state of internal desynchronlzatlon. The average length
of the activity cycle increases progressively (but not monotonicaly) throughout the
6-month study. (From Kronauer et aL, ref. 10, with permission.)
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first became desynchronized on clock day 82 and remained so for 10 days.
From day 92 to day 101 there were two phase-trapped modulation cycles,
whereupon desynchrony resumed. Phase trapping reappeared between day 119
and day 146, with the exception of one cycle of desynchrony centered at day
130. After day 146 the subject remained desynchronized for the remainder of
the experiment.

MODE OF ACTION OF A LIGHT/DARK ZEITGEBER

Further information about the circadian system has been provided by
experiments in which external Zeitgebers have been manipulated. At the
Montefiore Hospital facility, an imposed 24-hr light/dark cycle has been found
to be an effective entrainer of SW in humans. In certain experiments of Aschoff
and Wever (6), light/dark cycles alone were not effective in entraining SW at a
variety of periods. The difference may well be due to the strictness of the light/
dark cycle at Montefiore; no auxiliary light could be switched on by the subject
during the dark (an available option in the relevant Aschoff and Wever cases).
At other times, a stronger Zeitgeber protocol was also employed by Aschoff and
Wever, this included the ringing of bells at intervals of one-eighth of the
imposed period and a somewhat stricter observance of "dark." This stronger
Zeitgeber entrained subject activity from periods as short as 18 hr to periods as
long as 30 hr.

An important question is the mode of action of the light/dark stimulus
(designated z) on the circadian system. In particular, does z act directly on one
or both of the x and y subsystems? Because of the physiological evidence of
direct input to the SCN from the retina via the retinohypothalamic tract in
mammals (8), it is highly likely that z acts on the y subsystem. Because y acts on
x, the pathway z - y - x provides a two-stage connection from z to x. That is,
the intrinsic coupling between y and x transmits the effect of z to x as well as to
y. The same can be said of any possible direct action of z on the x subsystem;
the action will be felt on y as well.

One of the amply documented (6,7) effects seen on release of a subject from a
24-hr entraining Zeitgeber is an adjustment of the relative phase of T and SW:
T advances with respect to SW. The extent to which x advances with respect to
y cannot be estimated with high accuracy because of the evoked effect of SW on
T, but it is probably about 5 hr, typically. The substantial size of this shift (750
of phase) is very revealing. The phase relationship observed in free run
represents the situation where x is effectively controllingy (because the drive of
x onto y is so much stronger than that ofy onto x). Under Zeitgeber action, if z
were to enter the x - y feedback loop predominantly by drive onto x, the phase
relation between x and y would have to be essentially the same as in free run.
The large phase shift actually observed shows that z enters the loop
predominantly by drive onto y (and perhaps exclusively so).
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Substantiation of this view of the way in which z acts on the x - y system is
afforded by phase-shift experiments. When subjects are transported across
several time zones, the adjustment of the SW rhythm is effected rapidly (within
a day or two). The adjustment of T proceeds much more slowly, seldom
attaining a shift rate of I hr per clock day (9). If z were to act directly on x to a
significant degree, the adjustment of T would occur at a rate comparable to
SW. In fact, the slow adjustment of T reflects not only the absence of
significant z - x drive but also the relative weakness of the y - x drive.

If one makes the conjecture that the "absence of significant z - x drive" is
actually the total absence of drive from z to x (when z is a light/dark stimulus),
then x is remarkably isolated from z. How then is one to explain the observation
that, under appropriate conditions, such a Zeitgeber can entrain x without
entraining y [as in Fig. 81 of Wever (6), reproduced here as Fig. 31. This
apparent paradox has a rational explanation and is also susceptible to modeling,
as I shall show later. It is first necessary to point out that such a subject, in the
absence of z, is in desynchrony and that the free-running periods of x and y are
very disparate. Furthermore, the intrinsic period of x is within 1% or 2% of the
period of the imposed z. Thus, in order for z to entrain x but not y, it is only
necessary for the component that z induces in y to be insufficient to bridge the
large disparity in z and y periods yet sufficient to bridge the tiny disparity in z
and x periods (despite the large attenuation that component suffers through the

Time (hours)
0 12 24 12 24 12 24 12 24 12 24 12 24 12 24

4
6 "t-25.0 hr : 1

10
12

7O

200

FIG. 3. A record of rest (open bars), activity (filled bars), body-temperature maxima
(upward-pointing triangles), and temperature minima (downward-pointing triangles)
for a subject under a light/dark Zeitgeber influence. (Vertical hatched bars, Zeitgeber
dark.) (From Wever, ref. 6, with permission.)
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weak y - x drive). In fact, there must always be a small band of disparities
between the z and x periods for which such an entrainment will be found,
regardless of whether or not y is entrained.

The converse situation to the one just described, where z entrains y but not x,
hardly needs comment. All that is required is for the z and x periods to be
sufficiently disparate that the combined effects of z and y (now both having the
period of z) felt through the y - x coupling be insufficient to enforce synchrony
of x. What is perhaps less obvious is that in either situation, where only one of
the two subsystems is entrained to z, the entrainment of that subsystem is
imperfect. Because the nonentrained subsystem possesses an average period
different from that of z, and because the two subsystems are mutually coupled, it
is inescapable that the entrained subsystem will contain a component having
that different period. The component will be small, but nevertheless it will
modulate the entrained variable so as to give the appearance of phase trapping
with respect to z, rather than perfect synchrony with z.

Finally, two other situations can arise under the action of z. In one of these
situations, x and), can proceed with the same average period, but it is a period
that is different from that of z. (This is the case of a subject whose free-running
state is either synchrony or phase trapping and for which the Zeitgeber either is
very weak or has a large period disparity with the x -~ y composite.) In the other
situation, x, y, and z all exhibit different periods. In either of these two situations
there will be phase modulations of both x and y.

/ AN EXEMPLARY MODEL

My colleagues and I have presented elsewhere (5, 10) a mathematical model
that incorporates all of the performance features described. A brief summary
will be given here, but for full details the earlier presentations should be
consulted. Each of the x and y subsystems is represented by a Van der Pol
oscillator, and the mutual coupling is represented by a single linear term in each
oscillator. The Zeitgeber, z, is presumed to act on y alone. In nondimensional
form, the model differential equations are

k29 + kA,(- I + X2).j + w,2x + ~ -

(k 7r/1~2)

k'y + kL(- I + y') + &'y + F.,ki = ,.

As written, the intrinsic oscillator frequencies W,~ and w , assume values of unity
if the corresponding periods are 24 hr. Periods longer than 24 hr are represented
by w,~ or wy less than unity. The reasons for the particular form chosen for the
mutual coupling will not be reviewed here, except to note that this form gives a
compromise period for the two oscillators, when they synchronize, that lies
between the intrinsic periods of the separate oscillators.
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Parameter values that give good agreement with observed system perfor-
mance are

f,> = -0. 16, Fyx = -0.04, fLtx = O. 1, jt y = O. 1,

tx = 0.985, 0.95 > w., > 0.5

Because both y, and p.. are much less than unity, the individual oscillators are
of the quasilinear type (their limit cycles are almost circular, and their
waveforms are almost pure sinusoids). For each, the transient adjustment in
amplitude after an impulsive disturbance is relatively slow (approximately 10
radians or 2 cycles as the adjustment time constant). The ratio of the mutual
coupling coefficients is 4, giving x a large dominance over y. Consequently, it is
the absolute size of F,y that establishes the range of frequency disparity,
to. - wo, for which synchrony can be found. Approximately, when
a - .I >I F, I, phase trapping or desynchrony will be encountered. The

intrinsic period assigned to the x oscillator is slightly over 24 hr (24,36); phase
trapping is found when the period of the y oscillator (r,,) exceeds 27.7 hr, and
desynchrony occurs when r,. is more than 29.3 hr.

As discussed elsewhere (5), studies of subjects in extended free run have
shown that once desynchronization occurs, there is often a progressive
lengthening of the period of SW. Figure 2 is a case in point: Between day 80 and
day 140 the desynchronized sections show r. in the range 30 to 35 hr, whereas
after day 140 the r, lie in the range 32 to 49 hr. The lengthening of -r.t is
certainly not monotonic, but the overall trend is unmistakable. I postulate that a
subject who displays internal synchrony when released into free run and then
subsequently displays phase trapping and desynchrony does so because w, is
progressively decreasing during these events. Other subjects who go directly
into phase trapping or desynchrony on release presumably do so because Wy is
already sufficiently small when free run is begun. I have found that free-run
records generally can be well simulated by our model while holding all
parameters other than w,. fixed throughout. I am consequently led to postulate
that, for unexplained reasons, w, is a very labile parameter, whereas all the
other system parameters are very stable over the time course of an experiment.
Figure 4 shows a comparison, taken from an earlier study (5), between an
extended free-run experiment and a model simulation in which W, was made to
decline steadily while all other parameters remained fixed. There is reasonable
qualitative agreement. In Fig. 4B (and in Figs. 7, 8, and 9), the sleep episodes
(solid bars) correspond to the central two-thirds of the times when y is below
zero, and the stippling corresponds to the times when x is below zero. Because
of the evoked effects of SW on T (as yet inadequately understood), the
episodes where T is below its mean should occupy some intermediate position
within the stippled band and the sleep bars, presumably favoring the stippled
portion.

Computer simulations reported earlier (5) show that there are relatively
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stringent limitations on model parameters for phase trapping to exist. In
addition to the frequency disparity, w, - wt,, having to be sufficiently large (but
not too large, or desynchrony will occur), there are two other important
conditions. First, ply must be quite small (less than 0.2 approximately), and,
second, the drive from x - y must be considerably larger than the drive from
y - x. Both of these conditions obtain in the normal human circadian system,
and it is especially interesting to note that the meeting of these conditions can be
deduced from evidence that has nothing to do with the existence of phase
trapping itself. The fact that p, is approximately 0. 1 can be estimated from the
time course of the internal phase adjustment that is seen on release from z. The
much larger x -, y drive than y -- x drive is evidenced by the strong bias of the
synchronized compromise period in favor of the intrinsic x period.

THE MODEL WITH PERIODIC ZEITGEBER EXCITATION

The inclusion of Zeitgeber drive presents the modeler with two fundamental
questions: Is the waveform of z important? What amplitude of drive should be
chosen to simulate the relatively weak or relatively strong light/dark stimuli
described earlier? If z is periodic in the circadian range, and if the parameters of
the model are in the normal range (close to those listed earlier), the waveform of
z appears to be irrelevant for phenomena that involve two or more circadian
cycles. Different waveforms are approximately equal in their effects, provided
the fundamental Fourier component (i.e., the circadian component) is the same
in the two waveforms. The reason is that the y subsystem is a quasilinear
oscillator and acts like a resonant filter. Only the z component in that resonant
range has any significant influence on y. Consequently, it is possible to use the
simple functional form

z Fzy cos(kwt + Oz)

in entrainment studies. For acute phenomena, such as determining the length of
rebound sleep after a specific sleep-deprivation episode, a more detailed
description of z may be required.

How large the influence coefficient, Fy, should be to represent weak or
strong Zeitgebers can be estimated by choosing values that produce in the
simulation entrainment limits that match observed limits. The strong Zeitgeber
of Aschoff and Wever (6), for which entrainment of SW in the period range 20
to 30 hr has been demonstrated, requires Fy to be approximately 2. At the other
end of the range, a Zeitgeber that fails to entrain SW to an imposed 24-hr period
when the intrinsic wy is 0.85 (a period of 28.5 hr) corresponds to F, of about
0.7. The entrainment of y also depends on the value assigned to to, and the
foregoing estimates are based on w, = 0.985.

I have undertaken a study of entrainment limits for a fixed Fy in which each
of w,,, toy, and o, take on a wide range of values relevant to experimental
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conditions. All the other system parameters are held fixed at the values
described earlier. Ostensibly, such a study involves three system parameters
and is consequently very laborious. However, mathematical arguments (which
will not be expounded here) show that the performance of the system (including
entrainment limits) can be characterized with reasonable accuracy in terms of
frequency differences alone. For these I have chosen ao, - W, and W, - W,.
Furthermore, the mathematics show that changing the signs of both frequency
differences (but preserving their magnitudes) leads to the same system
performance (except for an inversion of the phase relationships with z).
Consequently, the study for either one of the frequency differences can be
restricted to only its positive or negative values. I have therefore chosen W,. -
to have only negative values (the conventional situation), and wx - w is
assigned both positive and negative values.

The results of the study for a weak Zeitgeber (F,: = 0.7) are shown in Fig. 5.
The contours in this entrainment diagram represent the values of frequency
differences at which changes occur in the character of the system response to
the imposed Zeitgeber. The areas of the diagram demarcated by the contours
correspond to specific types of system responses and are designated by letter
symbols. The meanings of these symbols are as follows:

WY- WZ

S

-08 -06 -04 02 -0 02 04 06

PPy'

-2
pP

2

N S 4

FIG. 5. The entrainment diagram for a system of two interacting Van der Pol
oscillators with a sinusoidal Zeitgeber acting on y alone. The lettered symbols are
explained in the text. Zeitgeber strength is 0.7.
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S: full synchrony; both x and y are entrained to z, and no phase
modulations are seen

Py,: y is entrained to z, but x is not; because x has an average period
different from that of z, the y variable shows phase-trapped
modulations

P"z: x is entrained to z, but y is not; the x variable shows phase-
trapped modulations

P,': x and y have the same average period, which is different from that
of z; both x and y show phase-trapped modulations

P,, or .x: x and y have the same average period as z, but they are only
phase trapped to z, not synchronized; the first subscript denotes
which of x or y has the stronger phase modulations

NS: complete desynchronization; x, y, and z all have different average
periods; both x and y show a complex mixture of the three
periods

To facilitate the interpretation of Fig. 5, modified versions are shown as Figs.
6A and 6B. They emphasize, through shading, the range of frequency
differences for which z entrains x or y, respectively. In both figures, the shaded
area represents all those cases where the particular variable has the same
average period as z. On all three diagrams, small ranges of ox and wy values are
indicated that are presumed to be typical of healthy young adults functioning in
the conventional 24-hr environment. Such subjects would, on release from
Zeitgeber drive, be in an internally synchronized state, but close to the phase-
trapped state.

The first thing to note in any of these figures is that the scale of w, - w, is
expanded five times with respect to the scale of woy - co. This is because the
effective isolation of x from z results in a much smaller range of entrainment for
x than for y. As Fig. 6A shows, x can be entrained for I W, - Io, < 0.036 when
y = w, and as I wy - w I increases, the range of entrainment progressively

decreases. There is also a slight shift of the center of the entrainment band, so
that for toy - to, < 0. 1 the band is displaced about 0.005 in the direction of
positive (p, - w,. Qualitatively, the entrainment band for x is quite regular, and
the results can be presented very simply. For wy in the "normal" range
(1 w,, > 0.88), x can be entrained by z, provided the intrinsic period of the x
subsystem is within about ±0.8 hr of the Zeitgeber period. For w,, in the range
appropriate to internal desynchronization (, < 0.85), the total range of period
discrepancy between x and z for which entrainment occurs is no more than
about 1 hr and is biased in favor of x periods that are shorter than z by about 10
to 15 min.

The entrainment of y is somewhat more complex. In crude terms, z can
entrain y over a very broad frequency range I w, - (0),I 1 0.4. This magnitude is
very close to what one would find if the x subsystem were to exert no drive onto
y (i.e., Fy 0). However, the existence of the x -. y drive produces some
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marked differences from such a simple picture. In the region where x is
entrained by z and w, - wo < 0 there is a marked reduction in the ability of z to
entrain y (this is represented by the tongue-shaped region labeled p). This
reduction is due to opposition between the x - y drive and the direct z - y
drive. The other marked effect of the x - y drive is the creation of the P,,
regions. In these regions, y prefers to be entrained to x (i.e., phase trapped to x)
rather than entrained to z. Interestingly, these regions do not correspond to the
condition w. = w, as might have been supposed, but are displaced from this
locus in the direction of larger I w. - w, I. In fact, the existence of these P,.,.
regions must be counted one of the least easily explained phenomena of this not-
too-complicated system. What is particularly surprising is that at any fixed
w, -(wz < 0.042, as w.- wz is progressively decreased below zero, the y
subsystem prefers first to be linked with z, then to be linked with x, and then
again linked with z before, finally, desynchrony occurs. Because the progressive
detuning between y and z (i.e., increase in I wy. - w, I) is accompanied by an
equal progressive detuning between y and x (increase in I o, - ), it is not at
all obvious why the y entrainment preference should alternate in this way.

Probably the most remarkable result displayed in this entrainment diagram is
the existence of the extensive P,, regime, where the failure of y to be entrained
occurs for values of wy - w that are well within entrainment limits if the x - y
drive is absent. The x subsystem is actively suppressing y entrainment, while at
the same time x itself is entrained. What is also very interesting is that this
remarkable situation occurs for values of the frequency differences that are not
far from "typical" values. Suppose the "typical" subject were to be released
into free run and his wy were then to decrease secularly, so as to bring about
internal desynchrony. Such a subject would then have exactly the proper w, and
w,. values to exhibit P. when a relatively weak 24-hr light/dark cycle is

reinstated.
Between the P, regime and the S regime the entrainment diagram shows a

narrow band of Py,,. There is an analogy between this and the free-run situation
where the phenomenon of phase trapping is interposed between synchrony and
desynchrony. Here, as y is breaking away from the xz alliance, there is a band in
which y is phase-trapped to xz before the complete break occurs.

It is instructive to see the actual forms that the computer simulations take for
various cases of partial entrainment. Figures 7A and 7B show examples of P,
and Py), respectively. In both of these simulations the period of the Zeitgeber
was maintained at 24 hr (w.. = 1), and the appropriate frequency differences,
wx - wz and wy - w, were achieved by adjusting w and wy. Consequently, w,,
is below what I would consider the normal physiological range (which is a very
small range). The simulations could alternatively be taken to represent a normal
subject exposed to a Zeitgeber of period less than 24 hr (approximately 23 hr),
for which the plotting has been made with respect to the 23-hr reference. The
Zeitgeber is a cosine function of amplitude 0.7, with its positive maximum
occurring in the center of each time band. Thus, it is convenient to think of the

t .q-.
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Time of Day (hrs)

24 24 24
Day 0 AI?20.'i

30 -FIG. 7. A: A simulation demonstrating Pyz.
-For this example, wz = 1.0, wx = 0.98, and

40 w = 0.77. The Zeitgeber is sinusoidal, with
strength 0.7, and acts on y only. The center of
each band corresponds to the time when z

50 has a positive maximum. Plotting convention
as in Fig. 4B. B: A simulation demonstrating

60- Pvx For this example, *' = 1.0, ct = 0.94,
and (a. = 0.85. Except for o and 0y, every-
thing is as in A. Plotting convention as in Fig.

DayB 4B.

fo

30X

center of each band as representing "dawn," or the principal awakening
stimulus.

Consider PiT first (Fig. 7A). Here x displays its intrinsic period (which is
longer than the period of z), although there are significant modulations of its
phase drift. The regions ofx below the mean tend to drift more slowly at the
phase position in which they occur shortly after "dawn." Sleep generally occurs
in approximately the normal relation to the "dawn" stimulus. It can, however,
be drawn off to later daily times by the influence of x, when x reaches a phase
relative to sleep that is close to that normally observed in synchrony. It is
especially interesting to note that when the Zeitgeber and x work in concert on
y (as for days 0 to 15, fot example), the sleep episodes occur with a smooth
regularity. However, when their effects oppose (as for days 16 to 38), the
Zeitgeber is able to enforce only a phase-trapping constraint on y. This phase-
trapping cycle has a period of 4.5 days.

In the example of Py, (Fig. 7B) there are some evident effects of z on x, but
much less than those seen in Py,, because y is itself no longer following z.
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Although y is following x (on average), the effect of z on y is very strong, and
there is the suggestion that y is periodically almost "captured" by z. This
occurs, understandably, when x has drifted to the phase position with respect to
z that it assumes for normal entrainment to a 24-hr Zeitgeber. It is at this phase
that x and z act on y in a cooperative way.

Figure 8 shows an example of a system with no mutual entrainment
whatsoever (NS). For this simulation it is convenient to think of the Zeitgeber
as having the normal 24-hr period and the intrinsic period of x as being within
the normal range (24.5 hr). However, the intrinsic period of y is much longer
than normal (40 hr). This period is one that is seen in some internally
desynchronized free-running subjects, usually after the desynchrony has
persisted for a long time. Thus, the simulation can be thought of as what might
be found if such a free-running subject were to be expos;d to a relatively weak
24-hr Zeitgeber. As in Figs. 7A and 7B, it is clear that when the drift of x brings
its phase, relative to z, to the value it has under ordinary entrained conditions,
the action of x together with z makes y appear to be phase-trapped to z (with a
modulation cycle of about 3 days). However, as x drifts away from this special

Time of Day (hrs)

24 24 24

Day.

30

40 FIG. 8. A simulation demonstrating NS.
For this example, wz = 1.0, w, = 0.98, and
5y = 0.63. All other properties and con-
ventions as in Fig. 7.

60

70

80

90

100



MODELING PRINCIPLES 123

phase, y breaks loose and exhibits its own intrinsic period. Thus, the NS state of
Fig. 8 is readily seen to be similar to Py. of Fig. 7A, except that the ability of z
and x to influence y is weaker for Fig. 8 by virtue of the greater disparity of the y
and z periods.

To demonstrate the rather unusual system behavior of Pxz, a simulation is
chosen (Fig. 9) in which the z period is 24 hr and the intrinsic x period is 24.24
hr (a normal value), but the intrinsic period of y is allowed slowly to lengthen,
increasing from 28.24 hr to 30 hr over 100 days. At the outset, both x and y are
entrained to z in a very conventional set of relative phases. As the y period
lengthens, the phases of both y and x are delayed progressively with respect to
"dawn," until at day 23 the model subject does not awaken until about 6 hr after
"dawn." But with further increase in the y period, the phase of y advances,
while the phase of x is delayed further. Then, because the effect of x on y now
tends to oppose the effect of z on y, y begins to break loose from the combined
influences. First, y falls into phase trapping with respect to the xy group (Py,,,
and as the phase-trapping amplitude grows, it ultimately develops into a loss of
entrainment for y, (P,,,) This sequence bears a very close resemblance to the
sequence of synchrony, phase trapping, and desynchrony seen in free-running
subjects as the period of y is lengthened (Fig. 4B). Indeed, the loss of
entrainment takes place at ty, = 29.3 hr, which is closely comparable to the
value at which desynchrony is often seen in free run. There is, however, a very
important difference from the free-run situation because of the phase of x. Mid-
low x occurs after sleep in the P,,,. regime, whereas it occurs Weore sleep in the
free-run phase trapping. The reason for this reversal, according to the model, is
that it is z that exercises the dominant influence over y in both PX and P.,

whereas in free run there is no z, and y is necessarily under the influence of

Figure 9 illustrates that in P,, the sleep episodes cluster about the middle of
each 24-hr interval, which is the time of Zeitgeber "dawn" (peak z drive). The
longest sleep episodes are centered about 12 hr after this. Also, there is a band
of 6-hr width that begins about 14 hr after "dawn" and ends about 4 hr before
"dawn," during which no awakening takes place. It is this suppression of
awakening that gives rise to the long sleep episodes. It is very interesting to
make a comparison of this phenomenon with the human example of P", given by
Wever (ref. 6, Fig. 81, and shown earlier here as Fig. 3). These data suggest
that the subject was never entrained to the Zeitgeber and became internally
desynchronized at day 11, at which point body temperature became entrained
to z. These data also show that there is a time band lying between the hours
1900 and 2400 during which no awakening is observed. If "dawn" is taken to be
the time when the lights of the Zeitgeber are turned on, this corresponds to hour
0400 in the experiment. The no-awakening band is then seen to extend
from 15 hr after "dawn" to 4 hr before "dawn," in very good agreement with the
model. The temperature data reported in Fig. 3 give only the times at which
maxima and minima were observed, and it is very unreliable to ascertain cycle
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Time of Day (hrs)

24 24 24
Day.

10

20

30

FIG. 9. A simulation demonstrating the
40 transition sequence: S, P, Pz. For this

example, wz = 1.0, wx = 9 9 , and wz de-
creases uniformly from 0.85 to 0.80. All

50 other properties and conventions as in
Fig. 7.

60

70

8o

90-

100-/
phase from such scanty evidence. Bearing in mind this caveat, low temperature
occurs close to "dawn," whereas the model places mid-low x some 6 hr later.
Partial explanation of the discrepancy may lie in the sleep-evoked component of
T. This component has a minimum of evoked T at the time of sleep onset.
Because the clustering of sleep episodes occurs centered at "dawn," the sleep-
evoked T minimum will generally occur some 4 hr or so ahead of "dawn," and
consequently the minimum of T, accounting for the effects of both x and sleep,
will be well in advance of mid-low x.

Two other sets of human data taken from the work of Wever (ref. 6, Fig. 71,
69) are shown as Figs. IOA and 10B. In Fig. IOA, when the Zeitgeber period is
made short (22.67 hr), the subject's activity cycle follows the imposed light/
dark cycle, but T is no longer entrained and instead follows a 24.8-hr period.
This is P,.. In Fig. 10B, for the same 22.67-hr Zeitgeber, the subject's activity
and T follow a 25.2-hr average cycle length. This is Py,,. Because we have no
independent calibration of what strength the Zeitgeber of these experiments
should represent in terms of the model system, comparison between these
results and model results can be only semiquantitative. However, note that
r,-22.67 corresponds to w, = 1.059, and for either data set, t, 24.8

.' /
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A Time (hours) B rime (hours)

012 241224122A122X 01224 1224A 2

4 22

.=- 00 hr T 25.33 hr
6

81 8
10

12 12 Tz24.00 hr
14 14 t
16 116 C 1 -
18 i6 *8 1I T=22.67 hr

18 20

20 T=26.67hr 
20 r=2 hr

. '=24.8 hr

22 22

~24 24
266E 26

28
30 FIG. 10. A: A subject under the
32 influence of light/dark Zeitgeber.

Conventions as for Fig. 3. From
34 day 16 onward, body temperature
36 failed to entrain to the Zeitgeber,

38 although the activity rhythm re-
mained entrained (Pyz). (From

40 Wever, ref. 6, with permission.) B:
42 A subject under the influence of a

44 T=22.67hr r=25.2 hr light/dark Zeitgeber. Conventions
as for Fig. 3. From day 38 onward,

46 body temperature and activity

48 failed to entrain to the Zeitgeber,
although they retained a mutual

50 entrainment (PYx). (From Wever,
52 / ref. 6, with permission.)

(to -- 0.97) is a reasonable estimate. This gives w,, - w, = -0.09, which lies a
bit off the left limit of the entrainment diagram, Fig. 5. It is clear that either Py
or P,, can be found at this value of w, - o for values of wy within the normal
range. A value of Fy = 0.7 was used in the simulations from which Fig. 5 was
deduced. In very crude terms, increasing Fy by some small multiple of 0.7 will
expand the scale of the response diagram by that same multiple. Therefore, F,.
can be at least doubled without losing the two alternative responses, Py, or P.,
at that value of w - wo. In short, the fact that two different subjects displayed
the two different responses is attributable to different intrinsic Wy. But either of
those wy values is within what may be regarded as the normal range.
Furthermore, this explanation is not dependent on choosing a particular F, in
the model but is valid over a considerable range of Zeitgeber strengths.
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SUMMARY AND PROJECTIONS

From a large body of human free-run data it is possible to extract general
features that any successful model of the human circadian system must
reproduce. Once the existence of two rhythmic subsystems is acknowledged,
probably the most significant feature of the data in terms of modeling
implications is the phenomenon of phase trapping, which actually represents a
limited loss of synchrony between the subsystems.

A very simple model consisting of two quasilinear oscillators, interacting
mutually through linear coupling, is able to mimic the requisite general features
provided that one parameter (the intrinsic period of the y oscillator) is assigned
a secular variation. The physiological basis of the drifting y period is unknown.
If this simple model system is subjected to a periodic excitation via the y
subsystem, a varied collection of full and partial entrainment responses is
elicited; these depend on the differences between the intrinsic periods of the
subsystems and the period of z. These model responses have their counterparts
in various human responses seen in experiments with light/dark Zeitgebers,
thereby lending an encouraging qualitative (and semniquantitative) support to the
basic model concept.

Further progress in modeling appears to require two major experimental
thrusts. The first is an effort to quantify Zeitgeber strength through a careful
series of experiments designed to determine entrainment limits. If the model is
assumed to be fundamentally correct as it now stands, simulations show that
internal adjustments of the system take place very slowly, and therefore they
imply that experimental determination of entrainment limits is liable to serious/ error unless special precautions are taken. It therefore seems reasonable to use
model simulations to guide the design of these difficult experiments.

The second experimental development should be an effort to obtain a better
representation of x than T, alone affords. One approach is to assume that T,
represents a simple sum of the x and y influences. If, further, the y influence is
presumed to be timed by the partitioning of the activity cycle into sleep and
wake, but otherwise independent of the magnitude of y, the influence can be
determined by correlation methods, using the timing of sleep to provide markers
of cycle phase. Then the y-evoked contribution to T, can be subtracted. The
remainder is expected to be a better representation of x than T,~ itself, and
comparison with model simulations can be used to test this hypothesis.
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SUMMARY AND PROJECTIONS

From a large body of human free-run data it is possible to extract general
features that any successful model of the human circadian system must
reproduce. Once the existence of two rhythmic subsystems is acknowledged,
probably the most significant feature of the data in terms of modeling
implications is the phenomenon of phase trapping, which actually represents a
limited loss of synchrony between the subsystems.

A very simple model consisting of two quasilinear oscillators, interacting
mutually through linear coupling, is able to mimic the requisite general features
provided that one parameter (the intrinsic period of the y oscillator) is assigned
a secular variation. The physiological basis of the drifting y period is unknown.
If this simple model system is subjected to a periodic excitation via the y
subsystem, a varied collection of full and partial entrainment responses is
elicited; these depend on the differences between the intrinsic periods of the
subsystems and the period of z. These model responses have their counterparts
in various human responses seen in experiments with light/dark Zeitgebers,
thereby lending an encouraging qualitative (and semiquantitative) support to the
basic model concept.

Further progress in modeling appears to require two major experimental
thrusts. The first is an effort to quantify Zeitgeber strength through a careful
series of experiments designed to determine entrainment limits. If the model is
assumed to be fundamentally correct as it now stands, simulations show that
internal adjustments of the system take place very slowly, and therefore they
imply that experimental determination of entrainment limits is liable to serious

/error unless special precautions are taken. It therefore seems reasonable to use
model simulations to guide the design of these difficult experiments.

The second experimental development should be an effort to obtain a better
representation of x than T alone affords. One approach is to assume that T,
represents a simple sum of the x and y influences. If, further, the y influence is
presumed to be timed by the partitioning of the activity cycle into sleep and
wake, but otherwise independent of the magnitude of y, the influence can be
determined by correlation methods, using the timing of sleep to provide markers
of cycle phase. Then the y-evoked contribution to T can be subtracted. The
remainder is expected to be a better representation of x than T itself, and
comparison with model simulations can be used to test this hypothesis.
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DISCUSSION

Dr. Pastel: In all of these circadian studies the subjects are told not to sleep unless
they are going to sleep for a long period of time-in other words, they are asked not to
nap. However, many people have a tendency to nap in the afternoon. Would your model
account for that?

Dr. Kronauer. No. We have not got such a mechanism in our model. But I think there
- is a little misconception. The subject can go to sleep whenever he wishes. However, there

is a certain ritual involved. He has to give notice, be fitted with the electrodes, and
change into his pajamas. As a result, there is less tendency to go to sleep for casual
reasons.

Dr. Wever. Our model has only one input, simultaneously for phasic and tonic effects,
and it can model very nicely all effects. So, why complicate the system? There is another
way my model is different. My impedance ratio is 1, but there is a difference in the
amplitudes.

Dr. Kronaue. There are two different ways of scaling. I happen, arbitrarily, to have
chosen the scales where the oscillations both have an amplitude of 2, i.e., the nominal
amplitude of my oscillators is 2. Consequently, I put the difference in the impedance
ratio. Alternatively, I could have put it in as a change in amplitude and it would have
been the same thing.

Dr. Wever No. It is not the same. It is the same in all the experiments you have
shown. But there are many additional experiments which you cannot explain with an
impedance ratio of 12 or 14 or 4, but they must have the same amplitude.

Dr. Kronauer. Excuse me, but with the Van der Pol oscillator they are identical.

Dr. Wever Yes, with the Van der Pol, but that is one reason why I think the Van der
Pol oscillator is not a good model. May I ask another question? You showed very nicely
that it is much better to have the Zeitgeber influence only the y oscillator. Why have you
not tried to influence both? Then you get a much better coincidence.
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Dr. Kronauer Let me respond. Don't misunderstand me. I'm not trying to say that it
is not possible, through one agency or another, to have an influence on the x oscillator
directly-chemicals could perhaps do it.

Dr. Wever But even the subjects show that.
Dr. Kronauer The results that I've seen of your work are in fact the only extensive

results of Zeitgeber effects that I know of, and they appear to me to be totally consistent
with a drive solely on y. That is a simple statement, and I think we have much more work
to do with various timekeepers before we can answer the question fully.

Dr. Wever: As you know, we have thought for a long time in the same way as you. But
other people have suggested that different Zeitgebers influence the two oscillators
differently. I have the feeling that the simplest way that is consistent with all the different
Zeitgeber modes of action, whether they be social cues or light/dark cycles, is that the
Zeitgebers influence both oscillators, and to the same degree. That gets the best
coincidence with all experiments of very different types.

Dr. Kronauer If we could accept other features-for example, that the way the Van
der Pol oscillators couple represents the real internal structure of the system-then we
would be in the position to design specific experiments as to whether Zeitgeber A or
Zeitgeber B affects x or affects y. That is what I would hope would be one of the results
of utilizing a model of this kind.

Dr. Wever Have you superimposed random noise in your modeling?

Dr. Kronauer: No, but the system is robust. That is to say, both of these oscillators
are very stable and will come back to their mean values. So the addition of noise will not
produce any untoward, remarkable changes.

Dr. Lerman: Can noise send the oscillators outside their own boundaries?

Dr. Kronauer Oh yes. These are all predictions from a deterministic model. And, in
fact, I might comment that it is extremely difficult to identify those boundaries. As Dr.
Gander will be glad to tell you, if you are trying to drift across one of those boundaries,/ one must change the parameters extremely slowly. And it turns out that if that is the way
the human system works, to find a desynchronization boundary you have to run
experiments that change the Zeitgeber less than a minute a day, or else you will not get
the correct boundary.

Dr. Enright: If I understood correctly, the feedback of the temperature oscillator on
the sleep oscillator is through the rate of change of temperature, rather than the
temperature itself. To me, biologically it seems more plausible that absolute body
temperature would affect the time to go to sleep, much more than the rate of changes.

Dr. Kronauer I agree. There is a degree of arbitrariness in the way you construct the
coupling. But you have to be careful. If you do not assign the correct signs of those
couplings, you will find that the system will not come to a compromise. So, in fact,
there's a certain sign ratio that must be observed. Second, it would work perfectly well if
I had x in the one and y in the other. The only thing is, the absolute phases would then be
shifted about 90 ° . This particular choice of variables gave what were the correct
phases.
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CIRCADIAN MODELING: AIMS AND STRATEGY

The temporal organization of behavior in animals, including humans,
presents one of the major challenges today for both physiological and functional
analysis. Circadian processes play a key role by their function in integrating
behavioral organization into the predictable time patterns of the environment on
a rotating planet. Two aspects of circadian rhythmicity make its analysis
exceedingly complicated: first, the fact that such rhythms behave as self-
sustained, nonlinear oscillations (40); second, the recognition that they may be
the combined output of several structures (probably a multitude of structures)
with such oscillatory capacity, in continuous interaction with each other and
with environmental periodicities. This complexity has called for extensive
mathematical modeling of the circadian system (19,22,32,38,39,51,53,55) to
help in understanding the relationships among empirical results and occasion-
ally to suggest new experimental designs. Of the many models developed, few
have been refuted by subsequent experimental analysis. Most models still
survive in peaceful coexistence, albeit with fluctuating popularity. Indeed, the
mainstream of current physiological research in circadian rhythms is hardly
influenced by mathematical simulations. In our view, this is because of a
superabundance of parameters in many of the models and because of the
absence of specific hypotheses regarding the physiological equivalents of those
parameters [with the notable exception of Enright's model (22)). The physiol-
ogist hoping to gain further insight into a system is left without guidance from
the mathematicians as to how to test their models. There is a continuing danger
of overcomplication and overabstraction in mathematical modeling. A useful
model should be minimally complex to account for an existing set of data and
maximally specific about what its parameters mean in physiological terms. It
should not aim at completeness. The essence of a model's usefulness is in being
a simplification of nature, rather than in approaching the complexity of nature
itself.

The aim of this chapter is to propose a simple hypothesis of the generation of
human sleep-wake rhythms and to follow its complex consequences with the
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help of mathematical simulations. There are several precursors of this model,
and their essential characteristics can be summarized as follows:

Enright (22) designed an elegant model of a circadian pacemaker, composed
of a multitude of neuronal elements, each capable of rather imprecise circadian
firing oscillations, and together formiing an ensemble with very precise self-
sustained circadian properties, matching in great detail what is known of
vertebrate activity rhythms. Enright's assumption is that the activity of such a
pacemaker will directly elicit activity of the organism, whereas rest of the
pacemaker will lead to rest of its bearer.

Wever (53), in addition to extensively reviewing the main body of data
obtained in 20 years of isolation experiments, proposed a general mechanism
for the generation of human circadian rhythms. In this concept, there are at least
two self-sustained oscillators involved, one stronger than the other, and
mutually interacting in such a way that they are normally running in synchrony.
The strong oscillator controls rhythms in body temperature; the weak oscillator
controls rhythms in sleep and wakefulness. The latter oscillator, although
normally synchronized to the frequency of the stronger one, may in free-running
conditions occasionally dissociate from the latter and exhibit its own fre-
quency.

Kronauer et al. (32) presented simulations based on a mathematical
formulation of this model using two coupled Van der Pol oscillators. Using six
variable parameters, these authors were able to select values such that a
reasonable approximation of observed sleep-wake rhythms was obtained.

Eastman (21; and this volume) stated that the assumption of a second
oscillator is not required to explain these observed patterns. In her view,
occasional spontaneous extensions of the activity time, toggther with a strong
feedback effect of sleep and wakefulness on the single basic oscillator, may be
sufficient assumptions to account for the data. If such extensions occur
regularly, however, such as in "circabidian" rhythms, Eastman's model also
requires a second oscillator (the "phase-shifting oscillator").

Of these models, Enright's is the only one that makes specific assumptions
about the (neuronal) structure generating sleep and wakefulness. The other
models are abstract, and their specific parameters, insofar as definied, have no
obvious physiological counterparts. Enright's model, designed as a general
hypothesis of circadian sleep-wake pacemakers, is also the only one at variance
with the human data, unless an additional oscillator, controlling body
temperature and interacting with the sleep-wake pacemaker, is invoked. None
of the models considers the body of knowledge on sleep per se, its temporal
structure, and experimental manipulation of sleep. The simple fact that sleep in
humans is not fixed exclusively by deterministic oscillatory structures, but may
to a large extent be modified consciously, is also rarely considered (however,
see C. Eastman, this volume).

Dissatisfied with this situation, we have attempted to formulate a minimally
complex hypothesis incorporating known homeostatic properties of sleep with a
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circadian regulatory mechanism. The model formulated and used for simula-
tions to study its behavior invokes a single circadian oscillator or pacemaker, as
suggested by Eastman (21; and this volume). In addition, it includes a
homeostatic regulatory process of sleep and wakefulness with empirically
estimated parameters along the lines proposed by Borbdly (9). This model,
essentially using two free parameters, is able to match most of the available
data. We see no evidence in the literature at variance with the model, but we
hope it will help to generate such evidence in the future.

SLEEP: HOMEOSTATIC VERSUS CIRCADIAN PROCESS

Before elaborating on the construction of our model, a digression on the
general nature of rhythms in sleep and wakefulness is appropriate. In order to
truly understand such rhythms, we need to examine the contribution of sleep
and wakefulness to evolutionary fitness, the final common path in biological
analysis. However, sleep, more than any other element in animal behavior, has
eluded functional understanding. As recently as 1979, in the introduction to a
symposium on the functions of sleep, Rechtschaffen stated that "we do not
know why so much of our own lives, the lives of all the mammals and, very
likely submammalian species as well, should be captured by sleep" (44). Yet
speculations and hypotheses have been manifold. In a useful review, Webb (48)
arranged the existing theories into five categories, admittedly with some
measure of overlap. Without attempting to rehearse them in great detail, we
summarize them as follows:

Restorative theories. Most staunchly defended by Hartmann (28), such
theories presume that sleep restores physiological properties of some body/ tissues (often restricted to the central nervous system or parts of it) and that
such restoration is needed for their proper functioning during the active phase.
Specific hypotheses are rarely articulated.

Protective theories. Along similar lines, Pavlov [cited in Webb (48)] argued
that sleep suppresses cortical activity and thereby prevents the exhaustion of
cortical neurons.

Instinctive theories. In this view, taken, for instance, by Moruzzi [cited in
Webb (48)], sleep is seen as a consummatory behavior associated with an
innate organized pattern.

Energy-conservation theories. Sleep researchers such as Berger (7) have
stressed the possible energy savings that warm-blooded animals achieve during
sleep by turning their thermostats down and remaining inactive.

Immobilization theories. Recent id;eas expressed by Webb (47) and Meddis
(3 3,34) presume that sleep enhances survival by rendering animals immobile
and nonresponsive, thereby increasing their safety, during ecologically adverse
parts of the day-night cycle.

These approaches are obviously not mutually exclusive; in fact, the instinct
theories represent a way of describing sleep behavior rather than defining
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benefits to the organism arising from it. The extreme positions stress the
possible benefits with respect to either the internal milieu or the external
periodic environment The more classic views (i.e., restorative theories,
protective theories) of sleep as a process of recovery from the fatigue created by
prior activity are associated with the long-term maintenance of some homeostat-
ic balance within the organism. We shall call these the homeostatic theories. In
the energy-conservation and risk-reduction theories, the timing of sleep with
respect to the day-night cycle is crucially important, and hence emphasis is
placed on the circadian aspect of fuinction.

Sleep-deprivation experiments have played a significant role in the contro-
versy between the homeostatic and circadian approaches. The increased
tendency to sleep and the "rebound" observed in EEG analysis after a night of
sleep deprivation present a problem for the circadian theories, because the
behavior should be optimized with respect to time of day regardless of the
animal's prior history. On the other hand, sleep deprivation is never completely
compensated for by subsequent sleep, as would be predicted by the homeostatic
theories. The general negative correlation between activity time and subsequent
sleep duration (53) would similarly not be expected on the basis of a
homeostatic recovery process. However, none of these arguments completely
excludes either type of function. That sleep duration is not positively associated
with prior wake time, natural or forced, is easily accommodated if the
restorative processes are nonlinear. The rebound after sleep deprivation may
likewise be explained as resulting from the motivational mechanism controlling
sleep without contradicting its circadian function, as Meddis (33) has
persuasively argued./ The proponents of the homeostatic and circadian theories of sleep fuinction
certainly agree in one respect: The pressure to sleep builds up during activity
and during enforced sleep deprivation. The difference is that this is seen either
as crucial for sleep function or merely as part of the sleep-generating mechanism
(Fig. 1). Although the circadian control of sleep and wakefulness is beyond
doubt, recent evidence suggests that a homeostatic rebound after sleep
deprivation is still seen in rats with lesions of the suprachiasmatic nuclei that
have destroyed any circadian rhythmicity, including that of sleep and wakeful-
ness ( 12,35).

The contributions of sleep to survival may eventually be evaluated by
manipulating sleep behavior in animals in their natural environment and
studying the consequences for the number of offspring propagated. But until this
formidable task is undertaken, we do well to accept the available evidence for
both the circadian control and the restorative aspects of sleep. In an integrated
view, we can acknowledge that the periodic reduction of energy expenditure
associated with lowered metabolic rate and inactivity at times of day when
activity would be inefficient may benefit the animal. In some cases, immobility
may further reduce predatory risks, although one would not expect reduced
sensory perception at times when the dangers of predation are maximal. The
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FIG. 1. Meddis's explanation of incomplete compensation of sleep deprivation. The
increase in sleep time may not be proportional to sleep deprivation if the rise in sleep
pressure (during waking) is linear and the decrease (during sleep) is exponential.
(From Meddis, ref. 34, with permission.)

reduction of energetic expenditure during sleep may have enabled animals to
increase their bodily activity and central nervous system activity in the active
part of the circadian cycle above the maximum level that could be sustained on
a permanent basis had sleep not occurred. In this sense, sleep may now serve to
restore a homeostatic balance, although the nature of the physiological
deterioration in the absence of sleep remains virtually unknown. Even if the
original contributions of sleep have been to ecological efficiency, this itself may
possibly have permitted overstraining the organism's tissues during activity to a
level where subsequent sleep is normally indispensable.

Thus, although there is reason to take an integrative view on the function of
sleep, careful studies by Borbely (8-10) have recently been leading to a
synthesis of homeostatic and circadian aspects in the mechanism generating
sleep and wakefulness. The model proposed by Borbly on the basis of his
sleep-deprivation experiments is essentially one of a circadian oscillator
interacting with a self-regulated homeostatic process (Fig. 2). Borbely proposed
that there is a sleep-regulating variable that increases in strength during
wakefulness and decreases exponentially during sleep. Onset and cessation of
sleep are largely determined by a threshold that oscillates in circadian fashion
(Fig. 2). Borbely did not specify the variable, but suggested that a humoral CSF
factor (11,23,36,37) with a concentration dependent on prior waking time is
associated with it. It is further reminiscent of the "sleep pressure" in Meddis's
model (Fig. 1), although there the threshold for sleep onset was not identified.

Our model for the human system relies heavily both on Borbely's data and on
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SLEEP BASELINE
LSLEEP

SLEEP DEPRIVATION

•CONFLICT-

FIG. 2. Borbely's model of sleep regulation based on the combination of a circadian
oscillator and a self-regulated process. A single threshold varies with circadian
frequency. A rise of the sleep-regulating variable above this threshold triggers sleep,
a (exponential) drop below the threshold terminates sleep. (From Borbely, ref. 9, with
permission.)

his general integrative views of sleep and wakefulness. For present purposes, it
makes no difference if the breakdown of the "sleep-regulating variable" itself
confers the ultimate survival value of sleep behavior or, alternatively, if it is part
of the mechanism ultimately leading to energy savings and reduction of natural
risks. Whatever the ultimate value, it can be conferred to the organism only if
the entire process is optimally timed in the external day-night cycle. There is
precedence for the daily timing of spontaneous processes in the pupal eclosion
of Drosophila. In an elegant series of experiments, Pittendrigh and Skopik (42)
have shown that among the various developmental processes during larval and
pupal life, there is one that is "gated" by a circadian oscillator, running in
synchrony with the light-dark cycle and guaranteeing that adult P;es emerge
during a 6-hr "gate" opened around sunrise. Similarly, recordings 'hamster
activity presented by Davis and Menaker (20) strongly suggest that a gate is
opened once during every circadian cycle for the expression of higher-frequency
periodicities in locomotor activity. Our model assumes that sleep and
wakefulness are essentially homeostatically self-regulated processes varying
between upper and lower thresholds, but that a circadian oscillation in these
thresholds gates sleep such that it normally coincides with the night We shall
make no assumptions about the circadian pacemaker that regulates this gating,
how it is composed of different elements, or how it is synchronized by light and
darkness. It may be essentially a multiunit oscillator of the type proposed by
Enright (22). Our only concern here will be with its output on the thresholds for
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the sleep-regulating variable, how it coordinates the homeostatic process of
sleep, and how it may under some circumstances lose control.

A HUMAN CIRCADIAN GATING MODEL

Our first assumption is that sleep is regulated by a variable S (Borbely's
sleep-regulating variable) that builds up during activity and breaks down during
sleep. Following Borbdly (9), we have further assumed that the breakdown of S
is reflected in characteristics of the sleep EEG. The kinetics of the buildup and
breakdown processes can then be derived from the data of Borbdly et al. (10) on
the temporal course of the integrated EEG power density during sleep in
humans, as affected by sleep deprivation (Fig. 3).

The decrease in power density in the 0.7- to 25-Hz domain during sleep,
primarily due to a decrease in slow-wave sleep (0.7-2.5 Hz), is essentially
exponential. Thus, we have simulated the S breakdown process by the
exponential equation

Si = (d)'-e (1)

where Si is the value of S at i time units after the onset of sleep, and S is the
value of S at sleep onset (which equals end of activity). We use the half hour as
the time unit for the process and derive for the breakdown rate d a value of
0.888 from the slope of Borbely's oblique line (-0.0515 log units/half hour) in
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FIG. 3. Left: Data of Borbely et al. (10) on EEG power density during sleep in
humans. Lower line: baseline night. Upper line, recovery night after sleep depriva-
tion. Right: Derivation of the exponential rise of S during wakefulness, on the basis of
the data in the left panel.
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the logarithmic plot of Fig. 3, left panel. During sleep, S asymptotically
approaches zero.

In a similar way, the results of sleep deprivation suggest that the buildup of S
during activity can be approximated by an exponential process of the form

S=A - (r)'(A -So) (2)

where Si is the value of S at i time units (half hours) after sleep termination.
During activity, S approaches an upper asymptote A. If a normal sleep duration
of 7 hr is assumed, the buildup rate r can be estimated from the breakdown rate
during sleep and the increase duning sleep deprivation, as follows.

S34 is the value of S at 34 half hours after sleep termination, that is, at sleep
onset. During activity, 7 hr of breakdown are compensated for, and

S 34 = I l/(0.888)141 - So = 5.26 So = A - r14  (A - SO) (3)

During 24 hr of sleep deprivation after t =34, thus at t =82, S is further
increased by 0. 14 log units Ilas in Borbely et al. ( 10), Fig. 10 1, such that

S 8 2 = 1.38 -5.26 S =7.26 S =A- r
2 -(A- So) (4)

Subtraction of So from both equations 3 and 4 yields

I - r14 = 4.26 -S/(A - SO)
1 - r52 = 6.26 -S0 /(A - SO)

r3
4 l= 0.681 -(r8 - 1) (5)

Numerical approximation of equation 5 gives a value of r of 0.973. This value is/ independent of both So and A. For convenience, we have chosen a value of 1.0
* for the upper asymptote A, and So then equals 0. 124.

Next we assume that the buildup of S is terminated by sleep onset when an
upper threshold Th is reached and that the breakdown of S during sleep is
terminated when S reaches a lower threshold T1. Thresholds Th and T, are, on
average, symmetrically distributed around the level L. The emerging self-
regulating process, in the absence of circadian modulation, is illustrated in Fig.
4. It is obvious that the periodicity of buildup (duration a) and breakdown
(duration p) emerging depends on the threshold levels. In analogy with normal
thermostats, we have a "somnostat" with a frequency depending on the settings
of the upper and lower thresholds. This periodic process acts as a relaxation
oscillator and is distinct from true self-sustained oscillators by having a positive
rather than a negative correlation between a and p. For instance, incidental
random elevation of TA will lead to a longer a followed by a longer p.

In order to let our somnostat run in synchrony with the day-night cycle, we
assume that there are circadian variations in the threshold levels T and T1. We
have not systematically explored the alternative possibility, i.e., that the
parameters of the homeostatic process, r and d, are subject to circadian
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FIG. 4. Deterministic simulations of the self-regulated sleep-wake process, showing
a high frequency when the distance between thresholds is small and a low frequency
when the distance is large.

/modulation. However, the latter seems to us the less plausible of the two
alternatives, for the following reason: to cause normal daily timing of sleep, in
this alternative, the buildup of S should be faster in the evening than in the
morning, whereas breakdown should be slower in the evening than in the
morning. This deduction is incompatible with the general proposition that the
sleep EEG will reflect some aspect of the breakdown process. In our model, we
have assumed that the two thresholds, T and T, are controlled simultaneously
by a single circadian oscillator. It is not unthinkable that the two are controlled
separately by different oscillators or by the same oscillator generating different
amplitudes. However, such complications are presently uncalled for.

For further simplicity, we have assumed that the thresholds vary in sinusoidal
fashion, as a generalized oscillatory pattern. A nonlinear oscillatory movement
would, of course, be more realistic for biological systems, but it would not affect
the qualitative predictions obtained. We do not specify how this oscillation in
the sleep threshold is generated, but suggest that a circadian pacemaker such as
the suprachiasmatic nucleus (45) is involved that may express itself simul-
taneously in other physiological variables, such as body temperature. The
introduction of parallel sine waves in the thresholds forces us to specify three
other parameters: period, amplitude, and phase. Of these, phase specification is
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irrelevant, because we shall be discussing the steady-state behavior of the
system rather than initial conditions.

For the period (r) of the oscillation in free run, we have generally chosen 25
hr, this value being the grand average of human free-running circadian periods
(53). We shall initially be concerned with free-running behavior, and later we
shall simulate entrained conditions simply by setting r at 24 hr.

We did not include in the model any feedback effect from sleep on r. Such an
effect is an essential feature in both Wever's model (53) and Eastman's model
(this volume). The empirical evidence of the effect is not very strong. Sleep-
deprivation experiments in rats, lasting either 24 hr (9) or shorter times
(D. Beersma, unpublished data), revealed no effects on circadian period. Also,
rat brain neurotransmitter receptor rhythms were unaffected by sleep depriva-
tion (56). Circadian redistribution of activity and rest in response to restricted
feeding schedules likewise leaves the circadian pacemaker essentially un-
influenced (13,25,30). On the other hand, there is some evidence for an
influence of the sleep-wake cycle on the circadian oscillator in human subjects
studied in isolation. When spontaneous internal desynchronization occurs, with
repeated delay phase shifts of the sleep-wake cycle, the body-temperature
rhythm often exhibits a shorter period ( 17). The average difference in r before
and during internal desynchronization is small (0.70 ± 0.38 hr) but signifi-
cantly different from zero (p < 0.001) (53, p. 52). It is likely that in humans,
studied in light, sleep behavior affects the light cycle perceived, even if it is not
actively selected. Changing phase relationships between the light and the
circadian oscillator in internal desynchronization may possibly affect the
oscillator's period. In the DD studies (i.e., constant darkness) in rats, no such/ influences can be expected. Incorporating a feedback effect due to light would
probably lead to a minor refinement of our model, but this is presently not
essential.

Another element to be introduced in our system is stochastic variation. Again
we have chosen to introduce such variation in the thresholds rather than in the
variable S itself. This has intuitive appeal. It is common knowledge that the
response to sleepiness may 6e consciously or subconsciously suppressed, e.g.,
by people enjoying lively social interaction late at night. On the other hand,
sleep may be stimulated by circumstances such as sitting in a warm dark lecture
hall while listening to a dull scientific presentation. It would be contrary to our
general proposition to assume that the lively activity would suppress the sleep-
regulating variable, S, rather than enhance it, or that reduced activity in the
latter case would increase S. Therefore, in introducing noise into the system, we
have assumed that it affects the behavioral response to fatigue rather than
fatigue itself.

A final comment on the design of our model concerns the phenomenology of
sleep. We have implicitly disregarded the various sleep stages. The data of
Borbdly et al. (10) we used concern the EEG power density during consecutive
sleep cycles. The temporal distribution of this density during sleep is

N4
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homogeneous. Although there is an increasing body of knowledge regarding
physiological changes [e.g., in thermoregulation (29)1 associated with sleep
stages, there is no evidence suggesting to us whether or not breakdown of S is
restricted to specific stages. For simplicity, we have assumed that breakdown is
continuous regardless of sleep stage. The parameter describing the rate of
breakdown (d) was in any case derived from complete sleep periods,
independent of when precisely this breakdown occurred.

DETERMINISTIC SIMULATIONS: EXPLORATION OF
THE PARAMETER SPACE

The model described here was formulated as a FORTRAN algorithm, and
simulations were obtained using a PDP- 11I computer. The behavior of the
model is fully determined by seven variable input parameters:

r = rate of buildup of S during wakefulness
d = rate of breakdown of S during sleep
A = distance between upper threshold (Th) and lower threshold (TI)
L = mean level of thresholds
r = period of oscillation in the thresholds

A = amplitude of oscillation in the thresholds
p = standard deviation of a Gaussian N(0,p) distribution from which a

random variable x is drawn once per time unit and is added to both
thresholds. In addition, half the deviation from the sine function in the/ preceding time unit is added to allow for some continuity in the threshold
noise.

Of these parameters, r and d were held constant at 0.888 and 0.97 3,
respectively, on the basis of Borbely's data (Fig. 3); r was likewise fixed, at 25
hr. Parameter L. was initially set at 0.5, such that the thresholds were
symmetrically distributed with respect to the asymptotes of the S process (see
Figs. 3-7). L primarily affects the ci/p ratio of the sleep-wake periodicity, and
thus, for the stochastic simulations (see Figs. 8-16), a value of L = 0.42 was
selected to obtain more realistic sleep times of about 8 hr (see Fig. 16). We are
therefore left with three free parameters: A, A, andp. We shall first consider the
case in which p = 0 and discuss the effects of variations in A and A in the
deterministic version of the model.

With A = 0, i.e., in the absence of circadian threshold oscillations, an
increase in A causes a regular lengthening of the sleep-wake periodicity (Fig.
4). For other values of A, the lengthening of the sleep-wake periodicity at
increasing values of A is, of course, observed only when the threshold
oscillations do not synchronize the sleep-wake rhythm. This tendency toward
longer periods can be observed even in conditions of synchronization, because
the sleep episodes occur in a later phase of the threshold oscillations. For a
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FIG. 5. Deterministic simulations showing the effects of different amplitudes of
threshold oscillations (A) on the ensuing sleep-wake rhythm. Upper graphs show the
temporal course of S (heavy line) and Th, T, (thin lines). Lower diagrams plot the same
data in actogram format. Thin lines pass through consecutive zero phases (inflection
points of the upward slope) of the threshold oscillation.

fixed value of A (set at 0.7 in the example of Fig. 5) and increasing values of A,
there is an increasing tendency for the sleep-wake periodicity to lock onto the
circadian oscillation, either b: -quency demultiplication (Fig. 5b,c) or in 1:1
synchrony (Fig. 5d). Figure Jo shows a case described as circabidian
periodicity in the literature (31,53). The average period V, of the sleep-wake
cycle was 50 hr in Fig. 5b, as compared with 25 hr in Fig. 5d and 36.7 hr (2:3
synchronization) in Fig. 5c.

A more complete exploration of the effects of variations in A and A on the
average period is summarized in Fig. 6. When A is close to zero, a wide range of
periods (r, = 5.0-82.9 hr) is obtained by varying A between 0.05 and 0.95.
When A is large, only a few periods of the sleep-wake rhythm can be observed,
centered around 12.5, 16.7, 25, 36.7, and 50 hr.

Whereas circadian rhythms typically continue and reveal their own natural
periods when released from entrainment into constant conditions, their
amplitudes (when measured) usually are lower in free run than in entrainment.
This effect is well documented in numerous plant circadian rhythms (14), and it
also seems widespread in rhythms of animal behavior and physiology, e.g., in
chicken brain temperatures (5), chaffinch oxygen consumption (43), and body
temperatures in rats (21,46) and squirrel monkeys (24). In humans, also, there
is evidence that the amplitudes of various physiological oscillations decrease in
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FG. 6. Average period r, of the sleep-wake rhythms as a function of A, for 19 values
of A. Ratios to the right show some preferred patterns of synchrony and frequency
multiplication of the system. When A is large, only a few preferred frequencies occur;
when A is small, rs can have almost any value.

association with the change from entrained to free-running conditions, e.g., in
body temperature and plasma cortisol (49,53). There is thus ample basis for
proposing that the circadian oscillation in the S thresholds may decrease after
entry to free run. There are various instances in Fig. 6 where, with constant A, a
reduction in A leads to rather sudden changes in the resulting period, ,.
However, each point in Fig. 6 is obtained from a simulation with A and A kept
constant over 50 threshold periods. The results of this static approach do not
necessarily predict what happens with a changing value of A. In simulations
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FIG. 7. Deterministic simulation with A decreasing linearly from 0.25 to 0 in the
course of 50 cycles for various values of A. Note the abrupt occurrence of internal
desynchronization in examples a, c, and d.

where A is gradually reduced by 0.005 S units per cycle, as in Fig. 7, we
observe an initial periodicity of 25 hr, which changes gradually until a sudden
transition to 2:3 or 1:2 synchrony occurs. We therefore propose that it is the
reduction in threshold amplitude in isolated conditions that has led in some
individuals to "internal desynchronization" of sleep and wakefulness from other
physiological rhythms. This explains why such desynchronization occurs more
frequently in free run than in normal life. A gradual reduction would also
explain why desynchronization is typically preceded by a number of days of
internally synchronized free run.

STOCHASTIC SIMULATIONS:
PRECISION AND INTERNAL SYNCHRONY

The model in the deterministic formulation does not account for the
irregularity of the patterns of internal desynchronization observed in the studies
of Wever (53) and Czeisler (16). The regularity of the circabidian case, with
phase jumps of the sleep-wake rhythm occurring every other circadian cycle, is
exceptional. More commonly, such phase jumps are observed in variable
intervals of 2 to 10 cycles [e.g., Wever (53), Figs. 30, 32, and 361. Such
unpredictability is an essential aspect of the behavior of the system, and it
obviously calls for some sort of stochastic variation. Furthermore, some
interesting analyses of variability in human sleep-wake rhythms have been
reported (2). It is appropriate to ask if observed patterns of variability may be a
consequence of circadian gating of a homeostatic process as we propose.
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For purposes of simulation, we introduced a fixed noise parameter (p = 0.05)
in the system. Together with the coarse time scale we used (using time units of
half hours), this led to reasonable variance in the cycle length (standard
deviations of r, usually between 1 and 3 hr in conditions of synchrony). The
same variation affected upper and lower thresholds. This is probably somewhat
unrealistic. It is likely that conditions affecting the thresholds are much more
constant during sleep than during activity. It was, however, not quite clear to
us which noise values had to be selected for the upper and lower thresholds, and
in this chapter we restrict ourselves to equal noise. We have further chosen
A = 0.12, L = 0.42, and A = 0.5 as standard parameter values in entrained
conditions, in order to obtain an optimal fit to the available human data (Fig.
16).

The introduction of noise into the threshold not only leads to variations in
onset and end of activity during synchronized free run but also leads to a certain
amount of unpredictability in the occurrence of phase jumps, as a sample
simulation in Fig. 8 shows. Such phase jumps can occur with any average
frequency, depending on the values of A and A. Some preferred frequencies are
0 ("internal synchrony") and once per two cycles ("circabidian pattern"). In an
infinitely long simulation, any average frequency of the ensuing sleep-wake
rhythm may be iealized.

More informative of the nature of the underlying process are the distributions
of sleep duration and the phases of sleep onset relative to the circadian system.
Such data from experiments with human subjects in isolation have been
thoroughly analyzed by Zulley (57), as summarized in Fig. 9. When subjects
showing internal desynchronization are considered, there is a clear bimodality/ in the time of spontaneous sleep onset relative to the minimum of the circadian
cycle of body temperature. A peak in sleep-onset times is observed 2 to 3 hr

A=Oj]8, a a(652, P=Om5

_ _FIG. 8. Stochastic simulation, plotted in
double actogram format. Note the irreg-
ular occurrence of phase jumps.

0 24 48 hrs
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FIG. 9. Distributions of sleep onsets and sleep durations in 10 human subjects
showing interval desynchronization. Data from J. Zulley. (From Czeisler et al., ref.
17a, with permission.)

before the rectal-temperature minimum. The subsequent duration of sleep is
typically in the range of 6 to 9 hr and corresponds to the normal internally
synchronized situation (58). A second concentration of sleep onsets occurs at
approximately 7 hr before the minimum of rectal temperature and is followed by
considerably longer sleep (8-12 hr). Infrequent sleep onsets occurring between
9 and 12 hr before the rectal-temperature minimum are followed by either short
(ca. 6 hr) or very long (12-16 hr) sleep lengths.

This pattern, confirmed by Czeisler et al. (17), is also observed in a series of
simulations such as the one presented in Fig. 8. In all of these, A was set at
0.08, i.e., slightly below the value of 0.12 chosen for normal entrained
conditions, to allow for a one-third decrease in amplitude due to free run; A was
varied above the standard value of 0.5 to represent a sample of parameter
values with increased tendency toward internal desynchronization. The
resulting distributions of sleep-onset times with respect to the threshold
oscillation minimum and the corresponding sleep durations (Fig. 10) show
reasonable agreement with the experimental data. There are, however,
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quantitative differences. The distributions are slightly shifted to the right, such
that the main sleep-onset peak occurs shortly after, instead of before, the
oscillation minimum. However, there is no reason to assume that the
temperature curve will precisely match the threshold curve, especially because
body temperature itself is directly influenced by sleep and activity Ie.g., Aschoff
and Wever (6), Fig. 41. The early sleep-onset peak is narrower than in the
experimental data (Fig. 9), and thereby the gap between the peaks is wider. This
may be related to ambiguities in determining the temperature minimum and, in
addition, may be the result of our use of a sine wave instead of a more realistic
waveform of the thresholds, i.e., one with a flatter drop phase, where sleep onset
occurs. Sleep lengths are somewhat long for the early sleep onsets. This
suggests that a distorted waveform with a steeper rise of the threshold, which
would shorten the sleep, would produce a better fit to the data. Later we shall
indicate ways of experimentally approaching the precise shape of the threshold
waveform.

Also in the state of internal synchrony the introduction of noise in the system
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has some interesting consequences for the patterns of variability and precision
of the system. We have not yet fully explored all of these, but we wish to outline
how the system may give rise to the negative serial correlations (r,) that have
been considered indicative of the oscillatory origin of the sleep-wake rhythm
(53, p. 71).

In human subjects, the lengths of consecutive sleep-wake cycles are in
general negatively correlated with each other (53), as also in other circadian
rhythms (41). A series of simulations with standard parameter values, but with r
varying beaween 23 and 27 hr, gave about the same average values of r, when
based on activity onset (-0.31) and activity end (-0.41). These values
compare well with Wever's empirical value of -0.40, valid for both (Fig.
11).

The match of the correlations between a and p with empirical data is much
less good. Only in a qualitative sense does our model, at least with the standard
parameter values, match the empirical facts that a is negatively correlated with
the following p and that a is not significantly correlated with the preceding p.
But in the human data, the correlation is much stronger (-0.52 as compared
with -0.25). Again, this may indicate where our model is incorrect and in need
of improvement.

The correlations between a and p depend on (a) the slope of the threshold
where it is intersected by the S process and (b) the amount of noise in the
threshold. The first effect may be illustrated by the way in which the two
correlation coefficients depend on the average phase of sleep onset (Fig. 12).
These simulations used slightly different parameter values, and variations in
sleep-onset phase were created by letting A vary over a large range. They
therefore do not match any human data, but merely serve to illustrate the
argument that with a later phase of sleep onset, a is more negatively correlated
with the following plr(a,p)] and less negatively or more positively with the
preceding plr(p,a)l. Thus, the generally late phase of sleep onset before the
threshold oscillation minimum leads to a more negative value of r(a,p). The
steeper the slope at sleep onset, the more precise is sleep-onset time, and the

COEFFICIENTS OF CORRELATION
9 simulations human subects
A. 0.12 a,05 (WEV1ER ,t900)

pOZ L23,27
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r (cx FOLLOWING e) -025 ± 013 -0.52 t 023
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serial r (M) -0.41 ±0.14 O

FIG. 11. Comparison of coefficients of correlation between a and p and between
consecutive rs measurements, obtained in human experiments and by simulation.
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less negative r(a,p) will become. In contrast, the steeper the slope at the end of
sleep, the more precise is the time of sleep end, and the more negative r(a,p)
becomes. A distortion of the threshold waveform with a steeper rise and less
steep drop would cause r(a,p) to be more negative and bring r(p,a) closer to
zero, thus leading to a better match with Wever's empirical data.

The second factor involved is the amount of noise in the two thresholds. In
our model we used the same noise level in both thresholds, being aware that this
is unrealistic. The standard deviations of r, when based on activity onset or
activity end are generally equal (Fig. 13) for standard parameters (with A
varying between 0. 12 and 0.06 to allow for some reduction of amplitude in free
run). For comparison, data presented by Aschoff et al. (2) are included in Fig.
13, showing variation in activity end (sleep onset) increased about 1.5 times
relative to variation in activity onset. This suggests that a better fit would be
obtained by introducing more noise in the upper threshold than in the lower
threshold in our model. Such differential variation would at the same time lead
to more negative r(p, a). It is noteworthy that the relative amounts of variation
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in cycle lengths based on onset and end of activity change with r in the same
manner as observed in human data (Fig. 13). In our simulations this is due to
changes in the phase of the sleep-wake process with changes in r. Aschoff et al.
(2) attributed the effect to a change in form factor of the oscillation in their
model.

Clearly, the analysis of variation in the system may suggest some improve-
ments in the model, but we postpone a more exhaustive analysis until more
empirical data have been incorporated in it

MANIPULATION OF THE SLEEP-WAKE SYSTEM

So far we have discussed only the spontaneous behavior of the sleep-wake
system in conditions of isolation from exogenous time cues. There was a
reasonable correspondence between the behavior of our model and the main
phenomena of human sleep and wakefulness. However, the model should be put
to the test by means of experimental manipulation of the system, rather than by
merely phenomenological similarities between simulation and observation.

Essentially, such experiments would involve manipulations of the thresholds
rather than of the S renewal process itself. We presume that the upper threshold
can be strongly affected by prevailing conditions and by conscious decisions. It
may be raised during forced nocturnal shiftwork, during sleep-deprivation
experiments, during lively social interaction at a late-night party. Warmth,
darkness, silence, a comfortable bed or chair, and absence of intellectual or
physical activity all represent conditions characterizing low upper and lower
thresholds. The lower threshold may be raised and early awakening induced by
noise (alarm clock), cold, bright light, etc.
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FIG. 14. Example of the effect of sleep deprivation for 16.5 hr on the temporal
course of S. The lower threshold, running parallel at a distance of 0.5 below the
upper threshold, is omitted for clarity.

Only sleep deprivation has so far been systematically explored. We shall
compare its effect with temporally raising the upper threshold in our model. An
example of a simulation, with 16.5 hr of sleep deprivation (SD) on night 5, is
shown in Fig. 14. The S value continues to rise until the deprivation is stopped,
and a slightly lengthened recovery sleep follows. However, the sleep length
following sleep deprivation is not always lengthened in such simulations. The
lower panel of Fig. 15 plots recovery sleep as a function of prior SD. Initially,
recovery sleep gradually shortens with increasing SD, jumping to a maximum
after 16 hr of SD, and then gradually returning to only slightly elevated recovery
sleep times after 24 hr of SD.

Careful data on the duration of voluntary sleep following different lengths of
SD have recently been collected by Akerstedt and Gillberg (1,26). The original
data were kindly sent to us by Dr. Akerstedt, and we plotted the individual
values in the upper panel of Fig. 15. The same general shape of the sleep lengths
as a function of prior SD is observed. At least in three of the six subjects a steep
rise was seen, either between 12 and 16 or between 16 and 20 hr of SD.

We would not anticipate a better match with our simulations, because the
assumption of a sine wave as the threshold waveformn is unrealistic. In fact, the
data of Akerstedt and Gillberg (1) may be used to obtain a crude estimate of the
waveform of the lower threshold. This is attempted in Fig. 16. Normal bedtime
for the Stockholm subjects was hour 23:00 and normal sleep length 8 hr. This
fully defines the values of S at any time of day in our model. Assuming that S
continues to rise exponentially during sleep deprivation, the values labeled 3, 7,
11, etc., in Fig. 16 are obtained at the respective clock times. Because average
voluntary sleep lengths following SD were measured, the values of S after an
exponential drop during recovery sleep can be derived. A line fitted by eye
through these points yields the average lower-threshold curve during bed rest.
This was extended left and right with a periodicity of 24 hr and reproduced
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upward to pass through the point at hour 23:00 to obtain a first estimate of the
upper-threshold curve under the assumption that the two run parallel.

The lower-threshold curve, as thus constructed from the Stockholm data, is
markedly skewed, with a steep rise followed by a less steep fall. On several
occasions before, we had other reasons to assume a steeper rise [on the basis of
Zulley's data (57) on spontaneous sleep lengths in isolation, Wever's (53)
measurements of r(a,p) and r(p,a), and calculations of cycle-to-cycle
variance by Aschoff et al. (2)]. There is thus good reason to reject the sine-wave
model. In a subsequent publication (D. Beersma and S. Daan, in preparation)
we shall analyze the model using the threshold curve empirically derived as in
Fig. 16.

Processes other than SD by which the system can be manipulated include
phase shifting of the circadian oscillator, such as in transmeridian flights. The
transients observed in such experiments (3) seem to last longer than can be
accounted for by the gradual regaining of synchrony of the sleep-wake rhythm
in response to an instantaneously reset oscillator. As long as no straightforward
assumptions can be made regarding the kinetics of oscillator resetting, we do not
find it useful to study this kind of manipulation in model simulations at this
time.

PREDICTIONS AND PERSPECTIVE

Because the model discussed generates precise predictions of the temporal/course of sleep and wakefulness, it is possible to test various elements in it in
quantitative detail.

The first type of prediction concerns Borbely's basic hypothesis that the EEG
power density reflects the level of the sleep-regulating variable. If this is
correct, it should be possible to estimate precisely the kinetics of the S buildup
process. This can be done by recording initial EEG power densities of subjects
who are allowed to fall asleep in strictly controlled conditions at different times
of day and after different durations of sleep deprivation. Also, it should be
possible to predict the initial EEG power density after any exotic forced-sleep
schedule (e.g., 7:00 wake up; 23:00 sleep onset; 1:00 wake up; 12:00 sleep
onset). One example of such predictions is implied in Fig. 16. Subjects in
Akerstedt and Gillberg's (1) study when sleep-deprived for 16 hr (until 15:00),
slept until 22:30. These subjects should also show a higher EEG power density
than normal on the second recovery night when starting sleep the next day at
19:30. In contrast, after 24 hr of sleep deprivation the EEG is back to normal
on the second recovery night (10).

The second type of prediction concerns the lower or wake-up threshold. It is
crucial to the predictive value of the model that this is independent of the actual
value of S. It was shown by Akerstedt and Gillberg (1, Fig. 2) that SD lasting
until 3, 7, 11, and 15:00 led to high terminal SWS percentages, whereas low
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terminal SWS percentages were seen after normal sleep and SD lasting until 19
and 23:00. Because EEG power density is determined mainly by slow-wave
sleep, this suggests that terminal S values do indeed vary in circadian manner as
suggested by Fig. 16. It should be possible to collect more empirical points for
the lower-threshold curve by applying other, more complex sleep-wake
schedules.

A much more difficult task is to determine the upper threshold. This curve is
presumably subject to much larger variations due to external conditions and to
conscious decisions of subjects. Only carefully controlled conditions, such as
with continuous bed rest, can allow quantification of at least the falling part of
the curve. Figure 16 suggests that studying spontaneous sleep behavior in the
second night following SD experiments may be useful in this context. The curve
may, to some extent, be related to subjective sleepiness ratings, because
sleepiness' at bedtime in the study of Akerstedt and Gillberg (1, Fig. 3) was
lowest at bedtimes 23, 11, and 15, where also in our computations (Fig. 16) S
should be considerably less above threshold than at 3, 7, 19, and 23.

Flexibility of the thresholds in response to conditions may also be involved in
adjustments of sleep-wake periodicity to conscious or subconscious habits, to
shiftwork, and to Wever's forced-sleep schedules (53, Figs. 86-94) by applying
stro.ng light-dark Zeitgebers. The consequences of such exogenous schedules
for the sleep-wake process can of course be easily simulated with the model
presented, but we postpone this until a more realistic formulation (not using sine
waves) is available. Such a formulation may have to include bimodality of the
threshold curve to account for a midday drop in sleep latency and afternoon
napping behavior (15)./ Finally, our model may find application in understanding anomalies of the
circadian system such as occur in some depressive conditions. The usual
reduction in slow-wave sleep in such patients (27) is suggestive of a number of
possible anomalies in the system: An advanced phase of threshold oscillation
[corresponding to a hypothesis of Wehr et al. (50)], lowered thresholds, or a
reduced rate of S buildup would all lead to shorter and shallower sleep. Precise
consequences of such deviations remain to be explored.

Finally, we wish to comment on some general implications of gating systems
as proposed here for human sleep and wakefulness.

The model presented is certainly not correct in great quantitative detail. It
shows, however, that the main characteristics of human sleep-wake rhythms
can be produced without the help of a second oscillator or pacemaker. Even the
negative correlation between a and p, seen by Wever (5 3, p. 7 1) as evidence of
the oscillatory origin of the sleep-wake rhythm, is likewise produced by our
relaxation system. We have expounded the view that sleep may have evolved as
a means of allowing organisms to exploit their nervous tissues during part of the
day-night cycle more intensively than would be possible on a permanent basis.
Sleep would then provide the necessary recovery (whatever its nature) during
the other, adverse part of the cycle. Such a process might, of course, be
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controlled by a separate central pacemaker, as suggested by Aschoff and Wever
(6), or directly by the central pacemaker (22). The presence of a single circadian
pacemaker that normally gates the sleep-wake process such that sleep occurs at
the adaptively correct time of day is the more parsimonious hypothesis, and it
also has intuitive appeal. Such a system would allow for the flexibility needed
by animals in nature. Sometimes food may be more abundant in that part of the
day-night cycle in which sleep normally occurs. A host of experiments show
that activity rhythms are rapidly adjusted to such unusual circumstances (18),
while the central timer probably keeps running under LD control. Such force of
external conditions and daily habits may affect the threshold system such that
sleep occasionally shifts to unusual parts of the cycle (the night in rats fed only
in daytime; the day in workers on a night shift). For optimal and flexible timing,
a precise central oscillator is required, exerting gentle control over the processes
it gates.
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DISCUSSION

Dr. Moore-Ede: Let me start off by clarifying one point. This is essentially a two-
oscillator model. One of them really is a relaxation oscillator with a buildup of a factor
which then dissipates at a threshold. And the other is a nonrelaxation oscillator. Thus,
would it be fair to characterize your system as a two-oscillator rather than a one-
oscillator model?

Dr. Daan: The sleep-wake process I assume would be periodic, even if you had no
circadian inputs. However, I do not want to be drawn into a discussion as to whether this
thing is an oscillator or not. It does not have the usual characteristics of what might be
considered an oscillator. However, it is certainly periodic.

Dr. Winfree: I would like to just say that this is the first I have heard of this work, and
I think it is a terrific example of modeling. I have a question. One of the things that has
been troubling me is coming to terms with how sleep onset might be timed. I have
detected an irregularity, therefore, in the data sets that I have not yet really come to grps
with. For example, I have thought of the phase of sleep onset as a fuinction of the phasing
of the previous sleep onset or the previous wake onset or both. What we must have is a
believable determination of sleep onset.

Dr. Daan: Sleep onset in my model is greatly influenced by external conditions and
by conscious decisions. And so the system muffles every variation that might be prior to
the timing of sleep. But occasionally you get effects where the organism is isolated from
time cues, and sleep onset phase will more strongly depend on wake onset because of the
reduced threshold amplitude. However, I have not yet quantified how the solutions
depend on prior conditions.

Dr. Kripke: One of the delights of the dual-oscillator model is that it explains the
phase trapping that has been observed. Does your model display that?

Dr. Dean: I undertook one simulation. You saw a double plot in my presentation. It
had occasional phase jumps.

Dr. Kripke: I saw phase jumps, but I did not see phase trapping. You can distinguish
between the two, because phase trapping has an oscillation in phase without 3600 jumps

Dr. Dean: Our model does not do that.
Dr. Weitzman: Your mathematical modeling of Dr. Borbely's concept provides a

very powerful way to explain the relationship between a sleep-oscillator model and a
sleep-deprivation model (or a relaxation oscillator), whatever the term you like to use.
And if one uses Stage 3-4 as indicating the S (sleep) factor, and it is probably a very
good approximation of that, one certainly finds that the longer one stays awake, there
will be more Stage 4. After the long wake periods, there is more Stage 3-4 the first 2 hr
than after the shorter wake periods, even though they do occur at different phases of the
temperature cycle. However, there are a number of well-known phenomena that must
also be explained. One is that long-term sleep deprivation leads to the intrusion of sleep
processes, validated by EEG measurement, while the subject remains awake. That is,
there are microsleeps, and there are changes in EEG waves. Second, if you sleep -deprive
someone for a week, they are not going to sleep for 4 days straight. In the longest sleep-
deprivation study ever scientifically studied, a subject stayed awake for 11I days straight
and then slept for about 12 to 14 hr and felt perfectly fine thereafter. The explanation
that I have is that his brain was sleeping, while he remained awake during those 11I days.
Third, we know from many studies that the waking phenomenon will appear during sleep.
For example, the presence of alpha waves will often occur in pathological and
even natural conditions. We have seen that some of our subjects during free running
show microsleeps. So that is another phenomenon in which the process of waking
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occurred during the sleeping process. Lastly, your model does not take into account other
kinds of rhythmic processes besides the sleeping-waking issue, namely, the timing of
REM, the timing of temperature phase, the timing of hormonal (e.g., cortisol) phase. It
seems to me that your one-oscillator model with an additional relaxation process is fine
for sleep-wake phenomena, but then we have to move to some other control system,
perhaps another oscillator system, for the other kinds of biological and physiological
rhythms.

Dr. Daan: The thing that is characteristic of the model is a limit on the recovery
process. However long you would keep your subject awake, you would never need more
than 12 to 14 hr to recover. I cannot explain the other phenomena.

Dr. Borbely: Just to repeat these points about non-REM sleep, the idea is that REM
reflects a circadian aspect of sleep, essentially governed by a sine wave. In addition,
there is a slight sleep-dependent aspect of REM stages. These in conjunction explain
most of REM sleep and explain the reciprocal interaction with non-REM sleep and
REM sleep interacting negatively and inhibiting each other's peaks.

Dr. Weitz man: Well, I just have to say that Stage 3-4 sleep occurs during the first 2
hr after the subject goes to sleep, whether he be free running or entrained. The timing of
REM sleep, however, shifts. It does not occur at the same time in free-running and
entrained subjects. If REM sleep is timed, as you say, with respect to the sleeping
process, and if your indicator of the sleeping process is Stage 3-4, it should occur in the
same phase relationship whether you are entrained or free running.

Dr. Daan: No. The amplitude of the system is much lower during free running; so
automatically it changes the phase relationship, and the process hits the threshold
somewhere else. The phase differences between the two stages are thus easily
explained.

Dr. McCarley: One of the most compelling pieces of evidence for a relatively
independent ultradiar REM oscillator is the clinical phenomenon of narcolepsy, which
represents a periodic breakthrough of REM sleep phenomena dissociated from slow-
wave sleep phenomena with the same ultradian rhythm throughout the day, as it
normally occurs only at night. I think that you have an excellent model because you are
tying it to physiology. But I do not think it is necessary to have slow-wave sleep and
REM sleep mutually inhibitory. They could instead be competing for expression. The
neuronal or hormonal generators do not necessarily have to mutually inhibit one
another.

Dr. Gander~ In your simulations of free-running conditions, when you were getting
very long sleeps and thus very long periods, did you see a progressive decline in the
amplitude of the threshold?

Dr. Daan: Yes. However, it was very gradual.
Dr. Gander: I would like to make two points. You referred to our data on the monkey

temperature rhythm, where there was a decline in amplitude between entrainment and
free run. That could be explained by the masking effects of light; for example, in
experiments with LD 2:2 cycles you can actually demonstrate that there is an increase in
temperature during "lights on." Furthermore, the difference in amplitude between the
entrained and free-running temperature rhythms can be explained purely in terms of the
masking effects of light on the rhythm. The second thing is that the temperature rhythm
might not be a good example to cite in your modeling, because it does not decline in
amplitude in at least 140 days of free run in humans.

Dr. Daan: You maybe have a very good explanation for the free-running state, but I
have referred only to the empirical evidence, that the amplitudes of circadian rhythms
tend to be smaller in free run than in entrainment, whatever the cause of that may be.
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Dr. Gander~ I am just suggesting that that might not be an ideal example, because we
believe we can explain the amplitude differences in another way.

Dr. Daan: The amplitude difference is not all that important. I have shown one
simulation where you have a constant amplitude and you still get the initial free run.
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PRELIMINARY REMARKS

Self-Sustaining Circadian Rhythm: A Universal Phenomenon?

Research in circadian systems was initiated by the discovery of self-
sustaining, approximately periodic rest-activity cycles under constant environ-
mental conditions. Rest-activity cycles have been observed in some animal
species under certain experimental conditions, and these are some of the
temporally most precise biological rhythms known thus far (4, p. 16).

Such highly regular rest-activity patterns inspired the creation of the term
circadian clock, moreover, they became the inductive basis of several
mathematical models of circadian systems (4,10,13,14). These models are all
aimed at explaining recurrent phenomena of high cycle -to-cycle precision; more
randomly organized rhythms, which also exist, have to be treated byI incorporation of sources of perturbation into the models. This is due to the
intrinsic philosophy of these models, according to which circadian rhythms are
basically periodic phenomena that under the influence of perturbing factors may
appear more or less veiled or distorted (14, p. 99) (see R. A. Wever, this
volume).

This implicit assumption may lead a layperson in this field of research to the
conjecture that circadian fluctuations of life functions in general are distinct and
temporally precise phenomena. No expert in the field, however, would deny the
fact that this is not true. There are three important factors for the observation of
circadian rhythms in constant environments, namely, the chosen species, the
given experimental conditions, and the observed life function.

Persistent circadian rhythms can be observed only for certain configurations
of these factors; ie., for a given species, certain species-specific environmental
conditions and an appropriate choice of the observed life function are required
(5, p. 14).

For example, it has been shown experimentally that rest-activity behavior is
not always organized in the form of circadian cycles (8). Moreover, it has been
explored systematically how self-sustainment of precise circadian rhythms
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depends on certain environmental variables. For instance, rest-activity cycles
persist only when the light intensity lies between critical lower and upper
thresholds. With values of the intensity outside this interval, the animals
develop more or less irregular rest-activity patterns.

The existence of regular 24-hr fluctuations has been demonstrated in many
biological and behavioral variables (13, p. 3). However, despite the vast
literature on experiments under constant conditions, our knowledge about
circadian rhythms under these circumstances is still limited with respect to the
entire spectrum of candidate variables: the majority of investigations in animals
have been concerned with the rest-activity behavior, a much smaller amount of
data on body temperature is available, and there are relatively few data on
endocrine variables. In humans, the observational data comprise the rest-
activity cycle, the body temperature, some parameters of the blood -circulating
system, some ingredients of blood plasma and urine, and finally some
psychometric variables.

Thus, circadian rhythms as distinct and temporally precise phenomena are
not universal, but rather an indication of some special mode of operation of the
biological timing mechanisms in cases of favorable configurations of species,
environment, and observed variable. For certain other configurations of these
factors it has been demonstrated that the circadian rhythms degenerate in
constant environments.

This delimits the validity of oscillator models of circadian systems. They are
suitable only for approximately periodic phenomena; they do not allow for the
description of aperiodically recurring events.

In this situation it appears attractive to consider the possibility of developing
a more general biological theory of the temporal organization of life functions,Is whose range of validity includes the case of ongoing distinct and precise
circadian rhythms as a special case. Some elements of a theory of this kind
would certainly have to be borrowed from mathematics, just like the concept of
oscillators, which was borrowed from physics. This chapter is concerned with a
class of mathematical models that might be useful for such an approach. They are
based on the concept of stochastic processes. This type of model is suitable for
the description of irregular, random phenomena, as well as for almost perfectly
periodic rhythms. Thus, in contrast to oscillator models of the circadian clock,
periodicity is here not an assumption but a property resulting from a special
choice of model parameters or the special structure of the model.

Overview

This chapter consists of three parts. In the first, the basic philosophy of
stochastic models is outlined, and a simple type of stochastic model-the
renewal model -and its performance are described in detail. The second part
deals with an application of this model to human rest-activity data. Empirical
data are analyzed with respect to the question of how precise the human
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circadian clock is in the state of internal synchronization. The last part reports
an application of the renewal model in the framework of a complex system of
several simultaneously operating processes, describes some features of its
performance, and discusses its relevance as a model of a candidate mechanism
for the generation of circadian rhythms.

STOCHASTIC MODELS

Although an introduction of a mathematically correct notion of stochastic
models (6) is beyond the scope of this chapter, an outline of the basic
philosophy and possible applications may help to explain the following
paragraphs. Let us first consider a simple physical system whose dynamics can
be described by a stochastic model.

A Storing System

The system is a container with an input and an output channel. It operates in
the following way: Initially the container is empty, and the output channel is
closed. Then, through the input channel, the container is filled. When it is full,
the input is shut off, and the output channel is opened. The container's content is
released. As soon as the container is empty, the cycle begins anew (Fig. 1).
Each cycle consists of an alternation of the two states of operation. Let the
amounts of input and output per time unit be randomly varying quantities. Then,
obviously the time intervals required for filling and emptying the container (ie.,

FIG. 1. Storing system with two states of operation (a, filling; r, emptying). Top: Time
course of the instantaneous content. Bottom: Sequence of the holding times of the
alternating states.
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the holding times of the two states of operation), as well as the cycle duration,
are stochastic quantities.

Assume that we have been watching this system for some time through a
series of several cycles. Although we know part of its history exactly, in
principle we are unable to predict the future holding times with certainty. This is
because of the stochastic nature of input and output. The important feature of
this system is the existence of many possible continuations of the process at
each time. This is the common property of processes for which stochastic
models are suitable.

The explicit formulation of a stochastic model requires additional specific
knowledge to be expressed in the form of model assumptions. In the following, a
model for the system described here is constructed, starting from a set of
intuitively appealing assumptions.

Systems with Two States

Before going into details, let us reconsider the general case of cyclic processes
with two alternating states. Formally similar to the system discussed here, the
rest-activity cycle can be regarded as a cyclic process with two states, one
representing activity and the other representing rest. Besides the correspon-
dence of their state spaces, the previously described storing system and the rest-
activity cycle can be related in a more substantial respect. The stored content
may correspond to the hypothetical sleep factor that is assumed to accumulate
during activity and to decline during sleep (1) (see S. Daan and D. Beersma,
this volume). This correspondence, however, is not further discussed here,
because this chapter is mainly concerned with model-related considerations of
cyclic processes.

A cyclic process with two states may be characterized by the state diagram
shown in Fig. 2. Within each time unit, exactly one state transition occurs.
During uninterrupted sequences of transitions of type 1 or 4, the system stays in
state a or r, respectively, for certain holding times, labeled h(a,) and h(r1) in the
following. A realization of the process can be described by a vector of holding
times:

(h(a1 ),h(r1 ),h(a2),h(r2),. . . h ,)h~,)

2
1 aE r3 4

FIG. 2. State diagram of a process with two states labeled a and r. Transitions are
labeled 1 through 4.
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The Alternating Renewal Model

Now, let us introduce a simple probability model for this process. Its
probability assumptions are the following:

1. (H. 1 , H,1, .... ,H,,> is a series of random variables, and
<h(aj),h(rj), . .. h(r,)> is a sample.

2. All H, (i = ,n ) have the same probability distribution function Fa (i.e.,
they are identically distributed), and analogously the H, (i= ln) are
identically distributed with F,.

3. All pairs (Hx,,H,.), with x and y elements of Jai, i= 1,n}Uri, i = l,n}
and x * y, are stochastically independent. These assumptions define the
stochastic model of an alternating renewal process (6, p. 278).

Originally, the stochastic renewal model was suggested for applications to
physical systems with components that expired after a variable time of
operation and had to be replaced by new ones. The renewal paradigm has been
used in models of circadian clocks (4), in which cyclic behavior of neurons is
depicted by alternating renewal processes. Another biological application was
suggested by Lehmann (7). He has used alternating renewal models to describe
irregular rest-activity patterns.

These hints may suffice to demonstrate the range of possible applications of
the stochastic renewal model. Although the performance of the model is well
known, it appears useful to describe here some basic features. Its performance is
determined by the assumptions stated earlier and by the probability distri-

/

FIG. 3. Chronobiological standard plot
of a series of 100 cycles of an alter-
nating renewal process. State a, bars;
Ple -16.2 hr; 0 --3 .0 hr; N1 =8.0 hr;
Orr= 1.0 hr.

1200 WO0 2=~ MW0 1200
time Ihr)
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butions Fa and F. In the following, it is assumed that Fa and F, are parametric
probability distributions: i.e., Gaussian distributions that are determined by the
parameters p and a and p4 and or,., respectively.' Although the performance of
the model is, in principle, qualitatively the same for any choice of parameter
values, it looks very different when depicted in the form of the well-known
chronobiological standard plot (Fig. 3).

In the alternating renewal model, simple laws hold for the expectation and the
standard deviation of sums of holding times, especially for the sum of an
activity-phase holding time h(ai) and the following rest-phase holding time h(ri),
which constitute the cycle duration 'i:

!L =Ilua +Lr' , a,= Va +

In the case presented here, the expectation of the cycle duration is Y, = 24.2 hr,
and the standard deviation of the cycle duration is 0r = 3.16 hr. The quantity v,
defined as q,/p,, is a parameter that characterizes the relative cycle-to-cycle
imprecision of the process. In this case, v, = 0.130.

From Fig. 3 it is obvious that it is not possible in this case to make predictions
about the future of the process even after a long time of observation: Between
cycles 5 and 17 the transition times drift to the left- then until cycle 30 they
oscillate around a fixed time; then a phase jump of about 6 hr occurs during
cycle 31; after cycle 64, the transition times drift to the right. Note that all these
events occur at random; the system has been stationary during the entire
interval of 100 cycles.

Figure 4 shows a realization of the alternating renewal model with reduced
values of the standard deviation of the holding times. Here, r, = 0.71 hr, and

v, = 0.029. Now the pattern looks much more regular. However, also in this
case, an estimation of the period from sequences of 20 to 30 cycles would yield
misleading results. Take, for instance, cycles 20 to 42 and 73 to 100. We would
estimate ? values of 24.42 hr and 23.86 hr. It should be emphasized here that an
important feature of the performance of the alternating renewal model is the
slow fluctuations and drifts of the transition times along the time axis that make
it impossible to predict the phase of these events with respect to the geophysical
time for cycles that are more than a few days ahead.

When the cycle-to-cycle precision is further increased, the performance of the
alternating renewal model resembles more and more a periodic process. This is
shown in Fig. 5. The imprecision here is v, = 0.006.

These examples reveal some aspects of the performance of the alternating

1It is mathematically not correct to use Gaussian distributions for holding times, because the
probability of negative holding times is theoretically not zero. However, for appropriate choices of I
and o, this probability can be neglected in practice. Therefore, Gaussian distributions are used in
the following.

q . iI4
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FIG. 4. Series of 100 cycles of an
alternating renewal process; A = 16.2

60-- hr; oa = 0.5 hr; pr = 8.0; or = 0.5 hr.
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renewal model. Their purpose is to give an impression of how the temporal state

pattern represented in the form of a chronobiological standard plot is affected by
the variance of the holding times of the two states. Obviously, it is possible to
generate approximately periodic patterns, as well as highly irregular patterns,
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by choosing appropriate values of the variances of the holding times. For
mathematical investigation, the model can also be used as a statistical basis for
an analysis of observational data by testing its assumptions and estimating its
parameters. Such an investigation may be regarded as part of a search for
appropriate models that can account for irregular rest-activity data as well as
for rest-activity cycles with higher cycle-to-cycle precision.

IMPRECISION OF THE HUMAN CIRCADIAN CLOCK IN
THE STATE OF INTERNAL SYNCHRONIZATION

This section reports an empirical investigation of the cycle-to-cycle precision
of human rest-activity data observed during temporal isolation of the subject. It
is based on a mathematical model of a clock and an overt rhythm that is coupled
to it.

How Precise Is the Circadian Clock in Humans in
the State of Internal Synchronization?

A visual comparison of standard plots of human rest-activity data from
experiments in temporal isolation (2,13,15) (see R. E. Kronauer, this volume)
with plots from animal experiments under constant conditions (11) shows that
the cycle-to-cycle precision of the human rest-activity cycle in most cases is
significantly lower. In fact, almost randomly organized rest-activity patterns
have been observed in humans (3). Let us consider this in connection with two
well-known statements about circadian clocks and the human rest-activity
cycle: First, it is commonly assumed that the precision of circadian clocks
increases with increasing complexity of the organism. Second, the human rest-
activity cycle is regarded as a relatively unreliable indicator of the clock cycle.
Thus, the question arises whether or not the obviously greater imprecision of the
human rest-activity cycle can be fully attributed to a weak interconnection
between a precise underlying clock and the overt process. If this is not the case,
the circadian clock must be assumed to generate a cycle with variable period.
Supposedly, this may be because of the given experimental conditions: Even in
time-cue-free environments, some known and perhaps also some still unknown
factors may affect the circadian clock, causing instantaneous phase shifts that
vary its cycle duration. In light of this, another question arises: Is it possible at
all to create environmental conditions that favor the sustainment of precise
circadian rhythms in humans? If such conditions cannot be established, the
validity of models implying a precise clock will be severely restricted. These
considerations triggered the investigation reported here; its objective was
to estimate the imprecision of the human circadian clock in the state of internal
synchronization.

Ai
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TABLE 1. Empirical data

Source (Ref.) Identification of data seta

Czeisler (2) FRO1, FR02, FR05, FRO6, FR07, FRO9, FR 131
8 9 13 13 14 14 28

Kronauer (this volume) 02
32

Lund (9) 154, 158, 160, 164, 167, 169
14 13 12 13 12 12

Wever (13) HS61, HS62, AG, DB21, MS23, AS, DP, HZ
27 22 31 24 23 27 28 17

Zulley (15) CMoZ,CMmZ, MCmZ, MCoZ,AFmZ,WLmZ, WLoZ, MKmZ
22 29 29 19 19 13 13 11

aldentification labels are those used in the sources. The number of cycles included
in the analysis described here are indicated below the labels.

Empirical Data

The data analyzed in this investigation come from different sources (Table 1).
During the time intervals analyzed here, all subjects were in the state of internal
synchronization. Figure 6 shows the distribution of the standard deviations of
cycle durations s, in these subjects .2 The standard deviations lie in the range
from 0.4 hr to 3.4 hr. The imprecision v, varies in the range from 0.017 to
0.141. These values cannot directly be interpreted as estimates of the precision
of the clock cycle, because the overt rest-activity cycle is only a fuzzy indicator
of the assumed underlying clock cycle. However, estimates of the clock cycle
precision can be obtained by analyzing the data on the basis of a model of a
clock and an overt cyclic process coupled to it.

Model of a Clock and an Overt Rhythm Coupled to It

Pittendrigh and Daan (12) outlined such a model. It is schematically
represented in Fig. 7. They described a method to split the variance of the rest-
activity cycle duration s2 into two components, one of which gives an estimate
of the variability of the oscillator-cycle duration s2 and one of which gives an
estimate of the coupling strength between the oscillator and the overt rhythm s!.
In this approach, the serial correlation rs between the durations t; and ti+1 of
successive cycles is of central importance.

2Cycles were defined from the beginning of an activity phase to the beginning of the next activity

phase.
3The variance of the clock-cycle duration is estimated by 2 - (I + 2r,)s, and the strength of the

coupling by s 2
= -rss 2 (12).
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FIG. 6. Frequency distribution of the standard deviation of the duration of the rest-
activity cycle st. The labels at the y axis identify the different sources of the data (see
Table 1). Circles indicate experiments with Zeitgeber.

" TJ " clock

.. €met-tctivit

FIG. 7. Schema of a model of a clock and an overt rhythm (rest-activity cycle)
coupled to it; ri is duration of the clock cycle; ti is duration of the rest-activity cycle.
Shaded areas are time intervals during which state transitions of the rest-activity
cycle must occur; wi is the difference of transition times in clock cycle and overt
cycle.

Besides this method, there are other computational procedures that allow for
separation of the previously mentioned sources of variability. Estimates of s.
can be derived from s2, and s3, the respective variances of the series of sums of
two and three adjacent cycle durations4 :

2 = 2 -S2
Sr =S 2 ~

2 =(W, - s)/2

4Besides a - ' + 20.2, also oJ = 2a2 + 2o.2 holds. Thus. a2 = aj, - o"2.

,,i4
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In the investigation reported here, the formula of Pittendrigh and Daan as well
as these formulas were used to estimate the respective parameters of the model.
In addition to the variance of the cycle duration s,, also s,, rs, and s,,. were
estimated. Besides an analysis of the observational data listed in Table 1, the
statistical properties of these parameters were investigated by Monte Carlo
studies.

Results

Serial Correlation Coefficient

The first result concerns the serial correlation coefficient r that has been
interpreted as a discriminator between cycles of oscillatory and stochastic origin
( 13, p. 32). Approximations of the probability distribution of r in dependence
of the model parameters q, and q,, were computed by Monte Carlo techniques.

For different choices of the model parameters a, and a,., realizations
covering 14, 21, and 28 days were computed. From these data, the distributions
of s, r, s, and s.. were estimated. Figure 8 shows the regions containing 95% of
the r, values in the case of realizations over 14 days. For the four choices of a,
and q, represented here, 5 the tolerance intervals overlap each other to a large
extent. Therefore, it is not possible to infer the imprecision of the underlying
clock solely from the serial correlation coefficient. Pittendrigh and Daan's

51n the cases or, = 0 and a. = 0, distributions with very small variances (02 = 0.0001) were
used.

0 0

1 0

0 1

1 1

rs
-0.75 -0.'5 -0.25 0 0.'25

FIG. 8. Ninety-five percent tolerance intervals of the serial correlation coefficient r.
(left). From top to bottom: Intervals for four choices of the model parameters (right)
computed by Monte Carlo techniques. Tolerance intervals are represented by bars,
mean values by dots.
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model shows that a joint analysis of the variance of the overt cycle s,2 and the
correlation r, is necessary.

The values of r, computed from the observational data are represented in
Fig. 9. The median of their distribution is -0.13. This value lies outside the
tolerance interval only for the case a, = 0.0 hr and ocr,= 1.0 hr. These results
are a by-product of the investigation. We shall now return to the main line of our
considerations, which are aimed at achieving an estimation of the imprecision of
the human circadian clock.

Imprecision of the Clock Cycle

Estimates of the imprecision of the clock cycle from single series of rest-
activity cycles are unreliable, because s, s,, and S,' also have overlapping
distributions, similar to the situation just demonstrated concerning r, Therefore,
the results presented in the following are interpreted only from a group-
statistical point of view.

In Fig. 10, the values of sr are displayed, together with the upper limit of the
95% tolerance interval of s, for the case in which the model parameters are
a,= 0.2 hr and a-, = 1.0 hr. For I1I of 30 subjects (37%), the hypothesis that

the clock cycle has a high precision (s, < 0.2 hr), i.e., v, < 0.009, must be
rejected. On the other hand, all of these data are compatible with the hypothesis
of an imprecise clock cycle (s, > 1.0 hr), i.e., v, > 0.04.

Strength of the Coupling

/ Finally, the results concerning the strength of the coupling between the clock
and the overt cycle are briefly reported. The strength of the coupling between

Cz m

Kr

We . . . ..

-015 -0625 02 05

FIG. 9. Frequency distribution of the aerial correlation coefficient rs (see Fig. 6).
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model shows that a joint analysis of the variance of the overt cycle s and the
correlation r, is necessary.

The values of rs computed from the observational data are represented in
Fig. 9. The median of their distribution is -0.13. This value lies outside the
tolerance interval only for the case o = 0.0 hr and or,. = 1.0 hr. These results
are a by-product of the investigation. We shall now return to the main line of our
considerations, which are aimed at achieving an estimation of the imprecision of
the human circadian clock.

Imprecision of the Clock Cycle

Estimates of the imprecision of the clock cycle from single series of rest-
activity cycles are unreliable, because s,, s,, and s,, also have overlapping
distributions, similar to the situation just demonstrated concerning r,. Therefore,
the results presented in the following are interpreted only from a group-
statistical point of view.

In Fig. 10, the values of s, are displayed, together with the upper limit of the
95% tolerance interval of s, for the case in which the model parameters are
a, = 0.2 hr and or, = 1.0 hr. For 11 of 30 subjects (37%), the hypothesis that
the clock cycle has a high precision (s, < 0.2 hr), ie., v, < 0.009, must be
rejected. On the other hand, all of these data are compatible with the hypothesis
of an imprecise clock cycle (s, > 1.0 hr), i.e., v > 0.04.

Strength of the Coupling

/Finally, the results concerning the strength of the coupling between the clock
and the overt cycle are briefly reported. The strength of the coupling between
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FIG. 9. Frequency distribution of the serial correlation coefficient rs (see Fig. 6).
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FIG. 10. Frequency distribution of the standard deviation of the duration of the clock
cycle s. (see Fig. 6). Shaded area: this interval under the hypothesis a. < 0.2 hr and
aw = 1.0 hr has a probability of less than 5%.

the clock and the overt rhythm determines the variance s.. In Fig. 11, the
distribution of the estimated s. values is shown. The median of the distribution
is 0.6 hr. This is 38% of the median of s, which is 1.6 hr. These figures show the
contribution of the stochastic coupling between the clock and the overt cycle to
the variance of the duration of the overt cycle.

Discussion

The results reported here show an average imprecision of 7% for the human
rest-activity cycle. The most precise circadian rhythms in animals observed
thus far have an imprecision of about 0.2%. These figures emphasize the
difference in the cycle-to-cycle precision of circadian rhythms in temporally
isolated humans and in animals under certain constant conditions. The
estimated imprecision of the cycle of the human circadian clock is significantly
smaller, it has a magnitude of 4% (median of the a, distribution: 1.0 hr). Even
for this value of s,, however, the 95% confidence interval for the duration of the
clock cycle covers about 4 hr. In other words, the data analyzed here indicate a
considerable cycle-to-cycle variability of the human circadian clock even in the
state of internal synchronization.

However, the model applied here does not provide a fully satisfactory a

explanation of this result, in that not only random variability of the duration of
the clock cycle contributes to s, but also systematic variations of the period of
the clock. Examples of types of such systematic variations are the following:
trends of phase shifts of the rest-activity cycle that are reversed after several
days ("weekend shift"); variations of the period in cases of relative coordina-
tion.

The model used here does not allow for a separation of factors that cause
nonrandom (ie., systematic) variations of the cycle duration from random

--------------. -
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FIG. 11. Frequency distribution of the standard deviation sw characterizing the
strength of the coupling (see Fig. 6).

effects. The observations analyzed in this investigation, however, were all
obtained from subjects in a steady state of internal synchronization.6 Thus, the
previously mentioned major sources of systematic variability were not in
operation, and we must acknowledge that the period of the human circadian
clock varies randomly in the state of internal synchronization. This may be an
intrinsic property of the clock, or it may be the result of randomly induced phase
shifts in the clock cycle.

The first hypothesis according to which the variability of the period is a
property of the clock is compatible with the concept that the entire set of
temporally coordinated cyclic life functions performs cycles whose periods vary
randomly due to random fluctuations in the cycle durations of the functions
participating in this system. The second hypothesis implies the existence of a
clock-like organ that is (in contrast to a physical clock) not completely shielded
from external influences and is reset by certain factors on a random schedule
(C. Eastman, this volume). In the last part of this chapter, the first of these
hypotheses is illustrated by the conception of a mathematical model, whose
performance is then analyzed.

A NETWORK OF RANDOM PROCESSES

In the following, a system consisting of several simultaneously operating
random processes, a network of random processes (NORP), is described. These
processes are interconnected by a network of directed relations. It is shown that

6This state is essentially different from the transient states of beginning desynchronization that
have been analyzed empirically (2,13) as well as through the study of mathematical models (R. A.
Wever, this volume, and R. E. Kronauer, this volume).
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the system is capable of sustaining relatively precise cycles, with all partici-
pating processes staying mutually synchronized. Several aspects of the
performance of the system are demonstrated, and implications of the model are
outlined.

Biological Frame of Reference

Some theories of the circadian clock assume that the observable physiological
and behavioral variables represent processes external to but functionally
connected with the clock (vide supra). According to these theories, the clock
controls the overt circadian rhythms (13, p. 236). From an alternative point of
view, the entire variety of cyclic physiological and behavioral functions of the
organism may be regarded as constituents of the circadian clock. According to
this concept, the circadian clock is a certain mode of operation of the set of
circadian and more rapidly cycling life functions. An important component of a
model based on this philosophy is the assumption of mechanisms that enable
mutual control of the timing of the participating processes. Would a system
equipped with such mechanisms be able to exhibit self-sustaining cycles, with
the participating processes staying internally synchronized in constant condi-
tions? What are the minimal requirements concerning the structural details of
the control mechanisms and the structure of the network of interconnections to
enable the system to generate self-sustaining cycles? This section deals with
questions of this kind.

Some features of the model envisioned here formally resemble Enright's
coupled stochastic system (4). There are, however, also important differences.
Enright's model maps onto a different part of the biological reality, i.e., onto the
structure and performance of neuronal networks, whereas the model conceived
here is aimed at depicting another layer of organismic functions, which in
comparison with processes in single cells and delimited neuronal networks are
rather global variables characterizing the state of the organism. Examples
include body temperature, the sensation of hunger, and the excretion rate of
adrenalin. Some of these processes are consciously perceivable, and others are
not. This layer of life functions with its intrinsic structure of interconnections is
regarded here as a system that may essentially contribute to the self-
sustainment of circadian rhythms in temporal isolation. Especially, some
phenomena observed in temporal isolation of humans, such as the state of
internal desynchronization, may be the result of processes in this layer of body
functions.

Our present knowledge about the functional dependencies between different
physiological systems and about the interaction between physiological and
cognitive processes in humans is, of course, insufficient for the conception of a
structural model for this complex system. Nevertheless, even a speculative
model whose purpose may be an exploration of the structure and performance

.... tV
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of a certain type of complex system may contribute to the generation of new
ideas and to the development of new theories of circadian rhythms.

The following consideration played important roles in the conception of the
model: In an organism that has lived for a long time in an environment with a
periodically recurring 24-hr schedule of events and tasks, many body functions
have become temporally coordinated with each other in the form of a timetable
that may be stored in memory. When the organism is exposed to time-cue-free
conditions, two antagonistic forces start to operate. On one hand, each
physiological process and each behavioral cycle has a tendency to develop its
own free -running schedule. On the other hand, the organism as a whole may
have a preference for maintaining the normal learned pattern of temporal
coordination of its subsystems to which it is accustomed.

The Orchestra Metaphor

The main features of the system suggested here can be vividly described by
comparison of a biological system with an orchestra. The system corresponds to
the entire orchestra; each participating process corresponds to one of the
musicians. Each musician has on his music stand a sheet containing his part of
the piece of music to be played. The notes constitute a memory from which he
can read what he is supposed to play. The conductor has a score on his music
stand containing the parts of all musicians. He takes care of the timing of the
orchestra. Let us assume that at some time the conductor leaves and the
orchestra continues playing without a pacemaker, and each musician goes on
playing his part without paying attention to the playing of his colleagues. Sooner
or later the musicians will run out of synchrony and will become mutually
desynchronized with each other, because each musician's part consists of a
series of tones whose holding times are subject to small random variations. The
performance of each musician in this state can appropriately be described by a
renewal model with several states, each corresponding to a note.

Let us slightly change the scene (Fig. 12). Each musician receives a sheet
thai shows not only his own part but also the part of at least one other musician
in the orchestra. Now, even if the conductor leaves, each musician can listen to
the play of those colleagues whose parts he can compare with his own part as a
reference for his timing. He will notice if he is relatively behind or ahead of the
schedule and will correct his play, if necessary. Several relations of this kind
constitute a network interconnecting the musicians. This metaphor demon-
strates the essential features of the mathematical model suggested here.

A Realization of NORP

The model was realized in the form of a computer program. This kind of
realization has several obvious advantages over the classic form of representing
mathematical models by closed formulas (R. A. Wever, this volume and R. E.
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FIG. 12. A NORP with five processes. Each process has a memory (box) containing
information on the temporal coordination between its scheduled sequence of states
(row 1) and the scheduled sequences of states of one or several other processes
(consecutive rows). Each state transition is represented by a state vector (column) in
the memory. Arrows indicate directed relations between the processes.

Kronauer, this volume). First, a computer realization makes the structure of the
model transparent, so that missing elements and inconsistencies of the structure
can be detected. Second, a computer model is easy to modify. This allows for
comparisons of different versions of the model. Third, the performance of the
model can be explored by Monte Carlo techniques.

Structure

The computer realization of the model described in the following is a very
simple and special version of NORP. An understanding of its performance,
however, requires some details about its structure that will be outlined next.

Cyclic Random Processes

The implemented NORP is constituted by 10 cyclic random processes
P1,... ,P10 . Each process cycles through 10 states x =a,b,... i,k. The
holding times in all states of all processes are identically distributed according
to a Gaussian distribution with parameters p, and o.. When the processes run
independent of each other, they are renewal processes, in essence. Thus, they
have the following property: The expectation of the cycle duration is p4 10p,,,
and the standard deviation of the cycle duration becomes , -(10)"x =

-- -- - -- "nmm ~ i l •
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3.1 6q .7 The instantaneous state of the system at time t is described by the
state vector

<x (t),x2(t) ... X10(t)P

with xk(t) symbolizing the state of process Pk at time t (Fig. 13, bottom). If
q, > 0, the probability for a given state vector to recur periodically is very
small. The system described thus far is analogous to an orchestra without a
conductor and with each musician having only his own part on his music
stand.

71n the general case of n processes with states x i ... xk for process Pk, the holding time in
state x1 of Pk is given by a Gaussian random variable with Milk and alk. If the holding times are
independent of each other, the distribution of the cycle duration rk or process Pk has the following
parameters:

/rk 1=1 Ark 012k

pubbbc e e e a a a a b b b c c d d d e e e a a a ab
P a b c d d d dd e a a a a b b b b cd d d dde a ca

a b b b c c c c c d e e e eo a b b b c c c c c d e e e e a a

pbe a a a a b c c d d d d e eo a a b b c d d d
p2 a a b b b b b c, c, d d d e e e a a b b b b c c. d d d d d d d e
p3 a b b b c c c c c c d e e e e e e e a b b b b b c c d d d c c

FIG. 13. Pattern of temporal coordination between three processes. Top: State of
internal synchronization. Bottom: State of asynchrony. Each process cycles through
five states (a-e). During Internal synchronization, a cycle Is terminated after 15
transitions (15 state vectors). Functions of the state vectors may be defined. The
curves represent the course of a function of the state vector with clear periodicity in
the state of internal synchronizaton and random fluctuations in the case of
asynchrony.
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Directed Relations: The Elements of the Network

The modification of the orchestra described earlier is now performed
accordingly with our model. Components are incorporated into the system that
enable it to maintain a predetermined pattern of temporal coordination between
the different processes. The basic idea is that this control mechanism is solely
based on directed relations between pairs of processes; ize., it is of the form

Pk- Pk,. In other words, a central component that is connected to all P values
is not assumed. This feature constitutes an important structural difference in
comparison with the coupled stochastic system (4). The control mechanism
suggested here is decentralized.

How does Pk - Pk, work? If a distinct pattern of temporal coordination
between the two processes recurs repeatedly (Fig. 13, top), a simultaneous
observation of the processes (Pk,Pk') can be represented in the matrix
symbolizing all possible states of (Pk ,Pk,). Let k =I and k' = 2. Imagine that
P, and P2 operate simultaneously (Fig. 14). At some time, P1 will change its
state; some time later, either P2 or once again P, will change its state. Let us
assume that , is presently in state a, and P2 is in state d. The next transition
may be made by P1, which goes into state b. Then it assumes the states c and d,
while P2 is still in state d. Now, P2 makes a transition to state e; then P, goes to

Pilo b c d d e a f g g g g h h h h ik k k
Pd d d d 9 e f f f g h i k a b b b c d

a
b
C

d

P0-

h

FIG. 14. Joint state space of two processes. A predetermined cyclic pattern of
temporal coordination Is Indicated (arrows). The shaded fields represent states In
which control mechanisms are activated.
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e, and so on. Such a series of state transitions describes the pattern of temporal
relationship between processes I and 2. Let us assume that after some more
transitions the system returns to the initial state (a, d).

In case process I s related to process 2, process I has a memory containing a
matrix with a cyclic path of state transitions representing the schedule of the
temporal coordination between the two processes. Because both P, and P2 are
random processes, in the sense that the actual holding times in each of their
states are random quantities, it may happen that the system leaves the path that
is intended by the schedule. Consider, for instance, the following situation:
When the system is in state (d, d), it may occur that the next transition is made
by P1. In this case, the system will deviate from the path and enter state (e, d).
Now, a mechanism is activated that slightly increases the probability that the
system may return to the memorized path. In the present case, an appropriate
action will be to slow down P, by increasing the expectation of the holding time
of its present state. This gives P2 a greater chance to make a transition to state e
while P, is still in state e. Thus, it is not unlikely that the system may reach the
memorized path in state (e, e) again. This mechanism is activated whenever P,
notices that the system is in one of the shaded fields adjacent to the path.

These details may suffice to show how directed relations between two
processes are realized that enable the "looking" process to augment the chance
to correct small deviations from its predetermined schedule of temporal
coordination. Two important features of the model must be emphasized here: It
does not contain a central unit to which all participating processes are
connected, and there are no devices in the model that measure time, but only
mechanisms that attract a process to the path in case of a deviation.

I Types of Networks

In a system with 10 processes, a variable number of relations of the kind
described here may exist: On one end of the spectrum there is the case of mutual
independence (ie., there are no relations at all); on the other end, when t..-
process is related to each of the remaining 9 processes, there are 90
relations.

Different types of organization of the network of relations are conceivable
(Fig. 15). Relation R I represents the case in which each process is related to
each remaining process. In case R2, one process is the pacemaker to which all
the other processes are related, and R3 represents a hierarchical network of the
existing relations. In R4 the relations form a cycle connecting all processes, and
R5 represents a system with two independent networks. Relation RO represents
the case in which there are nn relations between the processes.

The features of the NORP version reported thus far may suffice to explain the
concept of the mathematical model suggested here. Moreover, they provide a
frame of reference for some aspects of the performance of the model that will be
discussed next. It should be noted that the model has great flexibility.
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R1 R2

FIG. 15. Types of networks. Circles,
processes; arrows, directed relations.
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Modifications in its structure or constituent elements will result in differences in
its performance. The performance features reported here reflect the essential
properties of its structure, as well as some of its minor details.

Performance

Obviously, the processes of the NORP do not stay internally synchronized
under all conditions (Fig. 13, bottom), whereas it is highly likely that under
certain conditions internal synchrony is sustained, i.e., when each process is
related to every other process (R 1) and the variance of the holding time is small.
Let us assume that we observe the system for a time interval that is long enough
to contain a series of 100 cycles. Because the initial state of the NORP lies
always in the predetermined pattern of temporal coordination, a loss of internal
synchrony will become apparent only after some time. Thus, we may ask how
the length of the series of cycles during which asynchrony does not occur
depends on the structure of the network and on the variance of the holding
times.

Sustainment of Internal Synchronization

In the case represented in Fig. 16, the NORP structure is R1, and cr- 1.6.
The system of 10 processes stays internally syzhronized during the entire

p I4
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FIG. 16. Chronobiological standard

plot of 100 cycles of a NORP equipped
60 with network R 1.
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series of 100 cycles. Figure 17 shows how the length of the series of
synchronized cycles depends on the NORP structure and the standard deviation

/of the holding time. With networks R 1, R2, and R3 (Fig. 15), the system stays
internally synchronized for 100 cycles and more, even if the standard deviation
of the holding time assumes large values. In case of a cyclic network (R4), there
is a certain probability that from time to time the system temporarily loses its
coordination. But this is only a transient phenomenon, and the system resyn-
chronizes again after another cycle. A completely different performance is
found when there are no interconnections between the processes (RO). In this
case, the system gradually runs out of synchrony right from the beginning.
However, the desynchronization becomes apparent during a series of 100
cycles only when the standard deviation of the holding time is at least 0.8 hr.

Let us assume that we are investigating NORP like a behavioral scientist who
investigates circadian rhythms under constant conditions. We decide to observe
the system for a series of 50 cycles. In case the processes are unrelated (RO),
the asynchrony will become apparent only if o,, > 1.4, i.e., if the participating
processes are quite imprecise, with vr > 0.04. For smaller o,. values, however,
we might wrongly conclude that the processes are mutually coordinated. This
consideration shows that long series of cycles may be observed before a latent
asynchrony becomes apparent.

,p. ,
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FIG. 17. Persistence of internal synchronization in a NORP: x axis, standard
deviation of the holding times ax; y axis, length of series of cycles before asynchrony
becomes apparent; RO,.... R4, types of networks.

Cycle Duration

The results reported thus far have demonstrated a dependence of the
performance on the type of the network. Now another aspect of the performance
with the networks RI and R2 (Fig. 15) will be demonstrated (Fig. 18). Let us
consider a system containing only one renewal process. Here, the expectation of
the cycle duration Air = 100. The standard deviation or depends on the standard
deviation of the holding time a,, as shown in Fig. 17. We can now compare the
performance of the NORP containing 10 processes with this case. The standard
deviations s, estimated for a NORP with a structure R 1 or R2 are drastically
smaller than of for a single renewal process. Thus, the interactions of the 10
processes participating in the system cause a strong reduction in the variability
of the cycle duration. Moreover, the results show that quite differently struc-
tured sets of interconnections can reduce s,, i.e., increase the cycle-to cycle
precision of the entire system.

There is, however, another aspect of the results shown in Fig. 17. Whereas
for R2the mean value ofris close to 100 for all values ofao, there is a trend of?
for R 1. This effect is caused in the following way: Assume that a certain process
has just changed its state and is now looking at the processes to which it is
related. There are three possible cases: (a) The looking process realizes that it is
on schedule. In this case no action is initiated. (b) It notices that it is ahead of
schedule. In this case, it will slow down a little by augmenting the expectation of
the holding time of the just-assumed state. (c) It notices that it is behind schedule.

.4
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102 FIG. 18. Mean period r and standard
deviation of the period sr of a NORP
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standard deviation of the holding
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Of course, it will speed up now. But at the same time there is another effect
During this delay, some other processes may have looked at the process and
concluded that they were relatively ahead of their schedules. Consequently, they
have slowed down. Thus, there are several slowing-down actions and just one
speeding-up action. The two antagonistic types of actions are not balanced, and
the probability for an increase of the overall mean cycle duration is greater than
the probability for a reduction in this case. This shows that a NORP with
network RI will increase its mean period with increasing probability of control
actions, i.e., increasing variance a2 of the holding time.

Imprecision of the Cycle

The chronobiological standard representation of a series of simulated cycles
of the NORP system (Fig. 16) has a superficial similarity to human rest-
activity data. The last aspect of the performance of the model to be discussed
here concerns the cycle-to-cycle precision of the simulated data in comparison
with the precision of the human circadian clock.

An analysis of simulated data obtained with the networks R I and R2 by the
procedure described earlier yielded the following results: The serial correlation
coefficient between consecutive cycle durations is almost always negative.
Therefore, the variance of the cycle duration s2 can be split into a component s.
and a component S2. The latter is an estimate of the impr.cision of the clock-
cycle duration. The obtained values of v. range from about 0.005 to 0.020 for
Rl.

These findings lead to the following conclusions: First, series of cycles of
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NORP cannot be described by a renewal model because of the negative
correlation of consecutive cycle durations. Second, the cycle-40-cycle precision
of the system investigated here is greater than the cycle-to-cycle precision of the
human circadian clock estimated from rest-activity data. This may be regarded
as a hint that the hypothesis stated earlier, according to which the imprecision of
the clock cycle is a result of variability of the periods of the processes
constituting the clock, is insufficient to explain the degree of imprecision seen in
the human clock cycle in the state of internal synchronization. Thus, influences
from shift-inducing factors on the clock must be assumed in order to explain the
observed magnitude of imprecision in human observational data.

Although the structure of systems like NORP may be purely speculative with
respect to biological reality, the aspects of model performance reported here are
intended to emphasize that studies of such systems may help to clarify ideas and
support the conception of hypotheses that can lead to new perspectives on
circadian phenomena.

CONCLUSIONS

Two properties of the model need to be considered again: NORP does not
possess a central unit to which all its elements are connected. The structure of
the interconnections is a network solely based on relations between single
processes. Thus, NORP does not contain a clock, but as a whole it behaves like
aclock. Another main feature of the model is the assumption of memories
assigned to each participating process. Here, only the case of predetermined
memory contents has been considered, ie., the possibility of studying learning
processes has not been used thus far.

The concept of memory incorporated into the model has still another
implication: A process that is just looking at another process has to collect and
interpret information about its own state and the state of the process it is looking
at. This information then is compared with the respective piece of information in
its memory. As a result of the comparison, some control mechanism is
activated, if necessary. This mechanism may, in principle, work on aI
subconscious level, or, in humans, it may be a conscious cognitive process. In
the latter case, some specifically human abilities may influence the mode of
operation of the mechanism. Two factors may be particularly important: They
are goal-oriented activations of control mechanisms (C. Eastman, this volume)
and misinterpretations of information about the present state of certain body
functions. These kinds of factors have not yet been explored systematically by
incorporating them into models of the circadian system, either in the empirical
domain or in the theoretical domain.

Different kinds of biological systems that possess the ability to generate
circadian rhythms are known. The existence of cyclic biochemical processes
with circadian period in single cells has been demonstrated, and these ame self-
sustaining under constant conditions. Also, the ability to generate persisting
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circadian rhythms has been proved for delimited structures of the central
nervous system in higher vertebrates. Besides these two layers in the hierarchy
of life functions, other systems of functions may contribute to sustainment of
circadian rhythms under constant conditions. In complex organisms, especially
in humans, these different systems supporting the persistence of circadian
rhythms operate simultaneously in a hierarchical structure. Cyclic processes in
single cells constitute the elementary pacers in a neuronal network. The network
as a whole then exhibits circadian rhythms. These signals control various
physiological functions such as the production rate of hormones and the body
temperature. The behavior of animals or humans is influenced by these
physiological processes, and vice versa.

The processes in single cells, as well as on the level of neuronal networks, are
being explored experimentally and have been described formally by appropriate
mathematical models. The possible contribution of the layer of physiological
and behavioral variables to the sustainment of circadian rhythms is still not well
understood. The purpose of the model suggested here is to provide a means for
exploration of the performance of a complex system of simultaneously
operating interconnected processes that shares some basic structural features
with the layer of physiological and behavioral variables. Cognitive processes,
especially storage and retrieval of information in memory, constitute essential
components of the model.

A main result obtained from the Monte Carlo studies is the fact that already
the availability of limited information about the familiar pattern of temporal
coordination of life functions from a memory constitutes a factor that supports
the sustainment of mutually synchronized ciruadian rhythms under constant
conditions. This fact appears to be especially relevant for an understanding of
the phenomena occurring in isolation experiments with humans.
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DISCUSSION

Dr. Kronauer: In the analysis of the synchronized human data, did you assume that
they were random according to the renewal process when you analyzed them? Or did you
conduct some test of this?

Dr. Dirlich: I did not assume that they were random. The procedure that I used does
not discriminate between systematic and random variations of tau. It just is a procedure
that separates the variance component caused by the coupling and the variance
component caused by the sloppiness of the clock cycle. But I cannot say if the estimated
variance of the clock cycle is due to systematic or random variations.

Dr. Enright: You emphasized in your chapter the importance of models that offer
predictions. What kinds of predictions did you arrive at from your model?

Dr. Dirlich: None, at the moment. It is pure speculation.
Dr. Edmunds: I guess there is no point in asking why you think the clocks in

unicellular organisms are so precise. The latest Gonyaulax work shows a standard
deviation in precision of 17 min per day. Would you care to speculate on the difference
between sloppy human clocks and the precise unicellular clocks?

Dr. Dirlich: I cannot say much about it. I think there may be a circadian clock in
humans of the kind that Dr. Enright has described. If this is the case, it is part of a higher
kind of control mechanism. This control mechanism can then modify the speed of the
clock at random.

Mr. Milato: You mentioned that with the hierarchical model, you have got a rather
constant tau which was independent of the standard deviations, whereas with the
collective model, tau increased with standard deviation. In Dr. Kronauer's two-oscillator
model, one has to change tau over time in order to get a progressive change in states,
leading to desynchronization. The underlying tau gradually increases, beginning at
release from Zeitgeber. At that time, I suspect there may be either a gradual change from
hierarchical to collective organization or an increase in standard deviation over time.

a
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Everything should be made as simple as possible... but not simpler.
Albert Einstein

I am exploring that limit, in the case of modeling human circadian rhythms, by

taking the risk that I may err on the side of oversimplification. I shall attempt to
redescribe some recordings of human sleep and waking made in several
laboratories in the past decade. My objective is to avoid models as far as
possible, then to compare only the sketchiest versions of them against published
data in order to find out what further elaborations the data seem to require. A
first look at the data suggests that under some conditions there may be an
interesting discontinuity in the dependence of wake-up time on prior sleep-onset
time. This feature may find simple interpretation in terms of circadian variation
in a threshold process that initiates wake-up. It may therefore help to clarify the
connection between the continuous variables of oscillator models and the
discrete events of sleep onset and wake-up. Also, I have observed none of the
regularities in the timing of sleep onset that would be expected according to the
dozen or so models currently under consideration.

Curious and elusive regularities lurk in records of sleep and wake transition
times. Among the most intriguing are the following:

1. Aschoff and Wever (9, and citations therein) have observed that sleep and
wake timing need not stay synchronous with the steadier beating of our
circadian clock, as reflected in the ups and downs of core temperature.

2. The more recent discoveries by Czeisler (1,2) have shown that there is a
natural periodic time base to which to refer human sleep-wake transitions, that
the time of awakening depends mainly on the time of prior falling asleep when
both times are referred to that natural period, and that something about human
sleep-wake behavior is slowly changing week after week and month after month
during temporal isolation.

187 PA 3
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3. Kronauer (6,7) has demonstrated that a two-oscillator analogy descended
from that of Wever, with several critical mutations, does reproduce many of the
curious regularities of human sleep-wake timing.

Because I am not in a position to do my own experiments in this area, I have
chosen to begin with the published data. In particular, it struck me that one
feature of the data-a feature that I have often seen in my own experiments and
in those of others on invertebrates--has not been emphasized in manuscripts
available to me at this writing. Because it may have an important bearing on
contemporary interpretations, I would like to draw attention to it here.

WHAT COMES DOWN NEED NOT HAVE FIRST GONE UP

This feature emerges most starkly in plots of sleep duration against the time of
sleep onset, modulo Czeisler's discovered time base. What Czeisler found is
that there is a period in the range of 24 to 25 hr, quite sharply defined in some
data sets, wherein the sleep onset phase predicts sleep duration with minimal
variance. In at least one other data set that I have examined (8, Fig. 8), the
same holds true, except that the underlying period must be assumed to increase
very slowly during the months of observation. That period turns out to be the
dominant component of core-temperature fluctuations, too; so a plot of sleep
duration against the phase of sleep onset in the temperature rhythm also tends to'I look quite orderly. So does a plot of duration against sleep onset time measured
in hours past the most recent temperature minimum or since the middle of the
sub-average-temperature interval, etc. Figure 1 shows a series of plots derived
from the data of Jouvet et al. (4) in the manner of Czeisler et al. (2): each sleep
duration is plotted against its time of onset modulo and assumed period, and
then the period chosen is varied by 2 min from one plot to the next until a period
is found (a fixed period in this case) that brings out a functional dependence. In
this case, the data look most orderly at T- 24 hr, 20 min.

The most conspicuous feature of this plot is its lack of continuity;, it seems to
break near a critical phase at which sleep may continue either for an
uncommonly short time or for an uncommonly long time, but seldom in
between, as observed in less exaggerated form by Czeisler et al. (1,2) in PRO I
and other subjects. Should one draw through these data an idealized smooth
curve? To me, these data and those of Zulley (13), plotted by reference to the
daily temperature minimum, suggest an alternative piecewise-continuous
redescription in the fashion of Fig. 2.

It is not necessary in theory that the curve through such data should rise and
fall continuously, as, for example, in the work of Kronauer et al. (6, Fig. 10). A
discontinuity (even an overlapping discontinuity, as fantasized in Fig. 2) can be
a sensible alternative interpretation of the observed sleep and wake times, as I
shall show below.

The simplest model provides an acceptable interpre-ation of disconthanuty in
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FIG. 1. Sleep duration Is plotted against arbitrary phase in a cycle of duration T
throughout the free-running segment for subject JC (4, Fig. 2). Twelve plots are
shown, at T values increasing by 2 min from 24 hr, 6 min to 24 hr, 28 min. Czelsler
optimized T(1, p. 289) by minimizing the variance of durations averaged over onset
time modulo T. His procedure computes a large variance at any Tthat shows parts of
the data cloud overlapping at a discontinuity. Suspecting that such might actually
occur, we chose instead to "eyebair the plots for best confinement of data to a one-
dimensional locus in the plane. This alternative procedure has the advantage of
detecting regularity without a priori excluding T values that reveal bimodal distri-
bution of sleep durations.

6

sleep durations. Suppose for the moment that wake-up is initiated when core
temperature rises to a certain point (call it phase 25 on a scale 0-25) in its daily
cycle. Then sleep duration is simply 25 minus the time of sleep onset in this
cycle. At phase 25, duration jumps discontinuously from 0 to 25. This model is,
of course, too simpleminded. But now suppose I tend to wake earlier than the
standard phase if already well rested, and to le long asleep if I have only
recently retired when phase 25 comes due. Then the discontmuity is reduced
toward the 8to 12 hr more typically observed. Biological variability might make
durations bimodally ule near the critical phase, thus providing the
appearance of overlap. This kind of model runs afoul of data in other essential
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FIG. 2A. One panel of Fig. I is overlaid with a suggested curve threading the data.
The curve is discontinuous and lacks upslope in the manner described earlier (10).
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FIG. 28. The data of Zulley (13) are similarly overlaid These points were located
horizontally by absolute hours after the most recent temperature minimum, not
by simply postulating a rhythmical Influence and then seeking Its period as In
Fig. I. Thaw two methods amount to nearly the same thing If the postulated
Influence Is conspicuous In temperature fluctuations, However, Zu~leys data are
probably somewhat displaced by the temperature-reducing effect of sleep. The
ture minimum. Very few wake-ups occur In this region.
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regards, but it suffices here to make the point that there is nothing intrinsically
unreasonable about discontinuity in the dependence of sleep duration on sleep
onset phase.

Czeisler (1) also noted the sudden change in sleep durations and compared it
to the "breakpoint" in the transients of phase resetting. Kawato et al. (5)
presented an interpretation according to which an underlying mechanism phase-
shifts abruptly to change the sleep duration. My own preference is for an
interpretation, sketched below, more in line with the models of Wever (9; and
this volume) and Kronauer et al. (6; and this volume). But the point I wish to
make here is that there is no theoretical reason prejudicial to interpretation of
the data by a piecewise-discontinuous curve or (what is the same) recognition of
a range of circadian clock phases during which wake-up seldom or never occurs.
This gap is conspicuous in the raster-plotted raw data (when the raster period is
accurately matched to the individual's circadian clock) as a vertical band devoid
of spontaneous awakenings (11,12).

I have been cautioned (K Kronauer, personal communication) that
although discontinuities may present no obstacle to model makers, they may
still be artifacts of data processing:

1. There are some dots that might indicate a very steep upslope rather than
strict nonexistence of any curve rising through intermediate sleep durations.

2. In sleep-wake recordings unaccompanied by temperature data, and to a ,
lesser extent even with such data, there is some slight latitude of choice about
the base period. It commonly happens in long records that the longest sleeps
occur preferentially near the end of the record. By choosing a slightly longer
base period, one can plot these sleeps at earlier phases, overlapping short sleeps
initiated at the same phase earlier in the record. This effect spuriously steepens
the upslope or introduces frank overlap of longest and shortest sleeps.

3. A different problem afflicts analysis of data in which base period seems
unsteady. In such cases one can only plot sleep onsets relative to the recent
temperature excursions. Wake-up causes a temperature rise; so the temperature
minimum cannot easily follow wake-up. Thus emerges an apparent but
artifactual gap in wake-up phases, and the corresponding discontinuity in sleep
durations. This effect would tend to condense sleep onsets around one quarter
cycle before apparent temperature minimum while rarefying wake-ups in that
range, with the opposite effect near the opposite phase in both cases. This is
exactly what Zulley's data show (Fig. 2B). This "masking" of the core-
temperature rhythm by the direct effect of activity can be compensated
numerically, but I have not yet am sleep-wake timing replotted on this basis.
In principle, this is a continuous distortion; so it cannot make a continuous
curve look disconinuous, or vice versa. But, in fact, one deals with data points,
and only imagine curves. I am not sure how one's imagining might be affected
after making this correction.

4. It would appear from the work of Czelsler st al. (2) and Kronauer et al. (6)
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that bimodality and discontinuity are not universal: A smooth, almost
sinusoidal, curve derived from the two-oscillator model fits quite nicely to the
data of PRO 1 (6, Fig. 10). The models computed by Wever and by Kronauer
(at least with parameters as then adjusted) do not exhibit discontinuity. As
illustrated by Fig. 10 of Kronauer et al. (6), every realizable sleep duration can
be elicited at either of two phases of sleep onset, one where the curve is
descending and one in the midst of its opposite ascent.

Those are some of the caveats. Only laboratory observation will clarify the
matter, so it may be years before it is known how common this feature is that
can now be perceived only ambiguously, But suppose for the moment that this
discontinuous interpretation may be as appropriate as the original smooth
interpretation and enquire what it may signify. The question is of interest in
itself, concerning, as it does, a distinct qualitative feature of the psycho-
physiological mechanisms of sleep. It also has interest in connection with
models. According to one mathematical metaphor, any mechanism involving
accumulation or depletion of some quantity toward a threshold that is subject to
a periodic influence can exhibit such bimodality, overlap, and discontinuity. I
shall present a simple caricature to illustrate how this comes about and to
underscore some of the diagnostic idiosyncrasies of this class of mechanism.1

I believe attention to this feature might prove useful to discriminate between
admissible and inadmissible ways of relating the smoothly varying quantities ofIf an underlying oscillator to the discrete transitions between sleep and waking. In
underscoring the deficiencies of Wever's early choice of a threshold inter-
pretation, Kronauer et al. (6) pointed to the need for such discriminating
observations 2

A GATING MODEL

Kronauer et al. (6) and Aschoff and Wever (9, and citations therein) argued
that human sleep-wake data are best construed as revealing two separate
circadian clocks: one of relatively constant 24- to 25-hr period and another of
longer and more labile period. [Note, however, the dissenting opinions of
Dirlich (this volume) and Eastman (this volume).] They further inferred that
both oscillators involve two or more smoothly varying quantities in their basic
mechanisms and that both oscillators have limit cycles to which they recover at
a leisurely pace during transient changes of amplitude. This understanding of

Daan and Beetama (thiu volume) have described a well-developed model ofjust this sort. It goes
further to also interpret wake durations in the same terms, despite the lack of conmspon 8ft
reularip t in the published observations (vide iqfa).

21 am indebted to R. Kronauer for his subsequent observation that with appropriate adjstment of
its threshold mechanism, his model can also represent the discontinuity, as shown in Komauer at aL
(7, Fi. 10). Figure 3 frm the same work reinterprets the PROI data as in my Fil. 2 and the
a4usted model

I
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human clockworks needs to be set in context by understanding also why nearby
alternative interpretations do not work. As a step toward verifying both the
sufficiency and the necessity of the existing two-oscillator model, I would
therefore like to gather observations appropriate for testing it against the many
alternatives it seems to be provoking.

I now present one more such alternative: a simple interpretation of the
dependence of waking time on prior sleep onset, both being measured by
reference to a smoothly varying rhythmic influence. This influence may be
construed as coming from the autonomous circadian clock that also influences
core temperature or, when external scheduling is dominant, as coming from
some outside Zeitgeber. Suppose that the first oscillator, the one with steadier
period, which is more conspicuous in core temperature, makes its appearance in
the sleep-wake system simply as a smooth rhythmical modulation of some
threshold at which wake-up is initiated (Fig. 3). (There is no cause to assume
that its maximum and minimum correspond to those of core temperature.) This
interpretation is lifted directly from my interpretation of the pupal eclosion
rhythm in the fruitfly (10, pp. 403-406). The model has been studied in some
detail mathematically, but, skipping all that, the bottom line is that models of
this class exhibit a characteristic idiosyncrasy that seems to appear also in the
dependence of sleep duration on sleep onset time (Fig. 1).

Figure 3 illustrates the timing of wake-up given one particular choice of sleep
onset time, where the rising quantity (call it "restedness") starts its rise from

RESTEDNESS T

[ THRESHOLD

40.

SLEEP WAKE- UP

ONSET
I I.

DURATION OF SLEEP

FIG. 3. "Restedneas," defined proportional to cumulative sleep, dses toward a
threshold at which wake-up is Irrevocably Initiated. This threshold is postulated to
vary with subjective circadlan time at a period T to be discovered in the data.
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baseline. (It would, of course, be equivalent to fantasize a declining "tired-
ness.") Were there no modulation of the threshold level, sleep duration would
be the same no matter when sleep begins; in fact, there would be no grounds for
distinguishing one "when" from another, so far as the threshold is concerned.
With nonzero threshold modulation, the duration of sleep depends on the timing
of sleep onset. In fact, with arbitrarily strong modulation, the dependence is
exactly as in the "simplest" model described earlier~ Wake-up can occur only at
a standard phase in this rhythm. So one needs to consider modulation at some
moderate amplitude between the extremes.

In Fig. 3, sleep duration would decrease if the phase of sleep onset were
moved to the right. Moved farther right to a critical phase, the rising quantity
would altogether miss the trough of the threshold rhythm, and hit threshold only
much later (Fig. 4). (The same might be accomplished by sleep deprivation,
causing restedness to start from a lower origin or, equivalently but more con-
veniently for graphic anticipation of the results, elevating the threshold curve.)
At this critical phase, the shortest sleep abruptly changes to the longest. There is
no ascending branch of the curve. In fact, if very short sleep sometimes fails to
terminate at threshold, i.e., if sleep sometimes lingers until the threshold is
uncrossed again a short time later (Fig. 5), then shortest and longest may be two
alternative choices for the duration of sleeps initiated near that critical phase.
The top and bottom parts of the curve would then overlap in the way suggested
by the data of Fig. 1. Wake-up is gated by the rise and fall of the threshold. It
can occur spontaneously only in a certain range of phases (where the threshold
is not rising too fast). Forced waking at other times might be uncomfortable and
unproductive.

At sufficiently high amplitudes of threshold modulation, wake-up never
occurs in a certain range of phases in the temperature cycle, regardless of onset
phase. But at sufficiently low amplitude of modulation, wake-up can occur at
any phase, depending on onset phase. In other words, if the threshold
modulation is weak (if the 25-hr circadian rhythm and/or exogenous Zeitgeber
has less impact on the sleep-wake mechanism), then no discontinuity occurs.
This is because the weakly modulated threshold never rises faster than
restedness (Fig. 6). In such a case, duration varies smoothly with onset phase,
as represented by Kronauer et al. (6, Fig. 10). In this situation the duration of
sleep averages much longer, too, corresponding more nearly to the time it takes
for restedness to reach average threshold level, never being interrupted by a
plunging descent of threshold. Could this have anything to do with Wever's
observation (9) that when a subject's temperature amplitude decreases, his
sleeps average longer?

This caricature of the rhythmically modulated timing of a discrete event can
be put together in a single three-dimensional diagram (10), as in Fig. 7. This
particular diagram is computed from a mathematically tidy representative case
in which restedness increases steadily (by definition) while the threshold for

wake-up fluctuates sinusoidally (or in any other fashion). Note that the
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FIG. 4. Top: Figure 3 is tilled in with threshold interceptions from all sleep onset
phases spanning 1.5 cycles of T. Bottom: The dependence of duration on choice of
onset is replotted in upright coordinates.

FIG. 5. As in Fig. 3, but differently
scaled to suggest how a bimodal
distribution of sleep durations might
arise by transgressing the threshold
only briefly near a critical phase.
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FIG. 6. As in Fig. 3, but differently
scaled to suggest how weak modu-
lation of threshold may result in a
smooth up-and-down dependence
of duration on onset phase without
a break, as in PRO1 (1,2,6).

o I
DURATION

b -

d - ONSET
PHASE

AMPLITUDE
OF MODULATION

FIG. 7. Threshold-modulation models produce different curves of sleep duration
versus sleep onset according to the amplitude of modulation (by an endogenous
clock or by an external scheduler). At amplitude 0, duration Is always the same (a). At
low amplitudes (b) it varies somewhat according to onset time modulo T. At middling
amplitudes (c) It gets a steep narrow upslope region of high variance, but durations
are still unimodally distributed. At high amplitudes (d) the upslope has vanished,
leaving a frank discontinuity, even with overlapping edges. Durations are bimodally
distributed near this phase. The whole picture is called a "Whitney cusp." It Is typical
of a great variety of control systems.
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threshold could equivalently be regarded as constant while restedness rises
sometimes faster and sometimes falls back a little; the consequences for timing
would be identical. In fact, any model exhibits this qualitative behavior if it
combines a smoothly rhythmical wiggle with a quantity slowly approaching a
threshold to switch sleep on or off. In particular, the oscillator models of Wever
(9) and Kronauer (6) should show such duration-versus-onset curves when
parameters are so adjusted that the wiggle's amplitude exceeds the cusp point in
Fig. 7. Unfortunately, this statement seems to apply equally to sleep duration
(wake onset) and wake duration (sleep onset) in those models.

Such notions can be put to trial by sleep-deprivation experiments and/or by
changing the vigor or period of rhythmic driving (the threshold modulation). The
results expected (discontinuities appearing or disappearing, moving righut or left)
would be hard to mistake in the laboratory.

Before going on, note that if a process similar to that here conceived to govern
sleep duration were at work also in the determination of wake duration, then my
simplified caricature would constitute a second oscillator functionally equiva-
lent to the y (activity) oscillator of Kronauer et al. (6). [This is the model of
Daan and Beersma (this volume).] It differs from his only in that my amplitude
is inflexibly determined and my equilibrium state either does not exist or is a
violent repeller. This is getting to be fairly exotic speculation, but the business
can, in principle, be resolved by a singularity experiment (10). This is not yet
technically feasible in humans, so there is not much point in belaboring it. But
when and if one does find out how to perturb human clocks to their phaseless
states, then Kronauer's model can be expected to show that recovery will be
rather slow; if so, then simpler models of the sort here explored will be starkly
inadequate.

For the present, I have not been able to make sense of wake-duration data
(i.e., the times of sleep onset), so I postulate no second oscillator. This chapter
is confined to an interpretation of sleep duration alone, or, in other words, of
wake-up timing.

WHAT DETERMINES SLEEP ONSET?

Sleep durations taken from any stage in the secular progression of sleep-wake
behavior under temporal isolation all seem to fall on the same curve, as though
the shape of Fig. 7 and the modulation amplitude both remain unchanged.
While the patterning of sleep-wake alternations is metamorphosing, the timing
of sleep is not. The change, then, may lie exclusively in the mechanism
determining sleep onset, or the duration of waking. I need now to direct my
exploratory data analysis to the other half of the sleep-wake cycle by asking
"What determines when one goes to sleep?" Is the same periodic time base a

* conspicuous organizer of that dependence Does the time of sleep onset depend
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mainly on the previous time of waking or mainly on the previous times of waking
and sleep onset (perhaps through their difference, the previous sleep duration),
or additionally on more remote prior events?

Perhaps it would not be surprising to find disappointingly little determinism
here, as we all have the subjective impression that we can voluntarily defer sleep
to a much greater extent than we can adjust the moment of waking, given
the time of sleep onset. Attempts in this direction may be premature. Cer-
tainly they are hobbled still by a shortage of long unperturbed free runs in the
published record, and by the intriguing fact that during such runs, some essential
parameter is apparently drifting and, as it slowly drifts, distorting the functional
dependences I seek to observe. But it would be so valuable to know how one
sleep episode (or several) predetermines the onset of the next (if it does) that I
have undertaken to spend some time looking. I am inclined to take a lesson from
the recent mathematical literature of iterated mappings: that lovely regularities
may lurk in ostensibly random data, awaiting discovery by someone in
possession of a long enough and steady enough time series who makes a
felicitous choice of what to plot against what

It seems that this can be done in a model-free and theory-independent way. If
I had two records of alternating sleep and wakefulness, identically timed
through a dozen episodes, then I might reasonably expect the next sleep onsets
to be identically timed. Just as a matter of phenomenological description, the
hour of sleep onset should be somehow implicit in the timing of earlier events.

'-VT Tis is known to be so in the case of wake onset; in fact, only one previous event
suffices for excellent prediction. But in the case of sleep onset, I have not found
any clear regularity either in terms of the phases of the previous three transitions
or mn terms of the durations of prior waking and sleep.

In contrast, every model I have examined (by making artificial data sets to
submit to the same data-analysis programs) does show clear regularities of
diverse sorts, but none of these appear in the data. The regularities in the models
are, of course, quite similar for the two halves of the sleep-wake cycle. This is
because existing models treat the two stages evenhandedly, as two sides of a
coin, e.g., above and below a threshold. So my impression is that timing of sleep
and of wake is not so symmetrically handled in real people; for example,
whatever is changing during months of isolation appears to affect the timing of
sleep onset far more than it affects the timing of wake onset.
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DISCUSSION

Dr. Wever When we look for precision in various phase points, sleep onset is by far
the least precise reference phase that exists in the sleep-wake cycle; it has 50% larger
variability than all other phase point reference points, including, for instance, the
midpoint of sleep.

Dr. Czeisler Are your data that you have presented all from internally synchronized
subjects?

Dr. Wever Yes, only internally synchronized people.
Dr. Weitzman: If you look at what sleep stage ends the sleep episode during free run,

as compared to entrained subjects, it is very clear that there is a much increased
probability (i.e., about 80%) that the subject will wake up out of REM sleep. However,
in the entrained condition, the probability is down to 20 to 30%. That is in spite of the
fact that REM sleep during free running is shifting earlier, so there should even be a
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lower probability of waking out of that stage. Now, that means that there is some
powerful set of presumably ultradian REM/non-REM cycles which is somehow
structuring that endpoint. This suggests there is some kind of interrelationship between
the ultradian REM/non-REM cycle and the circadian sleep-wake cycle which is very
predictable.

Dr. Winfree- That sounds like a factor for determining the endpoint of the REM/non-
REM cycle, but I do not believe it to be related to the timing of circadian cycles.

Dr. Rosenthal: I am fascinated by your model.

Dr. Wigfree- Don't call it a model! [LaughterJ

Dr. Rosenthal: I am very interested in how it is similar to Dr. Borb6ly's model in that
it presupposes an interaction between a single circadian oscillating system and some
"buildup" or "hourglass" system. I am particularly interested in the way in which it may
explain abnormal sleep phenomena such as we see in depression. One could postulate a
reduced pressure to sleep, which could explain the reduced delta sleep seen in
depression. Your suggestion of a reduced threshold for wakefulness would explain a lot
of things.

Dr. Winfree. Well, that is precisely the point.
Dr. Rosenthal: Depressives do have a different sleep duration. They have early

morning waking, which could be predicted by your model, but it would be predicted that
they would have early morning waking that would cause sleep deprivation. There would,
therefore, be REM pressure which might explain why there is the observed increase in
REM in the early part of the night when the depressive subsequently goes to sleep. The
restriction of REM would increase REM density in the early part of the night. All of

these phenomena could be explained in terms of the picture you have drawn.
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Sleep Duration for Human Subjects During
Internal Desynebronization

I. T. Enright

Scripps Institution of Oceanography, University of California,
La Jolla, California 92093

Zulley [in Czeisler et al. (2)] and Czeisler et al. (1), in their analyses of data
from circadian studies of isolated human subjects, have noted that when a
subject shows dissociation of the wake-sleep rhythm from the core-temperature
rhythm, there is a systematic relationship between the phase of the temperature
cycle at which the subject falls asleep and the duration of the ensuing sleep. On
the basis of these data, as well as of his own analyses of similar data, Winfree
(this volume) has suggested that this quantitative relationship may well involve
a discontinuity: If sleep onset occurs at a certain critical phase of the underlying
endogenous; pacemaker rhythm (as indexed by the temperature cycle), the result
can be either a very short sleep or a very long one, with intermediate values
being unlikely. A slightly earlier sleep onset leads consistently only to very short
sleep, and a slightly later sleep onset only to very long sleep. Both Winfree (this
volume) and Daan and Beersma (this volume) have proposed models, of
differing complexity, in which such a discontinuity is predicted to occur because
of interactions between a cumulative renewal process and a rhythmically
fluctuating threshold. In this chapter I shall outline a possible alternative
explanation for that phenomenon.

AN INTERESTING RESEMBLANCE

I have been struck by the similarity between these empirical results and the
outcome of certain computer simulations based on models I have called
"coupled stochastic systems" (3). Those models were initially formulated as a
means of accounting for wake-sleep data from nocturnal rodents and from
diurnal birds. The parameter values for the specific model of interest here were
assigned to provide an adequate fit to phase-shift data for 6-hr light stimu-
lation of the house sparrow (3, Figs. 11.5 and 11.6). The simulations, in
which there are resemblances with the human data, represent predictions for the
bird's rhythm when single light stimuli of varying duration are administered
during free run, with onset of the light always corresponding to onset of activity
(wake-up time) (3, Fig. 13.8). Because of the formulation of this specific model

201



202 SLEEP DURA TION

(corresponding to the behavior of birds), onset of sleep would be expected to
occur at the end of the light treatment for all stimuli longer than about 4 hr.
When those predictions are replotted in a coordinate system similar to that used
by Winfree and others for the human data, the hypothesized behavior of the bird
shows a phase-dependent pattern of sleep duration similar to that of the human
subjects (Fig. 1). [Note particularly the sudden transition from very short to
very long sleeps; compare with human data of Winfree (this volume).]
Numerous other simulations with this particular model have convinced me that
qualitative aspects of this result are due almost exclusively to the time at which
the light stimulus ends (3, Fig. 13.6).

DISCUSSION

It may well be that this qualitative resemblance between (hypothetical) bird
data and the real human data is only fortuitous; certainly the subsequent
behavior of the wake-sleep pacemaker of my models, following such treatment,
seems to differ appreciably from that of the body-temperature cycle of human
subjects. Nevertheless, it seems worthwhile to pursue briefly the speculation
that the resemblance could reflect qualitatively similar processes in the wake-
sleep pacemakers of bird and human.

In a bird, the light receptors of importance for circadian rhythmicity are not
retinal, but directly in the brain (5); whether the bird is awake or asleep, its
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pacemaker is continually subject to prevailing light intensity (unless, as
sometimes happens in dim light, the sleeping bird tucks it head beneath its
wing). The pacemaker of a human subject, however, like that of other mammals
investigated, can presumably be affected only by retinally perceived light, with
the result that when awake, with open eyes, the human administers to his
pacemaker system a light stimulus. Onset of sleep and/or turning off of the room
lights are the usual ways in which that stimulus is terminated each day. Hence,
the photic regime of a bird, subjected to externally imposed light stimuli,
beginning at wake-up time and varying in duration, can be thought of as
comparable with the light-mediated consequences of human wakefulness, with
varying times of sleep onset. If the human subject were, for any reason, to delay
his sleep onset from its usual circadian timing, he would presumably be
administering unusual light stimuli to his pacemaker. Should the phase-shifting
effects of light stimuli on the human wake-sleep pacemaker qualitatively
resemble those in the sparrow, then one might well expect the sort of
relationship between phase of sleep onset and duration of sleep seen in the
human subjects, arising as a consequence of repeated self-administered light
stimuli.

The assumption involved here, that the wake-sleep pacemakers of human
and sparrow respond to the phase-shifting effects of light in qualitatively similar
ways, represents an extremely speculative leap beyond the limits of experi-
mental data. Light has been shown to be the dominant Zeitgeber for the

circadian rhythms of all nonhuman species; and because bird and human are
both day-active creatures, one might well expect evolution to have produced
certain similarities in their responsiveness to light, at least very crude
resemblances, so as to permit entrainment of their pacemakers with compar-
able, ecologically appropriate phase control. There is, however, no necessity for
the resemblances to go as far as assumed here; in fact I know of no unequivocal
demonstration to date that light can directly produce phase shifts of any sort in
the human pacemaker. On the contrary, Wever's attempts (6) to synchronize
human subjects with lighting regimes suggest that the human pacemaker may be
appreciably less sensitive to light than that of birds (see also ref 4).
Nevertheless, while admitting the validity of such reservations, I find this
hypothesis attractive because it does not involve the interpretation (R. A.
Wever, this volume, t. E. Kronauer this volume) that the human wake-sleep

* pacemaker is unique in having or developing an intrinsic period that is many
hours longer than the values seen in circadian rhythms of all nonhuman
vertebrates.

Phase shifting by light stimuli would, of course, offer only partial explanation
for why human subjects occasionally show the phenomenon of internal
desynchronization, with attendant wake-sleep cycles that are so far beyond the
usual circadian range. One must also explain why humans during this sort of
experiment would fail to "istea to" their circadian pacemakers, at the interUally
prposed time of sleep onset, md postpone that onset for so many hours, dwuif
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which light effects of the sort here postulated might arise. Perhaps the answer
lies in the cognitive interaction of a human subject with the protocol typical of
such studies in temporal isolation. In the Erling experiments (6), the subjects
are instructed to follow their normal, regular daily routine, with three primary
meals per day, but to avoid afternoon naps if at all possible. One of the
experimental subjects who experienced internal desynchronization (6, Fig. 57,
right) has retrospectively reported the following sort of subjective experience:
"I'm tired now, but this is probably not my bedtime; I have only eaten breakfast
and lunch, so I presume that this sleepiness represents an urge to nap, perhaps
because I'm cooped up here with too little chance to exercise. I won't go to bed
now, but try some gymnastics instead, to wake me up." As another example of
such cognitive interactions, discussion speakers at this symposium have called
attention to the fact that in other laboratories, the decision to retire "for the
night" during temporal-isolation studies is a much more momentous one than
simply climbing into bed;, the subject must be fully instrumented (EEG, etc.) by
laboratory personnel before sleep ii permitted. Could this aspect of the protocol
lead some subjects, some of the time, to postpone the decision to go to bed, to
procrastinate, waiting to see if the inner alarm clock is really giving an
irrevocable bedtime signal? We are all familiar with the experience that
cognitive issues of far less direct consequence, such as good company orI
interesting reading material, can lead us to postpone our sleep time-though
seldom to the extreme sometimes observed in temporal-isolation experiments.

Perhaps, as Winfree (this volume) has suggested, cognitive processes of these
sorts could be responsible also for the discouraging outcome of his search for
any consistent correlation between the timing of sleep onset and the prior
features of a given subject's wake-sleep behavior. (Note that the simulation
results shown in Fig. I depend primarily on the time at which the light stimulus
ends, i.e., time of sleep onset, with only minor influence of light onset, Le.,
preceding wake-up time.) Although there is no direct evidence yet available to
indicate whether or not cognitive factors can influence the outcome of human
temporal-isolation experiments, that absence could c-"-ceivably reflect only the
faiure systematically to collect, analyze, and interwet adequate data on the
subjective aspects of the isolation experience.

Whether or not the preceding interpretation contains an element of the truth,
the predictability of sleep duration on the basis of phasing of sleep onset is an
exciting empirical result, a central feature of these remarkable experiments that
demonstrates the conspicuous involvement of a circadian pacemaker even in
these very noncircadian data. The speculations in this chapter about those data
are offered in the spirit that alternative hypotheses are essential to the progress
of experimental science. The hypotheses suggested here are sufficiently
different from the others currently under consideration that a variety of critical
experiments to distinguish between alternatives could be designed. One of the
most obviou of these would be to attempt to induce internal dIaYncro ation
by sleep deprivation of a diurnal animal (a monkey, for example) during free-
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running conditions, first in a well-lit environment and then in total darkness. If
self-induced phase shifting of the wake-sleep pacemaker by lighting is
responsible for human internal desynchronization, the sleep-deprived monkey
should show phase shifting of its wake-sleep rhythm in a well-lit environment,
resulting in internal desynchronization, but should not be so affected in
darkness. I deeply regret that I am not now in a position to undertake such an
experiment myself.

SUMMARY

The complex dependence of sleep duration on circadian phase of sleep onset
that is seen in human experiments bears a clear resemblance to simulation
results that predict the duration of sleep of a sparrow following abnormally long
light stimuli. This resemblance suggests the hypothesis that the human results
may be due to (a) cognitive interactions of the human subject with the
experimental protocol such that he sometimes forces himself to remain awake
far after the time suggested by his circadian pacemaker and (b) phase shifting of
that pacemaker by self-administered light stimuli during such intervals of
prolonged wakefulness. This hypothesis implies that the free-running period of
the underlying wake-sleep pacemaker could be near 24 hr, even when the
average period of the observed rhythm is much longer.

I
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General Discussion

Dr. Kronauer Both Dr. Czeisler's data and Dr. Jouvet's data show that there is a
preponderance of the short sleep periods and not very many of the long sleep periods in
internally desynchronized subjects. But I look at the data that Dr. Winfree put together
from Dr. Zulley's experiments and I find that in this distribution there are a lot of long
sleeps and not very many short sleeps. It is a puzzle; I do not understand what might
make that kind of difference.

Dr. Wever There is a difference in the way the data are presented that maybe you do
not realize. What Dr. Czeisler did was to relate sleep duration to the educed waveform of
the temperature rhythm rather than to the waveform of the rhythm on the given day.

Dr. Kronaue. But that does not explain why there should be more long and fewer
short sleep episodes, as opposed to what Dr. Czeisler reported.

Dr. Wever. I would say our study used much more data. (Laughter] The difference in
the results depends on whether the educed minimum or actual minimum is used. The
actual minimum is shifted away from the mean of the educed rhythm systematically.

Dr. Czeisler Well, this analysis was done because we were relating the timing of
sleep-wake processes to the circadian phase at which they were occurring and not the
absolute temperature per se. There is an evoked response when you go to sleep with a
lowering of temperature immediately thereafter. In contrast, when Dr. Wever sub-
jectively determines the minimum in each cycle, that process requires a subjectiveIdecision to be made as to the time of the minimum in each curve. We wanted to use an
objective method which related sleep to the phase of the cycle. So we determined the
average period length by either spectral analysis or various other techniques that we have
developed and then educed an average waveform around that period. In those cases, we
eliminate the evoked component of the cycle and are able to look at the relationship of
these processes to the phase of the circadian oscillator controlling the temperature
cycle.
Dr. Schulz: Maybe one of the differences between Dr. Jouvet's data and Dr. Zulley's

data was that Dr. Jouvet's single experiment was done in a cave where the temperature
was rather low. In the German bunker experiments of Dr. Zulley and Dr. Wever,
however, the ambient temperature was self-selected.

Dr. Cze ler. Even in the isolation facility in New York, where the ambient
temperature is self-selected (along with the Ul-dark cycle), there is a preponderance of
self-selected sleep onsets near the trough of body-temperature cycle. I think that it also
may have to do with the particular subjects that Dr. Zuey selected, because the greater
the length of the average period of the cycle (in other words, the fewer clusters that return
to the near 25-hr period), the fewer cycles will have short sleeps. You can take sections
of Dr. Jouvet's data, for ezamle. which have a preo nderance of the short sleep

-; episodes and odr sections which have a preponderaa of the longer sleep episodes.
But, in general, if you averae many subjets together, since most of them start off at the
beginf of dsy rauhatlon with a period lnoth of around 30 hr, there is a
prpomdae of dusters of shotslesp episodes,
Dr. Wehm f you us Ot edmued wavetom to rehl the sleep duration to the phase,

sad f there Is a certn varliatio fm cycl to cycLk you will have a rather imprec s
d 1 f the acual phase at which each of those temperature cycles rlat to te
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sleep episode. On the other hand, Professor Wever's method, if it in fact accurately
identified the specific phase of temperature oscillator, would correct for that problem.
But is the actual temperature rhythm really so tightly related to the actual phase of the
driving oscillator? So I do not see either method as being superior.

Dr. Czeisler Well, I do. (Laughter] And the reason is twofold: First of all, if you look
at the actual data from one of our long free-running experiments with up to 6 months of
data, you can see that the temperature cycle does not have the kind of phase shifts which
Dr. Wever presupposes. The troughs of the temperature cycle are remarkably consistent
and are without shifts. In fact, it is the absence of shifts during free run that really
surprises us, given the nature of the sleep-wake cycle. Second, even if there were such
shifts, I do not see the method that Dr. Wever uses as any improvement ovef detecting
the phase. In fact, his method is much more subject to the evoked responses of going to
sleep and of activity which are superimposed on the endogenous circadian system.

Dr. Enright: Like Serge Daan, I consider myself an evolutionary biologist, but I think
one of the most important and unanswered questions here is why we frequently see
internal desynchronization in humans and do not see it in any other organism, even the
primates that have been looked at. The one obvious correlation I see is that in humans
there is the potential influence of cognitive factors. If you have got a good book, you are
likely to stay up later, but if you are bored, you are likely to go to bed earlier. Now we
hear from Art Winfree that the time of sleep onset, the characteristic that I would expect
to be most readily influenced by such cognitive factors, is apparently unpredictable with
respect to other aspects of the rhythm. Can anybody offer speculation about why we do
not see internal desynchronization in other animals?

Dr. Moore-Ede: The contrasts between the human and the animal studies are fraught
with more problems than just differences in cognitive activity. First, Dr. Weitzman and
Dr. Czeisler have pointed out that there is little obvious evidence that subjects are
staying awake in order to finish some task whenever they are displaying a very long
period of wakefulness and, therefore, extending their time of sleep onset. Second, the
experiments that have been done in monkeys have shown spontaneous internal
desynchronization by all criteria between other variables such as the urinary rhythms
and the behavioral rhythms, but not so far like the human subjects, between body-
temperature rhythms and activity rhythms. Now the work of Dr. Gander in my lab
reported at this meeting shows that the activity rhythm shows a rather greater variability
than the temperature rhythm and may, in fact, show quite large dissociations in phase
between these two rhythms in free-running monkeys. We have seen the data of Dr. Wirz-
Justice, which suggest such phenomena may exist in rodents treated with anti-
depressants. So, given the correct conditions, we very well may be able to show internal
desynchronization in other species. It is quite possible that playing around with various
agents, either that change the period or by using self-selected light-dark cycles, we may
be able to induce internal desynchronization.

Dr. Czeisler. I think that it is interesting to note that it is the people who have not done
J) actual experiments with human subjects who are most concerned about the volitional

aspect and that those of us who have actually done those experiments and have seen that
volitional factors do not play a part in internal desynchronization are least concerned.

Dr. Enright: In animal experiments you do not see the noncircadian periods you see
so often in humans.

Dr. Kripke. In the human data the idea of a single 24-hr sleep-wake cycle is
reasonable because many people will stay awake for 16 hr and go to sleep for 8 hr.
Animals do not do that. A rat, for example, wakes up every hour, at the least, for a period
of time. So the human is relatively unique compared to all our animal models, which
have polycyclic sleep.
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Mr. Plato: I've heard a quite narrow conception of what cognitive activity is here,
and that is reading a book late at night.[Laughterj I would like to refer to an anecdote
that was reported by a newspaper reporter, who took part in one of the experiments in the
Montefiore lab, which I thought was very interesting. She said that after a while her
normal sequence of daily activity started to break down, and her normal timing
mechanisms within the day were harder to determine because she could not tell the time
by the fact that she had just finished one typical daily activity followed by another. So I
would like to propose that humans, under normal circumstances, utilize not only light
and dark to time themselves, but also their sequence of activities as well as external cues
such as the position of the sun or the use of a wristwatch. In the absence of such cues,
humans are at a loss because they depend on those kinds of nonnatural environmental
cues.

Dr. Czeisler I would also like to point out that it is not just the last part of the day
which is extended. It is not just that they stay up late performing some activity, but the
entire day changes its character under these conditions. The time between waking up and
having breakfast might be 6 or 8 hr, the time between breakfast and lunch might be 8 to
10 hr. So dinner usually comes just before the subjects go to sleep, even when they are on
a 40- or 50-hr day. In the outside world we might have gone through breakfast, lunch,
and dinner before the subject even has breakfast, despite the fact that he got up at the
same time. So it is not just an isolated part of the day that has lengthened under this
circumstance, but the subject's entire perception of the length of his day.

Dr. Edmunds: I would like to challenge the conclusion that internal desynchroni-
zation has not been observed in any organisms besides humans. A couple of years ago I
published data suggesting that the rhythms of photosynthetic capacity can show
dissociated circadian rhythms in free-running Euglena over an interval of 2 or 3 days,
with virtually any phase relation observable, suggesting that the detection of internal
desynchronization may depend on what you look at.

Dr. Weitzman: I would like to expand on what Dr. Czeisler said. If you ask a subject
who has been up for 30 some hours if anything is different (being careful not to imply to
him that something might be different), almost invariably you get a statement, "Well,
maybe the day seemed a little longer but basically it was unchanged." On a 50-hr day,
you often will find that they feel like they are ready to go to sleep but they have not had
dinner yet. And so they are conflicted-"Should I have dinner, should I go to sleep?" In
fact, sleep generally takes precedence, and they say, "I just cannot stay awake
anymore," and they will go without dinner. Thus, the whole structure of the day, the
whole internal organization, changes, but the subject is totally unaware of the time that
has elapsed in these very long days.

Dr. Wever We find there is a very strong correlation between internal desynchroniza-
tion and the age of the subject. We can divide our subjects into two groups: a younger
group from 17 to 35 or 40, only a few of whom show internal desynchronization. In the
elder subjects, up to age 73, 80% show internal desynchronization.

Dr. Weitzman: We have not seen such a high incidence of internal desynchronization
in older subjects. We have studied a series of older subjects up to the age of 84, and there
have been some who have desynchronized, but most of them have not. We do not have a
very large series, but it suggests to us that it is more the length of time in isolation rather
than the age of the subject that is important

Dr. W lfiw. Dr. Weitzman, on these 50-hr days, do your subjects eat 6,000 calories
per cycle?

Dr. Weitzman: No. They do not.

Dr. W*7fr. If they eat three meals a day, do they get skinny after a while?
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Dr. Weitzman: Yes, they do. In fact, some subjects increase the amount per meal;
they will say they feel hungry. But another subject might say, "I do not know what you
are doing here, but you are not giving me enough food to eat. You weigh me every day,
and I am hungry all the time and I am losing weight every day." He was only eating three
meals and a snack on each 50-hr day. So we told him, "If you want more food or more
meals, just ask for it; you have that choice. You can do anything you want." That's our
paradigm: We give them any amount of food at any time; it is a wonderful hotel! But he
did not choose to do that. He continued to eat essentially three or four meals a day and
just increased the size of the meal somewhat, and thus continued to lose weight during
that time. It is a good weight-losing technique, a little expensive, but.... [Laughter]

Dr. Lewy: Why does internal desynchronization occur either exclusively or at least
more often in humans as compared to other species? Second, why does internal
desynchronization occur when it does occur in the free-running studies? I think one factor
that we should consider is the light-dark cycle and the sensitivity of humans to light.
Humans require much brighter light for the same suppression of melatonin than other
species. Another finding that we have not published yet is that there seems to be quite a
large variability in light sensitivity in individuals, and there may be a seasonal rhythm in
light sensitivity in man. During the summer our subjects are relatively insensitive to light,
as compared to when they are studied in the winter. So I would suggest to those of you
who have data that you look at what time of the year the experiments were
conducted.

Dr. Borboly: Two basically different models of the sleep-wake process have been
proposed. One of them postulates a single oscillator (Dr. Daan's and Dr. Eastman's
model), and the other has two oscillators (Dr. Kronauer's model). It is crucial that we
think of experiments which could determine which model is more valid. As Dr. Serge
Daan has proposed, sleep deprivation is a method which has not yet been sufficiently
exploited. It seems to me that along these lines a critical experiment could be
designed.
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