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/ ABSTRACT S

2> This paper studies how to identify influential observations in univariate

ARIMA time series models and how to measure their effects on the estimated

parameters of the model. The sensitivity of the parameters to the presence of

either additive or innovational outliers is analyzed, and influence statistics

based on the Mahalanobis distance are presented. The statistic linked to

additive outliers is shown to be very useful to indicate the robustness of the P

fitted model to the given data set. Its application is illustrated using

simulation results and a relevant set of historical data.

AMS (MOS) Subject Classifications: 62M10, 62F35, 62-07 P

Key Words: influential observations, robustness of ARIMA models, diagnostic

checks
Work Unit Number 4 - Statistics and Probability

*i

ETSII, Universidad Politecnica de Madrid, Spain. At the Mathematics Research B
Center and Statistics Department, University of Wisconsin-Madison at the time
of this report.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the United States-Spanish Joint Committee for Educational and Cultural
Affairs.

yt



SIGNIFICANCE AND EXPLANATION

Observed time series almost always have atypical points that are produced

by nonsystematic changes in the variables that are driving the series. As the

univariate forecasts from any univariate time series model are based on the

extrapolation of the historical patterns, if the parameters of the series are

very much dependent on a few atypical observations linked to non-repeatable

events then, the quality of these forecasts can be very poor. Furthermore,

the identification of these observations is very important in order to check

the robustness of the fitted model.

This paper studies how to measure the influence of each observation on

the estimated parameters of a time series ARIMA model. The effect of either

additive or innovational outliers is analyzed, and simple expressions are

obtained to measure their effects. A statistic is introduced that seems to be

very useful to indicate influential observations and to judge the general

robustness of the fitted model.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.



INFLUENTIAL ODSERVATION8 IN TIME SERIES

Daniel Pena

1. I TIRODUCTION AND SUNARY

Observed time series almost always have atypical points. Theme anomalous values are

produced by nonsystematic changes in the variables that are driving the series or affecting -

them. As the forecasts from any time series model are based on the extrapolation of the

historical patterns, if the parameters of the series are very much dependent on a few

atypical observations, resulting from isolated or non-repeatible events, then. the quality

of the forecasts can be expected to be poor. Also, if the parameters of the model have

physical or economical interpretation, the presence of undetected influential observations

can mislead the scientist about the properties of the model. Finally, the study of these

observations, that is the sensitivity of the model to the given data set, provides meaning-

ful information about the robustness of the fitted model.

This problem is related to, although different from, the study of outliers because it

is well known that the fact that an observation is an outlier does not imply this observa-

tion affects substantially the parameter estimates of the assumed model, although in

general it will affect the variance of the estimates.

Cook and Weinberg (1982) and Belsley, Ruh and Welsch (1980) present an overview of

influential observations in the regression model. This study has been extended to some

other members of the generalized linear model family. (See Pregibon (1981).) Briefly, the

main idea of this approach is to delete suspicious observations and build a measure of the

change that this deletion produces in relevant features of the model, such as the estimated

parameter values, or the forecasts.

I
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The study of influential observations has been limited so far to independent data.

This paper attempts to extend these ideas to dependent observations in the context of time

series analysis and is organized as follows. Section 2 summarizes the literature of

outliers in time series models and discusses the two basic types of outliers that can occur

in a dynamic situation. Sections 3 and 4 show how to build measures of influence for

additive outliers and for innovational outliers. Section 5 presents some simulated

examples of the behavior of these statistics that are then applied in section 6 to the

study of the robustness of a time series model.

The main result from this paper is to present a statistic that can be easily computed

and seems to be very useful in indicating the observations that have strong influence on

the estimated parameter values. Thus, this statistic can be incorporated easily into

standard time series analysis practice and provides a quick and simple way to judge the

robustness of the fitted model. Second, a simple expression has been found that relates

the parameter values estimated with and without outliers in ARIMA models. This expression

is used to prove that additive outliers are expected to be much more influential than

inovational outliers. Third, on the assumption of innovational outliers the relevant

statistics for influential observations are identical to those desired in the regression

situation but their usefulness seems to be small in the time series context.

-2-



2. OUTLIERS IN TIME SERIES

Fox (1972) defines two types of outlier which may occur in time series data. The

first, called type I outlier by Fox, corresponds to a modification of the value of the

observed series due to some external cause, as a gross recording error or a intervention at

some point. Assuming that the observed series at  follows and autoregression moving

average model, the model for a type I outlier is: S

#{B)y
t - O()a

t

tt T
Yt 

=  t

zt-w t T

where B is the backshift operator. #kyt - pt-k and *(B) - I*3 -...- *pBp  and

8(B) - 1-e B -...- 6Bq are the autoregressive and moving average polynoLials. This nodel
q

could also be written as :

(T O(S)

at  8(t B)+at

(T) 0 t T (2.1)
t I t T

which points out that this model is a special case of intervention analysis (Box and Tia

(1975)) with a instantaneous reponse function, w. Model (2.1) has been called the

additive outlier model by Denby and Martin (1979), and Chang and Tiao (1983), and the

aberrant observation model by Abraham and Box (1979).

The type I outlier can be interpreted as the effect on the series of some external

even or exogenous change in the system. On the other hand, the second type of outlier can

be considered as the effect of some internal change or endogenous effect. If we think of a

univariate time series model as an aggregate representation of the pattern of behavior of a

vector xt of explicative time series that are causing the observed series at, the noise

of the univariate model represents the aggregate of the nonsystematic variation of the

-3-
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components xt. An exogeneous intervention outlier in any of the components will produce

an anomalous value on the noise of the univariate process. The model will be

*(D)zt . 8(B)(a + w 
T

) (2.2)

where the atypical behavior appears on the innovation. This model has been called the

innovational outlier (Cheng and Tiao (1983)) or the aberrant innovation model (Abraham and

Box (1979)).

Calling I(B) - #(B)Ie() both types of outliers can be written as

zt - V(B)wcT) + *(B)a (2.3)
z t

where V(B) - I+v 1B +... Expression (2.3) shows that, as shown by Cheng and Tiao (1983),

both types of outliers are particular cases in the general intervention analysis model 5

(2.3). The cases v(B) - 1, additive outlier, and v(B) - *(B), innovational outlier,

are extreme cases in this representation and it is sensible to think of a third category of

time series outliers in which V(B) is any dynamic transfer function response. The study

of this general class of outliers is still to be made.

Fox (1972) derived the maximum likelihood ratio test for both types of outliers for

autoregressive processes. Abraham and Box (1979) used the normal contaminated model as the

basic set-up to make inference in both types of model. Denby and Martin (1979). developed

generalized M-estimators for the first order, autoregressive model and showed that, on the

one hand, no great loss of efficiency is expected in estimating the parameter for least

suares where there are innovational (type II) outliers but, on the other hand, if additive

outliers are present, the loss of efficiency suffered can be large. Alba and Zartman S

(1980) have shown examples of robust estimation for ARIMA models and Chernick, Downing and

Pike (1982) have studied the influence function for the autocorrelations of a stationary

time series.

Finally, Chang and Tiao (1983) extended Fox's results to general ARIMA models and

suggest a useful iterative procedure for outlier detection and parameter estimation. They

recommend computing the likelihood ratio statistics A t,T and A2 ,T to check if the

observation T is either an innovational outlier (A ,T ) or an additive outlier

(A2T). These statistics are given by

-4-
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WA.
,T 2,T 2 2 -1/2

1, a 0 (1+1 1+... h

where Iand A are the estimated values of the outlier w assuming that it belongs to

the innovational type or additive type, and v i are the parameters of the autoregressive

representation of the process.

*
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3. A MEASURE OF INFLUENCE FOR ADDITIVE OUTLIERS

3.1. The change in the parameter estimates

Suppose we have a stochastic process Yt that follows a univariate ARIMA (p, d, q).

It is assumed in what follows that Yt represents deviations from some origin p that

will be the mean if the series is stationary, and that the moving average part has a

characteristic equation with roots outside the unit circle so that the process is

invertible. Then, the process can be represented as

h

= 1 + at

for some lag h. If the process is purely autoregressive h - p+d, otherwise the w co-

efficients are obtained from W(B) - *(B)(1-B) a(B)-  and because of the invertibility of p

O(B) these coefficients will decrease and eventually will become zero for some lag h.

Let us now assume that an additive outlier happens at time T and instead of observ-

ing yt we observe zt  where zt = yt(tv(T) and zt - yt + w(t-T). Then, as the Jacobian

of the transformation from yt to zt is one, the likelihood function for the observed

series zt  conditional to the first h values is

,w _2 J_ I (2t_ xt)2 1 I h 2

2 a 2a 8~ 2a 210T-O v ,X+

where 02 is the variance of the noise process at, 4 - (zt.l,...,Zth),a

= '- 1,...,h) , and w0 - -1. The set of indicies S1 is (h+l,...,T-1,

T+h+1,... n). The conditional maximum likelihood estimates of w and w are

W XX ) XY(3.1)
y y y

w z T -z T/n

* h (3.2)

- n 6 i(ZT+i + Z )

where

jYh h-1 "" h+1

Yn- 1 n-2 Yn-hJ - Yn 
-

-6-
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h h

if it (' ;
2) with o"-1

A A+i

and Yj - i if : T . YT" -IT/n
a h*

Consequently, the estimated residual in time T is ZT/n i andZ T/n

can be interpreted as the best estimation of ZT using all the sample information.

Neither this residual nor ZT/n depends on the value ZT .

The system of equations given by (3.1) and (3.2) has to be resolved iteratively.

Starting with an initial value 1(0) for ;, that is normally the maximum likelihood

estimator of I assuming no outliers# the weights can be calculated end a value

w(o) computed. This value is then used to compute yT(1) - zt - w(0) which provides a

new estimate w(1 ) The process is repeated until convergence.

To study the effect of the outlying value on the estimated parameters, let us call

the conditional maximum likelihood estimator of i assuming no outliers. Then,

0 " (X X )X'Z
0 z z

and X and ; are related by
z y

z y + WN (3.3)

where

M. - Lohx(?.h) hxh Oh,(n-h-T)]

and Oxb represents a rectangular matrix of dimension a x b with all its elements equal

to zero, and i sxh  is the square identity matrix. Partition the matrix Xz  as

X'. - [Z; z z;I

where

Z I 2 f z3 "

L- ,- ..-h -h-, .T+h-2 * L .N- . "ZN-.

Then

(X'X, - 1,x + w I - w(Z-+Z, - x'2C - % .4
a y X; z -;z 2 2; 33z T(34

where AT - Z2 + Z - w A. also, let us partition the vector Y accordingly as

y -Z-wV

-7-



where

and 5
Ze (zh+1l,...,'z

n )

then using (3.3) and (3.4)

xly =x'z W S
y a T

where S - re(ZT+1 + ZT1, zT+2 + z _2,o..zT+h + ZTh

Expressing the estimated parameters a as a function of the original data

(X I X . )W A X'Z -w STS T); z T

which leads to

= -0W(x;xz')(sT YT) (3.5)
and calling ET the vector of "pseudo-residuals" given by

ET - T - T;

we obtain -

W0 . W + r(XI X )1 " (3.6)z z T

To study how additive outliers influence the parameter estimates, we will express

X Xz  and ET in (3.6) in terms of the uncontaminated process yt" As

- Z2 + z- wI

using that

Z2 - Y2 + wI

then

A -Y 2 +I + WX

and so

ET ST - (Y 2 
+ 

Y)- w w

Inserting this expression for ;T  in (3.6)

o- (I - w (X X)%: +w(X)X (S - (Y + Y ;); )

If now w * , ossuming a fix sample size n, as

lia w (X'X)s = lim ;-2 (;X ) + li w I(Y + Y') + I

and, as w is a consistent estimator of w, when w * - the limit of v2 (X'X)- is
z



also I. Also, w (X) z and ;(Xw'X) + 0. in practice this result means that
lA .

when w is large, all the estimated coefficients w0 are pulled down towards zero, and

the series will appear to be white noise. For instance, in the AR(M) came
A2 A

- A ww + . 2y
2 - 2 2 a2 * T+1 - -

2 *
;0y 4w +

|2 A

and if w2  is large compared to Eyt  the value of #0 will be much smaller than *.

The result that gross errors pull all the autocorrelation coefficients, and so the

estimated parameters, towards zero was noted by Treadway (1978) and Guttman and Tiao

(1978). An example of this problem with economic time series can be found in Pena and

Sanchez-Albornox (1983).

This result is in agremnt with the properties of the estimated parameter for a

first-order autoregressive process with additive outlier given by Martin and Jong (1977)

and Denby and Martin (1979).

3.2. A statistic to measure influential outliers

A natural way to measure the influence of observation zT  is to relate it to the

change on the parameter estimates when this observation is assumed to be an outlier. As

1 0 and w are vectors, a useful way suggested by Cook (1977) is to measure the distance

between both vectors relative to a relevant positive semidefinite matrix M. A natural

selection is to choose M as the variance covariance matrix of either of these two

estimated vectors and to build, then, a Mahalanobis distance. In order to have a common

ground to compare all the observations, it seems more useful to choose M as the

covariance matrix of the parameters assuming no outliers (see Cook and Pe-a (1984)), then

(0"; xz ,10-;
D (T) - - 2 (3.7)

2 ha a

where we have divided the distance by the dimension of the vectors involved, h, to have a

proper standardization.

The statistic (3.7) can also be interpreted as measuring the change in the vector of

one step ahead forecasts. Using the estimated parameters assuming no outliers this vector

-9-



I

is

2O X ZW

Z0 " z 0

and using the parameters estimated assuming an additive outlier at T: 0

Z XW
z

The Euclidean distance between both vectors of forecasts is:

(Z - z)'(z - z) " (W - W)'XX (I - W
)

0 0 0 Zz 0

and so D;(T) can also be interpreted as a standardized measure of the Euclidean distance

between the vectors of one step-ahead forecast built with and w.

using (3.6), the statistic can be written as

D;(T) ,2 (X X
2-- T E(z z)- ET

ha
a

The problem in computing D2(T) is that the estimates w and require the

nonlinear estimation of the intervention. A solution first suggested by Fox (1972) is to

substitute ; for another consistent estimator of w easier to compute. He suggested

using the vector ;0  instead of W to compute

h .I
WO zt-i O'i(ZT+i + ZT-1)

where

h-i -2
6
0,i - ('O,i - .l 0 i 0I,tWO,t-il/EWo'

and I0,1 is the jth component of 110 . Fox (1972) verified using simulation that the

approximation was good for moderate sample sizes. In the same spirit we suggest using w0

instead of I to compute ET . CallingTM

ET -ST TO77

the statistics we obtain is

-2

D (T) -2 X . • (x T  (3.8)
2 h 2 Tz z) T

aa

The likelihood ratio test to check for additive outliers is asymptotically equivalent

(see Chang and Tiao (1983)) to

-10-
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-2
2 - 0
2,T 2 2 .-1E

and so, D2 can be written

2D (T) =1X x ( .9

2*2 T z z~ T ,)
h( I T0,-) ---

1-0 ,11

Equation (3.9) shows the difference between detecting outliers and 
studying influence.

The influence of a particular value can be decomposed into 
two terms. The first,

2 h.2 -1

A2,T h-( I WO is mainly a function of the size of the outlier relative 
to the

1.0 -1
model. The second, (X X ) IT is a measure of the relative importance of the

observations in the series around the point in which the outlier happens. 
If we call, for

h

aT+A - ZT+1 - WlZT+L_ - " I (Z T ) -,'.- 'h'T.-h

the residuals in the model estimated allowing for outliers, 
and

b TLZ T.1L ~I zT-1+1 ** i -' l

the backwards residuals, then it is straightforward 
to show using the definition of T

that.

T T+I + bT-IlI ' TOh + ;bTh]

So the quadratic form T(X X )I T  is taking into account that the importance of the

outlier in the parameter estimates depends on the previous 
and posterior h observations.

This statistic should be computed as a routine diagnostic 
check for time series models

because, as we have shown, the presence of additive 
outliers can have a strong influence on

the estimated parameters of the model.

-11-
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4. A Measure of influence for innovational outliers

4.1. The effect on the parameter estimates
I- -

Suppose that the observed series zt  follows the model

(T)
w(B)Zt . w(B) ;

T ) 
+ at

where now T(B) - #(B)( 1-B)d O(B)
" , and w(B) - w0 + wB +...+ ws.1 B' represents a

general dynamic intervention at time T, with transfer function v(B) - w(B)T(B)
"1 

The

case of an innovational outlier corresponds to making w(B) - wO . We assume that the

process is invertible and so the v coefficients will become practically zero for some

finite lag h. Then, the model can be written:

zt -i )+  C(T) + a (4.1)

i- i t i-a0i -

where C(T) = 0 if A # T and (T) = 1. We assume as before that the mean level of the

process Zt has been removed. Then, the least squares estimates of the parameters, that

are equal to the conditional maximum likelihood estimators, are:

; X X -1 X 'Z

where Xz and Z were defined in section 3 and
DI [Osx(Th) lex. Osx(n-h-T) ]

and so DID - I. Using now the expression for the inverse of a partitioned matrix;

[
X -  

:'X 'I - (XIX )' 01 -X zXz)'Xz - -- - - - - - ID )_ DI ("

DX IDD I '0 0 - ". D'"°)' L ' x"
where H is the idempotent matrix Xz(X'Xz)lx . Then, after some straight-forward

algebra:
(X' XZ ,

1
Xu ;

.0  + (Xz ,s (4.2)

(I - D'HD) [ZTs - XT~sWO] (4.3)

where ;0 " (x x) -z  is, as in section 3, the vector of estimated parameters assuming

no outliers and:

-12-
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Z~ix I . - . l ... .....
ZT ZT~-h+1 T

XT,u aT, 8

Let us call

ET,I z Ts " XTs r0

the vector of estimated residuals for the relevant observations assuming no outliers, and

let "T'S - D'ID be the square symmetric matrix of dimension a that contains the

distance@ from the vectors (Zt-l,...Zt. h ) to the origin, then
- -1Ti
w ( - HT ' ) T, (4.4)

in the particular case of an innovational outlier w(B) - w and (4.2) and (4.4)

reduce to

T).W - + wCX'X x (4.5)o zZT

w- eT(1-dT)) (4.6)

where eT,0 - T-;X T  is the residual at point T from the model without intervention,

and dT - Xj(X'X) XT is the distance from the vector Y4 - (ZTI,...,ZT-h) to the

origin.

As an example, consider the AR(1) case. Calling ; the parameter, (4.5) reduces to

4 -;0 "; ZT
E Zt

and ;0 can be greater or smaller than * depending on the sign of ZT_1. it is clear

that when n + ;0 + ;I the least square estimator, and so i0 is a consistent

estimator of * •

The fact that under innovational outliers the least squares estimators of the

parameters of an autoreressive process are consistent was first obtained by Mann and Wald

(1943). Martin and Jong (1977) have studied the efficiency of the estimators in the first-

order autoregressive process and show that although consistent the estimator can be quite

-13-
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inefficient.

These results explain the well known flexibility and adaptability of univariate AMA

models for forecasting purposes. An we noticed earlier, this type of outlier can be inter-

preted as a sudden change in one or more of the unknown series that are driving the

observed series Zt . It can be concluded that ARMA models are fairly robust at this kind

of internal perturbation.

4.2. Building a measure of influence for innovational outliers

We consider again model (4.1) that has a general dynamic outlier with transfer

function v(B) - w(B)w(B)-
. Then, a measure of influence can be built as before using

Cuo-w)'MCIo-U)
0 0

D(Tw) = h

where M is a positive definite matrix that defines the metric. Choosing, as in section

3.2, M - (X'X )0;2 and using (4.2) and (4.4), then

D(T,w) - ZTsl( - RT'.lRT's(I Ts Ts (4.7)
h o2

a

where we have used that:

H,, - ,s(XX)x." ,s ..

The statistics D(T,w) is similar to the one proposed by Cook and Weisberg (1982) to

analyze the influence of a set of points on the parameter estimates of the regression

model. The similarity is clear because of the linear structure of equation (4.1). If we

CT) _now assume that w(D) - w, and so is an innovational outlier, using (4.5) and

(4.6):
2

1 e d
D CT) = T -T (4.8)_ ,1 h 2 T4.

a T

that is identical to the statistics suggested by Cook (1977) to measure the effect of an

observation in the parameters of a regression model. The statistics can be interpreted as

the product of two terms: The first, 2a 2 (1-dT )-1  i the standardized residual at the

point of the intervention, and the second, dT(1-dT)-', represents the distance of xT to

-14-



the origin but with relation to a metric build without taking into account XT. DI) can

also be expressed as a function of the likelihood criteria advocated by Fox

(1972) and Chang and Tiao (1983) to test for innovational outlierst

D I (T ) - h (I_% ) 2 

. . .

note that the influence of the outlier observation depends now only on 
the relative

values of the h observations before the intervention, as measured by dT , and not on

the h posterior observations, in contrast with what happened in the additive outliers

case. In the next section we will compare both statistics.

Ra
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5. Comparison of both statistics

5.1. Deleting versus forecasting

There are two basic theoretical reasons to recommend using the influence measure based

on additive outlier (3.8) instead of the one derived for innovational outliers (4.8) as a

routine checking device in univariate time series model. The first, is that additive

outlier are expected to be much more influential than innovational outliers. The second,

is that this measure provides a more reasonable generalization to dynamic problems of the

measures derived in the context of independent observations.

The main justification for the influence measures suggested for the linear model is

that these measures are standardized versions of a finite approximation to the influence

curve introduced by Hampel (1974). (See for instance Cook and Weisberg (1982) and Welsch

(1982)). However, all this theory relies on a sample of independent and identically

distributed observations, which is obviously inadequate to deal with stochastic processes--

and, in particular, with time series.

In the regression model, for instance, the empirical influence curve for one

observation can be expressed as the difference between the parameter estimated with and

without this observation. This idea cannot be generalized to time series in which the-

deletion of one observation changes the dynamic of the sample. However, it is well known

that in the regression situation the deletion procedure is equivalent to treat the

observation as a missing value and estimate the model:

Y -1O+ C (T) w + U (5.1)

where Y is the vector of response, X the matrix of explicative variables, 0 the

vector of parameters, 4 (T) is a dummy or intervection variable (as defined in section 2)

and U is the vector of perturbations. Then, the vector of estimated parameters from

(51) 0 M' does not depend on the T observation (yTIxT).

This "missing value" procedure can be extended in a straightforward idea to any

dynamic situation, because it leads to substitute the observation under investigation by

its forecast using all the sample, instead of deleting it. Of course, in the regression

case of independent observations both procedures are equivalent, but they are not in the



time series context. The key point of the approach is to obtain an estimator of the

parameters that does not depend on the data under investigation.phis in the approach used in the additive outlier case, and it is easy to prove that,

in contrast with the innovational outliers model, the parameter estimated obtained for the

additive outlier case does not depend on the observation under question. Note that w is

given by (3.1) and as Y? - ZT/n, that does not depend on the value ZT, neither Xy nor

Y depend on ZT-

5.2. Some simulation results

To illustrate the behavior of these statistics in practice, figure 1 shows 50

simulated values of an ARM1) time series with * - .7 in which an additive outlier equal

to 4 standard deviations of the series has been added in position 33. The estimated

parameter value drops from .7 to .58 and figure 1 displays the behavior of D1 end

D2 .

The maximum value of the D1 statistic occurs in observation 34, instead of in

observation 33 as could be expected. To understand why, let us look at the AR(1) process

as a regression equation, ZT = *xT + aT, with XT = ZT_1 . Then, the first component of

DI is the square of the standardized residual
2eT

and the second, tiT(I-iT) I  is a measure of the distance of xT to the center of gravity

of the previous observations. As here XT = ZT.1, if ZT  is anomalous because of the

presence of an additive outlier, then XT+j = ZT will be far away from the rest, and the

term dT(l-dTr]" will be very big and can dominate the product, as happens here.

The statistic D2 , however, shows clearly the 33 observation as atypical. Note

that observations Z.T_ and ZT+ are shown as influential too, although less that ZT

as expected. In general, if the process is AR(p), the influential effect of an additive

outlier in T appears, although with decreasing effect, on observations ZT.p to ZT+p

as well. This effect is symmetric around ZT. For instance in the AR(1M case, it is

-17-
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easily seen that if there is an additive outlier w on time I,

_LOiI 0 ' - 3[OT+ ] -w
o , 0

This effect can be noticed in the plot of the ; 0 values displayed in figure 1.

Figure 2 shows a second simulation of the same process, using differenct random

numbers. However, the outlier, although of the same magnitude (40) as before, has now

been added on observation 30. The estimated parameter turns out to be .4335, which

means that the outlier is more influential in this second case. The plot of D, suggests

that observations 3 0th and 3 1th are both influential and roughly in the same amount.

However, the statistics D2  indicates clearly to observation 3 0th as the most influential.

Table I displays some relevant values of both statistics in these two simulations.

The largest value of D2 (T) in the second simulation shows that the decrease in the

estimated value is greater, as we have seen. In both cases DI(T) shows observation

T + I as the most influential, but other simulations have shown that this result does not

hold in general.

In summary, for additive outliers statistic D2 seems to have a very stable behavior

and correctly identifies the outlier value as more or less influential. On the other hand, 4
the behavior of D, is not so consistent which makes its interpretation and use less

reliable.

The better behavior of D2  in the case of additive outliers is not surprising,

because this statistic has been built precisely to measure these effects. However, the

simulations we have made seem to indicate that its behavior is very consistent for

innovational outliers as well. For instance, figure 3a shows the result of simulating 50

observations from the model:

10 (40) + at
Zt . 1-.9B Ct 1-.9B

where (4) = 0, t V 40, and C (40) . 1. The estimated parameter when fitting an AR1)
t 40

is # - .89, and so in this case the effect of the outlier in the parameter estimate is

very small. The maximum value of DI(T) is .04 for observation 40. However the

-18-



behavior of DI(T) is clearly erratic, as shown in figure 3a. D2 (T) pinpoints

observation 39 as the most important in the parameter estimates. The reason L that, for

the AR(1), we have shown that
a

+ ZTI

aZ2
t

and so the change in the parameter estimates depend on w and on ZT. 1 and either Zt

or ZT, 1 can appear as more influential depending on their relative values. The maximum

value of D2, D2(39), in .2 which means that the effect of the outlier is mall.

Figure 3b shows a second simulation of the model but with * - .3, as in

10 (4) at
.t " . t 1-.3 "

The estimated AR(1) parameter turns out to be .38 with that sample. The figure 3b shows

that D2 (T) indicates again observation 39 as more influential, and D2 (39) - 1.5,

which means that now the change in the estimated parameter is larger. DI(T) has its

maximum value at point 41 but their value is small, .125, indicating, (wrongly) a small

effect on the estimated parameter.

We conclude that statistics D2(T) seems to have a better behavior not only in the

case of additive outliers but for innovational outliers as well.

I

I0

I|
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TABlLE I

T DI (T) DI (T41) D2 (T-1) D2 (T) D2 (T+1)

simulation 1 33 .002 .736 .133 .641 .383

simulation 2 30 .366 .466 .049 1.482 .195

-20-



Figre I

Simulation of an ARM I with *-.7 and an additive outlier in position 33 (ZT)
and behavior of two statistics for influence observations.

--- --- ------- - -

a J



Figure 2

Simulation of an AR(1) with * - .7 and an additive outlier in position 30 (ZT)
and the behavior of two statistics for influence observations.
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Figure 3a
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6. An Aiwlicetion

The data that will be used to illustrate the use of the previous statistics is the

series of extinctions of marine animals over the past 250 million years and is displayed in

figure 4. Those data have been studied by Raup and Sepkoski (1984) and show periodicity in

the peaks of extinctions that they attribute to deterministic extraterrestrial causes.

Kitchell and Pena (1984) show that the observed pseudo-periodicity can be explained by a I

fifth order non stationary autoregreesive process with one root equal to I and four

others complex roots.

Table 2 displays the original death rate series (D), the residuals of the best

estimated model (3) and the values of the D1 and D2 statistics. Both of those

influence statistics are plotted in figure 4.

Again D1  fails to indicate clearly the influential points and show peaks in the

32 th and 34 th observation. However, D2 pinpoints without any doubt observation 30. The

atypical value of this observation is clear from figure 3 and the residual at this point is

outstanding and bigger than 3 standard deviations. However, the mall value of D2 for

this point (.389) suggests that this observation is not very influential as far as the

parameter values are concerned. So, although there are only 39 observations the

autoregressive model is very robust to the effect of a single outlier.

Table 3a presents the estimated autoregressive model with and without outliers. As

the data are proportions different transformations has been used to test the sensitivity of

the conclusion to the metric of the data. Table 3b presents the results with the logitzt
transformation yt I An - . It can be seen that the results are very similar, and the

I-t

same hold for other possible transformations that have been applied.

-25-
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Table 2

Original series (D), estimated residual from the AR(5) model E), and

statistics 0l(T), and D2(T). 5

VARIABLE DI(T) D2 (T)
COLUMN D E

ROW 1 1 1 1

1 52.500 *0* .000 .000

2 21.000 ** .000 .000

3 24.000 *** .000 .000
4 12.800 ** .000 .000
5 15.900 *0* .000 .000
6 26.400 -. 142 .002 .005

7 38.600 .703 .005 .051

8 15.900 -.643 .011 .030
9 2.600 -1.867 .104 .044

10 10.100 .140 .001 .000
11 15.200 -.306 .004 .021 0
12 7.100 -1.429 .097 .047

13 11.600 .361 .003 .004

14 3.500 -.567 .006 .003
15 7.600 .014 .000 .000
16 6.000 -. 527 .005 .006

17 9.800 .289 .002 .028
18 19.500 .949 .016 .012 0
19 3.800 -.823 .014 .047

20 3.600 -.479 .005 .010
21 9.500 .650 .011 .000
22 6.000 -.679 .010 .003

23 10.200 .087 .000 .08
24 12.000 .859 .016 .051
25 18.900 1.111 .021 .000

26 9.900 -. 167 .000 .047
27 5.800 -.374 .001 .031
28 9.200 .107 .000 .001

29 14.700 .257 .001 .087
30 66.300 2.384 .056 .381
31 22,200 -.054 .001 .011

32 21.900 .760 .216 .022

33 11.100 -.230 .020 .019
34 36.700 .851 .250 .033

35 45.800 .031 .000 .000
36 29.400 -.080 .000 .000

37 20.000 -. 114 .000 .000
38 12.500 -.417 .000 .000

39 25.000 -.076 .000 .000

-26-
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Table 3

MODEL Q(11) 2
a

a) (1 + .66B + .56B2 + .71B3 + .38B4 )Vzt at 6.2 122.8

(4.2) (3.8) (4.6) (2.56)

at

zt - 42.68! 3 + 2 3 4 4.1 63.65
(6.71) V(1 + .32B + .56B + .45B3 + .223

(1.94) (3.75) (2.71) (1.55)

b) 0 + .62B + .59B2 + .62 3 + .42B4 )Vyt . a 7.0 .574
(4.0) (3.8) (3.9) (2.7) 

t

a30t2 +2"051330 
+

4at 5.0 .440
V(1 + .49B + .65B

2 + .43B3 + .40B4

(3.68) (3.1) (4.2) (2.5) (2.7)

0

Zt  in the extinction rate series (series D in table 2) and Yt is its logit

transformation Yt - In Zt/(100 - zt), B is the backshift operator, V - 1-B, X30 is an

indicator variable with 1(30) - 1 and 1(i) - 0 Vi 0 30, Q(g) is the Ljung-Box

statistics with g degrees of freedom and a2 in the residual variance of the model.
a
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