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. ABSTRACT
This paper contains results reported in a series of seminars given by the
author at the University of Wisconsin-Madison. These concern Morse theory in
the presence of symmetry:i>Different ways of studying an equivariant flow are
investigated and, in particular, the equivariant Morse theory for flows is
described.
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SIGNIFICANCE AND EXPLANATION

»; Morse theory is an important tool for studying dynamical systems. It
.I often happens that the system under study (e.g. in celestial mechanics or
i quantum mechanics) is subject to some symmetries.

! . :
2 . ‘\¥;ﬂn this paper Morse theory for flows in the presence of a symmetry group

is studied.\;n particular the so called "equivariant theory® is described.

N

\
Then, using hPmological algebra, a method of treating finite groups is
!

described.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report. !‘*‘ﬁ




MORSE THEORY FOR FLOWS IN PRESENCE OF A SYMMETRY GROUP

Filomena Pacella

0. Introduction.

This paper presents a discussion of Morgse theory in the presence of a symmetry group
given at the University of Wisconsin-Madison.

In these notes ideas and results from many different sources are cbllected and their
application to the study of flows invariant under some group action is illustrated by some
simple examples. Deeper applications require the extension of the theory of isolated
invariant set to the equivariant case; this extension, which presente no serious
difficulties, is also indicated here.

An interesting point, illustrated in the examples is that in the case of flows with
symmetry there are (at least) three different ways to obtain "Morse relations” and that
these generally give different information.

The subject is divided in six sectiona:

The first two are introductory. In section 1 I recall the main definitions about
group actions on topological spaces and I give some easy examples. In section 2 Morse
theory for flows is briefly sketched as exposed in [6] and [7] making the comparison with
the classical Morse theory for gradient flows.

In section 3 the notion of equivariant flow is introduced and the different ways of
studying it are presented. This section ends with the definition of nondegenerate
critical manifold, as given in [1] and [3],

Section 4 treats the equivariant Morse theory for flows. 1In the exposition of this
theory I have followed the ideas of [1], applying them to the case of an equivariant flow

on a topological space invariant under the action of a group. 1In the second part of this

Sponsored by the United States Army under Contract No. DAAG29~80-C-0041.




section with very simple examples I illustrate the difference between the various ways of
studying an equivariant flow. Section 5 and 6 deal with the cohomology of the classifying
space of a finite group.

In section 6 it is shown that this cohomology is isomorphic to the cohomology of the
group itself.

This motivates section 5 where the cohomology of a group is described.

The end of section 6 also contains the explicit computation of H* (BG) for finite

abelian groups.

I would like to thank C. Conley for his encouragement in writing these notes.
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1. Group actions_on topological spaces.

Let X be a topological space and G a group with the multiplicative notation.
We will denote by Aut(X) the group, under composition, of homecmorphisms from X

to itself.

DEFINITION 1.1 ~ An action of G on X 4is an homomorphism:

$ 2 G * Aut(X) .

The homeomorphism corresponding to an element g € G, is usually, denoted by:
¢#(g)(x) = g{x) xex.
When G is a topological group there is another way of defining an action on X
which also considers the topology on G. Besides it distinguishes between left and right

actions.

DEFINITION 1.2 - A left action of G on X is a map:

s GXX*X, u{g,x) = gx

satisfying the following properties:
i) x=x, 1e¢G6, xeX

i1) 91(92x) - (g1gz)x 94:9, €eG xex

We speak about a right action if u(g,x) = xg and i) and ii) are replaced by:
1)) x1=x, x€X ,1€6

11)'  (xgy)gy = x(g49;5), 99,9, €G x€X

The difference between left and right actions is not just a matter of notation, since
properties ii) and ii)' give a different order in applying gy and g,. Hence if the
group is not commutative, a left action is not generally a right action.

Given x € X, we denote by O0(x) the “orbit" of x; that is, the set of those
points in X which can he obtained from x using the action of the group:

o(x) = {gx, g € G},

-
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Then, the quotient space X/G represents the set of all orbits.

The set G, = { geG gx= x} will be called the isotropy group of x; it is the
set of elements in G which leave x fixed.

If G is a compact topological group, then G, is a closed subgroup of G.

DEFINITION 1.3 - The action of G on X is said to be free if:

geG and gy 1 ==> gx ¥ x for every x € X; that is, if G, = 1 for all x.

If x@X and p : G+ O(x) is the map given by p(g) = gx, then p is surjective. If
the action is free, p 1is also injective. This implies that, when the action is free,

every orbit looks like G.

DEFINITION 1.4 - The action of G on X is said to be effective if:

G, = 1.
xex %

We also define the trivial action of G as the one which leaves everything fixed,
that is: ¥x, Gy = G.

If G is a compact Lie group acting freely on a manifold X, then X/G 1is a
manifold. However, if the action is not free, or the group is not compact this need not
be the case.

In the case of groups with the diacrete topology; we give the following definitions.

DEFINITION 1.4 - An open set U CX is called proper (under the action of G) _if,

g ¥ 1 == (gu) NIU) = §,

DEFINITION 1.5 - The group G acts properly on X if every point of X belongs to

a_proper open set.

Wwhen G acts properly on X then every open set in X is the union of proper sets,

so that the proper sets constitute a base for the topology of X.

-4~
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It is obvious that if G acts properly on X then the action is free and if G |is

finite and the action is free then G acts properly on X.
We end this section with a few examples:
EXAMPLE 1.1 - Let s1 be the unit sphere in C (set of complex numbers) and
sZk*1 the unit sphere in okt
The Hopf action of S' on s2k*1 g defined by:
c(zo,z1,...,zk) = (B2, .02 0000082, ), (2,29,000,2y) € s2kt1, ce s,
This action is free and the quotient space is s2%*1/51 « cPX, that is the complex
projective space, which is a manifold of real dimension 2k.
The fibration associated to this action is the Hopf fibration:
gl
+

glk+1

+
s2k+1/s1.
Since the action is free each orbit is homeomorphic to st.
EXAMPLE 1.2 - Let s1 and 52%*1 pe defined as in the previous example. t

on s ..

We define another action of §'
;(zo,z1,-c-,zk) b (Cozo,:1z1,...,¢kzk).

This action is not free. In fact the isotropy group, G,, of x = (z24,0,...,0) -
is s'; that is, x is fixed under the action of s'l. 1f x= (0,21,0,...,0) then
Gy = 1, that is s! acts freely on this specific point x.

If x = (0,0,e0e, 24,0,0.0,0), L #0,1, then G = {&¢ | ¢ = 1} that is it is the
set of the i-th roots of 1.

EXAMPLE 1.3 ~ Let s‘ be the unit circle as above and let S° = i(x,y,2) € R3, x2 +
yz + 22 =9 } be the unit sphere in R Writing (x,y,z) as (x + iy,z), we consider

the action of s!' on g2 given by g(x + iy,z) = (Z(x + iy),z). This is a rotation

about the z-axis.




This action is not free because the points Py = (0,0,~1), Py = (0,0,+1) are

fixed. For every point P € Sz, different from Py,Py, the isotropy group is 1,

hence O0(pP) = S‘-

EXAMPLE 1.4 - Iet R be the set of real numbers with the usual topology and Z the
group of integers, acting on R by:
kx = x + k kez xer
The open intervals of length less than 1, in R, are proper sets. This action of

Z is proper and the quotient space, R/Z, is homeomorphic to the unit circle s'.

bt cdonbededh
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2. Morse inequalities for flows.

In this section we recall some definitions and properties of flows. For more details

and proofs we refer to [6) and [7).
Suppose given a flow on a topological space TI. This means a map
(y,t) Y+ t, from T x R onto [, satisfying the following conditions:
i) y+«0=y, yeTl, OeRr
i1) (y*s) s t=y s+ (s+¢t), Yerl, s,teRr
A subset IC T is said to be invariant if I = {y e+ t,t €R, Y€ I} =TI+ R,
We define the w -limit sets of Y & I as:
w(y) = N{ct(y « [t,#)) | t > 0}
we(y) =\ {ct(¥y + (==,t]) | ¢t < of
Let I be a compact, Hausdorff, invariant set in I. A Morse decomposition of I
is a finite collection {M"}'ep of disjoint, compact, invariant subsets M' € 1 which
can be ordered (My,Mz,»..,M,) in such a way that for every y € I\1<Lﬁ Hj there are
indices i < j such that: w(Y) € M; and w* (v) C My. The sets ;“ﬂ will be called
Morse sets of I.
An ordering of {M“}' e p Wwith this property will be called an admigsible ordering.
A locally compact, Hausdorff subspace X of T is called a local flow, if for every
Y @€ X there are a neighborhood U ¢ T of Y and an ¢ > 0 such that
(XNv) - [0,e) C X.
An invariant set S in the local flow X € T will be called an isolated invariant
get if it is the maximal invariant set in some compact neighborhood of itself. Such a
neighborhood is called an isolating neighborhood for S.
It is easy to see that if {M'}' e p 1s a Morse decomposition of an isolated
invariant set S, then also the sets Hﬂ are isolated invariant sets.

A compact pair (N,N7)}) will be called an index pair for the isolated invariant set

s if:

a) CL(N\N") is an isolating neighborhood for S

-7-
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B) YeN and v - [0,t] €N imply that 1y » [0,t] €N
. c) if YeN, and Y ° r* ¢ N then there is a t » 0 such that
yelo,t]Cg N and y - ten,
N~ will be also called the "exit" set of N.

It is possible to prove (see [6] and [7]) that if (N,N”) and (N,,N1') are two
index pairs for the isolated invariant set S then the pointed spacea(') N/N"  and
N,/N1' are homotopically equivalent by a homotopy that moves points along orbits of the
flow. Of course there exist many pairs (N,N”) and all of these are homotopically
equivalent by such a homotopy. In particular any composition of these equivalences that -
maps a pair to itself is homotopic to the identity map on its domain.

Thus to each S there is associated the homotopy class [N/N"] of the pointed
space N/N~ obtained from an index pair, and any other pair represente ~ame class in
a canonical way. This class will be denoted by h(S) and called the (homotopy) index
of S.

After these definitions we can state the Morse inequalities. ;

If (Mg,..-,M;) 18 an admissible ordering of a Morse decomposition of the isolated

f"ljm‘v" %

invariant set S, then:

.
Y

RERS3 '

s%

n

(2.1) L Pe(h(My)) = P (h(s)) + (1 + £)Q, g
j:“ :

where Pt(h("j)) and Pt(h(s)) are the Poincaré series which express the Cech-

cohomology (with coefficients in some fixed ring) of any element in the equivalence

class h(Hj) or h(s), respectively, and O, is a series with nonnegative integer

coefficients.

(1)

If (A,B), BCA, is a topological pair then the pointed space A/B is ohtained from
the quotient space A/B considering the point which represents the space B as a
distinguished point.

-8-
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In the particular case of a smooth function f(x) on a compact manifold M of ]
4
dimension 4 from (2.1) we obtain the classical Morse inequalities. -~ — 4
' ]
In fact the equation: ]
{ (2.2) % = - V£(x) ]
:- defines a gradient flow on M and we can take T = M = §,

Moreover if f has only finitely many critical points, say
c={x, | 4 =1,...,n} the collection of the critical points, then C becomes a Morse
decomposition of M by ordering its points according to the values of f.

The hypothesis that f has finitely many critical points is verified whenever ¢ is

a nondegonlrnte(z) function on a compact manifold.

In addition, when the critical points, x;, are nondegenerate we have:
ay
Pp(h(xg)) = ¢
where d; is the number of negative eigenvalues of the Hessian of f in the point xg0 i
that is it is the (Morse) index of xy.
Regarding the (homotopy) index of S8 = M we have:

S
Po(h(8)) = Pp(M) = ) Byt

3=0
where _Bj's are the Betti numbers of M, that is P,(M) is the Poincaré polynomial
of M. 7

Finally from (2.1) we obtain:

n d1
(2.3) Lot T )+ (14 t) Ou(E)
1=0

which are the classical Morse-inequalities.

(2)
f is nondegenerate if all its critical points are nondegenerate, that is the Hessian

Hf evaluated in the critical points, never vanishes.




The polynomial Ht(f) = 2 td1 will be called Morse polynomial of f.

Since Qu(gy has nonneg::gve coefficients the polynomial M. (f) majorizes Py (M)
coefficient by coefficient. This implies that f has at least Bj critical points with
index 3, j = 0,...,4,

Now we return to a general flow on TI'. As before S is an isolated invariant set
in the local flow xC T.

Let M' and M" be two Morse sets of a given decomposition. The ordered pair
(M',M") is called an adjacent pair if there ig an admissible ordering (M;4,...,M;,) and
an integer i with M' = My, M = Hi+1‘

In this case the set M = {x|w*(x) ¢ Myyq, 0(x) € H1} is also an isolated invariant
set and the collection (H1,...H1_1,M,Hi+2...nn) is a "coarser™ Morse decomposition.
Furthermore, there is a canonical exact sequence

cootd Ba(h(1))) *= Ba(hON)) <= Hotn(uy, ) & Loos

If the connecting homomorphism, 6, of this sequence is non-trivial then
M#M UM - i.e. M" must be 'connected' to M' by an orbit of the flow.

on the other hand if all such connecting homomorphisms for all adjacent pairs (in any
admissible ordering) are trivial, then the decomposition is "perfect”™ in the following
sense:

DEFINITION 2.1 ~ A Morse decomposition (H1,...,Mn) of S is said to be K-perfect

if relation (2.1) holds with Qr = 0, when the cohomologies are taken with coefficients

in K.

We will not indicate the dependence on X, when the Morse decomposition is perfect
with respect to any coefficient ring K.

When we have the gradient-flow (2.2) given by a nondegenerate function £, we will
call this function (K-} perfect if (2.3) holds with Q. (f) = 0.

An important consequence of Definition 2.1 is that whenever we have a perfect Morse
decomposition of S then we can have information about the (homotopy) index of S by

looking at the left hand side of (2.1).

10~




In the case of a gradient flow on the compact manifold M this means that we can
compute the cohomology of M by the computation of the Morse polynomial of any perfect
nondegenerate function f defined on M.

A criterion to recognize a perfect Morse decomposition of S is the following
Morse's lacunary principle which follows immediately from (2.1):

If, taking some ring of coefficients KX, no consecutive powers of t occur in the

left hand side of (2.1), then Q = 0 so that:

n
(2.4) L Py(h(My)) = P (N(8))
=1

Some examples about the use of this principle will be furnished in section 4.

-fle
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3., Equivariant flows.

In this section we suppose that there is a (left) action of a group G on the
topological space T and that the isolated invariant set S is invariant under this
action (that is gy €S, if g€G and Y € S). When this happens we say that 5§ is G-
invariant, to distinguish this property from the invariance with respect to the flow.

We say that the flow on [ is equivariant if:

(3.1) {gy) » t = g(y * t) vyel,geG,t e R.

If we have a gradient flow (2.2) on a G-invariant compact manifold M then it is
equivariant if the function ¢ is G-invariant, that is if: f(gx) = f(x), x € M, g € G.

From now on we will restrict our attention to the isolated invariant set S.

In order to study an equivariant flow, the most natural thing would be to look at the
quotient space S/G.

In fact it is obvious that we can define a flow on S/G in the following way:

(3.2) [v] « ¢ = [y« ¢] [v] estc, t er
where [Y] is the orbit (equivalence class) of y under the action of G.

The flow (3.2) is well-defined because if y and Y ' belong to the same

equivalence class then: Y' = gy, for some g € G and consequently:

(ve] ee={vot]=[can)et]=fagtyser] =[yet]=[y]- ¢t

If I is a G-invariant isolated invariant set in 8, then 1I/G is an isolated
invariant set in 8/G.

Moreover it is possible to find an index pair (N,N_) of I, with N and N
G~invariant and such that the pair (N/G, N-/G) is an index pair for I/G.

Finally if (Mq,...,M;) 4is an admissible ordering of a Morse decomposition of §,
given by G-invariant Morse sets, then (M4/G,...,M,/G) ie an admissible ordering of a
Morse decomposition of S/G.

A second approach to the study of an equivariant flow would be to look at the

isolated invariant set S but considering Morse decompositions whose Morse sets contain

-12=-
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the complete G-orbit of any point in the set (these orbits may be topologically different,
in general).

In this connection we note that if I is an isolated invariant set and 0(I)

- {97,g @ g,y € 1} is the orbit of I, then 0(I) 4is also an isolated invariant set and,
if the group G is continuous, 0(1) = I.

A third approach is the "equivariant theory” which consists of extending the flow to
the space S x E, where E is a contractible space on which G acts freely, and then
obtaining the Morse inequalities in the quotient space (8 x E)/G, replacing the
cohomology of the spaces involved in (2.1) with their "equivariant cohomology”.

We will explain the equivariant theory in detail in the next section.

When the action of G on 8 is free then there is not much difference between these
three methods) in particular the first and the third one give exactly the same answer
because, in this case, the equivariant cohomology coincides with the ordinary cohomology.

When the action is not free, then in general each approach furnishes different
information; that is, the Morse inequalities provide different consistency conditions.

To understand this difference it is enough to think about the difference between
8, 8/G, (8 x E)/G at the cohomological level.

It may happen that a space X has a trivial cohomology (which does not give much
information) but X/G has a rich cohomology and vice versa.

For instance 1if s is the sphere in an Hilbert space and 8! acts on it with the
Hopf action, then Pt(s.) = 1 because S  is contractible while Pt\s./s1j = Pt(CP)- -

1ee2ee2ny =t 5 -

1=-¢t
Moreover if we have a gradient-flow on a compact G-invariant manifold M given by a

G-invariant nondegenerate function £ and if the action on M is not free then the
classical Morse theory does not apply because M/G is not, in general, a manifold. The
more general approach described here does apply, but gives different information from the
eqguivariant theory. Thus, in this case, it is reasonable to use the equivariant theory

which is a natural extension of the free case.

-13-
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We will support what we have claimed so far with examples in the next section.

We end, giving the definition of nondegenerate critical manifold for a smooth
function f on a compact d-dimensional manifold M and characterizing its Morse index.

We say that a connected submanifold TC M 1is an isolated critical manifold if;

1) each point p € T is a critical point of f

1i) T 4is isolated as a critical point set

From i) and 4ii) it follows that T is an isolated invariant set in the gradient-
flow (2.2). Then T has an homotopy~index h(T) as always. This can be computed as
follows in the case where T is "non-degenerate."

Namely, if the critical manifold T satisfies i) and :

11)"' the Hessian of £ is nondegenerate in the normal direction to T,

then we say that T is a nondegenerate critical manifold.

11)' means that if (x,,.a.,xk,xk+1...,xd) is a system of local coordinates in
M, centered at p, such that near p, T is given by the n - k equations:
Xepq = Orecerxy = 0, then

a%e
det { +=—a—) ¥ 0 for i,y =k + Y,e04,n
9ax,9x P
1™
Another way of saying this, is considering a small tubular e-neighborhood ME(T)
fibered over T by the normal discs to T, relative to some Riemann structure on M.

Thus ii)' means that f restricted to each normal disc is nondegenerate.

Moreover i1)' implies 4ii), that is each nondegenerate critical manifold is also

isolated.

=14~




We denote by V(T) the normal bundle of T endowed with a Riemannian metric and
by Hqf the Hessian of £ on V(T).

If we set:

(Apx,y) = Hpf(x,y) x,y € v(T)

then we define a self adjoint endomorphism from v(T) to Vv(T).

Hypotheais ii)' implies that A, does not have zero as an eigenvalue and hence
V(T) can be decomposed into the direct sum:

vim) = vim e vT(m

where v*(T) and VvV (T) are spanned (respectively) by the positive and negative
eigenvalues of Agp.

The fiber dimension, AT, of V (T) will be called the index of T as a critical
manifold of f. Now we want to write the Morse inequalities (2.1) in the case of a
smooth function £ whose critical sets are only nondegenerate critical manifolds.

The contribution in the Morse polynomial of a critical manifold T 1is:
(3.3) (1) = ) ! ramk wt {vim}
. M L o
where H: denotes the compactly supported cohomoloqy(3) (see [16]).

At this point it is better to remark that, in the nondegenerate case, M (T) is

equal to P¢(h(T)) because the "exit" directions in He(T) are those of Vv (T) and

(3)
If X is a locally compact topological space:

A
Hi(x) = Hi(X) i=1,2,...

A
where X 18 the one point-compactification of X

Bx: n: (") = X (if K is the coefficient ring)

-}S=

-
d




the compactly supported chomology of V (T) is the cohomology of N/N~, N being an
isolating neighborhood of T and N~ its "exit" set.
By the Thom isomorphism:
i - 1-XT -
B, {v(m} =8 T(r,078K)
where X is a ring, " 4s the orientation bundle of Vv (T) and H'(T,O-.K) is the

cohomology with local coefficients.

Hence (3.3) becomes:

A

(3.4) M (T) =t "pt(-r,e'ax)

In particular, when the bundle v-(T) is otientable(‘)

if we consider a Morse decomposition of M given by the nondegenerate critical manifolds

of £, (2.1) becomes:
A
)t Tpt(-r.e 8K) = P (M) + (1 + t)Q,

T

(3.5)

In (3.5) it is understood that the sum is taken over all the critical manifolds of

t'
(4)
We say that a fibration

| 4
+
v
P
B

is orientable over a ring K is for any closed path w in B,
w(0) = w(1) = h € B, the induced map:

T,'r HY(FIK) + H*(F, 1K)
is the identity.

In particular, if B is simply connected every fibration over
orientable, over any K.

-1~
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4. Equivariant Morse theory.

We assume, as in the previous section, that an equivariant flow on [ is defined
and 8 is G-invariant, G being a topological group acting on .
If G is compact then (see [9])there is an universal G-bundle characterized by
having its total space T contractible:
G
+
(4.1) E
+
B/G = BG
The space BG 1is called the classifying space of G.
The action of G on E is free and E is unique, up to homotopy.
S8ince the action of G on E 1is free, the diagonal action of G on the product
8 x B is free too.
Here diagonal action means:
gly,e) = (gy,ge) geGc, vyes, eek
We can extend the flow to 8 X E in the trivial way:
(Y,@) * £t = (y*¢,e) t €R.
As shown in section 3 we can project this flow on the quotient space (S x E)/G = 84
It is obvious that if I is a G~invariant, invariant set for the flow on § then

(1 x ®)/G = 1, is an invariant set for the quotient-flow in Sg.

G
Our aim is to obtain the analogue of the Morse inequalities (2.1) for this quotient
flow using the equivariant cohomology.
To do this we need some compactness condition. 1In fact in obtaining (2.1) compact
pairs have been used. Also the definition of isolated invariant set regquires the presence

of a compact isolating neighborhood.

But in the bundle (4.1), usually, E and BG are realized as infinite dimensional

-17-
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manifold, so all compactness is lost in S x E and SG‘ This difficulty can be overcome
in the following way.
When G is a compact topological group, E and BG can be obtained as limit of

finite dimensional compact spaces:

E = 1lim Ek BG = lim BkG

k+o ) 3dd
related to the bundles:
G
+
Ex
+
Ey/G = ByG.

The action of G on E, 1is free.

So the Morse-inequalities are obtained for each k and we pass to the limit using
the stabilizing properties of cohomology.

1f {M1,...,Mn} is an admissible ordering of a Morse decomposition of S and each
Mj is G-invariant then:

{(my x B )/G,.c0i(M x E )/6}

is a Morse decomposition for the isolated invariant set (S x Ek)/G. Observe that the
flow in S x BK is defined in the trivial way, as for $ x E.

Alsc .f (N,N") 4is an index pair with N and N~ G-invariant for the G-invariant
isolated invariant set I then

((N x B /G, (N x E)/G) = (N,N)

is an index pair for (I x Ek)/G.

So if we denote by h,(I) the (homotopy) index associated to any index pair
(N, M) of (I xE}/G, we obtain:

(4.2) ) Peih(Mp) = Bylhy(8)) + (1 + €)0f k= 1,2,00.
3=1
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Now we pass to the limit in (4.2), for k + =, using the stabilization of the
cohomology for the classifying space, (see [9] Chap. III) that is: for E = lim E, and
BG = lim E, /G, then: for each i € N, there exists m(i) € N, such that

k> m(1) => 8'e) T u'e) ana #'(86) ¥ K'(E/6).

Hence we obtain:

(4.3) L »° )y = 2, (hs)) + (1 + 610, C

3=1 ]

where the Poincaré series P%G(h(s)) (resp. PtG(h(Mj))) represents the cohomology of the

pair ((N x E)/G,(N” x E)/G), if (N,N7) 4is a G-invariant index pair for § (resp.

for My), that is the equivariant chomology of (N,N')-(S)
The homotopy type of the pair {(tn x BY/G, (N x E)/G}, will be denoted by hg(I)

and called the equivariant-(homotopy) index of I.
With this understood (4.3) becomes:
n

(4.4) L Peingiiy)) = B(ng(s)) + (1 +6)08.
3=1

(5)
If G acts on a space X and E is defined by (4.1) then the equivariant

cohomology of X, H*z(X), is:
H'G(x) b H.(XG)

where Xg = (X x E)/G.
If X = {x°1 then H*;(xy) = H*(BG), that is H*(BG) is the equivariant cohomology

of a point.
If G acts freely on X, then the map:

p: Xg -=> X/6  pllix,e)}) = [x)
is a2 homotopy equivalence.

Hence
H*c(X) ¥ H*(X/G)

that is the equivariant cotomology of X is the cohomology of the quotient space X/G.
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If G 1is a compact Lie group and we have the gradient flow induced by a
nondegenerate G-invariant smooth function f on the G-invariant compact manifold M
(4.3) can be written in a more explicit way.

First of all associated to the bundle (4.1) there is another one:

M
+
(4.5) (M x E)/G = My
+
BG
Observe that since G acts freely on M x E, MG is a manifold.

Then it is easy to see that f can be lifted to a G-invariant function on M x E
and hence projected to a function fy on Mg;.

The mnst important thing is that fp is still a nondegenerate function as it is
shown in the next Proposition (see [1]).

Proposition 4.1 - If f is a nondegenerate function on M, then for every smooth

principal G-bundle E, fp is nondegenerate on M. Moreover, if N is a nondegenerate

critical manifold of f on M, then fg will have as corresponding critical manifold

the space (N x EJ/G. Finally, the Morse indices of N relative to f and (N x E)/G

relative to fy are equal.

This Proposition suggests writing the Morse inequalities for the nondegenerate
function fg. Of course, since Mg is not compact, this can be done using the same
finite dimensional-approximation method used to obtain (4.3),

Then, from (3.5) and (4.3) we have:

A

(4.6) Lt TptG (T,878K) =~ p,S(M) + (1 + £)0,®
T

where P.°(M) = B (M;) and P.S(T) = B ((T x E)/G), T being a critical manifold of f.

-20~-
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In particular if T consists of a single orbit: T = G/H, where H is the isotropy

L L

I group of each point of T, we have:
(T x E)/G = (G/H x E)/G = E/H.

But, since E 1is an universal G-bundle, E 4is also an universal H-bundle. This

implies that E/H is homotopically eguivalent to BH, the classifying space of H.

l Then, in this case:

A A
(4.7) t Tptc(r,e'nx) -t Tpt(auye'-x).

Furthermore, if H is connected pt(sa,e‘-x) - Pt(BH,K)(s), otherwise local

coefficients may be needed,

Having defined the equivariant Morse theory, now we are ready to illustrate, through
some examples the difference betwesn the three ways of studying an equivariant flow,

described in section 3.

~ g

EXAMPLE 4.1 - Consider the free action of s1 on §2%*1 getinea in Example 1.1 and

the function:

x 2
f(zo,z1..-,zk) - %ikilzil

where Xo < X1 < see € Ak are a gsequence of distinct real numbers.

i ©

' From the fibration:

n+mex

We have the following exact homotopy sequence:
- ese * W (H) +» ¥, (E) + 7, (BH) » ﬂo(H) * e

-

where wi( ) is the ith homotopy group.

Since E is contractible and H is connected ni(BH) is trivial, that is BH is
simply connected.

L Then from note (4) the bundle V (BH) is orientable.
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The function £ 1is invariant under the action of S and so it defines a function,

which we will continue to denote by f, on the quotient space CPk.

Using the principle of Lagrange multiplier, for example, we can see that the critical

points of f correspond to the complex coordinate axes. The eigenvalues of the Hessian
of f along the ith axis are the numbers:
A - xi,...,xi_1 - Xi'*1+1 - Ai,...,xk “Ay
so that exactly 1 are negative.
Since over the reals their multiplicity is 2 the index of th. ith critical point
is 24,
Hence we have:

Mt(f) =1+t 4,0
and since there are no consecutive powers the lacunary Morse principles (2.4) applies,
giving:

Pt(CPk) = 1 + t2 +...+t2k
that is the cohomology of the complex projective space, with any coefficients field.
Thus, studying the gradient flow on the quotient space we have obtained a perfect
function.

1f we had studied the flow on 52k+1 then, considering that each critical point

gives rise to an s! critical orbit, we would have obtained:

(T + )01 +22 + o0+ 62K a g 4+ e2kM 4 (g 4 ey(e + 3 + ...+ £2k7

where 1 + t2k+1 . Pt(SZk*1). This means that f is not perfect on 32k+1.

Before considering the next example we want to remark that, actually, if S is an
isolated invariant set in a local flow, two (homotopy) indexes are defined, according to
the two directions of the time.

The first one, in the forward direction is the one already defined. The second, in

backward time, can be defined "reversing” the flow with respect to the time. This means

-22-
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that we consider an index-pair (N,N*) where N', the "entrance" set, is defined by the
properties dual with respect to those which define N~. ;»Aﬁi
In the gradient-flow case this is realized by considering =-f instead of f. )
Consequently, considering a Morse decomposition of S, we have two different kinds of .
Morse inequalities, according to the two different indexes of the Morse sets. -~”¥J
This, in general, gives more information. For example, suppose the isolated ' 4
invarjant set S is the total space., Then the indexes in the two different directions |
are the same. Now if the Poincaré polynomial Pt(h(s)) is not symmetric(7), different
- 4

information comes from the two sets of Morse relations.

Of course, 1£. M is a compact manifold (without boundary} then, from
the Poincaré duality Theorem(s), its Poincaré polynomial is symmetric, but, since the
Morse theory applies also to manifolds with boundary (or general compact metric spaces)
the consideration of the index in both directions can be really useful.

This happens, in particular, when we have a quotient space M/G, where M is a

manifold and G does not act freely on M, as we will see in the next examples.

EXAMPLE 4.2 - Let us consider the action of s!' on s2 defined in Example 1.3 and

the function
f(x,y,z) =z on 2.
The only two critical points of £ are the two fixed points P, and P, (reap.

min. and max. of f).
Let us examine the three different approaches:

a) Pirst of all we consider the quotient space sz/s1 which is homeomorphic to the

(7}
A polynomial: ag + azt + ... + a t" 1is symmetric if a; ¥ 0 => a,_ , ¥ 0.

(8)
The Poincar; duality Theorem essentially claims that if M is an n-dimensional compact

manifold and K is a field then HY(M,K) is isomorphic to HP"i(mM,x).

-23-
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interval [~1,1] on the z-axis. This is a contractible set and hence has a trivial

I‘II cohomology :

2,61y .
P (s2/s1) = 1

So it seems that from this cohomology we can just guess the presence of one critical

point, that is the minimum of f£.
But if we reverse the flow with respect to the time direction, that is, if we

congider ~f instead of f we discover another critical point. In fact, since

Pt(sz/s1) does not change also =f has to have a minimum that cannot be the same as the

one of f. -
On the other hand we know that there are two critical points and that one ia an

attractor and one is a repeller for the gradient flow on sz/S1=

+4 P

-4 91
The (homotopy)-indexes are:
h(Pq) =1 and h(p,) = 0
that ie h(P4) corresponds to the homotopy type of the pointed 0-sphere and h(Pz)
corresponds to the homotopy type of the pointed one-point space. (see [6])
Hence, considering the Morse decomposition (PZ,P1) we have:
P (h(Py)) + Py (h(Pq)) = 1 + 0 = B (s%/sh) = 1.

Consequently (P,,P,) is a perfect Morse decomposition of 52/51.

b) Here we consider the function directly on s§2 and we look at the critical orbita.
These consist of Py and Py, since these two points are fixed under the action of S‘.

The Morse indexes, as number of negative eigenvalues, of Py and P, are 0 and

2, respectively. The cohomology of s? 1is: Pt(sz) = 1 + t2, Then we have:
M (£) = 1+ ¢2 = p(s?) =1+ ¢2

that is f 1is satill a perfect function. -

-4~




c¢) Finally we use the equivariant approach. Looking at the fibration:

s2

¥
(4.8) (s? x g)/s!

+

gs’

E Dbeing the total space of an universal bundle of s‘, we have:

1 2
S 2 2 1 1+t
(4.9) Pt (87) = Pt(S ) e Pt(BS ) =

1-t

We have obtained the product formula (4.9) from the spectral sequence associated to
(4.8), observing that the classifying space of s1 is the infinite-dimensional complex
projective space whose cohomology is 1 + t2 4 Lo+ t20 e,

Since every critical manifold of f consists of a single orbit (namely Py or
Pz) and the isotropy group is s‘, we can apply (4.7), with BH =pst,

Then we obtain

1 2 1 2
MS (f) = 12+ ‘2-p:‘(s2)-'—+5-2—
t 1-¢ 1 -t 1-¢

Hence f is equivariantly perfect.

Let us observe that in this case, as in the previous one, reversing the flow nothing
changes.
EXAMPLE 4.3 - We consider the same action as in the previous example and the

function:

fix,y.,2) = z2 on sz.
This function has a minimum corresponding to the circle orbit at z = 0 and two
maxima corresponding to the points with z = ¢ 1,
We have:
a) In the quotient space szls1 the point Py with z = 0 is an attractor,

Pe(h(Py)) = 1, P4y and P, are both repellers, Pt(h(Pj)) =0, 3j=1,2.

-25-
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Hence, considering the Morse decomposition (P1,P2,P0) we obtain:

2
jgopt(h(pj

3 =1 =p (s¥s"

that is the Morse decomposition is perfect.
If we reverse the flow, then Py becomes a repeller and Py,P5, both attractors.
The associated Morse decomposition is (Pg,P4,P;) and we have: P.(h(Py)) = ¢t,
Pe(h(py)) =1, 3§ = 1,2,
Thus the Morse inequalities are:
2

)) P (h(p

V)=t +2= pt(sz/s') +14t
3=0

3

Therefore (POIP1'P2) is not a perfect Morse decomposition.

b) Considering f on s2 we have a critical orbit homeomorphic to s! corresponding to
the minimum whose contribution in the Morse inequalities, according to (3.4) is:
t0p (sh) = 1 + ¢,
The other two critical orbits are the points P; and P, whose Morse index is 2
{nondegenerate maxima).
So we have:

2

M) = (1 +¢6) + 262 = (s + (1 + )9 =1 24 (140

This means that, using this approach, f 1is not perfect and Qp = t.

~26-
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Reversing the flow we have:

Me(£) = 2 + £(1 +¢) = Pe(8%) + 1 +¢

that is £ is still not perfect and Q = 1.

c) Using the equivariant theory and considering that the isotropy group of each point of

the circle orbit is {1}, (1 is the unity element in the group S‘), we get:

1 2 2 1
M: (g).1+_"’_t_-.1_1_£_-ps (sz)
1t -t 1-t

hence f 1is perfect.

If we reverse the flow, then we have:

1 2
Mg (£) = 2 5+t = NIRRT
1-¢ 1-t¢

Consequently f is not perfect and O =1,

EXAMPLE 4.4- Let 82" be the unit sphere in R2MT ¥ ¢" x R,
A point in 52" will be denoted by:
2= (zZgseees2n,x) z; €C, x €R

We consider the action of S' on 52" defined by:
(4.10) T2 = (Gzg.ees .0z ) tes'

This action leaves the x-axis fixed and induces on the "equator" =
s (2= (z,,...,zn,o)} the Hopf action of Example 1.1.

Then we consider the function:

£(z) = x on §2°
The two critical points of f are:
2= (0,.00,0,=1) , Z = (0,...,0,+1)

Our aim is to use the Morse lacunary principle to find the cohomology of the quotient

space s2/st.

To do this we need to compute the homotopy-indexes of 2z and z.
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)
Because z is an attractor (actually it is the minimum) it is easy to see that =
h(z) = 1 and hence P (h(z)) = 1. . ) ;k
To compute the index of z we can consider the index pair (B/S‘,B’/s‘) defined in
the following way: B is the compact neighborhood of z given by ' #
B={ (zq,e00,2,,%x) € s2", 0<e<x< 1} and B is its boundary. ;_;_;
We can compute the cohomology of (B/S‘,B‘/S‘) from the following exact sequence: ! -
(4.11) o » 19sss',8 /sy » wO(nss") » w0878 8 nleest, e sy s il s
e o i) & wasstE sy o aassh S Ll ;P
g
where st is the coboundary operator. .
The cohomology of B/s1 is: pt(B/s1) = 1 gince B/s1 is contractible. The :
il
cohomology of B~/s' is: Pt(B'/S1) =1+ t2 4+ ...+ t20"2 pecause a'/s‘ is -
homeomorphic to the complex projective space. : 3
Then, from (4.11): '%
P (n(2)) = B (B/s',B7/8T) = 1 4 3 4 ¢ 4 L4 e -
Putting this together with P (h(z)) we have that the left hand side of the Morse ['_ﬁj
inequalities on §2%/s' are:
1+e3+ 65+ ., 40,
Hence, since no consecutive powers occur, f is a perfect function on the quotient E
space and the homology of s2"/s' 1is: Lo

P (s27/8T) = 14 3 4 65 4 L4 2070,
In the last example we want to show how, sometimes, the presence of critical points

can be deduced just from the properties of the group action.

EXAMPLE 4.5 - Let 52" ' be the unit sphere in C*. We define an action of §'

on 8§20 py.

gz = 4lz,,.0002) = (cz1,c222,...,§n:n) ;es', zesg™! ‘

-28~
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It is easy to see that there are no fixed points. On the other hand the action is
not free.
In fact the point € = (0,...,24,0,...,0) (4 ¢ 1 € n) has isotropy group 2.
Por 1 € p € n, we define the following sets:
x,={ ze §2*~! such that 6, 2 ’p}
where G, is the isotropy group of z.
Now, suppose that an s’-oquivarinnt flow is defined on 8271, Then each xp is a
compact invariant set for the flow.
In fact, if z @€ *» and t € R we have:
Gz *» t) = ({g) c t=2z°¢t, for [ € %
Then, since
X, = { 2= (29,000,2,) € 8277 such that 2z, =0, n> 4% Xkp, keEN |
X, isa closed subset of 527! and hence it is compact.
Therefore if our flow is gradient-liko(a)' each set xp has to contain at least one
orbit of "rest" pointo(a)", that is points z such that £ * R= g,
In particular if the flow is a gradient-flow given by a smooth (but not necessarily
nondegenerate) function f defined on sz"", each Xp contains an orbit of critical
points of f.

This implies that any function f on szn~1, which is s‘-invatlant, with respect

to this action has at least n ~ 2 critical orhits.

REMARK 4.1 - If, instead of considering the s' action of the previous example, we

(8)*
A flow is gradient~like if there is a continuous real valued function which is
strictly decreasing on the nonconstant orbits of the flow. Such a function is called a

Liapunov function.

(8"
Actually there are two distinct orbits (corresponding to the extrema of the Liapunov
function) as soon as X_ is not just one orbit, that is, xp is a sphere of dimension

greater than 1. P
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had considered the action of Example 1.2 of Section t, then the same argument would have
been true.

But, because of the presence of fixed points, the intersection of the sets xp is
just the set of the fixed points which also contains two critical points.

Then in this case, we could not have deduced, from the previous argument, the

presence of more than two critical points.

An application of Morse theory to the study of a function on a finite dimensional
sphere in presence of a finite symmetry group is the following theorem (see [2]).

THEOREM 4.1 ~ let f be a G-invariant smooth function on the sphere s" ¢ !PtlL

where G is a finite group.

If G acts on §° without fixed points then f has at least n + 1 orbits of

critical points.
This theorem has been applied in [2) to obtain a multiplicity result in a

bifurcation problem with symmetry.
Another application of the equivariant Morse theory to the N-body problem can be

found in [14].
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5. Cohomology of groups.

y let R be a ring with identity 1, and C a (left) R-module. A resolution over ¢

is an exact sequence of R-modules:

? 3 3,
(5.1) R A P A T A

The resolution is called projective if every xn is projeccive,‘g) free, if any
X, is free.
A resolution over C will be denoted by (X 5o
A free R-module C admits always the free resolution:
0~ C ig C -+ 0.
Any R-module C is a quotient, C = FO/RO of some free R-module Fj. The
submodule R, is again a quotient Ry = Fy/Ry of a free module Fq.
Continuing this process we have the free-resolution over C:
...*F1*F0*C¢0.
For example 1f C = 8, is considered as Z-module, zz - 55— then the following
. resolution is free:
0+ 28+ 2> zz + 0.
let A be a fixed R-module. We apply the controvariant functor HomR(-,A) to any
resolution over C.

Since this functor does not preserve exactness, the resulting sequence may not be

exact:

[ 60 61
(5.2) 0 ==+ HomR(C,A) -t Homn(xo,h) - HomR(x1,A) - L.
(9)

An R-module C is projective if given an epimorphism g from the R-module B to C
and an homomorphism Yy from the R-module A to C then another homomorphism Y can be
found such that the following diagram is commutative:

Every free R-module is projective.
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This implies that the cohomology HMX,A) = H“(Homn(x,h)) is not trivial, in

i general.

We want to prove that H'(X,A) depends only on C and A and not on the particular

projective resolution choosen.

We need a Lemma:

1]
LEMMA 5.1 - Suppose that Y: C -—+ C is an homomorphism of R-modules, (X £ C)

1 1] L] L]
and (X £ C ) are two projective resolutions over € and h: X -—+> X is a chain

(10)

transformation with the property

’ =
€ ho YE.

L]
If there exists t: C + xo such that €'t = y, then there are homomorphisms 8,

1]
xn + xn+1, n=20,1,..., such that:
L]
(5.3) a8, +te=h , 3
10 0

as2 sn+1 +8 = h vn.

na n+1 n+1

L2

Proof. We have the following commutative diagram:

¢ ? 2 2
n+1 an n-1 €
B T I e T T
ty
r
(5.4) lhrﬂ»‘l Jhn lhn-t Jhn-z 1“1 Iho ;T
/
’ L [ L]
a 1] a L] a L] “

3
———— X -’.‘tl-. b4 ——E_-» X -E:l.y X _—ad, , gmem=d X l---«1 x' _-E_: c' ——at ()
n+1 n n=2 1 0

(10) ' ' '
A chain transformation f from x-{xo,x1,...,xn...} to X -{xo,...,xn,...} is a

1
family of module-homomorphisms: f£,: Xn hd xn such that:

[ ]
anfn - fn-1an ¥n.

where 31; and Bn are module homomorphisms:

] ]
? 3 2 ?
] L3 - ’ -
- - X --E’ X -2-1 X ———t Leel _———d X __l‘_‘l" X -E-l X —— L
n n=1 n-2 n n-1 n-2

A A
such that 3 _, 3 =0 and 3 .3 =0,

-32~




o,

Since e'ho - €'te = YE - YE = 0 we have

(5.5) t'(ho - te) = 0.

1]
This implies that Im(ho- te) € Kern €' = Im31. Hence, since X, is projective,

from the following diagram

+ Xo
,s’ l h-te
e .
X, 2 X, 5 ¢

L]
we have an homomorphism 8,: xo + X, such that: 8130 b ho =t

Having constructed s, we proceed by induction. We want to find

1 L]
3.0 X T Xpeq 200 an+‘l‘n =h, - 'n~1an'

We have

1 L] [
an(hn - 'n~1an) - anhn - an'n-—1an - hn-‘lan - (hn-1 -‘n-zan-1)an -

= h 3 =-h +
ne

n=1n 1 'n-zan-dan =0

] and 33 = 0.

1]
since, by the induction hypothesis an’nﬂ = hn—1 il SP LI

) .
Thus Im(h =~ s .3 )¢ Xern 3 = Im3d .. Hence from the diagram

» Xa

0 -89,

s " ney
¢ ; y
] Rags ] ]
Xihi x" xh—1

we construct 8,, using the projectivity of Xp. a

L} ’ L]
THEOREM 5.1 - Suppose that X,X ,C,C ,€,e ,Y are defined ag in the previous Lemma.
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] L]
Then there exists a chain transformation f£f: X * X with € fo = YE and any two such

chain transformations are chain homotopic.(11)

L]
Proof. Since X, 1is projective and ¢ is an epimorphism we can find

1) L]
fo: x0 hd xo with € fo = YE.
Using the same induction argument of the previous Lemma we can construct
1]

L]
f: X +X such that 3 § =
n n n n'n

n-lan'
Now suppose that f and g are two chain transformations with the property:

]
€ fo =Ye and € g, = YE

0
1
Then: € (f - g) = 0e = 0,

Hence, applying the previous Lemma with f - g=h, ¥ =0, t =0 we obtain the

existence of homomorphisms s,: Xn * xn+1 such that:

t
an+1sn + sn-1an = fn T 9

that is f and g are chain homotopic. a
Theorem 5.1, as well as Lemma 5.1, can be proved under a little more general
hypotheses, see [11].

1
THEOREM 5.2 -~ If (X -5 C) and (X -5 c) are two projective resolutions of C,

and A is any R-module, then:

~ n '
H'(X,A) = H (X ,A)

Proof. Consider the identity 1C: cC+ C.

(11) '
Two chain transformations f,g: X * X are chain homotopic if there exists a family

of module homomorphisms: s.: xn + X a1 such that:

+ 8 9 = fn - g .
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1] ’
From Theorem 5.1 we have two chain transformations: f£f: X+ X and g: X + X

such that:
L]

1)
€ to = ¢ and sqo =€ ,

Hence qf: X + X and fg: x' + x' have the properties: e(gf) = ¢ and e'(fg) = e'.
Consequently, by the previous theorem, they are chain homotopic to the identities
g2 X+ X and 1x.z X' + X', respectively.
Considering the induced homomorphisms:
gos. 0x',A) » BN(X,A) ana g*: HM(X,A) » BM(X,A).

we have g*f* = 1 ' and fvgy = 1 because gf and fg are chain

H (X ,A) H"(x,a)
homotopic to the identities (see [11] or ([16]).

Hence f* (or g*) is an isomorphism. g

REMARK 5.1 = Since:

X1+ Xo $ cC=+0

is right exact, then:
*
0 + Hom (C,A) 3 Hom(xo,A) + Hom(x1,A)
is left exact. This proves that Ho(x,A) ¥ Hom(C,A).

A regolution under the R-module A is an exact sequence of R-modules:

§ §

8
(5.6) 0+ aS ¥ 3y A a3t

The resolution is called injective if every Y' ig injeetive.(12)

Since every R-module A is a submodule of an injective R-module, there exists at

least one injective resolution of A.

(12)
An R-module J is injective if given a monomorphism i:
A+ J there exists an homomorphism 8: B + J such that the following diagram in

a1
comnutative:
Ay— 8
o .’
l‘,’ I;
J
=35«
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resolution (X 3 C) and for any injective resolution (A 3 Y) we have:

Fixing an R-module C we can apply the covariant functor Homp(C,-) to (S5.6)

obtaining:

(5.7) 0+ HomR(C,A)e: HomR(C,Yo) * HomR(C,Y1) > een
which is, in general, not exact.
The measure of the nonexactness of (5.7) gives the cohomology:
H(c,¥) = M (Homp(C,¥)).
A8 for the projective resolutions it is possible to prove that H*(C,Y) depends only
on C and A and not on the particular injective resolution under A.
Moreover (see [11]):

THEOREM 5.3 - Suppose that A and C__are two R-modules. For any projective

(5.8) n'(x,a) = #™c,¥) n=0,1....

The group HT(X,A)(or HP(C,Y)) is also called the n~th extension group of A by
C and denoted by Ext”(C,A).

From now on let G be a group, written multiplicatively. The free abelian group
Z{G] generated by the elements g € G, is the set of the finite sums:

2gm(g)q g eG, migles

Thus an element in 2Z[G) is a function m: G+ Z which is zero except for a finite
number of g € G.

It ig possible to define also a product:

\Egm(q)g) (ZYm' ty)yy) = Zwm(g)m' (Y)gy g9,Yy €6

so that 2Z[G) becomes a ring called the (integral) group ring of G.

A ring homomorphism €: Z[G] + 2, called an augmentation, is defined by setting:

ngm(g)g) - )gm(g)

Modules over Z[G] will be called G~ modules.

If G = Cplt), the multiplicative cyclic group of order m with generator t, then
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m=1 ’ -]
i
the group ring [ = :[cm(t)] is the ring of all polynomials u = L ait in t, with
i=0

integral coefficients a,, taken modulo the relation t® =1,
If G is the infinite cyclic group with generator t, then Z(G) is the ring of
polynomials ).at', 1 ez and only finite a, * 0.
An abelian group A is given a unique structure as a (left) G-module by giving
either:
(1) a function 0: G x A+ A, O0(g,a) = ga, geG, a€Ar such that:
glaq + a3) = gag + ga,
(g192)a = gq(gz3)
la = a
(11) a group homomorphism
¢: G+ Aut A.
The definition of a G-module A, essentially means that there is an action of G on
A which also considers the algebraic structure of A.
In particular any abelian group A can be regarded as a trivial G-module, considering
the trivial action of G on A: ga = a, ¥q € G.
Now let G" be the cartesian product of n copies of G. We denote by P, the

free abelian group on G"'' made into a G-module by the "action":

9(ggsgqreee,gn) = (999,991ree+,9Gp).

We can define maps 3n: Po*Poqr n=12,..., by:
n -
( R S O DL P
go,...,gn oo qo, ey i' vy n

where A indicates deletion.

In particular Py = Z(G].

THEOREM 5.4. 1If €: Po + Z is the augmentation then the sequence: —7
] ]

- - 4 lp -§
P=...->p H*p ~p -f2z-0

is & free resolution of Z, where Z is a trivial G-module.

L —
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Proof. First of all we construct the functions:
sy Z¥PB ., s8_ (1) = 7, 1e2, 1= identity of G,

8, P, * P _4¢ 8plggreceigy) = (1’90"°"gn)
which are group-homomorphisms.
Then from the definition and some easy computations we have:
(5.9) €8, = 1,
= 1 n>0

an+1sn * sn-lan Pn
{5.9) implies that the chain maps 1 and 0: P + P are chain homotopic.

Hence the induced map 1%,0%*: H,(P) + Hn(r) between the homology groups of the
chain complex P are equal, that is P has a trivial homology and consequently P is a
resolution of abelian groups over Z.

P is also a resolution of G~modules over Z because if P is exact as sequence of
abelian groups then since an are module homomorphisms it is exact also as sequence of G-
modules.

Moreover P is a free resolution by the construction of Pj. o
We remark that P, is isomorphic (as a G-module} to the tensor product (over Z} of &G
with itself n + 1 times.

There is another way of constructing a free resclution of 2, which is useful in the
applications.

We can define ‘Qn‘ (n > 0) as the free G-module with generators ([gq,...,9,]1, all

n~tuples of elements of G, and Qg as the free G-module on the single generator [ ].
For each n » 0 we define the functions:
T: Pn > Qn and o: Qn > Pn
0 ) = gylgs g .9y 1 g1
JoreoorIn) = F0i99 99491 Fp0 1 Inq9n
Olgyrrensg ] = (1,9409,95,909,940 000094950 9,)

They are inverse to one another, hence P, and Q, are isomorphic.
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Thus the following commutative diagram defines univocally the maps :
e

. dp: QT Oy, n 21 )
|

| 4
P N .
n={ ———m= “n=1
| I
1 :
A, [Gqsseergpy] = gqlggrecergyl] + ) (",1f91"“'9191+1""'9n1 +
i=1 ) i
-
’
+ (")n[91,ou"gn_1] 1
In particular:
dylg) =gl 1 = [ 1, a3[g99.92] = g9lgz) = [9493) + lgy).
—
Since T: P + Q 4induces an isomorphism between the homology groups H,(P) + Hn(o). ..&
1
Theorem 5.4 implies the fcllowing: j
a, a oo
. THEOREM 5.5 - Q = ... 092-3Q1 -*Qo-¢8->0 is a free resolution of &%. . l
? 1
DEFINITION 5.1 - Given any G-module A, we define the cohomology groups H™(G,A) of .
G _with coefficients in A as:
(c,a) = 8"(2,a) T 5'(0,A) -
[ |
We remember that H(P,A) = H"(Hom,[G](r,A)), and the analoqous definition holds for 1
H"(Q.A) that is the dependence on the group G, in the definition 5., enters in the
structure of A and P, or Q,, as G-modules.
Moreover, from Theorem 5.3 we have that H"(G,A) depends only on G, and A, !

since 2 is fixed, and can be computed from any projective resolution of G-modules

over £ or any injective resolution of G-modules under A.

8ince O, is a free G-~module with generators [91""'9:1] , an element ¢£: Qn + A
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in Homz[G](Qn,A) is a G-module homomorphism which is uniquely determined by its values on
these generators.
Therefore Homz[G](Qn,A) can be identified with the set of all those functions f
(n-cochains) on n-arguments with values in A.
The addition of two cochains is given by:
(£4 + £3)(gqee0e,gpy) = £4(gq,000,9,) + £2(gq9,0e0,9,)e

The coboundary homomorphisms 6“: Qn hd Qn+1 are defined by:
i TE PPN R I G PLag i 30 1 SO St B
Yol n+1
+ 121[-1) ng1,...,gigi+1,...,gn+1] + (=) elg,ee00g) )]
Then H"(G,A) 4is the n~th cohomology group of the complex Hom’[G](Qn,A) with this

coboundary map.

THEOREM 5.6 - If G is a finite group of order k, every element of

H"(G,A), n > 0, has order dividing k.

Proof. For each n-cochain f we define an (n-1)-cochain
h(91:~"19n_1) = ), f(g1"°°vgn_,vg)
geG
The theorem is proved if we show that, for f € H"(G,A), kf = 0 that is
xf e Ims" ',
We have:

6n-1

L 87€(gy 00009, ,9) = =67 hlgy,eeeig.) + KE(Gyseenigy) = O,

geG

since 6"f = 0, that is kf = 8" 'h e ™", o

COROLLARY 5.1 - Let G be a finite group and D a divisible{13)abelian group with

(13)
A group G 1is said to be divisible if the equation mx = g has a solution x e G,
for every given g € G and m € Z.
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no elements of finite order. If D has any structure of G-moduls, then H"(G,D) = 0,

for n > 0.
)
. Proof. V¥We take f and h as in the previous proot.
& —_—
. 8ince D is divisible, it is possible to find an (n=-1) cochain g such that:
& h = kq. o
Then we have: Xkf = §h = 8kq = kéq. —
} !
- But if k(f-~8q) = 0, then f = §q because D doss not have any element of finite
order.
This means that every cocycle ¢ is a coboundary and hence w'(G,D) = 0, o )
4
L ‘
|
-
)
- .1
:d
J
w {
'
+
Lo
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6. Equivariant cohomology in presence of finite groups.

The knowledge of the classifying space BG of a group G is one of the main steps
in computing the equivariant cohomology of a G-~invariant manifold M, using the fibration
(4.5).

In this section we give an interpretation of the cohomology of BG, when G is a
finite group, which allows us to compute H*(BG), for any finite abelian group.

Let us suppose that X is a topological space and a group G acts properly on it. In
this case we can consider a base in X, made up of proper sets U (see section 1).

Using the projection p: X + X/G, p(x) = 0(x), these sets determine, for the
topology on X/G, the open sets pU = V which will be called proper sets in X/G.

Then X is a covering space for X/G, under the projection p.

In fact, by definition of proper action, each p-1V, V = pU € X/G, is the union of
disjoint sets gqU, g € G and the restriction of p to each 4qU 1is an homecmorphism
between gU and p(gU).

Now we consider the singular homology of X with Z coefficients. We denote by
S(X) = {sn(x)} the complex of abelian groups sn(x) generated by the singular

(14), with the usual boundary homomorphisms.

n-simplices T: An * X
We have:

THEOREM 6.1 - If G acts properly on X, S(X) is a complex of free G-modules.

Proof. Giving the "action”:
G x Sn(x) *» Sn(X): (g,T) * 9T € 8, (X)
we make sn(x) a G-module.
Moreover it is easy to see that the boundary homomorphisms are G-module

homomorphisms.

(14)
An is the standard affine n-simplex in 7.
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Finally if X5 € X is a subset containing exactly one point from each orbit, the set

of singular n-simplices T with initial vertex in Xg is a set of free generators for

Sn(X) as a G-module. o)

THEOREM 6.2 ~ If G acts properly on X, any n~simplex T in X/G is the image,

under p, of some T in X. Moreover these T's can be taken in a set of free

3 generators of S5,(X) as a G-module.
Proof: The n-simplex T is a map from An + X/G. By the "lifting” propetty“s) in a

covering space, T can be lifted to a map T3 An + X such that pr = T, a

Now we suppose that A is an abelian group with the trivial structure of a G-module.

THEOREM 6.3 ~ If G acts properly on X then:

Homg(S(X/G),A) = Hom  S(X),A)

and hence:
B (X/G,A) = H" (Hom g1cSX)A)
. Proof. The induced map:
p*: Homg(S(X/G),A) * Hon\z[G](S(x),A) (p*f) T = £(pT)
is an isomorphism.
In fact any cochain f € Homg(S,(X/G),A) is uniquely determined by assigning its

values on T, an n-simplex in §,(X/G), while a cochain £’ in Hom’[G](sn(x),A) is

(15)
The "lifting" property asserts that if p: X + B is a covering space and f is a map
from Y + B then there exists a map f£', £': Y + X such that the following diagram is

commutative:
$.-7
”
_ > e
{ Y -T') 8
L This proposition is a particular case of a general property for fibrations. (see [16))
-43-
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uniquely determined by its values on a set of generators T € S, (X). By the previous
Lemma these generators are in 1-1 correspondence. Therefore the assertion follows. o

Before stating the last Theorem we recall that a space X is acyclic if it has the
homology of a point, that is: P, (X) = 1.

THEOREM 6.4 - If G acts properly on an acyclic space X, then:

(6.1) B (X/G,A) = H'(G,A) n >0
Proof. Since X is acyclic the sequence of G-modules:
sees * S,(X) * 5(X) *» 5,(X) » 2+ 0
is a free resolution of Z.
Then, by the definition of cohomology of a group,

H" (Hom (s(x),a)) ¥ H"(G,A).

2[G)

The previous theorem gives (6.1).u
We will apply this result to compute the cohomology of the classifying space of a
finite abelian group.

Let us suppose that G 1is a finite group. We know that there is an universal

G-bundle with a contractible total space E on which G acts freely, and hence properly,

since G is finite. Then the cohomology of the classifying space of G, BG = E/G can be

obtained from (6.1) computing the cohomology of G with coefficients in a trivial
G-module A.
We suppose at first that G is the multiplicative cyclic group Cu(t), of order
m, with generator ¢t.
We have already observed that T = z[cm(t)J is the ring of polynomials
m=-1

us= ) aiti, a; € Z, modulo the relation t® = 1.
i=0

PY-¥. o

NP
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Two particular elements in I are:
Nel+t+.o+t®™ ang Duwt -1
They have the properties:
i) WD =0
i) Mu = 0 Ce=> yu=pv for some v €T
111) Du = 0 <==> u = Na,.
from 1), i1), 1ii) 41t follows that the sequence:

D N D
s [ s Tes T Sz0

is a free resolution of %, defining D,u = Du, N,u = Nu, ¢c(u) = Zai.
Let A be any G-module. The group Honr(l‘.l) is isomorphic to A by the
isomorphism a: Bour(l‘,h) + A, a(f) = £(1).

The corresponding sequence obtained on applying Bomr(-,A) is:
0 ~ Hom(g,A) £5 a72% A B3 AR5 5
D*a = pa = (t - 1)a aea
NaaBa=(1+¢+...+t"" aena,
Then Xern D* = [a |ta = a] and Kern N* = [ala + ta + ... + t™'a = 0].

Hence we have the following Theorem:

THEOREM 6.5 - The cohomology groups of Cp(t) with coefficients in A are:

80(cy(t),A) = (a | ta = a} = Hom(Z,A)
B2 (c,(t),A) = (a | ta = a)/N"A

BV c (e),A) = (s | Na = 0)/DA

In particular if A is a trivial G-module from Theorem 6.5 we have:
1icy(t),a) = & = 50(BCy(t),A)
B3R (c (t),A) = A/mA = HI(BC (t),A)

H2* (cy(t),8) = [a | ma = 0) = 8™ M me () ,0)

=45~




o v‘vr'v

R vrirv
T i

since fa |ta=al =n, [a | Na=oO] = (a | ma = 0], N*A = {Na latnl - {ma}aeA
and D*A = {{t - 1)a |aea} =0
Por example if Cp(t) = zp and A is lb congidered as a trivial zb-module the
Poincare’ series, expressing the cohomology of zp with coefficients in zp is:
Pt(’p) 1+t +t°+ o0 =t H'(B.b"p)'

Now, let us suppose that G is a finite abelian group. Then G can be decomposed
into a direct sum of cyclic groups G; of order z
-

G=Gy @ ... 06,
with z; dividing 2,9 and this decomposition is unique up to isomorphism.
Then we have
(6.2) H'(G,,zp) ® e ® H'(Gn.lp) -
= H'(G,Z;) = H'(BG,I%)
for any p dividing 1z, where zp is considered as a trivial G-module.
The result (6.2) can be expressed in a more general form. We refer to (9], Chapter

III, for more details.
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