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ABSTRACT

This paper contains results reported in a series of seminars given by the

author at the University of Wisconsin-Madison. These concern Morse theory in

the presence of symmetry. Different ways of studying an equivariant flow are

investigated and, in particular, the equivariant Morse theory for flows is

described.

This theory requires results on the cohomology of classifying spaces for

finite groups which are also described here. -
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SIGNIFICANCE AND EXPLANATION

Morse theory is an important tool for studying dynamical systems. It

often happens that the system under study (e.g. in celestial mechanics or

quantum mechanics) is subject to some symmetries.

,-i-In this paper Morse theory for flows in the presence of a symmetry group

is studied.-In particular the so called "equivariant tbeory" is described.

Then, using h nological algebra, a method of treating finite groups is

described.

I ~-- *. ---

ptA

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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MORSE THEORY FOR FLOWS IN PRESENCE OF A SYMMETRY GROUP

Filomena Pacella

0. Introduction.

This paper presents a discussion of Mores theory in the presence of a symmetry group

given at the University of Wisconsin-Madison.

In these notes ideas and results from many different sources are collected and their

application to the study of flows invariant under some group action is illustrated by some

simple examples. Deeper applications require the extension of the theory of isolated

invariant set to the equivariant case; this extension, which presents no serious

difficulties, is also indicated here.

An interesting point, illustrated in the examples is that in the case of flows with

symmetry there are (at least) three different ways to obtain "Morse relations* and that

these generally give different information.

The subject is divided in six sections:

The first two are introductory. In section I I recall the main definitions about to

group actions on topological spaces and I give some easy examples. In section 2 Morse

theory for flows in briefly sketched as exposed in (6] and 17] making the comparison with

the classical Morse theory for gradient flows.

In section 3 the notion of equivariant flow is introduced and the different ways of

studying it are presented. This section ends with the definition of nondegenerate

critical manifold, as given in [1] and (3].

Section 4 treats the equivariant Morse theory for flows. In the exposition of this

theory I have followed the ideas of (1], applying them to the case of an equivariant flow

on a topological space invariant under the action of a group. In the second part of this

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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section with very simple examples I illustrate the difference between the various ways of

studying an equivariant flow. Section 5 and 6 deal with the cohomology of the classifying S

space of a finite group.

In section 6 it is shown that this cohomology is isomorphic to the cohomology of the

group itself.

This motivates section 5 where the cohomology of a group is described.

The end of section 6 also contains the explicit computation of N' (BG) for finite

abelian groups.

I would like to thank C. Conley for his encouragement in writing these notes.

0
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- . * .1.5

1. Group actions on topological spaces.

Let X be a topological space and G a group with the multiplicative notation. P

We will denote by Aut(X) the group, under composition, of homeomorphime from X

to itself.

DEFINITION 1.1 - An action of G on X is an homomorphism:

i G + Aut(X)

The homeomorphiem corresponding to an elment g e G, is usually, denoted by:

(g)(x) - g(x) x e X .

When G is a topological group there is another way of defining an action on X

which also considers the topology on G. Besides it distinguishes between left and right

actions.

DEFINITION 1.2 - A left action of G on X is a maps

G X X + X, (g,x) gx

satisfying the following properties:

i) ix-x, leG, xex

ii lg(2x) - (9192)x 1 ,g2  e G, x e x

We speak about a right action if u(g,x) xg and i) and ii) are replaced bys

i)' xl - x, X e X o e G

ii)' (xgl)g 2 - x(gg 2 ), g1 ,g2 e G x e x

The difference between left and right actions is not just a matter of notation, since

properties ii) and ii)' give a different order in applying g1 and g2 . Hence if the

group is not comutative, a left action is not generally a right action.

Given x e X, we denote by 0(x) the "orbit" of x, that is, the set of those

point@ in X which can he obtained from x using the action of the group:

0(x) -jgx, g e G}. -

-3-



Then, the quotient space X/G represents the set of all orbits.

The aet G , g e G, gx - x} will he called the isotropy group of xy it is the

set of elements in G which leave x fixed.

If G is a compact topological group, then Gx  is a closed subgroup of G.

DEFINITION 1.3 - The action of G on X is said to be free if:

g e G and g 1 I -> gx 0 x for every x e x; that is, if Gx - I for all x.

If x e X and p : C O 0{x) is the map given by p(g) - gx, then p is surjective. If

the action is free, p is also injective. This implies that, when the action is free,

every orbit looks like G.

DEFINITION 1.4 - The action of G on X is said to be effective ift

(*\ G' 1.
xex

We also define the trivial action of G as the one which leaves everything fixed,

that is: Vx, G. W G.

If G is a compact Lie group acting freely on a manifold X, then X/G is a

manifold. However, if the action is not free, or the group is not compact this need not

be the case.

In the case of groups with the discrete topology, we give the following definition@.

DEFINITION 1.4 - An open set U C X is called proper (under the action of G) if,

g~ - (9u) ) u

DEFINITION 1.5 - The group G acts properly on X if every 2oint of X belongs to

a proper open set.

When G acts properly on X then every open set in X is the union o proper sets.

so that the proper sets constitute a base for the topology of X.

-4-



It is obvious that if G acts properly on X then the action is free and if G is

finite and the action is free then G acts properly on X.

we end this section with a few examples:

EXAMPLE 1.1 - Let S
1  

be the unit sphere in C (set of complex numbers) and

S2k+1 the unit sphere in C +
.

The Hopf action of S on S
2
k+

1 
is defined by:

.(Zo,,...,z k ) - (Czo,z 1,...'z k) (z,zl,...,zk) e s2k+1, ce s 1 .

This action is free and the quotient space is s 2 k+l/S 1 
. CPk, that is the complex

projective space, which is a manifold of real dimension 2k.

7he fibration associated to this action is the Hopf fibration:

Si

+

s2k+ 1

+

s
2
k+ /s 1

"

Since the action is free each orbit is homeomorphic to SI .

EXAMPLE 1.2 - Let S
1  

and S2k+
I 

be defined as in the previous example.

We define another action of S
1  

on S2k 1 by:

(z0, lZ ... ,zk (R 0 z0, 1z ,...,kzk)

This action is not free. In fact the isotropy group, Gx, of x - (z01O,...,O)

isS 1; that is, x is fixed under the action of S1. If x - (0,z1 ,0,...,0) then

Gx - 1, that is S1 acts freely on this specific point x.

If x - (0,0,..., zi, 0,...,0), I # 0,1, then G {, -IC 1) that is it is the

set of the i-th xoots of 1.

EXAMPLE 1.3 - Let S
1  

be the unit circle as above and let S2 - (x,y,z) e R3
, x

2 
+

y2 + z2 . I be the unit sphere in R
3 . 

Writing (x,y,z) as (x + iy,z), we consider

the action of S1 on S2 given by C(x + iy,z) = (C(x + iy),z). This is a rotation

about the z-axis.

-5-



This action is not free because the points PI = (0,0,-I), P2 = (0,0,+1) are

fixed. For every point P e S2
' different from PlIP2. the isotropy group is 1,

hence 0(P) = S
1
.

EXANLE 1.4 - let R be the set of real numbers with the usual topology and Z the

group of integers, acting on R by:

kx-x+k kez, xe a

The open intervals of length less than 1, in R, are proper sets. This action of

Z is proper and the quotient space, R/Z, is homeomorphic to the unit circle S
1
.

-6-t



2. Morse inequalities for flows.

In this section we recall some definitions and properties of flows. For more details

and proofs we refer to [6] and [7].

Suppose given a flow on a topological space r. This means a map

(y,t) - y * t, from r x R onto r, satisfying the following conditions:

i) y 0 = y, y e r , o e R

ii) (y s S) * t = y " (s + t), y e r, s,t e i

A subset I c r is said to be invariant if I - 1y * t,t e R, y e i} I R.

we define the w -limit sets of Y s r as:

W(Y) - (O{CI(Y * [t,) t 01

us(Y) = 1 {cL(Y • (-,t]) I t of

Let I be a compact, Hausdorff, invariant set in r. A Morse decomposition of I

is a finite collection {I lwep of disjoint, compact, invariant subsets M C I which

can be ordered (MIM 2 ... IN ) in such a way that for every y e I\ U 14 there are
14jfn

indices i < j such that: w(y) C Mi and * (Y) C Mj. The sets N4 will be called

Morse sets of I.

An ordering of jM ,e p with this property will be called an admissible ordering.

A locally compact, Hausdorff subspace X of r is called a local flow, if for every

y e x there are a neighborhood U Cr of y and an t > 0 such that

(x (N U) •[0,C) C X.

An invariant set S in the local flow X c F will be called an isolated invariant

set if it is the maximal invariant set in some compact neighborhood of itself. Such a

neighborhood is called an isolating neighborhood for S.

It is easy to see that if 1K,1, e P is a Morse decomposition of an isolated

invariant set S, then also the sets N are isolated invariant sets.

A compact pair (N,N-) will be called an index pair for the isolated invariant set

S if:

a) cL(NN-} is an isolating neighborhood for S

-7-
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b) Y e N- and y * [O,t] C N imply that y 1 o,tJ C"

c) if YeN, and y•R+ N thenthereis at;,O such that

y - [otj C N and y - t e N.

N" will be also called the "exit" set of N.

It is possible to prove (see (6] and [7]) that if (N,N-) and (N1,NI-) are two

index pairs for the isolated invariant set S then the pointed spaces" ) NAN- and

N1 /N1 - are homotopically equivalent by a homotopy that moves points along orbits of the

flow. Of course there exist many pairs (N,N-) and all of these are homotopically

equivalent by such a homotopy. In particular any composition of these equivalences that -

maps a pair to itself is homotopic to the identity map on its domain.

Thus to each S there is associated the homotopy class [N/?-] of the pointed

space N/N" obtained from an index pair, and any other pair representr -ame class in

a canonical way. This class will be denoted by h(S) and called the (homotopy) index

of S.

After these definitions we can state the Horse inequalities.

If (M,.°.,n) is an admissible ordering of a Morse decomposition of the isolated

invariant set S, then:

n -
(2.1) 1 Pt(h(Mj)) - Pt(h(s)) + (1 + t)Qt

J-1

where Pt(h(j)) and Pt(h(S)) are the Poincar series which express the Cech-

cohomology (with coefficients in some fixed ring) of any element in the equivalence

class h(Mj) or h(S), respectively, and Ot is a series with nonnegative inteqer

coefficients.

(1)
I f (A,B), BCA, is a topological pair then the pointed space A/B is obtained from

the quotient space A/B considering the point which represents the spaco 11 ai, a
distinguished point.



in the particular case of a smooth function f(x) on a compact manifold M of

dimension d from (2.1) we obtain the classical Morse inequalities.

In fact the equations

(2.2) - - Vf(x)

defines a gradient flow on M and we can take r - m - S.

Moreover if f has only finitely many critical points, say

C - lxi i - 1,...,n} the collection of the critical points, then C becomes a Morse

decomposition of H by ordering its points according to the values of f.

The hypothesis that f has finitely many critical points is verified whenever f is

a nondegenerate (2 ) function on a compact manifold.

In addition, when the critical points, xi , are nondegenerate we haves

Pt(h(xi)) - tdi

where di is the number of negative eigenvalues of the Hessian of f in the point xi,

that is it is the (Morse) index of xi.

Regarding the (bomotopy) index of S - M we have:

d
Pt(h(S)) - pt(M - 0 6it.

J-a

where B,s are the Betti numbers of M, that is Pt(M) is the Poincar* polynomial

of M.

Finally from (2.1) we obtain:

n dn\ti
(2.3) 1 t Pt(M ) + (I + t) Qt(f)

i-O

which are the classical Morse-inequalities.

(2)
f is nondegenerate If all its critical points are nondegenerate, that is the Hessian

Hf evaluated in the critical points, never vanishes.

-9-



n di

The polynomial Mt(f} I t will be called Morse polynomial of f.

Since 9 t(f) has nonnegative coefficients the polynomial Mtlf) majorizes Pt(N)

coefficient by coefficient. This implies that f has at least B critical points with

index J, j = 0,...,d.

Now we return to a general flow on r. As before S is an isolated invariant set

in the local flow x C r.

Let N' and M" be two Morse sets of a given decomposition. The ordered pair

(M',M") is called an adjacent pair if there is an admissible ordering (M i,.).,n ) and

an integer i with M' - Mi, M" - i+I .

In this case the set M E 1xIW*(x) C M i+J, W(x) C M} is also an isolated invariant

set and the collection (MI,.°. MiIM,Mi+2... mn  is a "coarser" Morse decomposition.

Furthermore, there is a canonical exact sequence

H,(h(Mi)) - H,(h(M)) 4- H(h(Mi+1) + ...

If the connecting homomorphism, 6, of this sequence is non-trivial then

M * M' V M" - i.e. M" must be 'connected' to M' by an orbit of the flow.

On the other hand if all such connecting homomorphisms for all adjacent pairs (in any

admissible ordering) are trivial, then the decomposition is "perfect" in the following

sense:

DEFINITION 2.1 - A Morse decomposition ( of S is said to be K-perfect

if relation (2.1) holds with Qt - 0, when the cohomologies are taken with coefficients

in K.

We will not indicate the dependence on K, when the Morse decomposition is perfect

with respect to any coefficient ring K.

When we have the gradient-flow (2.2) given by a nondegenerate function f, we will

call this function (K-) perfect if (2.3) holis with Qt(f) - 0.

An important consequence of Definition 2.1 is that whenever we have a perfect Morse

decomposition of S then we can have information about the (homotopy) index of S by

looking at the left hand side of (2.1).

-10-



In the came of a gradient flow on the compact manifold M this means that we can

compute the cohomology of N by the computation of the Morse polynomial of any perfect

nondegenerate function f defined on M.

A criterion to recognize a perfect Morse decomposition of S is the following

Morse's lacunary principle which follows immediately from (2.1):

If, taking some ring of coefficients X, no consecutive powers of t occur in the

left hand side of (2.1), then Qt - 0 so that:

n
(2.4) 1 Pt(h(M)) - Pt(h(S))

J-1

Some examples about the use of this principle wll be furnished in section 4.

t

r

-11-
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3. Equivariant flows.

In this section we suppose that there is a (left) action of a group G on the

topological space r and that the isolated invariant set S is invariant under this

action (that is gy e s, if g e G and Y e s). When this happens we say that S is G-

invariant, to distinguish this property from the invariance with respect to the flow.

We say that the flow on r is equivariant if:

(3.1) (g'y) * t = g(Y I t) y e r,g e G,t e R.

If we have a gradient flow (2.2) on a G-invariant compact manifold m then it is

equivariant if the function f is G-invariant, that is if: f(gx) - f(x), x e m, g e G. . -A

From now on we will restrict our attention to the isolated invariant set S.

In order to study an equivariant flow, the most natural thing would be to look at the

quotient space S/G.

In fact it is obvious that we can define a flow on S/G in the following ways

(3.2) [yI • t - iY " t] [y] e SIG, t e R

where [y] is the orbit (equivalence class) of y under the action of G.

The flow (3.2) is well-defined because if y and y ' belong to the same

equivalence class then: 1 - gy, for some g e G and consequently:

fY'] • t - (Y. . t] - ((gy) • t] - [g(y * t)] - [Y • t] - [y) .t

If I is a G-invariant isolated invariant set in S, then I/G is an isolated

invariant set in S/G.

Moreover it is possible to find an index pair (N,N) of I, with N and N

G-invariant and such that the pair (N/G, N /G) is an index pair for I/G.

Finally if (M1,...,Mn) is an admissible ordering of a Morse decomposition of S,

given by G-invariant Morse sets, then (MI/G,...,Mn/G) is an admissible ordering of a

Morse decomposition of S/G.

A second approach to the study of an equivariant flow would be to look at the

isolated invariant set S but considering Morse decompositions whose Morse sets contain

-12-



the complete G-orbit of any point in the set (theme orbits may be topologically different,

in general).
I

In this connection we note that if I is an isolated invariant set and O(I)

- jgy,g e g,Y e 1} is the orbit of 1, then 0(I) is also an isolated invariant set and,

* if the group G is continuous, 0(l) - I.

A third approach is the "equivariant theory* which consists of extending the flow to

the space S x E, where R is a contractible space on which G acts freely, and then

obtaining the Morse inequalities in the quotient space IS x K)/G, replacing the

cohomology of the spaces involved in (2.1) with their "equivariant cohomology".

We will explain the equivariant theory in detail in the next section.

When the action of G on 8 is free then there is not much difference between these

three methodsy in particular the first and the third one give exactly the same answer

because, in this case, the equivariant cohomology coincide, with the ordinary cohomology.

When the action is not free, then in general each approach furnishes different

informationi that is, the Morse inequalities provide different consistency conditions.

To understand this difference it is enough to think about the difference between

B, BIG, (s x N)/G at the cohomological level.

It may happen that a space X has a trivial cohomology (which does not give much

information) but X/G has a rich cohomology and vice versa.

For instance if S is the sphere in an Hilbert space and S1 acts on it with the

Hopf action, then Pt(S"- 1 because S! is contractible while PtLS /
1  - Pt(CPJ -

I+t
2  

+ t
2n  

+ ... "----- 1

1 - t

Moreover if we have a gradient-flow on a compact G-invariant manifold H given by a

G-invariant nondegenerate function f and if the action on M is not free then the

classical Morse theory does not apply because M/G is not, in general, a manifold. The

more general approach described here does apply, but gives different information from the

equivariant theory. Thus, in this case, it is reasonable to use the equivariant theory

which is a natural extension of the free case.

-13-



We will support what we have claimed so far with examples in the next section.

We and, giving the definition of nondegenerate critical manifold for a smooth

function f on a compact d-dimensional manifold M and characterizing its Morse index.

We say that a connected submanifold T C M is an isolated critical manifold if:

i) each point p e T is a critical point of f

ii) T is isolated as a critical point set

From i) and ii) it follows that T is an isolated invariant set in the gradient-

flow (2.2). Then T has an homotopy-index h(T) as always. This can be computed as

follows in the case where T is "non-degenerate."

Namely, if the critical manifold T satisfies i) and

ii)' the Hessian of f is nondegenerate in the normal direction to T,

then we say that T is a nondegenerate critical manifold.

ii)' means that if (x1,...,xkxk+1...,xd) is a system of local coordinates in

M, centered at p, such that near p, T is given by the n - k equations:

xk+1 - 0,...,xn - 0, then

dot 0( - ) I for i,j k +,...n
ax I x p

Another way of saying this, is considering a small tubular c-neighborhood ? (T)

fibered over T by the normal discs to T, relative to some Riemann structure on M.

Thus ii)' means that f restricted to each normal disc is nondegenerate.

Moreover UP implies ii), that is each nondegenerate critical manifold is also

isolated.

-14-



We denote by v(T) the normal bundle of T endowed with a Riemannian metric and

by HTf the Hessian of f on v(T).

If we set:

(ATx,y) - HTf(x,y) x,y e v(T)

than we define a self adjoint endomorphism from V(T) to V(.

Hypothesis ii)' implies that AT does not have zero as an eigenvalue and hence

v(T) can be decomposed into the direct sumt

v(T) = vT) v'lT)

where V+CT) and V-T) are spanned (respectively) by the positive and negative

eigenvalues of AT'

The fiber dimension, AT , of V(T will be called the index of T as a critical

manifold of f. Now we want to write the Morse inequalities (2.1) in the case of a

smooth function f whose critical sets are only nondegenerate critical manifolds.

The contribution in the Norse polynomial of a critical manifold T let

(3.3) Mt(T) - ) ti rank H' IvC(T)lc

where Hi denotes the compactly supported cohomoloqy (3 ) (see [161).c

At this point it is better to remark that, in the nondegenerate case, Mt(T) is

equal to Pt(h(T)) because the "exit" directions in N T) are those of V T) and

(3)
If X is a locally compact topological space:

i i A
H cX) = H CX) i - 1,2,...c

A
where X is the one point-compactification of X

Ex: Mn Wfn ) - K (if K is the coefficient ring)
c

-15-
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the compactly supported chomology of v'(T) is the cohomology of N/IC, N being an

isolating neighborhood of T and N- its "exit" set.

By the Thorn isomorphism:
i-I i-AT -

Hi IV-(T)) - H (T,B 'K)
c

where K is a ring, 8" is the orientation bundle of v'(T) and H*(TO-GK) is the

cohomology with local coefficients.

Hence (3.3) becomes:

(3.4) H T) - t TPt(T,e'GK)

t t%

In particular, when the bundle v (T) is orientable(
4
) Pt (T,8OK) - Pt(T,K). Then,

if we consider a Morse decomposition of N given by the nondegenerate critical manifolds

of f, (2.1) becomes

(3.5) _t APt(T,'OX) - Pt(M) + (I + t)Qt
T

In (3.5) it is understood that the sum is taken over all the critical manifolds of

f.

(4)
We say that a fibration

F

V
+P

B

is orientable over a ring K is for any closed path w in B, with
w(O) - w(1) - b £ B, the induced map:

"r*t H*lFbiK) + H*IFb K)

is the identity.

In particular, if B is simply connected every fibration over 8 is
orientable, over any K.

-16-
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4. Utuivariant Morse theory.

We assume, as in the previous section, that an equivariant flow on r is defined

and S is G-invariant, 0 being a topological group acting on r.

If G is compact then (see [9])there is an universal G-bundle characterized by

having its total space 3 contractible,

0 p

+

(4.1) 3

Z/G B G

The space 3G is called the classifying space of G.

The action of G on 2 is free and Z is unique, up to homotopy.

Since the action of G on 2 is free, the diagonal action of G on the product L
8 x 3 is free too.

Here diagonal action means,

g(Ys) - (gy,ge) g e G, Y e S, • e R

We can extend the flow to 8 x C in the trivial wayt

(yre) , t - (Y , t,e) t e R.

As shown in section 3 we can project this flow on the quotient space (S x 3)/G =S

It is obvious that if I is a G-invariant, invariant set for the flow on S then

(I x 3)/G - IG  is an invariant set for the quotient-flow in SG -

Our aim is to obtain the analogue of the Morse inequalities (2.1) for this quotient

flow using the equivariant cohomology.

To do this we need some compactness condition. In fact in obtaining (2.1) compact

pairs have been used. Also the definition of isolated invariant Set requires the presence

of a compact isolating neighborhood.

But in the bundle (4.1), usually, Z and BG are realized as infinite dimensional

-17- 1 -



manifold, so all compactness is lost in S x E and SG This difficulty can be overcome

in the following way.

When G is a compact topological group, E and 20 can be obtained as limit of

finite dimensional compact spaces:

E= lim Ek BG= lim BkG

related to the bundles:

G

+

Ek

+

Ek/G- BkG.

The action of G on Ek is free.

So the Morse-inequalities are obtained for each k and we pass to the limit using

the stabilizing properties of cohomology.

If I,...,M n} is an admissible ordering of a Morse decomposition of S and each

M is G-invariant then:

I(M I x .. '(n x Ek)/GJ

is a Morse decomposition for the isolated invariant set (S x E.)/G. Observe that the

flow in S x K is defined in the trivial way, as for S x E.

Also If (N,N-) is an index pair with N and N" G-invariant for the G-invariant

isolated invariant set I then

((N x Ek/G,(N- x E)/G) = (Nk,Nk)

is an index pair for (I x Ek)/G.

So if we denote by hk(I) the (homotopy) index associated to any index pair

(Nk,Nk-) of (I x EkJ/G, we obtain:

n k

(4.2) ) Pt(hk(Mj)) = Pt(hk(S)) + (1 + t)Qk k - 1,2,....tJ-I
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Now we pass to the limit in (4.2), for k +., using the stabilization of the

cohomology for the classifying space, (see [q] Chap. III) that is: for E - lia Ek  and

BG - lim Zk/g1 then: for each i e N, there exists m(i) e N, such that

k N m(i) -> H(} ) H i(Ek ) and Hi(BG) - Ki(Ek/G) .

Hence we obtain:

(4.3) PG (hM)) = Pt (h(s)) + (1 + t)QtG
i-i

where the Poincari series PtG(h(s)) (reap. tG(h(Mj))) represents the cohomology of the

pair ((N x E)/G,(N" x R)/G), if (N,N ) is a G-invariant index pair for a (reap.

for M). that is the equivariant chomology of (N,N'. (5 )

The homotopy type of the pair ((N x E)/G,(N" x E)/G), will be denoted by hG(I)

and called the equivariant-(homotopy) index of I. t
With this understood (4.3) becomes:

n G
(4.4) j Pt(hG(Mj)) - Pt(hG(S)) + (1 +t)Qt.

ISI-

If G acts on a space X and E is defined by (4.1) then the equivariant
cohomoloqy of X, N*G(X), is:

H*G(X) - H*(XG)

where XG - (X x 1)1G.
If X - (xYo then H*G(x0 ) - He(BG), that is H*(BG) is the equivariant cohomology

of a point.
If G acts freely on X, then the map:

p: Xr --> X/G p([(x,e)]) = [x]

is a homotopy equivalence.

Rence
H*G(X) T H*(X/G)

that is the equivariant cohomology of X is the cohomology of the quotient space X/G.
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If G is a compact Lie group and we have the gradient flow induced by a

nondegenerate G-invariant smooth function f on the G-invariant compact manifold M

(4.3) can be written in a more explicit way.

First of all associated to the bundle (4.1) there is another one:

M

+

(4.5) (M x E ./G - MG

* BG

Observe that since G acts freely on M x E, MG is a manifold.

Then it is easy to see that f can be lifted to a G-invariant function on M x 3

and hence projected to a function fE on MG .

The most important thing is that fE is still a nondegenerate function as it is

shown in the next Proposition (see [1]).

Proposition 4.1 - If f is a nondegenerate function on N, then for every smooth

principal G-bundle E, f, is nondegenerate on MG. Moreover, if N is a nondegenerate

critical manifold of f on M, then fE will have as corresponding critical manifold

the space (N x EJ/G. Finally, the Morse indices of N relative to f and (N x EJ/G

relative to f, are equal.

This Proposition suggests writing the Morse inequalities for the nondegenerate

function fE. Of course, since MG is not compact, this can be done using the same

finite dimensional-approximation method used to obtain (4.3).

Then, from (3.5) and (4.3) we have:

(4.6) 1 tXTPtG (T,6" K) - p G(M) + (I + t)Q tG

T

where PiG(M)- Pt(MG) and PtG(T) - Pt((T x E)/GJ, T being a critical manifold of f.
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In particular if T consists of a single orbit: T - G/H, where H is the isotropy

group of each point of T, we haves

(T x Z)/G - (G/H x Z)/G - Z/H.

but, since 3 is an universal G-bundle, Z is also an universal H-bundle. This

implies that B/H is homotopically equivalent to BH, the classifying space of H.

Then, in this cases

XT tG (,-K) T

(4.7) t P (Te ) t Pt (BHgO6K).

Furthermore, if H is connected Pt (BH,0OK) - Pt(BH,K)(6 ), otherwise local

coefficients may be needed.

Raving defined the equivariant Morse theory, now we are ready to illustrate, through

some examples the difference between the three ways of studying an equivariant flow,

described in section 3.

EXAMPLE 4.1 - Consider the free action of SI on S2k+ I defined in Example 1.1 and

the function:
k

f(zoz 1 ....zk) P -iAil

where A) < X1 < ... < )k are a sequence of distinct real numbers.

(6)
From the fibration:

H

E
3

BH
we have the following exact homotopy sequence:

it I (H) + w 1(E) + 1 (BH) + I(H) +

where 11 ) is the ith homotopy group.

Since N is contractible and H is connected aI (BH) is trivial, that is BH is
simply connected.

Then from note (4) the bundle V'(BH) is orientable.
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The function f is invariant under the action of S and so it defines a function,

which we will continue to denote by f, on the quotient space CPk.

Using the principle of Lagrange multiplier, for example, we can see that the critical

points of f correspond to the complex coordinate axes. The eigenvalues of the Hessian

of f along the ith axis are the numbers:

XO 0 1i' ' l -1 - i'Ai+1 - i' '' k - i

so that exactly i are negative.

Since over the reals their multiplicity is 2 the index of th,. ith critical point

is 21.

Hence we have:

Mt(f) 1 + t
2 +...+t

2k

and since there are no consecutive powers the Lacunary Morse principles (2.4) applies,

giving:

P t(CP 
k ) = 1 + t

2 +...+t
2k

that is the cohomology of the complex projective space, with any coefficients field.

Thus, studying the gradient flow on the quotient space we have obtained a perfect

function.

If we had studied the flow on S2k+l then, considering that each critical point

gives rise to an S1 critical orbit, we would have obtained:

(I + t)(1 + t
2 

+ ... + t
2k ) - 1 + t2k +l + (1 + t)(t + t3 

+ ... + t
2k -

1
)

where 1 + t2k+1 - Pt (s2k+1). This means that f is not perfect on S2k+1 .

Before considering the next example we want to remark that, actually, if S is an

isolated invariant set in a local flow, two (homotopy) indexes are defined, according to

the two directions of the time.

The first one, in the forward direction is the one already defined. The second, in

backward time, can be defined "reversing" the flow with respect to the time. This means

-22-
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that we consider an index-pair (N,N ) where N+, the "entrance" set, is defined by the

properties dual with respect to those which define N-.

In the gradient-flow case this is realized by considering -f instead of f.

Consequently, considering a Morse decomposition of S, we have two different kinds of

Morse inequalities, according to the two different indexes of the Morse sets.

This, in general, gives more information. For example, suppose the isolated

invariant set S is the total space. Then the indexes in the two different directions

are the same. Now if the Poincar& polynomial Pt(h(S)) is not symmetric (7 ), different

information comes from the two sets of Morse relations.

Of course, if N is a compact manifold (without boundary) then, from

the Poincarf duality Theorem (8 ) , its Poincari polynomial is symmetric, but, since the

Morse theory applies also to manifoldc with boundary (or general compact metric spaces)

the consideration of the index in both directions can be really useful.

This happens, in particular, when we have a quotient space M/G, where M is a

manifold and G does not act freely on M, as we will see in the next examples.

EXAMPLE 4.2 - Let us consider the action of S on S2  defined in Example 1.3 and

the function

f(x,y,z) - z on S2 .

The only two critical points of f are the two fixed points P1  and P2  (rasp.

min. and max. of f).

Let us examine the three different approaches:

a) First of all we consider the quotient space $2/S1 which is homeomorphic to the

(7)
A polynomials ao + at + ... + antn is symmetric if ai # 0 -> an_i # 0.

(8)
The Poincare duality Theorem essentially claims that if M is an n-dimensional compact

manifold and K is a field then Hi(M,K) is isomorphic to Hn-i(M,K).
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interval [-1,1] on the z-axis. This is a contractible set and hence has a trivial

cohomology:

Pt(S
2 /S

1 ) = 1

So it seems that from this cohomology we can just guess the presence of one critical

point, that is the minimum of f.

But if we reverse the flow with respect to the time direction, that is, if we

consider -f instead of f we discover another critical point. In fact, since

Pt(S 2/SI ) does not change also -f has to have a minimum that cannot be the same as the

one of f.

On the other hand we know that there are two critical points and that one is an

attractor and one is a repeller for the gradient flow on S2/$I:

4 P

The (homotopy)-indexes are:

h(P1)- and h(P2 )=

that is h(P I) corresponds to the homotopy type of the pointed 0-sphere and h(P2 )

corresponds to the homotopy type of the pointed one-point space. (see [6])

Hence, considering the Morse decomposition (P2 ,P1) we have:

Pt(h(P 2 )) + Pt(h(Pl)) - I + 0 = Pt(S
2
/S

1 ) 
=1.

Consequently (P2 ,P1 ) is a perfect Morse decomposition of S2 /SI .

h) Here we consider the function directly on S2 and we look at the critical orbits.

These consist of P1  and P2 1 since these two points are fixed under the action of S1.

The Morse indexes, as number of negative eigenvalues, of P1  and P2 are 0 and

2, respectively. The cohomology of S2 is: Pt(S 2 ) - 1 + t2. Then we have:

Mt(f) I + t
2 

= Pt(S 2) = I + t 2

that is f is still a perfect function.
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c) Finally we use the equivariant approach. Looking at the fibration:

S 2

(4.8) (S 2 x E)/SI

+

8S
1

Z being the total space of an universal bundle of S1, we have:

s1

(4.9) 
Pt (S2) Pt(S ) "*t

( Ss )  I + t
2 •

tt

We have obtained the product formula (4.9) from the spectral sequence associated to

(4.8), observing that the classifying space of S1 is the infinite-dimensional complex

projective space whose cohomology is 1 + t2 
+ ... + t

2 n + ....

Since every critical manifold of f consists of a single orbit (namely P1  or

P2) and the isotropy group is S1, we can apply (4.7), with 1H -BS1.

Then we obtain

M t(f) . 1 + -L2  . 1(S2) . -+ t
2

t - 2 1 -t2 t1 - t2

Rence f is equivariantly perfect.

Let us observe that in this case, as in the previous one, reversing the flow nothing

changes.

EXAMPLE 4.3 - We consider the same action as in the previous example and the

function:

f(x,y,z) = z2 on S2 .

This function has a minimum corresponding to the circle orbit at z - 0 and two

maxima corresponding to the points with z - t 1.

We have:

a) In the quotient space S2/S1  the point P0 with z - 0 is an attractor,

Pt(h(Po)) = 1, P1 and P2 are both repellers, Pt(h(Pj)) - 0, j = 1,2. L
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Hence, considering the Morse decomposition (P1,P2 ,p0 ) we obtain:

2~ 2 12 Pt(h(P)) 1 = P t (S /S)

that is the Morse decomposition is perfect.

If we reverse the flow, then P0  becomes a repeller and PIP 2 , both attractors.

The associated Morse decomposition is (P0 ,P1 ,P2 ) and we have: Pt(h(Po)) - t,

Pt(h(Pj)) = 1, j - 1,2.

Thus the Morse inequalities are:

2 2 1
I P t(h(P )) - t + 2 = P t(S /S) I + t

J=0

Therefore (P ,pIP2) is not a perfect Morse decomposition.

b) Considering f on S2 we have a critical orbit homeomorphic to S1  corresponding to

the minimum whose contribution in the Morse inequalities, according to (3.4) is:

tt( S) = 1 + t.

The other two critical orbits are the points P1 and P2 whose Morse index is 2

(nondegenerate maxima).

So we have:

Mt(f) - (I + t) + 2t
2 

= Pt(S
2
) + (1 + t)Qt = I +t2 + (I + tt

This means that, using this approach, f is not perfect and Qt = t.
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Reversing the flow we have:

Mt(f) - 2 + t(1 + t) - Pt(s 2 ) + t

that is f is still not perfect and Qt - 1.

c) Using the equivariant theory and considering that the isotropy group of each point of

the circle orbit is II}, (1 in the unity element in the group SI), we get:

12 2 1S+ 2 t I + t2  ptS (S 2
t -t 2 t2 t

hence f is perfect.

If we reverse the flow, then we have:

gt  1I f) 2 t I +- + (I + t)8
t 2 -t

2

Consequently f is not perfect and Ot -1.

EXAMPLE 4.4- Let S2 n  be the unit sphere in R2 n+ I 
' C- x R.

A point in S2n will be denoted by:

z - (zi, . . . znex) zi e c, x e R

We consider the action of SI on S2n defined by:

(4.10) ;z - (CZ 1 ,...,zn,X) C e s1

This action leaves the x-axis fixed and induces on the "equator" -

- {z - (Z1,..,zn ,0)0 the Hopf action of Example 1.1.

Then we consider the function:

f(z) - x on S2n

The two critical points of f are:

z3z - (0 ,...,0,-1) , z - (0,...,Q, 1)

Our aim is to use the Morse lacunary principle to find the cohomology of the quotient

space S2n/ 9 1.

To do this we need to compute the homotopy-indexes of z and z
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Because z is an attractor (actually it is the minimum) it is easy to see that

h(s) - i and hence Pt (h(z)) - ..

To compute the index of z we can consider the index pair (B/SI,B-/S I ) defined in

the following way: B is the compact neighborhood of z given by

B - (z1,...,zn,x) e S2n, 0 < E 4 x 4 1) and B- is its boundary.

IWe can compute the cohomology of (B/SI,B-/S I) from the following exact sequence:

(4.11) 0 - HO(B/S 1 B'/S 1 ) H (B/S 1 ) + H(B- /S) -0 HI(B/S ,B /S') + .

+ H (B-/SI) -+ H (B/SIB /SI) + Hi(B/SI) - "..

where 6i is the coboundary operator.

The cohomology of D/S1 is: Pt(B/S) 1 since B/S1  is contractible. The

cohomology of B-/S1 is: Pt(B-/SI) _ I + t 2 
+ ... + t 2 n - 2 

because BYS/
1  is

homeomorphic to the complex projective space.

Then, from (4.11):

Pt(h(z)) = Pt(B/SI,B-/S) I 1 + t3 + t
5 

+ ... + t

Putting this together with Pt(h(z)) we have that the left hand side of the Morse

inequalities on s2n/s1 are:

1 + t
3 

+ t 5 
+ ... + t 2 n - I .

Hence, since no consecutive powers occur, f is a perfect function on the quotient

space and the homology of S2n/s1 is:

Pt(S2n/s1 ) - I + t3 + t5 + ... + t2n-1.

In the last example we want to show how, sometimes, the presence of critical points

can be deduced just from the properties of the group action.

EXAMPLE 4.5 - Let S2n-1 be the unit sphere in Cn. We define an action of SI

on s2n-1 by:

2= n(z1,...,Z n ) " ( ,z2, n e S1  2n-1
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It is easy to see that there are no fixed points. On the other hand the action is

not free.

In fact the point a - (O,...,ziO,...,O) (i < ± 4 n) has isotropy group Zi.

For 1 4 p 4 n, we define the following setst

x1,- zes 2n -' such that G s

where G. is the isotropy group of z.

Now, suppose that an 91-equivariant flow is defined on 8 2n-1. Then each X is a

compact Invariant set for the flow.

Zn fact, if z e XP and t e 2 we have:

*(z • t) = (;z) * t a z • t, for c e 2.

Then, since

Xp - ( Z ... ,en) g s2n-1 such that zi a 0, n ; i * kp, k e N

Xp is a closed subset of S2n-1 and hence it is compact.

Therefore if our flow is gradient-like (8 ) each set has to contain at least one

orbit of "rest" points 8 )", that is points z such that z R 3 -

In particular if the flow is a gradient-flow given by a smooth (but not necessarily

nondegenerate) function f defined on On-% each contains an orbit of critical

points of f.

This implies that any function f on 82n-1, which is S1-invariant, with respect

to this action has at least n - 2 critical orbits.

REMARK 4.1 - If, instead of considering the S1 action of the previous example, we

(B),

A flow is gradient-like if there in a continuous real valued function which is
strictly decreasing on the nonconstant orbits of the flow. Such a function is called a
Liapunov function.

(9)"

Actually there are two distinct orbits (corresponding to the extrema of the Liapunov
function) as soon as Xp is not just one orbit, that is, Xp is a sphere of dimension
greater than 1.
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had considered the action of Example 1.2 of Section 1, then the same argument would have

been true.

But, because of the presence of fixed points, the intersection of the sets Xp is

just the set of the fixed points which also contains two critical points.

Then in this case, we could not have deduced, from the previous argument, the

presence of more than two critical points.

An application of Morse theory to the study of a function on a finite dimensional

sphere in presence of a finite symmetry group is the following theorem (see [21).

THEOREM 4.1 - Let f be a G-invariant smooth function on the sphere Sn C Wn 1

where G is a finite group.

If G acts on Sn without fixed points then f has at least n + I orbits of

critical points.

This theorem has been applied in [2] to obtain a multiplicity result in a

bifurcation problem with symmetry.

Another application of the equivariant Morse theory to the N-body problem can be

found in [141.
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5. Cohomology of groups.

Let R be a ring with identity 1, and C a (left) R-module. A resolution over C

is an exact sequence of R-modules:

a~8 n £-X -*X n- -- - -- + X1 -+ X 0 _S+ C -- + o(5.1) .... x-+X 1 Xn-2 ___.... _

The resolution is called projective if every Xn is projective, (9 ) free, if any

Xn is free.

A resolution over C will be denoted by (X f C).

A free R-module C admits always the free resolution:

0 -+ C U C -+ 0.

Any R-module C is a quotient, C - F0/% of some free R-module r0. The

submodule R0  is again a quotient R0 - F1/RI  of a free module Fi .

Continuing this process we have the free-resolution over C:

+1 + FO + C + .

For example if C - Z2 is considered as Z-module, Z2 - then the following

resolution is free:

0 + 2Z + Z + 2 + 0.
2

Let A be a fixed R-module. We apply the controvariant functor ROmR(-,A) to any

resolution over C.

Since this functor does not preserve exactness, the resulting sequence may not be

exact.

(5.2) 0 - RomR(CA) -- * HomR(X0,A) -- 4 HOmR(XlA) --

(9)
An R-module C is projective if given an epimorphism 8 from the R-module B to C

and an homomorphism y from the R-module A to C then another homomorphism Y can be -

found such that the following diagram is commutative:

A

Every free R-module is projective.
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This implies that the cohomology Hn(X,A) - Hn(HomR(X,A)) is not trivial, in

general.

We want to prove that Hn(X,A) depends only on C and A and not on the particular

projective resolution choosen.

We need a Lmna;

LEMMA 5.1 - Suppose that Y. C --+ C is an homomorphism of R-modules, (X -- C)
I e I

and (X -- C ) are two projective resolutions over C and h: X --+ X is a chain

transformation ( 10 )with the property

c'h0 = yc.

If there exists t: C + X0  such that e't - y, then there are homomorphisms an:
I0

Xn + Xn+1, n - 0,1,..., such that:

(5.3) 13 S0 + te - ho, n+2 Sn+1 + Sn8n+1 a hn+1 vn.

Proof. We have the following commutative diagram:

n+1 3n n-
..+XnlX X Xn--+ l Xn --------- X1 x_. XO.+ C -- 0

n+1 n n-I n-2 1 0

(5.4) hn+1  1hn ]hn-1 ]hn-2  jh I  ho /

/
*'+ ,' q, S ",

X;,- l __ -n_+ x -n-1+ --- ---- X 1" C'

n+ n n-1 Xn-2 --

(10)
A chain transformation f from X = tXo,x I ..... n ...I to X -X 0 ... Xn  I is a

family of module-homomorphisms: fn: Xn n such that:

nf n fn-1an Vn.

where a' and a are module homomorphisms:
n n

I I
I t a a2C x n-I n n-

- --- x' --- 4 --- ....~ -. X --eX --n-X ---....

n n-1 n-2 " n Xn-1 - n-2

such that n-1 an 0 and an- a 0
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Bince C'h0 - yetC - yC - yE - 0 we have

(5.5) C'(h 0 - tE) - 0.

This implies that Im(h 0 - te) C Kern e' - ImB1 .  Hence, since X0 is projective,

from the following diagram

L0

we have an homomorphism a0: X0  X I such that: Bleoa h -t t.

Having constructed 80 we proceed by induction. We want to find
I S

n n Xn+i .t. n+1n ah nia n .

n n n n

-h Be-havem B B -

since, by the induction hypothesis Bnan.1 = hni - an_2 an- and a3 - 0.

U S

Thus Im(hn - n i~n) Kern n - Im a n+I* Hence from the diagram

,m 4,x

we construct sn using the projectivity of X.

THEOREM 5.1 - Suppose that XX ,C,C ,,- ,y are defined as in the previous Lemma. IL
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Then there exists a chain transformation f: X X with £ f ye and any two such

chain transformations are chain homotopic.
(11 )

Proof. Since X0  is projective and £ is an epimorphism we can find

f0: Xo . X0 with I fC = YE.

Using the same induction argument of the previous Lemma we can construct

fn: X + X such that a f - f-
n n n n n n-ian

Now suppose that f and g are two chain transformations with the property:

C f0 = YE and £ go = ye

!0

Then: C (f - g) - 0£ = 0.

Hence, applying the previous Lemma with f - g - h, y 0, t = 0 we obtain the

existence of homomorphisms Sn: X n  Xn+ such that:

n+1ln n-1in fn gn

that is f and g are chain homotopic.

Theorem 5.1, as well as Lemma 5.1, can be proved under a little more general

hypotheses, see [11].

THEOREM 5.2 - If (X -i C) and (X -i C) are two projective resolutions of C,

and A is any R-module, then:

Hn(X,A) Z Hn(X',A)

Proof. Consider the identity 1C: C + C.

(11) 1
Two chain transformations f,g: X * X are chain homotopic if there exists a family

of module homomorphisms: s : X + X such that:n n n+1

n+I n + an-I'n fn - gn"
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From Theorem 5.1 we have two chain transformations: fI X X and gi X + X

such thats

e I

Cfo 6 and Ego . "
I I S

Hence qf: X * X and fg: X + X have the properties: c(gf) e c and e (fg) - •

Consequently, by the previous theorem, they are chain homotopic to the identities

1is X + X and IVX: X' + X', respectively.

Considering the induced homomorphisms:

f*t. Hn(X',A) + Hn(X,A) and g*: H n(X,A) . Hn(X',A).

we have g'f* I n and f*g* - I because gf and fg are chainHn( ,)H (X,A)

homotopic to the identities (see 111 or [16]).

Hence f* (or g*) is an isomorphism. O

REMAK 5.1 - Since:

XI+ X0 + C + 0

is right exact, then:

0 + Hom (CA) _* Wom(X 0 ,A) + Hom(X 1 1 A)

is left exact. This proves that H 0(X,A) Z Hom(C,A).

A resolution under the R-module A is an exact sequence of R-modules:

(5.6) 0 - A e-- Y0  ,.. y1 ,61 * n(56)0 +A + 2 I-+ y2... -+ yn _4 yn - ....

The resolution is called injective if every yn is injective.
(12 )

Since every R-module A is a submodule of an injective R-module, there exists at

least one injective resolution of A.

(12)
An R-module 3 is injective if given a monomorphism i: A 4 B and an homomorphism

a: A + 3 there exists an homomorphism 8: B + J such that the following diagram in
commutative:

A-35-
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Fixing an R-module C we can apply the covariant functor Homp(C,-) to (5.6)

obtaining:

(5.7) 0 + HomR (C,A)E: HoR (C,Y) HomR(C,Y ) 

which is, in general, not exact.

The measure of the nonexactness of (5.7) gives the cohomology:

Hn(C,y) = Hn(HomR(Cy)).

As for the projective resolutions it is possible to prove that Hn(C,Y) depends only

on C and A and not on the particular injective resolution under A.

Moreover (see (11]):

THEORE4 5.3 - Suppose that A and C are two R-modules. For any projective

resolution (X i C) and for any injective resolution (A 2 Y) we have:

(5.8) H n(X,A) Z H n(C,Y) n - 0,1 ....

The group Hn(X,A)(or Hn(C,Y)) is also called the n-th extension group of A by

C and denoted by Extn(C,A).

From now on let G be a group, written multiplicatively. The free abelian group

Z[G] generated by the elements g e G, is the set of the finite sums:

9 m(g)g g e G, m(g)ez

Thus an element in Z[G] is a function m: G + Z which is zero except for a finite

number of g e G.

It is possible to define also a product:

~ m~g~g m' m()V) m(g)m' (y)gy g,y e G
9g~g Y gy

so that Z[G] becomes a ring called the (integral) group ring of G.

A ring homomorphism C: Z[G] + Z, called an augmentation, is defined by setting:

EI (9m(g)g) - 1gm(g)

Modules over Z[G] will be called G -modules.

If G = Cm(t), the multiplicative cyclic group of order m with generator t, then
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the group ring r s[c m(t)] is the ring of all polynomials U -oait in t, with
i-a

integral coefficients ai, taken modulo the relation tn - 1.

If G is the infinite cyclic group with generator t, then Z(G) is the ring of

polynomials laiti, i e X and only finite ai * 0.

An abelian group A is given a unique structure as a (left) G-module by giving

either:

(i) a function 0: G x A + A, 8(g,a) - ga, g e G, a e A such that:{ g(aI + a2) - (ai + ga2

(gg 2 )a - g1 (g2a)

la - a

(ii) a group hcmomorphism

*: G + Aut A.

The definition of a G-module A, essentially means that there is an action of G on

A which also considers the algebraic structure of A.

In particular any abelian group A can be regarded as a trivial G-module, considering

the trivial action of G on A: ga - a, vg e G.

Now let Gn be the cartesian product of n copies of G. We denote by Pn the

free abelian group on Gn +  made into a G-module by the "action":

g(g0,1,0...0n ) - (gg0,gg1,...,ggn).

We can define maps an: Pn P , n 1,2,..., by-

n
(g0, ...,1n) -+ -I i  (g0,...,i,...gn)

i-a

where A indicates deletion.

In particular P0 - Z[G].

THEOREM 5.4. If e: P0 + Z is the augmentation then the sequence:

P P 2 P 1 P0 z -. 0

Is a free resolution of Z, where Z is a trivial G-module.
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Proof. First of all we construct the functions:

s_,: Z + P0  a-1 (1) = , z e z, 1 identity of G,

an :Pn +Pn- ' ... ) (1 go''gn

which are group-homomorphisms.

Then from the definition and some easy computations we have:

(5.9) £51 =1 z

Sn+ISn n-1 n p nn
(5.9) implies that the chain maps I and 0: P + P are chain homotopic.

Hence the induced map 1*,0*% Hn(P) + Hn(P) between the homology groups of the

chain complex P are equal, that is P has a trivial homology and consequently P is a

resolution of abelian groups over Z.

P is also a resolution of G-modules over Z because if P is exact as sequence of

abelian groups then since 3 n are module homomorphisms it is exact also as sequence of G-

modules.

Moreover P is a free resolution by the construction of P.,

We remark that Pn is isomorphic (as a G-module) to the tensor product (over ZI of W

with itself n + I times.

There is another way of constructing a free resolution of Z, which is useful in the

applications.

We can define Qn (n > 0) as the free G-module with generators gl, ...,gn], all

n-tuples of elements of G, and Q0 as the free G-module on the single generator [ 1.

For each n ) 0 we define the functions:

T: Pn + Qn and a: 9n + Pn

-1 -1 -.g11n

T(g0 .... gn) ' g0[g;Ig1'gl g2# ..' n-g

O[g1, ....#gn ) - ( 1l 1g92,glg2g3,... glg2°..g n )

They are inverse to one another, hence Pn and Qn are isomorphic.
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Thus the following commutative diagram defines univocally the maps

d ,: Qn on 1  n l 1

p n~ Qn
n - n

Pn-I -b n-I

n-i
dn(g91 .... 19n] "91192, ..... gn! +  ) (-1)1~g .... *ggi I .... n] +

+ q(-1)n9..sl • ,9. 1 ]

+S

In particular:

d
7

[g] " gC ] 1 1, d2 19109 2 ] 9 1 192 ] " [919 2] + [911.

Since T& P + Q induces an isomorphism between the homology groups H,(P) f(9),

Theorem 5.4 implies the following:

THEORM 5.5- - Q2 Q 1 1 Q0 - 0 in a free resolution of Z.

DEFtINTION 5.1 - Given any G-module A. we define the cohomoloqy groups Mn(G,A) of

G with coefficients in A as:

H'(GA) - Hn(PA) I H' (9,.)

we remember that Hn(P,A) - Rn(Kom.[G](FA)), and the analogous definition holds for

Hn(QA) that is the dependence on the group G, in the definition 5.., enters in the

structure of A and Pn or Qn* as G-modules.

Moreover, from Theorem 5.3 we have that Hn(G,A) depends only on G, and A,

since 2 is fixed, and can be computed from any projective resolution of G-modules

over 3 or any injective resolution of G-modules under A.

since Qn is a free G-module with generators [g1,...,gn], an element f: Qn + A
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in HOmz[G (Qn,A) is a G-module homomorphism which is uniquely determined by its values on

these generators.

Therefore HomZ[G](Qn,A) can be identified with the set of all those functions f

(n-cochains) on n-arguments with values in A.

The addition of two cochains is given by:

(fl + f2 )(g1,...,gn) = f1 (g1 '..°'gn) + f2(g10°*'gn) "

The coboundary homomorphisms 6n Qn + Qn+i are defined by:

6nf(gl,...,gn+I )  (-1)n+l 19f(g2, ...,gn+1) +
n

+II(-)ilflg ..... g (gi+1 ) ..... gn+ 1
) + gi)nfgl....gnj.

i= 1

Then Hn(G,A) is the n-th cohomology group of the complex Hom[G](Qn,A) with this

coboundary map.

THEOREM 5.6 - If G is a finite group of order k, every element of

Hn(G,A), n > 0, has order dividing k.

Proof. For each n-cochain f we define an (n-1)-cochain

h(g1,.o.,gn. 1 )  = f(gI ...*,gn_1,g) . .
geG

The theorem is proved if we show that, for f e Hn(G,A), kf - 0 that is

kf e Im6n - 1.

We have:

6nf(g,...,gn,g) = -6 n- lh(gl,.. .,gn) + kf(g 1 ,...,g n ) - 0,
geG

since 6 nf _ 0, that is kf - 6n- h Im6n - 1 .

COROLLARY 5.1 - Let G be a finite group and D a divisible(1 3 )abelian group with

(13)
A group G is said to be divisible if the equation mx = g has a solution x e G,

for every given g e G and m e Z.
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no elements of finite order. If D has any structure of G-module. then Hn(GD) - 0,

for n ) 0.

Proof. We take f and h as in the previous proof.

Since D is diviaible, it is possible to find an (n-1) cochain q such thate

h-kq.

Then e haves kf- 6h - 6kq - k6q.

but if k(f-6q) - 0, then f - dq because D does not have any element of finite

order.

This means that every cocycle f is a coboundary and hence IP(GD) - 0. -

L-41
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6. Equivariant cohomology in presence of finite groups.

The knowledge of the classifying space Bg of a group G is one of the main steps

in computing the equivariant cohomology of a G-invariant manifold M, using the fibration

(4.5).

In this section we give an interpretation of the cohomology of BG, when G is a

finite group, which allows us to compute H*(BG), for any finite abelian group.

Let us suppose that X is a topological space and a group G acts properly on it. In

this case we can consider a base in X, made up of proper sets U (see section 1).

Using the projection p: X + X/G, p(x) - 0(x), these sets determine, for the

topology on X/G, the open sets pU - V which will be called proper sets in X/G.

Then X is a covering space for X/G, under the projection p.

In fact, by definition of proper action, each p-V, V - pU C X/G, is the union of

disjoint sets gU, g e G and the restriction of p to each gU is an homecmorphism

between gU and p(gU).

Now we consider the singular homology of X with Z coefficients. We denote by

S(X) - iSn(X) the complex of abelian groups S n(X) generated by the singular

n-simplices T: A X , with the usual boundary homomorphisms.n

We have:

THEOREI 6.1 - If G acts properly on X, S(X) is a complex of free G-modules.

Proof. Giving the "action":

G x Sn(X) + Sn(X)i (g,T) + gT e sn(x)

we make Sn(X) a G-module.

Moreover it is easy to see that the boundary homomorphisms are G-module

homomorphisms.

(14)
A is the standard affine n-simplex in IF.n
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Finally if X0 c X is a subset containing exactly one point from each orbit, the set

of singular n-simplices T with initial vertex in X0 is a set of free generators for

Sn(X) as a G-module.

THEOREM 6.2 - If G acts properly on X, any n-simplex T in X/G is the image,

under p, of some T in X. Moreover these T's can be taken in a set of free

generators of Sn(X) as a G-module.

Proof: The n-simplex T ie a map from A. X/G. By the "lifting" property(15 ) in a

covering space, T can be lifted to a map Tt A + X such that pT -n"

Now we suppose that A is an ebelian group with the trivial structure of a G-module.

THEORI 6.3 - If G acts properly on X then:

NoHm(S(X/G),A) R BoM Z[G S(X),A)

and hence:

Hn(X/G,A) f Hn(Hom Z[Gis(x),A))

Proof. The induced map:

PC: Nom3 (S(X/G),A) * HomZ(G](S(X),A) (p'f) T - f(pT)

is an isomorphism.

In fact any cochain f e HomZ(Sn(X/G),A) is uniquely determined by assigning its

values on T, an n-simplex in Sn(X/G), while a cochain V in HOmZ[G](Sn(X),A) is

(15)
The "lifting" property asserts that if p: X + B is a covering space and f is a map

from Y + B then there exists a map f', f': Y + X such that the following diagram is
commutative:

- -I

Y

This proposition is a particular case of a general property for fibrations. (see [16])
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uniquely determined by its values on a set of generators T e Sn(X). By the previous

tu these generators are in 1-1 correspondence. Therefore the assertion follows. -

Before stating the last Theorem we recall that a space X is acyclic if it has the

homology of a point, that is: Pt(X) - 1.

THEOREM 6.4 - If G acts properly on an acyclic space X, then:

(6.1) Hn(X/GA) ; Hn(G,A) n ; 0

Proof. Since X is acyclic the sequence of G-modules:

. S2 (X) + SI(X) + S0 (X) + Z + 0

is a free resolution of Z.

Then, by the definition of cohomology of a group,
Hn (XHom)GSIX,A)) T Hn(G,A).

The previous theorem gives (6.1). 0

We will apply this result to compute the cohomology of the classifying space of a

finite abelian group.

Let us suppose that G is a finite group. We know that there is an universal

G-bundle with a contractible total space 3 on which G acts freely, and hence properly,

since G is finite. Then the cohomology of the classifying space of G, BG - E/G can be

obtained from (6.1) computing the cohomology of G with coefficients in a trivial

G-module A.

We suppose at first that G is the multiplicative cyclic group Cm(t) , of order

m, with generator t.

We have already observed that r - Z[Cm(t)] is the ring of polynomials .

u- a t , ai e z, modulo the relation tm - .i-0
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Two particular elements in r ares

N 1 t + ... + t a  
and D t -I

They have the properties:

i) D -

ii) Nu 0- u Dv for some v e r

iii) Du - 0 u--b u - Na0 .

From i), ii), iii) it follows that the aequence:
D, lW D,

-. r - r- r ~-o
is a free resolution of 2, defining D~u - Du, N.U - Nu, c(u) - .ai.

Let A be any G-module. The group Rom (r,A) is isomorphic to A by the

isomorphism at: Homr(r,A) + A, a(f) - f(i).

The corresponding sequence obtained on applying om1 (-,A) is:

0 - Hom(Z,A) U* AD+ A EA

D*a - Da - (t - 1)a a e A

U*a a Na - 1 + t + ... + ts"l)a a e A.

Then Mern D* - [a ita - a] and Kern N* - ala + ta + ... + tm'a I 01.

Hence we have the followinq Theoram

THEOREK 6.5 -.The cohomoloqy groups of Cm(t) with coefficients in A ares

R°(Cm(t),A) - (a ta - a] - Homr(3,A)

R
2
n(Cm(t),A) - (a ta - a-/N*A

H2+ I(Cm(t),A) - [a Na - O]/D*A

In particular if A is a trivial G-module from Theorem 6.5 we have:

H0(Cm(tIA) - A Z HO(BcS(t),A)

H
2
n(C,(t)A) - A/mA Z H

2
n(BC(t),A)

Hin+llCmlt),A) - [a ma 01 H C2n+l(C m(t),A)
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since (a ta a] =A, [a a = 01 [a ma-= 01, N*A facA =

and OD A - - 1)a I a e } - 0....

For example if Cm(t) - S and A is S considered as a trivial Zj-module the

Poincare' series, expressing the cohomology of Zp with coefficients in is:

Pt(zp) - I + t + t2 + ... . H*(B1-t up--u)

Now, let us suppose that G is a finite abelian group. Then G can be decomposed

into a direct sum of cyclic groups Gi of order zi:

G-Gt ... Gn

with zi dividing zi+1 and this decomposition is unique up to isomorphism.

MThen we have

(6.2) H*(G 1 ,Z) 9 ... 9 H*(Gn, )

- H*(G,) - .*(BG Z
p p

for any p dividing zn , where S is considered as a trivial G-module.

The result (6.2) can be expressed in a more general form. We refer to C9], Chapter

III, for more details.
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