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SIGNIFICANCE AND EXPLANATION

The general problem am".addr~ssed in this report is that of the interpolation of scat-
tered bivariate data (,, , z,) as thi-rarise for example in the Computer Aided Geometric I
Design of geometric objects like the shape of a ship, or the fuselage and wings of an aircraft.

, Many existing techniques proceed by triangulating the domain and then defining the in-
terpolant piecewise on each triangle. This approach has the drawback that the interpolant
cannot be readily evaluated outside of the triangulated domain. This report deals with
the problem of extending such a triangular interpolant. Existing methods are reviewed,
new methods are introduced, and the methods are compared, It appears that at present
no completely satisfactory techniques exist and that the subject requires more research.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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1. Introduction

The interpolation of multivariate scattered data is a rich and difficult problem area of
increasing importance, e.g. in the Computer Aided Geometric Design of geometric objects
like the shape of a vehicle, or in the modeling and representation of measured data. For
an introduction to this area see e.g. the survey by Barnhill, 1984, the proceedings edited
by Barnhill and Nielson, 1984, and the references quoted therein.

In this paper, we restrict ourselves to interpolation of scattered data in two indepen- *0
dent variables. Thus we assume that we are given points (vertices) Y, = (z,yi) E W2, i =

1,..., N and data at those points. The data are either part of the problem under con-
sideration, or else they have to be made up suitably. Most frequently, the user supplies
only function (positiona) values. Most interpolation schemes, however, also require values
of certain derivatives for their construction, which have to be generated from the given e

information.
A widely used approach to the interpolation problem (Triangular Interpolation) con-

sists of first triangulating the convex hull of the given points, D, and then defining the
interpolant piecewise on each triangle, taking care to maintain desired global properties
such as differentiability of a required order. This technique has several advantages. The -
interpolants are usually of a simple structure (e.g. polynomial), and they can be defined
and evaluated locally (using data only on the triangle containing the point of evaluation).
Much of the analysis and construction of the scheme can therefore be confined to a sin-
gle triangle. Many triangular interpolation schemes have been constructed, see the above
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references for details. For information on the nontrivial problem of constructing a trian-
gulation see the papers by Lawson, 1977, Barnhill and Little, 1984, and Cline and Renka,
1984.

A drawback of triangular interpolation, however, is that the interpolant cannot be
readily evaluated in the exterior, E. of D. The notable exception to this general statement
is provided by Akima's technique (Akima. 1978), which is very efficent and widely available,
but receives only a "C- grade in visual quality (Franke. 1978). Akima proceeds by dividing
the exterior of D into semi-infinite rectangular and triangular elements and then defining a
special structure of the interpolant piecewise on those elements. The approach is described
in section 2.2 as Discrete Extension.

In the same survey, Franke extended Nielson's minimum norm network interpolant
(Nielson, 1983) beyond D, but in the process had to reduce the smoothness of the inter-
polant (from first order differentiability to mere continuity). Franke uses the same semi-
infinite elements as Akima, and extrapolates by Taylor polynomials, either by a univariate
one perpendicularly outward from edges of D, or by a bivariate one about a boundary
vertex of D. This technique is described below as Transfinite Extension. Franke did
not intend his extension to be an answer to the triangular extrapolation problem, rather
he had to modify an existing technique to facilitate comparison with others. This required
only very little extrapolation. ,

In this paper, we describe two more techniques of triangular extrapolation. One
of them, Blending by Visible Edges, can be implemented without having to utilize
the particular structure of the interpolant. All that is required is the ability to extend
(smoothly) the representation of the interpolant on any particular triangle to all of R'.
This is possible for all bivariate triangular interpolants known to this author.

The second new technique, Triangular Extension. consists of adding vertices to
the domain structure, redefining the triangulation, generating all needed data at the new
vertices, and then redefining the interpolant on the new triangulation.

Before discussing the techniques in detail we mention some possible issues in extending
a triangular interpolant. The following questions may be relevant. (4) is the interpolant.)

-I- Is the degree of differentiability of -t on E at least the same as that on D?
-2- Is the extended domain of 41 finite or does it cover all of R2?
-3- Is t of the same structure (e.g. piecewise polynomial of a certain degree) on E as

on D?
-4- Is the class of functions that are reproduced exactly by the scheme maintained in

extending from D to E?
-5- Is the extended version of 4o identical to the original one on D?
-6- Is the extension technique general or does it depend on the special structure of 4)

on D? For example, a technique is not general if it requires derivatives of -t since these
may be hard to supply if t is complicated or if it is defined by a black box routine.

-7- What is the quality of the technique (e.g. with respect to accuracy or visual
pleasantness)?

The following table lists the answers to the first six of the above questions for what in
this author's opinion constitutes an "ideal technique" and the three techniques described in
detail below. (Not even remotely precise criteria exist for answering the seventh question.)

-2-
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Question Ideal Technique Transf. Ext. Discr. Ext. Blending by Triang. Ext.
(Franke) (Akima) vis. Edges

-1- yes no yes yes yes S
-2- all of R 2  all of R2  all of R 2  all of 9R2  finite
-3- yes no no no yes
-4- yes no no yes yes
-5- yes yes yes yes depends
-6- general special special general special 0

Table I: Properties of Methods

It is apparent that none of our techniques is "ideal". The choice of an extrapolation
technique depends on the problem under investigation and the underlying interpolant on
D. Indeed, if evaluation outside of D is necessary, then an alternative method that does not
require a triangulation (e.g. one of those described in Franke, 1982) may be preferable in
spite of the advantages and attractive features of triangular interpolation. Note, however,
that the mere ability to evaluate an interpolant outside of D does not by itself make that
method a worthy extrapolation technique.

2. Eztrapolation Techniques

2.0 Geometry and Notation

Before entering the discussion of the individual extrapolation techniques we need to
introduce some additional notation. We assume that D is the convex hull of the given
vertices VI, i = 1,... , N, and that it has been triangulated. Of particular interest are
boundary vertices of D and triangles having at least one edge on the boundary of D.
Without restriction of generality we assume that the vertices have been labeled such that
V1i, i = 1,..., M are the boundary vertices in counterclockwise order. The boundary
segment with endpoints Vi and Vi+ 1 (where VM4.I :- V1) is denoted by e,. The unique
triangle of which ei is an edge is Ai. (If a triangle has two boundary edges, ei and e 1+i,
thenni = Z,+I.)

We denote the extended interpolant by 40. On a triangle A, it is represented by
0j. We assume that 0i can be evaluated anywhere in R2. This stipulation is necessarily
somewhat vague because of the abundance and variety of available interpolation schemes.
For any given method, it will usually be obvious how to proceed. For example, if a scheme
is polynomial on each triangle, then 40i will be the same polynomial in all of R2.

The geometric concepts introduced in this paragraph are illustrated in figure 1. The
exterior of D is E. We divide E into semi-infinite regions by drawing two lines from each
boundary vertex that are perpendicular to the adjoining two boundary edges. The semi-
infinite rectangular element corresponding to ei is R,. and the wedge corresponding to Vi
is Wi. A wedge Wi is empty if the two boundary segments joining at V, are parallel. The
triangles in D and the set of R, and Wi tesselate the plane.

-3-
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For a given point P E R, we denote by B the perpendicular projection of P onto ei.
We describe the location of P in terms of new coordinates s and t as

P =B t(P-B)

11P - B1.-

where B is the convex combination

B sV,+ + (I - s)V, V, + s(V, 1 - V)

and s and t are given explicitly by

(P - v,) o e,S ( Ve and t = liP- B1 (1)
* lheiII2

In any implementation of a scheme based on the above tesselation one must be able
to compute in which element a given point resides. This can be accomplished as follows:

Location Algorithm

Note: All index arithmetic is modulo(M).

1. Given a point P E V. Determine a specific triangle in D, call it the current triangle.
2. Compute the barycentric coordinates bl, b2 , and b3 of P with respect to the current

triangle (barycentric coordinates are discussed in several of the articles in Barnhill
and Nielson, 1984).

3. IF all three barycentric coordinates are non-negative, THEN P resides in the cur-
rent triangle, so STOP, ELSE consider that edge e of the current triangle that
corresponds to the most negative barycentric coordinate. IF e = ei is a boundary
edge, THEN P lies outside of D, GO TO step 4. IF e is an interior edge, THEN
replace the current triangle by the triangle across e and GO TO step 2.

4. Let Sold = 1/2. GO TO step 5.
5. Using (1) compute s. IF s E 0, 11 THEN P E Ri hence STOP. IF s < 0 and

Sold > I THEN P E W4-I hence STOP. IF s> 1 and Sold <0 THEN P E W,+1
hence STOP. IF none of the above, THEN GO TO step 6.

6. Let Sold = s. IF s < 0 THEN i:= i- I ELSE i:= i + 1. GO TO step 5.

2.1 Transfinite Extension

The general idea of Franke's extension is as follows. In each wedge Wi define 0 by
bivariate Taylor interpolation of order m, say, to the derivatives of 0 (as they are defined on
D) at the vertex Vi. In each rectangle Ri define 4' by Taylor extrapolation to derivatives of
4 along lines perpendicular to the boundary edge. Note that it must be possible to evaluate
derivatives of 4 at any point on the boundary (hence the name transfinite extension). The
degree of the transfinite extrapolation must equal m, for otherwise the extended interpolant
would be discontinuous along rays joining a wedge and a rectangle. Also, the derivative
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data must be well defined, i.e. 0 must be at least m times differentiable at the boundary
vertices. (We assume that it is arbitrarily often differentiable across a boundary edge, so
that all needed derivatives can be supplied.)

To be explicit, we list the appropriate formulas. Let P = (x,y) E R2 be a general
point. If P e W1 we define

O(P) :=(Vi)(x - X)'Y - yi) (2)

If P E Ri we express the location of P in terms of the new coordinates t and a as
described in (1) and define m t'89

O(P) = !-a (b)B (3)

where partial differentiation denotes the standard normalized directional derivative.

The interpolant extended in this fashion will be m times differentiable everywhere on
the boundary of D. However, the smoothness of 9 may be reduced across the rays sepa-
rating semi-infinite elements. Assume that P lies on a ray emanating from the boundary
vertex V, and that a k-th order partial derivative DO is to be evaluated at P. Differenti-
ating in (2) and (3) yields derivatives of 9 through (m + k) - th order at B = V,. Thus, •
in order for DO to be continuous, 9 must be at least (m + k) times differentiable at Vi.

Consider for example Akima's interpolant, which is twice differentiable at the vertices.
There one could pick m = 1, i.e. interpolate linearly in triangular wedges, and linearly
along rays emanating perpendicularly from the boundary segements. The resulting ex-
tended interpolant would then be once differentiable everywhere in R2. This property,
however, is crucially dependent upon the fact that Akima's interpolant, while only once
differentiable on edges separating triangles, is actually twice differentiable at the vertices
of the triangulation. Akima does extend his interpolant differentiably to all of W2 , but he
proceeds in a different manner which is described in the next subsection.

f.2 Discrete Extension

The basic idea of this technique is to interpolate to discrete data at the boundary
vertices and to construct a special extension on each of the two types of semi-infinite
elements. The vertex data are read off the interpolant as it is defined on D. We illustrate •.
the technique by considering Akima's interpolant.

In a triangular wedge W, Akima simply uses bivariate quadratic Taylor interpolation as
defined in (2). In a rectangular strip R,, however, he interpolates by the unique polynomial
in spanfl, a. s 2 , s3, s4, s 5 , t, at, 8 2t, s3 t, t 2 , and 3s 2 t2 - 2s 3 t 2} that interpolates to the
twelve data given at V, and V, ,. &

Akima's extended interpolant is continous across e, because it can be represented
there as a univariate quintic that is determined uniquely by the six tangential data at
V, and V,... Similarly, it is continuous across the rays separating semi-infinite regions
because there it can be represented uniquely as a univariate quadratic function that is
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determined by the vertex data. Differentiability follows because a perpendicular cross-
boundary derivative is a unique univariate cubic across boundary edges, and a univariate
linear function across rays.

Note that the construction of Akima's interpolant depends upon the special structure
of 4 on D. There is no obvious way of generalizing this approach.

2.3 Blending by Visible Edges

Here we proceed as follows: For a given point P E E we consider all visible edges ej,
i.e. all edges for which the determinant of the matrix

(V, P V,+,l

is positive. The weight attached to a triangle Ai is larger the larger the angle ai which is P
formed by V,, P and Vi+ 1 (see figure 1). The weights are chosen to force a certain degree
of global smoothness and to maintain the degree of precision of the original interpolant.

We define

4 (P) T >Z' i'((P)) - i(P) (4)
i

where the summation is taken over all visible edges and the blending functions *(a,)
satisfy

E ajp = 1. (5)

Obviously, if §j(P) = F(P) for some given function F and all i, then 4(P) = F(P)
so that the precision of the interpolant on D is preserved.

We next address the question of the smoothness of 4 as defined in (4). Let us assume
that the individual terms in (4) are rn times differentiable. Then, applying any m-th order
differentiation operator to 4 yields a sum of products of derivatives through order m of
*, ti. and ai, all of which are continuous by assumption. However, if some of the angles
ai(P) approach zero, then the corresponding term will be added or omited from equation
(4). In order to maintain continuity of the derivative, all corresponding terms must be
zero when this happens. Each term contains some derivative of I as a factor. Thus we
require that

()= 0 Vi = 0,1,...,m. (6)
Note that by picking rn larger than the degree of smoothness of i on D it is possible to
achieve a degree of smoothness in the exterior E that exceeds that in D!

The task now remains of constructing blending functions that satisfy the requirements . P
(5) and (6). The simplest approach is a s follows. We force (6) by defining functions

X() a m+l
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and then define the blending functions lPi by the standard trick of dividing by the sum of
the appropriate terms, i.e.

*i(P) (7)

where the sum in the denominator is taken over all visible edges.

2.4 Triangular Extension

The general philosophy is as follows: Virtually all triangular interpolants require for S .
their construction certain auxiliary data that are not supplied by the user. Hence there
must be a method of generating such information from user supplied data. So extend
the triangulated domain by adding points in the domain and generate the data needed
at the additional points (including the kind usually supplied by the user) by using the
data generation method that is already in existence. The triangulation of the extended
domain can be accomplished by adding triangles to the existing triangulation of D, or by
triangulating the convex hull of the new extended point set.

Of course, not every method for the generation of auxiliary data can actually be
generalized to work on the expanded point set. Most frequently, the user supplies C0

data and the interpolation scheme must then make up some kind of derivative data. This P
process amounts to numerical differentiation, and is clearly not suitable or generalizable to
the generation of additional positional data. However, here we describe a specific approach
that generalizes easily and naturally.

In Alfeld, 1984, as well as in earlier references (Schmidt, 1982; Nielson, 1983) the
interpolation problem was solved by picking that function in a certain space of functions P
that minimized a particular functional subject to interpolation. The fundamental idea is
to consider needed data (such as derivative values at given vertices or positional values at
additional vertices) to be parameters that enter the minimization.

The details of the algorithm used for the numerical examples in section 3. will be
reported elsewhere. However, we sketch its main ingredients. The algorithm is applicable
for any triangulated domain where, at any vertex V, some, none, or all of the following
data may be given: {F(V), F,(V), Fy(V)}. Since it is possible to have no data at a
given vertex, it is simple to extend the given domain and define the interpolant on the
retriangulated extended domain. The new domain is of the same structure as the old one,
and the distinction between D and E no longer applies. .0

The interpolant is cubic on each triangle (as in Schmidt, 1982), and is globally once
differentiable. The number of data supplied must not exceed the total number of available
parameters. Among all interpolants q, the one is chosen that minimizes the thin plate
functional

1(q) -Z- + 2q + qyvdxdy

The minimizing solution is found by applying the finite element technique of setting
up element -stiffness matrices and assembling them into a global stiffness system. The
interpolant has the advantage of greatest possible simplicity (i.e. piecewise cubic) but

-



L
has the drawback that the differentiability conditions cannot be imposed locally (as they
could in Alfeld, 1984) but rather have to be incorporated as global constraints. It is well
known that the C' conditions may be redundant (Schumaker, 1984, Morgan and Scott,
1977). The only known source of redundancy are singular vertices, i.e. points at which
exactly four triangles meet at the intersection of the two diagonals of the quadrilateral
defined by the four triangles. If a singular vertex (or nearly singular vertex) occurs then
the singularity can be destroyed by introducing an additional vertex (without any data
attached to it) nearby and considering the data needed there as three more parameters
that enter the minimization problem.

The resulting linear system is solved directly, rather than iteratively. Powerful meth-
ods for this task exist (George and Liu, 1981).

S. Numerical Examples

In this section, we illustrate the extrapolation techniques described in the preceding
section by interpolating to Franke's well-known test function

f (T, y) = -e- 9-)+ -' /
4

+3e- -(9X+ J) 2 /49-(9y+ 1)/ o
4

+ I e - ((gz -7)2 +(gy-3)-2)/4
2

I (ft 4 ) 2 _- ( 9y 7 ) 2 . .

5

The domain data and the triangulation of D are given in table 1. At each vertex,
the function value, and no derivative values, are given. The domain D is the unit square
covered by 36 (essentially random) points and 54 triangles. The extended domain was
taken to be a square with twice the area of D, with D in its center.

There are five groups of plots (which were generated by (PLOT79), see Beebe, 1979).

1. Primitive Function
2. IMSL Interpolant This interpolant was generated by the IMSL routine IQH-

SCV, which is an implementation of Akima's technique.
3. Blending by Visible Edges This is the result of the technique described in

section 2.3.
4. 36 + 4 point extension Here the domain D was extended by adding the four

vertices of the extended domain E, and retriangulating. Then the technique described
in section 2.4 was applied. In this example it so happened that the triangulation of
the original domain D was preserved, although this cannot be expected to be true in
general.

5. 36 + 12 point extension Similar to 4.. except that 12 points equally spaced on
the boundary of E were added. As in 4., the triangulation of D was preserved.

For each of the above groups there are two plots, namely a contour plot with the tri-
angulation superimposed, and a hidden line view of the surface from a Northeast direction.

-8- S



* The plotting parameters (viewpoint, vertical scaling, interval between contour lines, and
range covered by the contour lines) are identical in all five groups.

It is apparent that none of the extrapolated interpolants matches the simplicity and
beauty of the primitive function. The individual surfaces differ substantially, both quan-
titatively and qualitatively. Blending by Visible Edges seems to give rise to the worst
undulations, introducing several spurious saddle points. This is unfortunate because it
offsets the other advantages of this method, namely generality, versatility, and the ability
to generate any degree of smoothness in E (by choosing the exponent in (7) suitably large).
It is an open question whether better results can be obtained by a different choice of the
blending functions. Akima's method performs better, but it suffers from poor quality even
in D due to deficiencies in the derivative generation. Triangular Extension gives rise to
surfaces with few undulations and seems to be the best of all methods. The quality of the
surface seems to improve with the number of points added to the original set.

-9-



triangulated domain

Vi- I

Figure 1: Geometry of Triangular
Extrapolation



Points Triangulation

1 0.00 0.00 1 11 15 14
2 0.50 0.00 2 14 a 11
3 1.00 0.00 3 15 9 36
4 0.15 0.15 4 11 6 9
5 0.70 0.15 5 6 11 a
6 0.50 0.20 j 14 16 13
7 0.25 0.30 7 14 7 8
a 0.40 0.30 a 8 26 6
9 0.75 0.40 9 15 20 1
10 0.5 0.25 10 14 17 35
11 0.55 0.45 11 9 15 11
12 0.00 0.50 12 17 14 15
13 0.20 0.45 13 7 14 13
14 0.46 0.55 14 16 14 35

15 0.60 0.65 15 17 15 is
16 0.26 0.70 16 20 15 36
17 0.40 0.80 17 6 5 9-"

16 0.65 0.75 16 9 10 36
19 0.80 0.85 19 36 21 20
20 0.85 0.65 20 7 29 34
21 1.00 0.50 21 34 a T
22 1.00 1.00 22 6 2 5
23 0.50 1.00 23 10 9 5
24 0.10 0.65 24 16 23 17 5
25 0.00 1.00 26 20 19 18
26 0.25 0.00 26 34 29 4
27 0.75 0.00 27 6 26 2
28 0.25 1.00 28 16 12 13
29 0.00 0.25 29 29 7 13
30 0.75 1.00 30 26 a 34
31 0.00 0.75 31 5 27 10
32 1.00 0.25 32 is 30 23
33 1.00 0.75 33 35 28 24
34 0.19 0.19 34 35 24 16
35 0.32 0.75 35 16 31 12
36 0.79 0.46 36 21 36 10

37 20 33 19 5
38 28 35 17
39 29 13 12
40 4 1 26
41 26 34 4
42 31 16 24
43 27 5 2
44 10 32 21
45 28 17 23
46 10 3 32
47 19 22 30
48 30 16 19
49 33 20 21
so 1 4 29 a_
51 28 25 24
52 24 25 31
53 3 10 27
54 22 19 33

Table 1: triangulated Domain
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Conclusions

Triangular Extrapolation, as well as multivariate extrapolation based on interpolants
other than triangular ones, is a difficult area that requires more research. At present,
several techniques exist, but none of them is entirely satisfactory. Of the existing ones,
Triangular Extension seems to generate the visually most pleasing surfaces.
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