P	AD-A14	4 641	LAT	ERALLY	LOADE	ED PIL	ES AND	COMPL REESE	ITER PI	ROGRAM	COM62 84	4G(U)	1/	4	J
	UNCLAS	SIFIE) NES	-18-6-	84-2						F/G 1	3/13	NL	•	
			- 												
										ł					
				1		1	,								
	-														
Ļ															

1.0	45 50 50	2.8 3.2	2.5
		<u>3.6</u> 4.0	2.0
	11112 •	4	1.8
		4	1.6

1000

and the second second

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A ţ

FILE COPY

2 E TECHNICAL REPORT K-84-2

tere and in the

,..λ

LATERALLY LOADED PILES AND COMPUTER PROGRAM COM624G

by

Lymon C. Reese

Civil Engineering Department University of Texas at Austin Austin, Tex. 78712

Larry A. Cooley

U. S. Army Engineer District, Vicksburg P. O. Box 60, Vicksburg, Miss. 39180

N. Radhakrishnan

Automatic Data Processing Center U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

Approved For Public Release; Distribution Unlimited

Prepared for U.S. Army Engineer Division, Lower Mississippi Valley P. O. Box 80, Vicksburg, Miss. 39180

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

This program is furnished by the Government and is accepted and used by the recipient with the express understanding that the United States Government makes no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof. The program belongs to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a Government program.

> The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
Technical Report K-84-2	64/1
TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
TATEDALLY TOADED DILES AND COMPUTED	Final report
PROGRAM COM624G	
	C. PERFORMING ONG. REPORT HUMBER
AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(#)
Lymon C. Reese	
Larry A. Cooley	
N. Radhakrishnan Performing organization name and address	10. PROGRAM ELEMENT, PROJECT, TASK
University of Texas, Austin, Tex. 78712; U. S.	AREA & WORK UNIT NUMBERS
Army Engineer District, Vicksburg, Miss. 39180;	
and U. S. Army Engineer Waterways Experiment	
1. CONTROLLING OFFICE NAME AND ADDRESS	April 1984
U. S. Army Engineer Division, Lower Mississippi	13. NUMBER OF PAGES
Valley, P. O. Box 80, Vicksburg, Miss. 39180	303
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
5. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit	L
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, 11 different in	Led.
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES Available from National Technical Information Sex Springfield, Va. 22161.	L. Dam Report) cvice, 5285 Port Royal Road,
 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in 10. SUPPLEMENTARY NOTES Available from National Technical Information Ser Springfield, Va. 22161. 9. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Piling (Civil engineering) (LC) Soil 	cvice, 5285 Port Royal Road,
	ted. The Report) cvice, 5285 Port Royal Road, structures (LC) uter programs (LC)
Approved for public release; distribution unlimit Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different in SUPPLEMENTARY NOTES Available from National Technical Information Ser Springfield, Va. 22161. KEY WORDS (Continue on reverse side if necessary and identify by block number Piling (Civil engineering) (LC) Soil Foundations (LC) Computer programs (LC) Soil mechanicsComputer programs (LC)	ted. com Report) cvice, 5285 Port Royal Road, structures (LC) uter programs (LC)
Approved for public release; distribution unlimit Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different in B. SUPPLEMENTARY NOTES Available from National Technical Information Ser Springfield, Va. 22161. B. KEY WORDS (Continue on reverse elde if necessary and identify by block number Piling (Civil engineering) (LC) Soil Foundations (LC) Computer program) (LC) Soil mechanicsComputer programs (LC) Structural engineering (LC)	ted. cwice, 5285 Port Royal Road, structures (LC) uter programs (LC)
Approved for public release; distribution unlimit Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different in SUPPLEMENTARY NOTES Available from National Technical Information Ser Springfield, Va. 22161. KEY WORDS (Continue on reverse elde if necessary and identify by block number Piling (Civil engineering) (LC) Soil Foundations (LC) Computer program) (LC) Soil mechanicsComputer programs (LC) Structural engineering (LC) ABSTRACT (Coordinue on reverse elde if necessary and identify by block number)	ted. cwice, 5285 Port Royal Road, structures (LC) uter programs (LC)
Approved for public release; distribution unlimit Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES Available from National Technical Information Ser Springfield, Va. 22161. KEY WORDS (Continue on reverse side if necessary and identify by block number Piling (Civil engineering) (LC) Soil Foundations (LC) Computer Programs (LC) Soil mechanicsComputer programs (LC) Structural engineering (LC) A ABSTRACT (Continue on reverse side if necessary and identify by block number) When the soil immediately below the base of adequate bearing capacity, piles can be used to further to soil strata which can support the applied with analysis of the lateral interaction of pile such problems encountered by the Corps of Engineering and haffles for grade control structures	ted. (cvice, 5285 Port Royal Road, (cvice, 5285 Port Royal R
 Approved for public release; distribution unlimit Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different in SUPPLEMENTARY NOTES Available from National Technical Information Sex Springfield, Va. 22161. KEY WORDS (Continue on reverse alde If necessary and identify by block number) Piling (Civil engineering) (LC) Soil Foundations (LC) Computer Program) (LC) Soil mechanicsComputer programs (LC) Structural engineering (LC) ABSTRACT (Continue on reverse alde If necessary and identify by block number) When the soil immediately below the base of adequate bearing capacity, piles can be used to fur ture to soil strata which can support the applied with analysis of the lateral interaction of pile such problems encountered by the Corps of Engineer and baffles for grade control structures. 	ted. ted. troice, 5285 Port Royal Road, structures (LC) uter programs (LC)

ł

[

UNCIASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

A computer program called COM624, along with documentation, was developed at the University of Texas (UT) at Austin, to analyze laterally loaded pile problems. Analysis performed by Program COM624 is dependent upon soil parameters input to the program. These soil parameters take the form of curves which simulate the nonlinear interaction of the pile and the surrounding soil. The UT Report also presented criteria for developing these soil response curves in various types of soils.

This report consolidates the information available on laterally loaded pile analysis and provides supplementary data on Program COM624 (redesignated as COM624G). It describes modifications made in the input procedures and the addition of graphics options. Several examples of laterally loaded pile problems encountered in the Corps are added. Also included is a procedure for nondimensional analysis of laterally loaded piles which can be used to perform companion hand calculations to verify the results of the computer solutions.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PREFACE

This report reviews soil-structure interaction analyses of laterally loaded piles and provides supplementary documentation on a computer program COM624 developed by Prof. Lymon C. Reese, Nasser Al Rashid Professor, Civil Engineering Department, University of Texas (UT) at Austin, and Mr. W. R. Sullivan who was a graduate student at UT. Liberal use is made herein of material previously published by Prof. Reese and his graduate students.

Mr. Reed L. Mosher and Mr. Michael E. Pace of the Computer-Aided Design Group, Automatic Data Processing (ADP) Center, U. S. Army Engineer Waterways Experiment Station (WES), modified the original program to run in the timesharing mode, added graphics options, and also restructured the input to the program. The modified program has been designated as COM624G. Messrs. Mosher and Pace prepared Appendix C which contains the input to the modified program. Mr. A. E. Templeton, Vicksburg District (VXD), ran all of the computer and hand-derived examples contained in this report. Contributions of all of the above are gratefully acknowledged.

Funds for this work were authorized by the U. S. Army Engineer Division, Lower Mississippi Valley (LMVD), as part of the analysis support provided by the WES ADP Center. Mr. James A. Young, Geology, Soils, and Materials Branch, LMVD, was the technical point of contact.

The work was accomplished during the period July 1981 through April 1983. This report was written by Prof. Reese, Mr. Larry A. Cooley, Chief, Foundation and Materials Branch, VXD, and Dr. N. Radhakrishnan, Special Technical Assistant, ADP Center, WES.

COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE, were Commanders and Directors of WES during the course of the work and the preparation of this report. Mr. F. R. Brown was Technical Director.

1

Accession

CONTENTS

	Page
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Need for Soil-Structure Interaction Analyses in Design of	,
Acknowledgments	4
Example Applications	5
Methods of Analysis	8
Nonlinear Interaction Curves	10
	10
PART II: BACKGROUND AND THEORY FOR LATERALLY LOADED PILE ANALYSIS	12
Review of Basic Beam-Column Relations	12
p-y Concepts of Lateral Load Transfer	14
	19
PART III: CRITERIA FOR DEVELOPING SOIL RESPONSE CURVES FOR LATERALLY LOADED PILES	29
Factors Influencing p-v Curves	30
Analytical Basis for p-y Curves	31
Soil Models for Predicting Ultimate Soil Resistance	35
Experimental Techniques for Developing p-y Curves	43
Recommendations for p-y Curves	47 80
DEFEDENCEC	90
	69
APPENDIX A: NONDIMENSIONAL SOLUTIONS FOR ANALYSIS OF LATERALLY LOADED PILES	A1
Introduction	A 1
Solution Procedure (Extracted from Reese and Sullivan 1980)	A2
Example Solution	A16
APPENDIX B: EXAMPLE DESIGN PROBLEM	B 1
Introduction	B1
Example Design Problem	B1
APPENDIX C: INPUT GUIDE FOR COM624G	C1
Introduction	C1
Accessing the Program	C1
Boeing System	C2 C2
	C7
APPENDIX D: ADDITIONAL EXAMPLE PROBLEMS	Dl
Example 1	D1
Example 2	D19
Example 3	D36
APPENDIX E: NOTATION	E-

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain		
cubic inches	16.3871	cubic micrometers		
feet	0.3048	meters		
feet per second	0.3048	meters per second		
feet per second squared	0.3048	meters per second squared		
foot-kips (force)	4.448222	kilonewtons		
foot-pounds (force)	1.355818	joules		
inches	2.54	centimeters		
inches per pound	0.1129848	newton meters		
inches to the fourth power	0.4162	micrometers to the fourth power		
kips	4.4482	kilonewtons		
kips per square inch	6.8497	megapascals		
pounds per inch	175.1268	newtons per meter		
pounds per cubic inch	27,679.9000	kilograms per cubic meter		
pounds per square inch	6.8948	millipascals		
pounds per cubic foot	16.0185	kilograms per cubic meter		
pounds per square foot	4.8824	kilograms per square meter		
tons (force)	8.8964	kilonewtons		
tons (mass) per square foot	9,764.856	kilograms per square meter		

LATERALLY LOADED PILES AND COMPUTER PROGRAM COM624G

PART I: INTRODUCTION

<u>Need for Soil-Structure Interaction Analyses in</u> <u>Design of Pile Foundations</u>

1. Pile foundations are frequently used to support structures when the soil immediately below the base will not provide adequate bearing capacity. Piles transfer load from the structure to soil strata which can support the applied load. The behavior of such a system depends on the interaction of the piles with both the structure and the soil. Rational analysis of a problem involving pile design must take into consideration the effects of these interactions. Equilibrium of forces and compatibility of displacements throughout the total system must be achieved in the analysis. This report deals with analysis of the lateral interaction of the pile shaft and the soil. The problem of satisfying equilibrium between the pile shaft and superstructure is outside the scope of this report. A number of references are available on this topic for the interested reader (CASE Task Group on Pile Foundations 1980; Martin, Jones, and Radhakrishnan 1980; Awoshika and Reese 1971; Radhakrishnan and Parker 1975; Haliburton 1971; and Dawkins 1982).

Acknowledgments

2. A major portion of the material presented herein is excerpted or summarized from reports published by Prof. Lymon C. Reese and his students/ associates at The University of Texas at Austin (UT). The computer program presented herein (COM624G) was developed under the direction of Prof. Reese and modified by the Automatic Data Processing (ADP) Center at the U. S. Army Engineer Waterways Experiment Station (WES) to provide interactive capability and graphics.

3. Excellent summaries of the methods used in analysis of laterally loaded piles are available (Reese and Sullivan 1980, Reese and Allen 1977). It is suggested that the user study these references before becoming deeply involved in pile design using the method of analysis presented herein. Excerpts from these two references appear throughout this report and are acknowledged where included.

Example Applications

4. If a structure is supported on vertical piles and if all loads from the structure are also vertical, then the loads transmitted to the piles will all be axial. If some horizontal component of load is present, a lateral force will also be transmitted to the piles. If some of the piles are battered, an axial and lateral force will be transmitted to the piles regardless of the direction of the applied load. For most structures, particularly hydraulic structures, both horizontal and vertical components of load are present. The theory and the computer program presented in this report consider the response of individual piles to lateral loads. The program is not directly applicable to problems where group effects must be considered, such as pile-supported retaining structures where the piles are closely spaced. Several methods to analyze such problems are available (O'Neill, Hawkins, and Mahar 1980; Reese 1980; and Davisson 1970) but will not be addressed herein. Axially loaded pile behavior and a computer program for analyzing such behavior will be the subject of another report.

5. The method of analysis presented in this report is directly applicable to problems in which the lateral response of single-pile foundation elements is analyzed. Examples of such problems encountered by the Corps are single-pile dolphins (Figure 1) and baffles for grade control structures (Figure 2). The method can also be extended and used in multiple-pile foundation elements such as in the continuous frame pile-supported pumping station shown in Figure 3. To solve problems of this type, the user must ensure in the analysis that the predicted behavior of the structural frame is compatible with the predicted behavior of each of the foundation elements. Thus, the problem is analyzed in two parts: (a) a frame analysis using methods which may vary from a finite element analysis to a moment distribution analysis depending on the level of sophistication desired by the user, and (b) a laterally loaded pile analysis. The analysis is performed on an idealized frame resting on piles which are subjected to horizontal and vertical loads. The frame is separated from the piles at the groundline as shown by the insert in Figure 3. Final results of the analysis must show the lateral deflection, rotation, shear, axial load, and moment to have the same values at the points where the piles connect to the frame.

6. Because analysis of this problem must be performed in two parts, the

Ì

A CONCINENT OF A CONCINE

<u>እ.አ.አ.አ.አ.አ.አ.አ.አ.አ.አ.አ.አ.አ.አ.</u>አ.አ.አ.አ.

Figure 3. Idealized continuous frame pile-supported pumping station

analysis is iterative. One approach is to assume the reactions of each pile on the frame, apply these reactions to the frame, and analyze. Results of this analysis are then applied to the piles. Then the results of the pile analysis are compared to the assumptions made for the frame analysis, the inputs for the frame analysis are revised, and the process is repeated until compatible forces, moments, and deflections result from both analyses. This approach is discussed in more detail by Reese and Allen (1977).

Methods of Analysis

7. Many different methods have been used in analysis of laterally loaded piles, where the analysis in general consists of computing pile deflection,

bending moment, and shear as a function of depth below the top of the pile. Figure 4 presents the results of a laterally loaded pile analysis. Several of the methods of analysis are based on the theory of subgrade reaction in which the soil around the pile shaft is replaced by a series of discrete springs. Solution of the problem involves solution of a fourth-order differential equation. Most researchers utilizing this approach solve the equation using either a closed-form or a power series solution which requires numerous simplifying assumptions. The more critical of these assumptions are: (a) a constant or linear variation of subgrade modulus with depth, (b) linearly elastic soil behavior, and (c) constant flexural stiffness of the pile. Examples of these methods of analysis are given in Davisson (1970), Terzaghi (1955), Winkler (1967), Broms (1964a), and Broms (1964b).

Figure 4. Form of the results obtained from a laterally loaded pile (Reese and Cox 1968)

8. An entirely different approach (Poulos 1971) assumes the soil to be an elastic, homogeneous, isotropic half-space with a constant Young's modulus and Poisson's ratio. The pile is modeled as a thin, rectangular, vertical strip with soil pressures constant across the pile width. This method suffers from the critical limitation of the other methods previously discussed; i.e., the soil response is assumed to be linear.

9. The method utilized in the laterally loaded pile program, COM624G, is

based on the theory of subgrade reaction discussed above. However, the method used for solution of the fourth-order differential equation is the finite difference technique. This solution method, which is presented in Part II, offers several advantages over the conventional methods: (a) the soil modulus can be varied both with depth and pile deflection, (b) stratified soil deposits can be analyzed, (c) the pile stiffness with depth can be considered, (d) the flexural stiffness of the pile can be varied, and (e) several types of boundary conditions can be employed.

Nonlinear Interaction Curves

10. Program COM624G presents mathematical solutions of physical models which are capable of describing the actions and reactions of the pile shaftsoil systems. However, as with most geotechnical engineering applications, the analysis is only as reliable as the soil parameters input to the problem. In this case, the soil parameters take the form of curves which simulate the nonlinear interaction of the pile and the surrounding soil.

11. A family of curves describes the behavior of the soil around a laterally loaded pile in terms of lateral soil reaction versus lateral pile movement for a number of locations along the pile. Each curve represents lateral force (per unit length) transferred to the soil by a given lateral movement at a given location.

12. Criteria used in developing these nonlinear pile shaft-soil interaction curves are presented in Part III. These criteria are thought to yield conservative estimates of soil response; however, the user must always bear in mind that the criteria are based on limited data and there are many inevitable uncertainties in estimating soil response. Nevertheless, the criteria presented here represent the current state of the art. In Part IV of an earlier report by Radhakrishnan and Parker (1975), soil criteria are provided for laterally and axially loaded piles. The material presented herein updates these criteria for laterally loaded piles. Soil criteria for axially loaded piles presented in Radhakrishnan and Parker (1975) will be updated in a separate report.

Purpose and Scope

13. The primary purpose of this report is to present background

information on laterally loaded pile analaysis and to provide supplementary documentation of computer program COM624G. The subject area covered is rich in technical literature, and no attempt is made herein to discuss the methods of analysis in detail. However, enough theory and background are presented to explain the basis of the method used in the computer program. Examples of problems encountered by the Corps of Engineers are used where appropriate for illustrative purposes.

14. Background and theory for laterally loaded pile analysis (the basis for program COM624G) are presented in Part II. Part III presents criteria for developing soil response curves. Appendix A presents a procedure for nondimensional analysis of laterally loaded piles which can be used to perform companion hand calculations to verify the results of the computer solutions. Appendix B presents a design example which illustrates the importance of engineering judgment in analysis of laterally loaded piles. A user's guide for COM624G is presented in Appendix C. A complete and well-documented user's guide for COM624 is presented by Reese and Sullivan (1980). Appendix D presents examples of problems particularly applicable to Corps of Engineers projects. The notations used in the report are summarized in Appendix E.

PART II: BACKGROUND AND THEORY FOR LATERALLY LOADED PILE ANALYSIS

15. Two steps are involved in obtaining the response of a given pile to a lateral load: (a) the soil response must be determined as a function of depth, pile deflection, pile geometry, and nature of loading; and (b) the equations must be solved that yield pile deflection, slope, bending moment, and shear. In this part of the report, the theory involved in developing and solving the equations will be reviewed. The procedures for developing the nonlinear curves which predict the soil response will be presented in Part III.

Review of Basic Beam-Column Relations

16. The method of analysis used in COM624G is based on the theory of a beam on an elastic foundation. In this case, however, the beam is inserted vertically into the ground instead of being placed horizontally on the surface and is treated as a beam-column. The basic concepts of beam-column relations are covered in detail in numerous engineering mechanics texts (see Higdon et al. 1967); therefore, a review of them will not be presented here.

17. The basic relationships between deflection, slope, moment, shear, and load for a beam (Figure 5, without the axial load, P_x)* of constant flexural rigidity are

$$S = \frac{dy}{dx}$$
(1)

$$M = EI \frac{d^2 y}{dx^2}$$
(2)

$$V = \frac{dM}{dx} = EI \frac{d^3y}{dx^3}$$
(3)

and

$$q = \frac{dV}{dx} = EI \frac{d^2M}{dx^2} = EI \frac{d^4y}{dx^4}$$
(4)

* For convenience, symbols and unusual abbreviations are listed and defined in the Notation (Appendix E).

 $\rho = -E_s y$

where

and the same

ł

Ĩ

S = slope

M = moment

EI = flexural rigidity

V = shear

q = uniformly distributed vertical load on beam

y = deflection at point x along the length of the column Writing these equations in terms of load and deflection gives

$$q = \frac{d^2 M}{dx^2}$$
(5)

and

$$y = \frac{1}{EI} \iint Mdx$$
 (6)

The differential equation for a beam-column subjected to loads only at its ends can be obtained by taking the equation for bending due to flexure and adding to it the bending due to a constant axial load $P_{\rm c}$

EI
$$\frac{d^4y}{dx^4} + P_x \frac{d^2y}{dx^2} = 0$$
 (7a)

If the beam-column is resting on or embedded in soil, a soil reaction p will be resisting the movement of the system and Equation 7a will be transformed to

EI
$$\frac{d^4y}{dx^4} + P_x \frac{d^2y}{dx^2} = q + p$$
 (7b)

where p is the soil resisting pressure applied to the beam.

p-y Concepts of Lateral Load Transfer

18. When the basic beam-column is inserted vertically as a pile shaft, the method of analysis in COM624G considers the soil surrounding the shaft as a set of nonlinear elastic springs as depicted in Figure 6. This assumption is attributed to Winkler (1967), and it states that each spring acts independently; i.e., the behavior of one spring has no effect on any of the adjacent springs. Intuitively, this assumption does not seem correct for describing the nonlinear response of soils. Consequently, this approach has been criticized by some. However, available experimental data (Matlock 1970; Reese, Cox, and Koop 1975) suggest that, for the range of boundary conditions a pile is normally subjected to, the soil response at a point is affected only marginally by the changes in deflected shape.

19. In the analysis, the response of the springs can be taken as either linear or nonlinear. The approach in program COM624G is to treat the springs as nonlinear with their response represented by curves which relate soil resistance p to pile deflection y. In general, these curves are nonlinear and depend on several parameters including depth, pile geometry, shear strength of the soil, and type of loading (static or cyclic). The response of a pile to sustained or dynamic loading is not treated in this report.

20. The concept of a p-y curve can be defined graphically by considering a thin slice of a pile and surrounding soil, as shown in Figure 7a. The earth pressures which act on the surface of the pile prior to lateral loading

 P_t

tem with soil represented as a set of nonlinear elastic springs (Reese 1978)

lateral loading

loading

Figure 7. Graphical definition of p and y (Reese and Sullivan 1980)

are assumed to be uniform (Figure 7b). For this condition, the resultant force, obtained by integrating the pressures, is zero. If the pile is given a lateral deflection y_i , as shown in Figure 7c, a net soil reaction p_i will be obtained upon integrating the pressures. This process can be repeated in concept for a series of deflections y, resulting in a series of forces per unit length of pile p, which can be combined to define a p-y curve. In a similar manner, p-y curves may be generated for a number of depths. A family of p-y curves for different depths is shown in Figure 8. The curves are plotted in the second and fourth quadrants to indicate that the soil resistance p is opposite in sign to the deflection y. The user should note that p stands for a force per unit length of pile and is expressed in units

Figure 8. Possible family of p-y curves (Reese and Sullivan 1980) of pounds per linear inch or pounds per linear foot. It is not a soil pressure which is stated in units of pounds per square inch or pounds per square foot.

21. A typical p-y curve is shown in Figure 9. The curve is plotted in the first quadrant for convenience. The soil modulus E_s is defined as -p/y and is taken as the secant modulus to a point on the p-y curve as shown in Figure 8. Because the curve is strongly nonlinear, the soil modulus changes from an initial stiffness E_s to an ultimate stiffness p_u/y_u . As can be seen, the soil modulus E_s is not a constant except for a small range of deflections. The soil modulus has units of force per length squared, which is the force per unit length of the pile per unit of movement of the pile into the soil. The soil modulus should not be confused with Young's modulus which has the same units but a different meaning.

いいのであると

Figure 9. Characteristic shape of p-y curve (Reese and Sullivan 1980)

22. The soil modulus is introduced into the analysis with the relationship:

$$\mathbf{p} = -\mathbf{E}_{\mathbf{r}}\mathbf{y} \tag{8}$$

By substituting this relationship in Equation 7b, the basic equation for laterally loaded piles becomes

EI
$$\frac{d^4y}{dx^4} + P_x \frac{d^2y}{dx^2} + E_s y = q$$
 (9)

Also,

$$V = \frac{dM}{dx} + P_x \frac{dy}{dx}$$
(10)

and

$$M = EI \frac{d^2 y}{dx^2}$$
(11)

Equation 9 is developed in the following paragraphs of this part of the report and its solution is presented.

Solution of Governing Differential Equation

23. Computer program COM624G utilizes central difference approximations to describe the load-deformation response of laterally loaded piles. In the following paragraphs, central difference approximations describing the elastic curve of a laterally loaded pile will be derived and used in formulating a set of simultaneous equations for describing the load-deformation response of a laterally loaded pile.

Formulation of finite difference approximations

24. The finite difference approach to the solution of laterally loaded piles was first suggested by Gleser (1953). The idea was extended by a number of investigators including Reese and Matlock (1956, 1960).

25. The first step in the formulation is the derivation of the central difference approximations for the elastic curve (Figure 10). It can be seen from this figure that the slope of the curve at station i may be approximated as a secant drawn through the points on the curve of the two adjacent stations. Mathematically, this step is expressed as

$$\left(\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}\right)_{\mathbf{i}} \approx \frac{\mathbf{y}_{\mathbf{i}+1} - \mathbf{y}_{\mathbf{i}-1}}{2\mathbf{h}}$$
(12)

where h denotes the increment length. For higher derivatives, the process could be repeated by taking simple differences and dividing by 2h each time. However, to keep the system more compact, temporary stations j and k are considered and the slopes at these points computed on the basis of the deflection

of the station on each side. The second derivative for each permanent station is then written as the difference between these slopes divided by one increment length in the following equation:

$$\left(\frac{d^2 y}{dx^2}\right)_i = \frac{\left(\frac{dy}{dx}\right)_k - \left(\frac{dy}{dx}\right)_j}{h}$$
$$= \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$
(13)

Similarly, the third derivative is expressed as

$$\left(\frac{d^{3}y}{dx^{3}}\right) = \frac{\left(\frac{d^{2}y}{dx^{2}}\right)_{i+1} - \left(\frac{d^{2}y}{dx^{2}}\right)_{i-1}}{2h}$$
$$= \frac{y_{i+2} - 2y_{i+1} + 2y_{i-1} - y_{i-2}}{2h^{3}}$$
(14)

and the fourth derivative as

$$\begin{pmatrix} \frac{d^4 y}{dx^4} \\ i \end{pmatrix}_{i} = \frac{\begin{pmatrix} \frac{d^3 y}{dx^3} \\ k \end{pmatrix}_{k} - \begin{pmatrix} \frac{d^3 y}{dx^3} \\ i \end{pmatrix}_{j}}{h}$$

$$= \frac{y_{i+2} - 4y_{i+1} + 6y_{i} - 4y_{i-1} - y_{i-2}}{h^4}$$
(15)

Formulation of finite difference approximations for equations of bending of laterally loaded piles

26. In the development of the equations, consideration must be given to the assumptions regarding the variation in pile bending stiffness (EI = R). For the case of pure bending and constant bending stiffness, the second derivative of moment is usually written as

$$\frac{d^2M}{dx^2} = EI \frac{d^4y}{dx^4}$$
(16)

For the case of pure bending and a variable bending stiffness, the second derivative of moment is expressed as

$$\frac{d^{2}M}{dx^{2}} = EI \frac{d^{4}y}{dx^{4}} + 2 \frac{d}{dx} (EI) \frac{d^{3}y}{dx} + \frac{d^{2}}{dx^{2}} (EI) \frac{d^{2}y}{dx^{2}}$$
(17)

However, in formulating the finite difference equations, the assumption was made that the moment was a smooth continuous function of x and that the second derivative of moment could be approximated by the expression

$$\frac{d^2 M}{dx^2} \approx \frac{\frac{M_{i+1} - 2M_i + M_{i-1}}{h^2}}{h^2}$$
(18)

where M_{i+1} , M_i , and M_{i-1} are the moments at joints i+1, i, and i-1, respectively. For a variable stiffness, Equation 18 is a somewhat cruder approximation than Equation 20. However, it permits the bending stiffness to vary from station to station.

27. Equations 9, 10, and 11 may now be written in finite difference form by using the central difference approximations for the first and second of the elastic curves. The equations will be written for a general point referred to as station i. Station numbering increases from the bottom to the top of piles. The equations obtained for station i, formulated from Equation 11, are as follows:

$$M_{i} = R_{i} \left(\frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}} \right)$$
(19)

where R = flexural rigidity (EI). Equations 8, 13, 16, 18, and 19 can be employed and Equation 20 can be formulated from Equation 9.

$$y_{i+2}(R_{i+1}) + y_{i+1}\left(-2R_{i+1} - 2R_{i} + P_{x}h^{2}\right) + y_{i}\left(R_{i+1} + 4R_{i} + R_{i-1} - 2P_{x}h^{2} + E_{si}h^{4}\right)$$

$$+ y_{i-1}\left(-2R_{i} - 2R_{i-1} + P_{x}h^{2}\right) + y_{i-2}(R_{i-1}) - q = 0$$
(20)

Equation 21 can be formulated from Equation 10 in a similar manner.

$$v_{i} = \frac{1}{2h^{3}} \left[y_{i+2}(R_{i+1}) + y_{i+1}(-2R_{i+1} + P_{x}h^{2}) \right] + y_{i}(R_{i+1} - R_{i-1}) + y_{i-1}(-P_{x}h^{2}) + y_{i-2}(-R_{i-1})$$
(21)

Solution of the finite difference equations (extracted from Reese and Sullivan 1980)

28. The final step is the formulation of a set of simultaneous equations which when solved yield the deflected shape of the pile. The solution requires the application of four boundary conditions, since Equation 9 is actually a fourth-order differential equation in terms of the dependent variable y. If values of deflection are found, moment, shear, and soil reaction can be obtained for any location along the pile by backsubstitution of appropriate values of deflection into appropriate equations.

29. The pile is divided into equal increments of length h (Figure 11). In addition, two fictitious increments are added to both the top and bottom of the pile. The four fictitious stations are used in formulating the set of equations, but they will not appear in the solution or influence the results. The coordinate system and numbering system used are also illustrated in Figure 11.

30. Using the notation shown in Figure 11, the two boundary conditions at the bottom of the pile (point 0) are zero bending moment,

$$R_0 \left(\frac{d^2 y}{dx^2}\right)_0 = 0 \qquad (22a)$$

1+2

Figure 11. Finite difference representation of a pile (Reese and Sullivan 1980)

and zero shear,

$$R_0 \left(\frac{d^3 y}{dx^3}\right)_0 + P_x \left(\frac{dy}{dx}\right)_0 = 0$$
 (22b)

For simplicity it is assumed that

$$R_{-1} = R_0 = R_1$$
 (22c)

These boundary conditions are, in finite difference form,

$$y_{1} = 2y_{0} + y_{1} = 0$$
 (23a)

$$y_{-2} = y_{-1} \left(2 - \frac{P_{x}h^{2}}{R_{0}} \right) - y_{1} \left(2 - \frac{P_{x}h^{2}}{R_{0}} \right) + y_{2}$$
 (23b)

respectively. Substituting these boundary conditions in finite difference form in Equation 20 where i is equal to zero, and rearranging terms, results in the following equations:

$$y_0 = a_0 y_1 - b_0 y_2 \tag{24a}$$

where

$$a_{0} = \frac{2R_{0} + 2R_{1} - 2P_{x}h^{2}}{R_{0} + R_{1} + E_{so}h^{4} - 2P_{x}h^{2}}$$
(24b)

$$b_0 = \frac{R_0 + R_1}{R_0 + R_1 + E_{so}h^4 - 2P_{sh}h^2}$$
(24c)

$$d_0 = \frac{qh^4}{R_0 + R_1 + E_{so}h^4 - 2P_{x}h^4}$$
(24d)

31. Equation 20 can be expressed for all values of i other than 0 and the top of the pile by the following relationships:

$$y_i = a_i y_{i+1} - b_i y_{i+2} + d_i$$
 (25a)

$$a_{i} = \frac{-2b_{i-1}R_{i-1} + a_{i-2}b_{i-1}R_{i-1} + 2R_{i} - 2b_{i-1}R_{i} + 2R_{i+1} - P_{x}h^{2}(1 - b_{i-1})}{c_{i}}$$
(25b)

$$b_i = \frac{R_{i+1}}{c_i}$$
(25c)

and

$$c_{i} = R_{i-1} - 2a_{i-1}R_{i-1} - b_{i-2}R_{i-1} + a_{i-2}a_{i-1}R_{i-1} + 4R_{i}$$

- $2a_{i-1}R_{i} + R_{i+1} + k_{i}h^{4} - P_{x}h^{2}(2 - a_{i-1})$ (25d)

$$d_{i} = \frac{q_{i}h^{4} - d_{i-1}(a_{i-2}R_{i-1} - 2R_{i-1} - 2R_{i} + P_{x}h^{2}) - d_{i-2}R_{i-1}}{c_{i}}$$
(25e)

32. The top of the pile (i=t) is shown in Figure 11. Three sets of boundary conditions are considered.

- <u>a</u>. The lateral load (P_t) and the moment (M_t) at the top of the piles are known.
- <u>b</u>. The lateral load (P_t) and the slope of the elastic curve (S_t) at the top of the pile are known.
- <u>c</u>. The lateral load (P_t) and the rotational-restraint constant (M_t/S_t) at the top of the pile are known.

33. For convenience in establishing expressions for these boundary conditions, the following constants are defined.

$$J_1 = 2hS_t$$
(26a)

$$J_2 = \frac{M_t h^2}{R_t}$$
(26b)

$$J_{3} = \frac{2P_{t}h^{3}}{R_{t}}$$
(26c)

$$J_4 = \frac{h}{2R_t} \frac{M_t}{S_t}$$
(26d)

and

$$U = \frac{-P_{x}h^{2}}{R_{t}}$$
(26e)

34. The difference equations expressing the first of the boundary conditions for the top of the pile are:

$$\frac{R_{t}}{2h^{3}} (y_{t-2} - 2y_{t-1} + 2y_{t+1} - y_{t+2}) + \frac{P_{x}}{2h} (y_{t-1} - y_{t+1}) = P_{t}$$
(27a)

$$\frac{R_{t}}{h^{2}} (y_{t-1} - 2y_{t} + y_{t+1}) = M_{t}$$
(27b)

After some substitutions the difference equations for the deflection at the top of the pile and at the two imaginary points above the top of the pile are:

$$y_{t} = \frac{Q_{2}}{Q_{1}}$$
(28a)

$$y_{t+1} = \frac{J_2 + G_1 y_t - d_{t-1}}{G_2}$$
(28b)

$$y_{t+2} = \frac{a_t y_{t+1} - y_t + d_t}{b_t}$$
 (28c)

where

Ń

$$Q_{1} = H_{1} + \frac{G_{1}H_{2}}{G_{2}} + \left(1 - a_{t} \frac{G_{1}}{G_{2}}\right) \frac{1}{b_{t}}$$
(28d)

$$Q_{2} = J_{3} + \frac{a_{t}(J_{2} - d_{t-1})}{b_{t}G_{2}} + \frac{H_{2}(d_{t-1} - J_{2})}{G_{2}} + \frac{d_{t}}{b_{t}} + d_{t-1}(2 + U - a_{t-2}) - d_{t-2}$$
(28e)

$$G_1 = 2 - a_{t-1}$$
 (28f)

$$G_2 = 1 - b_{t-1}$$
 (28g)

$$H_{1} = -2a_{t-1} - Ua_{t-1} - b_{t-2} + a_{t-1}a_{t-2}$$
(28h)

and

$$H_{2} = -a_{t-2}b_{t-1} + 2b_{t-1} + 2 + U(1 + b_{t-1})$$
(28i)

35. The difference equations for the second set of boundary conditions are Equations 27a and 29:

$$y_{t-1} - y_{t+1} = J_1$$
 (29)

36. The resulting difference equations for the deflections at the three points at the top of the pile are:

$$y_{t} = \frac{Q_{4}}{Q_{3}}$$
(30a)

$$y_{t+1} = \frac{a_{t-1}y_t - J_1 + d_{t-1}}{G_4}$$
(30b)

$$y_{t+2} = \frac{a_t y_{t+1} - y_t + d_t}{b_t}$$
(30c)

where

$$Q_3 = H_1 + \frac{H_2^a t - 1}{G_4} - \frac{a_t^a t - 1}{b_t G_4} + \frac{1}{b_t}$$
(30d)

$$Q_4 = J_3 + \frac{J_1 H_2}{G_4} - \frac{J_1 a_t}{b_t G_4}$$
 (30e)

and

$$G_4 = 1 + b_{t-1}$$
 (30f)

and the other constants are as previously defined.

37. The difference equations for the third set of boundary conditions are Equations 27a and 31:

$$\frac{y_{t-1} - 2y_t + y_{t+1}}{y_{t-1} - y_{t+1}} = J_4$$
(31)

38. The resulting difference equations for the deflections at the three points at the top of the pile are:

$$y_{t} = \frac{J_{3} - \frac{a_{t}d_{t-1}(1 - J_{4})}{b_{t}(G_{2} + J_{4}G_{4})} + \frac{d_{t}}{b_{t}} + d_{t-1}(2 + E - a_{t-2}) - d_{t-2} + \frac{d_{t-1}H_{2}(1 - J_{4})}{G_{2} + J_{4}G_{4}}}{H_{1} + H_{2}H_{3} - \frac{a_{t}}{b_{t}}}$$
(32a)

$$y_{t+1} = \frac{y_t(G_1 + J_4^a_{t-1}) - d_{t-1}(1 - J_4)}{G_2 + J_4 G_4} = H_3 y_t - \frac{d_{t-1}(1 - J_4)}{G_2 + J_4 G_4}$$
(32b)

$$y_{t+2} = \frac{1}{b_t} (a_t y_{t+1} - y_t + d_t)$$
 (32c)

where

$$H_{3} = \frac{G_{1} + J_{4}a_{t-1}}{G_{2} + J_{4}G_{4}}$$
(32d)

The other constants have been previously defined.

39. Using the above equations, the behavior of a pile under lateral load may be obtained by using COM624G.

PART III: CRITERIA FOR DEVELOPING SOIL RESPONSE CURVES FOR LATERALLY LOADED PILES

40. The methods of constructing p-y curves as presented in this report were developed at UT. The methods were derived largely from results obtained in field tests of piles under lateral loading. The approach was to take the experimental field curves and correlate them empirically with simple, basic soil mechanics theory and experience. By combining soil mechanics theory with experimental results, correlations could be made between soil properties, pile diameter, and depth. This gives generality to the methods used in construction of the p-y curves.

41. McClelland and Focht (1958) were the first to report p-y criteria which considered the nonlinearity of the soil. Since their work, numerous researchers have contributed to p-y curve development; however, most of the developmental work has been performed at UT. A history of the development will not be presented here; however, the interested reader can refer to Meyer and Reese (1979) for more detailed information.

42. The methods presented herein represent the current state of procurve development; however, it is expected that this development will continue as more field tests are performed and as more experience is gained. The user must remain abreast of these changes in order to ensure that the analyses of flect the state of the art at the particular time they are performed

43. Recommended methods for computing p-y curves are based on term tests presented in five different references for four different types of some conditions. These are:

- a. Soft clay below the water table (Matlock 1970)
- b. Stiff clay below the water table (Reese, Cox, and Koop 1975)
- c. Stiff clay above the water table (Reese and Welch 1975).
- <u>d</u>. Unified clay criteria developed for combined soft and stiff clays below the water table, (Sullivan, Reese, and Fenske 1979).
 e. Sands (Reese, Cox, and Koop 1974).

44. These references describe field experiments, the soil conditions in which they were performed, the rationale and considerations involved in evaluating the data, and conclusions from the experiments presented in the form of recommended p-y curve criteria. As can be seen from the descriptive names, the criteria were developed separately for clays above and below the water table and for sands. Other soil types would be expected to exhibit characteristics falling between the extremes of the soils and conditions in these tests.

45. The criteria for the conditions listed in subparagraphs 43a, b, c, and e have been combined into summary form and are presented in Reese and Sullivan (1980) and Reese and Allen (1977). The material presented herein is extracted primarily from these two references. However, the user of COM624G is strongly encouraged to study the references cited in paragraph 42 before becoming deeply involved in the analysis of laterally loaded piles. Also, the user should bear in mind that any one set of p-y curves is strongly related to only one or two lateral load tests, and this fact should be considered when using the curves for design.

Factors Influencing p-y Curves

46. Factors that most influence p-y curves are soil properties, pile geometry, nature of loading, and pile spacing. The correlations that have been developed for predicting soil response have been based on best estimates of soil properties determined from borings, laboratory tests, and field in situ tests. Thus far, no investigations have been performed to determine the effect which the method of pile installation has on these soil properties. The logic supporting this approach is that the effects of pile installation on soil properties are principally confined to a zone of soil close to the pile wall, while a mass of soil several diameters from the pile is stressed as lateral deflection occurs. There are instances where the method of pile installation must be considered; e.g., if a pile is jetted into place, a considerable volume of soil could be removed with a considerable effect on the soil response. In such instances, the user must rely on experience in adjusting the p-y curves to account for the effect of pile installation.

47. The principal dimension of the pile which affects the soil response is its diameter. All recommendations for developing p-y curves include the term for the diameter of the pile: if the cross section of the pile is not circular, the width of the pile perpendicular to the direction of loading is usually taken as the diameter. Field tests have been performed on piles with a limited range of diameters. Experience indicates that, for the normal range of pile diameters encountered in practice, the criteria adequately represent
the effect of pile diameter. However, additional research is needed on largediameter piles (30 in.* and larger) to determine the effect of pile diameter on large pile behavior (Meyer and Reese 1979). Stevens and Audibert (1979) have presented evidence that, for piles 50 in. and larger, the observed groundline deflections are approximately half the predicted deflections.

48. p-y curves can be greatly affected by the type of loading. This report summarizes recommendations for short-term static loads and for cyclic (or repeated) loading. The curves do not consider any consolidation effects that would occur under sustained loading. Nor do they consider cases where the loadings are dynamic, as would occur during an earthquake.

49. Because the field tests were run on single piles, the p-y criteria do not consider group effects. Unfortunately, the designer is often faced with the problem of analyzing the lateral response of pile groups. Although several methods are available in the literature, there is no one established, widely used method which considers the group effect on soil response. Four available methods which address group effect are presented in O'Neill, Hawkins, and Mahar (1980), Davisson (1970), Focht and Koch (1973), and Poulos (1971a and b).

50. Another factor which can influence p-y criteria is the effect of pile batter. The criteria were derived from experiments on vertical piles. As the batter of a pile is increased, some point will eventually be reached where the criteria for vertical piles are no longer applicable. Information for specific recommendations on this problem is not available; however, some comparison studies performed by Meyer and Reese (1979) indicate that by applying adjustment factors recommended by Kubo (1967), reasonable estimates of pile deflection for laterally loaded batter piles can be obtained.

Analytical Basis for p-y Curves

51. As discussed previously, the methods of constructing p-y curves were derived from results obtained in field tests of piles under lateral loading. Results were then correlated with soil properties, pile diameter, and depth to give generality to the methods. Soil resistance-pile deflection

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

curves are generally considered to be composed of an initial elastic portion and an ultimate failure value. Principles of the theory of elasticity are generally applied for the definition of the initial portion. Several failure mechanisms are postulated and used to define the ultimate values. The following paragraphs briefly describe the analytical concepts which were correlated with the experimental curves.

52. The theory of elasticity is only applicable to linearly elastic materials; however, use has been made of the theory of elasticity and related approaches in describing certain concepts which have been incorporated into the nonlinear p-y curves.

Initial Portion of p-y Curve

Terzaghi

53. In his classic paper "Evaluation of Coefficients of Subgrade Reaction," Terzaghi (1955) proposed coefficients of lateral subgrade reaction which used a straight-line relationship between deflection of the pile y and resistance offered by the soil p. Terzaghi recognized the limitations of this approach and stated that the linear relationship between p and y was valid for values of p that were smaller than about half the ultimate bearing capacity of the clay.

54. For stiff clays, Terzaghi gave the relationship

$$k_{\rm h} = \frac{\bar{k}_{\rm s1}}{1.5b} (1 \ {\rm ft})$$
 (33)

where

 k_{h} = coefficient of horizontal subgrade reaction

 $\mathbf{\tilde{k}}_{e1}$ = coefficient of vertical subgrade reaction for a 1-ft-wide beam

b = width of the pile, ft

Adapting the coefficient of lateral subgrade reaction to fit the soil modulus E yields

$$E_{s} = k_{h}b$$
(34)

55. Terzaghi proposed that the coefficient of horizontal subgrade reaction for piles in stiff clay was constant with depth and recommended the values of \hat{k}_{s1} given in Table 1.

	Consistency of Clay			
	Stiff	Very Stiff	Hard	
Value of q_u , tsf	1-2	2-4	4-7	
Range for \bar{k}_{s1} , pci	58-116	116-232	232-464	
Proposed values for \bar{k}_{sl} , pci	87	174	348*	

Table 1 Terzaghi's Recommendations for Soil Modulus \bar{k}_{sl}

for Laterally Loaded Piles in Stiff Clay

* Higher values should be used only if estimated on the basis of adequate test results.

56. For sands, Terzaghi recognized that the stiffness increases with depth (or confining pressure). Thus, the family of p-y curves recommended for sand consisted of a series of straight lines with slopes horizontal at the ground surface and increasing linearly with depth. The linear relationship between p and y can be expressed in terms of E_c as:

$$E_{s} = kx$$
(35)

where

k = constant giving variation of soil modulus with depth

x = depth below ground surface

Table 2 gives Terzaghi's recommendations for k. Terzaghi also recognized that, as for clay, the assumed linear relationship between p and y was valid only for values of p smaller than about one-half the ultimate bearing capacity of the sand.

Table 2

<u>Terzaghi's Recommendations for Values of k for</u> <u>Laterally Loaded Piles in Sand</u>

	Relative Density of Sand			
	Loose	Medium	Dense	
Dry or moist k , pci	3.5-10.4	13-40	51-102	
Submerged sand k , pci	2.1-6.4	8-27	32-64	

57. Even though Terzaghi's work assumed a linear relationship between pile deflection and soil resistance, it provided a useful concept for defining the initial soil reactions for the portions of certain p-y curves where the soil reaction is less than half the ultimate soil reaction. This concept was utilized in defining the p-y curves for stiff clay below the water table (Reese, Cox, and Koop 1975), for the unified soil criteria (Sullivan, Reese, and Fenske 1979), and for sands (Reese, Cox, and Koop 1974), except that the values were adjusted slightly to reflect the results from the individual field tests.

Skempton

58. Skempton (1951) suggested a relationship between load and settlement for various footing shapes bearing on clay. By combining the theory of elasticity with field observations from full-scale foundations, Skempton related settlements of footings to strains obtained from unconsolidated, undrained (Q) triaxial tests with the equation

$$\rho_1 = 2\varepsilon b \tag{36}$$

where

- ρ_1 = mean settlement of the foundation for the particular case
- ε = strain in laboratory triaxial test for the deviator stress corresponding to the mean foundation pressure under the footing

b = footing width

Equation 36 involves numerous approximations; nevertheless, because of the experimental evidence presented by Skempton, the method is frequently used in predicting foundation settlements. However, further assumptions are necessary before the equation can be used in predicting p-y curves. The concept is extended to the p-y curve for a laterally loaded pile by assuming that the depth is such that the behavior is not affected by the free surface of the soil.

59. As an example of the use of Skempton's concept, Equation 36 was extended to define the deflection of the pile, y_{50} , at one-half the ultimate soil resistance (Matlock 1970; Reese, Cox, and Koop 1975; Reese and Welch 1975; and Sullivan, Reese, and Fenske 1979). The equation is

$$y_{50} = A\varepsilon_{50}b \tag{37}$$

where

A = factor varying from 0.35 to 2.5 based on experimental results from the pile tests for the different soil conditions

McClelland and Focht

60. McClelland and Focht (1958) presented work which paralleled the work of Skempton (1951), although their work was not as strongly based on the theory of elasticity as his. Their paper represented the first report of experimental p-y curves from a full-scale load test. They attempted to relate soil resistance and pile deflection directly to stress-strain curves from consolidated undrained (R) triaxial tests with confining pressure equal to overburden pressure. To obtain values of soil resistance p from the laboratory tests, they recommended the following equation

$$p = 5.5b\sigma_{\Lambda} \tag{38}$$

where

b = pile diameter

 σ_{Δ} = deviator stress $(\sigma_1 - \sigma_3)$ To obtain values of pile deflection y from stress-strain curves, McClelland and Focht proposed

$$\mathbf{y} = \mathbf{0.5}\mathbf{\epsilon}\mathbf{b} \tag{39}$$

where the 0.5 corresponds to a value of 2 suggested by Skempton.

61. McClelland and Focht's work has been superseded by additional research on p-y curves because it has since been proven that the appropriate soil modulus cannot be determined directly from a shear test. Nevertheless, theirs was a very important step because it was the first effort to relate the nonlinearity of p-y curves to an analytical approach utilizing soil shear strength and stress-strain properties.

Soil Models for Predicting Ultimate Soil Resistance

62. This section reviews the concepts involved in determining the ultimate resistance p_{ij} that can be developed against a pile near the ground

 $[\]varepsilon_{50} = \text{strain from an undrained soil test corresponding to half the maximum principal stress difference}$

surface and at some depth below the surface. This review was extracted from Reese and Sullivan (1980) and Reese and Allen (1977). Saturated clay

63. Theoretical values for ultimate resistance against piles in saturated clay employ the use of two models which assume that the clay around the pile shaft fails as either a group of sliding blocks or a wedge, depending on the depth below the surface. The soil is assumed to be saturated and to fail under undrained conditions so the shear strength is represented by cohesion cwith the angle of internal friction ϕ equal to zero.

64. The failure of the clay as the pile shaft moves laterally into the soil is considered in two parts. At some depth in the ground, failure will occur by flow of the soil around the pile without vertical displacement; i.e., plane strain conditions. This type of failure is depicted in Figure 12. Near the surface, a wedge-shaped block of soil is assumed to form which is moved upward and outward by the force of the pile. Figure 13 illustrates this theoretical wedge of soil.

65. The blocks in Figure 12 can be considered to be samples of unit height which fail under plane strain conditions. If it is assumed that blocks 1, 2, 4, and 5 fail by shear and that block 3 develops resistance by sliding, the stress conditions are represented by Figure 12b. If σ_1 is taken to be some small stress equal to the active pressure, then block 1 must move in the direction of pile movement. σ_2 must be approximately 2c in order to cause failure of block 1. If σ_2 is considered to be the confining stress on block 2, then σ_3 must be approximately 4c. If block 3 slides due to the stress σ_3 , then block 3 must have a resistance to sliding of 2c. By assuming that blocks 4 and 5 fail by the same line of reasoning as blocks 1 and 2 (i.e., $\sigma_4 = 6c$), it can be found that $\sigma_6 = 10c$. By examining a free body of a section of the pile (Figure 12c), it can be concluded that the total force exerted by the pile segment on the soil during failure is

$$\mathbf{p}_{\mathrm{n}} = 11 \mathrm{cb} \tag{40}$$

66. The wedge in Figure 13 offers resistance to lateral movement of the pile by means of cohesion along the sides and bottom and its weight. Summing components of the forces in the horizontal direction, the resultant force F_p is

MOVEMENT

a. Section through pile

b. Mohr-Coulomb diagram

c. Forces acting on pile

Figure 12. Model of lateral flow-around type of failure for clay (Reese and Sullivan 1980)

a. Shape of wedge

b. Forces acting on wedge

$$F_{p} = c_{a}bH \tan \alpha + (1 + m) \cot \alpha + \frac{1}{2}\gamma bH^{2} + c_{a}H^{2} \sec \alpha \qquad (41)$$

where

- c₂ = average undrained shear strength
- H = depth to the point under consideration
- m = reduction factor to be multiplied by c to yield the average sliding stress between the pile and the stiff clay
- y = average unit weight of the soil (submerged unit weight if the soil is below the water table)

The remaining terms are defined in Figure 13. It is possible to take the partial derivatives of Equation 41 with respect to the angle α and set the equation equal to zero to find the angle at which the equation is minimized. However, as an approximation, the angle α can be taken as 45° and m can be assumed equal to zero. Differentiation of the resulting expression with respect to H yields an expression for the ultimate resistance per unit length of pile as follows:

$$p_{\mu} = 2c_{a}b + \gamma bH + 2.83c_{a}H$$
 (42)

67. Equations 40 and 42 are approximate in that the two models give a greatly simplified picture of how saturated clay behaves in resistance to lateral loading. However, the theoretical expressions give a point of departure for using the results of experiments to arrive at more realistic expressions. The two equations can be solved simultaneously to find the depth at which the failure would change from the wedge type to the flow-around type. Sands

68. The expressions for determining the ultimate resistance of sand to the lateral movement of a pile can again be divided on the basis of two different failure mechanisms (group of sliding blocks or wedge).

69. The model for computing the ultimate soil resistance at a depth where the overburden is sufficient to enforce a plane strain condition is given in Figure 14. The stress σ_1 is obtained by assuming a hankine active failure condition. This assumption is based on two-dimensional behavior and is subject to some uncertainty. However, the assumption should be adequate for present purposes because the developed equations will subsequently be adjusted to reflect observed conditions from field tests. If σ_1 is imposed as

a. Section through pile

the confining stress on block 1, the stress required to cause the failure of block 1 along the dashed lines would be approximately

$$\sigma_2 = \sigma_1 \tan^2 \left(45 + \frac{\phi}{2}\right) \tag{43}$$

where ϕ is the angle of internal friction of the sand. Assuming the states of stress shown in Figure 14b, block 2 would be required to fail along the dashed line because of the imposed stress of σ_3 . Block 3 could be assumed to move as a rigid unit. Continuing this line of reasoning leads to the establishment of the net force on the segment of pile as

$$p_{u} = b(\sigma_{6} - \sigma_{1})$$

$$p_{u} = K_{a}b\gamma H (\tan^{8} \beta - 1) + K_{o}b\gamma H \tan \phi \tan^{4} \beta \qquad (44)$$

where

 $K_{a} = \text{Rankine active earth pressure coefficient} = \tan^{2} 45 - (\phi/2)$ H = depth to the point under consideration $\beta = 45 + (\phi/2)$ K_o = at-rest earth pressure coefficient

70. The ultimate soil resistance near the ground surface is computed using the free body shown in Figure 15. As can be seen in Figure 15c, the total ultimate lateral resistance F_{pt} on the pile is equal to the passive force F_p minus the active force F_a . The force F_a is computed from Rankine's theory using the minumum coefficient of active earth pressure. The passive force F_p is computed from the geometry of the wedge, assuming the Mohr-Coulomb failure theory to be valid for sand. The directions of the forces are shown in Figure 15b. By summing forces in the horizontal and vertical directions, the magnitudes of the forces F_a and F_p can be determined. No frictional force is assumed to be acting on the face of the pile. The equation for F_{nt} is

$$F_{pt} = \gamma H^2 \left[\frac{K_o^H \tan \phi \sin \beta}{3 \tan (\beta - \phi) \cos \alpha} + \frac{\tan \beta}{\tan (\beta - \phi)} \left(\frac{b}{2} + \frac{H}{3} \tan \beta \tan \alpha \right) + K_o^H \frac{\tan \beta}{3} (\tan \phi \sin \beta - \tan \alpha) - \frac{K_a^b}{2} \right]$$
(45)

where

 K_o = coefficient of earth pressure at rest K_a = minimum coefficient of active earth pressure

71. The ultimate soil resistance per unit length of the pile at any depth can be obtained by differentiating the force F_{pt} with respect to the depth H. The result of that differentiation is given by

a. General shape of wedge

Pile of Diameter b

b. Forces acting on wedge
 c. Forces acting on pile
 Figure 15. Assumed passive wedge type of failure (Reese and Sullivan 1980)

$$p_{u} = \gamma H \left[\frac{K_{o}^{H} \tan \phi \sin \beta}{\tan (\beta - \phi) \cos \alpha} + \frac{\tan \beta}{\tan (\beta - \phi)} \times (b + H \tan \beta \tan \alpha) + K_{o}^{H} \tan \beta (\tan \phi \sin \beta - \tan \alpha) - K_{a}^{b} \right]$$
(46)

72. The values of the parameters in Equation 46 must be estimated using soil mechanics theory. Selection of the parameters will be discussed in the subsequent section on p-y curves.

73. Equations 44 and 46 can be solved simultaneously to find the approximate depth at which the soil changes from the wedge type to the flow-around type. Again, it should be emphasized that the equations are not expected to give perfect predictions of the ultimate soil resistance. However, correlating the equations with experimental results allows practical use of them and lends generality to the experimental results.

Experimental Techniques for Developing p-y Curves

74. The preceding paragraphs have described the basic theory utilized in correlating observed experimental p-y curves with theory. The following section describes several methods for obtaining experimental p-y curves. Direct measurement

75. Direct measurement of p-y curves in the field would involve measuring the pile deflection at some predetermined points and then measuring the soil response corresponding with the measured deflection. Deflection can be measured by installing slope inclinometer casings either on the inside or on the surface of a pile and taking readings with a slope inclinometer. Alternatively, sighting down a hollow pile from a fixed position at scales that have been placed at intervals along the length of the pile has been used. This method is cumbersome in practice, however, and has not been very successful.

76. Measuring the soil response p is considerably more involved and difficult than measuring the deflection. The distribution of pressure acting on the pile must first be determined and then the pressure diagram integrated to determine soil response. Pressure meters of many different types are available and have been utilized in measuring pressures (Bierschwale, Coyle, and Bartoskewitz 1981). This approach requires measurement of the soil pressure at a few points around the exterior of a pile and estimation of soil

pressures between the pressure meters to obtain the pressure distribution. Whether or not this procedure yields accurate pressure distribution is a subject of debate (Reese and Sullivan 1980; Bierschwale, Coyle, and Bartoskewitz 1981).

Experimental moment curves

77. The method used most successfully at UT for determining p-y curves involves the placement of electrical resistance strain gages at points along the pile shaft. Before the field test is performed, strain readings are correlated with moment by placing the pile horizontally on simple supports and applying known moments. During the lateral load test, strain readings are taken at each point at each increment of load and converted to moment values by use of the moment calibration curves. Deflection values are obtained by use of Equation 47:

$$y = \iint \frac{M}{EI}$$
(47)

where

M = measured moment

EI = flexural stiffness of the pile

The deflection can be obtained with considerable accuracy using numerical procedures to doubly integrate the moment curves.

78. The computation of soil resistance is somewhat more difficult than determining deflections. It is obtained by double differentiation of the mc ent curves using Equation 48:

$$p = \frac{d^2 M}{dx^2}$$
(48)

The difficulty in differentiating the moment curves lies in the fact that a curve fitted through data points is not necessarily accurate except at the data points and differentiation results can be erratic, particularly for double differentiation.

79. Taking the family of curves showing the distribution of deflection and soil resistance, p-y curves can be plotted as shown in Figure 16. The curves can be checked by performing an analysis using the field loads and comparing the results with the experimental moment curves as illustrated in Figure 17.

09

Figure 16. Examples of experimental p-y curves from field test (Reese, Cox, and Koop 1975)

Figure 17. Computed and measured values of moment versus depth from a laterally loaded pile test (Welch and Reese 1972)

Nondimensional methods

80. Nondimensional methods have been used fairly successfully to obtain p-y curves from a lateral load test (Reese, Cox, and Koop 1974). The basis for this method is described in Appendix A. The procedure does not result in p-y curves which are as accurate as the curves obtained using strain gage data. The main advantage is that costly instrumentation is not required.

81. Deflection and slope are measured at the top of the pile after each increment of load is applied. The p-y curve is computed by first assuming a variation of soil modulus with depth for a particular load and then performing a nondimensional solution. This procedure is repeated until the assumed variation of soil modulus yields computed results which agree with the measured deflection and slope at the top of the pile. When the calculated slope and deflection agree with those measured, the assumed variation is taken to be correct. This "correct" modulus is used for the computer solution from which the deflection is obtained with depth. Given the soil modulus and the deflection, the value of resistance at desired depths can then be computed. One complete solution gives one point on the p-y curve at each depth being considered. The entire procedure is then repeated for each load to obtain additional points on the p-y curve.

Recommendations on Use of p-y Curves

82. Ideally, fully instrumented testing should be performed for each design involving laterally loaded piles. Unfortunately, the cost of load tests can often only be justified for large projects. On projects where fully instrumented lateral load tests can be justified, the tests should be performed at the specific site using the pile types and installation procedures to be utilized in construction. On intermediate-sized projects for which sitespecific data are needed, but a fully instrumented lateral load test cannot be justified, the nondimensional methods for obtaining p-y curves presented by Reese and Cox (1968) are recommended. These methods are approximate; however, they require only pile head measurements which are relatively easy and economical to obtain and they provide project-specific data not available otherwise. In certain situations, the designer may also consider using a combination of instrumented pile testing and nondimensional methods. This can be accomplished by utilizing the slope inclinometer to obtain pile deflections while using nondimensional methods to obtain soil resistance.

83. The p-y criteria presented in the remaining sections of this part of the report are provided for the purpose of assisting the designer in situations where laterally loaded pile tests cannot be justified. The designer must use the p-y criteria with extreme caution and a clear understanding of their limitations. Under no circumstances should a design be undertaken without a sufficient number of borings to define the subsurface profile and a sufficient number of soil tests to define the shear strength and the unit weight versus depth profile. Also, the designer should be ever mindful of the fact that any one set of p-y construction methods presented herein is strongly related to only one or two lateral load tests.

84. In performing analyses, the designer should, at a minimum, perform parametric studies to investigate the sensitivity of the results to the input parameters. For example, the load, boundary conditions, and parameters specific to developing the individual p-y curves should be varied to determine the parameters most critical to the design. The results of the parametric studies should then be considered in making design decisions. An example design problem is presented in Appendix B.

Curves for clays

85. The recommended p-y curves for clays were developed from three major test programs on three different types of clay soils: (a) soft clays below the water table, (b) stiff clays below the water table, and (c) stiff clays above the water table. In each test program, the piles were subjected to short-term static loads and to repeated (cyclic) loads. The test program is described briefly for each set of p-y criteria in the following paragraphs. In addition, step-by-step procedures are given for computing the p-y curves, recommendations are given for obtaining the necessary data on soil properties, and example curves are presented.

86. The final portion of this section on clays presents a method that has been developed for predicting p-y curves for clays below the water table of any shear strength. This "unified" method (Sullivan, Reese, and Fenske 1979) is based on all of the major experiments in clay below the water table.

Response of soft clay below the water table

87. <u>Field experiments.</u> The research program leading to the development of p-y criteria for soft clay was carried out and reported by Matlock (1970). The research involved extensive field testing with an instrumented pile, experiments with laboratory models, and parallel development of analytical methods and correlations.

88. There were two test sites: one at Lake Austin in Austin, Tex., and the other at the mouth of the Sabine River, which forms much of the Texas-Louisiana border. The soils at the Lake Austin site consisted of clays and silts, somewhat jointed and fissured due to desiccation during periods of low water with vane shear strengths averaging about 800 pcf. The Sabine clay appeared to be a more typical, slightly overconsolidated marine deposit with vane shear strengths averaging about 300 pcf in the significant upper zone.

89. A steel test pile 12.75 in. in diameter with an embedded length of 42 ft was used at both test sites. The pile contained 35 pairs of electrical resistance strain gages which were calibrated to provide extremely accurate determinations of bending moment. Gage spacings varied from 6 in. near the top to 4 ft in the lowest section. Tests were performed (a) with the pile head free to rotate and (b) with the pile head restrained against rotation to determine what difference there might be in the soil response due to different boundary conditions. The free-head tests were performed with only a lateral load applied at the mudline. The restrained head tests utilized a framework to simulate the effect of a jacket-type structure, as shown in Figure 18. Short-time static loading and cyclic loading were used in testing the pile. The moment curves obtained in the tests were differentiated to determine soil resistance and integrated to obtain pile deflection.

90. In addition to field experiments, some laboratory experiments were performed which were of value in explaining the nature of deterioration of soil resistance. These experiments were not utilized directly in constructing the p-y criteria, but were of use in explaining and interpreting the field data. Principal conclusions from the tests are listed below:

- <u>a</u>. The resistance-deflection characteristics of the soil were highly nonlinear and inelastic.
- b. Within practical ranges, the degree of pile head restraint appeared to have no effect on the p-y relationship.
- c. Cyclic loading produced a permanent physical displacement of the soil away from the pile in the direction of loading.
- d. The permanent displacement of the soil away from the pile produced a slack zone in the p-y relationship. Upon reloading

Figure 18. Arrangement for field tests at Sabine River site using restrained-head lateral loading (Matlock 1970)

the pile, this slack zone was reflected in bending moments which were much higher than those produced by equal loads during the initial cyclic series.

- e. During cyclic loading with a constant load, the deflections and moments would gradually increase with each repetition, but the rate of increase diminished to the point where the soil-pile system practically stabilized and no further increases in deflections or moments occurred with continued repetitions of load. It can be intuitively seen that some upper limit of load must exist for any pile above which the system would not stabilize under cyclic loading, and this conclusion was borne out by the tests. Below this upper limit, stabilization generally occurred in less than 100 cycles.
- \underline{f} . The measured ultimate resistance near the surface was similar to the theoretical ultimate resistance as expressed in Equation 42.

g. If the p-y data resulting from the tests are plotted in nondimensional form on log-log paper, a relatively smooth straight line can be fitted to the data up to the value of ultimate resistance. This result will be illustrated in the directions for constructing the p-y curves.

91. The details of the experiments for the soft-clay criteria are discussed more thoroughly here than will be the case for the remaining criteria. The discussion is primarily intended to provide the user with a clearer understanding of the experiments which provide the basis for the p-y criteria.

92. <u>Recommendations for computing p-y curves</u>. The following procedure is for short-term static loading and is illustrated by Figure 19a.

いいしょう ち あいてい

<u>a</u>. Obtain the best possible estimate of the variation of undrained shear strength c and submerged unit weight with depth x. Also, obtain the values of ε_{50} , the strain corresponding to half the maximum principal stress difference. If no stress-strain curves are available, typical values of ε_{50} given in Table 3 can be used.

• 	50	
Shear Strength	² 50	
<u> </u>	percent	
250-500	2	
500-1000	1	
1000-2000	0.7	
2000-4000	0.5	
4000-8000	0.4	

Table 3					
Representative	Values	of	£.,		

 <u>b</u>. Compute the ultimate soil resistance per unit length of pile, using the smaller of the values given by the equations below:

 $p_{u} = \left(3 + \frac{\gamma'}{c} x + \frac{J}{b} x\right)(cb)$ (49)

 $p_{u} = 9cb$ (50)

a. Static loading

b. Cyclic loading

Figure 19. Characteristic shapes of the p-y curves for soft clay below the water surface (Matlock 1970)

where

- c = shear strength at depth x
- x = depth from the ground surface to the p-y curve
- b = width of the pile

Matlock (1970) states that the values of J were determined experimentally to be 0.5 for a soft clay and about 0.25 for a medium clay. A value of 0.5 is frequently used. The value of p_u is computed at each depth where a p-y curve is desired, based on shear strength at that depth.

<u>c</u>. Compute the deflection y_{50} at half the ultimate soil resistance from the following equation:

$$y_{50} = 2.5\varepsilon_{50}b$$
 (51)

<u>d</u>. Points describing the p-y curve are now computed from the following relationship:

$$\frac{p}{p_{u}} = 0.5 \left(\frac{y}{y_{50}}\right)^{1/3}$$
(52)

The value of p remains constant beyond $y = 8y_{50}$.

93. The following procedure is for cyclic loading and is illustrated in Figure 19b.

- <u>a</u>. Construct the p-y curve in the same manner as for short-term static loading for values of p less than $0.72p_{11}$.
- <u>b</u>. Solve Equations 49 and 50 simultaneously to find the depth x_r where the transition òccurs. If the unit weight and shear strength are constant in the upper zone, then

$$x_{r} = \frac{6cb}{(\gamma b + Jc)}$$
(53)

If the unit weight and shear strength vary with depth, the value of x_r should be computed with the soil properties at the depth where the p-y curve is desired.

- <u>c</u>. If the depth to the p-y curve is greater than or equal to x_r , then p is equal to $0.72p_u$ for all values of y greater than $3y_{50}$.
- <u>d</u>. If the depth to the p-y curve is less than x_r , then the value of p decreases from $0.72p_u$ at $y = 3y_{50}$ to the value given by the following expression at $y = 15y_{50}$:

$$p = 0.72 p_{u} \left(\frac{x}{x_{r}} \right)$$
 (54)

The value of p remains constant beyond $y = 15y_{50}$.

94. <u>Recommended soil tests</u>. For determining the various shear strengths of the soil required in the p-y construction, Matlock (1970) recommended the following tests in order of preference.

- <u>a</u>. In situ vane-shear tests with parallel sampling for soil identification.
- <u>b</u>. Unconsolidated, undrained triaxial compression tests having a confining stress equal to the overburden pressure, with c being defined as half the total maximum principal stress difference.
- c. Miniature vane tests of samples in tubes.
- d. Unconfined compression tests.

Tests must also be performed to determine the unit weight of the soil.

95. Example curves. An example set of p-y curves was computed for soft clay for a pile with a diameter of 48 in. The soil profile that was used is shown in Figure 20. In the absence of a stress-strain curve for the soil, ε_{50} was taken as 0.01 for the full depth of the soil profile. The loading was assumed to be both static and cyclic.

96. p-y curves were computed for the following depths below the mudline: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are shown in Figure 21 for static loading and in Figure 22 for cyclic loading.

Response of stiff clay below the water table

97. <u>Field experiments.</u> Reese, Cox, and Koop (1975) performed lateral load tests employing steel pipe piles that were 24 in. in diameter and 50 ft long. The piles were driven into stiff clay at a site near Manor, Tex. The clay had an undrained shear strength ranging from about 1 tsf at the ground surface to about 3 tsf at a depth of 12 ft.

98. <u>Recommendations for computing p-y curves</u>. The following procedure is for short-term static loading and is illustrated by Figure 23.

- <u>a</u>. Obtain values for undrained soil shear strength c, soil submerged unit weight γ' , and pile diameter b.
- b. Compute the average undrained soil shear strength c over the depth x .
- <u>c</u>. Compute the ultimate soil resistance per unit length of pile using the smaller of the values given by the equations

the case of the case of the case

101.11

Figure 21. Example p-y curves for soft clay below the water table; Matlock criteria, static loading

.

Figure 22. Example p-y curves for soft clay below the water table; Matlock criteria, cyclic loading

ю

$$p_{ct} = 2cb + \gamma'bx + 2.83cx$$
 (55)

$$p_{cd} = 11cb$$
(56)

<u>d</u>. Choose the approximate value of A_s from Figure 24 for the particular nondimensional depth.

e. Establish the initial straight-line portion of the p-y curve

$$\mathbf{p} = (\mathbf{k}\mathbf{x})\mathbf{y} \tag{57}$$

Use the appropriate value of k_{c} or k_{c} from Table 4 for k.

Table 4						
Representative	Values	of	k	for	Stiff	Clays

		Average Undrained Shear Strength,* tsf			
		0.5-1	<u>1-2</u>	2-4	
k s	(static), pci	500	1000	2000	
k c	(cyclic), pci	200	400	800	

* The average shear strength should be computed from the shear strength of the soil to a depth of five pile diameters. It should be defined as half the total maximum principal stress difference in an unconsolidated undrained triaxial test. (Also see Table 6.)

f. Compute the following:

$$\mathbf{y}_{50} = \varepsilon_{50} \mathbf{b} \tag{58}$$

Use an appropriate value of ε_{50} from results of laboratory tests or, in the absence of laboratory tests, from Table 3.

g. Establish the first parabolic portion of the p-y curve using the following equation and obtaining p_{C} from Equation 55 or 56:

$$p = 0.5p_{c} \left(\frac{y}{y_{50}}\right)^{0.5}$$
(59)

Equation 59 could define the portion of the p-y curve from the point of the intersection with Equation 59 to a point where y is equal to $A_{s}y_{50}$ (see note after step j).

h. Establish the second parabolic portion of the p-y curve,

$$p = 0.5p_{c} \left(\frac{y}{y_{50}}\right)^{0.5} - 0.055p_{c} \left(\frac{y - A_{s}y_{50}}{A_{s}y_{50}}\right)^{1.25}$$
(60)

Equation 60 should define the portion of the p-y curve from the point where y is equal to $A_{s}y_{50}$ to a point where y is equal to $6A_{s}y_{50}$ (see note after step j).

i. Establish the next straight-line portion of the p-y curve,

$$p = 0.5p_{c}(6A_{s})^{0.5} - 0.411p_{c} - \frac{0.0625}{y_{50}}p_{c}(y - 6A_{s}y_{50})$$
(61)

Equation 61 should define the portion of the p-y curve from the point where y is equal to $6A_{s}y_{50}$ to a point where y is equal to $18A_{s}y_{50}$ (see note after step j).

j. Establish the final straight-line portion of the p-y curve,

$$p = 0.5p_{c}(6A_{s})^{0.5} - 0.411p_{c} - 0.75p_{c}A_{s}$$
(62)

$$p = p_c (1.225\sqrt{A_s} - 0.75A_s - 0.411)$$
 (63)

Equation 62 should define the portion of the p-y curve from the point where y is equal to $18A_{s}y_{50}$ and for all larger values of y (see following note).

(Note: The step-by-step procedure is outlined, and Figure 23 is drawn, as if there is an intersection between Equations 57 and 59. However, there may be no intersection of Equation 57 with any of the other equations defining the p-y curve. Equation 57 defines the p-y curve until it intersects with one of the other equations or, if no intersection occurs, Equation 57 defines the complete p-y curve.)

99. The following procedure is used for computing p-y curves in which loading is cyclic (see Figure 25).

- a. Steps a, b, c, e, and f are the same as for the static case.
- <u>d</u>. Choose the appropriate value of A_c from Figure 24 for the particular nondimensional depth.

$$y_p = 4.1A_c y_{50}$$
 (64)

Compute the following.

A LEVEL OF

g. Establish the parabolic portion of the p-y curve,

$$p = A_{c} p_{c} \left(1 - \left| \frac{y - 0.45 y_{p}}{0.45 y_{p}} \right|^{2.5} \right)$$
(65)

Equation 65 should define the portion of the p-y curve from the point of the intersection with Equation 57 to the point where y is equal to $0.6y_p$ (see note after step i). Establish the next straight-line portion of the p-y curve,

$$p = 0.936A_{c}p_{c} - \frac{0.085}{y_{50}}p_{c}(y - 0.6y_{p})$$
(66)

Equation 66 should define the portion of the p-y curve from the point where y is equal to $0.6y_p$ to the point where y is equal to $1.8y_p$ (see note after step i).

i. Establish the final straight-line portion of the p-y curve,

$$p = 0.936A_{c}p_{c} - \frac{0.102}{y_{50}}p_{c}y_{p}$$
(67)

Equation 67 should define the portion of the p-y curve from the point where y is equal to $1.8y_p$ and for all larger values of y (see following note).

(Note: The step-by-step procedure is outlined, and Figure 25 is drawn, as if there is an intersection between Equations 57 and 65. However, there may be no intersection of those two equations, and there may be no intersection of Equation 57 with any of the other equations defining the p-y curve. If there is no intersection, the equation should be employed that gives the smallest value of p for any value of y.

100. <u>Recommended soil tests.</u> Triaxial compression tests of the unconsolidated, undrained (Q) type with confining pressures conforming to in situ pressures are recommended for determining the shear strength of the soil. The value of ε_{50} should be taken as the strain during testing which corresponds to a stress equalling one-half the maximum total principal stress difference. The shear strength c should be interpreted as half of the maximum total stress difference. Values obtained from the triaxial tests might be somewhat conservative but would represent more realistic strength values than any from other tests. The unit weight of the soil must also be determined. 101. Example curves. Example sets of p-y curves were computed for stiff clay using a pile with a diameter of 48 in. The soil profile that was used is shown in Figure 26. The submerged unit weight of the soil was assumed to be 50 pcf for the entire depth. In the absence of a stress-strain curve, ϵ_{50} was taken as 0.005 for the full depth of the soil profile. The slope of the initial portion of the p-y curves was established by assuming a value of $k_{\rm c}$ of 400 pci. The loading was assumed to be both static and cyclic.

102. The p-y curves were computed for the following depths below the mudline: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are shown in Figure 27 for static loading and in Figure 28 for cyclic loading.

Figure 26. Soil profile used for example p-y curves for stiff clay

Figure 27. Example p-y curves for stiff clay below the water table; Reese criteria, static loading

Figure 28. Example p-y curves for stiff clay below the water table; Reese criteria, cyclic loading

Response of stiff clay above the water table

Š

103. <u>Field experiments.</u> A lateral load test was performed at a site in Houston, Tex., where the foundation was a drilled shaft, 36 in. in diameter. A 10-in.-diam pipe, instrumented at intervals along its length with electricalresistance strain gages, was positioned along the axis of the shaft before concrete was placed. The embedded length of the shaft was 42 ft. The average undrained shear strength of the clay in the upper 20 ft was approximately 2200 psf. The experiments and their interpretation are discussed in detail by Welch and Reese (1972) and Reese and Welch (1975).

104. <u>Recommendations for computing p-y curves</u>. The following procedure is for short-term static loading and is illustrated in Figure 29:

> <u>a</u>. Obtain values for undrained shear strength c, soil unit weight γ , and pile diameter b. Also obtain the values of ε_{50} from stress-strain curves. If no stress-strain curves are available, use a value of ε_{50} of 0.010 or 0.005 as given in Table 3, the larger value being more conservative.

Figure 29. Characteristic shape of p-y curve for static loading

in stiff clay above the water table (Reese and Sullivan 1980)

- <u>b</u>. Compute the ultimate soil resistance per unit length of shaft p_u using the smaller of the values given by Equations 49 and 50. (In the use of Equation 49, the shear strength is taken as the average from the ground surface to the depth being considered, and J is taken as 0.5. The unit weight of the soil should reflect the position of the water table.)
- <u>c</u>. Compute the deflection y_{50} at half the ultimate soil resistance from Equation 51.
- <u>d</u>. Points describing the p-y curve may be computed from the relationship below.

$$\frac{p}{p_{u}} = 0.5 \left(\frac{y}{y_{50}}\right)^{1/4}$$
(68)

<u>e</u>. Beyond $y = 16y_{50}$, p is equal to p_u for all values of y. 105. The following procedure is for cyclic loading and is illustrated in Figure 30:

- <u>a</u>. Determine the p-y curve for short-term static loading by the procedure previously given.
- <u>b</u>. Determine the number of times the design lateral load will be applied to the pile.
- <u>c</u>. For several values of p/p_u , obtain the value of C, the parameter describing the effect of repeated loading on deformation, from a relationship developed through laboratory tests (Welch and Reese 1972) or, in the absence of tests, from the following equation:

$$C = 9.6 \left(\frac{p}{p_u}\right)^4 \tag{69}$$

Figure 30. Characteristic shape of p-y curve for cyclic loading in stiff clay above the water table (Reese and Sullivan 1980)

<u>d</u>. At the value of p corresponding to the values of p/p_u selected in step c, compute new values of y for cyclic loading from

$$y_{c} = y_{s} + (y_{50})C \log N$$
 (70)

where

y_c = deflection under N cycles of load y_s = deflection under a short-term static load y₅₀ = deflection under a short-term static load at half the ultimate resistance

N = number of cycles of load application

<u>e</u>. The p-y curve defines the soil response after N cycles of load.

106. <u>Recommended soil tests.</u> Triaxial compression tests of the unconsolidated, undrained (Q) type with confining stresses equal to the overburden pressures at the elevations from which the samples were taken are recommended to determine the shear strength. The values of ε_{50} should be taken as the strain during the test corresponding to the stress equal to half the maximum total principal stress difference. The undrained shear strength c should be defined as half the maximum total principal stress difference. The unit weight of the soil must also be determined.

107. Example curves. An example set of p-y curves was computed for stiff clay above the water table for a pile with a diameter of 43 in. The soil profile that was used is shown in Figure 26. The unit weight of the soil was assumed to be 112 pcf for the entire depth. In the absence of a stress-strain curve, ε_{50} was taken as 0.005. The p-y curves were computed for both static and cyclic loadings. Equation 69 was used to compute values for the parameter C for cyclic loadings, and it was assumed that there are to be 100 cycles of load application.

108. p-y curves were computed for the following depths below the ground surface: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are shown in Figure 31 for static loading and in Figure 32 for cyclic loading.

Unified criteria for clays below the water table

THE REAL PROPERTY CONTRACT

109. <u>Introduction</u>. As was noted in the previous section, no recommendations were made for ascertaining the range of undrained shear strength in

Figure 31. Example p-y curves for stiff clay above the water table; Reese and Welch criteria, static loading

which the criteria for soft clay versus those for stiff clay should be used. Sullivan (1977) and Sullivan, Reese, and Fenske (1979) examined the original experiments and developed a set of recommendations that yield computed behaviors in reasonably good agreement with the experimental results from the Sabine River tests reported by Matlock (1970) and with those from the Manor, Tex., tests reported by Reese, Cox, and Koop (1975). However, as will be seen from the following presentation, there is a need for the user to employ some judgment in selecting appropriate parameters for use in the prediction equations.

110. <u>Recommendations for computing p-y curves</u>. The following procedure is for short term static loading and is illustrated in Figure 33:

> <u>a</u>. Obtain values for the undrained shear strength c, the submerged unit of weight γ' , and the pile diameter b. Also, obtain values of ε_{50} from stress-strain curves. If no stress-strain curves are available, the values in Table 3 can be used as guidelines for selection of ε_{50} .

Figure 32. Example p-y curves for stiff clay above the water table; Reese and Welch criteria, cyclic loading

- b. Compute c_a and $\overline{\sigma}_v$, for x < 12b, where c_a = average undrained shear strength $\overline{\sigma}_v$ = average effective stress
- x = depth<u>c</u>. Compute the variation of p_u with depth using the equation below:
 - (1) For x < 12b, p_u is the smaller of the values computed from

$$p_{u} = \left(2 + \frac{\bar{\sigma}_{v}}{c_{a}} + 0.833 \frac{x}{b}\right) c_{a}b$$
(71)

$$p_{u} = \left(3 + 0.5 \frac{x}{b}\right) cb \tag{72}$$

(2) For x > 12b,

$$p_{u} = 9cb \tag{73}$$

72

المرادية والمرادية

The steps below are for a particular depth x .

<u>d</u>. Select the coefficients A and F as indicated below. The coefficients A and F, determined empirically for the load tests at the Sabine River and Manor sites, are given in Table 5. The terms used in Table 5, not defined previously, are defined below:

 $W_{T} =$ liquid limit

PI = plasticity index

LI = liquidity index

 $0_{\mathbf{p}}$ = overconsolidation ratio

S₊ = sensitivity

The recommended procedure for estimating A and F for other clays is:

- (1) Determine as many of the following properties of the clay as possible: c , ε_{50} , $0_{\rm R}$, $S_{\rm t}$, degree of fissuring, ratio of residual to peak undrained shear strength $W_{\rm L}$, PI , and LI .
- (2) Compare the properties of the soil in question to the properties of the Sabine and Manor clays listed in Table 5.
- (3) If the properties are similar to those of either the Sabine or the Manor clay, use A and F for the similar clay.
- (4) If the properties are not similar to either, the user should estimate A and F using his judgment and Table 5 as guides.
- e. Compute

$$y_{50} = A\varepsilon_{50}b \tag{74}$$

<u>f</u>. Obtain $(E_s)_{max}$. When no other method is available, Equation 75 and Table 6 may be used as guidelines:

$$\left(E_{s} \right)_{max} = kx$$
 (75)

	Clay Description	<u> </u>	F
Sabine	River site	2.5	1.0
	Inorganic, intact		
	$c = 300 \ 1b/ft^2$		
	$e_{50} = 0.7\%$		
	$O_{R} = 1$		
	$S_t \approx 2$		
	w _L ≈ 92		
	PI ≖ 68		
	LI = 1		
Manor,	Tex., site	0.35	0.5
	Inorganic, very fissured		
	$c \approx 2400 \text{ lb/ft}^2$		
	ε ₅₀ ≈ 0.5%		
	0 _R > 10		
	$S_t \approx 1$		
	w_ ≈ 77		
	_ PI ≈ 60		
	LI = 0.2		

Curve Parameters for the Unified Criteria (Reese and Sullivan 1980)

Table 5

UNEXCONT

· · · · · · · · · · ·

Shear Strength	k,
<u> </u>	
250-500	30
500-1000	100
1000-2000	300
2000-4000	1000
4000-8000	3000

Table 6 Representative Values for k

(Also see Table 4.)

g. Compute the deflection at the intersection between the initial linear portion and curved portion from the equation

$$y_{k} = \left[\frac{0.5p_{u}}{(E_{s})_{max}}\right]^{3/2} (y_{50})^{-1/2}$$
(76)

 $(y_k \text{ can be no larger than } 8y_{50}$.)

<u>h</u>. (1) For $0 < y < y_k$

$$p = \left(E_{s}\right)_{max} y \tag{77}$$

(2) For $y_k < y < 8y_{50}$

$$p = 0.5p_{u} \left(\frac{y}{y_{50}}\right)^{1/3}$$
(78)

(3) For
$$8y_{50} < y < 30y_{50}$$

$$p = p_{u} + \frac{p_{R} - p_{u}}{22y_{50}} (y - 8y_{50})$$
(79)

where

$$p_{R} = p_{u} \left[F + (1 - F) \frac{x}{12b} \right]$$
 (80)

 $(p_R \text{ will be equal to or less than } p_u)$

(4) For $y > 30y_{50}$

$$p = p_{R}$$
(81)

111. The following procedure is for cyclic loading and is illustrated in Figure 34:

a. Repeat steps a through h(1) for static loading.

b. Compute

$$p_{CR} = 0.5 p_u \frac{x}{12b} \le 0.5 p_u$$
 (82)

<u>c</u>. (1) For y_g < y < y₅₀

$$p = 0.5p_u \left(\frac{y}{y_{50}}\right)^{1/3}$$
 (83)

(2) For
$$y_{50} < y < 20y_{50}$$

 $p = 0.5p_u + \frac{p_{CR} - 0.5p_u}{19y_{50}} (y - y_{50})$ (84)

(3) For
$$y > 20y_{50}$$
,

$$p = p_{CR}$$
(85)

112. <u>Comments.</u> The procedures outlined above for both static and cyclic loading assume that an intersection of the curve defined by Equations 77 and 78 occurs. If that intersection does not occur, the p-y curve is defined by Equation 77 until it intersects a portion of the curve defined by Equations 79 and 81 for static loading and Equations 83 or 84 for cyclic loading.

113. Example curves. Example sets of p-y curves were computed using the unified criteria and the soil profiles in Figures 20 and 26. The soil profile in Figure 20 represents a soft clay, and the profile in Figure 26 represents a stiff clay, both below the water table. The p-y curves for both soil profiles were computed for static and cyclic loadings using a pile 48 in. in diameter and the following depths: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft.

114. For the soft clay profile in Figure 20, the value of ε_{50} was assumed to be 0.02 from the mudline to a depth of 20 ft and to decrease to 0.01

at a depth of 90 ft. The value of A was assumed to be 2.5, and the value of F was assumed to be 1.0. The value of k for computing the maximum value of the soil modulus was assumed to be 200,000 pcf. Figure 35 shows the set of

- Cranna

AND ALL A LEVER ALL AND A

p-y curves for static loading, and Figure 36 shows curves for cyclic loading. 115. For the stiff clay profile in Figure 26, the value of ε_{50} was assumed to be 0.005 and γ was taken as 50 pcf for the entire depth. The value of A was assumed to be 0.35, the value of F to be 800,000 pcf. Figure 37 shows the set of p-y curves for static loading, and Figure 38 shows curves for cyclic loading.

Figure 36. Example p-y curves for soft clay below the water table; unified criteria, cyclic loading

Figure 37. Example p-y curves for stiff clay below the water table; unified criteria, static loading

Figure 38. Example p-y curves for stiff clay below the water table; unified criteria, cyclic loading

Recommendations for p-y Curves for Sand

116. As shown below, a major experimental program was conducted on the behavior of laterally loaded piles in sand below the water table. The results can be extended to sand above the water table.

Response of sand below the water table

117. <u>Field experiments.</u> An extensive series of tests was performed at a site on Mustang Island, near Corpus Christi, Tex. (Cox, Reese, and Grubbs 1974). Two steel pipe piles, 24 in. in diameter, were driven into sand in a manner simulating the driving of an open-ended pipe. The piles were then subjected to lateral loading. The embedded length of the piles was 69 ft. One of the piles was subjected to short-term loading and the other to repeated loading.

118. The soil at the site was a uniformly graded fine sand with an angle of internal friction of 39 deg. The submerged unit weight was 66 pcf. The water surface was maintained a few inches above the mud line throughout the test program.

119. Recommendations for computing p-y curves. The following

procedure is for both short-term static loading and cyclic loading and is illustrated in Figure 39 (Reese, Cox, and Koop 1974).

- <u>a</u>. Obtain values for the angle of internal friction φ , the soil unit weight γ , and pile diameter b .
- **b**. Make the following preliminary computations.

$$\alpha = \frac{\Phi}{2}$$
; $\beta = 45 + \frac{\Phi}{2}$; $K_0 = 0.4$; $K_a = \tan^2 \left(45 - \frac{\Phi}{2}\right)$ (86)

<u>c</u>. Compute the ultimate soil resistance per unit length of pile using the smaller of the values given by the equations below.

$$p_{st} = \gamma x \left[\frac{K_o^x \tan \phi \sin \beta}{\tan (\beta - \phi) \cos \alpha} + \frac{\tan \beta}{\tan (\beta - \phi)} \right] \times (b + x \tan \beta \tan \alpha) + K_o^x \tan \beta \qquad (87)$$
$$\times (\tan \phi \sin \beta - \tan \alpha) - K_a^b \right]$$

Figure 39. Characteristic shape of a family of p-y curves for static and cyclic loading in sand (Reese, Cox, and Koop 1974)

$$P_{sd} = K_a b \gamma x \ (\tan^8 \beta - 1) + K_o b \gamma x \ \tan \phi \ \tan^4 \beta \tag{88}$$

- <u>d</u>. In making the computations in step c, find the depth x_t at which there is an intersection between Equations 87 and 88.
 Above this depth, use Equation 87. Below this depth, use Equation 88.
- e. Select a depth at which a p-y curve is desired.
- <u>f</u>. Establish y₁₁ as 3b/80. Compute p₁₁ from

$$p_u = \overline{A}_s p_s \text{ or } p_u = \overline{A}_c p_s$$
 (89)

Use the appropriate value of \overline{A}_s or \overline{A}_c from Figure 40 for the particular nondimensional depth, and for either the static or cyclic case. Use the appropriate equation for p_s from Equation 87 or Equation 88 by referring to the computation in step d.

(Reese and Sullivan 1980)

<u>g</u>. Establish y_m as b/60. Compute p_m from

$$p_m = B_s p_s$$
 or $p_m = B_c p_s$ (90)

Use the appropriate value of B_s or B_c from Figure 41 for the particular nondimensional depth, and for either the static or the cyclic case. Use the appropriate equation for p_s . The two straight-line portions of the p-y curve, beyond the point where y is equal to b/60, can now be established.

h. Establish the initial straight-line portion of the p-y curve,

$$\mathbf{p} = (\mathbf{k}\mathbf{x})\mathbf{y} \tag{91}$$

Use the appropriate value of k from Table 7 or 8. <u>i</u>. Establish the parabolic section of the p-y curve,

$$p = \bar{C}y^{1/n}$$
(92)

127.05

The second

いたいとう

Representative Values of k for Submerged Sand

	· · · · · · · · · · · · · · · · · · ·	Relative Density		
		Loose	Medium	Dense
Recommended	k , pci	20	60	125

fable 8

Representative Values of k for Sand Above the Water Table

		Relative Density		
		Loose	Medium	Dense
Recommended	k, pci	25	90	225

Fit the parabola between points k and m as follows:

Determine the slope of the line between points m and u from

$$m = \frac{p_{u} - p_{m}}{y_{u} - y_{m}}$$
(93)

(2) Obtain the power of the parabolic section from

$$n = \frac{P_m}{my_m}$$
(94)

(3) Obtain the coefficient \overline{C} from

$$\overline{C} = \frac{p_m}{y_m^{1/n}}$$
(95)

(4) Determine point k from

$$y_{k} = \left(\frac{\overline{C}}{kx}\right)^{n/n-1}$$
(96)

(5) Compute the appropriate number of points on the parabola by using Equation 92.

Note: The step-by-step procedure is outlined, and Figure 39 is drawn, as if there is an intersection between the initial straight-line portion of the p-y curve and the parabolic portion of the curve at point k. However, in some instances, there may be no intersection with the parabola. Equation 91 defines the p-y curve until there is an intersection with another branch of the p-y curve, or, if no intersection occurs, Equation 91 defines the complete p-y curve. This completes the development of the p-y curve for the desired depth. Any number of curves can be developed by repeating the above steps for each desired depth.

120. <u>Recommended soil tests.</u> Triaxial compression tests are recommended for obtaining the angle of internal friction of the sand. Confining pressures should be used which are close or equal to those at the depths being considered in the analysis. If samples cannot be obtained, correlations between d and results from penetration tests can be used. Tests must be performed to determine the unit weight of the sand.

A CONTRACT

10000

121. Example curves. An example set of p-y curves was computed for sand below the water table for a pile with a diameter of 48 in. The soil profile used is presented in Figure 42. The submerged unit weight was assumed to be 57.5 pcf, and k was taken to be 80 pci. The loading was assumed to be both static and cyclic.

122. p-y curves were computed for the following depths below the mud line: 0, 1, 2, 4, 8, 12, 20, 40, and 60 ft. The plotted curves are shown in Figure 43 for static loading and in Figure 44 for cyclic loading. Response of sand above the water table

123. The procedure described in the previous section can be used for sand above the water table if appropriate adjustments are made to the unit weight and angle of internal friction of the sand. Some small-scale experiments were performed by Parker and Reese (1971), and recommendations for p-y curves for dry sand were developed from those experiments. The results of the Parker and Reese experiments should be useful in checking solutions which were obtained using results from the test program for full-scale piles. Summary

124. This part of the report has described procedures which can be used in developing soil response curves for laterally loaded piles in soft clay,

Figure 42. Soil profile used for example p-y curves for sand below the water table; Reese criteria

stiff clay, or sands. Most of the material covered in this part of the report was extracted from reports of work done and documented at UT by Prof. Reese and his associates. The examples are selected from Corps of Engineers' files.

125. It must be emphasized that development of proper soil-response curves requires experience and a feel for the problem. At best, the procedures described in this part should only be used as guidelines. In every case, a user is responsible for developing these curves, and it is assumed that he will apply judgment in using the guidance provided here.

Figure 43. Example p-y curves for sand below the water table, static loading

Figure 44. Example p-y curves for sand below the water table, cyclic loading

tale to Dite to

REFERENCES

Awoshika, K., and Reese, L. C. 1971. "Analysis of Foundation with Widely Spaced Batter Piles," Research Report 117-3F, Center for Highway Research, University of Texas at Austin, Austin, Tex.

Bierschwale, M. W., Coyle, H. M., and Bartoskewitz, R. E. 1981. "Field Tests and New Design Procedure for Laterally Loaded Drilled Shafts in Clays," Research Report 211-3F, conducted for Texas State Department of Highways and Public Transportation and Federal Highway Administration by Texas Transportation Institute, Texas A&M University, College Station, Tex.

Broms, B. B. 1964a. "Lateral Resistance of Piles in Cohesionless Soils," Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 89, No. SM3, pp 123-157.

, 1964b, "Lateral Resistance of Piles in Cohesive Soils," Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 89, No. SM2, pp 27-63.

CASE Task Group on Pile Foundations. 1980. "Basic Pile Group Behavior," Technical Report K-80-5, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Cox, W. R., Reese, L. C., and Grubbs, B. R. 1974. "Field Testing of Laterally Loaded Piles in Sand," <u>Proceedings, Offshore Technology Conference</u>, Paper No. 2079, Houston, Tex.

Davisson, M. T. 1970. "Lateral Load Capacity of Piles," Transportation Research Record No. 33, Transportation Research Board, Washington, D. C.

Dawkins, W. P. 1982. "User's Guide: Computer Program for Analysis of Beam-Column Structures with Nonlinear Supports (CBEAMC)," Instruction Report K-82-6, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Focht, J. A., and Koch, K. J. 1973. "Rational Analysis of the Lateral Performance of Offshore Pile Groups," <u>Proceedings, Fourth Annual Offshore</u> Technology Conference, Houston, Tex., Paper No. DTC 1896.

Gleser, S. M. 1953. "Lateral Load Tescs on Vertical Fixed-Head and Free-Head Piles," Special Technical Publication 154, pp 75-101, American Society for Testing Materials, Philadelphia, Pa.

Haliburton, T. A. 1971. "Soil Structure Interaction," Technical Publication No. 14, School of Civil Engineering, Oklahoma State University, Stillwater, Okla.

Hetenyi, M. 1946. "Beams on Elastic Foundation," 11946, University of Michigan Press, Ann Arbor, Mich.

Higdon, A., et al. 1967. Mechanics of Materials, John Wiley, New York.

Kubo, M. 1967. "Lateral Resistance of Single Free-Head Batter Piles and Single Fixed-Head Vertical Piles (in Japanese), <u>Monthly Reports of Transporta-</u> tion, Vol 12, No. 2, Technical Research Institute.

Martin, D. K., Jones, H. W., and Radhakrishnan, N. 1980. "Documentation for LMVDPILE Program," Technical Report K-80-3, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Matlock, H. 1970. "Correlations for Design of Laterally Loaded Piles in Soft Clay," Paper No. OTC 1204, <u>Proceedings</u>, Second Annual Offshore Technology <u>Conference</u>, Houston, Tex.

Matlock, H., and Reese, L. C. 1960. "Generalized Solutions for Laterally Loaded Piles," Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 86, No. SM5, pp 63-91.

McClelland, B. and Focht, J. A. 1958. "Soil Modulus of Laterally Loaded Piles," <u>Transactions, American Society of Civil Engineers</u>, Vol 123, pp 1049-1063.

Meyer, B. J., and Reese, L. C. 1979. "Analysis of Single Piles Under Lateral Loading," Research Report 244-1, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, Austin, Tex.

O'Neill, M. W., Hawkins, R. A., and Mahar, L. J. 1980. "Field Study of Pile Group Action," U. S. Department of Transportation, Federal Highway Administration, Office of Research and Development, Washington, D. C.

Parker, F., Jr., and Reese, L. C. 1971. "Lateral Pile-Soil Interaction Curve for Sand," <u>Proceedings</u>, <u>International Symposium on the Engineering Properties</u> of <u>Sea-Floor Soils and Their Geophysical Identification</u>, University of Washington, Seattle, Wash.

Poulos, H. G. 1971a. "Behavior of Laterally Loaded Piles: I-Single Piles," Journal, Soil Mechanics and Foundation Division, American Society of Civil Engineers, Vol 97, No. SM5, pp 711-731.

. 1971b. "Behavior of Laterally Loaded Piles: II-Pile Groups," Journal, Soil Mechanics and Foundation Division, American Society of Civil Engineers, Vol 97, No. SM5.

Radhakrishnan, N., and Parker, F., Jr. 1975. "Background Theory and Documentation of Five University of Texas Soil-Structure Interaction Computer Programs," Miscellaneous Paper K-75-2, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Reese, L. C. 1978. "Design and Evaluation of Load Tests on Deep Foundation," A State-of-the-Art paper presented at <u>American Society for Testing and</u> <u>Materials Symposium on Behavior of Deep Foundations</u>, Boston, Mass.

. 1980. "Lecture on Analysis of Pile Groups," <u>Corps of Engineers</u> <u>Training Soil-Structure Interaction</u>, Huntsville, Ala.

Reese, L. C., and Allen, J. D. 1977. <u>Drilled Shaft Design and Construction</u> <u>Manual</u>, Vol 2, U. S. Department of Transportation, Federal Highway Administration, Washington, D. C.

Reese, L. C., and Cox, W. R. 1968. "Soil Behavior from Analysis of Tests of Uninstrumented Piles Under Lateral Loading," <u>Proceedings</u>, <u>American Society for</u> <u>Testing and Materials</u>, San Francisco, Calif., pp 161-176.

Reese, L. C., and Matlock, H. 1956. "Non-Dimensional Solutions for Laterally Loaded Piles with Soil Modulus Assumed Proportional to Depth," <u>Proceedings</u>, <u>Eighth Texas Conference on Soil Mechanics and Foundation Engineering</u>, Austin, Tex. Reese, L. C., and Matlock, H. 1960. "Numerical Analysis of Laterally Loaded Piles," Proceedings, Second Structural Division Conference on Electronic Computation, American Society of Civil Engineers, Pittsburgh, Pa.

Reese, L. C., and Sullivan, W. R. 1980. "Documentation of Computer Program COM624; Parts I and II, Analysis of Stresses and Deflections for Laterally-Loaded Piles Including Generation of p-y Curves," Geotechnical Engineering Software GS80-1, Geotechnical Engineering Center, Bureau of Engineering Research, University of Texas at Austin, Austin, Tex.

Reese, L. C., and Welch, R. C. 1975. "Lateral Loading of Deep Foundations in Stiff Clay," <u>Journal, Geotechnical Engineering Division, American Society of</u> Civil Engineers, Vol 101, No. GT7, pp 633-649.

Reese, L. C., Cox, W. R., and Koop, F. D. 1974. "Analysis of Laterally Loaded Piles in Sand," Paper No. OTC 2080, <u>Proceedings</u>, Fifth Annual Offshore <u>Technology Conference</u>, Houston, Tex.

. 1975. "Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay," Paper No. OTC 2312, <u>Proceedings</u>, Seventh Offshore Technology <u>Conference</u>, Houston, Tex.

Skempton, A. W. 1951. "The Bearing Capacity of Clays," <u>Proceedings, Building</u> <u>Research Congress</u>, Vol I, Part IIV, pp 180-189.

Stevens, J. B., and Audibert, J. M. E. 1979. "Re-Examination of p-y Curve Formulations," Paper No. OTC 3402, <u>Proceedings</u>, 1979 Offshore Technology <u>Conference</u>, Houston, Tex.

Sullivan, W. R. 1977. <u>Development and Evaluation of a Unified Method for the</u> <u>Analysis of Laterally Loaded Piles in Clay</u>, M.S. Thesis, Graduate School of the University of Texas at Austín, Austín, Tex.

Sullivan, W. R., Reese, L. C., and Fenske, C. W. 1979. "Unified Method for Analysis of Laterally Loaded Piles in Clay," <u>Proceedings, Numerical Methods in</u> Offshore Piling, Institution of Civil Engineers, London, pp 107-118.

Terzaghi, K. 1955. "Evaluation of Coefficients of Subgrade Reaction," Geotechnique, Vol 5, pp 297-326.

Welch, R. C., and Reese, L. C. 1972. "Laterally Loaded Behavior of Drilled Shafts," Research Report No. 89-10, conducted for Texas Highway Department and U. S. Department of Transportation, Federal Highway Administration Bureau of Public Roads, by Center for Highway Research, University of Texas at Austin, Austin, Tex.

Winkler, E. 1967. Die Lehre von Elastizital and Testigkeit (On Elasticity and Fixity), Prague.

1.0	4 5 50 56	2.8 3.2	2.5
1.1		4.0	<u>2.0</u>
1.25	<u>∦</u> .	4	1.6

1

3

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

APPENDIX A: NONDIMENSIONAL SOLUTIONS FOR ANALYSIS OF LATERALLY LOADED PILES

Introduction

1. The principle of dimensional analysis is usually applied to physical models; however, Reese and Matlock (1956)* applied the principle to mathematical models as well. They used the principle of dimensional analysis to produce a set of nondimensional coefficients which can be used to solve the governing differential equation for laterally loaded piles.

2. The development of the nondimensional solution method was a result of extensive experience gained at The University of Texas at Austin through manual use of the difference equation method. Parts of the method were done a few times for each boundary condition, using a range of values for the variables. It was found that these solutions could then be applied to many similar problems. The theoretical legitimacy of this method of approach was confirmed by applying the principles of engineering similitude to derive the method.

3. At the time of the development of nondimensional methods of analysis, computers were available to few engineers outside of research. The nondimensional methods were developed because they included many of the advantages of the finite difference solutions, yet could be performed relatively easily by using a hand calculator. Their primary advantage was that the nonlinear soil response could be taken into account through successive iterations of the solution. The main disadvantage was that a predetermined variation of soil modulus with depth must be assumed. Today, the nondimensional methods are important because they: (a) provide a hand solution method to verify computer results by the finite difference technique, (b) prc de a better understanding of the mechanics of the response of a pile under lateral loading, and (c) can be used on occasion to obtain results for use in design if a computer is not available.

4. Readers are referred to Reese and Sullivan (1980), Reese and Allen (1977), Reese and Matlock (1956) and Matlock and Reese (1960) for the concept and theory of nondimensional solutions and the details of the solution procedure for analyses of laterally loaded piles. This appendix presents a

References cited in this appendix are included in the References at the end of the main text.

step-by-step procedure and an example solution, including the manual generation of a p-y curve using soft clay criteria.

Solution Procedure (Extracted from Reese and Sullivan 1980)

5. The solution procedure is described below for three sets of boundary conditions at the top of the pile: (a) pile head free to rotate, (b) pile head fixed against rotation, and (c) pile head restrained against rotation. These boundary conditions are shown in Figure A1 along with the sign convention used in the solutions.

- 6. Limitations imposed by the nondimensional solutions are as follows:
 - <u>a</u>. The effect on bending moment of the axial load cannot be investigated.
 - b. A constant value of flexural rigidity of the pile must be used.
 - <u>c</u>. The nondimensional curves included herein are valid only for the case of a linearly varying soil modulus with zero at the groundline.

Case I: Pile head free to rotate

1

- 7. The solution procedure for Case I is as follows:
 - <u>a</u>. Construct p-y curves at various depths by procedures recommended in the main text, with the spacing between p-y curves being closer near the ground surface than near the bottom of the pile.
 - b. Assume a value of T, the relative stiffness factor, from

$$T = \sqrt[5]{\frac{EI}{k}}$$
(A1)

where

EI = flexural rigidity of pile

- <u>c</u>. Compute the depth coefficient $z_{max} = L/T$. (A2)
- <u>d</u>. Compute the deflection y at each depth x along the pile where a p-y curve is available from

$$y = A_y \frac{P_T T^3}{EI} + B_y \frac{M_T T^2}{EI}$$
 (A3)

a. Sign convention

b. Boundary conditions

where

A_y = deflection coefficient (from Figure A2)
P_T = shear at top of pile
T = relative stiffness factor
B_y = deflection coefficient (from Figure A3)
M_T = moment at top of pile

The particular curves to be employed in determining the A $_y$ and B coefficients depend on the value of z computed in step c.

- <u>e</u>. From a p-y curve, select the value of soil resistance p that corresponds to the pile deflection value y at the depth of the p-y curve. Repeat this procedure for every p-y curve that is available.
- \underline{f} . Compute a secant modulus of soil reaction $\underline{E}_{\underline{c}}$ using the equation

$$E_s = \frac{p}{y}$$

Plot the E values versus depth.

- g. From the E_s -versus-depth plot in step f, compute the constant k which relates E_s to depth (k = E_s/x). Give more weight to the E_s values near the ground surface.
- <u>h</u>. Compute a value of the relative stiffness factor T from the value of p found in step g. Repeat steps b through g using the new value of T each time, until the assumed value of T equals the calculated value of T.
- <u>i</u>. When the iterative procedure has been completed, the values of deflection along the pile are known from step d of the final iteration. Values of soil reactions may be computed from the basic expression

Values of slope, moment, and shear along the pile can be determined from

$$S = A_{s} \frac{P_{t}T^{2}}{EI} + B_{s} \frac{M_{t}T}{EI}$$
(A4)

$$M = A_{m}P_{t}T + B_{M}M_{t}$$
(A5)

and

$$V = A_v P_t + B_v \frac{M_t}{T}$$
(A6)

The appropriate coefficients to be used in the above equations may be obtained from Figures A4 through A9.

Case II: Pile head fixed against rotation

「いう」とない

White the set of the property section and the section of

8. Case II may be used to obtain a solution for the case where the superstructure translates under load but does not rotate and where the super-structure is very stiff in relation to the pile.

- Perform steps a, b, and c of the solution procedure for freehead piles (Case I).
- b. Compute the deflection y at each depth along the pile where a p-y curve is available from

$$y_{F} = F_{y} \frac{P_{t}T^{3}}{EI}$$
(A7)

The deflection coefficients F_y may be found by entering Figure A10 with the appropriate value of z_{max} .

- c. The solution proceeds in a manner similar to steps e through h for the free-head case (Case I).
- d. Compute the moment at the top of the pile $\, M^{}_{T} \,$ from

$$M_{t} = F_{MT}P_{t}T$$
(A8)

The value of $\rm F_{MT}$ may be found by entering Table Al with the appropriate value of $\rm z_{max}$.

e. Compute values of slope, moment, shear, and soil reaction along the pile by following the procedure in step i for the free-head pile.

A8

Figure A5. Slope of pile caused by moment applied at mud line (Reese and Sullivan 1980)

Figure A6. Bending moment produced by lateral load at mud line (Reese and Sullivan 1980)

and the second second second with the second s

Figure A7. Bending moment produced by moment applied at mud line (Reese and Sullivan 1980)

a balante a late a late a late a late a late a

1.1.1.1.1.1.1.1.

Figure A10. Deflection of pile fixed against rotation at mud line (Reese and Sullivan 1980)

Table Al	
Moment Coefficients at	Top of
Pile for Fixed-Head C	ase
. <u></u>	
^z max	F _{Mt}
2	-1.06
3	-0.97
4	-0.93
5 and above	-0.93

Case III: Pile head restrained against rotation

9. Case III may be used to obtain a solution for the case where the superstructure translates under load but does not rotate.

- a. Perform steps a, b, c of the solution procedure free-head piles (Case I).
- <u>b</u>. Obtain the value of the spring stiffness k_{θ} of the pile superstructure system. The spring stiffness is defined as

$$k_{\theta} = \frac{M_{t}}{S_{t}}$$
(A9)

where

 M_t = moment at top of pile S_t = slope at top of pile

<u>c</u>. Compute the slope at the top of the pile S_t from

$$S_{t} = A_{st} \frac{P_{T}T^{2}}{EI} + B_{st} \frac{M_{T}T}{EI}$$
(A10)

where

A_{st} = slope coefficient (From Figure A4) B_{st} = slope coefficient (from Figure A5)

- $\underline{d}.$ Solve Equations A9 and A10 for the moment at the top of the pile $M^{}_t$.
- e. Perform steps a through i of the solution procedure for freehead piles (Case I).

10. This process completes the solution of the laterally loaded pile problem for three sets of boundary conditions. The solution gives values of deflection, slope, moment, shear, and soil reaction as a function of depth. To illustrate the nondimensional method, an example solution is presented next.

Example Solution

11. The following paragraphs present an example analysis using the nondimensional method and a comparison of the results with the computer solution of the same problem.

Problem statement

12. Figure All illustrates the problem to be solved by the nondimensional method as well as pertinent soils data. This same problem, as solved by COM624G, is presented in Appendix D as example problem 1. A comparison of the two solutions is presented following the nondimensional solution. Nondimensional solution

13. The solution will proceed in the step-by-step manner described for Case I.

14. <u>Step 1.</u> Compute and construct p-y curves. The p-y curves for the example problem as generated by COM624G (using the soft clay criteria) are presented in Appendix D, example problem 1. These same curves are generated <u>manually</u> in the following steps to illustrate the hand procedure. The computations follow the step-by-step procedure given for soft clay criteria in Part III of the main report. Computations for both static and cyclic curves are presented; however, only cyclic curves are utilized in the pile analysis. The depths for which curves are to be computed are: 0, 16, 32, 48, 80, 128, 154, and 240 in. Only the static and cyclic curves for x = 48 in. are computed in the following example:

a. Static curves:

(1) Obtain the variation of shear strength and submerged unit weight with depth and determine ε_{50} . (See Table 3, Part III of the main text.)

The following properties are used:

c = 500 psf = 3.47 psi

 $\gamma' = 30 \text{ pcf} = 0.0168 \text{ pci}$

$$\varepsilon_{50} = 0.010$$

b = 16 in.
x = 48 in.

(2) Compute p_{μ} using the smaller of the values from

$$p_{u} = \left(3 + \frac{\gamma'}{c} x + \frac{0.5}{b} x\right) cb$$

and

$$p_{u} = 9cb$$

$$p_{u} = \left[3 + \frac{0.0168}{3.47} (48) + \frac{0.5}{16} (48)\right] 3.47(16)$$

$$= 262.7 \text{ lb/in.}$$

$$p_u = 9(3.47)(16) = 499.7 lb/in.$$

Therefore, use

.

 $p_{u} = 262.7 \ lb/in.$

(3) Compute y_{50} at half p_u :

 $y_{50} = 2.5\varepsilon_{50}^{b}$

 $y_{50} = 2.5(0.010)(16) = 0.40$ in.

(4) Compute points describing the p-y curve:

 $\frac{p}{p_u} = 0.5 \left(\frac{y}{y_{50}}\right)^{1/3}$

p is constant beyond $y = 8y_{50}$.

<u>y</u> , in	<u>n. p, lb/in.</u>
0.2	104.3
0.4	131.4
0.8	165.5
1.2	189.4
2.0	224.6
3.2	262.7
8y ₅₀ =	8(0.40) = 3.2 in.

(5) The computed static p-y curve is plotted in Figure A12.

- **b.** Cyclic curves:
 - (1) The cyclic curve is the same as the static curve for p less than $0.72p_{\rm m}$.
 - (2) Solve for x_r :

$$x_r = \frac{6cb}{\gamma'b + 0.5c}$$

 $x_{r} = \frac{6(3.47)(16)}{0.0168(16) + 0.5(3.47)}$

$$x_r = 166.2$$
 in.

(3) If $x \ge x_r$, $p = 0.72p_u$ for $y \ge 3y_{50}$. (4) If $x < x_r$, p decreases from $0.72p_u$ at $y = 3y_{50}$ to p in the following equation at $y = 15y_{50}$:

$$p = 0.72p_u \frac{x}{x_u}$$

$$p = 0.72(262.7) \frac{48}{166.2} = 54.6 \text{ lb/in.}$$

$$y = 15y_{50} = 15(0.40) = 6.0 \text{ in.}$$

$$p = 0.72p_u = 0.72(262.7) = 189.1 \text{ lb/in.}$$

$$y = 3y_{50} = 3(0.40) = 1.2 \text{ in.}$$

(5) The computed cyclic p-y curve is plotted in Figure A12.
 <u>c</u>. The remainder of the p-y curves for the other values of x are computed using the same procedure. These computed curves are presented in Figure A13.

15. <u>Step 2.</u> Assume T : T = 95 in. 16. <u>Step 3.</u> Compute z_{max} :

$$z_{max} = \frac{L}{T} = \frac{720}{95} = 7.58$$

17. <u>Step 4.</u> Compute the deflection y at depths of 0, 16, 32, 48, 80, 128, 154, and 240 in. using Equation A3 and Figures A2 and A3. The computations are presented in tabular form in Table A2.

18. <u>Step 5.</u> From the set of p-y curves (Figure A13) the values of p are determined corresponding to the y values computed in step 4 (see the tabulation in Table A2).

19. Step 6. Compute the E_s value at each depth (see the tabulation in Table A2).

20. <u>Step 7.</u> Prepare a plot of E_s versus depth as shown in Figure Al4. In fitting the straight line to the plotted points, more weight should be given to the points near the ground surface. The k value is determined as the slope of this line:

$$k = \frac{E_s}{x} = \frac{500}{142} = 3.52 \text{ lb/in.}^3$$

21. Step 8. Compute T:

T = 5
$$\frac{EI}{k}$$
 = $5\sqrt{\frac{(3.14)10^{10}}{3.52}}$ = 97.9 in.

Step 8 completes the first iteration of the solution procedure. Before proceeding to the next iteration, the results thus far should be examined to provide guidance in further computations. It is evident from Figure A14 that E = kx is not a good representation of the variation of the soil modulus with depth. A straight line through the origin does not fit the plotted points. However, the constraints of the method required that the line pass through the origin to satisfy the assumption that $E_s = kx$. Figure A14 also reveals that the solution has not been found because the k value of 4.0 pci that was assumed is not equal to the k of 3.52 pci that was obtained. Correspondingly, the assumed value of T was not equal to the T value obtained. From comparisons, it appears that the value of k will decrease and T will increase with successive iterations. The iterations are continued until the desired degree of convergence is achieved. In the example problem, the computations were continued for three additional iterations. The additional computations are shown in Tables A3-A5; the corresponding plots of E_s versus x are shown in Figures A15-A17. For this example, the computations were continued until the deflections at the groundline agreed within 5 percent for the

Ì

10.0

Nondimensional Analysis of Laterally Loaded Piles with Pile Head Free to

Table A2Table A2Nondimensional Analysis of Laterally Loaded PillRotate Computations for Iterat $P_t = 32,000$ lb $M_t = -827,130$ inlb $EI = 3.14 \times 10^{10}$ llTrial1kassumed = 4.0lb-in. ³ (or Tassumed = 95 $T = \left(\frac{EI}{k}\right)^{1/5} = 95$ in. $z_{max} = \frac{L}{T} = 7.58$ DenthDenthDeflectionDeflection
--

$z_{max} = \frac{L}{T} = \frac{7.58}{7.58}$	
$\left(\frac{\mathrm{EI}}{\mathrm{k}}\right)^{1/5} = \frac{95}{2} \mathrm{in}.$	

		in.	$\left(\frac{1}{5}\right)^{1/5} = \frac{97.9}{5}$	$T_{\text{obtained}} = \left(\frac{1}{2}\right)$	= 3.5	ж " " " " "
		0.00	-0.10	-0.03	2.53	240
815	220	0.27	0.02	0.32	1.62	154
485	233	0.48	0.13	0.58	1.35	128
247	220	0.89	0.50	1.15	0.84	80
163	195	1.20	0.85	1.60	0.51	48
121	163	1.35	1.10	1.85	0.34	32
88	138	1.56	1.33	2.15	0.17	16
64	110	1.72	1.60	2.40	0.0	0
E = - P	p , from p-y Curve	$y = A_{y} \frac{P_{t}T^{3}}{EI} + B_{y} \frac{M_{t}T^{2}}{EI}$ 0.874A _y + 0.238B _y	B _y , from Figure A3	A _y , from Figure A2	×⊪ "	×
Soil Modulus lb/in. ²	Soil Resistance lb/in.	Deflection in.	Deflection Coefficient	Deflection Coefficient	Depth Coefficient	Depth in.

A22

. N. Y.

Figure Al4. Plot of E versus x for example problem; $f_{irst \ iteration}^{S}$

1.1

Nondimensional Analysis of Laterally Loaded Piles with Pile Head Free to

Rotate Computations for Iteration No. 2

$P_t = 32,000$ lb	$M_{t} = \frac{-827,130}{2} \text{ inlb}$	$EI = \frac{3.14 \times 10^{10}}{0.000} Ib - in.^{2}$
7 Tell	assumed = 3.3 ID-IN.	or Iassumed = <u>97.9</u> In.)
$x = \left(\frac{\mathrm{EI}}{\mathrm{k}}\right)^{1/5} = 9\overline{2}$	$\frac{7.9}{10}$ in. $z_{max} = \frac{L}{T} = \frac{7.3}{10}$	2

epth ín.	Depth Coefficient	Deflection Coefficient	Deflection Coefficient	Deflection in.	Soil Resistance lb/in.	Soil Modulus lb/in. ²
×	x [-1 2	A _y , from Figure A2	B _y , from Figure A3	$y = A_y \frac{P_t T^3}{EI} + B_y \frac{M_t T^2}{EI}$	P , from p-y Curve	$E_{s} = -\frac{P}{Y}$
0	0.00	2.40	1.60	1.89	103	54
16	0.16	2.17	1.36	1.73	132	76
32	0.33	1.86	1.07	1.51	160	106
48	0.49	1.61	0.83	1.33	190	126
80	0.82	1.17	0.52	0.99	225	227
128	1.31	0.62	0.15	0.56	250	977
54	1.58	0.35	0.03	0.33	240	727
140	2.46	-0.03	-0.10	0.00		
240	01.7	CD . D-	01.0-	00.0		

= 100.0 in.

 $\left(\frac{EI}{k}\right)^{1/5} =$

T_{obtained} = (

3.14

u പ^{്പ}× 11 ×

ĺ

「いいいいい」「「いい」とない。

Nondimensional Analysis of Laterally Loaded Piles with Pile Head Free to

ŝ Rotate Computations for Iteration No.

to to to to the Silver

$EI = 3.14 \times 10^{10} Ib-in.^{2}$	(or $T_{assumed} = \frac{100.0}{100.0}$ in.)	.20
$M_t = -827, 130 \text{ inlb}$	$k_{assumed} = \frac{3.14}{3.14}$ lb-in. ³	$\frac{10.0}{10.0}$ in. $z_{max} = \frac{L}{T} = \frac{1}{2}$.
$P_{t} = \frac{32,000}{2}$ lb	Trial <u>3</u>	$T = \left(\frac{EI}{k}\right)^{1/5} = \underline{10}$

336633

Depth in.	Depth Coefficient	Deflection Coefficient	Deflection Coefficient	Deflection in.	Soil Resistance lb/in.	Soil Modulus lb/in. ²
×	× E N	A _y , from Figure A2	B _y , from Figure A3	$y = A_y \frac{P_t T^3}{EI} + B_y \frac{M_t T^2}{EI}$	p , from P-y Curve	Е _s = - Р
0	0.00	2.40	1.60	2.02	100	50
16	0.16	2.20	1.35	1.89	128	68
32	0.32	1.87	1.10	1.62	160	66
48	0.48	1.63	C.85	1.44	190	132
80	0.80	1.20	0.55	1.08	237	219
128	1.28	0.65	0.15	0.62	250	403
154	1.54	0.37	0.05	0.36	246	667
240	2.40	0.00	0.10	0.03	75	2500

in. = 101.5 $T_{obtained} = \left(\frac{EI}{k}\right)^{1/5}$ 2.91 H ച°∣ × Ħ ×

,

5

Nondimensional Analysis of Laterally Loaded Piles with Pile Head Free to

Rotate Computations for Iteration No. 4

EI = 3.14×10^{10} lb-in. ²	(or $T_{assumed} = \frac{101.5}{101.5}$ in.)	
$M_{t} = \frac{-827,130}{-827,130}$ inlb	$k_{assumed} = \frac{2.91}{2.91} lb-in.^3$	I
$P_{t} = \frac{32,000}{10} Ib$	Trial 4	

$=\frac{L}{T}=\frac{7.09}{}$
Zmax
<u>101.5</u> in.
$=\left(\frac{EI}{k}\right)$

H

Depth in.	Depth Coefficient	Deflection Coefficient	Deflection Coefficient	Deflection in.	Soil Resistance lb/in.	Soil Modulus lb/in. ²
×	N 11 11 11 11 11 11 11 11 11 11 11 11 11	A _y , from Figure A2	B _y , from Figure A3	$y = A_y \frac{P_t T^3}{EI} + B_y \frac{M_t T^2}{EI}$	p , from p-y Curve	E _s = - P
0	0.00	2.40	1.60	2.12	95	45
16	0.16	2.20	1.35	1.98	125	63
32	0.32	1.87	1.10	1.69	158	93
48	0.47	1.63	0.85	1.51	187	124
80	0.79	1.20	0.55	1.13	240	212
128	1.26	0.65	0.15	0.65	257	395
154	1.52	0.37	0.05	0.38	243	639
240	2.36	0.00	-0.10	0.03	75	2500
480	4.73	0.00	0.00	0.00		
720	7.09	0.00	0.00	0.00		
× ≊ ×	= 2.9	$T_{obtained} = \left(\frac{1}{2}\right)$	$\frac{31}{x} \frac{1/5}{x} = \frac{102}{x}$	in.		

Figure A17. Plot of E versus x for example problem; fourth iteration

last two iterations. However, the number of iterations for a particular problem should be determined by the user after giving due consideration to the degree of accuracy required and to the limitations inherent in the method. After the final iteration is complete, continue with step 9.

22. <u>Step 9.</u> The final step in the computation procedure is to determine the results of the analysis as follows:

<u>a</u>. The value of deflection y and soil reaction p along the pile are known from step 4 of the final iteration (Table A5). These results are presented in Figures A18 and A19 and are compared with the computer solution of example problem 1 from Appendix D.

b. Compute slope S versus depth from Equation A4:

$$S = A_{s} \frac{P_{t}T^{Z}}{EI} + B_{s} \frac{M_{t}T}{EI}$$
(A4 bis)

where A_s and B_s are slope coefficients taken from Figures A4 and A5, respectively. Results of the computations are presented in tabular form in Table A6 and in graphic form in Figure A20.

c. Compute moment M versus depth from Equation A5:

$$M = A_m P_t T + B_m M_t$$
 (A5 bis)

where A_m and B_m are moment coefficients taken from Figures A6 and A7, respectively. Results of these computations are presented in tabular form in Table A7 and in graphic form in Figure A21. Also plotted in Figure A21 are results from the computer solution.

d. Compute shear V versus depth from Equation A6:

$$V = A_v P_t + \frac{B_v M_t}{T}$$
 (A6 bis)

where A_v and B_v are shear coefficients taken from Figures A8 and A9, respectively. Results of these computations are presented in tabular form in Table A8 and in graphic form in Figure A22.

Figure A18.

Plots of deflection y versus depth x for example problem

in the state

Figure A19. Plot of soil resistance p versus depth x for example problem

Tal	ble	A6

Ş

t E

ł

÷.

AREA STATE

ANALYSCICCULUTTOTATA LEFTERED ANALYSCIC

Computed Slopes

Depth	Depth	Slope	Slope	
<u>in.</u>	Coefficient	Coefficient	Coefficient	Slope
	$z = \frac{x}{2}$	A , from	B _s , from	$S = A \frac{P_T T^2}{T} + B \frac{M_T T}{T}$
<u> </u>	<u> </u>	Figure A4	Figure A5	<u>s EI</u> s EI
0	0.0	-1.625	-1.750	-0.0124
16	0.16	-1.600	-1.625	-0.0125
32	0.32	-1.560	-1.425	-0.0126
48	0.47	-1.510	-1.285	-0.0124
80	0.79	-1.350	-0.975	-0.0116
128	1.26	-1.000	-0.575	-0.0090
154	1.52	-0.800	-0.400	-0.0073
240	2.36	-0.260	-0.048	-0.0026
480	4.73	0.035	0.025	0.0003
720	7.09	0.000	0.000	0.0000

Figure A20. Plot of slope versus depth for example problem

Depth in.	Depth Coefficient	Moment Coefficient	Moment Coefficient	Moment inlb
x	$z = \frac{x}{T}$	A _M , from Figure A6	B _M , from Figure A7	$M = A_M P_t T + B_M M_t$
0	0.0	0.00	1.00	-8.27×10^5
16	0.16	0.16	1.00	-3.07×10^5
32	0.32	0.32	0.99	2.21×10^{5}
48	0.47	0.44	0.98	6.19×10^{5}
80	0.79	0.65	0.92	1.35 × 10 ⁶
128	1.26	0.77	0.75	1.88×10^{6}
154	1.52	0.76	0.63	1.95×10^{6}
240	2.36	0.49	0.25	1.38×10^{6}
480	4.73	-0.01	-0.02	-1.59×10^4
720	7.09	0.00	0.00	0.0

Table A7

Computed Moments

Figure A21. Plot of moment versus depth for example problem

Tal	ЬL	e	A8

SALA ALANSAN OLARARA OLARARA DABANA ALANAN ALANAN ALANAN DABARA DABARARA

an it states with

Computed Shears

Depth	Depth	Shear	Shear	Shear
in.	Coefficient	Coefficient	Coefficient	1b
	×	A _v , from	B _v , from	M _t
<u>x</u>	$z = \frac{a}{T}$	Figure A8	Figure A9	$V = A_v P_t + B_v \overline{T}^2$
0	0.00	1.00	0.00	32,000
16	0.16	0.97	-0.02	30,400
32	0.32	0.89	-0.07	29,050
48	0.47	0.78	-0.13	26,019
80	0.79	0.50	-0.26	18,119
128	1.26	0.05	-0.43	5,104
154	1.52	-0.15	-0.47	-970
240	2.36	-0.43	-0.39	-10,582
480	4.73	0.0	0.02	-163
720	7.09	0.0	0.00	0

Figure A22. Plot of shear versus depth for example problem

23. Tables A9 through All present forms which are included for convenience of the user when making nondimensional analyses.

Comparison between nondimensional and computer solutions

24. Comparisons between the nondimensional solution and the computer solution (Appendix D, example problem 1) are presented in Figures A18, A19, and A21. Figure A18 presents a comparison of deflection versus depth. As is shown, the maximum variation occurs at the ground surface and is approximately 12 percent. Figure A19 presents a comparison of soil resistance versus depth. The maximum percentage difference occurs at the ground surface and is approximately 10 percent. The maximum numerical difference occurs at the depth of maximum soil resistance (120 in.) and is approximately 12 lb/in. Figure A21 presents a comparison of moment versus depth. The maximum variation is approximately 6 percent and occurs at a depth of approximately 100 in. The maximum moment occurs at a depth of approximately 150 in. and the two methods yield essentially equal results.

25. The comparisons presented above indicate good to excellent agreement between the nondimensional and computer solutions. However, the user should be aware that the variations presented above apply only to this particular problem and variations for other problems may be larger or smaller. When considering whether or not the nondimensional solution yields a satisfactory degree of accuracy, the user should consider the variables inherent in computing the response of a laterally loaded pile.

Nondimensional Analysis of Laterally Loaded Piles with Pile Head Free to Rotate Table A9

E _s = - P	p , from p-y Curve	$y = A_{y} \frac{P_{t} T^{3}}{EI} + B_{y} \frac{M_{t} T^{2}}{EI}$	B _y , from Figure A3	A _y , from Figure A2	2 X I L	×
lb/in. ²	lb/in.	in.	Coefficient	Coefficient	Coefficient	in.
Modulus	Soll Resistance	Deflection	Deflection	Deflection	Depth	epth
Soil	Snil					

T_{obtained} = $\left(\frac{EI}{k}\right)^{1/5}$ = _____in.

ы»|×

يد ۱۱

Nondimensional Analysis of Laterally Loaded Piles with Pile Head Restrained Against Rotation

Table A10

ient Coefficient Ay, from Figure A2	Coeffici
---	----------

APPENDIX B: EXAMPLE DESIGN PROBLEM

Introduction

1. The behavior of a laterally loaded pile is a complex function of soil and pile parameters and loading conditions. In many cases, complexity of behavior combined with the uncertainty of loading conditions requires the designer to investigate a range of parameters and loading conditions before arriving at a final design. This appendix presents a design problem in which soil and loading conditions are not known with certainty and illustrates some of the decisions that must be made by the designer. Meyer and Reese (1979)* present an excellent study on the effects of variations in soil parameters on computed pile behavior which should provide the user with further insight. From the example in this appendix and the study by Meyer and Reese (1979), the user should be aware of the sensitivity of the analysis to variations in parameters and loading conditions and the necessity for sound engineering judgment based on a thorough understanding of the design variables and analysis procedures.

Example Design Problem

2. The example problem, which is illustrated in Figure B1, is taken from design studies of mooring dolphin facilities for Columbia Lock and Dam on the Ouachita River in central Louisiana. The example considers one particular load case for a single-pile dolphin.

Loading case

3. The loading case presented in the example is one of several cases that might be analyzed. The specific case is for collision impact between the end of a barge and the dolphin. Other cases that might be analyzed are mooring forces from current and wind, berthing impact from the end and side of a barge, and collision impact between the end and side of a barge and the dolphin.

* References cited in this appendix are included in the References at the end of the main text.

Ň

· Razzano
Computation of loads

- 4. Loads for the case presented were computed as follows:
 - a. Energy. Barge impact energy was computed from

$$E = f \frac{WV^2}{2g}$$
(B1)

where

E = impact energy, ft-lb

f = dissipation factor

W = weight of barge (tow and cargo), lb

V = velocity, normal to the dolphin, at impact, ft/sec

 $g = acceleration of gravity, ft/sec^2$

The factor f reflects the energy dissipation created by the swing of the vessel about the dolphin after impact and is calculated from

$$f = \frac{1}{1 + 16 \frac{d^2}{L^2}}$$
(B2)

where

d = distance from point of contact, measured tangent to the point of contact, to the center of gravity of the barge, ft

L = length of the barge, ft

Equation B2 for the dissipation factor reveals that, for end impact, an 80 percent reduction in energy is effected.

b. Normal force. Barge impact force was computed from

$$P_{max} = \frac{2E}{\delta}$$

where

 $P_{max} = maximum normal force required to resist impact, lb$ E = impact energy, ft-lb $<math>\delta$ = deflection of dolphin, ft

5. Computing the force P_{max} involves an iterative procedure in which a deflection is assumed, a trial P_{max} is computed, the analysis is performed using the trial P_{max} to obtain a new deflection, and the procedure is

continued until the trial deflection and the computed deflection agree. The forces, moments, shears, etc., are then taken from the final iteration. P_{max} can also be determined by computing a curve of P_{max} versus δ , plotting the curve, and integrating the area under the curve by trial until an energy balance is obtained.

6. Because of the dependence of P_{max} on deflection and the fact that deflection is a function of the bending moment and stiffness of the pile, a pile with a larger section modulus will not necessarily have smaller bending stresses than a pile with a smaller section modulus.

Design conditions

7. Surveys indicated the mud line to be at el 40,* as indicated in Figure B1. The top of the dolphin was set by the design criteria which required 8 ft of stickup above the 10-year frequency high-water stage (el 70). The lowwater stage is el 52 which is controlled by the minimum upper pool of the lock. The design considered the force P_{max} to be applied 3 ft above the water surface. Because of the dependence of P_{max} on deflection, which in turn was dependent on bending moment and pile stiffness, it was necessary to perform analyses with P_{max} applied as a low-level force (3 ft above low water) and as a high-level force (3 ft above high water). The example presented herein considers only the high-level force. Another important variable in the design was the velocity of the barge upon impact. Based on the hydraulic analysis for the design, a velocity of 1.0 ft/sec was selected as the best estimate. Design soil parameters

8. Borings at the site indicated the soil to be silts from the river bottom down to a depth of 15 ft. Below this, sands are indicated to extend beyond the penetration of the piling. Because p-y criteria are not available for silts, it was necessary to make a design decision as to the appropriate p-y criteria to use. The decision was to use soft clay criteria for the silts, then vary the criteria to determine the influence of the variation on the pile behavior. Sand criteria were used for the sands. The soil profile used and the design parameters are shown in Figure B2. Figure B3 presents the generated p-y curves. Cyclic p-y curves were used for both soils.

* All elevations (el) cited herein are in feet referenced to the National Geodetic Vertical Datum (NGVD).

Figure B3. p-y curves; single-pile mooring dolphin

Design analyses

大臣臣弟子子 人名英格兰姓氏 化化学学学学校学校学校 化化学学校学校学校学校学校学校学校学校学校

9. The various conditions investigated under the load case are tabulated in Table B1. Results of the analysis are presented in tabular form in Table B2 and in graphical form in Figures B4 and B5. Conclusions

10. As can be seen in Figures B4 and B5 and Table B2, the results from an analysis can vary considerably depending on the input assumptions. For this particular example, the variation in shear strength of ± 40 percent did not have a significant effect. The conditions which exhibit the most influence are the assumed 10 ft of scour and the increase in the barge velocity, with the combined effect of scour and increased barge velocity yielding the most critical condition. As shown in Table B2, the factor of safety for the combined condition drops drastically. This response is caused by the fact that the location of the maximum moment dropped into a segment of the pile which had a reduced section modulus. Obviously, this pile would not have an adequate section modulus if the conditions of scour and/or increased barge velocity were considered realistic. The final decisions in an example of this type must be made by the designer after considering the degree of certainty with which the design conditions are known.

11. A detailed input and output for computer analysis of one load case is presented in Appendix D, example 2.

Га	b1	e	B	1
----	----	---	---	---

Description of Conditions Analyzed for Load Case IIIA

Condition No.	Description of Condition
1	Analyzed with a barge velocity of 1.0 ft/sec, groundline at mud line, and conventionally generated p-y curves
2	Loaded as in Condition 1 except 10 ft of scour assumed below mud line
3	Loaded as in Condition 1 except 40 percent reduction in esti- mated strength of the silts
4	Loaded as in Condition 1 except 40 percent increase in esti- mated strength of the silts
5	Velocity of barge assumed to be 1.5 ft/sec. All other fac- tors same as in Condition l
6	Same as Condition 5 except 10 ft of scour assumed below mud line

Condition No	Pile Head Deflection in.	Deflection at Groundline in.	Maximum Bending Moment ft-kips	Factor of Safety*
1	20.3	7.5	7,442	1.62
2	28.4	12.3	4,417	0.98
3	20.9	7.9	7,642	1.62
4	19.6	7.2	7,258	1.62
5	28.1	10.7	10,083	1.21
6	41.0	18.2	11,250	0.67

Ta	ble	B2

Summary of Analysis

* Yield strength of steel = 60 ksi.

Figure B4. Plot of deflection versus depth

Figure B5. Plot of moment versus depth

APPENDIX C: INPUT GUIDE FOR COM624G

Introduction

1. COM624G is a computer program that facilitates analysis of laterally loaded piles for various boundary conditions. The program was originally written by Prof. L. C. Reese and W. R. Sullivan at The University of Texas at Austin and was labelled COM624 (Reese and Sullivan 1980).* In the COM624G version of the program, the input format was changed, a conversational mode for inputting data loads added, and graphical options were provided for plotting both input and output data. The program was also double-precisioned for use on the Honeywell DPS-1 computer. These modifications were programmed by Messrs. Michael Pace and Reed L. Mosher of the Automatic Data Processing Center, U. S. Army Engineer Waterways Experiment Station (WES).

2. Complete documentation of COM624 is provided in Reese and Sullivan (1980), and the reader should refer to this source for detailed information on the program. This appendix provides an input guide only to COM624G. The order of the input data by major groups (identified by a keyword) is immaterial, although input within each major group should be together in sequential order. All major groups are not required for problem solution, and within each group some data are optional. The optional data are indicated by inclosing them in parentheses.

3. Example problems are included at the end of the input guide. These problems are the same as those used in Reese and Sullivan (1980) for COM624 and are included so that verification is possible.

Accessing the Program

4. To run COM624G on the WES or Office of Personnel Management, Macon, Ga., computer systems, sign on to the particular system. Then

* FORT

- * OLD WESLIB/CORPS/I0012,R
- * GCS2D
- * device TK4 (4014)

ALP (Alphanumeric Terminal)

* References cited in this appendix are included in the References at the end of the main text.

Cybernet System

5. /OLD,CORPS/UN = CECELB
/CALL,CORPS,10012

Input Guide for COM624G

	Keyword [L	ine Number] (Optional Information)
I.	Title	
	TITLEOne linerun.Ittersincl	for identifying the individual problem in a computer nay be any alphanumeric information up to 72 charac- uding the line number and embedded blanks.
	[LN] TITLE	
	[LN] Any alphanume:	ric information up to 72 characters.
II.	System Units	
	UNITS One line to this information of the program).	identifying the units to be used in the program. rmation is only used to insure proper unit identi- on output (i.e., no conversions are made in the
	[LN] UNITS	
	[LN] ISYSTM (IDUM	I IDUM2 IDUM3)
	ISYSTM	= ENGL - for English units (L=inches, F=lbs.)
		= METR - for metric units or any other system
	(IDUM1 IDUM2 IDUM3)	= Alphanumeric information describing the system of units selected. (i.e., feet and kips, cm and grams, etc.)
III.	Pile Descriptions	
	<u>PILE</u> Two to ele properties	even lines that describe the pile geometry and s.
	[LN] PILE NI NDIA	AM LENGTH EPILE XGS
	[LN] XDIAM(I) DIAN (I = 1, NDIAM)	(I) MINER(I) (AREA(I))
	1st Group	
	NI	= Number of increments into which pile is divided
	NDIAM	= Number of segments of pile with different diameters
	LENGTH	= Length of pile
	EPILE	= Modulus of elasticity
	XGS	= Depth below top of pile to ground surface

W. M. Marker

	2nd Group	
	XDIAM	= Depth below top of pile
	DIAM	= Diameter of pile at XDIAM
	MINERT	= Moment of inertia at XDIAM
	(AREA)	= Cross-sectional area of pile (L ²) (If left blank, computed assuming a pipe section)
IV.	Soil Description	
	<u>SOIL</u> Two to te propertie	en lines that describe soil system and its es.
	[LN] SOIL NL	
	[LN] LAYER(I) KSC (I = 1, NL)	DIL(I) XTOP(I) XBOT(I) K(I) (AE(I) FR(I))
	lst Group	
	NL	= Number of layers of soil.
	2nd Group	
	LAYER(I)	= Layer number
	KSOIL(I)	= Code to control the type of p-y curves
		= 1 to have p-y curves computed internally using Matlock's (1970) criteria for soft clay
		= 2 to have p-y curves computed internally using Reese's and Welch's (1975) criteria for stiff clay below the water table
		= 3 to have p-y curves computed internally using Reese's and Welch's (1975) criteria for stiff clay above the water table
		= 4 to have p-y curves computed internally using Reese et al. (1974) criteria for sand
		= 5 to use linear interpolation between input p-y curves
		= 6 to have p-y curves computed internally using Sullivan et al. (1979) unified clay criteria
	XTOP(I)	= X-coordinate of top of layer
	XBOT(I)	= X-coordinate of bottom of layer
	K(I)	= Constant (F/L ³) in equation E _S = Kx. This is used to define initial soil moduli for the first iteration and to determine initial slope of p-y curve where KSOIL = 2, 4, or 6
	(AE(I))	= Factor "A" in uniform clay criteria
	(FR(I))	<pre>= Factor "F" in uniform clay criteria. (Leave blank unless KSOIL(I) = 6)</pre>

Ϋ́,

ſ

anna a seoraí Marayan Mariayan Alexandra. 12201136 - 12201133 Si

C3

V. Unit Weight Profile (Optional) WEIGHT One to eleven lines that describe the effective unit weights of soil in the soil profile. [LN] WEIGHT NGI [LN] XGI(I) GAM1(I) I = 1, NG1 1st Group NGI = Number of points on plot of effective unit weight versus depth 2nd Group XG1(I) = X-coordinate below top of pile to point where effective unit weight of soil is specified GAM1(I) = Effective unit weight of soil corresponding to XG1 VI. Soil Strength Profile (Optional) Strength Two to eleven lines that describe the variation in strength properties of soil with depth. [LN] STRENGTH NSTR [LN] XSTR(I) C1(I)PHI1(I) EE50(I)(I = 1, NSTR)1st Group NSTR = Number of points on input curve of strength versus depth 2nd Group XSTR(I) = X-Coordinate below top of pile for which C, 0, and e₅₀ are specified C1(I) = Undrained shear strength of soil corresponding to XSTR(I) PHI1(I) = Angle of internal friction in degrees corresponding to XSTR(I) EE50(I) = Strain at 50 percent stress level corresponding to XSTR(I) VII. Input for p-y Curves (Optional) [LN] PY Up to 930 lines that define the p-y curves for soil response to lateral load. [LN] PY NPY NPPY [LN] XPY(I)

[LN] YP(I,J) PP(I,J)(I = 1, NPY; J = 1, NPPY)

1st Group NPY = Number of p-y curves (maximum 30) NPPY = Number of points on p-y curves (maximum 30) 2nd Group XPY(I) = X-distance from top of pile to input p-y curve 3rd Group (Defines the p-y curve at distance = XPY(I).) YP(I,J)= Deflection of a point on a p-y curve PP(I,J)= Soil resistance corresponding to YP VIII. Boundary Conditions at the Pile Head BOUNDARY Specifies the boundary condition at the pile head [LN] BOUNDARY KBC NRUN [LN] KOPSUB(I) PTSUB(I) BC2SUB(I) PXSUB(I) (I = 1, NRUN)1st Group KBC = Code to control boundary condition at top of pile = 1 for free head (user specified lateral load and moment) = 2 for specified lateral load and slope at pile head. (Slope is 0 for fixed-head pile) = 3 for a specified lateral load and rotational restraint at the pile head NRUN = Number of sets of boundary conditions (load cases) 2nd Group KOPSUB(I) = Pile head printout code = 0 if only the pile head deflection and slope, maximum bending moment, and maximum combined stress are to be printed for the associated loads = 1 if complete output is desired for the associated loads = Lateral load at top of pile PTSUB(I) BC2SUB(I) = Value of second boundary condition = Moment (if KBC = 1) = Slope (if KBC = 2) = Rotational stiffness (if KBC = 3) PXSUB(I) = Axial load on pile (assumed to be uniform over whole length of pile)

IX. Distributed Lateral Load on Pile (Optional) Describes a distributed lateral load applied to the pile. LOAD [LN] LOAD NLD NW(J) [LN] XW(J,I) WW(J,I)(I = 1, NW); (J = 1, NRUN)NLD = Load case number NW = Number of points on plot of distributed lateral load on pile versus depth for specified NLD XW(I) = X-coordinate where distributed loads are specified = Distributed lateral load WW(I) X. For Cyclic Load (Optional) CYCLIC Specifies if the loading is cyclic or static. [LN] CYCLIC KCYCL RCYCL KCYCL = 0 for cyclic loading = 1 for static loading RCYCL = Number of cycles of loading (need only for p-y curves generated criteria for stiff clay above the water table) XI. Control of output OUTPUT Describes the amount of output to be printed. [LN] OUTPUT KOUTPT INC KPYOP NNSUB [LN] XNSUB(I) ... XNSUB(NNSUB) KOUTPT = 0 if data are to be printed only to depth where moment first changes sign = 1 if data are to be printed for full length of pile = 2 for extra output to help with debugging INC = Increment used in printing output = 1 to print values at every node = 2 to print values at every second node = 3 to print values at every third node, etc. (up to NI + 1)**KPYOP** = 0 if no p-y curves are to be generated and printed for verification purposes = 1 if p-y curves are to be generated and printed for verification = Number of depths for which internally generated **NNSUB** p-y curves are to be printed (maximum 305)

	2nd Group	
	XNSUB(I)	= X-coordinate at which internally generated p-y curves are to be generated for printing
XII.	Program Control	
	<u>CONTROL</u> Speci solut	fied maximum number of interactions and tolerance of ion convergence maximum deflections.
	[LN] CONTROL	MAXIT YTOL EXDEFL
	MAXIT	= Maximum number of iterations for analysis of load case
	YTOL	= Tolerance on solution convergence
	EXDEFL	= Value of deflection of pile head that is con- sidered grossly excessive and which stops the run. Default to pile diameter

XIII. Termination of Input Sequence

END Terminates the input sequence and initiates the analysis. [LN] END

Example Problems

6. Pile properties and the soil profile to be used in all four problems are shown in Figure C1.

Example problem 1

7. A free-head pile will be analyzed for lateral loads of 5,000, 10,000, 15,000, and 20,000 lb. An axial load of 100,000 lb will be used, and no moment will be applied at the pile head. The p-y curves shown in Figure C1 will be used in this analysis.

10 TITLE 20 EX. PRO. 1 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 1980. 30 UNITS 40 ENGL 50 PILE 120 2 720 29.E6 60 (Pile Properties - NI, NDIAM, LENGTH, EPILE, XGS) (XDIAM(I), DIAN(I), MINERT(I) 60 0 16 1047 70 180 16 732 where I = 1,NDIAM (Soil Description - NL) 30 SOIL 3 LAYER(I), KSOIL(I), XTOP(I), XBOT(I), K(I) 60 240 30 90 1 5 where I = 1, NL100 2 5 240 360 25 110 3 5 360 800 100 120 PY 7 6 (Input P-Y Curves - NPY, NPPY) XPY(I) 130 60 140 0.0 YP(I,J),PP(I,J)0.0 where I = 1, NPY150 0.2 66.1 J = 1, NPPY160 0.4 83.2 170 0.8 105.0 180 1.2 120.0 YP(I,NPPY), PP(I,NPPY) 190 6.0 0.0 200 76 210 0.0 0.0 79.8 220 0.2 230 0.4 100.0 240 0.8 127.0 250 1.2 145.0 15.0 260 6.0 270 92 280 0.0 0.0 290 0.2 93.3 300 0.4 117.0 310 0.8 148.0 320 1.2 169.0 34.0 330 6.0 340 108 350 0.0 0.0 360 0.2 107.0 370 0.4 135.0 380 0.8 170.0 390 1.2 194.0 400 6.0 61.0 410 140 420 0.0 0.0 430 0.2 134.0 440 0.4 169.0 450 0.8 213.0 460 1.2 243.0 470 6.0 123.0 480 188 490 0.0 0.0 500 0.2 175.0 510 0.4 221.0 520 0.8 278.0 530 1.2 318.0 540 6.0 264.0 550 214 560 0.0 0.0

Second support success Annound Support Support Support

570 0.2 198.0 580 0.4 250.0 590 0.8 315.0 600 1.2 360.0 610 6.0 360.0 %20 OUTPUT 1 2 0 0 630 BOUNDARY 1 4 640 1 5.E3 0.0 1.E5 650 1 10.E3 0.0 1.E5 660 1 15.E3 0.0 1.E5 670 1 20.E3 0.0 1.E5 680 CONTROL 100 .001 24 690 END

(Output Control - KOUTPT, INC, KPYOP, NNSUB) (Boundary Conditions at Pile Head - KBC, NRUN) (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I)

where I = 1,NRUN (Program Control - MAXIT,YTOL,EXDEFL)

Ş

(Input Echo)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NO. INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE IS DIVIDED	WITH DIFFERENT	OF	ELASTICITY	
120	CHARACTERISTICS 2	PILE 0.720E 03	0.290E 08	0.600E 02

TOP OF	DIAMETER	MOMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
o.	0.160E 02	0.105E 04	0.359E 02
0.180E 03	0.160E 02	0.732E 03	0.243E 02

***** SOIL DATA. *****

NUMBER OF LAYERS

LAYER	P-Y CURVE	TÚP ÚF	BOTTOM	INITIAL SOIL	FACTOR	FACTOR
NUMBER	CONTROL CODE	LAYER	OF LAYER	MODULI CONST.	"A"	"F"
1	5 0.	600E 02	0.240E 03	0.300E 02 0) .	o.
2	5 0.	240E 03	0.360E 03	0.250E 02 0	•	ο.
3	5 0.	360E 03	0.800E 03	0.100E 03 0)_	0.

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH O

***** PROFILE DATA. *****

C11

(p-y Data)

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH 0

***** P-Y DATA. *****

Concerning a second

NO. OF P-Y CURVES 7

NO. POINTS ON P-Y CURVES 6

X-COORD. TO INPUT P-Y CURVE 0.600E 02

DEFLECTION SOIL RESISTANCE ο. 0.200E 00 0.400E 00 0.300E 00 0.120E 01 0.600E 01

X-COORD. TO INPUT P-Y CURVE 0.760E 02

DEFLECTION Ο, 0.200E 00 0.400E 00 0.300E 00 0.120E 01 0.600E 01

X-COORD. TO INPUT P-Y CURVE 0.920E 02

DEFLECTION 0.

S	DIL RESISTANCE
	0.
	0.933E 02
	0.117E 03
	0.148E 03
	0.169E 03
	0.340E 02

ο.

ο.

0.

0.661E 02 0.832E 02

0.105E 03

0.120E 03

SOIL RESISTANCE

0.798E 02

0.100E 03 0.127E 03 0.145E 03

0.150E 02

X-COORD. TO

0.200E 00 0.400E 00 0.800E 00 0.120E 01 0.600E 01

725 - 225 VIII

Carlos Carlos

DEFLECTION	SOIL RESISTANCE
о .	o.
0.200E 00	0.107E 03
0.400E 00	0.135E OB
0.800E 00	0.170E 03
0.120E 01	0.194E 03
0.600E 01	0.610E 02

X-COORD. TO INPUT P-Y CURVE 0.140E 03

DEFLECTION	SOIL RESISTANCE
0.	0.
0.200E 00	0.134E 03
0.400E 00	0.169E O3
0.800E 00	0.213E 03
0.120E 01	0.243E 03
0.600E 01	0.123E 03

X-COORD. TO INPUT P-Y CURVE 0.188E 03

DEFLECTION		SOIL RESISTANCE
o.		ο.
0.200E	00	0.175E 03
0.400E	00	0.221E OB
0.800E	00	0.278E 03
0.120E	01	0.318E 03
0.600E	01	0.264E 03

X-COORD. TO INPUT P-Y CURVE 0.214E 03

DEFLECTION	SOIL	RESISTANCE
0.	0.	
0.200E (00 0.	198E 03
0.400E (00 0.	250E 03
0.800E (oo o.	315E 03
0.120E (01 0.	360E 03
0.600E (01 0.	360E 03

***** OUTPUT DATA. *****

DATA	OUTPUT	P-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	PRINT FOR

CODE	CODE	CODE	P-Y CURVES
1	2	0	0

DEPTH FOR PRINTING P-Y CURVES ο.

***** FILE HEAD (BOUNDARY) DATA. *****

BOUNDARY	NO. OF SETS		
CONDITION	OF BOUNDARY		
CODE	CONDITIONS		
1	4		

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON PILE
1	0.500E 04	0.	0.100E 06
1	0.100E 05	o.	0.100E 06
1	0.150E 05	o.	0.100E 06
1	0.200E 05	o.	0.100E 06

***** CYCLIC DATA. *****

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	<u>Ó.</u>

**** PROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.240E 02

***** LCAD DATA. *****

Ę.		ULIC DHIM. *****
	CYCLIC(O) OR STATIC(1) LOADING O	NO. CYCLES OF LOADING O.
3	**** PR(OGRAM CONTROL DATA.
	MAX. NO. OF ITERATIONS 100	TOLERENCE ON F SOLUTION F CONVERGENCE 0.100E-02
2275	***** LC/	AD DATA. *****
	BOUNDARY SET NO. 1	NO. POINTS FOR DISTRIB. LATERAL LOAD VS. DEPTH O
	BOUNDARY SET NO.	NO. POINTS FOR Distrib. Lateral
and the second		

2	LOAD VS. DEPTH O
BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
~	LOAD VS. DEPTH
3	0
BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
4	0

<u>en anter de la contraction de la carta carta contracto de la contracto d</u>

N. 7. 7.

EX. PRO. 1 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

UNITS--ENGL

OUTPUT INFORMATION *****

(Load Case 1)

.

NO. OF ITERATIONS 5 = MAXIMUM DEFLECTION ERROR = 0.409E-03 IN

PILE LOADING CONDITION				
LATERAL LOAD AT PILE HEAD	=	0.500E	04	LBS
APPLIED MOMENT AT PILE HEAD	=	ο.		LBS-IN
AXIAL LOAD AT PILE HEAD	=	0.100E	06	LBS

	X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
7				STRESS	LOAD	MODULUS	RIGIDITY
	IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-1N**2
	*****	****	****	****	****	****	****
	0.	0.452E 00	ο.	0.278E 04	0.	ο.	0.304E 11
	12.00	0.414E 00	0.638E 05	0.327E 04	0.	ο.	0.304E 11
KS .	24.00	0.376E 00	0.128E 06	0.376E 04	ο.	ο.	0.304E 11
	36.00	0.339E 00	0.191E 06	0.424E 04	ο.	0.	0.304E 11
	48.00	0.303E 00	0.255E 06	0.473E 04	0.	0.	0.304E 11
Yest.	60.00	0.268E 00	0.318E 06	0.522E 04	0.	0.269E 03	0.304E 11
64	72.00	0.235E 00	0.374E 06	0.564E 04	0.	0.340E 03	0.304E 11
	84.00	0.203E 00	0.418E 06	0.597E 04	0.	0.429E 03	0.304E 11
	1						1
X	1						L
	Y						7
R.	•						A 9195 11
K	636.00	0.794E-03	-0.135E 04	0.412E 04	0.	0.990E 03	0.2126 11
R3	648.00	0.712E-03	-0.921E 03	0.412E 04	0.	0.990E 03	0.2126 11
24	660.00	0.623E-03	-0.591E 03	0.411E 04	0.	0.990E 03	0.2126 11
5	672.00	0.530E-03	-0.349E 03	0.411E 04	0.	0.990E 03	0.2126 11
	684.00	0.435E-03	-0.183E 03	0.411E 04	0.	0.990E 03	0.2125 11
	696.00	0.339E-03	-0.780E 02	0.411E 04	0.	0.990E 03	0.2128 11
	708.00	0.242E-03	-0.218E 02	0.411E 04	0.	0.990E 03	0.2128 11
	720.00	0.145E-03	0.	0.411E 04	0.	0.990E 03	0.2126 11
K.				C18			
k							
Mary Marian			1.41.41.4		والمرجع وتوجر والدوان		
PARAMAN PARAMA	00.36.36.36.36	CONTRACTOR OF	A State Co	1			(

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = -0.296E-02 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = 0.383E-03 LBS

COMPUTED LATERAL FORCE AT PILE HEAD = 0.50000E 04 LBS COMPUTED MOMENT AT PILE HEAD = 0. COMPUTED SLOPE AT PILE HEAD

IN-LBS = -0.31710E-02

THE OVERALL MOMENT IMBALANCE = 0.193E-03 IN-LBS = -0.388E-09 LBS THE OVERALL LATERAL FORCE IMBALANCE

OUTPUT SUMMARY

PILE HEAD DEFLECTION	=	0.452E 00	IN
MAXIMUM BENDING MOMENT	=	0.475E 06	IN-LBS
MAXIMUM TOTAL STRESS	=	0.831E 04	LBS/IN**2
MAXIMUM SHEAR FORCE	=	0.532E 04	LBS

Red a faile and a start a start a

Start Start

C20

(Load Case 2)

1

ĺ

X SAND

SECRETARY SUBJECT (SUBJECTION) CONTRACT (SUBJECT) SU

Ę,

NO. OF ITERATIONS = 8 MAXIMUM DEFLECTION ERROR = 0.921E-03 IN

PILE LOADING CONDITION		
LATERAL LOAD AT PILE HEAD	=	0.100E 05 LBS
APPLIED MOMENT AT PILE HEAD	=	O. LBS-IN
AXIAL LOAD AT PILE HEAD	=	0.100E 06 LBS

X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LOAD	MODULUS	RIGIDITY
IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-IN**2
*****	****	****	****	****	****	***
ο.	0.118E 01	ο.	0.278E 04	0.	ο.	0.304E 11
12.00	0.109E 01	0.129E 06	0.377E 04	0.	0.	0.304E 11
24.00	0.995E 00	0.258E 06	0.476E.04	0.	0.	0.304E 11
36.00	0.904E 00	0.387E 06	0.574E 04	0.	o.	0.304E 11
48.00	0.816E 00	0.516E 06	0.673E 04	0.	0.	0.304E 11
60.00	0.730E 00	0.645E 06	0.771E 04	ο.	0.139E 03	0.304E 11
72.00	0.646E 00	0.762E 06	0.861E 04	0.	0.173E 03	0.304E 11
84.00	0.567E 00	0.863E 06	0.938E 04	0.	0.213E 03	0.304E 11
ł						↓
636.00	0.205E-02-	-0.432E 04	0.415E 04	0.	0.990E 03	0.212E 11
648.00	0.190E-02-	-0.302E 04	0.414E 04	ō.	0.990E 03	0.212E 11
660.00	0.172E-02-	-0.200E 04	0.413E 04	0.	0.990E 03	0.212E 11
672.00	0.154E-02-	-0.122E 04	0.412E 04	ο.	0.990E 03	0.212E 11
684.00	0.134E-02-	-0.657E 03	0.411E 04	0.	0.990E 03	0.212E 11
696.00	0.114E-02-	-0.286E 03	0.411E 04	0.	0.990E 03	0.212E 11
708.00	0.936E-03-	-0.762E 02	0.411E 04	0.	0.990E 03	0.212E 11
720.00	0.732E-03	0.	0.411E 04	ο.	0.990E 03	0.212E 11

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = -0.984E-02 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = 0.108E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD COMPUTED MOMENT AT PILE HEAD COMPUTED SLOPE AT PILE HEAD = 0.10000E 05 LBS = 0. IN-LBS = -0.76937E-02

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE = 0.102E-02 IN-LBS = -0.135E-08 LBS

OUTPUT SUMMARY

ፚኯፚዹፚዹፚዹፚዹፚዹፚዹፚዹፚዹፚዺዀፚዺጚዺጟኯፚዾፚዾዀፚኯፚኯ

A DESCRIPTION OF A DESC

PILE HEAD DEFLECTION	=	0.118E 01 IN	l
MAXIMUM BENDING MOMENT	=	0.108E 07 IN	I-LBS
MAXIMUM TOTAL STRESS	=	0.146E 05 LB	S/IN**2
MAXIMUM SHEAR FORCE	=	0.108E 05 LB	S

77.

(Load Case 3)

NO. OF ITERATIONS = 11 MAXIMUM DEFLECTION ERROR = 0.968E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT PILE HEAD= 0.150E 05 LBSAPPLIED MOMENT AT PILE HEAD= 0. LBS-INAXIAL LOAD AT PILE HEAD= 0.100E 06 LBS

X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LOAD	MODULUS	RIGIDITY
IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS~IN**2
*****	****	****	****	****	****	****
ο.	0.226E 01	0.	0.278E 04	0.	0.	0.304E 11
12.00	0.210E 01	0.196E 06	0.428E 04	0.	0.	0.304E 11
24.00	0.193E 01	0.393E 06	0.578E 04	ο.	ο.	0.304E 11
36.00	0.177E 01	0.589E 06	0.728E 04	0.	0.	0.304E 11
48.00	0.161E 01	0.785E 06	0.878E 04	0.	0.	0.304E 11
60.00	0.146E 01	0.980E 06	0.103E 05	0.	0.781E 02	0.304E 11
72.00	0.131E 01	0.116E 07	0.117E 05	0.	0.104E 03	0.304E 11
84.00	0.116E 01	0.133E 07	0.129E 05	0.	0.134E 03	0.304E 11
ł						↓
600.00	0.368E-02-	0.217E 05	0.434E 04	0.	0.990E 03	0.212E 11
612.00	0.382E-02-	0.173E 05	0.430E 04	0.	0.990E 03	0.212E 11
624.00	0.384E-02-	0.134E 05	0.425E 04	0.	0.990E 03	0.212E 11
636.00	0.378E-02-	0.100E 05	0.422E 04	0.	0.990E 03	0.212E 11
648.00	0.364E-02-	0.717E 04	0.419E 04	0.	0.990E 03	0.212E 11
660.00	0.346E-02-	0.486E 04	0.416E 04	0.	0.990E 03	0.212E 11
672.00	0.324E-02-	0.304E 04	0.414E 04	0.	0.990E 03	0.212E 11
684.00	0.300E-02-	0.167E 04	0.413E 04	0.	0.990E 03	0.212E 11
696.00	0.275E-02-	0.736E 03	0.411E 04	0.	0.990E 03	0.212E 11
708.00	0.250E-02-	0.190E 03	0.411E 04	0.	0.990E 03	0.212E 11
720.00	0.224E-02	Ó.	0.411F 04	0	0 990E 03	0 2126 11

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.120E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.167E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD COMPUTED MOMENT AT PILE HEAD COMPUTED SLOPE AT PILE HEAD = 0.15000E 05 LBS = 0. IN-LBS = -0.13733E-01

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE = -0.443E-02 IN-LBS = -0.223E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION=0.226E01INMAXIMUM BENDING MOMENT=0.177E07IN-LBSMAXIMUM TOTAL STRESS=0.227E05LBS/IN**2MAXIMUM SHEAR FORCE=0.164E05LBS

C26

(Load Case 4)

THE REAL PROPERTY AND A REAL PROPERTY OF

A STANDARY - SAUGULARY

POTOTAL AND ALL AND AL

NO. OF ITERATIONS = 25 MAXIMUM DEFLECTION ERROR = 0.818E-03 IN

PILE LOADING CONDITION LATERAL LOAD AT PILE HEAD = APPLIED MOMENT AT PILE HEAD = AXIAL LOAD AT PILE HEAD =

-	0.200E	05	LBS
=	0.		LBS-IN
=	0.100E	06	LBS

X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LOAD	MODULUS	RIGIDITY
IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-IN**2
*****	*****	******	****	****	****	******
ο.	0.456E 01	0.	0.278E 04	0.	0.	0.304E 11
12.00	0.427E 01	0.270E 06	0.484E 04	0.	0.	0.304E 11
24.00	0.397E 01	0.539E 06	0.690E 04	0.	o.	0.304E 11
36.00	0.368E 01	0.809E 06	0.896E 04	0.	0.	0.304E 11
48.00	0.339E 01	0.108E 07	0.110E 05	0.	ο.	0.304E 11
60.00	0.310E 01	0.135E 07	0.131E 05	0.	0.234E 02	0.304E 11
72.00	0.282E 01	0.161E 07	0.151E 05	0.	0.339E 02	0.304E 11
84.00	0.255E 01	0.135E 07	0.169E 05	ο.	0.469E 02	0.304E 11
ł						ł
636.00	0.662E-02-	0.254E 05	0.438E.04	o.	0.990E 03	0.212E 11
648.00	0.695E-02-	0.187E 05	0.431E 04	o.	0.990E 03	0.212E 11
660.00	0.714E-02-	0.130E 05	0.425E 04	0.	0.990E 03	0.212E 11
672.00	0.725E-02-	0.834E 04	0.420E 04	0.	0.990E 03	0.212E 11
684.00	0.730E-02-	0.470E 04	0.416E 04	o.	0.990E 03	0.212E 11
696.00	0.732E-02-	0.209E 04	0.413E 04	o.	0.990E 03	0.212E 11
708.00	0.733E-02-	0.522E 03	0.411E 04	o.	0.990E 03	0.212E 11
720.00	0.733E-02	0.	0.411E 04	0.	0.990E 03	0.212E 11

C27

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT= -0.233E-01 IN-LBSTHE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT= 0.266E-02 LBSCOMPUTED LATERAL FORCE AT PILE HEAD= 0.20000E 05 LBSCOMPUTED MOMENT AT PILE HEAD= 0. IN-LBSCOMPUTED SLOPE AT PILE HEAD= -0.24829E-01

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE = 0.546E-02 IN-LBS = -0.480E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION	=	0.456E 01 IN
MAXIMUM BENDING MOMENT	=	0.286E 07 IN-LBS
MAXIMUM TOTAL STRESS	=	0.353E 05 LBS/IN**2
MAXIMUM SHEAR FORCE	=	0.225E 05 LBS

Antibact and the second second second

C29

· • • V.

EX. PRO. 1 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

SUMMARY TABLE

LATERAL	BOUNDARY	AXIAL			MAX.	MAX.
LOAD	CONDITION	LOAD	ΥT	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.500E	04 0.	0.100E 06	0.452E	00-0.317E-02	0.475E 04	0.831E 04
0.100E	05 0.	0.100E 06	0.118E	01-0.769E-02	0.108E 07	0.146E 05
0.150E	05 0.	0.100E 06	0.226E	01-0.137E-01	0.177E 07	0.227E 05
0.200E	05 0.	0.100E 06	0.456E	01-0.248E-01	0.286E 07	0.353E 05

Example problem 2

8. A free-head pile with no applied moment and a lateral load of 10,000 lb will be analyzed. An axial load of 100,000 lb will be applied at the pile head. p-y curves will be generated internally using the soft clay criteria for the soft clay, sand criteria for the sand, and unified clay criteria for the medium clay (A = 1.0 and F = 0.7 for the unified criteria). Loading will be assumed to be cyclic. Output will include points on the p-y curves at x coordinates of 60, 80, 100, 150, 200, 250, 300, and 500 in.

10 TITLE 20 EX. PRO. 2 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 1980. 30 UNITS 40 ENGL 50 PILE 120 2 720 29.E6 60 (Pile Properties - NI, NDIAM, LENGTH, EPILE, XGS) 60 0 16 1047 (XDIAM(I), DIAM(I), MINERT(I) 70 180 16 732 Where I = 1,NDIAM 80 SOIL 3 (Soil Description - NL) 60 240 90 1 1 30 LAYER(I), KSOIL)I), XTOP)I), XBOT(I), K(I), (AE(I), FR(I))100 2 4 240 360 25 Where I = 1.NL110 3 6 360 800 100 1.0 0.7 (Soil Strength Profile - NSTR) 120 STRENGTH 6 130 60 3.5 0 .02 XSTR(I),C1(I),PHI1(I),EE50(I) 140 240 3.5 0. .02 150 240 0 30 .02 Where I = 1, NSTR 160 360 0 30 .02 170 360 7 0 .01 180 800 7 0 .01 190 WEIGHT 6 (Unit Weight Profile - NGI) 200 60 .02 210 240 .02 XG1(I),GAM1(I) 220 240 .032 230 360 .032 Where I=1,NGI 240 360 .026 250 800 .026 260 OUTPUT 1 2 1 8 (Output Control - KOUTPT, INC, KPYOP, NNSUB) 270 60 80 100 150 200 250 300 500 (XNSUB(I) XNSUB(NNSUB) 280 BOUNDARY 1 1 (Boundary Condition at Pile Head - KBC, NRUN) 290 1 10000 0 1.E5 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I), Where I = 1, NRUN) 300 CYCLIC .0 0 (Cyclic Load Indicator - KCYCL, RCYCL) 310 CONTROL 100 .001 24 (Program Control - MAXIT, YTOL, EXDEFL) 320 END

(Input Echo)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NŪ.	INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE	IS DIVIDED	WITH DIFFERENT	ŨF	ELASTICITY	
		CHARACTERISTICS	PILE		
	120	2	0.720E 03	0.290E 08	0.600E 02

A second seco

and the farmer of

*.*1.

TOP OF	DIAMETER	MOMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
0.	0.160E 02	0.105E 04	0.359E 02
0.180E 03	0.160E 02	0.732E 03	0.243E 02

***** SOIL DATA. *****

NUMBER OF LAYERS

LAYER	P-Y CU	RVE TO	P OF	BOTT	ŨΜ	INITIA	L SOIL	. FAC	TOR	FACTOR	R
NUMBER	CONTROL	CODE LA	YER	OF LA	YER	MODULI	CONST	. "A	14	"F"	
1	1	0.600E	02 0	.240E 🔅	03	0.300E	02	ο.		o.	
2	4	0.2408	03 0	.360E	03	0.250E	02	ο.		ο.	
3	6	0.360E	03 0	.800E	03	0.100E	03	0.100E	01	0.700E	00

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

DEPTH BELOW TOP	EFFECTIVE
TO POINT	UNIT WEIGHT
0.600E 02	0.200E-01
0.240E 03	0.200E-01
0.240E 03	0.320E-01

ዾዀዀዀዀዀዀዀዀዀዀዀዀዀ

0.360E	03	0.320E-01
0.360E	03	0.260E-01
0.800E	03	0.260E-01

***** PROFILE DATA. *****

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH 6

DEPTH BELOW	UNDRAINED SHEAR	ANGLE OF INTERNAL	STRAIN AT 50%
TOP OF PILE	STRENGTH OF SOIL	FRICTION IN RADIANS	STRESS LEVEL
0.600E 02	0.350E 01	0.	0.200E-01
0.240E 03	0.350E 01	o.	0.200E-01
0.240E 03	0.	0.524E 00	0.200E-01
0.360E 03	o.	0.524E 00	0.200E-01
0.360E 03	0.700E 01	Ó.	0.100E-01
0.800E 03	0.700E 01	ο.	0.100E-01

***** P-Y DATA. *****

NO. OF P-Y CURVES 0

***** OUTPUT DATA. *****

DATA	OUTPUT	P-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	FRINT FOR
CODE	CODE	CODE	P-Y CURVES
1	20	1	8
OUTPUT CODE 1	INCREMENT CODE 20	PRINTOUT CODE 1	PRINT FOR P-Y CURVES 8

DEPTH FOR PRINTING P-Y CURVES 0.600E 02 0.800E 02 0.1002 03 0.150E 03 0.200E 03 0.250E 03 0.300E 03 0.500E 03

**** PILE HEAD (BOUNDARY) DATA. *****

1. The second states of the

BOUNDARY	NO. OF SETS
CONDITION	OF BOUNDARY
CODE	CONDITIONS
1	1

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON PILE
1	0.100E 05	0.	0.100E 06

***** CYCLIC DATA. *****

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

***** PROGRAM CONTROL DATA. *****

SETS

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.240E 02

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	Ō

GENERATED P-Y CURVES

Section And A

ፚኯጟኯዸኯፚኯጜኯጜኯፚኯፚኯፚኯዄዄኯዄዀኯኯኯኯኯኯኯኯ

THE	NUMBER	OF	CURVES	=	8	
THE	NUMBER	OF	POINTS ON EACH CURVE	#	17	

DEPTH IN	DIAM IN	C LBS/IN**2	GAMMA	E50
٥.	16.000	0.4E 01	0.2E-01	0.200E-01
		Y, IN		P.LBS/IN
		0.		ο.
		0.006		16.800
		0.200		52.917
		0.400		66.671
		0.600		76.319
		0.800		84.000
		1.000		90.486
		1.200		96.156
		1.400		101.226
		1.600		105.833
		1.800		110.071
		2.000		114.006
		2.200		117.686
		2.400		121.149
		6.400		70.560
		12.000		0.000
		16.000		ο.
DEPTH	TITOM	c	COMMO	55 0
TN	TN	ь 1 10 ст лікжо		F20
20.00	14 000	- AC OF	LD3/IN**3	0 000F 04
20.00	10.000	0.46 01	0.2E-01	0.200E-01

•		CHUNH	EGU
	LBS/IN**2	LBS/IN**3	
000	0.4E 01	0.2E-01	0.200E-01
	Y, IN		P.LBS/IN
	ο.		ο.
	0.006		20.940
	0.200		65.957
	0.400		83.100
	0.600		95.126
	0.800		104.700
	1.000		112.785
	1.200		119.852
	1.400		126.171
	1.600		131.914
	1.800		137.196
	2.000		142.100
	2.200		146.687
	2.400		151.004
	6.400		95.688
	12.000		18.577
	16.000		18.577

DEPTH	DIAM			E50
1N 40.00	16.000	0.4E 01	0.2E-01	0.200E-01
		Y, IN		P,LBS/IN
		0.		05 A9A
		0.006		20.000
		0.200		/8.77/ 09 520
		0.400		77.000 110.000
		0.600		113.733
		0.800		125.400
		1.000		130.083
		1.200		143.34/
		1.400		151.116
		1.600		157.994
		1.800		164.320
		2.000		170.194
		2.200		175.688
		2.400		180.858
		6.400		123.877
		12.000		44.499
		16.000		44.499
DEPTH	DIAM	c	GAMMA	E50
	TN	LBS/IN##2	1 BS/IN**3	
90.00	16 000	0.4E 01	0.2E-01	0.200E-01
70.00	10.000	V. 46 V.		
		Y, IN		P,LBS/IN
		0.004		35 430
		0.008		111 598
		0.200		140 404
		0.400		140.004
		0.800		100.201
		0.800		177.100
		1.000		170.027
		1.200		202.700
		1.400		213.470
		1.600		223.170
		1.800		232.132
		2.000		240.430
		2.200		248.171
		2.400		255.495
		6.400		207.740
		12.000		141.442
		16.000		141.442
ncotu	DI AM	Ċ	GAMMA	E50
	TN	LBS/IN##2	LBS/IN##3	
140.00	16 000	0.4F 01	0.2E-01	0.200E-01
140.00	10.000	VITE VI	VIDE VA	
		Y, IN		P.LBS/IN
		0.		0.
		0.006		45.780
		0.200		144.198

Ş

ATTENDA .

0.400 181.478 0.800 225.900 1.200 265.975 1.200 265.976 1.200 265.976 1.200 265.976 2.400 310.465 2.400 30.131 2.400 30.131 1.600 284.274 1.600 1.600 30.0 0.2E-01 0.88 0.55 0.16E 04 0.18E 1.11 527.778 0.131 527.778 0.133 627.427 0.224 889.772 0.154 675.100 1.54 7422 1.54 7427 1.54 7422 1.54 7422 1.54 7422								
1.200 262.025 1.400 268.39 2.400 310.445 2.200 320.493 2.400 330.131 1.6.00 284.294 1.6.00 1.6.0 30.0 0.2E-01 0.68 0.55 0.16E 04 0.18E V P IN LBS/IN 0.067 422.222 0.111 527.773 0.178 720.334 0.200 762.233 0.111 527.773 0.244 839.304 0.202 801.772 0.244 839.304 0.202 1400.160 1.6.00 0.000 0.158 0.33.33 0.111 066.647 0.202 127.33.33 0.113 066.647 0.200 1200.000 0.178 1066.647 0.200 1200.000 0.178 1066.647 0.200 1200.000 0.122 127.319 1.00000 1.120 0000 1.120 0000				0.4 0.6 0.8 1.0	400 500 300 500		181.678 207.969 228.900 246.575	
1,2000 299,944 2,200 320,693 2,400 330,131 6,400 284,294 16,000 284,294 17,000 16,00 30,0 0,22-01 0,680 0,55 0,166 04 0,186 17,000 16,00 30,0 0,22-01 0,680 0,55 0,166 04 0,186 1,111 527,778 0,133 427,427 0,067 314,667 0,069 422,222 0,222 901,772 0,244 839,304 0,260 1400,160 10,867 1400,160 10,001 16,000 1400,160 10,867 1400,000 0,158 933,333 0,044 264,647 0,067 1400,000 0,158 933,333 0,178 1066,647 0,200 120,000 0,178 1066,647 0,200 120,000 0,178 1066,647 0,200 120,000 0,178 1066,647 0,200 1200,000 0,222 1277,319				1.2 1.4 1.6	200 400 500		262.025 275.841 288.396	
2,400 330,131 4,400 310,732 12,000 284,224 16,000 294,224 16,000 294,224 16,000 294,224 DEPTH DIAM PHI GAMMA A B PCT PCD IN IN DEG LBS/IN++3 190,00 16,00 30,0 0.2E-01 0.88 0.55 0.16E 04 0.13E V P IN LBS/IN 0,007 316,667 0,044 211,111 0,067 316,667 0,089 422,222 0,111 3 627,427 0,136 675,613 0,178 720,334 0,200 742,232 0,222 801,772 0,264 839,304 0,267 875,100 0,600 1400,160 10,867 1400,160 10,967 400,000 0,0699 533,333 0,044 266,667 0,133 800,000 0,178 1066,667 0,200 1200,000 0,222 1277,319 10,000 10,000 0,222 1277,319 10,000 10,000 10,000 10,000				1.0 2.0 2.2	300 200 200		299.944 310.665 320.693	
12.000 224.294 14.000 224.294 14.000 224.294 DEPTH DIAM PHI GAMMA A B PCT PCD IN LBS/IN 0.2 0. 0.022 10556 0.044 211.111 0.067 3146.467 0.089 422.222 0.111 527.778 0.156 475.413 0.156 475.413 0.156 475.413 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 16.000 16.00 000 0.0667 100.000 0.178 1046.647 0.178 1046.647 0.178 1046.647 0.222 1279.319				2.4	400 400		330.131 310.732	
DEPTH DIAM PHI GAMMA A B PCT PCD 190.00 16.00 30.0 0.22-01 0.83 0.55 0.16E 04 0.18E V P IN LBS/IN 0.00 0.022 105.556 0.044 211.111 0.067 316.647 0.0111 527.778 0.133 627.427 0.156 675.613 0.200 762.232 0.111 527.778 0.156 675.613 0.200 762.232 0.222 801.1772 0.267 875.100 0.267 875.100 0.200 762.232 0.222 80.0140 1400.160 1400.160 16.000 1400.0160 1400.160 1400.160 1400.160 16.000 16.001 30.0 0.2E-01 0.68 0.55 0.28E 04 0.25E 04 V P IN LBS/IN 0.0 0.0 0.0 0.0 0.0022 133.333 0.044 2667				12.0	000 000		284.294 284.294	
190.00 16.00 30.0 0.2E-01 0.88 0.55 0.14E 04 0.18E V P IN LBS/IN 0.007 316.667 0.022 105.556 0.024 221.111 0.067 316.667 0.133 627.427 0.135 627.427 0.135 627.427 0.135 627.427 0.156 627.613 0.178 720.334 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 10.867 1400.160 0.088 0.55 0.288 04 0.258 0 0.022 133.333 0.011 666.667 0.022 133.333 0.111 666.667 0.022 1200.000 0.222 1279.319	DEPTH IN	DIAM IN	PHI DEG	GAMMA LBS/IN**3	A	B	РСТ	PCD
V F IN LBS/IN 0. 0.022 105.556 0.044 211.111 0.067 422.222 0.111 527.778 0.133 627.427 0.136 675.613 0.178 720.334 0.220 762.232 0.222 801.772 0.244 839.304 0.247 875.100 0.600 1400.160 10.867 1400.160 10.867 1400.160 10.867 1400.160 10.867 1400.160 10.867 1400.160 10.867 1400.160 10.867 1400.160 10.867 1400.160 10.867 5.733 1400.160 10.867 1400.160 10.967 5.33.333 0.044 266.667 0.069 533.333 0.111 666.667 0.133 800.000 0.069 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.111 666.667 0.200 1200.000 0.222 127.319	190.00	16.00	30.0	0.2E-01	0.88 0	.55	0.16E 04 0).18E (
0.022 105.556 0.044 211.111 0.067 316.667 0.089 422.222 0.111 527.778 0.133 627.427 0.156 675.613 0.178 720.334 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.000 10.867 1400.160 16.000 1400.160 16.000 10.867 100.160 16.000 10.067 100.255 0.28E 04 0.255 0 V P IN LBS/IN 0. 0. 0.022 133.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.178 1066.667 0.200 1200.000 0.222 1279.319				Y I	4		P LBS/IN	
U.044 0.067 314.667 0.089 422.222 0.111 527.778 0.133 627.427 0.156 675.613 0.200 762.232 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 5.733 1400.160 16.867 1400.160 16.867 1400.160 16.867 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 10.867 1400.160 10.88 0.288 0.128 0.222 1279.319 108.667 0.200 1200.000 0.222 1279.319				0.0	022		105.556	
0.089 422.222 0.111 527.778 0.133 627.427 0.156 675.613 0.178 720.334 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 10.867 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.00 10.867 100.160 16.00 16.00 30.0 0.2E-01 0.88 0.55 0.28E 04 0.25E 0 Y P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.009 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319				0.0	067		316.667	
0.133 627.427 0.156 675.613 0.178 720.334 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 10.867 1400.160 10.867 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 16.000 1400.160 0.86 0.55 0.28E 04 0.25E 0 Y P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.220 1200.000 0.222 1279.319				0.0)89 [11		422.222 527.778	
0.178 720.334 0.200 762.232 0.222 801.772 0.244 839.304 0.267 875.100 0.600 1400.160 5.733 1400.160 10.867 1400.160 16.000 1400.160 16.000 1400.160 V P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 120.000 0.222 1279.319				0.1	133 156		627.427 675.613	
0.222 801.772 0.224 839.304 0.267 875.100 0.600 1400.160 5.733 1400.160 10.867 1400.160 16.000 1400.160 1400.160 10.867 1400.160 1400.160 1400.160 1400.160 1400.160 1400.160 0.250 1400.160 0.250 0 V P IN LBS/IN 0. 0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.111 666.667 0.200 1200.000 0.222 1279.319				0.1	78		720.334	
0.244 839.304 0.267 875.100 0.600 1400.160 10.867 1400.160 10.867 1400.160 16.000 1400.160 16.000 1400.160 16.000 30.0 0.2E-01 0.88 0.55 0.28E 04 0.25E 0 Y P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.069 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319 C38				0.2	222		801.772	
0.600 1400.160 5.733 1400.160 10.867 1400.160 16.000 1400.160 16.000 1400.160 DEPTH DIAM PHI GAMMA A B PCT PCD IN IN DEG LBS/IN**3 240.00 16.00 30.0 0.2E-01 0.68 0.55 0.28E 04 0.25E 0 Y P IN LBS/IN 0. 0. 0.022 133,333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319 C38				0.2	244 267		839.304 875.100	
10.867 1400.160 16.000 1400.160 DEPTH DIAM PHI GAMMA A B PCT PCB IN IN DEG LBS/IN**3 240.00 16.00 30.0 0.2E-01 0.88 0.55 0.28E 04 0.25E V P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319 C38				0.6 5.7	500 733		1400.160 1400.160	
DEPTH DIAM PHI GAMMA A B PCT PCB IN IN DEG LBS/IN**3 240.00 16.00 30.0 0.2E-01 0.88 0.55 0.28E 04 0.25E 0 Y P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319				10.8 16.0	867 200		1400.160 1400.160	
IN IN DEG LBS/IN**3 240.00 16.00 30.0 0.2E-01 0.88 0.55 0.28E 04 0.25E 0 Y P IN LBS/IN 0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319	DEPTH	DIAM	PHI	Gamma	A	B	РСТ	PCD
Y F IN LBS/IN 0. 0. 0.022 133.333 0.044 266.647 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319 C38	IN 240.00	IN 16.00	DEG 30.0	LBS/IN**3 0.2E-01	0.88 0	.55	0.28E 04 0	.25E (
0. 0. 0.022 133.333 0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319 C38				Y IN	1		P LBS/IN	
0.044 266.667 0.067 400.000 0.089 533.333 0.111 666.667 0.133 800.000 0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319				o. 0.0	22		0. 133.333	
C38 C1007 C1007 C38 C1007 C38 C30 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C33 C1007 C107 C107 C107 C107 C107 C107 C10				0.0)44)47		266.667	
C38				0.0	89		533.333	
0.156 933.333 0.178 1066.667 0.200 1200.000 0.222 1279.319 C38				0.1	.11 .33		800.000	
0.200 1200.000 0.222 1279.319 C38				0.1	.56 .78		933.333 1066.667	
C38				0.2 0.2	200 222		1200.000 1279.319	
					C38			
					C38			

ŝ

0.244	1339.206
0.267	1396.323
0.600	2234.117
5.733	2234.117
10.867	2234.117
16.000	2234.117

DEPTH	DIAM	С	CAVG	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	LBS/IN**3	
440.00	16.000	0.7E 01	0.4E 01	0.3E-01	0.100E-01
		Y		P	
		IN		LBS/IN	
		ο.		ο.	
		0.013	3	220.142	
		0.027	7	277.362	
		0.040)	317.500	
		0.053	3	349.454	
		0.067	7	376.438	
		0.080)	400.025	
		0.093	3	421.117	
		0.107	7	440.285	
		0.120)	457.914	
		0.133	3	474.282	
		0.147	7	489.592	
		0.160	5	504.000	
		1.173	3	504.000	
		2.187	- 7	504.000	
		3.200	5	504.000	
		4.800	5	504.000	

ALLER REAL REPORT OF ALLER AND A REAL AND A REAL PROPERTY OF A

1975 A.R. 5470

AND A LONG AND A CONTRACT OF A

A. . . .

Section 1

C40

A STATE

1.0.0

EX. PRO. 2 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

UNITS--ENGL

OUTPUT INFORMATION

NO. OF ITERATIONS = 14 MAXIMUM DEFLECTION ERROR = 0.562E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT PILE HEAD= 0.100E 05 LBSAPPLIED MOMENT AT PILE HEAD= 0. LBS-INAXIAL LOAD AT PILE HEAD= 0.100E 06 LBS

DISTR. SOIL FLEXURAL X DEFLEC MOMENT TOTAL STRESS LOAD MODULUS RIGIDITY LBS/IN LBS/IN**2 LBS-IN**2 TN IN LBS-IN LBS/IN##2 ο. 0.304E 11 ο. 0.115E 04 0. 0.135E 01 0. 0.304E 11 12.00 0.125E 01 0.130E 06 0.214E 04 0. ο. 0.304E 11 24.00 0.115E 01 0.260E 06 0.313E 04 0. ο. 0.304E 11 36.00 0.105E 01 0.390E 06 0.413E 04 0. ο. 0.304E 11 48.00 0.954E 00 0.520E 06 0.512E 04 0. ο. 60.00 0.859E 00 0.649E 06 0.611F 04 0. 0.100E 03 0.304E 11 0.124E 03 0.304E 11 72.00 0.767E 00 0.769E 06 0.702E 04 0. 0.152E 03 0.304E 11 84.00 0.679E 00 0.875E 06 0.783E 04 0. 0.576E 05 0.212E 11 ~636.00-0.203E-06-0.944E 02 0.199E 04 0. 0.588E 05 0.212E 11 648.00 0.511E-06-0.649E 02 0.199E 04 0. 660.00 0.783E-06-0.395E 02 0.199E 04 0. 0.600E 05 0.212E 11 672.00 0.785E-06-0.207E 02 0.198E 04 0. 0.612E 05 0.212E 11 684.00 0.642E-06-0.874E 01 0.198E 04 0. 0.624E 05 0.212E 11 696.00 0.438E-06-0.249E 01 0.198E 04 0. 0.636E 05 0.212E 11 708.00 0.216E-06-0.243E 00 0.198E 04 0. 0.648E 05 0.212E 11 0.198E 04 0. 0.660E 05 0.212E 11 720.00-0.931E-08 0.

OUTPUT VERIFICATION

3

Š

No;

N (**1**

THE MAXIMUM MOMENT IMBALANCE FOR ANY	ELEMENT = 0.106E-01 IN-LBS
THE MAX. LATERAL FORCE IMBALANCE FOR	ANY ELEMENT = $0.143E-02$ LBS
COMPUTED LATERAL FURCE AT PILE HEAD	= 0.10000E 00 LBS
COMPUTED MOMENT AT PILE HEAD	= 0. IN-LBS
COMPUTED SLOPE AT PILE HEAD	= -0.84314E-02
THE OVERALL MOMENT IMBALANCE	= 0.285E-02 IN-LBS
THE OVERALL LATERAL FORCE IMBALANCE	= -0.131E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION	=	0.135E	01	IN
MAXIMUM BENDING MOMENT	=	0.116E	07	IN-LBS
MAXIMUM TOTAL STRESS	=	0.141E	05	LBS/IN**2
MAXIMUM SHEAR FORCE	=	0.108E	05	LBS

EX. PRO. 2 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

SUMMARY TABLE ******

LATERAL	BOUNDARY	AXIAL			MAX.	MAX.
LOAD	CONDITION	LOAD	ΥT	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.100E C)5 ().	0.100E 06	0.135E	01-0.843E-02	0.116E 07	0.141E 05

1506°) 605°65°669

1. Marcheller

1.1.4.

2022/02/02/02

RD	AD-A144 641 LATERALLY LOADED PILES AND COMPUTER PROGRAM COM624G(U) 3/4 TEXAS UNIV AT AUSTIN L C REESE ET AL. APR 84 WES-TR-K-84-2													
UN	CLAS	SIFIED									F/G 1	3/13	NL	·
						-								
Ľ														,

なまたわちたり

Sand and and a start of the

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Example problem 3

9. A fixed-head pile will be analyzed under a lateral load of 10,000 lb and an axial load of 100,000 lb. p-y curves will be generated internally using the soft clay criteria for both clay layers and sand criteria for the sand layer. A p-y curve will be output at x = 500 in.

10 TITLE 20 EX. PRO. 3 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 1980. 30 UNITS 40 ENGL 50 FILE 120 2 720 29.E6 60 (Pile Properties - NI,NDIAM,LENGTH,EPILE,XGS) 60 0 16 1047 (XDIAM(I), DIAM(I), MINERT(I) 70 180 16 732 where I = 1, NDIAM SO STRENGTH 6 (Soil Strength Profile - NSTR) 90 60 3.5 0.0 .02 100 240 3.5 0.0 .02 XSTR(I),Cl(I),PHI1(I),EE50(I) 110 240 0.0 30. .02 where I = 1.NSTR120 360 0.0 30. .02 130 360 7.0 0.0 .01 140 800 7.0 0.0 .01 (Unit Weight Profile - NGI) 150 WEIGHT 6 160 60.02 XG1(I), GAM1(I)170 240 .02 180 240 .032 where I = 1, NGI190 360 .032 200 360 .026 210 800 .026 (Soil Description - NL) 220 SOIL 3 LAYER(I), KSOIL(I), XTOP(I), XBOT(I), K(I) 230 1 1 60 240 30 where I = 1, NL240 2 4 240 360 -25 250 3 1 360 800 100 (Boundary Conditions at Pile Head - KBC, NRUN) 260 BOUNDARY 2 1 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I) Where I=1, NRUN) 270 1 10000 0.0 1.E5 (Output Control - KOUTPT, INC, KPYOP, NNSUB) 280 OUTPUT 1 2 1 1 (XNSUB(I) ... XNSUB(NNSUB) 290 500 (Cyclic Load Indicator - KCYCL, RCYCL) 300 CYCLIC .0 0 310 END

#

(Input Echo)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NO.	INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE	IS DIVIDED	WITH DIFFERENT	OF	ELASTICITY	
		CHARACTERISTICS	PILE		
	120	2	0.720E 03	0.290E 08	0.600E 02

TOP OF	DIAMETER	MOMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
o.	0.160E 02	0.105E 04	0.359E 02
0.180E 03	0.160E 02	0.732E 03	0.243E 02

***** SOIL DATA. *****

NUMBER OF LAYERS 3

LAYER	P-Y CUP	RVE TO	P OF	BOTI	ΓŨΜ	INITIA	AL SOIL	. FAC	FOR	FACTOR	2
NUMBER	CONTROL	CODE LA	YER	OF LA	AYER	MODUL I	CONST	'. "A'	18	"F"	
1	1	0.6008	E 02 -	0.240E	03	0.300E	02	o.	C).	
2	4	0.2408	E 03 (0.360E	03	0.250E	02	ō.	C).	
3	2	0.3608	E 03 4	0.800E	03	0.100E	03	0.100E	01 0	.700E	00

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

CARLES CONTRACTOR

EFFECTIVE
UNIT WEIGHT
0.200E-01
0.200E-01
0.320E-01

0.360E 03	0.320E-01
0.360E 03	0.260E-01
0.800E 03	0.260E-01

***** PROFILE DATA. *****

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH

6

anda in secondari kananan Manananan askeenaa askeenaa 5

DEPTH BELOW	UNDRAINED SHEAR	ANGEL OF INTERNAL	STRAIN AT 50%
TOP OF PILE	STRENGTH OF SOIL	FRICTION IN RADIANS	STRESS LEVEL
0.600E 02	0.350E 01	0.	0.200E-01
0.240E 03	0.350E 01	0.	0.200E-01
0.240E 03	0.	0.524E 00	0.200E-01
0.360E 03	0.	0.524E 00	0.200E-01
0.360E 03	0.700E 01	0.	0.100E-01
0.800E 03	0.700E 01	0.	0.100E-01

***** P-Y DATA. *****

NO. OF P-Y CURVES O

**** OUTPUT DATA. *****

DATA	OUTPUT	P-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	PRINT FOR
CODE	CODE	CODE	P-Y CURVES
1	2	1	1

DEPTH FOR PRINTING P-Y CURVES 0.500E 03

***** PILE HEAD (BOUNDARY) DATA, *****

BOUNDARY	NO. OF SETS
CONDITION	OF BOUNDARY
CODE	CONDITIONS
2	1

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON FILE
1	0.100E 05	<i>o</i> .	0.100E 06

***** CYCLIC DATA. *****

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

Sec.

***** PROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.240E 02

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	0

GENERATED P-Y CURVES

THE	NUMBER	OF	CURVES				=	1	
THE	NUMBER	OF	POINTS	ON	EACH	CURVE		17	

DEPTH	DIAM		GAMMA	E50
440.00	16.000	0.7E 01	0.3E-01	0.100E-01
		Y, IN		P.LBS/IN
		ο.		ο.
		0.003		100.800
		0.100		317.500
		0.200		400.025
		0.300		457.914
		0.400		504.000
		0.500		542.918
		0.600		576.936
		0.700		607.356
		0.800		635.000
		0.900		660.427
		1.000		684.033
		1.100		706.114
		1.200		726.894
		3.200		725.760
		6.000		725.760
		8.000		725.760

لمالما بمالما سالما مالما مالما

٢,

C51

EX. PRO. 3 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

UNITS--ENGL

OUTPUT INFORMATION

NO. OF ITERATIONS = 9 MAXIMUM DEFLECTION ERROR = 0.796E-03 IN

PILE LOADING CONDITION LATERAL LOAD AT PILE HEAD SLOPE AT PILE HEAD AXIAL LOAD AT PILE HEAD

=	0.100E	05	LBS
=	o.		IN/IN
=	0.100E	06	LBS

X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LOAD	MODULUS	RIGIDITY
IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-IN**2
*****	*****	** ******	****	****	*****	***
ο.	0.269E	00-0.986E 06	0.103E 05	0.	0.	0.304E 11
12.00	0.267E	00-0.866E 06	0.940E 04	0.	0.	0.304E 11
24.00	0.261E	00-0.745E 06	0.848E 04	0.	0.	0.304E 11
36.00	0.251E	00-0.624E 06	0.755E 04	0.	0.	0.304E 11
48.00	0.238E	00-0.503E 06	0.663E 04	ο.	0.	0.304E 11
60.00	0.223E	00-0.381E 06	0.570E 04	0.	0.247E 03	0.304E 11
72.00	0.206E	00-0.266E 06	0.481E 04	ο.	0.299E 03	0.304E 11
84.00	0.187E	00-0.159E 06	0.400E 04	0.	0.359E 03	0.304E 11
ł						¥
636.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
648.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
660.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
672.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
684.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
696.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
708.00	0.100E-	36 0.	0.411E 04	0.	0.196E 12	0.212E 11
720.00	0.100E-	36 0.	0.411E 04	ο.	0.196E 12	0.212E 11

OUTPUT VERIFICATION

1

didie ie

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.481E-02 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.743E-03 LBS

COMPUTED LATERAL FORCE AT PILE HEAD	= 0.10000E 05 LBS
COMPUTED SLOPE AT PILE HEAD	= 0. IN/IN
THE OVERALL MOMENT IMBALANCE	= -0.179E-02 IN-LBS
THE OVERALL LATERAL FORCE IMBALANCE	= -0.406E-09 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION=0.269E 00 INMAXIMUM BENDING MOMENT=-0.986E 06 IN-LBSMAXIMUM TOTAL STRESS=0.103E 05 LBS/IN**2MAXIMUM SHEAR FORCE=0.101E 05 LBS

EX. PRO. 3 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

SUMMARY TABLE

LATERAL	BOUNDARY	AXIAL			MAX.	MAX.
LOAD	CONDITION	LOAD	ΥT	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.100E	05 0.	0.100E 06	0.269E (00 0.	-0.986E 06	0.103E 05

••••

. . . .

AND STATES AND A S

5

Example problem 4

10. A pile with a rotational restraint of $M_s/S_t = 1 \times 10^6$ in.-lb will be analyzed under a lateral load of 10,000 lb and an axial load of 100,000 lb. p-y curves will be generated internally using soft clay criteria for the soft clay, sand criteria for sand, and the criteria for stiff clay below the water table for the medium clay. Coordinates of a p-y curve at x = 500 in. will be output.

10 TITLE 20 EX. PRO. 4 FROM DOCUMENTATION OF COM. PRO. COM424 BY L.C. REESE, 1980. 30 UNITS 40 ENGL 50 PILE 120 2 720 29.E6 60 (Pile Properties - NI, NDIAM, LENGTH, EPILE, XGS) 60 0 16 1047 (XDIAM(I), DIAM(I), MINERT(I) 70 180 16 732 where I = 1, NDIAM 80 SOIL 3 (Soil Description - NL) 90 1 1 60 240 30 (LAYER(I), KSOIL(I), XTOP(I) XBOT(I), K(I) 100 2 4 240 360 25 where I = 1, NL110 3 2 360 800 100 120 OUTPUT 1 2 1 1 (Output Control - KOUTPT, INC, KPYOP, NNSUB) 130 500 (XNSUB(I) ... XNSUB(NNSUB)) 140 BOUN 3 1 (Boundary Condition at Pile Head - KBC, NRUN) 150 1 10000 1.E6 1.E5 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I), Where I = 1, NRUN) 160 CONTROL 100 .001 24 (Program Control - MAXIT, YTOL, EXDEFL) 170 STRENGTH & (Soil Strength Profile - NSTR) 180 60 3.5 0 .02 190 240 3.5 0 .02 (XSTR(I),C1(I),PHI1(I),EE50(I) 200 240 0 30 .02 where I = 1, NSTR210 360 0 30 .02 220 360 7 0 .01 230 800 7 0 .01 (Unit Weight Profile - NGI) 240 WEIGHT 6 250 60 .02 XG1(I), GAM1(I)260 240 .02 270 240 .032 where I = 1, NGI280 360 .032 290 360 .026 300 800 .026 310 CYCLIC O O (Cyclic Load Indicator - KCYCL, RCYCL) 320 END

(Input Echo)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NO.	INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE	IS DIVIDED	WITH DIFFERENT	ÛF	ELASTICITY	
		CHARACTERISTICS	PILE		
	120	2	0.720E 03	0.290E 08	0.600E 02

TOP OF	DIAMETER	MOMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
o.	0.160E 02	0.105E 04	0.359E 02
0.180E 03	0.160E 02	0.732E 03	0.243E 02

***** SOIL DATA. *****

NUMBER OF LAYERS

LAYER	P-Y CUP	RVE TO	POF	BOTT	ΟM	INITIA	L SOIL	. FAC	TOR	FACTO	R
NUMBER	CONTROL	CODE LA	YER	OF LA	YER	MODULI	CONST	r. "A	**	"F"	
1	1	0.600E	02 0	.240E	03	0.300E	02	o.		ο.	
2	4	0.240E	03.0	.360E	03	0.250E	02	ο.		0.	
3	1	0.360E	03 0	0.800E	03	0.100E	03	0.100E	01	0.700E	00

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

DEPTH BELOW TOP	EFFECTIVE
TO POINT	UNIT WEIGHT
0.600E 02	0.200E-01
0.240E 03	0.200E-01
0.240E 03	0.320E-01

0.360E	03	0.320E-01
0.360E	03	0.260E-01
0.800E	03	0.260E-01

***** PROFILE DATA. *****

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH

6

DEPTH BELOW	UNDRAINED SHEAR	ANGLE OF INTERNAL	STRAIN AT 50%
TOP OF PILE	STRENGTH OF SOIL	FRICTION IN RADIANS	STRESS LEVEL
0.600E 02	0.350E 01	Ó.	0.200E-01
0.240E 03	0.350E 01	0.	0.200E-01
0.240E 03	0.	0.524E 00	0.200E-01
0.360E 03	0.	0.524E 00	0.200E-01
0.360E 03	0.700E 01	0.	0.100E-01
0.800E 03	0.700E 01	0.	0.100E-01

***** P-Y DATA. *****

NO. OF P-Y CURVES O

***** OUTPUT DATA. *****

DATA	OUTPUT	F-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	FRINT FOR
CODE	CODE	CODE	F-Y CURVES
1	20	1	1

DEPTH FOR PRINTING P-Y CURVES 0.500E 03

***** PILE HEAD (BOUNDARY) DATA. *****

BOUNDARY	NO. OF SETS
CONDITION	OF NDARY
CODE	CONDITIONS
3	1

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON PILE
1	0.100E 05	0.100E 07	0.100E 06

***** CYCLIC DATA. *****

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

***** FROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.240E 02

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	0

GENERATED P-Y CURVES

h

K

THE	NUMBER	OF	CURVES				Ħ	1
THE	NUMBER	OF	POINTS	ΟN	EACH	CURVE	*	17

DEPTH IN	DIAM IN	C LBS/IN*#2	CAVG LBS/IN**2	Gamma LBS/IN**3	E50
440.00	16.000	0.7E 01	0.4E 01	0.3E-01	0.100E-01
AS =0.60	AC =0	.зо y,	IN	P.LBS/	IN
		ο.		ο.	
		0.020		94.272	
		0.039		172.416	
		0.059		235.477	
		0.079		284.574	
		0.098		320.928	
		0.118		345.890	
		0.138		360.996	
		0.157		368.079	
		0.177		369.600	
		0.197		368.079	
		0.216		360.996	
		0.236		345.890	
		0.394		242.901	
		0.551		139.857	
		0.708		36.812	
		7.872		36.812	

EX. PRO. 4 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

UNITS--ENGL

0UTPUT INFORMATION ******

NO. OF ITERATIONS = 14 MAXIMUM DEFLECTION ERROR = 0.568E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT PILE HEAD= 0.100E 05 LBSROTATIONAL RESTRAINT= 0.100E 07 LBS-INAXIAL LOAD AT PILE HEAD= 0.100E 06 LBS

MOMENT X DEFLEC TOTAL DISTR. SOIL FLEXURAL STRESS LOAD MODULUS RIGIDITY IN IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN LBS/IN**2 军家教学家,我这家家教学家家家 教学家教学家教学 教学家学校学家学校 教学家学校学校学校学校学校 教学校学校学校学校 学校会学术学校学校 0.135E 01-0.837E 04 0.121E 04 0. **o**. 0. 0.304E 11 12.00 0.125E 01 0.122E 06 0.208E 04 0. 0.304E 11 0. 24.00 0.115E 01 0.252E 06 0.307E 04 0. 0.304E 11 0. 36.00 0.105E 01 0.382E 06 0.406E 04 0. ο. 0.304E 11 48.00 0.950E 00 0.511E 06 0.505E 04 0. 0.304E 11 **o.** 60.00 0.856E 00 0.641E 06 0.604E 04 0. 0.100E 03 0.304E 11 72.00 0.765E 00 0.760E 06 0.696E 04 0. 0.124E 03 0.304E 11 84.00 0.677E 00 0.866E 06 0.776E 04 0. 0.152E 03 0.304E 11 0.522E 04 0.212E 11 636.00 0.744E-05 0.105E 04 0.200E 04 0. 0.522E 04 0.212E 11 648.00-0.147E-04 0.817E 03 0.199E 04 0. 0.522E 04 0.212E 11 660.00-0.312E-04 0.596E 03 0.199E 04 0. 0.522E 04 0.212E 11 672.00-0.438E-04 0.398E 03 0.199E 04 0. 0.522E 04 0.212E 11 684.00-0.536E-04 0.232E 03 0.199E 04 0. 0.522E 04 0.212E 11 696.00-0.618E-04 0.107E 03 0.199E 04 0. 0.522E 04 0.212E 11 708.00-0.693E-04 0.273E 02 0.198E 04 0. 0.522E 04 0.212E 11 0.198E 04 0. 720.00-0.765E-04 0.

C64

OUTPUT VERIFICATION

 TH: MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT
 = 0.104E-01 IN-LBS

 THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT
 = 0.145E-02 LBS

 COMPUTED LATERAL FORCE AT PILE HEAD
 = 0.10000E 05 LBS

 COMPUTED ROTATIONAL STIFFNESS AT PILE HEAD
 = 0.10000E 07 IN-LB

 S
 COMPUTED SLOPE AT PILE HEAD
 = -0.83710E-02

 THE OVERALL MOMENT IMBALANCE
 = -0.324E-02 IN-LBS

 THE OVERALL LATERAL FORCE IMBALANCE
 = -0.132E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION=0.135E 01 INMAXIMUM BENDING MOMENT=0.115E 07 IN-LBSMAXIMUM TOTAL STRESS=0.140E 05 LBS/IN**2MAXIMUM SHEAR FORCE=0.108E 05 LBS

EX. PRO. 4 FROM DOCUMENTATION OF COM. PRO. COM624 BY L.C. REESE, 19 80.

SUMMARY TABLE

LATERAL	BOUNDARY	AXIAL			MAX.	MAX.
LOAD	CONDITION	LOAD	ΥT	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.100E	05 0.100E 07	0.100E 06	0.135E	01-0.837E-02	0.115E 0	7 0.140E 05

APPENDIX D: ADDITIONAL EXAMPLE PROBLEMS

Example 1

1. This example is provided to illustrate program sequence and also for comparison to the problem analyzed earlier by nondimensional methods in Appendix A. Pile properties and soil description are shown in Figure D1. Prompts, data and output echoes, and graphics are presented as they would appear at the user's terminal. Input is from a data file, and p-y curves will be generated for verification at x coordinates of 0, 16, 32, 48, 80, 128, 154, 240, 480, and 720 in.

Figure D1. Pile and soil properties

10 TITLE 20 COMPARISON SOLUTION FOR EXAMPLE SOLVED BY NON-DIMENSIONAL METHOD 30 UNITS 40 ENGL 50 PILE 72 1 720 29.E6 0 (Pile Properties - NI, NDIAM, LENGTH, EPILE, XGS) 60 0 16 1082.79 (XDIAM(I), DIAM(I), MINERT(I), Where I=1, NDIAM) 70 SOIL 1 (Soil Description - NL) 80 1 1 0 720 25 (LAYER(I), KSOIL(I), XTOP(I), XBOT(I), K(I) Where I = 1, NL)90 WEIGHT 2 (Unit Weight Profile - NGI) 100 0 .0174 (XG1(I),GAM1(I) 110 720 .0174 Where I = 1,NGI 120 STRENGTH 2 (Soil Strength Profile - NSTR) 130 0 3.472 0 .01 XSTR(I),C1(I),PHI1(I),EE50(I) 140 720 3.472 0 .01 Where I = 1, NSTR (Output Control - KOUTPT, INC, KPYOP, NNSUB) 150 OUTPUT 1 2 1 10 160 0 16 32 48 80 128 154 240 480 720 (XNSUB(I) ... XNSUB(NNSUB) 170 BOUN 1 1 (Boundary Conditions at Pile Head - KBC, NRUN) 180 1 32000 -827130 0 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I), Where I = 1, NRUN) 190 CYCLIC O O (Cyclic Load Indicator - KCYCL, RCYCL) 200 CONTROL 100 .001 40 (Program Control - MAXIT, YTOL, EXDEFL) 210 END

02/09/82 08.700

IS INFUT FROM TERMINAL OR A FILE ENTER T OR F =F

ENTER DATA FILE NAME =EDCOMND

COMPARISON SOLUTION FOR EXAMPLE SOLVED BY NON-DIMENSIONAL METHOD INPUT COMPLETE. DO YOU WANT INPUT DATA ECHOPRINTED TO YOUR TERMINAL, A FILE, BOTH, OR NEITHER? (ENTER T, F, B, OR N) =B ENTER NAME FOR INPUT ECHOPRINT FILE =INPUT

THIS FILE ALREADY EXISTS: INPUT ENTER ANOTHER NAME-=INEX

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NO. INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE IS DIVIDED	WITH DIFFERENT	OF	ELASTICITY	
	CHARACTERISTICS	PILE		
72	1	0.720E 03	0.290E 08	о.

TOP OF	DIAMETER	MOMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
0.	0.160E 02	0.108E 04	0.373E 02

***** SOIL DATA. *****

NUMBER OF LAYERS

LAYER P-Y CURVE TOP OF BOTTOM INITIAL SOIL FACTOR F. NUMBER CONTROL LODE LAYER OF LAYER MODULI CONST. "A" 1 0. 0.720E 03 0.250E 02 0. 0. ***** UNIT WEIGHT DATA. ***** NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 2 DEPTH BELOW TOP EFFECTIVE TO FOINT UNIT WEIGHT 0. 0.174E-01 ***** PROFILE DATA. ***** NO. POINTS FOR STRENGTH FARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STREIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS 0. 100E- 0.720E 03 0.347E 01 0. 0.100E- ***** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
NUMBER CONTROL CODE LAYER OF LAYER MODULI CONST. "A" 1 0. 0.720E 03 0.230E 02 0. 0. ***** UNIT WEIGHT DATA. ***** NO. POINTS FOR PLOT F EFF. UNIT WEIGHT VS. DEPTH 2 DEPTH BELOW TOP EFFECTIVE TO POINT UNIT WEIGHT 0. 0.174E-01 0.720E 03 0.174E-01 ***** PROFILE DATA. ***** NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E- 0.720E 03 0.347E 01 0. 0.100E- ****** P-Y DATA. *****	T. "A" "F" O. O. U. STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01 O. 100E-01
***** UNIT WEIGHT DATA. ***** 0. POINTS FOR PLOT F EFF. UNIT WEIGHT VS. DEPTH 2 DEPTH BELOW TOP EFFECTIVE TO POINT UNIT WEIGHT 0. 0.174E-01 0.720E 03 0.174E-01 ***** PROFILE DATA. ***** NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E- 0.720E 03 0.347E 01 0. 0.100E- ****** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
***** UNIT WEIGHT DATA. ***** D. POINTS FOR PLOT F EFF. UNIT WEIGHT VS. DEPTH 2 DEPTH BELOW TOP EFFECTIVE TO POINT UNIT WEIGHT 0. 0.174E-01 0.720E 03 0.174E-01 ****** PROFILE DATA. ***** NO. POINTS FOR RENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E-1 0.720E 03 0.347E 01 0. 0.100E-1 ****** P-Y DATA. *****	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
0. POINTS FOR PLOT F EFF. UNIT WEIGHT VS. DEPTH 2 DEPTH BELOW TOP EFFECTIVE TO POINT UNIT WEIGHT 0. 0.174E-01 0.720E 03 0.174E-01 ****** PROFILE DATA. ***** NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E- 0.720E 03 0.347E 01 0. 0.100E- ****** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
DEPTH BELOW TOP EFFECTIVE TO POINT UNIT WEIGHT O. 0.174E-01 ****** PROFILE DATA. ***** NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL 0.347E 01 0.100E 0.720E 03 0.347E 01 0. ****** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
0. 0.174E-01 0.720E 03 0.174E-01 ***** PROFILE DATA. ***** NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E-1 0.720E 03 0.347E 01 0. 0.100E-1 ****** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
***** PROFILE DATA. ***** NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E+- 0.720E 03 0.347E 01 0. 0.100E+- ****** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
NO. POINTS FOR TRENGTH PARAMETERS VS. DEPTH 2 DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LI 0. 0.347E 01 0. 0.100E- 0.720E 03 0.347E 01 0. 0.100E- ****** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL STRAIN AT TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS 0. 0.347E 01 0. 0.100E-0 0.720E 03 0.347E 01 0. 0.100E-0 ***** P-Y DATA. ***** NO. OF P-Y CURVES 0	L STRAIN AT 50% NS STRESS LEVEL 0.100E-01 0.100E-01
**** P-Y DATA. **** NO. OF P-Y CURVES O	
***** P-Y DATA. **** NO. OF P~Y CURVES 0	
NO. OF P~Y CURVES O	
**** JUTPUT DATA. *****	
DATA OUTPUT P-Y NO. DEPTHS TO OUTPUT INCREMENT PRINTOUT PRINT FOR CODE CODE CODE P-Y CURVES 1 2 1 10	

Î

0.160E	02
0.320E	02
0.480E	02
0.800E	02
0.128E	03
0.154E	03
0.240E	03
0.480E	03
0.720E	03

***** PILE HEAD (BOUNDARY) DATA. *****

BOUNDARY	NO. OF SETS
CONDITION	OF BOUNDARY
CODE	CONDITIONS
1	1

PILE HEAD PRINTOUT CODE	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
NIMPOON CODE	TOP OF FILE	BOONDHILT CONDITION	UN FILE
1	0.320E 05	827E 06	0.

***** CYCLIC DATA. *****

CYCLIC(O)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

***** PROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0:400E 02

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	Ŏ

DO YOU WANT TO EDIT INPUT DATA? (YES OR NO) $\approx N$

ENTER NAME FOR OUTPUT FILE ≃OUTEX

(P-Y curves generated for verification)

GENERATED P-Y CURVES

THE	NUMBER	OF	CURVES				=	10
THE	NUMBER	OF	POINTS	ΟN	EACH	CURVE	=	17

DEPTH IN	DIAM IN	C LBS/IN**2	GAMMA LBS/IN**3	E50
v.	18.000	V.SE VI	0.20-01	0.1002-01
		Y, IN		PLES/IN
		0.		Ŏ .
		0.003		16.666
		0.100		52.493
		0.200		66.137
		0.300		75.709
		0.400		83.328
		0.500		89.762
		0.600		95.387
		0.700		100.416
		0.800		104.987
		0.900		109.191
		1.000		113.093
		1.100		116.744
		1.200		120.180
		3.200		69.996
		6.000		0.000
		8.000		ο.
верти	DIAM	c	GOMMO	F50
	TN	1 BS/1N##2	LBS/IN##3	200
16.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P,LBS/IN
		0.		ο.
		0.003		19.889
		0.100		62.645
		0.200		78.928
		0.300		90.350
		0.400		99.443
		0.500		107.122
		0.600		113.834
		0.700		119.836
		0.800		125.291
		0.900		130.307
		1.000		134.965

		1 100		100.000
		1.100		137.322
		2 200		143.422
		3.200		87.302
		8.000		13.847
		8.000		13.847
DEPTH	DIAM	C	Gamma	E50
IN	IN	LBS/IN**2	LBS/IN**3	
32.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P.LBS/IN
		0.		0.
		0.003		23.112
		0.100		72.797
		0.200		91.719
		0.300		104.992
		0.400		115 550
		0.500		124 492
		0.600		127.702
		0.700		120 254
		0 800		107.200
		0.900		151 474
		1.000		154 997
		1 100		141 900
		1.200		161.900
		3.200		110 479
		A 000		27 107
		8.000		32.102
		0.000		02.102
neotu	DIAM	~	COMMO	FF0
	TN		GAMMA	EOU
10		L85/1N**2	LB5/1N##3	
48.00	16,000	0.38 01	0.26-01	0.100E-01
		Y, IN		P.LBS/IN
		ο.		0.
		0.003		26.335
		0.100		82.949
		0.200		104.509
		0.300		119.633
		0.400		131.674
		0.500		141.841
		0.600		150.729
		0.700		158.676
		0.800		165.898
		0.900		172.541
		1.000		178.709
		1.100		184.477
		1.200		189.906
		3.200		133.524
		6.000		55.004
		8.000		55,004

DEPTH	DIAM	С	GAMMA	E50
IN	IN	LBS/IN#*2	LBS/IN**3	
80.00	16.000	0.3E 01	0.2E-01	0.100E-01

Y, IN	PALES/IN
Ö.	.
0.003	32.781
0.100	103.253
0.200	130.091
0.300	148.917
0.400	163.904
0.500	176.560
0.600	187.623
0.700	197.516
0.800	206.506
0.900	214.775
1.000	222.452
1.100	229.633
1.200	236.390
3.200	185.227
6.000	114.113
8.000	114.113

DEPTH IN	DIAM IN	C LBS/IN**2	GAMMA LBS/IN★★3	E50
128.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P.LBS/IN
		ο.		ο.
		0.003		42.450
		0.100		133.709
		0.200		168.463
		0.300		192.842
		0.400		212.250
		0.500		228.639
		0.600		242.965
		0.700		255.776
		0.800		267.418
		0.900		278.126
		1.000		288.067
		1.100		297.366
		1.200		306.117
		3.200		276.805
		6.000		236.436
		8.000		236.436

DEPTH IN	DIAM IN	C LBS/IN##2	GAMMA LBS/IN**3	E50
154.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P.LBS/IN
		ο.		ο.
		0.003		47.687
		0.100		150.206
		0.200		189.247
		0.300		216.634
		0.400		238.437
		0.500		256.848
		0.600		272.942

0.700	287.333
0.800	300.412
0.900	312.441
1.000	323.609
1.100	334.055
1.200	343.885
3.200	333.437
6.000	319.559
8.000	319.559

	DIAM		GAMMA	E50
240.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P,LBS/IN
		ο.		ο.
		0.003		49.997
		0.100		157.480
		0.200		198.412
		0.300		227.126
		0.400		249.984
		0.500		269.287
		0.600		286.160
		0.700		301.249
		0.800		314.960
		0.900		327.572
		1.000		339.280
		1.100		350.232
		1.200		360.539
		3.200		359.977
		6.000		359.977
		8.000		359.977

DEPTH	DIAM	С	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	
480.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P.LBS/IN
		ο.		Ο.
		0.003		49.997
		0.100		157.480
		0.200		198.412
		0.300		227.126
		0.400		249.984
		0.500		269.287
		0.600		286.160
		0.700		301.249
		0.800		314.960
		0.900		327.572
		1.000		339.280
		1.100		350.232
		1.200		360.539
		3.200		359.977
		6.000		359.977
		9 000		359.977

DEPTH IN	DIAM IN	C LBS/IN**2	GAMMA LBS/IN**3	E50
720.00	16.000	0.3E 01	0.2E-01	0.100E-01
		Y, IN		P.LBS/IN
		0.		0.
		0.003		49.997
		0.100		157.480
		0.200		198.412
		0.300		227.126
		0.400		249.984
		0.500		269.287
		0.600		286.160
		0,700		301.249
		0.800		314.960
		0.900		327.572
		1.000		339.280
		1.100		350.232
		1.200		360.539
		3.200		359.977
		6.000		359.977
		8.000		359.977

COMPARISON SOLUTION FOR EXAMPLE SOLVED BY NON-DIMENSIONAL METHOD DO YOU WANT TO PLOT INPUT DATA? (Y OR N) =V

. . .

In the factor of the state of the factor of the state of

COMPARISON SOLUTION FOR EXAMPLE SOLVED BY NON-DIMENSIONAL METHOD

UNITS--ENGL

PILE LOADING CONDITION				
LATERAL LOAD AT FILE HEAD	=	0.320E	05	LBS
APPLIED MOMENT AT PILE HEAD	=	-0.827E	06	LBS-IN
AXIAL LOAD AT PILE HEAD	=	о .		LBS

X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LOAD	MODULUS	RIGIDITY
IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-IN**2
*****	****	****	*****	***	****	****
о.	0.198E 01-	-0.827E 06	0.611E 04	0.	0.507E 02	0.314E 11
20.00	0.175E 01-	-0.209E 06	0.154E 04	0.	0.769E 02	0.314E 11
40.00	0.151E 01	0.356E 06	0.263E 04	ο.	0.113E 03	0.314E 11
60.00	0.127E 01	0.852E 06	0.630E 04	0.	0.162E 03	0.314E 11
80.00	0.105E 01	0.127E 07	0.936E 04	Q.	0.216E 03	0.314E 11
100.00	0.836E 00	0.159E 07	0.118E 05	0.	0.281E 03	0.314E 11
120.00	0.648E 00	0.182E 07	0.135E 05	0.	0.370E 03	0.314E 11
140.00	0.483E 00	0.196E 07	0.145E 05	0.	0.495E 03	0.314E 11
160.00	0.342E 00	0.200E 07	0.148E 05	0.	0.678E 03	0.314E 11
180.00	0.227E 00	0.194E 07	0.144E 05	0.	0.912E 03	0.314E 11
200.00	0.137E 00	0.181E 07	0.134E 05	0.	0.128E 04	0.314E 11
220.00	0.696E-01	0.160E 07	0.118E 05	0.	0.201E 04	0.314E 11
240.00	0.226E-01	0.134E 07	0.991E 04	0.	0.426E 04	0.314E 11
260.00-	-0.734E-02	0.104E 07	0.771E 04	0.	0.893E 04	0.314E 11
230.00-	-0.240E-01	0.760E 06	0.562E 04	0.	0.408E 04	0.314E 11
300.00-	-0.309E-01	0.516E 06	0.381E 04	0.	0.345E 04	0.314E 11
320.00-	-0.312E-01	0.314E 06	0.232E 04	0.	0.342E 04	0.314E 11
340.00-	-0.274E-01	0.154E 06	0.114E 04	0.	0.373E 04	0.314E 11
360.00-	-0.217E-01	0.354E 05	0.261E 03	0.	0.436E 04	0.314E 11
380.00-	-0.155E-01-	-0.455E 05	0.336E 03	Q.	0.545E 04	0.314E 11
400.00-	-0.987E-02-	-0.925E 05	0.683E 03	0.	0.737E 04	0.314E 11
420.00-	-0.538E-02-	-0.110E 06	0.816E 03	0.	0.111E 05	0.314E 11
440.00-	-0.228E-02-	-0.105E 06	0.773E 03	0.	0.196E 05	0.314E 11
460.00-	-0.491E-03-	-0.810E 05	0.598E 03	0.	0.546E 05	0.314E 11
480.00	0.272E-03-	-0.476E 05	0.352E 03	0.	0.807E 05	0.314E 11
500.00	0.423E-03-	-0.204E 05	0.150E 03	0.	0.603E 05	0.314E 11
520.00	0.306E-03-	-0.318E 04	0.235E 02	0.	0.749E 05	0.314E 11
540.00	0.141E-03	0.490E 04	0.362E 02	0.	0.126E 06	0.314E 11
560.00	0.329E-04	0.374E 04	0.437E 02	0.	0.333E 06	0.3146 11
580.00-	-0.292E-05	0.264E 04	0.1958 02	0. ^	0.160E 07	0.3146 11
- ~00, 00-	-0.3566-05	0.178E 03	0.1328 01	()	U.1450 07	U.SI4E 11

620.00-0.288E-06-0.290E 03 0.214E	01 0.	0.793E 07	0.314E 1;
640.00 0.153E-07-0.208E 01 0.153E	-01 0.	0.599E OS	0.314E 1
660.00-0.632E-12 0.343E-02 0.254E	-04 0.	0.759E 11	0.314E 1:
680.00 0.203E-16-0.136E-06 0.101E	-08 0.	0.975E 11	0.314E 13
700.00-0.652E-21 0.521E-11 0.385E	-13 0.	0.975E 11	0.314E 1;
720.00 0.419E-25 0. 0.	ο.	0.975E 11	0.314E 1:

OUTPUT VERIFICATION

> THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.832E-02 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.652E-03 LBS

> COMPUTED LATERAL FORCE AT PILE HEAD= 0.32000E 05 LBSCOMPUTED MOMENT AT PILE HEAD= -0.82713E 06 IN-LBSCOMPUTED SLOPE AT PILE HEAD= -0.11650E-01

THE OVERALL MOMENT IMBALANCE= 0.933E-02 IN-LBSTHE OVERALL LATERAL FORCE IMBALANCE= -0.296E-09 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION	=	0.198E 01 IN
MAXIMUM BENDING MOMENT	=	0.200E 07 IN-LBS
MAXIMUM TOTAL STRESS	=	0.148E 05 LBS/IN**2
MAXIMUM SHÉAR FORCE	=	0.320E 05 LBS

COMPARISON SOLUTION FOR EXAMPLE SOLVED BY NON-DIMENSIONAL METHOD

SUMMARY TABLE ******************************

LATERAL	. BOUNDARY	AXIAL			MAX.	MAX.
LÜAD	CONDITION	LOAD	ΥT	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.320E	05-0.827E 06	0.	0.198E	01-0.117E-01	0.200E 07	0.148E 05

COMPARISON SOLUTION FOR EXAMPLE SOLVED BY NON-DIMENSIONAL METHOD DO YOU WANT TO PLOT OUTPUT? (Y OR N) =Y

Î.

Example 2

2. This example is taken from the example design of a single-pile dolphin at Columbia Lock and Dam on the Ouachita River presented earlier in Appendix B. The analysis presented here is for one particular load case for a single-pile dolphin as shown in Figure D2. Pile properties and soil stratification are shown in Figure D3.

ĝ

010 TITLE 020 COLUMBIA LOCK & DAM - SINGLE PILE DOLPHIN 030 UNITS 040 ENGL 050 PILE 100 3 1236 29.E6 516 (PILE PROPERTIES-NI, NDIAM, LENGTH, EPILE, XGS) 070 0 48 31077 XDIAN(I), DIAM(I), MINERT(I) 080 360 48 59287 where I=1,NDIAM 090 924 48 31077 (SOIL DESCRIPTION-NL) 100 SOIL 2 120 1 1 516 696 25 (LAYER(I), KSOIL(I), XTOP(I), XBOT(I), K(I)130 2 4 696 1240 40 where I=1,NL) 140 WEIGHT 4 (UNIT WEIGHT PROFILE-NGI) 160 516 .0304 170 696 .0304 (XG1(I), GAM1(I) where I=1, NGI)180 696 .0333 190 1240 .0333 200 STRENGTH 4 (SOIL STRENGTH PROFILE-NSTR 220 516 2.778 0 .02 230 696 2.778 0 .02 (XSTR(I), C1(I), PHI1(I), EE50(I) where I=1, NSTR)240 696 0 30 .01 250 1240 0 30 .01 (OUTPUT CONTROL-KOUTPT, INC, KPYOP, NNSUB) 260 OUTPUT 1 2 1 10 280 516 540 564 588 612 636 695 708 1116 1236 (XNSUB(I)....XNSUB(NNSUB)) 290 BOUN 1 1 (BOUNDARY CONDITION AT PILEHEAD-KBC, NRUN) 310 1 134000 0 0 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I), where I=1,NRUN) (CYCLIC LOAD INDICATOR-KCYCL, RCYCL) 330 CYCLIC 0 0 350 CONTROL 100 .001 100 (PROGRAM CONTROL-MAXIT, YTOL, EXDEFL) 370 END

(Input Echo for Mooring Dolphin Analysis)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** FILE DATA. *****

NO.	INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE	IS DIVIDED	WITH DIFFERENT	OF	ELASTICITY	
	100	3	0.124E 04	0.2908 08	0.516E 03

TOP OF	DIAMETER	MUMENI UH	CROSS-SECT.
SEGMENT	OF PILE	INERTIA .	AREA
o.	0.480E 02	0.311E 05	0.111E 03
0.360E 03	0.480E 02	0.593E 05	0.219E 03
0.924E 03	0.480E 02	0.311E 05	0.111E 03

***** SOIL DATA. *****

NUMBER OF LAYERS

2 - S.S.S.

LAYER	PHY CUP	RVE	TOP OF	BOTTOM	INITIAL	SOIL	FACTOR	FACTOR
NUMBER	CONTROL	CODE	LAYER	OF LAYER	MODULI C	ONST.	"A"	"F"
1	1	0.50	16E 03	0.696E 03	0.250E 02	o.		o.
2	4	0.6	96E 03	0.124E 04	0.400E 02	e.		o.

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 4

in the electricity of the

DEPTH BELOW TOP EFFECTIVE TO POINT UNIT WEIGHT

 0.514E
 03
 0.304E-01

 0.696E
 03
 0.304E-01

 0.696E
 03
 0.333E-01

 0.124E
 04
 0.333E-01

***** PROFILE DATA. *****

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH 4

DEPTH BELOW TOP OF PILE	UNDRAINED SHEAR STRENGTH OF SOLU	ANGLE OF INTERNAL	STRAIN AT 50%
0 5145 02		INTOLION IN RADIANS	STRESS LEVEL
VIDICE US	0.278E 01	0.	0.200E-01
0.696E 03	0.278E 01	٥.	0.200E-01
0.696E 03	0.	0.524E 00	0 1008-01
0.124E 04	0		
	ו	0.3Z4E 00	Q.100E-01

***** P-Y DATA. *****

NO. OF P-Y CURVES 0

***** OUTPUT DATA. *****

DATA	OUTPUT	P-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	PRINT FOR
1	2	CODE 1	P-Y CURVES 10

DEPTH FOR PRINTING P-Y CURVES 0.516E 03 0.540E 03 0.564E 03 0.612E 03 0.612E 03 0.636E 03 0.695E 03 0.708E 03 0.112E 04 0.124E 04

A CALL AND A

BOUNDARY	NO. OF SETS
CONDITION	OF BOUNDARY
CODE	CONDITIONS
1	1

Ň,

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON FILE
1	0.134E 06	0.	0.

***** CYCLIC DATA. *****

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

***** PROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.100E 03

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	0

(P-Y curves for Mooring Dolphin Analysis)

GENERATED PHY CURVES

Salar - Arrangery

Ę.

THE	NUMBER	0F	CURVES				=	10
THE	NUMBER	0F	POINTS	ΟN	EACH	CURVE	=	17

DEPTH IN	DIAM IN	C LBS/IN**2	GAMMA LBS/IN**3	E50
0.	48.000	0.3E 01	0.3E-01	0.200E-01
		Y, IN		P,LBS/IN
		0.		0.
		0.019		40.003
		1 200		126.002
		1.800		108.758
		2 400		181.727
		3,000		200.016
		3, 600		213.461
		4,200		240.701
		4,800		252 004
		5,400		202.004
		6.000		271.443
		6.600		280.226
		7.200		288.473
		19.200		168.013
		36.000		0.000
		48.000		0.
REDTU	DIAM	~		
			GAMMA	E50
24 00	A9 000		LBS/IN**3	
24.00	40.000	0.36 01	0.3E-01	0.200E-01
		Y, IN		P.LBS/IN
		0.		0.
		0.019		46.839
		0.600		147.533
		1.200		185.880
		1.800		212.780

2.400

3.000

3.600

4.200

4.800

5.400

6.000

6.600

7.200

234.194

252.278

268.086

282.221

295.066

306.881

317.851

328.111

337.767

D25

- NY 1

		19.200		208.729
		36.000		28.813
		48.000		28.813
		_	_	
DEPTH	DIAM	C	GAMMA	E50
IN AG GG	IN	LBS/IN**2	LBS/IN**3	
48.00	48.000	0.3E 01	0.38-01	0.200E-01
		Y. IN		PLIES/IN
		0.		0.
		0.019		53.675
		0.600		169.064
		1.200		213.008
		1.800		243.833
		2.400		268.373
		3.000		289.096
		3.600		307.210
		4.200		323.408
		4.800		338.129
		5.400		351.668
		6.000		364.238
		6.600		375.996
		7.200		387.061
		19.200		252.949
		36.000		66.037
		48.000		66.037
DEPTH	DIAM	с	GAMMA	E50
DEPTH IN	DIAM IN	C LBS/IN**2	Gamma LBS/IN**3	E50
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01	GAMMA L8S∕IN**3 0.3E-01	E50 0.200E-01
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0.	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0.
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200	GAMMA LBS/IN**3 0.3E−01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.200	GAMMA LBS/IN**3 0.3E−01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 346.335 364.596
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400	GAMMA LBS/IN**3 0.3E−01	E50 0.200E-01 P.LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 296 454
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P.LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000 6.600 7.200	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000 6.600 7.200 19.200	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P.LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354 300.673
DEPTH IN 72.00	DIAM IN 48.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000 6.600 7.200 19.200 36.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P.LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354 300.673 111.671
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000 6.600 7.200 19.200 36.000 43.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P.LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354 300.673 111.671 111.671
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000 6.600 7.200 19.200 36.000 43.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354 300.673 111.671 111.671
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.800 2.400 3.000 3.600 4.200 4.800 5.400 6.000 6.600 7.200 19.200 36.000 43.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P,LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354 300.673 111.671 111.671
DEPTH IN 72.00	DIAM IN 43.000	C LBS/IN**2 0.3E 01 Y,IN 0. 0.019 0.600 1.200 1.200 1.200 1.200 3.600 3.600 4.200 4.200 4.200 4.800 5.400 6.000 6.600 7.200 19.200 36.000 43.000	GAMMA LBS/IN**3 0.3E-01	E50 0.200E-01 P.LBS/IN 0. 60.510 190.595 240.135 274.886 302.551 325.913 346.335 364.596 381.191 396.454 410.625 423.880 436.354 300.673 111.671 111.671

96.00	48.000	0.3E 01	0.3E-01	0.200E-01
		V. IN		P.LBS/IN
		Ó.		0.
		0.019		67.346
		0.600		212.126
		1.200		267.262
		1.800		305.939
		2.400		336.730
		3.000		362.731
		3,600		385.459
		4.200		405.783
		4.800		424.253
		5.400		441.241
		6.000		457.012
		6.600		4/1./00 Aos 640
		7.200		483.040
		19.200		145 715
		49.000		165.715
		40.000		
NCOTU	TITAM	c	GAMMA	E50
TN	IN	LBS/IN**2	LBS/IN**3	
120.00	48.000	0.3E 01	0.3E-01	0.200E-01
		Y, IN		P,LBS/IN
		ο.		Ŏ.
		0.019		74.182
		0.600		233.657
		1.200		294.390
		1.800		336.992
		2.400		370.908
		3.000		377.347 ADA 50A
		3.600		424.004 AAA 971
		4.200		467.315
		5 400		486.027
		6.000		503.400
		6.600		519.649
		7.200		534.942
		19.200		406.633
		36.000		228.169
		48.000		228.169
DEPTH	DIAM	С	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	- A 200E-01
179.00	48.000	0.3E 01	0.3E-01	0.2002-01
		Y, IN		P,LBS/IN
		0.		V. 90.994
		0.019		70.700 784.588
		0.000		361,078
		1.200		0011070

ſ

12.0

1.12

. -

1.10

1. C. S. C.

			1. 2. 3. 3. 4. 4. 5. 6.	900 400 600 200 800 400 600		413.3 454.9 490.0 520.7 548.2 573.1 596.1 617.4 637.3	31 30 58 45 23 76 27 35		
			7.	200		656.1	22		
			36. As	000		417.4	51 51		
			70.	000		41/.4	51		
DEPTH IN	DIAM IN	PHI DEG	GAMMA LBS/IN**3	Α	в	PCT	PCD		
192.00	48.00	30.0	0.3E-01	0.90	0.55	0.29E 04	0.81E 04		
			Y	N		P	.		
			o.			LB3/IN 0. 451.195			
			0. 4	067					
			o.	133		642.120			
			0.	200 267		787.337			
			0.3	207 333		1023.773			
			0.4	400		1123.348			
			0.4	467		1215.056			
			0.9	533		1300.527			
			0.4	500 647		1380.89	25		
			0.0	207 733		1529.424			
			0.6	300		1598.69	14 26		
			1.(300		2616.048			
			17.2	200		2616.04	18		
			32.0	500		2616.04	18		
			48.0	000		2616.04	18		
DEPTH IN	DIAM IN	PHI DEG	GAMMA LBS/IN**3	Α	В	PCT	PCD		
600.00	48.00	30.0	0.3E-01	0.88	0.55	0.25E 05	0.27E 05		
			Y			Р			
			IN	1		LBS/I	N		
			o. 0.	47		0.	~		
			0.1	.33		3200.00	0		
			0.2	200		4800.00	õ		
			0.2	:67		6400.00	Ō		
			0.3	33		8000.00	0		
			0.4	47		9600.00	0		
			0.4	33		10034.62	U &		
							v		

D28

Sec.

and the second

0.600	11885.247
0.667	12501.779
0.733	13087.006
0.800	13645.166
1.800	21832.265
17.200	21832.265
32.600	21832.265
48.000	21832.265

DEPTH	DIAM	PHI	GAMMA	Α	в	PCT	PCD
IN	IN	DEG	LBS/IN**3				
720.00	48.00	30.0	0.3E-01	0.88	0.55	0.35E 05	0.32E 05

Y	P
IN	LBS/IN
ο.	0.
0.067	1920.000
0.133	3840.000
0.200	5760.000
0.267	7680.000
0.333	9600.000
0.400	11520.000
0.467	13440.000
0.533	14650.798
0.600	15502.955
0.667	16307.151
0.733	17070.513
0.800	17798.569
1.300	28477.711
17.200	28477.711
32.600	28477.711
48.000	28477.711

1.1.2.1

ĬŢŢĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸŎ

.....

2.2

COLUMBIA LOCK & DAM - SINGLE PILE DOLPHIN

UNITS--ENGL

0 U T P U T I N F O R M A T I O N

NO. OF ITERATIONS = 11 MAXIMUM DEFLECTION ERROR = 0.410E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT FILE HEAD= 0.134E 06 LBSAPPLIED MOMENT AT FILE HEAD= 0. LBS-INAXIAL LOAD AT FILE HEAD= 0. LBS

X	DEFLEC		MOMENT	F	TOTAL		DISTR.	SOIL	FLEXURAL	
					STRES	38	LOAD	MODULUS	RIGIDI	[TY
IN	IN		LBS-IN LBS/IN**2		**2	LBS/IN	LBS/IN**2	LBS-IN+	۶ * 2	
****	***	**	****	***	****	***	***	****	*****	**;
ο.	0.199E	02	ο.		ο.		0.	0.	0.901E	12
24.72	0.190E	02	0.331E	07	0.256E	04	0.	0.	0.901E	12
49.44	0.182E	02	0.662E	07	0.512E	04	0.	0.	0.901E	12
74.16	0.173E	02	0.994E	07	0.767E	04	0.	0.	0.901E	12
98.88	0.164E	02	0.132E	08	0.102E	05	0.	ο.	0.901E	12
123.60	0.156E	02	0.166E	08	0.128E	05	0.	0.	0.901E	12
148.32	0.147E	02	0.199E	08	0.153E	05	0.	0.	0.901E	12
173.04	0.139E	02	0.232E	08	0.179E	05	0.	0.	0.901E	12
197.76	0.131E	02	0.265E	08	0.205E	05	0.	0.	0.901E	12
222.48	0.123E	02	0.298E	08	0.230E	05	0.	0.	0.901E	12
247.20	0.115E	02	0.331E	08	0.256E	05	0.	0.	0.901E	12
271.92	0.107E	02	0.364E	08	0.281E	05	0.	o.	0.901E	12
296.64	0.100E	02	0.397E	08	0.307E	05	0.	0.	0.901E	12
321.36	0.929E	01	0.431E	08	0.333E	05	0.	0.	0.901E	12
346.08	0.862E	01	0.464E	08	0.358E	05	o.	ο.	0.901E	12
370.80	0.797E	01	0.497E	08	0.201E	05	0.	0.	0.172E	13
395.52	0.734E	01	0.530E	03	0.215E	05	0.	0.	0.172E	13
420.24	0.673E	01	0.563E	68	0.228E	05	0.	ο.	0.172E	13
444.96	0.614E	01	0.596E	08	0.241E	05	0.	0.	0.172E	13
469.68	0.557E	01	0.629E	03	0.255E	05	0.	0.	0.172E	13
494.40	0.503E	01	0.662E	08	0.268E	05	0.	0.	0.172E	13
519.12	0.450E	01	0.696E	03	0.282E	05	0.	0.560E 02	0.172E	13
543.84	0.400E	01	0.728E	08	0.295E	05	0.	0.710E 02	0.172E	13
563.56	0.353E	01	0.758E	<u> 08</u>	0.307E	05	0.	0.885E 02	0.172E	13
593.28 0.309E 01 0.786E	08 0.318E 05	0. 0.109	E 03 0.172E 13							
--------------------------	--------------	----------	----------------							
618.00 0.267E 01 0.812E	08 0.329E 05	0. 0.134	E 03 0.172E 13							
642.72 0.228E 01 0.836E	08 0.339E 05	0. 0.164	E 03 0.172E 13							
667.44 0.192E 01 0.858E	08 0.347E 05	0. 0.201	E 03 0.172E 13							
692.16 0.159E 01 0.878E	08 0.355E 05	0. 0.247	E 03 0.172E 13							
716.88 0.130E 01 0.892E	08 0.361E 05	0. 0.176	E 04 0.172E 13							
741.60 0.103E 01 0.892E	08 0.361E 05	0. 0.238	E 04 0.172E 13							
766.32 0.798E 00 0.877E	08 0.355E 05	0. 0.326	E 04 0.172E 13							
791.04 0.595E 00 0.847E	08 0.343E 05	0. 0.453	E 04 0.172E 13							
815.76 0.422E 00 0.800E	08 0.324E 05	0. 0.636	E 04 0.172E 13							
840.48 0.278E 00 0.737E	08 0.298E 05	0. 0.916	E 04 0.172E 13							
865.20 0.160E 00 0.658E	08 0.266E 05	0. 0.140	E 05 0.172E 13							
\$89.92 0.657E-01 0.566E	08 0.229E 05	0. 0.150	E 05 0.172E 13							
914.64-0.886E-02 0.468E	08 0.189E 05	0. 0.159	E 05 0.172E 13							
939.36-0.656E-01 0.371E	08 0.286E 05	0. 0.169	E 05 0.901E 12							
964.08-0.994E-01 0.281E	08 0.217E 05	0. 0.179	E 05 0.901E 12							
988.80-0.114E 00 0.201E	08 0.155E 05	0. 0.189	E 05 0.901E 12							
1013.52~0.115E 00 0.134E	08 0.104E 05	0. 0.199	E 05 0.901E 12							
1038.24-0.107E 00 0.818E	07 0.631E 04	0. 0.209	E 05 0.901E 12							
1062.96-0.933E-01 0.427E	07 0.330E 04	0. 0.219	E 05 0.901E 12							
1087.68-0.766E-01 0.162E	07 0.125E 04	0. 0.229	E 05 0.901E 12							
1112.40-0.588E-01 0.296E	05 0.229E 02	0. 0.239	E 05 0.901E 12							
1137.12-0.409E-01-0.703E	06 0.543E 03	0. 0.248	E 05 0.901E 12							
1161.84-0.235E-01-0.816E	06 0.630E 03	0. 0.258	E 05 0.901E 12							
1186.56-0.658E-02-0.558E	06 0.431E 03	0. 0.268	E 05 0.901E 12							
1211.28 0.994E-02-0.194E	06 0.150E 03	0. 0.278	E 05 0.901E 12							
1236.00 0.263E-01 0.	0.	0. 0.288	E 05 0.901E 12							

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.750E 00 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.567E-01 LBS

= 0.13400E 06 LBS = 0. IN-L COMPUTED LATERAL FORCE AT PILE HEAD COMPUTED MOMENT AT FILE HEAD COMPUTED SLOPE AT FILE HEAD = -0.35452E-01

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE

= -0.922E 00 IN-LBS = -0.111E-06 LBS

IN-LBS

OUTPUT SUMMARY

 k^{N}

į,

FILE HEAD DEFLECTION = 0.199E 02 IN MAXIMUM BENDING MOMENT = 0.894E 08 IN-LBS MAXIMUM TOTAL STRESS = 0.371E 05 LBS/IN**2 MAXIMUM SHEAR FORCE = 0.134E 06 LBS COLUMBIA LOCK & DAM - SINGLE PILE DOLPHIN

SUMMARY TABLE

LATERAL	BOUNDARY	AXIAL			MAX.	MAX.
LOAD	CONDITION	LOAD	ΥT	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.134E 0	60.	ο.	0.199E	02-0.357E-01	0.894E 08	0.371E 05

T.

1. 6.11

D35

والمراجع والمرجع المرجع

Example 3

3. The pile shown in Figure D4 will be analyzed under various loads and pile head boundary conditions. The soil profile used is shown in Figure D5. Four variations will be analyzed in a single run.

Free-head pile: p-y curves by soft clay criteria, Example 3a

4. The pile is treated as a free-head pile with an applied moment of 300,000 in.-lb. Lateral loads of 25,000, 30,000, and 35,000 lb, along with an axial load of 15,000 lb, will be analyzed. p-y curves will be generated internally using the soft clay criteria and cyclic loading. The strain at 50 percent of the maximum deviator stress is assumed to be a constant 0.02 to a depth of 336 in. and to decrease linearly to 0.01 at a depth of 1176 in.

Free-head pile: p-y curves by unified criteria, Example 3b

5. This problem is identical with Example 3a except that the p-y curves will be generated by the unified criteria with cyclic loading, and a lateral load of 25,000 lb will be analyzed. Values of A = 2.5, F = 1.0, and k = 116 pci are assumed. Output will include points on the p-y curves at x coordinates of 96, 120, 144, 192, 240, 336, 576, and 960 in.

Fixed-head pile: p-y curves by unified criteria, Example 3c

6. This problem is identical with Example 3b for unified criteria except that the pile head is fixed against rotation. A p-y curve will be output at a depth of x = 576 in. for verification.

Rotational restraint at pile

head of 1.5×10^6 in.-lb, Example 3d

7. This problem is identical with Example 3b for unified criteria except that the boundary condition at the pile head will be one of rotational restraint with $M_t/S_t = 1.5 \times 10^6$ in.-lb. A p-y curve will be output at a depth of x = 576 in. for verification.

Comparison of Examples 3a, 3b, 3c, and 3d

8. Comparisons between soil resistance, moment, and deflection for examples 3a, 3b, 3c, and 3d for a lateral load of 25,000 lb are shown in Figure D6.

Q TRIAXIAL TEST DATA UNCONFINED TEST DATA **Q TRIAXIAL TEST DATA** LEGEND 140 130 $\gamma = 115$ TOTAL UNIT WEIGHT, PCF 120 = 105 Ĩ • 110 1 ٠ č . 100 _ = 30 6 80 4 2000 70 0 õ 20 40 60 80 50 8 20 8 1400 1600 1800 NOTE: SLOPE = 10 PSF/FT COHESION, PSF 800 1000 1200 Þ 0 . 8 8 5 9 809 = 200 \$ 2 ĝ 3 8 ō 0 0 0 8 2 2 8 ¥ ß 80 8 8 та ,нтязо

Figure D5. Soil profile used in example problem

D38

A REAL PROPERTY AND


```
10 TITLE
20 FREE HEAD PILE - P-Y CURVES BY SOFT CLAY CRITERIA
30 UNITS
40 ENGL
50 PILE 96 2 960 29.E6 96 (Pile properties - NI,NDIAM,LENGTH,EPILE,XGS)
60 0 24 5675.7 (XDIAM(I), DIAM(I), MINERT(I)
70 530 24 3425.8 Where I = 1,NDIAM
                   (Soil Description - NL)
80 8011 1
90 1 1 96 1176 116 (LAYER(I), KSOIL(I), XTOP(I), XBOT(I), K(I) where I = 1.NL)
100 WEIGHT 6
                        (Unit Weight Profile - NGI)
          .0159
110 96
120 336 .0159
130 336 .0246
                        XG1(I), GAM1(I)
                        Where I = 1.NGI
140 900 .0246
150 900 .0304
160 1176 .0304
                   (Soil Strength Profile - NSTR)
170 STRENGTH 3
       96 1.389 0.0 .02
                              XSTR(I),C1(I),PHI1(I),EE50(I)
180
                                 Where I = 1, NSTR
190
      336 1.389 0.0 .02
200 1176 6.250 0.0 .01
                            (Boundary Condition at Pile Head - KBC, NRUN)
210 BOUNDARY 1 3
                              KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I)
220 1 25.E3 3.E5 1.5E4
                                  Where I = 1, NRUN
230 1 30.E3 3.E5 1.5E4
240 1 35.E3 3.E5 1.5E4
                            (Cyclic Load Indicator - KCYCL, RCYCL)
250 CYCLIC O O
                            (Output Control - KOUTPT, INC, KPYOP, NNSUB)
260 OUTPUT 1 2 1 8
270 96 120 144 192 240 336 576 960 (XNSUB(I) .... XNSUB(NNSUB))
280 CONTROL 100 .001 40 (Program Control - MAXIT, YTOL, EXDEFL)
290 END
300 TITLE -
310 FREE HEAD FILE - P-Y CURVES BY UNIFIED CRITERIA
320 SOIL 1
                                     (Soil Description - NL)
330 1 6 96 1176 116 2.5 1.0 (LAYER(I), KSOIL(I), XTOP(I), XBOT(I), K(I) Where I=1, NL)
340 BOUNDARY 1 1
                                    (Boundary Condition at Pile Head - KBC, NRUN)
350 1 25.E3 3.E5 1.5E4
                                    (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I) where I=1, NRUN)
360 OUTPUT 1 2 1 8

        360
        OUTPUT
        1
        2
        1
        8
        (Output Control - KOUTPT, INC, KPYOP, NNSUB)
        370
        96
        120
        144
        192
        240
        336
        576
        960
        (XNSUB(I), ... XNSUB(NNSUB))

380 END
390 TITLE
400 FIXED HEAD FILE -
                             P-Y CURVES BY UNIFIED CRITERIA
410 BOUNDARY 2 1
                                (Boundary Condition at Pile Head - KBC, NRUN)
420 1 25.E3 0.0 1.5E4
                                 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I) Where I=1, NRUN)
430 OUTPUT 1 2 1 1
                                 (output Control - KOUTPT, INC, KPYOP, NNSUB)
440 576
                                (XNSUB(I) ... XNSUB(NNSUB))
450 END
460 TITLE
470 ROTATIONAL RESTRAINT AT PILE HEAD OF 1.5 E6 IN-LBS
480 BOUNDARY 3 1
                             (Boundary Condition at Pile Head - KBC, NRUN)
490 1 25.E3 1.5E6 1.5E4 (KOPSUB(I), PTSUB(I), BC2SUB(I), PXSUB(I) Where I-1, NRUN)
500 END
```

¥

(Input Echo for Problem 1 - Free head pile - P-Y curves by Soft Clay Criteria)

AFA LAE

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NO. INCR PILE IS D	EMENTS N IVIDED WI CH	O. SEGMENTS TH DIFFERENT MARACTERISTICS	LENGTH OF PILE	MODULUS OF ELASTICITY	L IEF'TH
96		2	0.960E 03	0.290E 08	0.960E 02
TOP OF SEGMENT 0.	DIAMETER OF PILE 0.240E 02	MOMENT OF INERTIA 0.568E 04	CROSS-SI AREA 0.872E	ЕСТ. 02	

0.504E 02

0.343E 04

***** SOIL DATA. ****

NUMBER OF LAYERS

0.530E 03 0.240E 02

-

LAYER P-Y CURVE TOP OF BOTTOM INITIAL SOIL FACTOR FACTOR CONTROL CODE LAYER NUMBER OF LAYER MODULI CONST. "A" "F" 1 0.960E 02 0.118E 04 0.116E 03 1 <u>о.</u> **0.**

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

ACCOUNTS AND ADDITION AND A ADDITION AND ADDITION ADDITIONAL AD

DEPTH BELOW TOP	EFFECTIVE
TO POINT	UNIT WEIGHT
0.960E 02	0.159E-01
0.336E 03	0.159E-01
0.336E 03	0.246E-01
0.900E 03	0.246E-01
0.900E 03	0.304E-01

0.118E 04 0.304E-01

***** PROFILE DATA. *****

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH 3

1.1.1.1.1.1.1.1

シンフランド

 $\sim 10^{-1}$

DEPTH BELOW	UNDRAINED SHEAR	ANGLE OF INTERNAL	STRAIN AT 50%
TOP OF PILE	STRENGTH OF SOIL	FRICTION IN RADIANS	STRESS LEVEL
0.960E 02	0.139E 01	0.	0.200E-01
0.336E 03	0.139E 01	0.	0.200E-01
0.118E 04	0.625E 01	0.	0.100E-01

0

.

***** P-Y DATA. *****

NO. OF P-Y CURVES

0

***** OUTPUT DATA. *****

DATA	OUTPUT	P-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	PRINT FOR
CODE	CODE	CODE	P-Y CURVES
1	2	1	8

DEPTH FOR PRINTING P-Y CURVES 0.960E 02 0.120E 03 0.144E 03 0.192E 03 0.240E 03 0.336E 03 0.576E 03 0.960E 03

***** PILE HEAD (BOUNDARY) DATA. *****

BOUNDARY	NO. OF SETS
CONDITION	OF BOUNDARY
CODE	CONDITIONS

з

PILE HEAD PRINTOUT CODE 1 1

1

1

LATERAL LOAD AT DE TOP OF PILE 0.250E 05 0.300E 05 0.350E 05 VALUE OF SECONDAXIAL LOADBOUNDARY CONDITIONON PILE0.300E 060.150E 050.300E 060.150E 050.300E 060.150E 05

***** CYCLIC DATA. *****

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

**** PROGRAM CONTROL DATA. *****

MAX. NO. OF ITERATIONS	TOLERENCE ON SOLUTION	PILE HEAD DEFLECTION FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.400E 02

***** LOAD DATA. *****

BOUNDARY SET NO. 1	NO. POINTS FOR DISTRIB. LATERAL LOAD VS. DEPTH O
BOUNDARY SET NO. 2	NO. POINTS FOR Distrib. Lateral Load VS. Depth O
BOUNDARY SET NO. 3	NO. POINTS FOR DISTRIB. LATERAL LOAD VS. DEPTH O

(P-Y Curves generated for verification - Problem 1)

GENERATED P-Y CURVES

THE	NUMBER	0F	CURVES				=	8	
THE	NUMBER	ÛF	POINTS	ON	EACH	CURVE	=	17	

DEPTH IN	DIAM IN	C LBS/IN**2	GAMMA LBS/IN**3	E50
0.	24.000	0.1E 01	0.2E-01	0.200E-01
		Y, IN		P,LBS/IN
		ο.		ο.
		0.010		10.001
		0.300		31,501
		0.600		39.688
		0.900		45.432
		1.200		50.004
		1.500		53.865
		1.800		57.240
		2.100		60.258
		2.400		63.001
		3.000		60.024 47 044
		3.300		70 057
		3,600		72 119
		9.600		42,003
		18.000		0,000
		24.000		0.
DEPTH	DIAM	С	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	
24.00	24.000	0.1E 01	0.2E~01	0.200E-01
		Y, IN		P.LBS/IN
		о.		ο.
		0.010		12.583
		0.300		39.635
		0.600		49.937
		0.900		57.164
		1.200		62.917
		1.500		67.775
		1.000		72.022
		2 100		75 000
		2.100		75.820
		2.100 2.400 2.700		75.820 79.271 82 AAS
		2.100 2.400 2.700 3.000		75.820 79.271 82.445 85.392
		2.100 2.400 2.700 3.000 3.300		75.820 79.271 82.445 85.392 88.148
		2.100 2.400 2.700 3.000 3.300 3.400		75.820 79.271 82.445 85.392 88.148 90.742
		2.100 2.400 2.700 3.000 3.300 3.600 9.600		75.820 79.271 82.445 85.392 88.148 90.742 57.725
		2.100 2.400 2.700 3.000 3.300 3.600 9.600 18.000		75.820 79.271 82.445 85.392 88.148 90.742 57.725 11.699

DEPTH	DIAM	C	GAMMA	E50
1N 48.00	24.000	0.1E 01	0.2E-01	0.200E-01
		Y, IN		P,LBS/IN
		0.		
		0.010		10.166
		0.300		47.770
		0.000		60.187 20 992
		1 200		75 990
		1.200		81. ASA
		1 900		86: 804
		2 100		91 381
		2.100		95.540
		2.400		90.040 90 344
		2.700		102.918
		3 300		106.240
		3 600		109.366
		9,600		75 447
		18 000		28.199
		24 000		28, 199
		24.000		20.177
DEPTH	DIAM	С	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	
96.00	24.000	0.1E 01	0.2E-01	0.200E-01
		Y, IN O.		P,LBS/IN 0.
		0.010		20.331
		0.300		64.040
		0.600		80.685
		0.900		92.361
		1.200		101.657
		1.500		109.506
		1.800		116.368
		2.100		122.504
		2.400		128.080
		2.700		133.208
		3.000		137.970
		3.300		142.423
		3.600		146.614
		9.600		116.894
		18.000		75.606
		24.000		75.606
		-		
DEPTH	LIAM		GAMMA	E00
		LB5/1N**2	LBS/1N**3 0.05-01	0 2005-01
144.00	∠4.000	U.IE UI	0.26-01	0.2008-01
		Y, IN		P,LBS/IN
		0.		0.
		0.010		25.497
		0.300		80.309

No Destruction

2

ý

0.600	101.183
0.900	115.826
1.200	127.483
1.500	137.327
1.800	145.932
2.100	153.626
2.400	160.619
2.700	167.050
3.000	173.021
3.300	178.606
3.600	183.863
9.600	166.345
18.000	142.222
24.000	142.222

DEPTH	DIAM	C	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	
240.00	24.000	0.1E 01	0.2E-01	0.2008-01
		Y, IN		P.LBS/IN
		0.		ο.
		0.010		30,002
		0.300		94.502
		0.600		119.065
		0.900		136.295
		1.200		150.012
		1.500		161.596
		1.800		171.721
		2.100		180.775
		2.400		189.003
		2.700		196.571
		3.000		203.598
		3.300		210,170
		3.600		216.355
		9.600		216.017
		18.000		216.017
		24.000		216.017

DEPTH	DIAM	C	GAMMA	E50
IN	IN	LBS/IN**2	LBS/1N**3	
480.00	24.000	0.3E 01	0.2E-01	0.171E-01
		Y, IN		P.LBS/IN
		Ó.		Ο.
		0.008		60.002
		0.257		188.994
		0.514		238.117
		0.771		272.576
		1.029		300.009
		1.286		323.174
		1.543		343.424
		1.800		361.532
		2.057		377.987
		2.314		393.122
		2.571		407.174
		2 0.00		400 010

		3.086		432.687
		8.229		432.012
		15.429		432.012
		20.571		432.012
DEPTH	DIAM	С	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	
864.00	24.000	0.5E 01	0.2E-01	0.126E-01
		Y, IN		P,LBS/IN
		ο.		0.
		0.006		108.001
		0.189		340.181
		0.377		428.601
		0.566		490.625
		0.754		540.003
		0.943		581.701
		1.131		618.149
		1.320		650.742
		1.509		680.361
		1.697		707.604
		1.886		732.897
		2.074		756.555
		2.263		778.819
		6.034		777.604
		11.314		777.604
		15.086		777.604

P. C. C. C. C. C. C.

A SAMA A SAMA

Ċ

NY COMPANY

and the address of the second

FREE HEAD PILE - P-Y CURVES BY SOFT CLAY CRITERIA

UNITS--ENGL

OUTPUT INFORMATION

(Load Case 1 - Problem 1)

NO. OF ITERATIONS = 19 MAXIMUM DEFLECTION ERROR = 0.647E-03 IN

PILE LOADING CONDITION
LATERAL LOAD AT PILE HEAD= 0.250E 05 LBSAPPLIED MOMENT AT PILE HEAD= 0.300E 06 LBS-IN
= 0.150E 05 LBS

DISTR. DEFLEC MOMENT TOTAL SOIL FLEXURAL X MODULUS RIGIDITY LOAD STRESS LBS-IN LBS/IN**2 LBS/IN LBS/IN**2 LBS-IN**2 IN IN ****

 0.
 0.454E
 0.300E
 0.0606E
 0.0300E
 0.0165E
 12

 20.00
 0.425E
 01
 0.804E
 06
 0.187E
 04
 0.0165E
 12

 40.00
 0.397E
 01
 0.131E
 07
 0.294E
 04
 0.0165E
 12

 60.00
 0.369E
 01
 0.131E
 07
 0.294E
 04
 0.0165E
 12

 60.00
 0.369E
 01
 0.181E
 07
 0.400E
 04
 0.0165E
 12

 80.00
 0.341E
 01
 0.232E
 07
 0.507E
 04
 0.0165E
 12

 100.00
 0.314E
 01
 0.232E
 07
 0.507E
 04
 0.0165E
 12

 100.00
 0.314E
 01
 0.282E
 07
 0.614E
 04
 0.0229E
 02
 0.165E
 12

 120.00
 0.287E
 01
 0.330E
 07
 0.716E
 04
 0.0293E
 02
 0.165E
 12

 140.00
 0.261E
 01
 0.375E
 07
 0.810E
 04
 0.0365E
 820.00-0.315E-03-0.181E 06 0.932E 03 0.

 820.00-0.315E-03-0.181E
 06
 0.932E
 03
 0.

 840.00
 0.266E-03-0.111E
 06
 0.687E
 03
 0.

 860.00
 0.396E-03-0.546E
 05
 0.489E
 03
 0.

 880.00
 0.302E-03-0.141E
 05
 0.347E
 03
 0.

 900.00
 0.147E-03
 0.107E
 05
 0.335E
 03
 0.

 920.00
 0.317E-04
 0.213E
 05
 0.372E
 03
 0.

 940.00-0.123E-05
 0.672E
 04
 0.321E
 03
 0.

 960.00
 0.633E-09
 0.
 0.298E
 03
 0.

 0.994E 05 0.993E 11 0.129E 06 0.993E 11 0.102E 06 0.993E 11 0.131E 06 0.993E 11 0.241E 06 0.993E 11 0.103E 07 0.993E 11 0.576E 08 0.993E 11 0.379E 11 0.993E 11

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.365E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.378E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD COMPUTED MOMENT AT PILE HEAD COMPUTED SLOPE AT PILE HEAD = 0.25000E 05 LBS = 0.30000E 06 IN-LBS = -0.14385E-01

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE = -0.134E-01 IN-LBS = -0.750E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION = 0.454E 01 IN MAXIMUM BENDING MOMENT = 0.566E 07 IN-LBS MAXIMUM TOTAL STRESS = 0.121E 05 LBS/IN**2 MAXIMUM SHEAR FORCE = 0.252E 05 LBS

.....

. .

NG 2007 - NA 2000

55

Solowers Devensed Junes - Andres

C. YALLEN CONTRACTOR

16.00.00.00

فللم المحالية

D52

(Load Case 2 - Problem 1)

NO. OF ITERATIONS = 14 MAXIMUM DEFLECTION ERROR = 0.855E-03 IN

PILE LOADING CONDITION LATERAL LOAD AT PILE HEAD APPLIED MOMENT AT PILE HEAD AXIAL LOAD AT PILE HEAD

= 0.300E 05 LBS = 0.300E 06 LBS-IN = 0.150E 05 LBS

X DEFLEC MOMENT TOTAL DISTR. SOIL FLEXURAL STRESS LOAD MODULUS RIGIDITY IN IN LBS-IN LBS/IN**2 LBS/IN LBS/IN**2 LBS-IN**2 ο. 0.616E 01 0.300E 06 0.806E 03 0. 0. 0.165E 12 20.00 0.579E 01 0.906E 06 0.209E 04 0. 0. 0. 0.165E 12 40.00 0.542E 01 0.151E 07 0.337E 04 0. 60.00 0.505E 01 0.212E 07 0.465E 04 0. 0.165E 12 ο. 0.165E 12 80.00 0.469E 01 0.272E 07 0.593E 04 0. 100.00 0.434E 01 0.333E 07 0.721E 04 0. 120.00 0.399E 01 0.391E 07 0.844E 04 0. ο. 0.165E 12 0.165E 02 0.165E 12 0.222E 02 0.165E 12 140.00 0.365E 01 0.446E 07 0.960E 04 0. 0.290E 02 0.165E 12 820.00-0.316E-02-0.329E 06 0.145E 04 0. 0.222E 05 0.993E 11 840.00-0.893E-03-0.266E 06 0.123E 04 0. 0.535E 05 0.993E 11 860.00 0.309E-03-0.183E 06 0.940E 03 0. 0.109E 06 0.993E 11 880.00 0.769E-03-0.109E 06 0.681E 03 0. 0.622E 05 0.993E 11 900.00 0.785E-03-0.542E 05 0.488E 03 0. 0.635E 05 0.993E 11 920.00 0.577E-03-0.188E 05 0.364E 03 0. 0.805E 05 0.993E 11 940.00 0.288E-03-0.192E 04 0.304E 03 0. 0.132E 06 0.993E 11 960.00-0.119E-04 0. 0.298E 03 0. 0.959E 06 0.993E 11

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.358E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.371E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD= 0.30000E 05 LBSCOMPUTED MOMENT AT PILE HEAD= 0.30000E 06 IN-LBSCOMPUTED SLOPE AT PILE HEAD= -0.18615E-01

THE OVERALL MOMENT IMBALANCE= 0.124E-02 IN-LBSTHE OVERALL LATERAL FORCE IMBALANCE= -0.995E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION	=	0.616E 01 IN
MAXIMUM BENDING MOMENT	=	0.699E 07 IN-LBS
MAXIMUM TOTAL STRESS	2	0.149E 05 LBS/IN**2
MAXIMUM SHEAR FORCE	=	0.303E 05 LBS

ζ, τ.

State States and the state has a set

Ś

(Load Case 3 - Problem 1)

NO. OF ITERATIONS = 18 MAXIMUM DEFLECTION ERROR = 0.754E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT PILE HEADAPPLIED MOMENT AT PILE HEADAXIAL LOAD AT PILE HEAD= 0.300E 06 LBS-INAXIAL LOAD AT PILE HEAD= 0.150E 05 LBS

X DEFLEC MOMENT TOTAL DISTR. SOIL FLEXURAL STRESS LOAD MODULUS RIGIDITY LBS/IN LBS/IN**2 LBS-IN**2 IN IN LBS-IN LBS/IN**2 非非非常非非常 法非法法法法法 法不敢求法法法 非非非法非非常非非 化非水化化化 化水水水水水水水 0.834E 01 0.300E 06 0.806E 03 0. ο. ο. 0.165E 12 20.00 0.788E 01 0.101E 07 0.230E 04 0.

 20.00
 0.788E
 01
 0.101E
 07
 0.230E
 04
 0.
 0.
 0.165E
 12

 40.00
 0.740E
 01
 0.171E
 07
 0.380E
 04
 0.
 0.
 0.165E
 12

 60.00
 0.693E
 01
 0.242E
 07
 0.529E
 04
 0.
 0.
 0.165E
 12

 80.00
 0.646E
 01
 0.313E
 07
 0.679E
 04
 0.
 0.
 0.165E
 12

 100.00
 0.601E
 01
 0.384E
 07
 0.828E
 04
 0.
 0.105E
 02
 0.165E
 12

 120.00
 0.556E
 01
 0.452E
 07
 0.973E
 04
 0.
 0.144E
 02
 0.165E
 12

 140.00
 0.512E
 01
 0.518E
 07
 0.111E
 05
 0.
 0.191E
 02
 0.165E
 12

 ο. 0.165E 12 0.191E 02 0.165E 12

 900.00-0.291E-03-0.252E
 06
 0.118E
 04
 0.

 900.00
 0.129E-02-0.149E
 06
 0.819E
 03
 0.

 920.00
 0.227E-02-0.686E
 05
 0.538E
 03
 0.

 940.00
 0.297E-02-0.178E
 05
 0.360E
 03
 0.

 960.00
 0.359E-02
 0.
 0.298E
 03
 0.

 880.00-0.291E-03-0.252E 06 0.118E 04 0. 0.121E 06 0.993E 11 0.456E 05 0.993E 11 0.323E 05 0.993E 11 0.279E 05 0.993E 11 0.253E 05 0.993E 11

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = -0.551E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = 0.692E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD	= 0.35000E 05 LBS
COMPUTED MOMENT AT PILE HEAD	= 0.30000E 06 IN-LBS
COMPUTED SLOPE AT PILE HEAD	= -0.23999E-01

THE OVERALL MOMENT IMBALANCE= 0.426E-01 IN-LBSTHE OVERALL LATERAL FORCE IMBALANCE= -0.187E-07 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION=0.836E01INMAXIMUM BENDING MOMENT=0.857E07IN-LBSMAXIMUM TOTAL STRESS=0.190E05LBS/IN**2MAXIMUM SHEAR FORCE=0.354E05LBS

a farfari menerikan karana karana

FREE HEAD PILE - P-Y CURVES BY SOFT CLAY CRITERIA

SUMMARY TABLE *******

LATERAL	-	BOUNDAR	₹Y	AXIAL				MAX.	MAX.
LOAD	(CONDITI)N	LOAD		ΥT	ST	MOMENT	STRESS
(LBS)		BC2		(LBS))	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2
0.250E	05	0.300E	06	0.150E	05	0.454E	01-0.144E-01	0.566E 0	7 0.121E 05
0.300E	05	0.300E	06	0.150E	05	0.616E	01-0.186E-01	0.699E 0	7 0.149E 05
0.350E	05	0.300E	06	0.150E	05	0.836E	01-0.240E-01	0.857E 0	7 0.190E 05

(Input Echo for Problem 2 - Free head pile - P-Y curves by Unified Criteria)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** PILE DATA. *****

NO. INCR PILE IS D	EMENTS IVIDED	NO. WITH CHAR4	SEGMEN DIFFER	TS ENT FICS	LENGTH OF PILE	MODULU: ELASTI(S OF CITY	DEPTH
96			2		0.960E 03	0.290E	08	0.960E 02
TOP OF SEGMENT	DIAMET OF PIL	ER E	MOMENT	OF IA	CROSS-SI AREA	ЕСТ.		
0. 0.530E 03	0.240E 0.240E	02 02	0.568E 0.343E	04 04	0.872E 0.504E	02 02		

***** SOIL DATA. *****

NUMBER OF LAYERS

LAYERP-Y CURVETOP OFBOTTOMINITIAL SOILFACTORFACTORNUMBERCONTROLCODELAYEROFLAYERMODULICONST."A""F"160.960E020.118E040.116E030.250E010.100E01

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

DEPTH BELOW TOP	EFFECTIVE
TO POINT	UNIT WEIGHT
0.960E 02	0.159E-01
0.336E 03	0.159E-01
0.336E 03	0.246E-01
0.900E 03	0.246E-01
0.900E 03	0.304E-01

0.118E 04 0.304E-01 ***** PROFILE DATA. ***** NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH 3 STRAIN AT 50% DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LEVEL 0.139E 01 о. 0.200E-01 0.960E 02 0.139E 01 0.336E 03 о. 0.200E-01 0.118E 04 0.625E 01 о. 0.100E-01 ***** P-Y DATA. **** NO. OF P-Y CURVES 0 ***** OUTPUT DATA. ***** DATA OUTPUT F'-Y NO. DEPTHS TO OUTPUT PRINTOUT FRINT FOR INCREMENT CODE CODE CODE P-Y CURVES $\mathbf{2}$ 3 1 1 DEPTH FOR PRINTING P-Y CURVES 0.960E 02 0.120E 03 0.144E 03 0.192E 03 0.240E 03 0.336E 03 0.576E 03 0.960E 03 **** PILE HEAD (BOUNDARY) DATA. ***** BOUNDARY NO. OF SETS OF BOUNDARY CONDITION CONDITIONS CODE

1. A. S. S. S. S.

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON PILE
1	0.250E 05	0.300E 06	0.150E 05

***** CYCLIC DATA. *****

1

CYCLIC(0)	NO. CYCLES
OR STATIC(1)	OF LOADING
LOADING	
0	0.100E 03

1

1.52

R

111111

Ś

***** PROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
	CONVERGENCE	
100	0.100E-02	0.400E 02

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	0

(P-Y curves generated by verification - Problem 2)

GENERATED P-Y CURVES

THE	NUMBER	OF	CURVES				=	8
THE	NUMBER	OF	POINTS	ΟN	EACH	CURVE	=	17

DEPTH	DIAM	С	CAVG	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	LBS/IN**3	
0.	24.000	0.1E 01	0.1E 01	0.2E-01	0.200E-01
		Y		P	
		IN		LBS/IN	
		Ο.		0.	
		0.100)	11.600	
		0.200)	18.346	
		0.300)	21.000	
		0.400)	23.114	
		0.500	5	24.899	
		0.600)	26.459	
		0.700	5	27.854	
		0.800)	29.122	
		0.900)	30,288	
		1.000)	31.370	
		1.100)	32.383	
		1.200	5	33.336	
		8.800)	22.224	
		16.400)	11,112	
		24.000	5	0.000	
		36.000	5	0.	
DEPTH	DIAM	С	CAVG	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	LBS/IN**3	
24.00	24.000	0.1E 01 Y	0.1E 01	0.2E-01 P	0.200E-01
		IN		LBS/IN	
		ο.		Ō.	
		0.100)	22.626	
		0.200)	28.506	
		0.300)	32.632	
		0.400)	35.916	
		0.500	>	38.689	
		0.600)	41.113	
		0.700)	43.281	
		0.800)	45.251	
		0.900)	47.063	
		1.000)	48.745	

1.100	50.319
1.200	51.800
8.800	35.972
16.400	20.144
24.000	4.317
36.000	4.317

DEPTH	DIAM	C	CAVG	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	LBS/1N**3	
48. 00	24.000	0.1E 01	0.1E 01	0.2E-01	0.200E-01
		Y		P	
		IN		LBS/IN	
		Ō.		Ο.	
		0.100	5	29.122	
		0.200)	36.691	
		0.300)	42.001	
		0.400)	46.228	
		0.500)	49.797	
		0.600)	52.918	
		0.700))	55.708	
		0.800)	58.243	
		0.900)	60.576	
		1.000)	62.741	
		1.100)	64.766	
		1.200)	66.672	
		8.800))	48.152	
		16.400	5	29.632	
		24.000	5	11.112	
		36.000)	11.112	

3577 X

DEPTH	DIAM	С	CAVG	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	LBS/IN**3	
96.00	24.000	0.1E 01	0.1E 01	0.2E-01	0.200E-01
		Y		P	
		IN		LBS/IN	
		0.		0.	
		0.100)	36.402	
		0.200) O	45.864	
		0.300	þ	52.501	
		0.400	5	57.785	
		0.500	0	62.247	
		0.600	0	66.147	
		0.700	5	69.635	
		0.800	<u>)</u>	72.804	
		0.900	0	75.719	
		1.000	5	78.426	
		1.100	D C	80.958	
		1.200	0	83.340	
		8.800	5	64.820	
		16.400	0	46.300	
		24.000	0	27.780	
		36.000	0	27.780	

8 8						
	DEPTH IN	DIAM In	C LBS/IN**2 L	CAVG _BS/IN**3	GAMMA LBS/IN★★3	E50
	144.00	24.000	0.1E 01 Y	0.1E 01	0.2E-01 P	0.200E-01
			IN Ö.		LBS/IN	
Ŕ			0.100		43.683	
			0.200		55.037 63.001	
			0.400		69.342 74.696	
			0.600		79.376	
Č.			0.800		83.562 87.365	
			0.900		90.863 94.111	
			1.100		97.149	
			8.800		83.340	
			16.400 24.000		66.672 50.004	
			36.000		50.004	
	DEPTH	TIT AM	~	60 000	- • · · · · •	
	IN	IN	LBS/IN**2 L	CAVG BS/IN**3	GAMMA LBS/IN**3	E50
ð. N	240.00	24.000	0.1E 01 Y	0.1E 01	0.2E~01 P	0.200E-01
			IN		LBS/IN	
			0. 0.100		0. 58.243	
3			0.200		73.382	
			0.300		84.001 92.456	
			0.500		99.595 105.835	
			0.700		111.416	
3			0.800		121.151	
Ś.			1.000		125.482 129.532	
š			1.200		133.344 125.934	
			16.400		118.528	
			24.000 36.000		111.120 111.120	
4						
2			r	064		
			1	UU 4		
8						
ē.						

Ą

DEPTH IN	DIAM	C LBS/IN**2	CAVG LBS/IN**3	GAMMA LBS/IN##3	E50
480.00	24.000	0.3E 01	0.2E 01	0.2E-01	0.171E-01
		IN		LBS/IN	
		o.		0.	
		0.086	•	131.041	
		0.171	•	160.101	
		0.343	•	208.014	
		0.429	,	224.077	
		0.514	ł	238.117	
		0.600)	250.672	
		0.686		262.082	
		0.//1	,	272.576	
		0.857		282.319	
		1.029	,	300.009	
		7.543	1	300.009	
		14.057	,	300.009	
		20.571		300.009	
		30.857	,	300.009	
			~ ~		FFA
	DIAM	LDC/TNR87			E20
864.00	24,000	0.5E 01	0.3F 01	0.2E-01	0.126E-01
		Y		Р.	
		IN		LBS/IN	
		ο.		ο.	
		0.063	:	235.868	
		0.126	,	297.175	
		0.187		340.181	
		0.314		403.329	
		0.377		428.601	
		0.440	•	451.199	
		0.503	ł	471.736	
		0.566		490,625	
		0.629		508.162	
		0.754		540.003	
		5.531		540.003	
		10.309		540.003	
		15.086		540.003	
		22.629		540.003	

D65

ፚኯፚኯፚኯፚኯፚኯፚኯፚኯፚኯዀዸኯኯኯ

ÇΫ,

.

6.03.06.02.1%

2000

CENTRE AND LATER TO THE

Sec. Sec.

)

	APPLIED NOVENT AT PILE HEAD(LBS-IN) 300000.		
WES BY UNIFIED CRITERIA Onditions	AXIAL LOAD AT PILE HEAD(LDS) 15000.		
FREE HEAD PILE - P-V CUE Londing C	LATERAL LOAD AT PILE HEAD(LBS) BS000.		
	LOAD CASE NO. 1		

UNITS--ENGL

OUTPUT INFORMATION *****

NO. OF ITERATIONS = 27 MAXIMUM DEFLECTION ERROR = 0.765E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT PILE HEADAPPLIED MOMENT AT PILE HEADAXIAL LOAD AT PILE HEAD= 0.300E 06 LBS+IN= 0.150E 05 LBS

X	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LŪAD	MODULUS	RIGIDITY
IN	.IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-IN**2
****	***	****	***	****	***	***
Ō.	0.688E 01	0.300E 06	0.806E 03	Ο.	0.	0.165E 12
20.00	0.650E 01	0.806E 06	0.188E 04	0.	0.	0.165E 12
40.00	0.611E 01	0.131E 07	0.294E 04	0.	0.	0.165E 12
60.00	0.574E 01	0.182E 07	0.401E 04	ο.	0.	0.165E 12
80.00	0.536E 01	0.232E 07	0.508E 04	0.	0.	0.165E 12
100.00	0.499E 01	0.283E 07	0.615E 04	Ο.	0.610E 01	0.165E 12
120.00	0.463E 01	0.332E 07	0.720E 04	о.	0.964E 01	0.165E 12
140.00	0.428E 01	0.380E 07	0.821E 04	0.	0.135E 02	0.165E 12
ł						Ĭ
820.00	-0.753E-02	-0.363E 06	0.157E 04	ο.	0.124E 05	0.9938 11
840.00	-0.371E-02	-0.331E 06	0.146E 04	Ο,	0.204E 05	0.993E 11
860.00	-0.123E-02·	-0.269E 06	0.124E 04	0.	0.445E 05	0.993E 11
880.00	0.185E-03	-0.186E 06	0.949E 03	o.	0.909E 05	0.993E 11
900.00	0.846E-03-	-0.107E 06	0.672E 03	0.	0.606E 05	0.993E 11
920.00	0.107E-02	-0.481E 05	0.466E 03	Ο.	0.535E OS	0.993E 11
940.00	0.110E-02-	-0.121E 05	0.340E 03	Ο.	0.543E 05	0.993E 11
960.00	0.107E-02	0.	0.298E 03	O .	0.570E 05	0.993E 11
OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.525E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.425E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD COMPUTED MOMENT AT PILE HEAD = 0.25000E 05 LBS = 0.30000E 06 IN-LBS COMPUTED SLOPE AT PILE HEAD = -0.19210E-01

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE = -0.113E-07 LBS

= 0.146E-01 IN-LBS

OUTPUT SUMMARY

(100 - 37)

PILE HEAD PEFLECTION	-	0.688E 01 IN
MAXIMUM BENDING MOMENT	=	0.684E 07 IN-LBS
MAXIMUM TOTAL STRESS	=	0.164E 05 LBS/IN**2
MAXIMUM SHEAR FORCE	=	0.253E 05 LBS

.....

FREE HEAD PILE - P-Y CURVES BY UNIFIED CRITERIA

14.3 A 16.015

C CONVE

SUMMARY TABLE

LATERAL LOAD	BOUNDARY	AXIAL LOAD	ΥT	ST	MÁX. MOMENT	MAX. STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LBS/IN**2)
0.250E	05 0.300E 06	0.150E 05	0.688E	01-0.192E-01	0.684E 07	0.164E 05

(Input Echo tor Problem 3 - Fixed head pile - P-Y curves by Unified Criteria)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

A STATE AND A CONTRACT AND A STATE AND A STATE

***** PILE DATA. *****

NO. INCREMENTS	NO. SEGMENTS	LENGTH	MODULUS OF	DEPTH
PILE IS DIVIDED	WITH DIFFERENT	OF	ELASTICITY	
	CHARACTERISTICS	PILE		
96	2	0.960E 03	0.290E 08	0.960E 02

TOP OF	DIAMETER	MOMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
).	0.240E 02	0.563E 04	0.872E 02
0.530E 03	0.240E 02	0.343E 04	0.504E 02

***** SOIL DATA. *****

NUMBER OF LAYERS

LAYERP-Y CURVETOP OFBOTTOMINITIAL SOILFACTORNUMBERCONTROL CODELAYEROFLAYERMODULICONST."A""F"160.960E020.118E040.116E030.250E010.100E01

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

DEPTH BELOW TOP	EFFECTIVE
TO POINT	UNIT WEIGHT
0.960E 02	0.159E-01
0.336E 03	0.159E-01
0.336E 03	0.246E-01
0.900E 03	0.246E-01
0.900E 03	0.304E-01

0.118E 04 0.304E-01 ***** PROFILE DATA. ***** NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH з STRAIN AT 50% DEPTH BELOW UNDRAINED SHEAR ANGLE OF INTERNAL TOP OF PILE STRENGTH OF SOIL FRICTION IN RADIANS STRESS LEVEL 0.960E 02 0.139E 01 0.200E-01 **o**. 0.336E 03 0.139E 01 ο. 0.200E-01 ٥. 0.118E 04 0.625E 01 0.100E-01 ***** P-Y DATA. ***** NO. OF P-Y CURVES 0 ***** OUTPUT DATA. ***** DATA OUTPUT P-Y NO. DEPTHS TO OUTPUT INCREMENT PRINTOUT PRINT FOR P-Y CURVES CODE CODE CODE 1 2 1 1 DEPTH FOR PRINTING P-Y CURVES 0.576E 03 ***** PILE HEAD (BOUNDARY) DATA. ***** BOUNDARY NO. OF SETS CONDITION OF BOUNDARY CONDITIONS CODE 2 1 VALUE OF SECOND AXIAL LOAD PILE HEAD LATERAL LOAD AT PRINTOUT CODE TOP OF PILE BOUNDARY CONDITION ON PILE 0.250E 05 ο. 0.150E 05 1

٦,

***** CYCLIC DATA. *****

CYCLIC(0) OR STATIC(1)	NO. CYCLES OF LOADING
LOADING	-
0	0.100E 03

***** PROGRAM CONTROL DATA. *****

MAX. NO. OF	TOLERENCE ON	PILE HEAD DEFLECTION
ITERATIONS	SOLUTION	FLAG(STOPS RUN)
100	CONVERGENCE 0.100E-02	0.400F 02

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	0

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ちちちち あんてい いいち あいちんちち ひたいち ひがんしょう いたんちょう したい ちょうち

(P-Y curves generated for verification - Problem 3)

GENERATED P-Y CURVES

THE NUMBER OF CURVES= 1THE NUMBER OF POINTS ON EACH CURVE= 17

DEPTH	DIAM	С	CAVG	GAMMA	E50
IN	1N	LBS/IN**2	LBS/IN**3	LBS/1N**3	
480.00	24.000	0.3E 01	0.2E 01	0.2E-01	0.171E-01
		Y		F'	
		IN		LBS/IN	
		0.		Ō.	
		0.080	5	131.041	
		0.17	L	165.101	
		0.25)	7	188.994	
		0.340	3	208.014	
		0.423	9	224.077	
		0.514	4	238.117	
		0.600	2	250.672	
		0.680	5	262.082	
		0 . 77:	1	272.576	
		0.857	7	282.319	
		0.940	3	291.432	
		1.029	7	300.009	
		7.540	3	300.009	
		14.057	7	300.009	
		20.571		300.009	
		30.857	7	300.009	

D76

A DAY AND AND A

FIXED HEAD PILE - P-Y CURVES BY UNIFIED CRITERIA

UNITS--ENGL

NO. OF ITERATIONS = 16 MAXIMUM DEFLECTION ERROR = 0.680E-03 IN

PILE LOADING CONDITIONLATERAL LOAD AT PILE HEAD= 0.250E 05 LBSSLOPE AT PILE HEAD= 0. IN/INAXIAL LOAD AT PILE HEAD= 0.150E 05 LBS

DEFLEC MOMENT TOTAL DISTR. Х SOIL FLEXURAL STRESS LOAD MODULUS RIGIDITY TN ΤN LBS-IN LBS/IN**2 LBS/IN LBS/IN**2 LBS-IN**2 非非常非非非常 法事法法律事实 化基本学校学校学校 化基本学学家和学校 计基本表示计学学校 化非非常非常非 计分式计算个分子

 0.
 0.115E
 01-0.507E
 07
 0.109E
 05
 0.
 0.
 0.165E
 12

 20.00
 0.114E
 01-0.457E
 07
 0.983E
 04
 0.
 0.
 0.165E
 12

 40.00
 0.112E
 01-0.457E
 07
 0.983E
 04
 0.
 0.
 0.165E
 12

 40.00
 0.112E
 01-0.407E
 07
 0.878E
 04
 0.
 0.
 0.165E
 12

 40.00
 0.110E
 01-0.357E
 07
 0.772E
 04
 0.
 0.
 0.165E
 12

 80.00
 0.106E
 01-0.357E
 07
 0.666E
 04
 0.
 0.
 0.165E
 12

 100.00
 0.102E
 01-0.257E
 07
 0.560E
 04
 0.
 0.339E
 02
 0.165E
 12

 120.00
 0.969E
 00-0.208E
 07
 0.457E
 04
 0.
 0.498E
 02
 0.165E
 12

 140.00
 0.914E
 00-0.161E
 07
 0.357E
 04
 0.
 0.652E
 02
 0.165E
 <

 820.00
 0.212E-03-0.187E
 05
 0.363E
 03
 0.

 840.00
 0.180E-03-0.579E
 04
 0.318E
 03
 0.

 860.00
 0.124E-03
 0.100E
 04
 0.301E
 03
 0.

 880.00
 0.698E-04
 0.341E
 04
 0.310E
 03
 0.

 900.00
 0.292E-04
 0.325E
 04
 0.309E
 03
 0.

 920.00
 0.140E-05
 0.197E
 04
 0.305E
 03
 0.

 940.00-0.185E-04
 0.626E
 03
 0.300E
 03
 0.

 960.00-0.357E-04
 0.
 0.298E
 03
 0.

 0.840E 05 0.993E 11 0,863E 05 0.993E 11 0.883E 05 0.993E 11 0.884E 05 0.993E 11 0.909E 05 0.993E 11 0.933E 05 0.993E 11 0.956E 05 0.993E 11 0.979E 05 0.993E 11 0.979E 05 0.993E 11 0.100E 06 0.993E 11

D78

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = 0.403E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.248E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD= 0.25000E 05 LBSCOMPUTED SLOPE AT PILE HEAD= 0.21684E-19 IN/IN

THE OVERALL MOMENT IMBALANCE= 0.147E-01 IN-LBSTHE OVERALL LATERAL FORCE IMBALANCE= -0.252E-08 LBS

OUTPUT SUMMARY

PILE HEAD DEFLECTION = 0.115E 01 IN MAXIMUM BENDING MOMENT = -0.507E 07 IN-LBS MAXIMUM TOTAL STRESS = 0.109E 05 LBS/IN**2 MAXIMUM SHEAR FORCE = 0.250E 05 LBS

وزور هنولو:

فأسأله

1.1.1

)

/

D80

FIXED HEAD PILE - P-Y CURVES BY UNIFIED CRITERIA

a de la companya de l

SUMMARY TABLE

LATERAL LOAD	BOUNDARY CONDITION	AXIAL LÜAD	ΥT	ST	MAX. MOMENT	MAX. Stress
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LB5)	(LBS/IN**2)
0.250E 0	5 0.	0.150E 05	0.115E 0	1 0.217E-19	-0.507E 07	/ 0.109E 05

(Input Echo for Problem 4 - Rotational Restraint at Pile Head)

***** UNIT DATA. *****

SYSTEM OF UNITS (UP TO 16 CHAR.) ENGL

***** FILE DATA. *****

NO. PILE	INCREMENTS	NO. SEGMENTS WITH DIFFERENT	LENGTH OF	MODULUS OF ELASTICITY	DEPTH
	<u>.</u>	CHARACTERISTICS	PILE	0.2905-08	0.960E 02
	70	<u>ته</u>	C. SOUL CO		

TOP OF	DIAMETER	MUMENT OF	CROSS-SECT.
SEGMENT	OF PILE	INERTIA	AREA
0.	0.240E 02	0.568E 04	0.872E 02
0.530E 03	0.240E 02	0.343E 04	0.50 4E 02

***** SOIL DATA. *****

NUMBER OF LAYERS

+

LAYER P-Y CURVE TOP OF BOTTOM INITIAL SOLL FACTOR FACTOR NUMBER CONTROL CODE LAYER OF LAYER MODULI CONST. "A" "F" 1 6 0.960E 02 0.118E 04 0.116E 03 0.250E 01 0.100E 01

***** UNIT WEIGHT DATA. *****

NO. POINTS FOR PLOT OF EFF. UNIT WEIGHT VS. DEPTH 6

DEPTH BELOW TOP	EFFECTIVE
TO POINT	UNIT WEIGHT
0.960E 02	0.159E-01
0.336E 03	0.159E-01
0.336E 03	0.246E-01
0.900E 03	0.246E-01
0.900E 03	0.304E-01

0.118E 04 0.304E-01

ومتعاد

***** PROFILE DATA. *****

NO. POINTS FOR STRENGTH PARAMETERS VS. DEPTH 3

DEPTH BELOW	UNDRAINED SHEAR	ANGLE OF INTERNAL	STRAIN AT 50%
TOP OF PILE	STRENGTH OF SOIL	FRICTION IN RADIANS	STRESS LEVEL
0.960E 02	0.139E 01	0.	0.200E-01
0.336E 03	0.139E 01	0.	0.200E-01
0.118E 04	0.625E 01	0.	0.100E-01

***** F-Y DATA. *****

NO. OF P-Y CURVES 0

***** OUTPUT DATA. *****

E IATA	OUTPUT	P-Y	NO. DEPTHS TO
OUTPUT	INCREMENT	PRINTOUT	PRINT FOR
CODE	CODE	CODE	P-Y CURVES
1	2	1	1

DEPTH FOR PRINTING P-Y CURVES 0.576E 03

***** PILE HEAD (BOUNDARY) DATA. *****

BOUNDARY	NO. OF SETS
CONDITION	OF BOUNDARY
CODE	CONDITIONS
3	1

PILE HEAD	LATERAL LOAD AT	VALUE OF SECOND	AXIAL LOAD
PRINTOUT CODE	TOP OF PILE	BOUNDARY CONDITION	ON PILE
1	0.250E 05	0.150E 07	0.150E 05

***** CYCLIC DATA. *****

CYCLIC(0) OR STATIC(1)	NO. CYCLES OF LOADING		
LOADING			
0	0.100E 03		

ANS CONTRACT CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

Service services

***** PROGRAM CONTROL DATA. *****

MAX. NO. OF ITERATIONS	TOLERENCE ON SOLUTION	<pre>PILE HEAD DEFLECTION FLAG(STOPS RUN)</pre>
	CONVERGENCE	
100	0.100E-02	0.400E 02

كالمكالمك فكالمكالمكاك

***** LOAD DATA. *****

BOUNDARY	NO. POINTS FOR
SET NO.	DISTRIB. LATERAL
	LOAD VS. DEPTH
1	0

(P-Y curve generated for verification - Problem 4)

GENERATED P-Y CURVES

THE	NUMBER	0F	CURVES				=	1
THE	NUMBER	0F	POINTS	ΟN	EACH	CURVE	=	17

DEPTH	DIAM	С	CAVG	GAMMA	E50
IN	IN	LBS/IN**2	LBS/IN**3	LBS/IN**3	
480.00	24.000	0.3E 01	0.2E 01	0.2E-01	0,171E-01
		Y		F'	
		IN		LBS/IN	
		0.		ο.	
		0.080	5	131.041	
		0.17	1	165.101	
		0.253	7	188.994	
		0.343	3	_08.014	
		0.429	7	224.077	
		0.514	4	238.117	
		0.600)	250.672	
		0.680	<u>-</u>	262.082	
		0.77:	1	272.576	
		0.85)	7	282.319	
		0.940	3	291.432	
		1.029	7	300.009	
		7.540	3	300.009	
		14.05	7	300.009	
		20.57	1	300.009	
		30.857	7	300.009	

 د...

D86

ė

ROTATIONAL RESTRAINT AT PILE HEAD OF 1.5 E6 IN-LBS

UNITS--ENGL

OUTPUT INFORMATION ****

NO. OF ITERATIONS 72 = MAXIMUM DEFLECTION ERROR = 0.794E-03 IN

PILE LOADING CONDITION LATERAL LOAD AT PILE HEAD = 0.250E 05 LBS ROTATIONAL RESTRAINT AXIAL LOAD AT PILE HEAD = 0.150E 07 LBS-IN = 0.150E 05 LBS

Х	DEFLEC	MOMENT	TOTAL	DISTR.	SOIL	FLEXURAL
			STRESS	LÜAD	MODULUS	RIGIDITY
IN	IN	LBS-IN	LBS/IN**2	LBS/IN	LBS/IN**2	LBS-IN**2
****	***	****	****	****	****	***
ο.	0.641E 01	-0.267E 05	0.228E 03	Ō.	Ŏ.	0.165E 12
20.00	0.606E 01	0.479E 06	0.118E 04	Ċ.	0.	0.165E 12
40.00	0.570E 01	0.984E 06	0.225E 04	ο.	0.	0.165E 12
60.00	0.5358 01	0.149E 07	0.332E 04	o.	ο.	0.165E 12
80.00	0.500E 01	0.199E 07	0.439E 04	0.	0.	0.165E 12
100.00	0.466E 01	0.250E 07	0.546E 04	O.	0.665E 01	0.165E 12
120.00	0.432E 01	0.299E 07	0.650E 04	o.	0.105E 02	0.165E 12
140.00	0.399E 01	0.347E 07	0.751E 04	Ο.	0.147E 02	0.145E 12
820.00	-0.579E-02	-0.338E 06	0.148E 04	0.	0.148E_05	0.9935 11
840.00	-0.262E-02	-0.301E 06	0.135E 04	Ŏ.	0.259E 05	0.9975.11
860.00-	-0.656E-03	-0.236E 06	0.113E 04	Ú.	0.675E 05	· 아이 아이 아니 11 - 아이 아이 아니 11
880.00	0.361E-03	-0.157E 06	0.847E 03	0.	0.9098-05	0.9906.11
900.00	0.744E-03	-0.878E 05	0.605E 03	0.	0 660E 05	0.00000.11
920.00	0.768E-03	-0.384E 05	0.432E 03	Ú.	0.666E 05	0 9998 11
940.00	0.633E-03	-0.934E 04	0.330E 03	0.	0 782E 05	0.0005.11
960.00	0.4%5E-03	0.	0.298E 03	Ŏ.	0.1000 04	
					and a constant status	الجيات استرك المترك

OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = -0.452E-01 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -0.422E-02 LBS

COMPUTED LATERAL FORCE AT PILE HEAD = 0.25000E 05 LBS COMPUTED ROTATIONAL STIFFNESS AT PILE HEAD = 0.15000E 07 1N-LB

COMPUTED SLOPE AT PILE HEAD

= -0.17819E-01

THE OVERALL MOMENT IMBALANCE THE OVERALL LATERAL FORCE IMBALANCE = 0.152E-01 IN-LBS = -0.966E-08 LBS

OUTPUT SUMMARY

s

PILE HEAD DEFLECTION=0.6441E01INMAXIMUM BENDING MOMENT=0.648E07IN-LBSMAXIMUM TOTAL STRESS=0.153E05LBS/IN**2MAXIMUM SHEAR FORCE=0.253E05LBS

......

aasaa maaaaaaa baasaaaa baaaaaa baasaasa maaaaa a D90

ROTATIONAL RESTRAINT AT FILE HEAD OF 1.5 E6 IN-LBS

SUMMARY TABLE *******

LATERAL	BÜÜNDARY	AXIAL			MAX.	MAX.
LUAD	CONDITION	LÜAD	Y٦	ST	MOMENT	STRESS
(LBS)	BC2	(LBS)	(IN)	(IN/IN)	(IN-LBS)	(LEG/1N**2)
0.250E (05 0.150E 07	0.150E 05	0.641E	01-0.178E-01	0.648E 07	0.1538 05

APPENDIX E: NOTATION

<u>Symbol</u>	Definition	on Page
A	Factor	35
b	Width of the pile Footing width Pile diameter	32 34 35
с	Cohesion	36
С	Parameter describing the effect of repeated loading on deformation	68
с _а	Average undrained shear strength	39
EI	Flexural rigidity	13
E _s	Soil modulus	18
Н	Depth to the point under consideration	39
k	Constant giving variation of soil modulus with depth	33
Ka	Rankine active earth pressure coefficient (minimum coefficient of active earth pressure)	41
k _h	Coefficient of horizontal subgrade reaction	32
Ko	At-rest earth pressure coefficient	41
k sl	Coefficient of vertical subgrade reaction for a 1-ft- wide beam	32
LI	Liquidity index	73
m	Reduction factor to be multiplied by c to yield the average sliding stress between the pile and the stiff clay	39
М	Moment	13
M _i	Moment at joint i	22
M _t	Moment at the top of the pile	25
M _t /S _t	Rotational-restraint constant at the top of the pile	25
N	Number of cycles of load application	69
	E 1	

<u>Symbol</u>	Definition	Definition on Page
° _R	Overconsolidation ratio	73
р	Soil resisting pressure applied to beam (soil resistance)	14
PI	Plasticity index	73
^p t	Lateral load at the top of the pile	25
^p u	Ultimate soil resistance	35
^p x	Axial load	12
q	Uniformly distributed vertical load on beam	13
R	Variation in pile bending stiffness	21
S	Slope	13
St	Slope of the elastic curve at the top of the pile	25
s _t	Sensitivity	73
v	Shear	13
WL	Liquid limit	73
x	Depth from the ground surface	33
у	Deflection at point x along the length of the pile (pile deflection)	13
у _с	Deflection under N cycles of load	69
у _s	Deflection under a short-term static load	69
^y 50	Deflection under a short-term static load at half the ultimate resistance	69
δ	Deflection of dolphin, ft	B3
З	Strain	34
^٤ 50	Strain at half the maximum principal stress difference	35
ρ ₁	Mean settlement of the foundation	34
σ	Stress	36

ESS SAME

ß

N

5

303

and as

and the second states of the

E2

<u>Symbol</u>	Definition	Definition on Page
ōv	Average effective stress	71
σ_{Δ}	Deviator stress	35
Y	Average unit weight of the soil (submerged unit weight if the soil is below the water table)	39
¥'	Average effective unit weight from the ground surface to the p-y curve	52
φ	Angle of internal friction	36

