
RlD-A144 413 LOGLISP SEQUENTIAL FORMS WITH RESOLUTION SEMANTICS(U) i/i
ROME AIR DEVELOPMENT CENTER GRIFFISS RFB NY R C SCHRAG
JUL 84 RADC-TM-84-i3 N

UNCLASSIFIED F/G 9/2 N

"- ,
"44

= I&

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

RADC-TM-84-13
In-House Report

984 1964

LOGLISP SEQUENTIAL FORMS WITH
RESOLUTION SEMANTICS

Robert C. Schrag

APPROVED FOR PUBLIC RELEASE," DISTRIBUTION UNLIMITED

DTIC
'.ECTE l

VN.AUG 15 1984j

B

C) ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441

N '

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-T-84-13 has been reviewed and is approved for publication.

APPROVED:

SAMUEL A. DIITTO, JR.
Chief, Command & Control Software
Technology Branch
Command and Control Division

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Command and Control Divlqion

FOR THE COMMANDER:

DONALD A. BRANTINGHAM
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COES) Grifffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

--1

S g C ~ s -L A S I IC rI C 4 F H I P G E R E P O R T D O C U M E N T A T IO N P A G E
Ia. EPOR SE _IAS~55FCATION 1b. RSrAICT!'JI %AAKprNGS

'.NCLASSIFISI) N/A
2&. S leIRr CL.ASS's"CArION 'uImOAIT'~ 3. O1STRIIU1T1ON,AVA6Aa1LTy OF REPOCRT

N/A Approved f or public release; distribution
,- C. ,Ec1FPCATIONOOCWNGRAOiNG SCMSCU~LE unlimited
N/A

4. sitASICMING OAGANIZATION RIEPORT NWjM8ENIS) 5. MONITORING ORGANIZATION REPORT NUMSEA(S)

N/A RADC-TM-84-13

G&. NIAMB 2P PtAFORMING ORGANIZATION ILb QPPICE SYMBOL
7
4L NAMa Of MONITORING ORNGANIZATION

Rome Air Development Center Ca E N/Akel

1A0011162 (City. $00 see ZIP C"111 Mh ACORES (City. State ad ZIP Codes

Criffiss AFB NY 13441

ft NAMae OF PUNOINGAIPONtSORING ftb OPPIC8 SYMBUOL 9. PROCI.REM6NT INSTRUMENT 10ENTIFICATION NI.JMSER

ORGANIZATION j nI 4461ia.

Rome Air Development Center COES N/A
ft. AQORISS, City. Ste Wed ZP Code, 10. SOQRCE OF PUNOING NO0S.

Griffiss AFB NY 13441 PRROAM 010CT TASK(NCORI ,.iT

62702F 5581 19 12
11. TrIT62 lines"" sejwmntV Czmiluani

LOGLISP SEQ=ENTIAL F0RS WITH RESOL=TON SEMANTICS
12. P4RSONAL AUTHOR($)

Robert C. Schraq
13& TYPE OF REPORT I2?& TIME COVERBO 14. OATI OF REPORT iYr.. Mo. Devi 15. PAGE CCLNT

I-House 014OM ..2.AnhA4 T02EehA4.. July 1984 18
10. SUPPILEMENTARY NOTATION

N/A

17. COSATI COClS Is. SUIjECITEtRMS fConsimmirOa PFiaiI'Meeestry end IdenifY y 17 oe* RUMS.,,

8*11.0 1GR3OUP sue. an. ILogLisp

1 94 Logic Programing
C 9 15

95. AISTRACT (Cansgiam onirwne 'MCmmv did ~dendty, by bio.. pnumesry

TThis memorandum describes an extension to the semantics of the LogLisp ar)(tifical
intelligence programming language that allows resolution in sequential forms. The
execution cycle of LogLisp and the resolution semantics of existing special forms are
summarized, and the need for and definitions of resolution semantics for sequeiitial
forms are presented.

20. ZIST 141SUTIONIAVA,,LAI&(TV OF A&STRAC- 21. A&STRIAC SEC..PItfr :.ASSP2CAT:ON

UNCLASSIPIMOUNLIMITtO M~ SAME AS RP-P. = -ic USERtS 'INCLASSIFIED

,11eim " 4 '.: C od , A C C E S
Robert C. Schrag 3530A78RD OS

00 FO RM 1473, 83 AP R IOITI0ON OP I AN 73,S 0550 LTE.______________

SECLRITY I_.ASS1"CATON OF -. S a. J,

1. Introduction.

This memorandum describes an extension to the semantics of the -

LogLisp artificial intelligence programming language [Robinson and
Sibert 81a,b] that allows resolution in sequential forms. The execution
cycle of LogLisp and the resolution semantics of existing special forms
are summarized, and the need for and definitions of resolution semantics
for sequential forms are presented.

Acession.t For e

J~. i; Cat r

ristr"jon

-1-abitYC 10.

Di7]

2. LogLisp's Execution Cycle

LogLisp is a synthesis of Lisp and logic programming, implemented
in Lisp. The logic programming component of LogLisp, called Logic,
differs from conventional logic programming systems in two important
ways: it uses a heuristic, non-backtracking search strategy in
processing resolvent nodes; and it allows Lisp expressions to be
included in knowledge base clauses and queries, providing appropriate
reduction and resolution semantics for useful forms. Before resolution
with a goal is attempted, that goal is first reduced, or
Lisp-simplified, by performing evaluation of Lisp forms, conditioned on
the instantiation of any Logic variables contained in them.

If the chosen goal is Lisp-evaluable, then that goal is considered
-to succeed if its value is non-NIL. It is considered to fail if the
value is NIL. If simplification reduces the goal only partially or not
at all, resolution is then attempted, in the following order: using
facts, or ground clauses; using special resolution rules; and using rule
(non-ground) clauses. Ordinary unification is used in resolving with
facts and rules.

Special resolution rules exist for the following forms: -, AND,
CR, and COND. The equality rule just attempts to unify its subforms.
The AND special form is essentially non-operative syntactic sugar-it
pushes its subforms onto the goal list of the parent node to create a
new resolvent node. The OR special form pushes each of its subforms
onto the parent node's goal list separately, creating a new node for
each. The non-determinism of the Logic search strategy renders the
Logic OR's subforms uncoupled as compared to the tight sequential
dependence of Lisp's OR. In Lisp, the COND form is equivalent (modulo
unit clauses) to an OR form of AND forms containing the "test" subform
of the clause followed by a PROGN (implicit) of the clause's remaining
subforms. This Lisp equivalence is illustrated in Figure 1.

Lisp COND Equivalent Lisp OR, AND, PROGN

(COND (TESTA RESULTAI RESULTA2) (CR (AND TESTA
(PROGN RESULTAl RESULTA2))

(TESTE RESULTB) (AND TESTB RESULTB)
(TESTC)) TESTC)

Figure 1

-2-

LogLisp's Execution Cycle

The COND special form of Logic exists to permit resolution on
clause test subforms. Because of the standard if-then-else sequential
connotation of COND, the Logic resolution semantics of COND preserves
Lisp's sequential treatment of the OR in the equivalent form, rather
than creating separate, independent deduction nodes for each AND subfor
(clause). The COND special form resolves on the test of its first
clause, generating resolvent nodes which include continuations that
store both the clause's "result" forms (implicit PROGN) to be processed
in case the resolvent process succeeds, and the COND's remaining clauses
to be processed in case all this clause's (test's) resolvent processes
lead to failure. While no special resolution rule exists in current
LogLisp for PROGN, it is a "feature" of the reduction semantics for a
top-level PROGN that its last subform has predicate status. This
feature extends as well to the implicit PROGNs of COND clause tails.

With these observations, the forms of Logic can be classified into
two types: predicate forms, which occur at the top level of clauses, as
AND and OR special form top-level subforms, as COND special form test
subforms, and as the last subfor. of explicit and implicit PROGN forms
with predicate status; and functor foms, the subforms at any level of
non-special predicate forms. Predicate forms either succeed or fail. A
Lisp predicate form succeeds when it evaluates to other than NIL; it
fails if it evaluates to NIL or is unevaluable (and has no Logic
definition). A Logic predicate succeeds if it can be resolved using a
clause in the knowledge base or a special resolution rule, and fails
otherwise. The success properties of predicate forms are summarized in
Table 1.

Logic predicate forms Lisp predicate forms

resolvable unresolvable evaluable unevaluable

success [always never if non-NIL never
failure never always if NHL always

Table 1

Logic and Lisp functor forms differ only in that the latter can be
affected by simplification before unification and the former are not.

-3-

. .-. ..

77-,

LogLisp's Execution Cycle

Table 2 is provided to clarify the predicate and functor

compositions of Lisp forms for which predicate subfors can occur.

predicate functor

(AND . predicate-forms) (AND . functor-forms)
(CR . predicate-forms) (OR • functor-forms)
(PROGN . (functor-forms I predicate-form)) (PROGN . functor-forms)
{COND combines compositions for OR, AND, PROGN--see Figure 1} --

Table 2

Note that in a predicate PROGN form only the last subfor has predicate
status. All other (Lisp, functor) subforms are evaluated for
side-effect only. The predicate PROGN form fails if any of these Lisp .
side-effects cannot be performed (because of uninstantiated Logic
variables).

-4-

3. LogLisp and Side-effects

LogLisp combines Lisp, a side-effecting (multiple-assignment)
programming facility, with the side-effect-free (single-assignment)
formalism of logic programming. The logic programming variables of
Logic can only be instantiated through unification, but the provision
for Lisp simplification affords the opportunity for arbitrary Lisp
side-effects to be performed by Logic code. Common side-effecting
operations of Lisp are listed in Table 3.

effect performed by effect accessible through

PUTPROP GETPROP
RPLACA CAR
RPLACD CDR
DEFINEQ pname
SETQ pname {!}

Table 3

When these multiple-assignment Lisp operation. are performed by
Logic code, their effects can be ccmmunicated to subsequent operations
in that code by virtue of the Logic/Lisp (reduction) interface. The
effects of PUTPROP.a and IPLAC's are available through the appropriate
accessor functions. The effect of a DEFINEQ is accessible through the
identifier's puame when it appears at the head of a list. Because of
LogLisp's implicit quoting of non-head proper identifiers, the effect of
a SETQ is available only through explicit EVALuation of the bound
identifier. This poses no real problem in Logic code, and EVAL serves
as a signal that reference to a global Lisp object is being made.

Communication among the predications of a Logic clause is of course
also done with logic programming variables instantiated in unification,
as in any other logic programing dialect. Unification is the
single-assignment operation whose effects (bindings) are accessible
through reference to variable identifiers, much as Lisp variable
bindings are (in Lisp). In the non-terminal subforms of Logic's only
present sequential form-PROGI,--, however, only Lisp communication
mechanisms are available. Their lack of predicate status precludes the
Logic communication mechanism of unification. This poses a problem for
sequential Logic computations which must make subsequent reference to
intermediate results.

-5-

I

LogLisp and Side-effects

SETQ (and other Lisp side-effecting forms) are unattractive for
this purpose because they require the creation of an object global to
the entire Logic computation, to satisfy a strictly temporal need.
Preceeding the PROG with a local variable declaration predicate
guaranteed to succeed (as defined by the clause:
(I- (Local-Logic-variables . any-Logic-variable-names))) is perhaps
less disagreeable, but variable declaration is contrary to logic
programming principles. A mechanism to allow resolution with the
non-terminal subforms of sequential Logic forms solves this problem.

-6-

4. The New Sequential Forms

Successful programming with Logic sequential forms using
communication of intermediate values requires that all subforms possess
a status which permits assignment operations, including unification.
The sequential form should fail if and only if the operation specified
by one of its subforms cannot be performed. For a Lisp subform, failure
will occur when evaluation is impossible. When the subform is fully
instantiated, the evaluation s results or actual binding or not binding
of (global) Lisp objects do not matter to its success. For a Logic
subform, failure will occur when the subform leads to immediate or
ultimate failure. The desired success properties that subforms confer
on sequential forms are surn-arized in Table 4.

Logic sequential subforms Lisp sequential subforms

resolvable unresolvable evaluable unevaluableI

success I always never ! awy always never

failure never always never awy

Table 4

Terminal Lisp subforms in PROGN predicates represent an exception
to the above success specifications, since intuitively one expects a
PROGN to "return" its last value and this is the current semantics. The
InterLisp implementation of LogLisp V2M [Schrag 83] has been modified - -

to extend resolution semantics to PROGN, with sequential subform - -

treatment. The function #RESROGN is employed. Note that this
resolution semantics also extends to the implicit PROGN's of COND clause
tails.

A "pure" sequential form, SEQUENCE, is also provided. This form
always succeeds if the side-effects of its subforms can be performed,
and treats the terminal subfor no differently from its predecessors.
This form is also implemented in InterLisp LogLisp V21M. SEQUENCE is
defined as a Lisp function, reduction semantics for it are bestowed by
#VALSEQENCE, and resolution semantics for it by "'ESSEQUENCE.

-7-

I7

The New Sequential Forms

Figure 2 demonstrates the utility of resolution semantics for Logic

sequential forms with two example clauses from a pattern-matching

production rule interpreter. Logic predicates and functors are shown as
identifiers with initial letter capitalized and remaining letters lower

case. If input can be Matched against the clause's specfic Pattern,
then, if a SEQUENCE of global Lisp actions can be performed, the clause
succeeds.

equality unification

(I- (Interpret input) <- (Match input (Patterna x y))
(SEQUENCE (- tempvar (CALCULATE x y))

(GLOBAL-ACTIO1 tempvar)
(GLOBAL-ACTION2 tempva r)))

(a)

deduction unification

-!- (Interpret input) <- (Match input (Patterub x))
(SEQUENCE (Deduce tempvar x))

(GLOBAL-ACTION1 tempva r)
(GLOBAL-ACTION2 tempva r)))

(b)

Figure 2

Two types of temporary Logic variable instantiation are illustrated. In

Figure 2(a) a Logic variable is instantiated to the value of a Lisp

function call using the a special resolution form. In Figure 2(b) a

Logic variable is instantiated by Deduction (or data base look-up) of a

Logic relation.

The code for implementing functions mentioned follows. Obvious -.

modifications to #REDINIT and #INITX, and definitions for AUTOPROGN and

AUTOSEQUENCE, have also been made. *

-8-

The New Sequential Forms

(#RESPROGN
LAMBDA NIL
(P.ROG (RDTL LN NDRV)

(SETQ aDTL (# ESHOW (CDR #HD)
-IHfK))

(COND
((EQ #TLL 0)

(RETURN)))
(SETQ LN (ADDI LP))
[SETQ NDRV (COND

(*HISTCRIES (COND
(WHNIST (CAR #HIST))
((CONS (QUOTE ((PROGN Rule)

PROGN-RULZ
(Special Rule)))

#HIST]
(SETQ RESULT (CONS (CONS14 LN NDRV #CNTN

(CONS (LIST !/HDK (CAR HDTL)
(CONS (QUOTE PROGN)

(CDR HDTL)))
#SEGTL)

#C)
RESULT))

(RETURN])

-9-

The New Sequential Forms

(SEQUENCE
[NL2 DA L

(EVAL (CONS (QUOTE PROGN)
L))

TI)

(#VALSEQUENCE
[LAMBDA NIL

(FROG (#D #RPRG #PRGL)
(SETQ #RE (SETQ #RPRG NIL))
(SETQ #PRGL (CDR #E))

LOOP(#UJLT% #PRGL #I)
(COND

((.LL #PRGL) **COMENT**
(SETQ #RE T)
(RETURN T))

((#VAKIABLE #PRGL)
(COND

((SETQ #R #RPRG)
(SETQ #RE (CONS (QUOTE SEQUENCE)

#PRGL]
(RETURN NIL)))

(SETQ #D (CAR #PRGL))
(SETQ #PRGL (CDR #PRGL))
[COND

((#VALRED #D #I)
(SETQ #RPRG T)
(GO LOOP))

(#Q [COND
(#R"L (SETQ #RE (CONSM (QUOTE SEQUENCE)

#RE #PR"L]
(SETQ #R T))

[#PRGL (COND
((SETQ #R #RPRG)

(SETQ #RE (CONSM (QUOTE SEQUENCE)
ID #PRGL]

((SETQ #R #RPRG)

(SETQ #RE (LIST (QUOTE SEQUENCE)
#D]

(RETURN NIL])

- 10-

A

The New Sequential Forms

(IRESSEQUENCE
LAMDA NIL
(FROG (HDTL LN NDRV)

(SETQ HDTL (THOW (CDR #RD)
#EDK))

(COND
((EQ #TLL 0)

(RETURN)))
(SETQ LN (ADD1 LP))
(SETQ NDRV (COND

(*HISTORIES (COND
(NORIST (CAR #HIST))
((CONS (QUOTE ((SEQUENCE . Rule)

SEQUENCE-RULE
(Special Rule)))

#HIST]
(SETQ RESULT (CONS (CONSM LN NDRV #CNTN

(CONS (LIST #EDK (CAR HDTL)
(CONS (QUOTE SEQUENCE)

(CDR HDTL)))
#SEGTL)

#C)
RESULT))

(RETURN])

-- 7]

5. References

[Robinson and Sibert 81a] J.A. Robinson and E.E. Sibert. The LogLisp

User's Manual, unpublished interim technical report, 1981.

[Robinson and Sibert 81b] J.A. Robinson and n.E. Sibert. LogLisp
Implementation Notes, unpublished interim technical report, 1981.

[Schrag 83] R.C. Schrag. Notes on the Conversion of LogLisp from

Rutgers/UCI-Lisp to InterLisp, RAY-!83-1, 1983. AD# A127718

- 12 -

MISSION
* Of

Rame Air Development Center
PRADC pt" a~nnd e.xe.ute4 teAeztch, devetorpment, tu'; and
seetd auiaition pa'vcgiam in .6uppoi~t c6 Comma~nd, Cottoi- -

*Comwmw1.ation6 and InteZLigencea (CkT aZctviAs. 7achirZ
nd eneineeting 4suppott wlthin ztea4~ o6 technca~ competenc

w~ m~ovded to ESV P'Lgag.wm O66iceA (PO.6) and othev ESV
etementA. The ptnc2pa techiznca mi&s.n a~eah ate
veZanwe o6 ptound and ae.6pace abicta, intetlgence data
coZ~ction and handL~ng, injo~mati~on .q6&tem .technotogy,
iono6phe"Jc ptoagdatian, Aol-4 a-tzte science6, mic/ove
phqys.ZcA atnd etcttonc tetabZL~ty, mainta.iabi and

* comnpatibiZtq.

I.o -

w7

