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1. Introduction.

This report documents investigation of technical issues involved in
improving the execution efficiency of LogLisp through the employment oflogic programming compilation. LogLisp is a hybrid language combining .-

logic programing and Lisp developed by Syracuse University under
contract to RADC. The version of LogLisp discussed here is known as
V2M3, and is described in [Robinson and Sibert 81a] and [Robinson andSibert 81b].

The remainder of this report consists of seven sections. The
construction of a compiler for a programming language has the
prerequisite that the virtual machine upon which its code will execute
be completely specified. Logic programming compilers presently exist
only for Prolog. Section 2 provides a concise model of Prolog
interpretation. Section 3 describes commonly used Prolog space
optimizations, and Section 6 Prolog compilation technology, as they
apply to that model. These sections on Prolog characterize very tersely
implementation concepts and techniques described in [Bruynooghe 821,
[Warren 77], and (Warren 80], to establish a foundation for discourse of
the current technical investigation.

The present LogLisp interpreter is modeled in Section 4. The
design decisions implemented in that interpreter to represent search
paths and environments with the techniques of [Boyer and Moore 72] and
to fix certain arbitrary control assumptions (including ordering of
clauses in a procedure and of calls in a clause body) are also assumed
in Section 5, which offers possible space optimizations, and Section 7,
which presents a scheme for LogLisp compilation. The Conclusion
contains suggestions for future research and critical observations.
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2. Prolog Interpretation.

The vast majority of existing logic programming implementations are
of Prolog-a purely backtracking, deterministic dialect. Prolog's rigid
search strategy makes an implementation based on a contiguous area of
memory which expands and contracts as a stack rather straightforward.
It is easy to program a Prolog interpreter in a high-level language
whose run-time stack can serve the same purpose, but this is less
efficient than manipulating memory directly. The direct stack
representation is also at the core of Warren's logic programming
compilation techniques.

A Prolog stack frame corresponds to one application of resolution.
It must, in general, include at least five fields of information. A
pointer to the machine representation of the clause used and remaining
clauses of the same procedure is required so that the next alternative
clause to use upon failure is known. A similar pointer to the current
call and its right-hand siblings is required so that the point at which
to continue upon success is known. An environment for the variables of
the clause the call is resolved with is required for the results of
unification to be recorded. At least three types of control information
must also be included in the frame: a pointer to the father stack frame
containing the current call and its binding environment; a field
indicating the most recent sibling, ancestor, or ancestor sibling frame
with remaining alternative clauses to backtrack to; and a field for
recnrding the locations of variable cells in previous stack frames which
are written into as a result of this resolution and must be reset when
this frame is backtracked through.

The algorithm which operates on the stack model begins by creating
a new stack frame for the current call and copying the present frame's
location into the father field. If this is the first call in the
present frame, the backtrack field is copied from the father frame. For
subsequent calls the backtrack field is set to the frame of the most
recent non-determinate left-hand sibling (or one of its descendents) if
it exists, otherwise as for a first call. The procedure corresponding
to the call is retrieved and copied into the procedure field. Its first
clause is examined and the required variables are allocated in the
environment field. Unification is attempted, with results being
recorded in this new and ancestor environment fields. Since frames are
discarded on backtracking, it is required that references between
variables be oriented from more recent toward less recent. Inefficient
chains of reference are usually avoided by chasing variable bindings to
their ultimate origins (dereferencing) before making assignments. Any
ancestor variables that are instantiated as result of this unification
are recorded in the reset field. If unification fails, the recorded
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Prolog Interpretation.

instantiations are undone, and an alternative clause of the procedure is
tried. If no alternative clause exists, this and any intervening frames
until that specified by the backtrack field are discarded, and execution
resumes there with the selection of an alternative clause. If
unification succeeds, che right-hand sibling of the present call in the
father frame is executed. Subsequent answers to a query which succeeds
once are obtained by resuming execution at the backtrack point of the
successful frame.

-3-



3. Prolog Optimizations.

The essential stack model described above is somewhat wasteful of
stack space in that frames are only reclaimed upon backtracking. This
design cannot take advantage of the fact that a frame may be inherently,
or may become through exhaustion of alternatives, deterministic,
offering no further promise of new information.

A deterministic frame could be overwritten upon invocation of the
sibling call, but for the possibility that that sibling shares a
variable instantiated in that frame to a complex term, which itself
contains variables. Overwriting the deterministic frame and its
descendents would cause loss of the environment for the complex term's
variables, creating a "dangling reference."

This dilemma is solved by creating a new, sister stack for the
environments of variables which appear within complex terms to which
ancestor variables are instantiated. This stack is popped only on
backtracking (failure), allowing deterministic frames on the main stack
and their ordinary variables to be overwritten, or "popped on success."
(Subsequently this optimization is referred to as success popping.) The -

variables of complex terms are now preserved for ancestor frames, and
are called global variables. The new stack is called the global stack.
The main stack and its variables are referred to as local. It must now
contain, in addition to the usual control information, a pointer to the
corresponding frame in the global stack.

There is a further major opportunity to reclaim the stack space of
deterministic frames. When the last call in a clause is reached and all
of its siblings have terminated determinately (and hence been
overwritten), retention of the father stack frame can contribute no
promise of new information, and might be overwritten by the frame to be
associated with the last call. (This is referred to subsequently as
last call otimization.) Again it is necessary to preserve information.
Variable bindings recorded in the father must be copied into a temporary
location before that frame is overwritten so that they can be accessed
during unification. The father's control information which specifying
the next call to be executed upon success must also be saved, and is
copied into the new frame. That is, the continuation information
previously available in the call field is now maintained as an explicit
list of calls, since the ancestor frames which contained it in the
unoptimized model may now be overwritten.

While both these optimizations reduce run-time storage
requirements, they reclaim storage which would in any case be released
upon backtracking. The optimization of determinate last calls (also

-4-
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Prolog Optimizations.

called tail recursion optimization when the last call is recursive on
the procedure) has the very attractive practical advantage of allowing
"perpetual processes" to be implemented in application programs (Warren
821. This optimization also is impossible without the separation of
variables onto local and global stacks that allows determinate frames to
be overwritten.

Whenever frames are overwritten, the possibility exists that the
only pointers to (or need for) information on the global stack may be
deleted, creating (or exposing) garbage. In order to support processes
of significant duration, especially under last call optimization (where
the eventuality of backtracking to reclaim space is not guaranteed), a
garbage collector must be implemented for the global stack. Warren [-
771 points out that such a garbage collector is quite complex,
involving, beyond the classic marking and sweeping, compaction of the
global stack with remapping of pointers from the local stack into it.

Ai
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4. LogLisp Interpretation.

LogLisp is a hybrid language, combining Lisp reduction/evaluation
with inference in a heuristic, non-backtracking implementation of logic
programming in Lisp. The Lisp semantics of LogLisp includes all of
standard Lisp plus reduction of Lisp forms used in Logic-the logic
pr6gramming semantics of LogLisp. This section primarily addresses the
unique search algorithm of Logic. Because multiple search paths are
explored simultaneously, it is impossible for LogLisp to use
Prolog-style stack techniques. Instead, active nodes of the search
space (each corresponding to a search path) are kept on a heap. Instead
of a contiguous area of memory, linked list data structures which can be
easily shared across the contexts of different search paths are used.
These design decisions follow (Boyer and Moore 72].

A heap node consists of a segment list, or lifetime continuation
containing all outstanding unsolved predications of the node, and an
environment containing the bindings for variables instantiated on this
path. The environment is represented in the heap as a list of
association lists, each with variable bindings for the predications
resulting from resolution with a particular clause, distinguished by a
unique environment index. Association list entries at an index use the
bound variable name as association key, and show the binding expression
and the index at which to view in turn any of its variables. Each
segment in the segment list consists of predications forming some tail
of the body of a clause resolved with on this path, prefaced by the
index at which their variables are viewed. (This is a simplified
description. A node can also contain a structure associated with the
COND special form of Logic, which is omitted here without loss of
generality.)

The LogLisp execution cycle begins by removing a node (of low
heuristic cost) from the heap and spreading its environment list in a
global environment array so that association lists can be accessed
directly by their indices, without the cost of traversing a linked list.
The first predication in the segment list of the selected node is
Lisp-reduced, and then its resolvent nodes are computed from each clause
in the selected procedure. The reduction machinery actually implements
conditional evaluation of variable-containing Lisp forms, reducing them
only as much as is allowed by their states of variable instantiation.
If reduction succeeds in completely evaluating a call and Its result is
not NIL, then the next predication in the segment list is processed in
the same way. If the result is NIL, then that call is considered to
fail. Resolution with the clauses of a called procedure is attempted
after reduction. The variables of a resolving clause are viewed at the
next available index. The current environment is extended by pushing

-6-



LogLisp Interpretation.

variable binding entries resulting from unification onto the environment
array at the viewing index. If a variable in the head of a clause
unifies with a term in the selected predication, the binding entry
extends the newly created index. If the binding must be made in the
other direction, then the entry extends the index of the bound variable.
Complete dereferencing of variables applies in either case.

Segment list tails, environment list tails, and individual
association lists or their tails are shared among heap nodes whenever
possible. Other than reserving an index for the association list, no
allocation of space for a clause's variables is made, and no extension
of association lists is performed until a variable is bound. Pushing
onto a list does not alter tail structure, so this policy allows
association list tails to be shared across contexts. When unification
with a clause is successful, the entries of the extended environment
array are gathered into list representation, sharing the largest common
environment list tail with the current environment. Sharing of
association lists across contexts occurs when unextended association
lists are gathered. Sharing of segment list tails occurs when the new
segment resulting from a non-unit resolving clause is pushed onto the
segment list.

A resolvent node containing the new segment list and gathered
environment is entered onto the heap. The environment array is restored
to its unextended state by spreading the current environment again
before attempting unification with another clause of the same procedure.
When all resolvent nodes (search path extensions) of this node have been
generated, another (low-cost) node is removed from the heap. The
process of expanding heap nodes into their resolvents continues until
the heap is empty or a satisfactory number of solutions has been found.

-7-



LogLisp Interpretation.

Figure 1 is provided to clarify the LogLisp execution cycle. It
lists extremely compact Lisp (pseudo-) code to represent a stylized
interpreter.

(deduce (lambda (continuation)
(prog (call environment solved node procedure)
in: (setq solved nil)

(enter-heap-node (cons continuation nil))
run: (cond ((null (setq node (remove-heap-node)))

(go out:)))
(setq continuation (car node))
(spread (setq environment (cdr node)))
(setq call (car continuation))
(setq continuation (cdr continuation))

simpl: (setq call (reduce call))
(cond ((evaluable call)

(cond ((not (null result-of-call))
(cond (continuation (setq call (car continuation))

(setq continuation (cdr continuation))
(go simpl:))

(t (setq solved (cons environment solved))
(go run:)))

(t nil)).)) {call is reduced}
(t (setq procedure (name call))

(prog (clause)
next: (setq clause (car procedure))

(spread environment)
(cond ((unify (head clause) call)

(cond ((setq continuation
(append (body clause)

continuation))
(enter-heap-node

(cons continuation
(gather))))

(t (setq solved
(cons (gather)

solved))))))
(cond ((null (setq procedure (cdr procedure)))

(go run:)))
(go next:))))

out: (return solved))))

Figure 1

-8-



LogLisp Interpretation.

The details of segment indexing have been omitted in Figure 1, and
the segment list is represented by a homogeneous continuation. The
query calls are passed Co deduce as such a continuation. The variable
solved contains a list of solution environments from which query -

variable bindings can be obtained.
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LogLisp Interpretation.

Figure 2 shows a determinate LogLisp program and a trace of the
contents of each successive node as it is entered onto and removed from
the heap in execution.

{(couments)}
(I- (FO0 x) <- (BAR x) & (TOT y) & (COMP z)) {four
(I- (BAR (ZIP a))) procedures
(I- (TOT (ZAP b))) in the
(I- (COMP THIS)) program}

(THE v (FOO v)) {query to run)
(ZIP a:2) (answer}

Cycle 0:
segment list ((0 (OO v))) {initial call,
environment ((0)) index 0)

Cycle 1:
segment list ((1 (BAR x)(TOT y)(COMP z))) {new segment,
environment ((1 (x 0 . v)) new index,

(0)) x:l <- v:0}

Cycle 2:
segment list ((1 (TOT y)(COMP z))) (advance over
environment ((2) segment. new

(1 (x 0 . v)) index for var's
(0 (v 2 . (ZIP a)))) of BAR clause)

Cycle 3:
segment list ((0 (COMP z)) {advance again.
environment ((3) another new

(2) index)
(1 (y 3 . (ZAP b))(x 0 . v))
(0 (v 2 . (ZIP a))))

Cycle 4:
segment list () {query solved!
environment ((4) read off

(3) answer from v:0}
(2)
(1 (z 4 . THIS)(y 3 . (ZAP b))(x 0 . v))
(0 (v 2 . (ZIP a))))

Figure 2

- 10 -



LogLisp Interpretation.

In Cycle 0 the query call is packaged into a segment list with
variables to be viewed at environment index 0, which initially has no
binding entries. This call is removed from the segment list in Cycle 1
and replaced with a new segment corresponding to the body of the FOO
clause. Variable x at index I (x:1) is bound to variable v at index 0
(v:0-still unbound). In Cycle 2 the BAR call is processed. Its
argument variable, x, is dereferenced, leading to the binding of v:0 to
(ZIP a:2). Environment index 2 is dedicated to bindings of BAR clause
variables. In Cycle 3 the environment association list at index I is
extended to indicate the binding of y:1 to (ZAP b:3). In Cycle 4 it is
extended again, and the segment list becomes empty, representing
solution of the query, found as the binding of v:O.

J



5. LogLisp Optimizations.

This section addresses the import of the conventional logic
programing space reclamations, success popping and last call

optimization, in the context of LogLisp's unconventional search
machinery. These optimizations exist so that the Prolog stack machine
can avail itself of the space occupied by frames which are determinate
in the sense that they offer no further promise of new information. The

absence of backtracking in LogLisp means that all nodes are determinate.
This is certainly evidenced by LogLisp's discarding of any heap node
after its resolvents have been generated.

When a local stack frame is overwritten in Prolog, storage for both

the responsible call and environment for the resolving clause's
variables are released. In the case of last call optimization, the

continuation is copied into the new frame. In LogLisp's current

implementation, however, there is no distinction between local and
global variables, and only one environment list for each node is
maintained. Therefore, while the parent call is always removed from the
continuation in constructing the descendent node, all bindings for
either type of variable in the association list at the environment index
created by that call is always retained. Since the environment array
which is used for fast indexing is of finite length, the maintaining of
indices containing only useless bindings has the unfortunate effect of
causing space in this array for new rule application to be exhausted
prematurely. The most severe disadvantage of this limitation is that it
prevents users from programming perpetual processes.

Ignoring for the moment the problem of how to store global
information, the perspective that all nodes are determinate leads one to
the conclusion that success popping and last call optimization might
always be performed on the current environment. In terms of LogLisp
structures, this means that a segment's last call could always reuse the
segment's environment index, and that earlier calls in a segment could
always use the index one greater than the segment's environment index.
(Last call optimization requires provision of a temporary location for
the index to be overwritten, and an answer location for answer template
variables which must never be overwritten.) This would lead to situation
in which any node would always have equal numbers of segments and
environment entries (except when a unit rule clause had just been used).
This sort of scheme would lead to very short environment lists, and less
overhead in spreading and gathering during context switching.

To cope with global information, an array parallel to the
environment array, a usage array, could be used to indicate whether a
particular index would be needed for global information. A flag would

- 12 -



LosLisp Optimizations.

be set in this array if unification established a binding from an
earlier index (of an earlier variable to a complex term containing
variables) into the corresponding index. The set flag would signify
that the index is used for global bindings and cannot be overwritten.
This environment utilization requires that a list of free environment
indices be maintained for each heap node. Success popping and last call
optimization are performed as in the naive scheme above, except that
when an index cannot be overwritten because its usage flag is set, the
next index on the free list is chosen instead.

This scheme is very similar to environment utilization under space
optimizations in Prolog. Flagged indices can be thought of as
constituting the global environment, and unflagged indices the local
environment. The number indices in the local environment equals the
number of active segments (continuations), as in Prolog. The fact that
local variable bindings also exist in "global" indices is unimportant,
since an association list will accommodate an arbitrary number of
variable bindings. The index is necessary for the implementation of
structure-sharing across deduction contexts, and to avoid problems of
variable name conflict. This scheme would be complete with the
provision of garbage collection for global indices to clean up after
last call optimization's abandonments.

A "mark and sweep" garbage collector would mark only indices.
(Restructuring of their contents is prohibited by structure-sharing
across deduction contexts.) It would proceed from all local indices,
marking any global indices their variables point to. From this point,
at least two approaches are possible. All of the bindings in a global
index could be similarly chased at the gross index level, or more care
could be taken to chase only the specific variables which were --
referenced, possibly freeing more indices. Gross chasing might be
adequate in the average case.

The fact that "normal" unification algorithms, like LogLisp's,
cannot create circular ("infinite") data structures means that a
"reference count" implementation of garbage collection is also feasible.
This would require another array parallel to the environment array--the
keeping array--used by unification to record, when a variable in a
corresponding earlier index is instantiated to a complex term containing
variables, the later index referred to. The usage array must now hold
for later indices their reference counts-showing how many earlier
indices want to "keep" them.

Now garbage collection is done incrementally within the inference
process. Success popping and last call optimization are performed as
before, but before overwriting any index, the reference count of each
entry it has kept is decremented (once for each appearance on the

- 13 -



LogLisp Optimizations.

keeping list of the index-duplicates are possible and meaningful). If
any reference count so decremented reaches zero, its index is returned
to the free list, with its own kept indices processed similarly in turn.
This scheme is attractive in that it has the effect of "fine" garbage
collection without requiring specific variable traversal after initial
recording, even though indices are traversed at a gross level.

A "heap trace" of the program listed in Figure 2 showing the
mechanics of last call optimization, success popping, and reference
count garbage collection is provided as Figure 3.

- 14 -



LogLisp Optimizations.

Cycle 0:
segment list ((0 (FOO v))) {last call in segment: optimize}
environment ((0)
temporary {nothing being overwritten}
answer C) (no answer variables bound yet}
keeping ((0) {no global
usage ((0 0)) variables yetl
free list (1 2 3 .. )(only index 0 in use}

Cycle 1:
segment list ((0 (BAR x)(T0T Y)(CO11P W)) (success pop}
environment ((0 (x answer . v))) (index 0 reused)
temporary 0) (previous contents of index 0}
answer 0)
keeping ((0))
usage ((0 0))
free list (1 2 3 ... ) (index 1 available}

Cycle 2:
segment list ((0 (TOT y)(COMP z))) (success pop, but...}
environment ((0)(0 (x answer . v))) (0 + 1 - index 1}
temporary
answer (v I . (ZIP a)) (answer variable bound}
keeping ((l)(0)(answer (1))) {x:ansver
usage ((1 MO( 0)) <- (ZIP a:1)
free list (2 3 4 ... ) ... index 1 not available}

Cycle 3:
segment list ((0 (COM1P z)) (optimize last call)
environment ((2)(1)(0 (y 2 . (ZAP b))

(x answer . v))
temporary
answer (v 1 . (ZIP a)
keeping ((2 1)(1 1)(0)) (y:0
usage ((2)(1)(0 (2))(answer (0))) <- (ZAP b:2))
free list (3 4 5 ... )

Cycle 4:
segment list C)
environment (0(1)0))
temporary ((y 2 .(ZAP b))(x answer .v))
answer (v 1 .(ZIP a))
keeping (01 1)(0)) 7
usage ((1)(0)(answer (1)))
free list (2 3 4 .. ){index 2 again free}

Figure 3
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LogLisp Optimizations.

In Cycle 0 index 0 holds the packaged query call and null
environment, as in Figure 2. Index 0 entries also exist for the keeping
and usage arrays, showing that no index 0 variables have been bound to
later complex terms and that no index 0 complex terms (containing global
variables) have been bound by earlier variables, respectively. There is
no entry in the temporary location because last call optimization is not
in effect. No answer variables have been instantiated and only index 0
is in use. Since there is only one call in the current segment, last
call optimization is performed on this node, and in Cycle 1 index 0 is
reused for the new segment. The temporary location holds the previous
contents of the overwritten index (which was empty) for access during
unification. Now there is more than one call in the current segment, so
that success popping can be performed on this node. The index one
greater than current index 0, index 1, is available, and is used for the
variables of the BAR clause in Cycle 2. Dereferencing of x:O leads to
the binding of v:answer to (ZIP a:1), noted in the answer location.
This binding establishes global variables, causing the reference count
in index 1 of the usage array to be incremented and index 1 to be placed
on the list at the answer index of the keeping array. There is still
more than one call in the current segment, indicating success popping,
but now index 1 is guarded from being overwritten by its non-zero
reference count. Cycle 3 uses index 2 for the variables of the TOT
clause. Another global variable binding is recorded in the coupled
usage and keeping arrays. A single call remains in the current segment,
indicating last call optimization. When index 0 is overwritten in Cycle
4 the reference count for index 2 (noted on the list at index 0 of the
keeping array) is decremented to 0. All unguarded indices beyond
overwritten index 0 (just index 2) are now returned to the free list.

Both of these schemes for environent optimization suffer new
overhead due to new node-specific data structures. The keeping array
must be extended, gathered, and spread in the same sense as the
environment array. The usage array can contain integers (or flags)
rather than lists and need not be extended, but must be gathered and
spread. The free list is merely pushed and popped, and is unaffected by
context switching.

Whatever sort of garbage collection is chosen, it will be less
complicated than in the Prolog, stack-based case. Expensive compaction
and remapping of indices is unnecessary because each holds exactly one
pointer (to its association list) in the LogLisp, linked list-base case.
The free list serves the analogous function here.
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6. Prolog Compilation.

The stack model that has been described for Prolog interpretation
is compatible with compiled execution of Prolog programs. InP interpretive execution, procedures of the program are represented
declaratively by data structures, and the search algorithm is
implemented in an interpreter which performs operations, including frame
initialization, unification, backtracking, and optimizations on the
stack. In compiled execution, the procedures of the program are
represented procedurally by executable code in which the search
algorithm and its stack-manipulating operations have been embedded. A
Prolog compiler transforms Prolog code to machine instructions for which
a specific stack model serves as the virtual machine. The usage of the
stack frame fields under compiled execution is the same as
interpretively, except that contents of the call and procedure fields
must be considered to be instructions. (In this discussion, compiled
Prolog code is presented in a stylized way that highlights just the
essential features of that described in (Warren 77] and [Warren 801.)

Prolog's deterministic search algorithm is embedded by the
sequencing of instructions in compiled code. A procedure compiles into
a sequence of instructions to y each member clause in turn, and is
considered to succeed if any of its clauses succeed. A clause compiles ...
into: matching instructions for unification, corresponding to the head
of the clause; a sequence of call instructions to compiled procedures,
corresponding to the body; and an exit instruction to transfer control
to the parent goal's continuation. A clause is considered to succeed if
its matching and all of its call instructions succeed.

1.



Prolog Compilation.

Figure 4 is provided to illustrate the structure of compiled Prolog

code.

try(firstclause);

-m trylast(lastclause);

(a) procedure code structure

match;
call(firstprocedure);

call (lastprocedure);
exit;

(b) clause code structure

Figure 4

A new procedure is entered (Figure 4(a)) upon resolution, and a new

frame is pushed onto the stack. The continuation and father fields are

filled in. As each member clause is tried, the procedure field is

updated, the environment is allocated, and control passes to the

executable code for the individual clause (Figure 4(b)). The clause's

unification instructions dereference arguments of the call (using the

father environment) and record the effects of unification of head

variables, including making appropriate entries in the reset field. The

call instructions call new procedures which establish subsequent stack

frames. Finally, the exit instruction transfers control to the parent

goal's continuation if it exists, and otherwise to the backtrack point.

While the transformation of procedures into independently
executable code contributes somewhat to the efficiency advantage of
compiled code, the greatest contribution is provided by the generation
of matching instructions for the heads of clauses. These instructions
speed the general unificiation algorithm by specializing it for
particular arguments. The compiler generates such specialized
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Prolog Compilation.

unification instructions for each argument in a clause head.

The technique of creating efficient specializations of algorithms
with respect to a known, particular subset of its arguments is called
partial evaluation [Emanuelson 82]. Such specialization can be
performed ad hoc, or by an automated partial evaluation system (cf.
[Kahn 83]) operating on a program in a designated language and given
arguments. Through this technique, much unnecessary testing, dead code,
and function-calling overhead can be eliminated.

Warren [- 771 (p50-51) lists some compiler optimizations which
correspond to partial evaluation of unification. These include:
binding first occurrences of head variables directly, without matching;
omitting instructions for top-level (void) variables with just one
occurrence; avoiding recursive calls to unification by associating
nesting level information with head symbols; and overwriting cells for
variables occurring only in the head but more than once, after the head
has been matched.

Unification is further dispatched in Warren's virtual Prolog
machine via the representation of code for which no instructions are
generated (-unification in calls, or beyond a certain nesting level in
heads) by literals, which associate type information with the individual
symbols of a predication.

Other optimizations described by Warren include: delaying
allocation of variable cells until successful unification has been
determined; the use of indexing to narrow the search for matching
clauses, share unification work among similar clause heads, and help
detect determinism in procedures; and local/global variable
categorization to enable stack optimizations.

Because it cannot be determined at compile-time whether a complex
term will be bound to an ancestor variable or merely have its arguments
matched, Warren's compiler generally classifies all variables occurring
in complex terms as global, but also provides a mechanism for declaring
whether an argument is to be used for input or output. These mode
declarations restrict the use of procedures, but offer further
opportunities for partial evaluation of unification. A complex term
declared as input need have no space reserved for a molecule. A complex
term declared as output need have no executable instructions generated
for its arguments.

While it is difficult to sort out the relative benefit of any
specific one of these optimizations, Warren [- 771 estimates that
together they produce a 15- to 20-fold improvement in computation time
efficiency, on average.
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7. LogLisp Compilation.

The breadth-first character of LogLisp's search algorithm prohibits
its being neatly embedded in executable code. Called procedures must
generate resolvent nodes and suspend, rather than going on to call other
procedures directly. The virtual machine for compiled LogLisp code must
consist of the heap and environment and associated arrays, in contrast
to the simple stacks of Prolog.

The primary decision to be made in determining the format of
compiled code is where partial evaluation should be performed. Clause
heads always unify against the calls of clause bodies, so it only makes
sense to partially evaluate unification with respect to one or the
other-not both. (Otherwise there would be ambiguity as to which atomic
formula were to act upon the other.) Since unification with the head of
a clause precedes unification with its body, there is more opportunity
for efficiency enhancement here, by applying Warren's technique for
direct binding on a variable's first occurrence. Calls, being subject
to instantiation before execution, are fluid and more difficult to
compile.

A Logic compiler can retain the Prolog compiler practice of
generating for each procedure a sequence of instructions for resolution
with its individual clauses. Reduction of a call must take place before
the clauses are tried. The practice of generating matching instructions
for clause heads can also be retained to achieve the primary benefit of
logic programming compilation-partial evaluation. The code for an
individual clause must spread the current environment and execute the
clause's matching instructions. If matching is successful, it must then
gather the environment and enter it together with the new segment list
as a node on the heap. The final instruction in the procedure must be
to remove a node from the heap and call the appropriate procedure.
Environment optimizations can be performed at this time.
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LogLisp Compilation.

Figure 5 is provided to suggest a possible structure for compiled
Logic code.

(this-logic-procedure (lambda (call continuation environment)
(progn (spread environment)

(setq call (reduce calli)
(cond ((evaluable call)

(cond ((not (null result-of-call))
(cond (continuation

(eval (list (name (car continuation))
(car continuation)
(cdr continuation)
environment)))

(t (setq solved (cons environment solved))))
(t ail)))

{instructions for individual clauses}

(eval (remove-heap-node)))))))

(a) procedure code structure

(progn (spread environment)
(cond ((apply this-clause-matching-instructions call)

(cond ((setq continuation (append this-clause-body
continuation))

(enter-heap-node (list (name (car continuation))
(car continuation)
(cdr continuation)
(gather))))

(t (setq solved (cons (gather) solved))))
(t nil))))

(b) clause code structure

Figure 5
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LogLisp Compilation.

Figure 5(a) indicates Lisp-reduction and simplification of calls
being performed before resolution with individual clauses is attempted.
Figure 5(b) indicates execution of matching instructions generated by
partial evaluation of unification with respect to the head of a
particular clause, and the packaging of an executable procedure call for
the resolvent node, if any. The last instruction in the procedure code
structure invokes such a packaged call selected from the heap. Note the
correspondance with Figure 1.

Instructions which implement partial evaluation of unification
specifically for LogLisp must be developed. Some of Warren's Prolog
techniques will be applicable. The first has already been mentioned.
Detection of void variables is straightforward, and the omission of
instructions to unify with them (except to advance past their mates) is
applicable. Avoidance of recursive calls to unification should be left
to a more complete investigation of partial evaluation in light of the
mechanism chosen for preserving global information, but it may be
desirable, if user-specifiable indexing on any of a procedure's terms or
subterms is implemented, to generate instructions sufficient to expedite
unification at the specified level. Overwriting individual variable
cells loses significance in the case of LogLisp, since only the index is
valuable, and structure sharing prohibits rearrangements within it.
Because LogLisp supports the use of variable tails (...as opposed to
null tails. Consider the resolution of a head "(P x y z)" against a
call "(P . u)." This LogLisp mechanism effectively allows predicates
and functors of variable arity.) permitting any tail of a Logic
predication or term to be bound to an ancestor variable, it may be
desirable to maintain for this eventuality purely "literal" copies of
predications for which instructions have been generated.

Current LogLisp already uses the literal #VAR# for rapid
identification of variables, though it is more expensive than in the
Prolog case in which literals are essentially tagged, since the reliance
on Lisp list structures requires it to occupy an extra cons cell.
LogLisp also uses the less expensive literal # for void variables.
Integers and atoms are well distinguished by the underlying Lisp system,
so that literals for these are unnecessary. Skeleton literals in Prolog
are used similarly to Lisp cons cells, and are likewise unnecessary in
LogLisp. With or without the proposed environment optimizations,
separate literals distinguishing local and global variables are
unnecessary.

LogLisp already employs full secondary indexing, but it stores each
assertion separately, and does not collapse unification instructions for
similar clause heads. The proposed format for compiled code is
compatible with Warren's indexing scheme, since it too represents
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LogLisp Compilation.

procedures by sequences of clause instructions. Warren's scheme calls
for alternating specific and general sections of indexed code,
corresponding to heads respectively with and without variable arguments,
in order to reflect the program control which user-ordering of clauses
defines. LogLisp always considers data before rules, so only one
specifc and one general section will be needed for each procedure. In
the rare case that the procedure name is the same as that of one of
Logic's special resolution rules, that semantics must be accounted for
in an intervening section.

In the context of the proposed environment optimizations, mode
declarations could be used to eliminate the need to check for variables
in a complex term to be bound to an ancestor variable to determine
whether its index is to be kept. Arguments declared as input need never
have the index kept; arguments declared as output must always have it
kept. The variable-occurrence analysis requires traversing the term's
structure until a variable literal is found, and is computationally
expensive, so that logic programming systems usually avoid it whenever
possible. Warren's Prolog compiler succeeds in that this traversal is
performed once, at compile-time, but the existence of variable tails
makes global variable identification in LogLisp impossible in the
general case. A workable alternative to run-time variable-occurrence
analysis in LogLisp might lie in the use of occurrence literals
throughout the list structure of a clause. A tagged (virtual) Lisp
architecture would generally serve to make the representation of Logic
code by literals painlessly efficient. Then an occurrence literal could
be simply an available flag in a cons cell used only in the list
structure of predications, set if the arguments to CONS contained
variables. Another alternative which would eliminate the need for
analysis in some cases is the optional declaration of the ability of
procedures to have their tails bound.

The generation of instructions implementing the partial evaluation
of reduction might offer another opportunity to significantly enhance
the efficiency of LogLisp execution. It has been tendered that
unification instructions produce greatest benefit in clause heads.
Reduction, on the other hand, is never performed on clause heads, but
only on outstanding predications which derive from clause bodies. To
allow head instructions for unification to continue to operate on these
predications seems to require that any reduction instructions (to be
executed only at the time a predication is selected for resolution) be
treated by unification as (perhaps non-operative) literals.

Reduction instructions for Lisp system functions might be created
by partially evaluating current LogLisp machinery which implements
reduction for those functions with respect to expected arguments.
Without declarations, it will be impossible to generate reduction
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LogLisp Compilation.

instructions for Lisp functions other than system functions, because

LogLisp does not require a Logic identifier's Lisp definition (if any)
to be available at the time of assertion. With identifier-type
declarations, a hypothetical automated system might be used to generate
reduction machinery implementing conditional evaluation, which could
then be partially evaluated to produce reduction instructions for
tractable Lisp functions. In any case, reduction instructions cannot be
guaranteed to be maximally specific because of the vulnerability of
calls to instantiation before their execution. In the absence of
complete reduction instructions, variable occurrence literals could be

used to at least determine to what extent an expression needed to be

reduced or shown (reproduced as an instantiated copy for Lisp
evaluation).

The speed-up resulting from these compilation techniques is likely

to be less than the 15- to 20-fold achieved by Warren, considering the

fact that LogLisp already includes some of the optimizations that

contribute to that figure. A more conservative estimate might be a 5-

to 10-fold improvement in processing speed. This estimate must be

tempered against the fact that compilation is only successful when

enough particularity can be determined at the time of assertion.

LogLisp's rich and flexible semantics make this determination a more

difficult proposition.
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8.Conclusion.

must be emphasized that the proposed optimization and
compilation techniques for LogLisp are now no more than paper
conceptualizations. Any practical value they may possess must be
learned from their actual implementation. Their compatibility with the
forthcoming V3M1 version of LogLisp, which performs modified
backtracking, should also be examined. If an alternative multiple
context management technique (such as "hash table windows," described in
(Borgwardt 84]) is chosen over the structure sharing strategy currently
employed, then the applicability of the proposed techniques will be
limited. LogLisp cannot achieve the full benefit of compilation without
the inclusion of reduction instructions. The automatic generation of
reduction machinery for user-defined Lisp functions is an unexplored
technical area that might deserve investigation.

Heuristic search is at once one of LogLisp's most distiguishing
features and one of the greatest obstacles to its efficient
implementation. The utility of this feature must be convincingly
demonstrated. (Prolog is sometimes criticized for its reliance on
"impure" deterministic control features, but these seem to have been
embraced by the user community.) Conditional evaluation of Lisp forms
also incurs high overhead, but much of this might be compiled away. It
may be worthwhile to consider building a pure backtracking,
deterministic LogLisp compiler, if the price of heuristic search is
judged too high. Such an endeavor must still be weighed against the
benefits of a more standard logic programming/Lisp interface, such as
that found in Lisp Machine Prolog [Kahn 82].
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