
AD-A144 244 LISP IMPLEMENTATION BASELINE INVESTIGATION(U) ROME AIR i/
DEVELOPMENT CENTER GRIFFSL flFB NY R C SCHRAG JUN 84
RA1DC-TR-84-i5i

UNCLASSIFIED F/G 9/2 NLmE hhEEh

Jil'

ma 4

MICROCOPY RESOLUTION TEST CHART

NIATION4AL BUREA4U OF STANOARDS-193-A

L
It 12.

'" i "--. .

1.2 1-1.4 11.6. .

MIROOP REOUTO TES CHART,-

14ATNAL UREWOF SANDADS-163-

RADC-TR-84-151
In-House Report
June 1984

LISP IMPLEMENTATION BASELINE
INVESTIGA TION

04

Robert C. Schreg

I

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

DTIC
FECTE

.- AUU6 9 1984

B
Lai

ROME AIR DEVELOPMENT CENTER
"-3 Air Force Systems Command

Griffiss Air Force Base, NY 13441

84 P 13 008

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-84-151 has been reviewed and is approved for publication.

APPROVED:

SAMUEL A. DINITTO, JR.
Chief, Command & Control
Software Technology Branch
Command & Control Division

APPROVED: w
RAYMOND P. URTZ, JR.
Technical Director
Command & Control Division

FOR THE COMANDER:

DONALD A. BRANTINGIHAM
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific docunent requires that it be returned.

SEjCURITV C6ASSIFICArioN OF T1415 PAGE

REPORT DOCUMENTATION PAGE
ep RECR SEAi' C.S3P;CATION Ifi. Res-,RICTIVE MAR~i.NG5

L'NCLASS17TED Y/A
!.SC . -'' .AS3IPtCA?.ON . %JTMCAITY 3. CIST RI8UTICN,AVA..AI,_V OF REPORT

N/A Approved for public release;
~. ocLASIFCAT~ONOWNRAOIG SNEO Lidistribution unlimited.

a. ERFRMING ORGANIZATION REPORT N40186AM(5 SAIONITORING ORGANIZATION RPR WNSAS

*.. NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBSOL 7&. NAME OF MIONITORING3 Q1G.IZAT:ON
it api caOb4 le)4A

Rome Air Development Center I COES N/A
Ed. AOORASS Icily. State and ZIP C"Iei 1 7b. AOORIESS (City. Stinf ad ZIP Co"a,

Griffiss AFB NY 13441

Ed. NAME OF FUNOINGWSPONSOR11ING OIL. OFFICE SYMAOL 9. PROCWAEME[NT INSTIRUMENT:OENTIFICATION N4UMSEP
ORGANIZATION (It .egdgatit

Rome Air Develoriment Center COES X/A
ft. AOORSS ICit. Sidle ad ZIP Code) 10. SOURCE OF XUNOING NOS.

PROGRAM RROJECT rA5) NORK wrNiT

Griffiss AFB \Nf 13441 LIE MEN NO. 0. '40. .

62702F I5581 19 .
11. TI TIS ~ineiade Security C~a(if.igaian

LISP 1TMLLENATI0N BASELINE INVESTIGATION
12. PERSONAL AUTkORIS)

Robert C. SchraR
13.f tY OF nrEPrt 13m. Time COVE 10t 14. OATS OF REPORT IYr.. Mix. Devi 1S. PAGE COUNT

In-House FROMApr 60To Apr 84 June 1984 48
16. SUPPLEMENTARY NO0TATION

11. GOSATI COOGS Is. SUsijC? TERMS (Conan..en reverse ifsneesry dnd sdenafy a bl ack nuaIIhri

11110 IGROUP anum O. LogLisp, expert systems, logic programming, pattern
2 14 matching, artificial intelligence

92 15
19. P ATRACT fCofloAiMI. ORS .Wfkif n#eW999@ ~dma ~dafy 6vMca I"SP

,LogLisp is an Artificial Inteliec (Al) programming environment that fully combines the
facilities of logic programing and Lisp. This report describes the implementation of a

simple knowledge-based system in LogLisp, performed as part of an effort to evaluate the
effectiveness of LogLisp for Implementing a simple knowledge-based system-- in terms of
programming ease, program clarity, and program efficiency-using its original Lisp
implementation as a baseline.

For the baseline investigation we chose the knowledge-based system MicroKnobs, a prototype
tactical air mission planning system whose chief function is to select munitions for a
known target based on rules and facts about targets, target conditions, and munitions.
Our implementation preserves the outward behavior and control features of XicroKnobs while
replacing the original Lisp-coded knowledge base and inference system, pattern matcher, and
dictionary: with LogLisp-coded counterparts. .(cont'd)

20. OITIUIO/0I.AIIYO AISTRACT 21. ASSTRACT 31ECLRITY :L.ASS11PICATION

UINCLASSIFIEO11/UNLIMITIO .1 SAMS AS 11FT. =OTIC USERS : V'CIASSIFIED
2*.NAME OP $14SPOINSISLE ,NOIVIOUAI. 21T:*.TLAP"NN NUMS&ER 22c. ZPOICS SYASOL

Robert C. Schrag RlC~dA~ ~e AL? (OES)
t 30, ~(M1sY302-2748 I

00 FORM 1473, 83 APR GOITION OF I 7=An Is S 50LETS. UNCIAS siTlED
SEcWRITY C".SSIF-CATION OF TMIS 0&=i

* UNCLASSI7IED

GURIY CLASSIPICATION 00 ThIS PAGE

OThe report includes descript~ons of MicroKnobs interaction and of the software
* architectures of its Lisp and our LogLisp implementations, and an evaluation of our

implementation and selected design alternatives against the original MicroKnobs in terms
of programming ease, program clarity, and program efficiency. Thle results indicate
that LogLisp is a viable environment for the implementation and development of knowledge-

bsed systems.

SECURITY CLASIPICA~tON OP ?HgS PAGE

Acknovldgauents

Nort Fowler conceived and initiated thiseffort. Sharon
Wlalter helped a* to pertain the LogLisp implem~entation of
HicroKnobs * Phil Ptince reviewed this report. Thank youi all.

Carl Engelman, to whose mory this report is dedicated, was
always gracious in providing documentation, advice, and
encou ragement.

Acoessiofl For

D Oi

li

n :--~

1. Lisp Implementation Baseline Investigation

This report describes the implementation of a simple
knowledge-based system in LogLisp, performed as part of a Rome Air
Development Center (RADC) in-house effort to experiment with and
evaluate LogLisp. The objective of this task has been to evaluate the
effectiveness of LogLisp for implementing a simple knowledge-based
system in terns of programming ease, program clarity, and program
efficiency, using its original Lisp implementation as a baseline.

1.1. LogLisp

LogLisp (logic programming in Lisp) is an Artificial Intelligence
(AI) programming environment developed by Syracuse University under
contract to RADC [Robinson and Sibert 81]. In it coexist the tools of
two competing philosophies of Al programming-functional programming
done in Lisp, and logic programming. Each language has characteristics
which are appropriate for encoding major AI program components including
knowledge representation, knowledge manipulation, and inference.

Lisp (list processing language) facilitates knowledge
representation and manipulation since almost any fozmal knowledge
representation can be expressed as list structure and manipulated via
Lisp primitives. Lisp includes no built-in inference mechanisms, and
these are often reprogrammed with each new application and accompanying
knowledge representation. (For tutorial information on Lisp see
[Winston and Horn 80.])

Logic programming languages include a built-in theorem-prover that
is responsible for all program execution. Statements (or clauses) are
expressed in a subset of predicate logic. Most formal knowledge
representations can be expressed in clausal form. Knowledge
manipulation can be awkward in pure logic programming, however, since it
includes neither an explicit assignment statement nor extensive data
manipulation primitives. (See [Kowalski 79] for background infotmation
on logic programming.)

I

LogLisp promotes synthesis of these two very cooplementary
programming styles. While a user can disregard either the logic
programming component (hereinafter called Logic) or the underlying Lisp
system, Lisp can be used to call Logic and vice versa, to arbitrary
levels. LogLisp 3ugments Lisp with an inference engine of tested
capability. Logic programming is enhanced by the opportunity to call
Lisp for knowledge manipulation and by Lisp's more developed support
envi ronment.

-1-

. -" I J

Lisp Implementation Baseline Investigation

MicroKnobs

1.2. MicroKnobs

For the baseline investigation we chose the knowledge-based system
MicroKnobs [Engelman 79], a prototype tactical air mission planning
system developed by MITRE Corporation to demonstrate the applicability
of Knowledge-based system technology to Air Force problems. The
demonstration knowledge base contains only ten rules and eight facts .
about targets, target conditions, and munitions. Its chief function is
to select the best munitions for a known target, based on the contents
of its knowledge base. Different, consistent results are obtained after
on-line modification of the knowledge base, showing the power of the
knowledge-based system approach. MicroKnobs has been succeeded by the
MITRE Knobs (Knowledge-based System) project funded by RADC [Engelman

MicroKnobs has several features which suit it to the baseline
study. It is rule-based. Rules of the form used in the knowledge base

* of MicroKnobs are frequently called production rules. These take the
form: IF Al & A2 & ... & An THEN B1 & B2 & ... & Em,
where n >- 0 and m >- 1. Production rules are easily translated to the
form used in logic programming knowledge bases:
B IF Al & A2 & ... & An, where n >- 0. This is done by applying the
distributive law to the conjunction in the conclusion of a production
rule with multiple consequents to form m distinct logic programming
clauses, each with the original (identical) antecedents.

MicroKnobs includes a custom user-interface which must be preserved
in any faithful reimplementation. It includes custom inference,
pattern-matching, and control mechanisms. We succeeding in preserving
the outward behavior and control features of MicroKnobs while replacing
portions of the original Lisp-based implementing machinery with
Logic-based machinery, as the overall MicroKnobs system architecture and
our knowledge of LogLisp programming techniques suggested.

MicroKnobs is witten in InterLisp (Teitelman 78]. As a preliminary
task we implemented LogLisp V2M3 in InterLisp (Schrag 83]. This allows
us to perfom direct comparisons.

1.3. Organization of this Report

The remainder of this report is comprised of four major sections.
Section 2 describes the MicroKnobs system from the viewpoint of user
interaction. Section 3 describes the software architecture of the MITRE
implementation of MicroKnobs. In section 4 we describe our LogLisp

-2-

Lisp Implementation Baseline Investigation
Organization of this Report

implementation of MicroKnobs, emphasizing design development and
rationale. In section 5 we evaluate our implementation and selected
design alternatives against the original MicroKnobs in terms of
programming ease, program clarity, and program efficiency. A final
section lists references.

-3 -

......• . • _1

2. Interaction with MicroKnobs

The user interacts with MicroKnobs via a monitor which interprets
natural language input to invoke the various system functions. He may
examine the knowledge base by asking to see either facts or rules,
including target rules (TmULES) and munitions rules (MRULES). (In the
following scripts, "&&" is the monitor's prompt. The entire knowledge
base is shown here. Some representative facts and rules are marked
(***) and will be referred to in subsequent discussion.)

WELCOME TO KNOBS
TYPE HELP FOR INSTRUCTIONS

&& PRINT FACTS

1** 1: THE CLOUD COVER OF TARGET 4 IS 5

*** 2: TARGET 1 IS A BRIDGE

3: TARGET 2 IS A TANK BATTALION

4: TARGET 3 IS AN SA-4

* 5: TARGET 1 IS LIGHTLY DEFENDED

6: THE CLOUD COVER OF TARGET 1 IS 0

7: THE CLOUD COVE OF TARGET 2 IS 3

8: TARGET 4 IS AN AIRBASE

-4-

Interaction with MicroKnobs

&& PRINT RULES

-RULES-

-TRi--
*** IF:

1: THE target IS ONE OF: RADAR SAM RADIO

*** THEN:

1: THE target IS AN EMITTER

-TR2--
*** IF:

1: THE target IS A TANK BATTALION

*** THEN:
1: THE target IS FAST

AND 2: THE targe t IS WARM

-7R3-
IF:

1: THE target IS A BRIDGE

THEN:
1: THE target IS COLD

AND 2: THE target IS VERY HARD
AND 3: THE target IS STATIONRY

-TR4-
IF:

1: THE target IS ONE OF: SA-2 SA-4 SA-6

THEN:
1: THE target IS A SAM

IF:
1: THE target IS AN AIRBASE

THEN:
1: THE target IS HARD

AND 2: THE target IS HIGHLY DEFENDED

- END OF TRULES --

5

I ,. ,... I.. , _ _ _ I _ . - -I --.. - , - --- i . , i .

Interaction vith MicroKnobs

-MULES--

-MR1--

*** IF:
1: THE target IS HARDER THAN HARD

AND 2: THE CLOUD COVER OF THE target IS LESS THAN 1
AND 3: THE target IS LESS DEFENDED THAN LIGHTLY DEFENDED

*** THEN:
1: THE BEST MUNITIONS FOR THE target IS LASER GUIDED

IF:
1: THE target IS SOFTER THAN SOFT

THEN:
1: THE BEST MUNITIONS FOR THE target IS CLUSTER BOMBS

-M?,3-
IF:

1: THE target IS FASTER THAN FAST
AND 2: THE target IS WARMER THAN WARM

THEN:
1: THE BEST MUNITIONS FOR THE target IS SHILLELAGH

-m&4-

IF:
1: THE target IS AN EMITTER

THEN:
1: THE BEST MUNITIONS FOR THE target IS SHEI1rE

-M5-
IF:

1: THE target IS SOFTER THAN HARD
AND 2: THE CLOUD COVER OF THE target IS LESS THAN 4
AND 3: THE target IS MORE DEFENDED THAN HIGHLY DEFENDED

THEN:
1: THE BEST MUNITIONS FOR THE target IS MAVERICK

- END OF MULES --

-6-

0
Interaction "ith MicroKnobs

The user may invoke inference by asking MicroKnobs to choose
munitions for a certain target.

&& CHOOSE MUNITIONS FOR TARGET 1

LASER GUIDED

He may request an explanation of the previous choice.

&& WHY
BY 1R1: THE BEST MUNITIONS FOR TARGET 1 IS LASER GUIDED

SINCE:
1: BY M3: TARGET 1 IS VEY HARD

SINCE:
1: DATA: TARGET 1 IS A BRIDGE 0

2: DATA: THE CLOUD COVER OF TARGET 1 IS 0
3: DATA: TARGET I IS LIGHTLY DEFENDED

-7-

--- --

Interaction with 4icr .Knobs

The user may also edit the knowledge base by adding or deleting

facts or rules, and by modfiying or moving rule components. The editor

accepts rule components expressed in natural language.

&& EDIT TR2 -TR2-

IF:
1: THE target IS A TANK BATTALION

THEN:
1: THE target IS FAST

AND 2: THE target IS WARM

CHANGE NAME? NO

EDIT HYPOTHESES? NO

EDIT CONSEQUENCES? YES

ADD, DELETE, OR REPLACE? ADD

CONSEQUENCE NUMBER: 3

CONSEQUENCE NUMBER 3 THE TARGET IS HARD.

CONSEQUENCES:
1: THE target IS FAST

AND 2: THE target IS WARM
AND 3: THE target IS HARD

EDIT CONSEQUENCES? NO

1 ~-TR2---

IF:
1: THE target IS A TANK BATTALION

THEN:
1: THE target IS FAST

AND 2: THE target IS WARM
AND 3: THE target IS HARD

-8-

Interaction with MicroKnobs

In addition to these commands, the user may ask questions about the
knowledge base. He can ask for infornation about rules.

&& WHAT RULES MENTION HARDNESS IN THE CONCLUSION?
THE FOLLOWING RULES MENTION HARDNESS

M3 T5

User queries can invoke inference to deduce infomation contained
in the knowledge base implicitly. S

&& HOW HARD IS TARGET 4?
HARD

&& WHY? 0
BY TR5: TARGET 4 IS HARD

SINCE:
1: DATA: TARGET 4 IS AN AIRBASE

-9-

.. - -- Z :" - . " i i - -.. . .- - i . :"- ' - .7- :- ' ""--= -. .

3. Original MicroKnobs System Architecture

MicroKnobs has a modular architecture. Its major components are
the monitor, parler/dictionary, pattern-matching interpreter and
associated pattern/production rules, knowledge base, knowledge base
display package, inference engine, and knowledge base editor.

3.1. Parler/Dictionary

The monitor is the central point, if not the heart, of MicroKnobs.
It is the dispatcher and receiver of control to and from other system
modules. All natural language input (including that to the monitor) is
first passed through the parler. (In contrast to a parser, it uses no
grammar.) The parler accesses the dictionary of single- and
multiple-word terns known by MicroKnobs. Punctuation is stripped from
input, preferred terns are substituted for synonyms, and any
multiple-word terns are standardized (made into single Lisp atoms by
hyphenating). Parling helps to ensure that user input is consistent
with language in the knowledge base. This is important because exact
match is used in inference.

The dictionary is organized around a list of preferred terns called
SYNONYMWORDS. Each entry on this list has stored under the property
SYNONYM on its property list a list of the unpreferred terms that map
into it. The SYNONYM property value for the term AIRBASE and the
mapping function GETOOTWORD are shown below.

(AIRFIELD AIRPORT TUOC (AIR BASE) (AIR FIELD))

(GETROOTWORD
[LAMBDA (WORD)

(FOR EACHROOT IN SYNONYMWORDS
DO (COND

([OR (EQUAL EACEMOOT WORD)
(MEMBER WORD (GETPROP EACHROOT (QUOTE SYNONYM]

(RETURN EACHROOT])

GETROOTWORD performs sequential search over the entire dictionary.

3.2. Pattern-matching System

Parled monitor input is compared by the pattern-matching
interpreter against two sets of pattern/production rules, successively.
The pattern/production rules are like conventional production rules,
with some exceptions. They are executed singly, for effect, rather than
chained together in inference. They are appropriately considered in
terms of condition:action rather than hypothesis:conclusion. Their

- 10 -

Original MicroKnobs System Architecture
Pattern-matching System

condition parts are of unit length and are expressed in a
pattern-matching language rather than predicate logic. The
pattern-matching language includes variables to match input patterns of
unit length (atoms whose first character is "?") and variable length
(atoms whose first character is "!"), and a variable-length-don't-care
symbol ("!"). Unit- and variable-length (but not anonymous) variables
can also appear in the action parts of pattern/production rules, and are
then subject to instantiation using the matching substitutions created
by the replacement of terms for variables in the condition parts. The
condition part of a pattern/production rule can include constraints,
which are calls to Lisp functions with instantiated pattern-matching
variables as arguments. The constraints must evaluate to other than NIL
in order for the condition to be satisfied. As example, the
pattern/production rule which fires when the query, "WHICH RULES MENTION
HARDNESS IN THE CONCLUSION?", (demonstrated in the previous section) is
submitted to the monitor is shown below.

{ (comments))l
[[(?INTEROG ! ?ATTIB ! ?SPECATTRIB ! ?INFO) [the pattern}
[?INTEROG (OR (EQ ?INTEROG (QUOTE WHAT)) {constraint on

(EQ ?INV OG (QUOTE WHICH] ?INTEROG}
[?ATTRIB (OR (EQ ?ATTRIB (QUOTE CHOOSE)) {...on ?ATTRIB}

(EQ ?ATTRIB (QUOTE MENTION]
(?SPECATMIB (OR (MEMB ?SPECATTRIB DEGREEWORDS) {...on ?SPECATTRIB}

(MEMB ?SPECATHZIB MUNITTYPES)
(MEMB ?SPECATTRIB TARGETTYPES)))

(?INFO (OR (EQ ?INFO (QUOTE HYPOTHESES)) {...on ?INFO}
(EQ ?INFO (QUOTE CONCLUSION]

([SETQ INFO (COND {lst action}
((EQ ?11FO (QUOTE HYPOTHESES))

(QUOTE RYPS))
(T (QUOTE CONCLSI

(COND {2nd action}
((HEMS ?SPECATmRIB MUNITTYPES)

(GETRULES (QUOTE MULES)
INFO ?SPECATTRIB))

(T (GETRULES RULES INFO ?SPECATTRIB]

The pattern-matching interpreter invokes a pattern matcher which
compares conditions against input, backtracking when necessary to
explore alternatives to match variable-length pattern elements (! and
!-variables). This pattern matcher is an expansion of that described in
[Winston 77]. When a pattern/production rule is successfully matched,
its action part is executed and the pattern-matching interpreter returns
control to its caller. (...in this case, the monitor. The
pattern-natching interpreter is also used by the editor.) Code for the

- 11 -

Original MicroKnobs System Architecture
*. Pattern-matching System

pattern-matching interpreter and the pattern matcher is shown below.

(INTERPRET
[LAMBDA (INPUT RULEZET)
(PROG (PALIST STARLIST MATCHING SIDECOND PTYPE TLIST TE P ?TARGET

?TYPE ?ATTRIB ?SPECATTrEIB !TYPE !CMD ?VR ?X ?INFO
?FILE ?COMPAR ?INTEROG !CONCL)

(COND
([for RL in RULEZET

do (SETQ PALIST (SETQ STARLIST NIL))
(SETQ MATCHING (CAAR RL))
(SETQ SIDECOND (CD&R RL))
(COND
((PUREMATCH MATCHING INPUT)

(SETVARS (LIST PALIST STARLIST))
(SETQ SIDECOND NIL)
(for ACTION in (CADR RL) do (EVAL ACTION))
(RETURN T]

(RETURN T))
(T (RETURN NIL])

- 12 -

Original MicroKnobs System Architecture
Pa te rn-matching System

(PUREM1ATCH
[LAMBDA (PAT FORM)

(FROG (PI F1 PICDR API SCHECK)
(COND

((AND (NULL PAT)
(NULL FORM))

(RETURN T))
((NULL PAT)

(RETURN NIL))
((AND (NULL FORM)

(NULL (CDR PAT))
(EQ (CAR PAT)

(QUOTE)))
(RETURN T))

((AND PAT (NULL FORM))
(RETURN NIL)))

(SETQ SCHECK NIL)
(SETQ Pl (CAR PAT))
(SETQ Fl (CAR FORM))
[COND
((EQ (NTHCRAR PI 1)

(QUOTE 1))
(COND

((PUREMATCH (CDR PAT)
FORM)

(RETURN T))
((PREMATCH (CDR PAT)

(CDR FORM))
[COND

((NTHCHAR P1 2)
(SETQ STARLIST (CONS (CONS P1

(LIST (CAR FORM)))
STARLIST]

(RETURN T))
((PUREMATCH PAT (CDR FORM))

[coN-
((NTHCHAR P1 2)

(SETQ STARLIST (CONS (CONS P1
(CONS (CAR FORM)

(CDAR STARLIST)))
(CDR STARLIST]

(RETURN T))
(T (RETURN NIL]

[COND
((EQ (NTHCI AR P1 1)

(QUOTE ?))

- 13 -

Original MicroKnobs System Architecture
Pattern-matching System

(SETQ PICDR T)
(SETQ API (ASSOC P1 PALIST]

(COND
[(NOT P1COR)
(RETURN (COND

((EQ P1 Fl)
(PUREMATCB (CDR PAT)

(CDR FORM)))
(T NIL]

(PICDR
(COND

[APi (RETURN (COND
((EQ (CDR API)

pi)
(PUREMATCH (CDR PAT)

(CDR FORM)))
(T NIL]

[(OR (NULL SIDECOND)
[for SC in SIDECOND

do (COND
((EQ (EVAL (LIST (QUOTE QUOTE)

Pi))
(CAR SC))

(SETQ SCHECK T)
(RETURN (EVALA (CADR SC)

(CONS (CONS Pi Fl)
PALEST]

(NULL SCEECK))
(RETURN (PROG2 (SETQ PALIST (CONS (CONS P1 FI)

PAL ST))
(COND
((PUREMATCH (CDR PAT)

(CDR FORM))
(RETURN T))

(T (SETQ PALIST (CDR PALIST))
(RETURN NIL]

(T (RETURN NIL])

- 14-

!

Original MicroKnobs System Architecture
Patte rn-ma tching System

Monitor input is interpreted first using pattern/production rules
with command templates in their conditions 'CM-productions), then using
pattern/production rules with knowledge base query templates in their
conditions (Q-productions). If none of these are successful, the
monitor tells the user it was unable to recognize input. The natural
language understanding of MicroKnobs is restricted to that which can be
recognized with this predetermined set of templates. It is thus a
pattern-oriented unde rstanding.

The action parts of CA-productions cause system functions such as
English display, choosing munitions, explaining, and editing to be
invoked. The action parts of the Q-productions cause either syntactical
analysis of rules in the knowledge base or knowledge base inference (in
the spirit of an intelligent data base).

3.3. Knowledge Base and Inference

The knowledge base is stored in a set of global variables. All
facts are contained in FACTS. Rules are stored in their respective
rulesets. Rulesets which are to be used in inference have their names
stored in RULES. The external, English fom of rules and facts was
shown above. Internal forms are shown below. The knowledge base
display package, which is highly specialized for this application, is
responsible for the transformation.

- 15 -

Original MicroKnobs System Architecture
Knowledge Base and Inference

FACTS

1: (THE CLOUD-COVER OF TARGET-4 IS 5)
2: (TARGET-i IS-A BRIDGE)
5: (THE DEFENSE OF TARGET-i IS LIGHTLY-DEFENDED)

RULES

(mRULES MRULES)

7RULES

(R1 [((?TARGET IS-A ?X)
(FMM ?X (QUOTE (RADAI SAM RADIO]

((?TAR(ET IS-A EMITTER)))
(TR2 (((?TARGET IS-A TANK-BATTALION)))

((THE MOBILITY OF ?TARGET IS FAST)
(THE TEMPERATURE OF ?TARGET IS WARM)))

MIULES

(M1 (((THE HARDNESS OF ?TARGET IS ?X)
(HARDER ?X HARD))

((THE CLOUD-COVER OF ?TARGET IS ?Y)
(LESS-COVERED ?Y 1))
((THE DEFENSE OF ?TARGET IS ?Z)
(LESS-DEFENDED ?Z LIGHTLY-DEFENDED)))

((THE BEST- MITIONS FOR ?TARGET IS LASER-GUIDED)))

The inference engine is called from the monitor for choosing
munitions and knowledge base querying. It uses the knowledge base,
consisting of rulesets in RULES and facts in FACTS, exclusively as its
domain of reasoning. It perfoms depth-first search and upon
user-option maintains in the variable EXPLANATION lines of reasoning to
answers obtained. Requests to the monitor for explanations invoke
display functions which reference this variable. The inference engine
includes a mechanism (not under user control) for restricting inference
on hypotheses with specified key attributes (such as HARDNESS or IS-A)
to members of a particular ruleset or FACTS, when the set names are
stored under the RESTRICT property of the attributes. This feature
allows inference to be tuned (by narrowing search) for a particular
knowledge base with known interaction among rules. It can also limit
flexibility in the types of rules that can be added effectively to a
ruleset not named under the RESTRICT property of the added key

- 16 -

Original MicroKnobs System Architecture
Knowledge Base and Inference

attributes of the consequents in the added rule. This poses a threat to

users unaware of this feature.

3.4. Knowledge Base Editor

The knowledge base editor gives the user control over the contents
of the knowledge base. He may (from the monitor) delete rules by name
or facts by number, add facts to FACTS or rules to rulesets, or modify
rules. He may also create new rulesets by specifying that a rule should
be added to an as yet non-existent ruleset. This ruleset may then be
added to gULES. Deletion of a rule or fact causes its excision from
internal structure. Operations that add to the knowledge base (as well
as those that modify rules) accept natural language input. Parled
editor input is submitted to the pactern-matching interpreter for --

comparison against the component's appropriate set of pattern/production
rules. Facts are compared against F-productions, hypotheses against
H-productions, consequents against CQ-productions, and side-conditions
(described below) against SC-productions. In each case the action part
of the successful pattern/production rule establishes a variable to hold
the internal (component) fore resulting from the matched input. Editor
functions that call the pattern-matching interpreter make use of this
variable in constructing the internal forms of facts and rules.
Interpreted facts are simply CONSed into FACTS. The user must specify
to what ruleset an added rule is to belong, and, since location within a
ruleset can affect inference, where in the ruleset it should go.

Hypotheses of MicroKnobs rules can carry side-conditions, which,
like the constraints of pattern/production rules, are Lisp calls which
must result in other than NIL for the hypothesis to be accepted.
Side-conditions present in MicroKnobs standard knowledge base serve two
purposes. Comparators (such as HARDER) can be attached as constraints
to hypotheses including degreewords (e.g. HARDNESS). The internal
structure

((THE HARDNESS OF ?TARGET IS ?X)(HARDER ?X HARD))
translates on output to "THE target IS HARDER THAN HARD." The expression
(FMEMB ?X '(A B C)) is attached to hypotheses of the fore (?TARGET IS-A
?X). This pair translates on output to "THE target IS ONE OF: A B C."
While the H-productions include pattern/production rules to interpret
both types of phrases whole and produce a hypothesis with attached
side-condition, they also include pattern/production rules which will
accept such a hypothesis without its side-condition. If the editor has
reason to believe that a hypothesis it has received is not complete, it
will prompt for side-conditions, which are parled, interpreted using
SC-productions, and attached to the suspect hypothesis.

- 17 -

*1

i

Original MicroKnobs System Architecture
Knowledge Base Editor

To modify existing rules, the user may add, delete, or replace
specific hypotheses or consequents. Deleted components are removed from
the rule. Coponents to be added are obtained by interpreting parled
input, and inserted at a location specified by the user.

18

- 18 -

4. The LogLisp Implementation of MicroKnobs

Our goal was to preserve the outward behavior and control features
of MicroKnobs while replacing the original Lisp-based implementing
,machinery with Logic-based machinery, as would be natural and
appropriate in a logLisp implementation.

4.1. Knowledge Base-Prototype Representation

The first apparent transformation opportunity was to replace
MicroKnobs' inference engine and user-accessible knowledge base with
Logic calls on a compatible LogLisp knowledge base. We discarded
MicroKnobs's inference engine and knowledge base, and loaded the
remaining system into our InterLisp version of LogLisp. We settled on
an initial knowledge base representation that disposed of non-essential
English in hypotheses, consequents, and facts, rearranging these
components so that their key attributes appeared in the predicate
position. For example, (THE HARDNESS OF ?TARGET IS ?X) became (HARDNESS
target x). For ease in interfacing existing system routines, we used
LogLisp's AND-special form to closely associate side-conditions with
hypotheses, even though LogLisp is capable of interpreting Lisp calls
without such association. Production rules with multiple consequents
were distributed into separate assertions which were given names to
reflect their heritage. We were able with this knowledge base to
duplicate all inferences possible in the original MicroKnobs. The
representative portion of our prototype knowledge base follows:

- 19 -

The LogLisp implementation of MicroKnobs
Knowledge Base-Prototype Representation

(PROCEDURE CLOUD-COVER)

(-F1 (CLOUD-COVER TARGET-4 5))

(PROCEDURE IS-A)

(1F2 (IS-A TAARGET-i BRIDGE))

(1 R1 (IS-A target EMITTER)
<- (OR (IS-A target SAM)

C IS-A target RADIO)
(IS-A. target RADAR)))

(PROCEDURE DEFENSE)

(I-F5 (DEFENSE TARGET-I. LIGHTLY-DEFENDED))

(PROCEDURE BES T-M'UNITIONS)

(I- Rl (BEST-MUNITIONS target LASER-GUIDED)
IL <- (AND (HARDNESS target x)

(HARDER x HARD))
& (AND (CLOUD-COVER target y)

(LESS-COVERED y 1.))
& (AND (DEFENSE target z)

(LESS-DEFENDED z LIGHTLY-DEFENDED)))

(PROCEDURE TEMPERATURE)

(I- 2B (TEMPERA~TURE target WARM)

(IS-A target TANK- BATTALION))

(PROCEDURE MOBILITY)

(I- R2A (MOBILITY target FAST)

9 ~(IS-A target TANK- BATTALION))

-20-

The LogLisp Implementation of MicroKnobs
Knowledge Base-Prototype Representation

We had difficulty implementing display for our prototype knowledge
base. As our understanding of XicroKnobs progressed, it became apparent
that this knowledge base representation would not be adequate. We had
been maintaining in the ruleset variable a list of the original rule
names. We displayed a ruleset by searching the entire assertion base
for assertions by name, reassembling distributed rules from information
contained in the assertion names. We used a similar strategy for FACTS.
We modified the component output routine so that it displayed our
component representation as the original had been. The resulting
knowledge base display was identical to the original, but required a
great deal more processing. The prototype knowledge base representation
had the advantage that inference was relatively fast. The keyword
predicates were more accessible than the embedded keywords of the
original MicroKnobs knowledge base. Since rules of a ruleset (and
subrules of a rule with multiple consequents) were distributed over
Logic procedures, however, the prototype representation made it
impossible to maintain control over the order in which they were
examined during inference.

4.2. Knowledge Base-Meta-level Representation

Our desire to maintain control over assertion order led us to
develop a meta-level knowledge base representation and interpreter. We
now maintain the form of our prototype representation as an intact
object-level knowledge base for display and editing. The new
representation scheme is completed with an assertion manager that acts
to ensure that the meta-level assertion base reflects the state of the
object-level knowledge base before inference is attempted. Only the
meta-level knowledge base is expressed in Logic.

The meta-level Logic representation transforms the prototype
knowledge base by embedding the name of the ruleset (or "FACTS") around
the consequent of each assertion, and embedding "TRUE" around each
hypothesis. The representative portion of the meta-level knowledge base
follows:

- 21 -

The LogLisp implementation of MicroKnobs

Knowledge Base-Meta-level Rep resentation

(PROCEDURE MRULES)

0I- NRl (MRULES (BEST-MUNITIONS target LASER-GUIDED))
<- (AND (TR.UE (HARDNESS target x))

(HARDER x HARD))
& (AND (2RUE (CLOUD-COVER target y))

(LESS-COVERED y 1))
&(AND (TRUE (DEFENSE target z))

(LESS-DEFENDED z LIGHTLY-DEFENDED)))

(PROCEDURE TRULES)

(I- TR1 (7RULES (IS-A target EMITTER))
<-((R (TRUE (IS-A target SAM4))

(MUZ (IS-A target RADIO))
(TRUE (IS-A target RADAR))))

(I- M2 (TRULES (MOBILITY target FAST))
<- (RUE (IS-A target TANK-BATTALION)))

(I- M2 (TRULES (TEMPERATURE target WARM))
<- (TRUE (IS-A target TANK-BATTALION)))

(PROCEDURE RUE)

(I- MUTE (TRUE a)

(OR (FACTS a)
(EVAL a)
(MRULES a)
(mULES a)))

(PROCEDURE FACTS)

1: (-(FACTS (CLOUD-COVER TARGET-4 5)))

2: (-(FACTS (IS-A TARGET-1 MRIDGE)))

5: (1- (FACTS (DEFENSE TARGET-i LIGHTLY-DEFENDED)))

-22-

The LogLisp Implementation of MicroKnobs
Knowledge Base-Meta-level Representation

"TRUE" is the procedure name of the meta-level interpreter, which
consists of one assertion:
(TRUE a) <- (OR (FACTS a)(EVAL a)(RSl a) ... (RSn a)), where the RSi
are the rulesets in RULES, in order. The interpreter clause is 4

generated by the assertion manager whenever necessary. The meta-level
knowledge base representation and interpreter provide control over
inference by maintaining assertion order within rulesets and by assuring
that rulesets are explored in the order in which they appear in RULES,
as in the original MicroKnobs. We also had to use an optional
depth-first search mode instead of LogLisp's default non-dete ministic
search space traversal. A depth-first control strategy is used in the
original MicroKnobs.

The meta-level Logic system is obtained from the object-level
knowledge base by the assertion manager. The representative portion of
the object level knowledge base follows:

- 23 -

The LogLisp Implementation of MicroKnobs
Knowledge Base-Meta-level Representation

FACTS

(1) (CLOUD-COVE TARGET-4 5)
(2) (IS-A TARGET-1 BRIDGE)
(5) (DEFENSE TARGET-i LIGHTLY-DEFENDED)

RULES

(MRULES TRULES)

HRULES

(NRl ((BEST-MUNITIONS target LASER-GUIDED))
(AND (HARDNESS target x)

(HARDER x HARD))
(AND (CLOUD-COVER target y)

(LESS-COVERED y 1))
(AND (DEFENSE target z)

(LESS-DEFENDED z LIGHTLY-DEFENDED)))

TRULES

(Tl ((IS-A target EMITTER))
(OR (IS-A target SAM)

(IS-A target RADIO)
(IS-A target RADAR)))

(MR2 ((MOBILITY target FAST)
(TEMPERATURE target WARM))

(IS-A target TANK-BATTALION))

The assertion manager is embedded around calls to inference. It
reasserts changed procedures before attempting inference. It checks the
contents of two new global variables, FACTSCHANGED and CHANGEDRULESETS
to see whether the knowledge base has been changed. We modified the
editor so that any time a fact is added or deleted, FACTSCaANGED is set
to T. Any time a ruleset is edited, the ruleset name is added to
CHANGEDRULESETS if it is not already there. After erasing and
reasserting (in meta-level) changed procedures, the assertion manager
sets both variables back to NIL and performs the required inference.

The assertion manager reasserts changed procedures by inserting
calls to TRUE in the proper locations in OR- and AND-special forms.
Side-conditions are identifiable as the second half of an AD-special
fore.

- 24 -

The LogLisp Implementation of MicroKnobs
Knowledge Base-Restricted Meta-level Representation

4.3. Knowledge Base-Restricted !eta-level Representation

A refinement in the meta-level representation resulted from the
observation that inference restrictions as they exist in the original
MicroKnobs could be easily implemented if hypothesis translation code in
the assertion manager were not so eager to have the interpreter called
at every juncture. We rewrote this code to translate a hypothesis into
an OR-special for of only procedure calls to which its input had been
restricted. This has an effect identical to that of restriction in the
original MicroKnobs.

The representative portion of the restricted meta-level knowledge
base follows:

- 25 -

The LogLisp Implementation of MicroKnobs
Knowledge Base-Restricted Meta-level Representation

(PROCEDURE lRULES)

(I-MR (MRULES (BEST-MUNITIONS target LASER-GUIDED))
<- (AND (MULES (HARDNESS target x))

(LISP (HARDER x HARD)))
& (AND (FACTS (CLOUD-COVER target y))

(LISP (LESS-COVERED y 1)))
& (AND (CR (FACTS (DEFENSE target z))

(MULES (DEFENSE target z)))
(LISP (LESS-DEFENDED z LIGHTLY-DEFENDED))))

(PROCEDURE MhULES)

(I- Ml (RULES (IS-A target EMITTER))
< (CR (CR (FACTS (IS-A target SAM))

(MhULES (TS-A target SAM)))
(CR (FACTS (IS-A target RADIO))

(mULES (IS-A target RADIO)))
(CR (FACTS (IS-A target RADAR))

(mULES (IS-A target RADAR])

(f- T2 (mULES (MOBILITY target FAST))
<- (CR (FACTS (IS-A target TANK-BATTALION))

(7RULES (IS-A target TANK-BATTALION))))

(I- M2 (TRULES (TEMPEATURE target WARM))
<- (CR (FACTS (IS-A target TANK-BATTALION))

(7RULES (IS-A target TANK-BATTALION))))

(PROCEDURE TRUE)

MI UTH (TRUE a)

(cR (FACTS a)
(EVAL a)
(MRULES a)
(MULES a)))

(PROCEDURE FACTS)

1: (I- (FACTS (CLOUD-COVER TARGET-4 5)))

2: (I- (FACTS (IS-A TARGET-I EIDGE)))

5: (I- (FACTS (DEFENSE TARGET-i LIGHTLY-DEFENDED)))

- 26 -

* - -* - : - m m l o

The LogLisp Implementation of MicroKnobs
Knowledge Base-Restricted Meta-level Representation

After settling on a knowledge base representation, we made the
appropriate changes to the H-productions and CQ-productions. We
eliminated the SC-productions, since side-conditions are theoretically
unnecessary, since we had replaced the FM.E.n.-side-conditions with
OR-special forms, and since we could not get pattern/production rules in
the SC-productions that dealt with comparators to work, even in the
original MicroKnobs. We changed the editor to operate on our
object-level knowledge representation, and eliminated from it all code
which pertained to side-conditions. We did not eliminate such code from
the display package, since comparator side-conditions are still attached
to hypotheses by some of the H-productions. We did eliminate from the
H-productions the pattern/production rules which accepted bare
hypotheses that would not make sense without side-conditions.

We modified CHOOSE-MUNITIONS (the function used to choose
munitions, called from CM-productions) and the inferential knowledge
base queries in Q-productions to call the assertion manager where they
originally called the MicroKnobs inference engine. We wrote code that
produces a data structure compatible with the MicroKnobs routine for
displaying explanations by extracting the appropriate information from
#DERIVATIONS, the LogLisp system global variable accessed by LogLisp's
explanation facility.

In retrospect, it was unnecessary to change the component-level
representation (hypotheses, consequents, facts) from the original
pseudo-English of MicroKnobs. The meta-level representation we now use
for the knowledge base does not require key attributes to come first,
and, since terms are not indexed, it affords no greater efficiency. The
original component representation admits some flexibility in
interpreting new rules that ours does not. If a component "falls
through" its set of pattern/production rules it is accepted by
MicroKnobs as is. Our implementation also accepts the component as is,
except that it then has a form different from other, similar components
in the knowledge base. The new component cannot be excluded from valid
inference, however, because it will match with no part of the knowledge
base which did not also fall through its set of pattern/production rules
when interpreted, provided that the rules are complete for the forms
they accept. Our choice of component representation therefore caused us
no loss of flexibility; it only made us work unnecessarily hard.
Moreover, we are embarrassed every time a component falls through and
gets the representation that we should have given it.

- 27 -

The LogLisp Implementation of MicroKnobs
Pattern-matching System

4.4. Pattern-matching System

We analyzed the software architecture of MicroKnobs to identify
other system components which might be comfortably expressed in Logic,
and decided on the pattern-matching system and the dictionary. The Lisp
code for the MicroKnobs pattern matcher (listed in the previous section)
is very complex and probably would not have been written by a LogLisp
programmer. The pattern-matching interpreter employs a number of PROG
variables global to the pattern-matching process, including names for
pattern variables and association lists (PALIST and STARLIST) to hold
their values. Such devices are not required for a pattern matcher
implemented in Logic (especially with the addition of resolution
semantics for sequential Logic forms [Schrag 84]), since unification
pattern-matching and its intrinsic variable access mechanisms are
fundamental to logic programming. Unification forms the foundation of a
Logic-coded MicroKnobs pattern matcher. If not for variable-length
pattern elements (! and !-variables), no additional pattern-matching
code would be necessary. The logic programming feature of backtracking
is ideal for implementing the non-deteministic search required by
patterns containing such elements. The Logic-coded pattern matcher
shown below is based on a model of transformations [Emanuelson 82] of
pattern and input.

- 28 -

. .. . -. .

The LogLisp Imiplementation of MicroKnobs
Patte rn-matching System

{(coents))
(PROCEDURE Trains)

0I- Basis (Trans (Pat) {,basis case
(Inp))) for recursion}

(I !{}(Trans (Pat !.ptail) {match !to null}
(Inp .itail))

<- (Trans (Pat . ptail)
(lap -itail)))

I--#(Trans (Pat I ptail) {match Ito any
(Inp # ituil)) element}

<- (Trans (Pat ! ptail)
(lap itail)))

0I- !<-nil (Trans (Pat (INIL) . ptail) {terminate the
(Inp itail)) list bound to

<- (Trans (Pat .ptail) a !-variable}
(lap . itail)))

0I- !<-propid (Trans (Pat (! (unit .seg)) ptail) {1cons unit into
(tnp unit . itail)) the list bound

<- (Trans (Pat (I seg) .ptail) to a !-variable}

(-?(-propid (Trans (Pat (? unit) .ptail) {bind unit to
(tap unit . itail)) a ?-variable}

<- (Trans (Pat -ptail)

0I- ?(*propid (Trans (Pat (? unit constraint) ptail)
(Inp unit .itail)) {bind unit to a

<- constraint ?-variable if it
(Trans (Pat ptail) satisfies

(Inp itail)) constraint}

(-Propid'mpropid (Trans (Pat propid . ptail) {match two
(Inp propid . itail)) instances of the

<- (Trans (Pat . ptail) same p rope r
(lap . itail))) identifier}

-29-

The LogLisp Implementation of MicroKnobs
Pattern-matching System

Pat and Inp are preface keywords that prevent fortuitous reduction
of pattern and input expressions when they begin with atoms possessing
Lisp function definitions. !- and ?-variables are represented in list
fore (e.g. (! var-name)) to facilitate processing. Constraints for
?-variables are also handled well with this representation.

A pattern/production rule (of Logic Q-production procedure QPRD)
corresponding to the one listed in Section 3 and compatible with the
Logic pattern matcher procedure Trans is listed below.

(I- (QPRD input)
<- (Trans [Pat [? interog (CR (EQ interog

(QUOTE WHAT))

(EQ interog
(QUOTE WHICH]

[? attrib (CR (EQ attrib (QUOTE CHOOSE))
(EQ attrib (QUOTE

MENTION]

[? specattrib
(CR (MEMB specattrib (EVAL

DEGREEWORDS))
(MEMB specattrib (EVAL

MUNITTYPES))

(MEMB specattrib (EVAL
TAR GETTYPES

(? info (CR (EQ info (QUOTE HYPOTHESES))

Sinput) (EQ info (QUOTE CONCLUSION]

[SEQUENCE [- part (COND ((EQ info (QUOTE
HYPOTHESES))

(QUOTE HYPS))
(T (QUOTE CONCLS]

(COND ((MEMB specattrib (EVAL WMUITTYPES))
(GETRULES (QUOTE MRULES)

part specattrib))
(T (GETRULES RULES part specattrib])

- 30 -

L°

The LogLisp Implementation of MicroKnobs
Pattern-matching System

The major difference between this Logic rule and its Lisp
counterpart is that the Logic code is executable, embodying active
control, whereas the Lisp code represents a more passive data structure.
SEQUENCE is a sequential Logic fo= with resolution semantics described
in [Schrag 84. It succeeds if and only if all of its Logic subforms
succeed and all of its Lisp subfozms are evaluable.

The interpreter for this pattern-matching system is the simple

function shown below.

(INTERPRET
[NLAMBDA (INPUT RULEZET)

(SETOF 1 T (LIST (LIST RULEZET (CONS (QUOTE Inp)

This function merely packages a Logic call to invoke the
pattern-zatching system. The keyword Inp again prefaces input so that
it is not fortuitously reduced.

4.5. Dictionary

Our Logic implementation of the MicroKnobs dictionary of course
uses assertions rather than property lists for the storage and
association of preferred terns with synonyms. The assertions for the
preferred tern AIRBASE and the compatible version of GETROOTWORD are
shown below.

(PROCEDURE SYNONYM)

(I- (SYNONYM AIRBASE AIRFIELD))

(c- (SYNONYM AnBASE AIRPORT))

(I- (SYNONYM AIRBASE TUOC))

(I- (SYNONYM AIRBASE (AIR BASE)))

(I- (SYNONYM AIRBASE (AIR FIE;LD)))

- 31 -

TheLogispImplementation of MicroKnobs

* (GE7ROOTWORD
[LAMBDA (WORD)p (SETOF 1 (QUOTE x)

(LIST (LIST (QUOTE SYNONYM)
- (QUOTE x)

WORD]~)

There is one assertion for each synonym of a preferred texm.U GETROOTWORD invokes Logic search over the dictionary's SYNONYM
- procedure.

-32-

ii

5. The Baseline In~estigation

One must take care when comparing a program designed in one
language to its reimplementation in another. There are bound to have
been design decisions based on advantages and constraints of the
original language which the target language does not share. Nonetheless
we must compare our LogLisp implementation with the original MicroKnobs
in renms of programming ease, program clarity, and program efficiency.
We shall temper our comparison with an awareness of language
diffe rences.

5.1. Programming Ease

The most difficult facet of implementing MicroKnobs in LogLisp was
for us to understand the original code: how it behaved, how it worked,
and which of its workings we needed to preserve its behavior.
MicroKnobs includes about 100 Lisp functions and several large
variables. We acquired a working knowledge of most of these, and left
much of the code intact.

Our task was made easier by the quality of the original code. The
division of labor among functions seems natural. Functions and
variables for a particular architectural component are grouped together
on one InterLisp file, except where there is overlap. The names of
functions and variables are mnemonic, making the code easy to follow
once we understood the mnemonic dialect. One thing that made the
transition particularly smooth is the judicious use (to which we did not
always adhere) of "macros" (the interpreted versions were actually used)
for accessing data structures. When we changed the structure of the
knowledge base, we simply redefined the macros. While this did not
solve all of our problems, it was certainly much easier than it would
have been translating primitives, if there had been no macros.

The major facility encountered in programming in LogLisp rather
than plain InterLisp is that we did not have to write an inference
engine; LogLisp supplied one. On the other hand, our desire to preserve
the behavior of MicroKnobs and subsequent object-level/meta-level
knowledge base representation led to the need for an assertion manager.
We do not fully comprehend the partitioning of the knowledge base into
rulesets (and FACTS) that exists in MicroKnobs. We would have far
preferred a predicate-based partitioning, and would have used one had it
not made a faithful reimplementation impossible. The discovery of an
operable meta-level strategy was essential to our effort, but resulted
in losses of efficiency and clarity over conventional methods. We do
not think the burden of writing an assertion manager is an indictment of
LogLisp's suitability for the development of knowledge-based systems,

- 33 -

The Baseline Investigation

Programming Ease

though, only for their reimplementation.

Similarly, a significant portion of the necessary pattern-matching
capability was provided by Logic. In particular, pattern-matching
variables and their bindings are handled transparently by Logic. Design
of the Logic-coded pattern marcher was straightforward, since the
input/output relationships specified by its component clauses correspond
naturally to the required transformations.

Design of the dictionary function is not very complex in either
implementation.

In the end, we took a handful of functions out of MicroKnobs, and
put a handful back in.

5.2. Program Clarity

We feel that the LogLisp version has enhanced program clarity.
While much code is shared by both versions, our object-level
representation of the knowledge base is easier to read. Lisp calls
appear more natural with predicate status than as attached
side-conditions to hypotheses. Our rule format, which follows the
syntax of a LogLisp assertion with a list of consequents in the normal
position of the single consequent, also seems natural. The meta-level
knowledge base and associated knowledge base manager are perhaps less
t ranspa rent.

We feel that the Logic-coded pattern-matching system is more
concise and perspicuous than its Lisp-coded counterpart. This is
certainly evidenced by the easy job we had programming it. It may be
easier to read template portions in the original pattern/production rule
representation (where they are uninterrupted), but the overall rule
structure seems more homogeneous (and more easily apprehended) in our
representation.

Again, in both implementations the dictionary system is so simple

that clarity is not really an issue.

5.3. Program Efficiency

The changes we made to the original version that significantly
affected efficiency involved code for inference (including assertion
management and explanation), pattern-matching interpretation, and
dictionary processing. The measurements discussed here were made using
a compiled instance of LogLisp V2M. MicroKnobs modules or functions
were always left in intrepreted InterLisp, except where, in the

- 34 -

The Baseline Investigation
Program Efficiency

conventional Lisp implementation, they performed duties corresponding to
those for which the efficiency of the LogLisp implementation was to be
campared. Thus, fair measurements were made of MicroKnobs original
inference, matching, and dictionary processing. While dynamic storage
(consing) costs are not reported here, their differences were generally
proportional with the reported execution time cost differences.

Table 1 shows measurements in CPU seconds of inference execution
time for a battery of questions in various implementations of

icroKnobs. The conventional Lisp implementation was measured both with
and without restrictions on knowledge base search. LogLisp
implementations with our ultimate restricted meta-level knowledge
representation, unrestricted meta-level representation, and prototype
representation were also measured. Because restriction in MicroKnobs is
predicate-based, our prototype knowledge base is also inherently
restricted."

(Orig) Restr UnRestr
Unrestr Restr Meta Meta P roto

Question Lisp Lisp Logic Logic Logic

CHOOSE FOR TARGET 1. .166 .125 .399 .576 .270
CHOOSE FOR TARGET 2. .335 .257 .670 1.206 .322
CHOOSE FOR TARGET 3. .459 .367 .871 1.571 .373
CHOOSE FOR TARGET 4. .671 .528 1.388 2.643 .569
WHAT IS TARGET 3? .009 .009 .066 .073 .061
IS TARGET 3 AN SA-4? .008 .010 .057 .071 .027
IS TARGET 3 A SAM? .041 .044 .240 .292 .088
IS TARGET 3 AN EMITTER? .078 .087 .315 .414 .128
HOW HARD IS TARGET 1? .034 .029 .178 .211 .062
HOW HARD IS TARGET 2? .109 .084 .243 .369 .071
HOW HARD IS TARGET 3? .108 .095 .244 .352 .066
HOW HARD IS TARGET 4? .079 .072 .217 .303 .074

Total: 2.097 1.707 4.888 8.131 2.111

Table 1

Table 1 contains two items of information especially useful for
baseline comparison. At a gross level, when data from the original
implementation is used as baseline, our meta-level implementation is
about five times slower; restricted meta-level, about three times
slower; and prototype, about the same. It can also be seen at a gross
level that restriction confers a greater degree of efficiency
enhancement in the original InterLisp implementation. The relative

- 35 -

The Baseline Investigation
Program Efficiency

impacts of the differing designs of components used in inference in the
conventional InterLisp and LogLisp implementations can be assessed from
Table 2, which shows measurements of execution times for question 2,
"CHOOSE MUNITIONS FOR TARGET 4," for which there is no answer and
exhaustive search is performed.

(Orig) Restr UnRestr
Unrestr Restr Meta Meta Proto

Function Lisp Lisp Logic Logic Logic

search .268 .190 .250 .423 .119
reduction .074 .079 .416 .899 .176
unification .295 .211 .444 .740 .125
environment management .034 .037 .139 .264 .097
index identification - - .111 .264 .040

Table 2

The components have been identified so as to correspond as closely
as possible within the given designs. Search is defined to include
search space traversal and management, knowledge base access, and
explanation maintenance. Reduction is the instantiation and evaluation
of Lisp constraints. Unification is elementary pattern matching.
Environment management pertains to the bindings of inference variables,
and index identification to extraction of constants from goal statements
to enable indexed retrieval of assertions. (The last component is
present only in the LogLisp implementations.)

Restriction confers an efficiency enhancement for both search and
unification of approximately 30% in the original InterLisp
implementation, and of approximately 40% in the LogLisp meta-level
implementations. The additional enhancement in LogLisp corresponds to
elimination of the TRUTH procedure and its processing. Environment
management cost is essentially constant in the conventional InterLisp
implementations, but grows with search space size in LogLisp. This is
to be expected, as LogLisp provides binding capability for every
processed goal statement, whereas the original design merely keeps a
list of explicitly encountered variables and bindings. Time required
for reduction is essentially constant in the conventional InterLisp
implementations. In LogLisp it grows with search space and knowledge
representation size, at roughly the same rate as that for index
identification. This is to be expected, as LogLisp attempts to reduce
every s-expression it encounters in a goal statement, whereas the
original knowledge representation isolates Lisp constraints in a
predete zined location.

- 36 -

The Baseline Investigation
Program Efficiency

Assertion management confers a modicum of overhead not present in
the original MicroKnobs. Because of the limited size of the knowledge
base this is not excessive, amounting in the worst case (all procedures
erased and reasserted) to about .4 CT. seconds. With a more realistic
(larger) knowledge base, this overhead would become intolerable, and a
different approach to assertion management would be necessary. LogLisp
V2.3 includes a solution to this problem in its capability for
modification of single assertions by name-rather than only of entire
procedures-but was not available when the assertion manager was
designed.

The generation of a compatible data structure for the display of
explanation is not expensive either, taking up to 1.5 seconds for tested
que ries.

Table 3 shows measurements in CPU seconds of pattern-matching
interpretation execution time for selected input forms using either the
CM-production or Q-production pattern/production ruleset, exclusively.

Pattern
Question Ruleset Lisp Logic

CHOOSE MUNITIONS FOR TARGET-I CM-prod's .479 1.256
WHAT IS TARGET-3 Q-prod's .332 3.600
WHAT IS THE HARDNESS OF TARGET-I Q-prod's .447 6.211
THIS OLD FOOL HAS NO HOME CM-prod's .121 3.914
THIS OLD FOOL HAS NO ROME Q-prod's .216 1.903

Table 3

These execution times are averaged over two or three trials, and
include the cost of inference and other "action" times in addition to
that of pattern matching. The nonsense query, "THIS OLD FOOL HAS NO
HOME," has no matching template among either ruleset, and should be more
indicative of the proportionate cost of pattern-matching processing than
the other input fors. The figures show a great degree of variability,
however, preventing the drawing of very specific conclusions about their
meanings. The Lisp-coded pattern matcher certainly specializes more in
its invocation of recursive calls than the Logic-coded pattern matcher,
and uses low-level details inaccessible to logic programmers such as the
binding condition of a pattern variable (whether instantiated).

- 37 -

The Baseline Investigation
Program Efficiency

Because of LogLisp's full secondary indexing for ground assertions,
access of preferred words for synonyms in dicticnary processing occurs
in essentially constant time in the Logic version, averaging about .37
seconds over all known pairs. In the original InterLisp version, where
simple sequential search is periomed over the list of preferred words,
access time increases linearly with the depth of the target word in the
list, averaging (for this relatively small dictionary) about .0003
seconds. LogLisp might become competitive with a dictionary two orders
of magnitude larger, if the storage required for this cross-referencing
were not prohibitive.

In general, these are fairly predictable flexibility/efficiency
trade-offs. User-specifiable index fields for rule assertions available
in LogLisp Version 3 [Robinson et al. 841 should ameliorate the
overhead problems of the data structures used in the Logic-coded
pattern-matcher and meta-level knowledge representations.

5.4. Results

The results indicate that LogLisp is a viable environment for the
implementation and development of knowledge-based systems, especially if
it can be used naturally. Even when it is used in a forced manner as we
have, the advantages it affords in ease of programming, clarity, and
flexibility outweigh the disadvantage in efficiency. We have found
LogLisp to be effective in the implementation of a small, simple
knowledge-based system. It is now appropriate to consider the
implementation of a non-trivial Al program in LogLisp to demonstrate its
effectiveness in a practical application.

- 38 -

-. -,. ____-,

7

6. References

(Emanuelson 82] P. Emanuelson. "From Abstract Model to Efficient
Compilation of Patterns," Linkoping University research report
LITH-MAT-R-82-03.

[Engelman 79] C. Engelman. MicroKnobs Documentation, MITRE
Corporation.

[Engelman 81] C. Engelman. "KNOBS, An Interactive Knowledge Based
Tactical Air Mission Planning Demonstration System: A Snapshot as of
September 1981," MITRE Corporation.

[Kovalski 79] R. Kowalski. Logic for Problem Solving, Elsevier
North-Holland.

(Robinson 81] J. A. Robinson. "VEL System Breadboard: Annual
Progress Report," Syracuse University.

[Robinson and Sibert 81] J.A. Robinson and E.E. Sibert. The LogLisp
User's Manual, unpublished interim technical report.

(Robinson et al. 84] J.A. Robinson, E.E. Sibert, and K.J. Greene.
The LogLisp Programming System, RADC technical report F30602-81-C-0024

[Schrag 83] R.C. Schrag. "Notes on the Conversion of LogLisp from
Rutgers /UCI-Lisp to InterLisp," RADC technical memorandum RADC-TM-83-1.

[Schrag 84] R.C. Schrag. "LogLisp Sequential Forms with Resolution
Semantics," RADC technical memorandum RADC-T-84-13, Jun 84

[Teitelman 78] W. Teitelman. INTERLISP Reference Manual, Bolt, -
Beranek, and Newman and Xerox Corporation.

[Winston 77] P.R. Winston. Artificial Intelligence, Addison-Wesley.

[Winston and Horn 80] P. H. Winston and B.K.P. Horn. Lisp,
Addison-Wesley.

- 39 -

MISSION

Rome Air Development Center

RA1VC ptansl and executQ teheatch, deveopment, te6.- and
4Con caton6 and InteZZgence (CST) aa t~ZeA. 7ehnical

4Z6 ptovAided -t ESV Ptom O6jicue (PWt and otheL ESV
etement6. TIhe pxis...aZ techniccc miJ.6ion a/Leu. axe.
comrni~ca.tian, etetpZ'magnetLc 9widanwce and conttoZ, suwr.-
vvLtnce oj o9townd and aeaa~pace obiect6, cnteZLiaence. d=~
czoUea.tion and kandLZng, inj5o~'mtion zy4-tem technology,4
iono~aphetic ptopagation, 4o&4d .ta-te. <scZeJncu, mict'ou.ave
phy~sicA and eZtconic %teLiabi"L, maintainabZL and

coptb~y

4 4j

itS

WO

