“AD-A144 244 LISP IMPLEMENTATION BASELINE INVESTIGATION(U) ROME AIR

DEYELOPMENT CENTER GRIFFISS AFB NY R C SCHRAG JUN 84
RADC-TR-84-151
UNCLASSIFIED F/G 972 NL

— e

<

EEE
EEEE

EEEE

=

flit
iz

tFEEEE

| 4
13
Fe

=
F=——]
Iimh
i3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

[P, . " " - BN A q
e -) . R . o . : «

PR U S . . -

A — - . L N

i RADC-TR-84-151

in-House Report
June 1984

LISP IMPLEMENTATION BASELINE
INVESTIGATION

<
<
N
<
$ Robert C. Schrag
h
(]
¢
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
) EILECTE
o
% \<S AUGY B84
> B
()
=
L ROME AIR DEVELOPMENT CENTER
'E: Air Force Systems Command

Gritfiss Air Force Base, NY 13441

84 08 008

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-84~151 has been reviewed and is approved for publication.

SAMUEL A. DINITTO, JR.
Chief, Command & Control
Software Technology Branch
Command & Control Division

—T e

RAYMOND P, URTZ, JR.
Technical Director
Command & Control Division

FOR THE COMMANDER:

DONALD A, BRANTINGHAM
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by vour organization,
please notify RADC (COES) Griffiss AFB MY 13441, This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

-

]
]
]
]
1
{
]
]

L

!

& UNCTASSTIFITD
SECUMITY CLASSIFICATION QF TwiS PAGE
3
REPORT DOCUMENTATION PAGE -~
1a. AEPCAT SECLAITY SLASSIFICATION 1n. RESTRICTIVE MARKINGS
UNCLASSITIED M/A
28 SECLAITY CLASSIFICAT.ON aUTHCRITY 3. SISTRIBUTICN/AVAILASIL.TY CF REPQAT
N/A Approved for public release;
2D, JECLASSIBICATION/DOWNGRADCING SCHEDULE distribution unlimited.
N/A .
4 PEAECAMING ORGANIZATION REPQAT NUMRBEAS) 5. MONITORING ORGANIZATION REPQAT NUMBEAIS)
4
4
RADC-TR-84-151 /s _
68 NAME JF PERFOAMING QAGANIZATION b OFFICE SYMEOL Ta. NAME OF MONITORING SRGANIZATION 4
(1t applicsdia)
Rome Air Development Center COES N/A
6c. ACORESS (City, Stacw end ZIP Code) 7. ADORESS (City. Stawe and ZIP Codes 4
Griffiss AFB NY 13441 1
S8 NAME OF FUNDING/SPONSORING 8b. OFBICE SYMBOL |9. PAOCUREMENT INSTRUMENT DENTIFICATION NUMBEA
ORGANIZATION (2f applicadias
Pome Air Development Center COES N/A
8¢. ACORESS (City. State and ZIP Coas) 10. SOURCE OF FUNDING NCS. PR
PROGRAM smoJECT | TaSK | womx uNnIT)
Griffiss ATB NY 13441 SLEMENT NO. | NO. i NG ! NO.
62702F I 5581 i 19 ‘ 12

11. TITLE (/nei Secunty Claseils }

LISP IMPLEMENTATION BASELINE INVESTIGATION
12. PERSCNAL AUTHOR(S)

Robert C. Schrag —
13a TYPE OF AKPQAT 130. TI4E COVERED 14. OATE OF ARPORT (Yr., Mo., Dey) 18. PAGE COUNT .
In-House smom _4PT 80 ., dpr 84}~ June 1984 48 1
6. SUPPLEMENTAAY NOTATION _—— e
17, COSAT! CODES 18 SUSJECT TEAMS (Condinue on reverse if necessary and idenafy 3y dlock numoer: ’ f
£\€LD gaoue sus. gA. loglLisp, expert systems, logic programming, pattern -
9 2 14 matching, artificial intelligence B
9 2 15

19. AGSTRACT /Continue on reverse i/ necessary and idenafy dy bdiocs_ numader)

|, Loglisp is an Artificial Intelligence/(AI) programming enviromment that fully combines the
" facilities of logic programming and Lisp. This report describes the implementation of a
simple knowledge-based system in Loglisp, performed as part of an effort to evaluate the)
effectiveness of LoglLisp for implementing a simple knowledge-based system--in terms of
programming ease, program clarity, and program efficiency--using its original Lisp
implementation as a baseline. '

/

For the baseline investigation we chose the knowledge-based system MicroKnobs, a prototype
tactical air mission planning system whose chief function is to select munitions for a
known target based on rules and facts about targets, target conditions, and munitions.
Our implementation preserves the outward behavior and control features of MicroKnobs while -
replacing the original Lisp-coded knowledge base and inference system, pattern matcher, and

dictionary with Loglisp-coded counterparts. - , (cont'd)
mlluﬂenuvmullu?v OFf AGSTRACT 2. ARSTRACT SECUMITY SLASSIFICATION
UNCLASSIFIZED/UNLIMITED <X SAME AS AST, Z OTIC USEAS — UNCLASSIFIED
325 NAME OF AESPONSIBLE INOIVIDUAL 22>. TELEPMCNE YUMBER 122¢. 3F% 18 SYmeOL - -
Robert C. Schrag nciudg Aree Code: RAPC (COES)
(325) 330-2748
00 FORM 1473, 83 APR EDITION OF 1 JAN 73 'S OSSOLETE. 5N 17T

SECURITY CLASSIEICATION OF TwiS %4 25

UNCLASSIF1ED

SECUAITY CLASSIFICATION O THIS PAGE

J The report includes descriptions of MicroKnobs interaction and of the software

F:; architectures of its Lisp and our LoglLisp implementarions, and an evaluation of our

b implementation and selected design alternatives against the original MicroKnobs in terms
-2 of programming ease, program clarity, and program efficiency. The results indicate

K that Loglisp is a viable enviromment for the implementation and development of knowledge-
F based systems.

. A

\
t

[

T e
UNCLASSITIZ
SECURITY CLASSISICATION OF Thig pags

” v ~— ~
[- T~ T T e et e e " -
AR A AR AT A ARSI IS0 :

.

.

.
X
£~
"

A

Acknovled;enenta

Nort Fouler conceived and initiated this effort. Sharon
Walter helped me to perfom the Loglisp isplementation of
MicroKnobs. Phil Prince reviewed this report. Thank you all.

Carl Engelman, to whose memory this report is dedicsted, was

always gracious in providing documentation, advice, and
encouragement.

Aceession For
TNIIS GRART
At

DT TAR]
;
Loarrouneed 7
Joastin Lnnbinm g
DU —

ezt

e e o e ey

A
Disveihution/

-1- i oav.liability Codes
- Laii fviger
1 -
e waeind R
i ; '
! .
i , ! ;
el _i (
-
. J
» . -
L..‘ ',.'-'_.'.LAAA " g et L o —e - s

rﬂﬁf-V_A

| . SN) 2t

1. Lisp Implementation Baseline Investigation

This report describes the implementation of a simple
knowledge~based system in Loglisp, perfomed as part of a Raoame Air
Development Center (RADC) in-house effort to experiment with and
evaluate LogLisp. The objective of this task has been to evaluate the
effectiveness of Loglisp for implementing a simple knowledge-based
systen in tems of programming ease, program clarity, and program
efficiency, using its original Lisp implementation as a baseline.

1.1. LoglLisp

LogLisp (logic programming in Lisp) is an Artificial Intelligence
(AI) programming enviromment developed by Syracuse University under
contract to RADC [Robinson and Sibert 81]. In it coexist the tools of
two competing philosophies of Al programming-=-functional programming
done in Lisp, and logic programming. Each language has characteristics
which are appropriate for encoding ma jor Al program components including
knowledge representation, knowledge manipulation, and inference.

Lisp (1ist processing language) facilitates knowledge
representation and manipulation since almost any fomal knowledge
representation can be expressed as list structure and manipulated via
Lisp primitives. Lisp includes no built-in inference mechanisms, and
these are often reprogrammed with each new application and accompanying
knowledge representation. (For tutorial infommation on Lisp see
[Winston and Homm 80.])

Logic programming languages include a built-in theorem-prover that
is responsible for all program execution. Statements (or clauses) are
expressed in a subset of predicate logic. Most fomal knowledge
representations can be expressed in clausal form. Knowledge
manipulation can be awkward in pure logic programming, however, since it
includes neither an explicit assigmment statement nor extensive data
manipulation primitives. (See [Rowalski 79] for background infomation
on logic programming.)

Loglisp promotes synthesis of these two very complementary
programming styles. While a user can disregard either the logic
programming component (hereinafter called Logic) or the underlying Lisp
system, Lisp can be used to call Logic and vice versa, to arbitrary
levels. LogLisp augments Lisp with an inference engine of tested
capability. Logic programming is enhanced by the opportunity to call
Lisp for knowledge manipulation and by Lisp”s more developed support
envi romment.

TS T T A N N N A At A S

Ly}
[

Lisp Implementation Baseline Investigation
MicroRnobs

R

-

i~

1.2. MicroKnobs

For the baseline investigation we chose the knowledge-based system
MicroKnobs [Engelman 79], a prototype tactical air mission planning
system developed by MITRE Corporation to demonstrate the applicability
of xnowledge-based system technology to Air Force problems. The
demoastration knowledge base contains only ten rules and eight facts
about targets, target conditions, and munitions. 1Its chief function is
to select the best munitions for a known target, based on the contents -
of its knowledge base. Different, consistent results are obtained after
on~line modification of the knowledge base, showing the power of the
kaowledge-based system approach. MicroKnobs has been succeeded by the
MITRE Knobs (Knowledge—based System) project funded by RADC [Engelman
8l].

MicroKnobs has several features which suit it to the baseline

T study. It {s rule-based. Rules of the fom used in the knowledge base
. of MicroKnobs are frequently called production rules. These take the
t form: IF Al & A2 & ... & An THEN BL & B2 & ... & Bm,

where n >= 0 and m >= 1. Production rules are easily translated to the
B fom used in logic programming knowledge bases:
- BIF AL & A2 & ... & An, where n >= 0. This is done by applying the
- distributive law to the conjunction in the conclusion of a production
rule with multiple consequents to fom m distinct logic programming
clauses, each with the original (identical) antecedents.

MicroKnobs includes a custom user-interface which must be preserved
in any faithful reimplementation. It includes custoa inference,
pattern-matching, and control mechanisms. We succeeding in preserving
the outward behavior and coantrol features of MicroKnobs while replacing
portions of the original Lisp-based implementing machinery with
Logic-based machinery, as the overall MicroKnobs system architecture and
our knowledge of LoglLisp programming techniques suggested.

MicroKnobs is witten in InterLisp [Teitelman 78]. As a preliminary
task we implemented LogLisp V2M3 in InterLisp [Schrag 83]. This allows
us to perfom direct comparisons.

1.3. Organization of this Report

The remainder of this report is comprised of four major sectionms.
Section 2 describes the MicroKnobs system from the viewpoint of user
interaction. Section 3 describes the software architecture of the MITRE -
impienentation of MicroKnobs. 1In section 4 we describe our LoglLisp

-2 -

R 28

Lisp Implementation Baseline lInvestigation
Organization of this Report

implementation of MicroKnobs, emphasizing design development and
rationale. 1In section 5 we evaluate our implementation and selected
design alternatives against the original MicroKnobs in terms of
programming ease, program clarity, and program efficiency. A final
section lists references.

e~ A

2. Interaction with MicroKnobs

The user interacts with MicroKnobs via a monitor which interprets
natural language input to invoke the various system Iunctions. He may
examine the knowledge base by asking to see either facts or rules,
including target rules (TRULES) and munitions rules (MRULES). (Imn the
following scripts, "&&" is the monitor”s proapt. The entire knowledge
base is shown here. Socme representative facts and rules are marked
(***) and will be referred to in subsequent discussion.)

WELCOME TO KNOBS
TYPE HELP FOR INSTRUCTIONS

&& PRINT FACTS
- Rk 1: THE CLOUD COVER OF TARGET 4 IS 5
fadded 2: TARGET 1 IS A BRIDGE

3: TARGET 2 IS A TANK BATTALION

4: TARGET 3 IS AN SA-4

fadedel 5: TARGET 1 IS LIGHTLY DEFENDED
6: THE CLOUD COVER OF TARGET 1 IS O
7: THE CLOUD COVER OF TARGET 2 IS 3

-

8: TARGET 4 IS AN AIRBASE

Interaction with MicroKnobs

&& PRINT RULES

—-TRULES=-
—=TR]==
faduil IF:
sk 1: THE target IS ONE OF: RADAR SAM RADIO
*dedk
*kk THEN:
Rk 1: THE target IS AN EMITTER
—TR2=-
fadedol IF:
o Fekede . 1: THE target IS A TANK BATTALION
J fedes
_ fodade THEN:
o dedede 1: THE target IS FAST
ek AND 2: THE target IS WARM
—=TR3=—
IF:
l: THE target IS A BRIDGE
THEN:

1: THE target IS COLD
AND 2: THE target IS VERY HARD
AND 3: THE target IS STATIONARY

—TRG4=
IF:
1: THE target IS ONE OF: SA-2 SA-4 SA-6
THEN:
1: THE target IS A SAM
_-ms-.
IF:
1: THE target IS AN AIRBASE
THEN:
1: THE target IS HARD
AND 2: THE target IS HIGHLY DEFENDED
== END OF TRULES --
-5 -]

Interaction with MicroKnobs

Rk
Redde
fedek
Redesk
*kk
*dek
Rk

IF:
1:
AND 2:
AND 3:
THEN:
1:
IF:
1l:
THEN: -
1:
1F:
1
AND 2:
THEN:
1:
IF:
1l:
THEN:
1l:
IF:
1l:
AND 2:
AND 3:
THEN:
1:

TBE

THE

THE

—MRULES——
C —MR1--
target IS HARDER THAN HARD
CLOUD COVER OF THE target IS LESS THAN 1
target IS LESS DEFENDED THAN LIGHTLY DEFENDED
BEST MUNITIONS FOR THE target IS LASER GUIDED

target IS SOFTER THAN SOFT

BEST MUNITIONS FOR THE target IS CLUSTER BOMBS
—MR 3=

target IS FASTER THAN FAST

target IS WARMER THAN WARM

BEST MUNITIONS FOR THE target IS SHILLELAGH
MR ==

target IS AN EMITTER

BEST MUNITIONS FOR THE target IS SHRIKE
~=MR 5——
target IS SOFTER THAN HARD

CLOUD COVER OF THE target IS LESS THAN &
target IS MORE DEFENDED THAN HIGHLY DEFENDED

BEST MUNITIONS FOR THE target IS MAVERICK

— END OF MRULES ==

PP Sant ARt atas Jves nigh g

PO VOGN A

Interaction 'rith MicroKnobs

The user may invoke inference by asking MicroKnobs to choose
aunitions for a certain target.

&% CHOOSE MUNITIONS FOR TARGET 1
LASER GUIDED

He may request an explanation of the previous choice.

3 && WHY
BY MR1: THE BEST MUNITIONS FOR TARGET 1 IS LASER GUIDED
SINCE:
1l: BY TR3: TARGET 1 IS VERY HARD
SINCE:
1: DATA: TARGET 1 IS A BRIDGE
2: DATA: THE CLOUD COVER OF TARGET 1 IS O
3: DATA: TARGET 1 IS LIGHTLY DEFENDED

[Interaction with Micr:Knobs

The user may also edit the knowledge base by addihg or deleting
facts or rules, and by modfiying or moving rule components. The editor
accepts rule components expressed in natural language.

&& EDIT TR2
-——TR2==
IF:

1: THE target IS A TANK BATTALION
THEN: .
1: THE target IS FAST
AND 2: THE target IS WARM
CHANGE NAME? NO
EDIT HYPOTHESES? NO
EDIT CONSEQUENCES? YES
ADD, DELETE, OR REPLACE? ADD
CONSEQUENCE NUMBER: 3
CONSEQUENCE NUMBER 3 : THE TARGET IS BARD.
CONSEQUENCES :
1: THE target IS FAST
AND 2: THE target IS WARM
AND 3: THE target IS HARD

EDIT CONSEQUENCES? NO

-—‘mz_-
IF:
1: THE target IS A TANK BATTALION
THEN:
1: THE target IS FAST
AND 2: THE target IS WARM
AND 3: THE target IS HARD

Interaction with MicroKnobs

In addition to these commands, the user may ask gquestions about the
knowledge base. He can ask for information about rules.

&& WHAT RULES MENTION HARDNESS IN THE CONCLUSION?
THE FOLLOWING RULES MENTION HARDNESS
R3 TRS

User queries can invoke inference to deduce infomation contained
in the knowledge base implicitly.

&& HOW HARD IS TARGET 4?
HARD

&& WHY?
BY TRS: TARGET 4 IS HARD
SINCE:
1: DATA: TARGET 4 IS AN AIRBASE

L2

SV

3. Original MicroKnmobs System Architecture

MicroKnobs has a modular architecture. Its amajor coaponents are
the aonitor, parler/dictionary, pattern-matching interpreter and
associated pattern/production rules, knowledge base, knowledge base
display package, inference engine, and knowledge base editor.

3.1. Parler/Dictiomary

The monitor is the central point, if not the heart, of MicroKnobs.
It is the dispatcher and receiver of control to and from other system
aodules. All natural language input (including that to the momnitor) is
first passed through the parler. (In contrast to a parser, it uses no
grammar.) The parler accesses the dictionary of single-~ and
multiple-word tems known by MicroKmobs. Punctuation is stripped from
input, preferred terms are substituted for synonyms, and any
multiple-word tems are standardized (made into single Lisp atoams by
hyphenating). Parling helps to ensure that user input is consistent
with language in the knowledge base. This is important because exact
match is used in inference.

The dictionary is organized around a list of preferred tems called
SYNONYMWORDS. Each entry on this list has stored under the property
SYNONYM on its property list a list of the unpreferred tems that map
into it. The SYNONYM property value for the temm AIRBASE and the
mapping function GETROOTWORD are shown below.

(AIRFIELD AIRPORT TUOC (AIR BASE) (AIR FIELD))

(GETROOTWORD
[LAMBDA (WORD)
(FOR EACHROOT IN SYNONYMWORDS
DO (COND
([R (EQUAL EACEROOT WORD)
(MEMBER WORD (GETPROP EACHROOT (QUOTE SYNONYM]
(RETURN EACHROOT])

GETROOTWORD performs sequential search over the entire dictionary.
3.2. Pattem-matching System

Parled aonitor input is compared by the pattern-matching
interpreter against two sets of pattern/production rules, successively.
The pattem/production rules are like conventional production rules,
with some exceptions. They are executed siagly, for effect, rather than
chained together in inference. They are appropriately comsidered in
tems of conditiocn:action rather than hypothesis:coaclusion. Their

- 10 -

-

B
e) 4
R R

-—

Original MicroKnobs System Architecture
Patterm-matching System

condition parts are of unit length and are expressed in a
pattermn-matching language rather than predicate logic. The
pattem-matching language includes variables to match input patterns of
unit length (atoms whose first character is "?") and variable length
(atoms whose first character is "!"), and a variable-length-don“t-care
symbol ("!"). Unit- and variable-length (but not anonymous) variables
can also appear in the action parts of pattern/production rules, and are
then subject to instantiation using the matching substitutions created
by the replacement of tems for variables in the condition parts. The
condition part of a pattem/production rule can include coastraints,
whicn are calls to Lisp functions with instantiated patterm-matching
variables as arguments. The constraints must evaluate to other than NIL
in order for the condition to be satisfied. As example, the
pattem/production rule which fires when the query, "WHICH RULES MENTION
HARDNESS IN THE CONCLUSION?", (demonstrated in the previous section) is
submitted to the monitor is shown below.

{(comments)}

[[(?INTEROG ! ?7ATTRIB ! ?SPECATTRIB ! ?INFO) {the pattem}
[?INTEROG (OR (EQ ?INTEROG (QUOTE WHAT)) {constraint on
(EQ ?INTEROG (QUOTE WHICH] ? INTEROG}
[?ATTRIB (OR (EQ ?ATTRIB (QUOTE CHROOSE)) {...on ?ATTRIB}

(EQ ?ATTRIB (QUOTE MENTION]
(?SPECATIRIB (OR (MEMB ?SPECATTRIB DEGREEWORDS) {...on ?SPECATIRIB}
(MEMB ?SPECATTRIB MUNITTYPES)
(MEMB ?SPECATIRIB TARGETTYPES)))

(?INFO (R (EQ ?INFO (QUOTE HYPOTHESES)) {...on 7INFO}
(EQ 7INFO (QUOTE CONCLUSION]
([SETQ INFO (COND {1st action}

((EQ ?INFO (QUOTE HYPOTHESES))
(QUOTE HYPS))
(T (QUOTE CONCLS}
(COND {2nd action}

((MEMB ?SPECATIRIB MUNITTYPES)

(GETRULES (QUOTE MRULES)

INFO ?SPECATIRIB))

(T (GETRULES RULES INFO ?SPECATTRIB]

The pattern-matching interpreter invokes a pattern matcher which
compares conditions against input, backtracking when necessary to
explore alternatives to match variable-length pattern elements (! and
!-variables). This patterm matcher is an expansion of that described in
[Winston 77]. When a pattern/production rule is successfully matched,
its action part is executed and the pattern-nmatching interpreter returns
control to its caller. ¢(...in this case, the monitor. The
pattern-natching interpreter is also used by the editor.) Code for the

- 11 =

—

- et

Original MicroKnobs System Architecture
Pattem-matching System

pattem=-matching interpreter and the pattemm matcher is shown below.

(INTERPRET
[LAMBDA (INPUT RULEZET)

(PROG (PALIST STARLIST MATCHING SIDECOND PTYPE TLIST TEMP ?TARGET
?TYPE ?ATTRIB ?SPECATTRIB !TYPE !CMD ?VAR 7X ?INFO
7FILE 7COMPAR ?INTEROG !CONCL)

(COND
([for RL in RULEZET
do (SETQ PALIST (SETQ STARLIST NIL))
(SETQ MATCHING (CAAR RL))
(SETQ SIDECOND (CDAR RL))
(COND
((PUREMATCR MATCHING INPUT)
(SETVARS (LIST PALIST STARLIST))
(SETQ SIDECOND NIL)
(for ACTION in (CADR RL) do (EVAL ACTION))
(RETURN T]
(RETURN T))
(T (RETURN NIL])

-12 -

., TT

M

] ot T et
MDD

e

«®

Original MicroKnobs System Architecture
Patterm-matching System

(PUREMATCH
[LAMBDA (PAT FORM)
(PROG {Pl Fl1 PI1CDR APl SCHECK)
(COND
((AND (NULL PAT)
(NULL FORM))
(RETURN T))
((NULL PAT)
(RETURN NIL))
((AND (NULL FORM)
(NULL (CDR PAT))
(EQ (CAR PAT)
(QUOTE !)))
(RETURN T))
((AND PAT (NULL FORM))
(RETURN NIL)))
(SETQ SCHECK NIL)
(SETQ P1 (CAR PAT))
(SETQ F1 (CAR FORM))
[CoOND
((EQ (NTHCHAR Pl 1)
(QUOTE !))
(COND
((PUREMATCH (CDR PAT)
FORM)
(RETURN T))
((PUREMATCH (CDR PAT)
(CDR FORM))
[COND '
((NTHCHAR Pl 2)
(SETQ STARLIST (CONS {CONS Pl
(LIST (CAR FORM)))
STARLIST]
(RETURK T))
((PUREMATCH PAT (CDR FORM))
{ COND
((NTHCHAR Pl 2)
(SETQ STARLIST (CONS (CONS Pl
(CONS (CAR FORM)
(CDAR STARLIST)))
(CDR STARLIST)
(RETURN T))
(T (RETURN NIL]
[COND
{((EQ (NTHCHAR Pl 1)
(QUOTE ?))

- 13 -

Original MicroKnobs System Architecture
Pattern-matching System

(SETQ P1CDR T)
(SETQ APl (ASSOC Pl PALIST)

(COND

[(NOT P1CDR)
(RETURN (COND

((EQ Pl F1)
(PUREMATCH (CDR PAT)
(COR FORM)))
(T NIL]

(P1CDR
(COND

[AP1 (RETURN (COND
((EQ (CDR AP1)
F1)
(PUREMATCH (CDR PAT)
(CDR FORM)))
(T NIL]
[(OR (NULL SIDECOND)
[for SC in SIDECOND
do (COND
((EQ (EVAL (LIST (ngrs QUOTE)
P1))
(CAR SC))
(SETQ SCHECK T)
(RETURN (EVALA (CADR 5C)
(CONS (CONS Pl F1)
PALIST]
(NULL SCHECK))
(RETURN (PROG2 (SETQ PALIST (CONS (CONS Pl F1)
PALIST))
(COND
((PUREMATCH (CDR PAT)
(CDR FORM))
(RETIRN T))
(T (SETQ PALIST (CDR PALIST))
(RETURN NIL)
(T (RETURN NIL])

- 14 -

PR P Y TN o PR IR S

Lan o

Original MicroRnobs System Architecture
Pattermn-matching System

Monitor input is interpreted first using pattern/production rules
with coamand templates in their conditions {CM-productions), then using
pattem/production rules with kpowledge base query templates in their
conditions (Q-productions). 1Z none of these are successful, the
monitor tells the user it was unable to recognize input. The natural
language understandiag of MicroKnobs is restricted to that which can be
recognized with this predetermined set of templates. It is thus a
pattern-oriented understanding.

The action parts of CM=-productions cause system functions such as
English display, choosing munitions, explaining, and editing to be
invoked. The action parts of the Q-productions cause either syntactical
analysis of rules in the knowledge base or knowledge base inference (in
the spirit of an intelligent data base).

3.3. Knowledge Base and Inference

The knowledge base is stored in a set of global variables. All
facts are contained in FACTS. Rules are stored in their respective
rulesets. Rulesets which are to be used in inference have their names
stored in RULES. The external, English fom of rules and facts was
shown above. Internal foms are shown below. The knowledge base
display package, which is highly specialized for this application, is
responsible for the transfomation.

- 15 -

Original MicroKnobs System Architecture
Knowledge Base and Inference

. FACTS
o (THE CLOUD~COVER OF TARGET-4 IS 5)

(TARGET-1 1S-A BRIDGE)
(THE DEFENSE OF TARGET-1 1S LIGHTLY-DEFENDED)

W N -

RULES
(TRULES MRULES)
TRULES

(TR1 [((?TARGET IS-A ?X)
(FMEMB ?X (QUOTE (RADAR SAM RADIO]
((?TARGET IS-A EMITTER)))
(TR2 (((?TARGET IS-A TANK-BATTALION)))
((THE MOBILITY OF ?TARGET IS FAST)
(THE TEMPERATURE OF ?TARGET IS WARM)))

MRULES

(MRl ({(THE HARDNESS OF ?TARGET IS ?X)
(HARDER ?X HARD))
((THE CLOUD-COVER OF ?TARGET IS ?7Y)
(LESS-COVERED ?Y 1))
((THE DEFENSE OF ?TARGET 1S ?2)
(LESS-DEFENDED ?Z LIGHTLY-DEFENDED)))
({THE BEST-MUNITIONS FOR 7?TARGET IS LASER-GUIDED)))

The inference engine is called from the monitor for choosing
munitions and knowledge base querying. It uses the knowledge base,
consisting of rulesets in RULES and facts in FACTS, exclusively as its
domain of reasoning. It performs depth-first search and upon
user-option maintains {n the variable EXPLANATION lines of reasoaning to
answers obtained. Requests to the monitor for explanations invoke
display functions which reference this variable. The inference engine
includes a mechanism (not under user control) for restricting inference
on hypotheses with specified key attributes (such as BARDNESS or IS-4A)
to members of a particular ruleset or FACTS, when the set names are
stored under the RESTRICT property of the attributes. This feature ;
allows inference to be tuned (by narrowing search) for a particular -
knowledge base with known interaction amonz rules. It can also limit i
flexibility in the types of rules that can be added effectively to a
ruleset not named under the RESTRICT property of the added key

RPN

- 16 -

s B9

i

LA San st Sens aaust)

Original Microknobs System Architecture
Knowledge Base and Inference

attributes of the coasequents in the added rule. This poses a threat to
users unaware of this feature.

3.4. Knowledge Base Editor

The knowledge base editor gives the user control over the contents
of the knowledge base. He may (from the monitor) delete rules by name
or facts by number, add facts to FACIS or rules to rulesets, or modify
rules. He may also create new rulesets by specifying that a rule should
be added to an as yet non—-existent ruleset. This ruleset may then be
added to RULES. Deletion of a rule or fact causes its excision from
internal structure. Operations that add to the knowledge base (as well
as those that modify rules) accept natural language input. Parled
editor input is submitted to the pattern-matching interpreter for
comparison against the component”s appropriate set of pattern/production
rules. Facts are compared against F-productions, hypotheses against
R-productions, comsequents against CQ-productions, and side-conditions
(described below) against SC-productions. In each case the actiom part
of the successful pattern/production rule establishes a variable to hold
the internal (component) form resulting from the matched f{nput. Editor
functions that call the pattern-matching interpreter make use of this
variable in constructing the internal foms of facts and rules.
Interpreted facts are simply CONSed into FACTS. The user must specify
to what ruleset an added rule is to belong, and, since location within a
ruleset can affect inference, where in the ruleset it should go.

Hypotheses of MicroKnobs rules can carry side-conditions, which,
like the constraints of pattern/production rules, are Lisp calls which
must result in other than NIL for the hypothesis to be accepted.
Side-conditions present in MicroKnobs standard knowledge base serve two
purposes. Comparators (such as HARDER) can be attached as constraints
to hypotheses including degreewords (e.g. HBARDNESS). The intemmal
structure

((THE HARDNESS OF ?TARGET IS ?X)(HARDER ?X HARD))
translates on output to "THE target IS HARDER THAN HARD." The expression
{FMEMB ?X “(A B C)) is attached to hypotheses of the fom (?TARGET IS-A
?X). This pair translates on output to "THE target IS ONE OF: A B C.”
While the HB-productions include pattern/production rules to interpret
both types of phrases whole and produce a hypothesis with attached
side-condition, they also include pattern/production rules which will
accept such a hypothesis without its side-condition. If the editor has
reason to believe that a hypothesis it has received is not coaplete, it
will pronpt for side-conditions, which are parled, interpretad using
SC-productions, and attached to the suspect hypothesis.)

-17 -

-

I o RETR

Original MicroKnobs System Architecture
Knowledge Base Editor

' To modify existing rules, the user may add, delete, or replace
specific hypotheses or comsejuents. Deleted components are removed from

the rule. Camponents to be added are obtained by interpreting parled
input, and inserted at a location specified by the user.

=

- 18 -

-1

4. The LogLisp Implementation of MicroKnobs

Our goal was to preserve the outward behavior and control features
of MicroKnobs while replacing the original Lisp-based implementing
machinery with Logic-based machinery, as would be natural and
appropriate in a LoglLisp implementation.

4.1. Knowledge Base—~Prototype Representation

The first apparent transformmation opportunity was to replace
MicroKnobs” inference engine and user—accessible knowledge base with
Logic calls on a compatible LogLisp knowledge base. We discarded
MicroKnobs“s inference engine and knowledge base, and loaded the
remaining system into our InterLisp version of LogLisp. We settled on
an initial knowledge base representation that disposed of non-essential
English in hypotheses, consequents, and facts, rearranging these
components so that their key attributes appeared in the predicate
position. For example, (THE HARDNESS OF ?TARGET IS ?X) became (HARDNESS
target x). For ease in interfacing existing system routines, we used
LogLisp“s AND-special fom to closely associate side-conditions with
hypotheses, even though LogLisp is capable of interpreting Lisp calls
without such association. Production rules with aultiple consequents
were distributed into separate assertions which were given names to
reflect their heritage. We were able with this knowledge base to
duplicate all inferences possible in the original MicroKnobs. The
representative portion of our prototype knowledge base follows:

- 19 -

RSO
L
4
4
]
4
4

The LogLisp Implementation of MicroKnobs
Knowledge Base-—Prototype Representation

(PROCEDURE CLOUD~COVER)
(1= F1 (CLOUD-COVER TARGET-4 5))
(PROCEDURE IS-A)

(|- F2 (IS-A TARGET-1 BRIDGE))

(I= TR1 (IS-A target EMITTER)

- <- (R (IS~A target SAaM)

= (IS-A target RADIO)

' (IS~A target RADAR)))

. (PROCEDURE DEFENSE)
’ (I~ F5 (DEFENSE TARGET-1 LIGHTLY-DEFENDED))
(PROCEDURE BEST-MUNITIONS)

(- M1 (BEST-MUNITIONS ta rget LASER-GUIDED)
<= (AND (HARDNESS target Xx)
(HARDER x HARD))
& (AND (CLOUD-COVER target y)
(LESS=-COVERED y 1))
& (AND (DEFENSE target z)
(LESS-DEFENDED z LIGHTLY-DEFENDED)))

KAy 3 ot

(PROCEDURE TEMPERATURE)

(1= TR2B (TEMPERATURE target WARM)
<-
(IS-A target TANK-BATTALION))

(PROCEDURE MOBILITY)
(|- TR2A (MOBILITY target FAST)

{~-
(IS-A target TANK-BATTALION))

- 20 =~

—

The LogLisp Implementation of MicroKnobs
Knowledge Base—Prototype Representation

We had difficulty implementing display for our prototype knowledge
base. As our understanding of MicroKnobs progressed, it became apparent
that this knowledge base representation would not be adequate. We had
been maintaining in the ruleset variable a list of the original rule
names. We displayed a ruleset by searching the entire assertion base
for assertions by name, reassembling distributed rules from information
contained in the assertion names. We used a similar strategy for FACTS.
We modified the component output routine so that it displayed our
component representation as the original had been. The resulting
knowledze base display was identical to the original, but required a
great deal more processing. The prototype knowledge base representatiom
had the advantage that inference was relatively fast. The keyword
predicates were more accessible than the embedded keywords of the
original MicroKnobs knowledge base. Since rules of a ruleset (and
subrules of a rule with multiple comsequents) were distributed over
Logic procedures, however, the prototype representation made it
impossible to maintain control over the order in which they were
examined during inference.

4.2. Knowledge Base—Meta-level Representation

Our desire to maintain control over assertion order led us to
develop a meta-level knowledge base representation and interpreter. We
now maintain the fom of our prototype representation as an intact
object-level knowledge base for display and editing. The new
representation scheme is completed with an assertion manager that acts
to ensure that the meta-level assertion base reflects the state of the
object-level knowledge base before inference is attempted. Only the
meta-level knowledge base is expressed in Logic.

The meta-level Logic representation transforms the prototype
knowledge base by embedding the name of the ruleset (or "FACTS") around
the consequent of each assertion, and embedding "TRUE" around each
hypothesis. The representative portion of the meta~level knowledge base
follows:

- 2] -

The LogLisp Implementation of MicroKnobs
Knowledge Base—Meta-~level Representation

(PROCEDURE MRULES)

(|- M1 (MRULES (BEST-MUNITIONS target LASER-GUIDED))
<- (AND (TRUE (HARDNESS target x))
(HARDER x HARD))
& (AND (TRUE (CLOUD-COVER target y))
(LESS~COVERED y 1))
& (AND (TRUE (DEFENSE target z))
(LESS-DEFENDED z LIGHTLY-DEFENDED)))

(PROCEDURE TRULES)
(|- TR1 (TRULES (IS-A target EMITTER))
<= (R (TRUE (IS-A target SAM))
(TRUE (IS—-A target RADIO))
(TRUE (IS-A target RADAR))))

(I= T™R2 (TRULES (MOBILITY target FAST))
<= (TRUE (IS-A target TANK-BATTALION)))

(|- TR2 (TRULES (TEMPERATURE target WARM))
<= (TRUE (IS-A target TANK-BATTALION)))

(PROCEDURE TRUE)

(|- TRUTH (IRUE a)

<-

(R (FACTS a)
(EVAL a)
(MRULES a)

(TRULES a)))

(PROCEDURE FACTS)

1: (1= (FACTS (CLOUD-COVER TARGET-4 5)))

2: (= (FACTS (IS-A TARGET-1 BRIDGE)))

S: (}- (FACTS (DEFENSE TARGET-1 LIGHTLY-DEFENDED)))
- 22 -

L

. P Lot . PR

: -. T

The LogLisp Implementation of MicroKnobs
Knowledge Base—Meta-level Representation

"TRUE" is the procedure name of the meta-level interpreter, which
consists of one assertion:
(TRUE a) <- (R (FACTS a)(EVAL a)(RSl a) ... (RSn a)), where the RSi
are the rulesets in RULES, in order. The interpreter clause is
generated by the assertion manager whenever necessary. The meta-level
knowledge base representation and interpreter provide control over
inference by maintaining assertion order within rulesets and by assuring
that rulesets are explored in the order in which they appear in RULES,
as in the original MicroKnobs. We also had to use an optional
depth-first search mode instead of LoglLisp”s default non-deteministic
search space traversal. A depth-first control strategy is used in the
original MicroKnobs.

The meta-level Logic system is obtained from the object-level

knowledge base by the assertion manager. The representative portiom of
the object level knowledge base follows:

- 23 -

1
]
)

J

1
o
d

The LoglLisp Implementation of MicroKnobs
Knowledge Base-—Meta-level Representation

FACTS

(L (CLOUD-COVER TARGET-4 5)

(2) (IS-A TARGET-1 BRRIDGE)

(5) (DEFENSE TARGET-1 LIGHTLY-DEFENDED)
RULES

(MRULES TRULES)
MRULES

(MRl ((BEST-MUNITIONS target LASER-GUIDED))
(AND (BARDNESS target x)
(HARDER x HARD))
(AND (CLOUD-COVER target y)
(LESS-COVERED y 1))
(AND (DEFENSE target z)
(LESS-DEFENDED z LIGHTLY-DEFENDED)))

TRULES

(TR1 ((IS-A target EMITTER))
(R (IS-A target SAM)
(IS-A target RADIO)
(IS-A target RADAR)))
(TR2 ((MOBILITY target FAST)
(TEMPERATURE target WARM))
(IS-A target TANK-BATTALION))

The assertion manager is embedded around calls to inferemce. It
reagserts changed procedures before attempting inference. It checks the
contents of two new global variables, FACTSCHANGED and CHANGEDRULESETS
to see whether the knowledge base has been changed. We modified the
editor so that any time a fact is added or deleted, FACTSCHANGED is set
to T. Any time a ruleset is edited, the ruleset name is added to
CHANGEDRULESETS if it is not already there. After erasing aand
reasgerting (in meta-level) changed procedures, the assertion manager
sets both variables back to NIL and perfoms the required inference.

The agssertion manager reasserts changed procedures Sy inserting
calls to TRUE in the proper locations in OR- and AND-special formms.
Side-conditions are identifiable as the second half of an AND-special
fom.

- 24 ~

The LoglLisp Implementation of MicroRnobs
Knowledge Base-——Restricted Meta-level Representation

4.3. Knowledge Base——Restricted Meta-level Representation

A refinement in the meta-level representation resulted from the
observation that inference restrictions as they exist in the original
MicroKnobs could be easily implemented if hypothesis tramslation code in
the assertion manager were not sSo eager to have the interpreter called
at every juncture. We rewrote this code to translate a hypothesis into
an OR-special form of only procedure calls to which its input had been
restricted. This has an effect identical to that of restriction in the
original MicroKnobs.

The representative portion of the restricted meta-level knowledge
base follows:

~ 25 -

The LogLisp Implementation of MicroKnobs
Knowledge Base—Restricted Meta-level Representation

(PROCEDURE MRULES)

(|- 1 (MRULES (BEST-MUNITIONS target LASER-GUIDED))
<~ (AND (TRULES (HARDNESS target x))
(LISP (HARDER x HARD)))
& (AND (FACTS (CLOUD-COVER target y))
(LISP (LESS-COVERED vy 1)))
& (AND (R (FACTS (DEFENSE target z))
(TRULES (DEFENSE target z)))
(LISP (LESS-DEFENDED z LIGHTLY-DEFENDED))))

(PROCEDURE TRULES)

(- TRl (TRULES (IS-A target EMITTER))
<= [R (R (FACTS (IS~A target SAM))
(TRULES (IS-A target SAM)))
(R (FACTS (IS~A target RADIO))
(TRULES (1IS—-A target RADIO)))
(R (FACTS (IS-A target RADR))
(TRULES {IS-A target RADAR])

(|- T™R2 (TRULES (MOBILITY target FAST))
<= (R (FACTS (IS-A target TANK-BATTALION))
(TRULES (IS-A target TANR-BATTALION))))
(|- T2 (TRULES (TEMPERATURE target WARM))
<= (R (FACTS (IS-A target TANK-BATTALION))
(TRULES (IS-A target TANK-BATTALION))))
(PROCEDURE TRUE)

(|- TRUTH (TRUE a)

<=

(R (FACTS a)
(EVAL a)
(MRULES a)
(TRULES a)))

(PROCEDURE FACTS)
(]- (FACTS (CLOUD~COVER TARGET-4 5)))
(l= (FACTS (IS-A TARGET~1 BRRIDGE)))

(|- (FACTS (DEFENSE TARGET~1 LIGHTLY-DEFENDED)))

- 26 -

deadoiduncdin

. -
PSP P

The LoglLisp Implementation of MicroKnobs
Knowledge Base—Restricted Meta-level Representation

After settling on a knowledge base representation, we made the
appropriate changes to the H-productions and CQ-productions. We
eliminated the SC-productions, since side=-conditions are theoretically
unnecessary, since we had replaced the FMEMB-side~conditions with
OR-special foms, and since we could not get pattern/production rules in
the SC-productions that dealt with comparators to work, even in the
original MicroKnobs. We changed the editor to operate om our
object-level knowledge representation, and eliminated from it all code
which pertained to side-conditions. We did not eliminate such code from
the display package, since comparator side~conditions are still attached
to hypotheses by some of the H-productions. We did eliminate from the
HB-productions the pattern/production rules which accepted bare
hypotheses that would not make sense without side-conditions.

We modified CHOOSE-MUNITIONS (the function used to choose
munitions, called from CM=-productions) and the inferential knowledge
base queries in Q-productions to call the assertion manager where they
originally called the MicroKnobs inference engine. We wrote code that
produces a data structure compatible with the MicroRnobs routine for
displaying explanations by extracting the appropriate infomation from
#DERIVATIONS, the Loglisp system global variable accessed by LogLisp”s
explanation facility.

In retrospect, it was unnecessary to change the component-level
representation (hypotheses, consequents, facts) from the original
pseudo-English of MicroKnobs. The meta-level representation we now use
for the knowledge base does not require key attributes to come first,
and, since tems are not indexed, it affords no greater efficiency. The
original component representation admits some flexibility in
interpreting new rules that ours does not. If a component "falls
through” its set of pattern/production rules it is azcepted by
MicroKnobs as is. OQur implementation also accepts the component as is,
except that it then has a form different from other, similar components
in the knowledge base. The new component cannot be excluded from valid
inference, however, because it will match with no part of the knowledge
base which did not also fall through its set of pattern/production rules
when interpreted, provided that the rules are complete for the foms
they accept. Qur choice of component representation therefore caused us
no loss of flexibility; it only made us work unnecessarily hard.
Moreover, we are embarrassed every time a component falls through and
gets the representation that we should have given it.

- 27 -

B v P 1

The LogLisp Implementation of MicroKnobs
Pattem-matching System

4.4. Pattern-matching System

We analyzed the software architecture of MicroKnobs to identify
other system components which might be comfortably expressed in Logic,
and decided on the pattern-matching system and the dictiomary. The Lisp
code for the MicroKnobs pattern matcher (listed in the previous section)
is very complex and probably would not have been writtean by a LogLisp
programmer. The pattern-matching interpreter employs a number of PROG
variables global to the pattern-matching process, including names for
pattern variables and association lists (PALIST and STARLIST) to hold
their values. Such devices are not required for a pattern matcher
implemented in Logic (especially with the addition of resolution
semantics for sequential Logic fomms [Schrag 84]), since unification
pattern-smatching and its intrinsic variable access mechanisms are
fundamental to logic programming. Unification fomms the foundation of a
Logic-coded MicroKnobs pattern matcher. If not for variable-length
pattern elements (! and !-variables), no additional patterm-matching
code would be necessary. The logic programming feature of backtracking
is ideal for implementing the non-deteministic search required by
patterns containing such elements. The Logic-coded pattern matcher
shown below is based on a model of transfomations [Emanuelson 82] of
pattemm and input.

- 28 -

AMEE] RO N W

The LogLisp Implementation of MicroKnobs

Patterm-matching System

(PROCEDURE Trans)

(l- Basis (Trans (Pat)

(Inp)))
(- t={} (Trans (Pat ! . ptail)
(Inp . itail))
<= (Trans (Pat . ptail)
(Inp . itail)))
(l= t=# (Trans (Pat ! . ptail)
(Inp # . itail))
<= (Traus (Pat ! . ptail)
(Inp . 1itail)))
(l= !'<-nil (Trans (Pat (! NIL) . ptail)

(Inp . itail))
<= (Trans (Pat . ptail)
(Inp . itail)))
(I= '<-propid (Trans (Pat (! (unit . seg))
(Inp unit . itail))
<= (Trans (Pat (! seg) . ptail)
(Inp . itail)))

. ptail)

(l= 7<-propid (Trans (Pat (? unit) . ptail)
(Inp unit . itail))
<= (Trans (Pat . ptail)
(Inp . {tail)))
(l= ?<*propid (Trans (Pat (? unit constraint) .
(Inp unit . itail))
<= constraint
(Trans (Pat .

(Inp .

ptail)
itail)))
(|- Propid=propid (Trans (Pat propid . ptail)
(Inp propid . itail))
<= (Trans (Pat . ptail)
(Inp . 1itail)))

- 29 -

{(comments)}

{basis case
for recursion}

{match ! to null}

{matech ! to any
element}

{termminate the
list bound to
a !=variable}

{cons unit into
the list bound
to a !=-variable}

{dind unit to
a ?=variable!}

ptail)

{bind unit to a
7=-variable if {t
satisfies

congtraint}

{match two
instances of the
same proper
identifier}

=1

1=,

e A . ” —p——— ——

The LogLisp Implementation of MicroKnobs
Pattern-matching Systea

Pat and Inp are preface keywords that prevent fortuitous reduction
of pattern and input expressions when they begin with atoms possessing
Lisp function definitions. !=- and ?-variables are represented in list
fom (e.g. (! var-name)) to facilitate processing. Constraints for
?-variables are also handled well with this representation.

A pattern/production rule (of Logic Q-production procedure QPRD)
corresponding to the one listed in Section 3 and compatible with the
Logic pattern matcher procedure Trans is listed below.

(I= (QPRD input)
{- (Trans [Pat {? interog (R (EQ interog
(QUOTE WHAT))
(EQ interog
(QUOTE WHICH]
1
[? attridb (R (EQ attrib (QUOTE CHOQSE))
(EQ attrib (QUOTE
MENTION]
[
[? specattrib
(R (MEMB specattrib (EVAL
DEGREEWORDS))
(MEMB specattrib (EVAL
MUNITTYPES))
(MEMB specattrib (EVAL
TARGETTYPES]
f
(? info (R (EQ info (QUOTE HYPOTHESES)
)

(EQ info (QUOTE CONCLUSION]
input)
[SEQUENCE [= part (COND ((EQ info (QUOTE
HYPOTHESES))
(QUOTE BYPS))

(T (QUOTE CONCLS]

(COND ((MEMB specattrid (EVAL MUNITTYPES)
)

(GETRULES (QUOTE MRULES)

part specattrid))
(T (GETRULES RULES part specattrid])

- 30 -

=1

e

.... PRI

The LogLisp lmplementation of MicroKnobs
Pattern-matching System

The ma jor difference between this Logic rule and its Lisp
counterpart is that the Logic code is executable, embodying active
control, whereas the Lisp code represents a more passive data structure.
SEQUENCE is a sequential Logic fom with resolution semantics described
in [Schrag 84;. It succeeds if and only if all of its Logic subicms
succeed and all of its Lisp subforms are evaluable.

The interpreter for this pattern-matching system is the simple
function shown below.

(INTERPRET
[NLAMBDA (INPUT RULEZET)
(SETOF 1 T (LIST (LIST RULEZET (CONS (QUOTE Iunp)
INPUT])

This function merely packages a Logic call to invoke the
pattem-matching system. The keyword Inp again prefaces input so that
it is not fortuitously reduced.

4.5. Dictionary

Qur Logic implementation of the MicroKnobs dictionary of course
uses assertions rather than property lists for the storage aand
association of preferred tems with synonyms. The assertious for the

preferred tem AIRBASE and the compatible version of GETROOTWORD are
shown below.

(PROCEDURE S YNONYM)

(I = (SYNONYM AIRBASE AIRFIELD))
(!= (SYNONYM AIRBASE AIRPORT))
(= (SYNONYM AIRBASE TUOC))

(l= (SYNONYM AIRBASE (AIR BASE)))

(|- (SYNONYM AIRBASE (AIR FIELD)))

- 3] -

[®r

rT, 'P‘ Tt T

e

R R

ORI
A
R
A

The LogLisp Implementation of MicroKnobs
Dictionary

{ GETROOTWORD
[LAMBDA (WORD)
(SETOF 1 (QUOTE x)
(LIST (LIST (QUOTE SYNONYM)
(QUOTE x)
WORD])

There is one assertion for each synonym of a preferred term.
GETROOTWORD invokes Logic search over the dictionary”s SYNONYM
procedure.

VPRSI

Py

S

- 32 -

5. The Baseline lnmvestigation

S One must take care when comparing a program designed in one

I language to its reimplementation in another. There are bound to have
been design decisions based on advantages and constraiants of the
original language wnich the target language does not share. Nonetheless
we must compare our Loglisp implementation with the original MicroKnobs
oo in tems of programming ease, program clarity, and progran efficiency.
We shall temper our comparison with an awareness of language
differences.

5.1. Programming Ease

The most difficult facet of implementing MicroKnobs in LogLisp was
for us to understand the original code: how it behaved, how it worked,
and which of its workings we needed to preserve its behavior.
MicroKnobs includes about 100 Lisp functions and several large
variables. We acquired a working knowledge of most of these, and left
nuch of the code intact.

Our task was made easier by the quality of the original code. The
division of labor among functions seems natural. Functions and
variables for a particular architectural component are grouped together
on one Interlisp file, except where there is overlap. The names of
functions and variables are mnemonic, making the code easy to follow
once we understood the mnemonic dialect. One thing that made the
transition particularly smooth is the judicious use (to which we did not
always adhere) of "macros” (the interpreted versions were actually used)
for accessing data structures. When we changed the structure of the
knowledge base, we simply redefined the macros. While this did not
solve all of our problems, it was certainly much easier than it would
have been translating primitives, if there had been no macros.

The ma jor facility encountered in programming in LogLisp rather
than plain Interlisp is that we did not have to write an inference
engine; LogLisp supplied one. On the other hand, our desire to preserve
the behavior of MicroKnobs and subsequent object-level /neta~level
knowledge base representation led to the need for an assertion manager.
We do not fully comprehend the partitioning of the knowledge base into
rulesets (and FACTS) that exists in MicroKnobs. We would have far
preferred a predicate-based partitioning, and would have used one had it
not made a faithful reimplementation impossible. The discovery of an
operable meta-level strategy was essential to our effort, but resulted
in losses of efficiency and clarity over coaveantional methods. We do
not think the burden of writing an assertion manager is an indictment of
LogLisp”s suitability for the development of knowledge-based systems,

- 33 - 9

The Baseline Investigation
Programming Ease

though, only for their reimplementation.

Similarly, a significant portion of the necessary pattern-matching
capability was provided by Logic. 1In particular, pattern-matching
variables and their bindings are handled transparently by Logic. Design
of the Logic-coded pattern matcher was straightforward, since the
input /output relationships specified by its component clauses correspond
naturally to the required transfomations.

Design of the dictiomary function is not very complex in either
implementation.

In the end, we took a handful of functions out of MicroKmobs, and
put a handful back in.

5.2. Program Clarity

We feel that the LogLisp version has enhanced program clarity.
While much code is shared by both versions, our object-level
representation of the knowledge base is easier to read. Lisp calls
appear more natural with predicate status than as attached
side-conditions to hypotheses. Our rule format, which follows the
syntax of a Loglisp assertion with a list of comsequents in the nommal
position of the single comsequent, also seems natural. The meta-level
knowledge base and associated knowledge base manager are perhaps less
transparent.

We feel that the Logic-coded pattern-matching system is more
concise and perspicuous than its Lisp-coded counterpart. This is
certainly evidenced by the easy job we had programming it. It may be
easier to read template portions in the original pattern/production rule
representation (where they are uniaterrupted), but the overall rule
structure seems more homogeneous (and more easily apprehended) in our
representation.

Again, in both implementations the dictionary system is so simple
that clarity is not really an issue.

5.3. Program Efficiency

The changes we made to the original version that significantly
affected efficiency involved code for inference (including assertion
management and explanation), pattern-matching interpretation, and
dictionary processing. The measurements discussed here were made using
a compiled instance of Loglisp V2M3. MicroKnobs modules or functionms
were always left in intrepreted InterLisp, except where, in the

-3 -

PR

¥

R T

1

— T— o g g P — — — g — T ——— TN T T T T w [e - s -

The Baseline Investigation
Program Efficiency

conventional Lisp implementation, they perfomed duties corresponding to
those for which the efficiency of the Loglisp implementation was tc be
compared. Thus, fair aeasurements were made of MicroKnobs original
inference, matching, and dictionary processing. While dynamic storage
(consing) costs are not reported here, their differences were generally
proportional with the reported execution time cost differences.

Table 1 shows measurements in CPU seconds of inference execution
time for a battery of questions in various implementations of
MicroKnobs. The conventional Lisp implementation was measured both with
and without restrictions on knowledge base search. LogLisp
implementations with our ultimate restricted meta-level knowledge
representation, unrestricted meta-level representation, and prototype
representation were also measured. Because restriction in MicroKnobs is
predicate-based, our prototype knowledge base is also inherently
“"restricted.”

(Orig) Restr UrRestr

Unrestr Restr Meta Meta Proto

Question Lisp Lisp Logie Logic Logic
CHOOSE FOR TARGET 1. .166 .125 .399 .576 .270
CHOOSE FOR TARGET 2. .335 .257 .670 1.206 .322
CHOOSE FOR TARGET 3. 459 .367 .871 1.571 .373
CHOOSE FOR TARGET 4. 671 .528 1.388 2.643 .569
WHAT IS TARGET 37 .009 .009 .066 .073 .061
IS TARGET 3 AN SA-~4? .008 .010 057 .071 .027
IS TARGET 3 A SAM? .041 .044 .240 .292 .088
IS TARGET 3 AN EMITTER? .078 .087 .315 414 .128
HOW HARD IS TARGET 1? .034 .029 .178 211 .062
HOW HARD IS TARGET 2? .109 .084 <243 .369 071
HOW HARD IS TARGET 3?7 .108 .095 244 .352 .066
d0W HARD IS TARGET 4? .079 .072 217 .303 .074
Total: 2.097 1.707 4.888 8.131 2.111

Table 1

Table 1 contains two items of infomation especially useful for
baseline comparison. At a gross level, when data from the original
implementation is used as baseline, our meta=-level implementation is
about five times slower; restricted meta-~level, about three times
slower; and prototype, about the same. It can also be seen at a gross
level that restriction confers a greater degree of efficiency
enhaacement In the original InterLisp izplementation. The relative

- 35 -

The Baseline Investigation
Program Efficiency

impacts of the differing designs of components used in inference in the
conventional InterLisp and LoglLisp implementations can be assessed from
Table 2, which shows measurements of execution times for question 2,
“CHOQSE MUNITIONS FOR TARGET 4," for which there is no answer and
exhaustive search is perfomed.

(Orig) Restr UmRestr :

Unrestr Restr Meta Meta Proto
Function Lisp Lisp Logic Logic Logic
search .268 .190 .250 .423 .119
reduction 074 .079 416 .899 .176
unification «295 211 444 .740 .125
enviroonment management .034 .037 .139 .264 .097
index identification - - 111 .264 .040

Table 2

The conponents have been identified so as to correspond as closely
as possible within the given designs. Search is defined to include
search space traversal and management, knowledge base access, and
explanation maintenance. Reduction is the instantiation and evaluation
of Lisp constraints. Unification is elementary pattern matching.
Environment management pertains to the bindings of inference variables,
and index identification to extraction of constants from goal statements
to enable indexed retrieval of assertions. (The last component is
present only in the LogLisp implementations.)

Restriction confers an efficiency enhancement for both search and
unification of approximately 30% in the original InterLisp
implementation, and of approximately 40% in the LogLisp meta-level
implementations. The additional enhancement in Loglisp corresponds to -
elimination of the TRUTH procedure and its processing. Environment -fw
management cost is essentially conmstant in the conventional Interlisp i
implementations, but grows with search space size in LogLisp. This is -
to be expected, as Loglisp provides binding capability for every 31
processed goal statement, whereas the original design merely keeps a
list of explicitly encountered variables and bindings. Time required

for reduction is essentially constant in the conventional InterLisp

implementations. In Loglisp it grows with search space and knowledge]
representation size, at roughly the same rate as that for index

identification. This is to be expected, as LogLisp attempts to reduce

every s-expression it encounters in a goal statement, whereas the) "
original knowledge representation isolates Lisp constraints in a —

predeternined location.

- 36 -

The Baseline Investigation
Program Efficiency

Assertion management confers a modicum of overhead not present in
the original MicroRnobs. Because of the limited size of the knowledge
base this is not excessive, amounting in the worst case (all procedures
erased and reasserted) to about .4 CPU seconds. With a more realistic
(larger) knowledge base, this overhead would become intoleradble, and a
different approach to assertion management would be necessary. LogLisp
V2M3 includes a solution to this problem inm its capability for
modification of single assertions by name—rather than only of entire
procedures—but was not available when the assertion manager was
designed.

The generation of a compatible data structure for the display of
explanation is not expensive either, taking up to 1.5 seconds for tested
queries.

Table 3 shows measurements in CPU seconds of pattern-matching
iaterpretation execution time for selected input forms using either the
MM=production or Q-production pattern/production ruleset, exclusively.

Pattern
Question Ruleset Lisp Logic
CHOOSE MUNITIONS FOR TARGEI-1 CM=-prod~”s 479 1.256
WHAT IS TARGET-3 Q-prod”s .332 3.600
WHAT IS THE HARDNESS OF TARGET-1 Q=-prod”s 447 6.211
THIS OLD FOOL HAS NO HOME CM-prod”’s 121 3.914
THIS OLD FOOL HAS NO HOME Q=prod”s 216 1.903

Table 3

These execution times are averaged over two or three trials, and
include the cost of inference and other "action” times in addition to
that of pattern matching. The nonsense query, "THIS OLD FOOL HAS NO
HOME," has no matching template among either ruleset, and should be more
indicative of the proportionate cost of pattern-matching processing than
the other input foms. The figures show a great degree of variability,
however, preventing the drawing of very specific conclusions about their
meanings. The Lisp-coded pattern matcher certainly specializes more in
its invocation of recursive calls than the Logic-coded pattern matcher,
and uses low-level details inaccessible to logic programmers such as the
binding condition of a pattern variable (whether instantiated).

- 37 -

¢ A A e o e

—— —— P—— N T —— —— T —T Y
. LT AL e L . . N U -t e .

The Baseline Investigation
Program Efficiency

Because of LogLisp”s full secondary indexing for ground assertions,
access of preferred words for synonyms in dicticaary processing occurs
in essentfially constant time in the Logic version, averaging about .37
seconds over all xnown pairs. 1In the original InterLisp version, where
simple sequential search is perfomed over the list of preferred words,
access time increases linearly with the depth of the target word in the
list, averaging (for this relatively small dictiomary) about .0003
seconds. LogLisp might become competitive with a dictiomary two orders
of magnitude larger, if the storage required for this cross-referencing
were not prohibitive.

In general, these are fairly predictable flexibility/efficiency
trade-offs. User-specifiable index fields for rule assertions available
in LogLisp Version 3 [Robinson et al. 84] should ameliorate the
overhead problems of the data structures used in the Logic-coded
pattern-matcher and meta-level knowledge representations.

5.4. Results

The results indicate that LogLisp is a viable environment for the
implementation and development of knowledge-based systems, especially if
it can be used naturally. Even when it is used in a forced manner as we
have, the advantages it affords in ease of programming, clarity, and
flexibility outweigh the disadvantage in efficiency. We have found
LogLisp to be effective in the implementation of a small, simple
knowledge-based system. It is now appropriate to consider the
implementation of a non-trivial AI program in LogLisp to demonstrate its
effectiveness in a practical application.

- 38 -

.........

6. References

{Emanuelson 82] P. Emanuelson. “From Abstract Model to Efficient
Campilation of Patterms,” Linkoping University research report
LITH-MAT-R~-82-03.

[Engelman 79] C. Engelman. MicroKnobs Documentation, MITRE
Corporation.

[Engelman 81] C. Engelman. "KNOBS, An Interactive Knowledge Based
Tactical Air Mission Planning Demonstration System: A Snapshot as of
September 1981," MITRE Corporation.

[Rowalski 79] R. Rowalski. Logic for Problem Solviég, Elsevier
North-Holland.

{Robinson 81} J. A. Robinson. "VHL System Breadboard: Annual
Progress Report,” Syracuse University.

[Robinson and Sibert 81] J.A. Robinson and E.E. Sibert. The Loglisp
User”s Manual, unpublished interim technical report.

{Robinson et al. 84] J.A. Robinsom, E.E. Sibert, and K.J. Greene.
The Loglisp Programming System, RADC technical report F30602-81-C-0024

[Schrag 83) R.C. Schrag. "Notes on the Conversion of LogLisp from
Rutgers /UCI-Lisp to InterLisp,” RADC technical memorandum RADC-TM-83-1.

[Schrag 84]) R.C. Schrag. "LogLisp Sequential Foms with Resolution
Semantics,” RADC technical memorandum RADC-TM=-84-13, Jun 84

[Teitelman 78] W. Teitelman. INTERLISP Reference Manual, Bolt,
Beranek, and Newman and Xerox Corporation.

[Winston 77] P.R. Winston. Artificial Intelligence, Addison-Wesley.

(Winston and Homn 80] P. H. Winstom and B.K.P. Homm. Lisp,
Addigon-Wesley.

- 39 -

N

S
- e

A

%

W LG5 55 KKK 20 S AL D SF S D0 RF WS FAF IS 15)

MISSION
of
Rome Atr Development Center

RANC plans and executes research, development, tesi and
selected acqulsition programs <in support of Command, Control
Communications and Intefligence (C°1) activities. Technical
and engineening suppont within areas 0§ technical competlence
L8 provided 2o ESD Proagram O44ices (POs) and other S0
elements. The principal technical mission areas ane
communications, electromagneiic gudidance and contnol, sur-
veillance 04 anound and aerospace obfects, Lintelliaence daitz
collection and handling, <infonmation sudiem technology,
L{onospheric propagation, solid siate sciences, microwave
phusics and electronic reliability, maintainability and
compatibility.

U 558 520 52O VA VO S ST WA ST YA S

