
6-0143 M2 INTELLIGENT ADVISORS FOR COOSS-COUNTEY ROUTE PLARINU i
(U) SNART SYSTEMS TECHNOLOGY INC MCLEAu O NMY 64
ETL-0365 DARK0-3-P-3175

UINCLASSIFIED F/O 5/ 7 ?

mohhhhhhhhhil

1.0~

li!1.51 11 . 1111.

NATIONA BUEUW SANAD-16-

ETL-0365

c'J

INTELLIGENT ADVISORS FOR

CROSS-COUNTRY ROUTE PLANNINGIo
FINAL REPORT

May 1984

Approved for public release; distribution is unlimited.

Prepared for:

U.S. Army Engineer Topographic Laboratory

Fort Belvoir, Virginia

Under MERADCOM Contraqt

LJ DAAK70-83-P-3175 -

SMART SYSTEMS TECHNOLOGY

84 07 31 049

IIN('T A-'-1]E1T
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (" a.e n D a t E n t e r e d) R E ADI N S T R U C T I O N S

REPORT DOCUMENTATION PAGE BFREAD IMSTRECTIONS

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ETL-0365 IW ''+H 1~
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVEREO

INTELLIGENT ADVISORS FOR Final Technical Report
CROSS-COUNTRY ROUTE PLANNING S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(*)

- -
DAAK70-83-P-3175

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Smart Systems Technology, Inc. AREA A WORK UNIT NUMBERS

Suite 300, 6870 Elm Street
McLean, Virginia 22101

It. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

U.S. Army Engineer Topographic Laboratories May 1984
Fort Belvoir, Virginia 22060 I3. NUMBER OF PAGES

55
14. MONITORING AGENCY NAME & ADDRESS(It different from Controlllng Office) IS. SECURITY CLASS. (of this report)

Unclassified
ISa. OECLASSIFICATION/DOWNGRADING

SCHEDULE

I. DISTRIBUTION STATEMENT (o tile Report)

a, Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (o/ the abettac entered In Block 20, It dilletent from Report)

IIII19. SUPPL.EMENTARY NOTES

19. KEY WORDS (Continue on revere, aide if neceeary ind Identify by block number)

Artificial intelligence
Computer science
Expert systems
Military planning

L. ANITRACT flConfws , re if nmeim y and Idettly by block number)

Several methods tur computing good cross-country routes between map positions from information
contained in map databases and other intelligence sources are evaluated. The problem of deter-
mining cross-country mobility from features gathered from map databases is addressed, with the
goal of finding the optimal path between two positions on a map.

DO IFJAN" 1473 EOTIOM Of I NOV6 5 IS OSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whe Det Entered)

* S

INTELLIGENT ADVISORS FOR

CROSS-COUNTRY ROUTE PLANNING

*

FINAL REPORT

Prepared for:
I SI

U.S. Army Engineer Topographic Laboratory

Fort Belvoir, Virginia

Under MERADCOM Contract

* I DAAK70-83-P-3175 S

Prepared by:

Smart Systems Technology, Inc.

Suite 300

6870 Elm Street

McLean, Virginia 22101

May 1984
DTIC

A SP

Preface

This is the final report on the non-training portion of

MERADCOM Contract Number DAAK70-83-P-3175, entitled "Advanced

* !Training in Logic Programming Systems, Instructional Materials,

and a Computer-Based Intelligent Advisor."

Smart Systems Technology greatly appreciates the interest

and support of Dr. Robert Leighty, Ms. Connie Wickham, and Mr.

John Benton, at the Artificial Intelligence Center, U.S. Army

Engineer Topographic Laboratory (USAETL), Fort Belvoir. Dr. Olin

Mintzer, at USAETL, was very helpful during discussions about the

* Intelligence Preparation of the Battlefield (IPB) process.

This report concludes that there are viable methods to

compute cross-country mobility and that the US Army would benefit
a Lgreatly from an intelligent advisor program that assists

intelligence officers during the IPB process.

I'I

II Table of Contents

1.0 Introduction I

I - 2.0 Approaches to Planning Optimal Routes 3

2.1 Multiple Constraints 6

2.2 Heuristic Route Planning 8

2.3 Hierarchical Route Planning 9

3.0 Predicate Calculus Approaches to Route Planning 10

4.0 Graphic Overlay Approaches to Route Planning 12

5.0 Relation to Intelligence Preparation of the Battlefield 14

6.0 Conclusion ... 17

7.0 References .. 19

8.0 Appendix A: Experimental Dynamic Programming Code.......... 21

9.0 Appendix B: Experimental Predicate Calculus Model.......... 43

p.1

I. S

S

List of Figures

Figure 2-1: Rings of total path cost from A to B 4

Figure 2-2: Ring warping in non-uniform terrain 5

Figure 2-3: Rings of total path cost from A and B 6

S

A S

l.G Introduction

The general problem is how to assist Army personnel, within

the current military intelligence framework, to evaluate enemy

objectives and plan effectively against them. An important aspect

of that problem is the accurate determination of cross-country

mobility for enemy and friendly vehicles from terrain and weather

information. This mobility information is integral to the battle

planning process that determines the potential moves and counter-

moves of military units. In the present report, several methods

for computing good cross-country routes between map positions

from information contained in map databases and other

intelligence sources will be evaluated. Different mission

objectives constrain and even define the criteria for a good

route, and alternative ways of integrating these route finding

methods with the Army's Intelligence Preparation of the

Battlefield (IPB) process will be discussed. The Appendices

contain experimental code used during the project.

We have addressed the problem of determining cross-country

mobility from features gathered from map databases. Our goal is

to find the optimal path, with respect to some criteria,

between two positions on a map. The route must be trafficable

for the vehicles under consideration. The route should also

satisfy certain desired criteria, for example:

1: take the least amount of time to negotiate, 0

2: use the least amount of resources,

3: be safe from attack from known enemy positions,

4: be safe from attack from unknown but suspected enemy

positions, 0

5: be accessible to cover for safety from attack,

6: be immune from expected weather effects,

7: be out of sight of enemy positions,

8: be free of choke points and obvious targets, such as bridges

or tunnels.

1|

The best route may depend on the type of unit, or mix of

5 units, traveling the route. See (1] and [2]. Any convoy of units

may have significantly different characteristics than the

individual units it is composed of. For example, non-machinized

units may slow a convoy down; infantry that may be considered

undefended on their own, may be considered safe in the

company of tanks that can return v-Lmy fire.

There is an interesting assortme.,t of Defense Mapping Agency

(DMA) map database products that can be used to generate map

features. Some of these features (e.g. change in elevation, and

vegetation) can be used to determine the trafficability of

regions of the map. Other features can be used to construct

0 constraint measures, such as using elevation in conjunction with

known enemy locations to determine observability.

When searching for a route, one can seldom find exactly

j what is desired. It is an interesting problem to choose which

criteria or constraint is to be relaxed when there is no perfect

path. Another interesting problem, one that is very important

from a human engineering standpoint, is how significantly

I Udifferent solution routes can be generated, and compared for

tactical merit. It is necessary for a system to be able to

explain how a route was selected, plus its benefits and

weaknesses, so that the user may have confidence in the solutions

offered by the system.

2

2.0 Approaches to Planning Optimal Routes
iI

Depending on the assumptions about the terrain, there are

linear and non-linear programming (dynamic programming)

algorithms that mathematically guarantee [3] an optimal solution

* Ito finding the minimum cost path between two points. The terrain

model is usually represented as a two-dimensional rectangular or

hexagonal grid of sampled features. Each element, or point, of

the grid contains the local terrain features that can be used to

compute the "cost" of traversing that element of the grid. Note

that the accuracy of the solution depends on the coarseness of

the grid. Finer grids require more computations to arrive at

their more accurate solutions. In practice, the fineness of the

grid is limited by the resolution of the features in the

underlying terrain databases.

To find the optimal route from grid element A to grid
I element B, one need only find those sequences (there could be

more than one, though that seldom occurs) of connected grid

elements beginning with A and ending with B that have the minimum

value of total cost. The total cost is the sum of the traversal
I I_ costs of the elements on the path. There can be many possible

paths between A and B. Usually, the route finding algorithms are

constructed so that only cycle-free routes can be generated,

because if each grid element has a positive, non-zero cost, then

a route with a cycle must cost more than the same route with the

cycle removed, even though it goes between the same endpoints.

The simplest way to find the lowest cost path is to

allow "rings" of equal total path cost spread out from point A

until point B is reached. The basic algorithm is composed of the

following steps (see Nilson [4]):

3

1) Assign point A a total cost value of zero.

2) Make point A be the only point on the "open" list.

3) Mark the "closed" list empty.

4) If the "open" list is empty, then terminate with failure.

5) Select those points from the "open" list that have the

lowest total cost and place them on the "closed" list.

6) Collect all the points that are neighbors of the selected

points, but do not appear on either the "open" or "closed"

lists. This step is often called node (point) expansion.

7) If B is one of the collected points, then terminate with

success.

8) Compute the total cost of each collected point by adding the

point's traversal cost to the current lowest total cost

value determined in step 5).

9) Place all the collected point on the "open" list and go back

to step 4).

For example, if we are in uniform terrain where each grid element

has unit traversal cost, then Figure 2-1 shows the total costs -

that would be computed. Note that path costs are based on 4-

rather than 8-connectivity. In the example, the minimum cost path

from A to B is the straight line between them. It can be found by

choosing the lowest total cost point next to B, then selecting

the lowest total cost point next to it, etc., until point A can

be chosen.

5 0

545
54345
5432345

543212345
54321A12345B
543212345 5
5432345
54345
545
5

Figure 2-1: Rings of total path cost from A to B S

4 0 6

0

More interesting terrain tends to distort the nice geometric

patterns found in Figure 2-1 into patterns such as shown in

Figure 2-2. In the right part of Figure 2-2, "+" characters

indicate the points whose traversal cost are twice as high as the

points denoted by " " characters, and "." characters denote

points that cannot be traversed. In the left part of Figure 2-2,

unprocessed points are denoted by " "s and processed points are

indicated by numeric "total cost" values, except for infinite

values, which are denoted by "*"s.

989 +++++++++.....
98767*

9876545*
987654323*

987654321AI* 9B A .. ' B
9876543212***89 ..
987654323456789 0
9876543456789
98765456789
987656789
9876789
98789
989 0
9

Figure 2-2: Ring warping in non-uniform terrain

Note that the trafficability of real terrain is much more

interesting than the simple example shown in Figure 2-2.

While the path finding algorithm presented above is easy to

understand, most programs use a modified version that allows the
"rings" of total cost to spread from both points A and B. It is

necessary to keep two separate "open" and two separate "closed"

lists for the two endpoints and to alternately expand points

belonging to the two endpoints. The lowest cost path is found 0

when a point collected from one endpoint is already on the other

endpoint's "open" list. The modified algorithm processes

approximately half as many points, but it still finds the same

solution. Figure 2-3 shows the total costs that would be computed 0

5 0

by the modified algorithm, given the identical configuration used

in Figure 2-1. Visual comparison of Figures 2-1 and 2-3 confirm

the approximate factor of 2 reduction in processed points. Note 0

that two paths must be unwound (one back to A and the other back

to B) and the one back to B must be reversed to produce the

solution path from A to B.
I 0

3
323 2

32123 212
321A12321B12
32123 212
323 2
3

Figure 2-3: Rings of total path cost from A and B

One problem with the algorithms, as they have been

described, is that the cost of traversing a grid element really

depends on the direction of motion. For example, if you are on a

I hillside, then the costs of moving up, down, or across the slope

are very different. It may not even be possible to move across a

slope that can be climbed. Real algorithms must handle these

contingencies.

2.1 Multiple constraints

So far, we have considered optimizing the path with respect S

to a single parameter, a traversal cost or trafficability measure

for a particular type of vehicle. How can we compute optimized

paths for many parameters? One must assume that the constraints,

such as travel time, resource utilization, vehicle types in

convoy, concealment from enemy observation, cover from enemy

fire, access to cover from enemy fire, minimum channel widths,

and weather effects (e.g. precipitation), can be represented by

functions in a given range.

One approach would be to optimize with respect to a linear

6

combination of the different constraints. First off, it allows

the user, by choosing weights, to order the different constraints

in importance. Secondly, the user can manipulate the constraint

weighting factors to discover the "boundaries" (robustness) of

his solution. This enables the user to determine those

constraints that the selected route is very sensitive to. Lastly,

it does allow the system to degrade reasonably in situations

where no perfect path exists. For example, if concealment was an

important factor, but no totally concealed path exists, then the

algorithm will quite naturally minimize the visible parts of the

path.

The problem with this approach is that when there are many

constraints, it is hard to predict which constraints will be

sacrificed for the overall good of the path. Also, it is unlikely

that the same mix of constraint factors are appropriate for the

entire cross-country maneuver. For example, concealment may be

unimportant when far from the enemy, but crucial when near, or

vice versa. Lastly, it is difficult to explain how the path was

arrived at, except to say that the constraint factors were such

and so, which is not very revealing. On the other hand, once the

system comes up with a path, it is relatively easy to display

those parts that are fast, or concealed, or not concealed, or

expensive in resources, etc.

Another problem with the approach is that it is not designed

to find significant alternative cross-country routes. The best 0

route can be found. But running the system longer to find poorer

solutions, or studying the route that was found, does not lead to

significant alternative routes. Instead, many routes, nearly

identical to the best route are returned. It's not that •

alternative routes are not eventually found. But many similar

routes are found first and a great deal of computation can occur

before the next interesting solution is reached. The problem is

intrinsic with the method. Since the basic building block of 0

routes are "steps," rather than "blocks" or "corridors,"

L..

alternative solutions are distinguished by small rather than

large changes. Worse yet, there seems to be no reasonable metric

h that determines when a path is different enough to be significant

or interesting.

It should be noted that more sophisticated constraint

analysis than that allowed by a linear weighting scheme is

certainly needed. If you truly want a path that is both concealed

and offers cover, then you cannot use a linear weighting scheme

because it could allow one or both of those constraints to be

violated in areas where the other factors have very low cost.

Also, linear weighting has difficulty handling situations where

any of the constraint functions have unusually high values. Some

of the constraint functions are binary valued, while others are

* really cost functions. These different types of functions must be

manipulated differently if routes acceptable to people are to

result.

2.2 Heuristic Route Planning

The main purpose in introducing heuristics into the route

finding process is to control the computational cost of the

algorithms while still producing acceptable solutions. By far the

simplest method (see Nilsson [4]) is to select nodes from the

"open" list with the least "modified" total cost. A point's

modified total cost is its total cost plus a heuristic component.

Traditionally, the heuristic component is an estimate of the cost

of getting from the current point to the goal point. If costs are

always greater than 0 and the heuristic component never

overestimates the actual costs of traversing paths, then we have

an instance of an A* [4] algorithm and are guaranteed to find the

optimal solution. It is more difficult to define such a heuristic

function when the desired solution path is obtained by applying

more than one constraint.

8

0

If fast computation time is more important than finding the

best solution, as opposed to finding an adequate solution, then

the influence of the heuristic component can be increased, and

the algorithm will produce total cost "rings" that exhibit more

directivity toward the other endpoint (the goal). This is

particularly true when the heuristic function is just the

M distance from a point to the endpoint. See Appendix A for an

example dynamic programming algorithm programmed in Lisp.

2.3 Hierarchical Route Planning

There are several reasons for considering hierarchical

approaches to route planning. First of all, if it is possible to

define reasonable corridors ahead of time, then it will be S

possible to precompute many of constraints along those corridors.

This means that we can search for an optimal solution with much

less computation because the search space is so much smaller. A
I cross-country route is composed of at most several dozen 0

corridors, instead of hundreds or thousands of little steps.

Since the corridors have s e significance, it is possible to

compute and compare significant alternative routes. It is easy to

display the alternatives and allow the commander to make a

choice. Ancillary information can be associated with the

corridors to explain the benefits, dangers, and unique features

of individual corridors. The relevant information from any

corridor that is part of a cross-country route can be displayed. 5

This goes a long way toward providing a reasonable explanation

for the choice of a particular route. Best of all, as we shall

find out in Chapter 5, Army intelligence already uses the notion

of mobility corridors in battle planning. In some parts of the

world, the corridors are already known.

9 S

3.0 Predicate Calculus Approaches to Route Planning

The main attractions of the predicate calculus based

approach are, 1) the ability to explain generated paths, 2) the

ability to find significant alternative paths, and 3) the ability

to integrate the general route planning process with autonomous S

vehicle control systems. So far, predicate calculus based route

planning systems seem to exist in the pure research environment

of universities. A simple experimental route planning system

appears as Appendix B. 0

By their nature, predicate calculus models tend to lend

themselves to hierarchical implementations. The advantages of a

hierarchical approach were discussed in Section 2.3. In 0

particular, the ability to generate interesting alternative

routes and structured explanation are possible. Since the

predicates in a predicate calculus system are defined (designed)

to construct acceptable routes, the proof that a route is 0

acceptable actually describes the structure of the solution and

the constraints imposed during the solution.

Sacerdoti [5] has written much about the structure of •

planning algorithms. SPAM [6,7] is an example of a predicate

calculus-based route planning system based on DUCK [8]. Route

planning involving robots are described in [9] and (10].

In SPAM, for example, the basic idea is that it takes both

topological and metric information to effectively plan and

execute (follow) routes across terrain. A natural implementation

of a "cognitive map" could comprize an assertional database to

represent topological information, and a "fuzzy map" to represent

the metric information. The word fuzzy is supposed to convey the

notion that much of the metric information is imprecise (e.g. to

the right). The system expects to execute the route, after

planning it, so that it can use its sensors to update and reduce

100

the fuzziness of the metric information. The general route

pla ining strategy is to determine the overall direction and

* topology of the route and then fill in the details by deciding

how to avoid the barriers. If something unexpectedly appears (or

fails to appear), when the system is executing a plan, then the

system will construct and execute a new plan for the rest of the

- trip, after updating the database with the current situation.

The map is represented as a group of regions in a kind of

fuzzy generalized cylinder i111 notation. The coarsest

representation of the region is usually quite inaccurate, but is

easy to work with and can give accurate enough answers in many

cases. More detailed descriptions of the region are called

refinements, are also generalized cylinders, and may also have

further refinements. This representation scheme is sufficient to

describe entrances, corridors, barriers, and enclosures; the

basic vocabulary necessary to represent interesting route

planning problems.

The strategy of the system, when trying to get from point A

to point B, is to try and find any corridors that will help it

along the way. It then plans how to get from point A to the

* nearest corridor by going through an entrance. The system prefers 0

to stay in corridors for as long as practical before finding an

exit and planning the trip to the next corridor. It must also

plan the trip from an exit of the last corridor to point B.

A corridor is a region where no obstacle completely blocks the 0

path for objects smaller then "x." So the search for relevant

corridors depend both on position, orientation, and the size of

the object that is navigating the route. If the system determines

that its goal is enclosed by some other region, then it plans how

to find an entrance into the inner region. The system is free to

consider a number of different entrances, usually choosing the

shortest route. Hopefully, this conveys the flavor of the

predicate calculus approach to route planning. 0

11 0

* 4.0 Graphic Overlay Approaches to Route Planning

Another approach to planning the best cross-country route

involves making the various constraints manifest to a human

operator. The basic assumption is that the operator's natural

ability to see and reason can be exploited to plan superior

routes. First, we need to represent each of the relevant

constraints spatially as an image. For example, assuming that the

system is told (or can lookup) the locations of enemy units and

knows the elevations in the region from a map database, it could

construct a binary image that indicates those positions on the

map that the enemy can observe. By overlaying (intersecting) a

S 'constraint image with a trafficability image on a display, it

will be possible to see the allowable paths in the region. Since

most of the constraints are functions of parameters, giving the

user the ability to manipulate the parameters can make the entire

process be very interactive. For example, the user might vary the

amount of precipitation and watch what happens to the

trafficability image. Also, the effect of introducing a new

constraint on the current constraint "image," could be quickly

ascertained. This ability to manipulate one constraint while

holding the others constant would help indicate how "brittle" or

"robust" any solution route is. For example, it might be very

important to know that the fastest proposed route, would become

-_four times slower if it rains; or cannot even be considered if

not being seen by the enemy is important. It is easy to display

information like concealment, observability, and trafficability

as images. It would require much computation to display a "total

cost from point A" image, but it might be very interesting to

really see the rings of uniform total cost. A significantly less

expensive method would allow the user to indicate a route by a

series of (as few as 2) dots. The system could compute the total

12

cost of a feature along the route quickly. This could determine

how fast a path could be negotiated, or how much resources would

I I be consumed, etc. Note that the graphics overlay approach

displays all alternative routes (if any exist) because it works

in parallel and never picks a best route. It leaves that to the

user.

I
1

13

5.0 Relation to Intelligence Preparation of the Battlefield

How can the route planning techniques discussed in Chapters

2, 3, and 4 be integrated with the US Army's Intelligence

Preparation of the Battlefield (IPB) process? IPB systematically

integrates weather, terrain, enemy doctrine, and the mission with

the battlefield environment. The information is used to evaluate

the capabilities and vulnerabilities of the enemy. IPB relies on

graphic presentations to convey the intelligence information.

This information leads to expectations about possible enemy S

activity that can be used to manage the intelligence collectors.

The IPB process comprizes 5 parts:

1) Threat Assessment

2) Areas of Influence and Interest Evaluation

3) Terrain Analysis

4) Weather Analysis

5) Threat Integration

The 5 parts of IPB are performed and updated

continuously so that the intelligence officer can always

supply the commanding officer with the most up-to-date 0

information available.

Threat assessment is achieved by studying the latest

intelligence information, such as the composition, organization,

tactical doctrine, weapons (and other equipment), and

logistically supporting elements of enemy forces, to determine

enemy capabilities. This indicates how the enemy would react

offensively and defensively in a simplified world where terrain 0

and weather effects are ignored. Much of this information is

portrayed graphically through the use of "templates," symbols

placed on maps to indicate the enemy units and the logical

connections between the enemy units. •

14

The evaluation of areas of influence and interest depend on

the tactical situation and expectations about the enemy's

0 objective. The areas are labelled and called Named Areas of

Interest (NAIs).

Terrain analysis is concerned with how terrain affects the

ability of friendly and enemy forces to move, shoot, and

communicate. Terrain analysis considers the the five following

factors:

1: Observation and Fields of Fire

2: Concealment and Cover

3: Obstacles

4: Key Terrain

5: Avenues of Approach and Mobility Corridors

Observation is concerned with the necessity of line-of-sight

iIL (LOS) for many battlefield weapons. Fields of fire relates to the

effects of terrain on direct (LOS) and indirect fire weapons.

Concealment is protection from enemy observation. Cover is

protection from the firing of enemy weapons. Obstacles are

I U natural or artificial terrain features that adversly impact the

mobility of military forces. Key terrain is any tactically

important area that must be seized, kept, or controlled for t~e

success of a mission. Avenues of approach and mobility corridors

are routes that friendly and/or enemy forces may use to reach key

terrain or other mission objectives. Many graphic products are

produced to display the trafficability and intervisibility

dictated by the terrain and the positions of units.

Weather analysis uses historical weather data and weather

predictions to estimate the expected effects on the ability of

friendly and enemy forces to move, shoot, and communicate.

Weather (in conjunction with terrain features) can radically

affect cross-country mobility and tactical operations such as

15

0

close air support. Again, graphic products are used to display

the analysis.

Threat Integration constructs a picture of potential battles

that can unfold by considering the enemy forces, their doctrine,
and the expected modifications due to terrain and weather

effects. This advance knowledge about what the enemy can do leads S

to the ability to efficiently monitor those NAIs on the
battlefield that predict and confirm the intentions of the enemy.

Intelligence officers should have access to tools that S

compute optimum paths over terrain according to the

constraints dictated by mission objectives and the tactical

situation. The officers should be able to manipulate the

constraints in order to understand how robust their routes really S

are. The system should give reasonable explanations of how a

route was constructed. The system should indicate other possible

routes with their advantages and dangers. The US Army already has

the capability to compute cross-country mobility information, in "

the field, using a pocket calculator [12]. Extentions of this

kind of automation should be made available to intelligence

officers during the IPB process.

1 6

16 0 5

6.0 Conclusion

We have presented three different approaches, heuristic and

dynamic programming algorithms, logic programming, and graphic

display overlaying, that can be used to compute and plan cross-

country routes, given cross-country mobility data. The process of

computing cross-country mobility from terrain features is already

well understood by USAETL (see [12]). USAETL is also familiar

with all the Defence Mapping Agency (DMA) terrain and map

products that can be used to automatically produce terrain

features. These terrain features not only can be used to compute

cross-country mobility, but can also be used to compute the

constraints (such as concealment, cover, observability, etc.)

needed by the route planning algorithms.

All three route planning schemes discussed in this report

require further research. Heuristic and dynamic programming

approaches are comparatively well understood, so that if accurate

mobility and constraint features can be computed, then the

construction of a route planning system is largely an engineering

problem. However, the mathematics of multiple constraint

satisfaction does not seem to correspond well with human problem

solving intuition, and this may lead to ergonomical problems in a

route planning product. The predicate calculus approach is still

being actively researched in the universities and the search

strategies and representations involved should be considered

advanced research topics. Logic programming solutions will become

feasible as newer, faster computers evolve. Graphic display

overlaying is only a concept; no experiments have been undertaken

to verify its applicability. We consider it a very promising

technique because it marries the display capabilities of computer S

equipment, applied to digital map databases, with the visual

image processing and cognitive abilities of intelligence

officers. Also, USAETL has all the necessary facilities

(personnel, hardware, and access to map data) to research and 0

develop the idea futher.

17 0

It will be necessary to integrate the possible solutions to

the cross-country route planning process with the IPB process as

it is practiced. This will require an expert who is quite

familiar with the goals and methods of IPB.

In a more general spirit, what kind of an intelligent tool

could improve the efficiency and accuracy of the reports

generated by intelligence officers during the IPB process?

Several areas where automation would be beneficial are:

allowing intelligence officers access to tools that compute

optimum paths over terrain with respect to supplied

constraints. See the end of Chapter 5.
;I

constructing a planning/bookkeeping system that assists

the intelligence officer in keeping track of the potential

plans and the NAIs that they depend on, so that unlikely

plans can be dropped, and confirmed plans can attain

prominence. It would be natural for the system to generate

many of the IPB tables, etc.

• producing the hardcopy graphic products of the IPB process,

maps, overlays, etc., by accessing map and other databases.

The first problem area has been the focus of this report. The

second topic is a very hard and very interesting general problem

in the creation and maintenance of plans. The third area is

largely an engineering problem, but it does depend on what

equipment the Army is willing to allocate to IPB stations.

Substantial inputs from IPB experts, with detailed knowledge of p

IPB procedures, would be necessary to develop any of these

systems. However, constructing intelligent advisor programs in

these areas would save manpower, decrease threat assessment

turnaround time, and most importantly, improve the quality and

potentially the safety of military plans.

18 I S

0

7.0 References

1. Lamas System Manual, CDRL Item A0OB, TRW, Defense and Space

Systems Group, 1 Space Park, Redondo Beach, California,

90278, February, 1978.

2. Location and Movement Analysis System (LAMAS), CDRL Item

A008, TRW, Defense and Space Systems Group, 1 Space Park,

Redondo Beach, California, 90278, June, 1978.

3. Luenberger, David, Introduction to Linear and Nonlinear

Programming, Addison-Wesley, 1973.

4. Nilsson, Nils, Problem-solving Methods in Artificial S

Intelligence, McGraw-Hill, New York, 1971.

5. Sacerdoti, Earl, A Structure for Plans and Behavior,

American Elsevier, New York, 1977. -

6. McDermott, Drew, and Davis, Ernest, Planning Routes through

Uncertain Territory, Department of Computer Science, Yale

University, New Haven, Connecticut. To appear in AI Journal.

7. Davis, Ernest, Organizing Spatial Knowledge, Technical

Report 193, Department of Computer Science, Yale University,

New Haven, Connecticut, 1981. •

8. McDermott, Drew, DUCK: A Lisp-Based Deductive System,

Department of Computer Science, Yale University, May 1983,

available from Smart Systems Technology, 6870 Elm Street,

McLean, Virginia, 22101.

9. Thompson, Alan, The Navigation system of the JPL Robot,

IJCAI5, pages 749-758, 1977.

19

10. Rosenberg, Richand, and Rowat, Peter, Spatial Problems for a

Simulated Robot, IJCAI 7, 1981.

11. Binford, Thomas, Visual perception by computer, IEEE Conf.

on Systems and Control, IEEE, 1971.

12. Pearson, Alexander, and Wright, Janet, Synthesis Guide for

Cross-Country Movement, ETL-0220, U.S. Army Engineer

Topographic Laboratories, Fort Belvoir, Virginia, 22060,

February, 1980.

20

8.0 Appendix A: Experimental Dynamic Programming Code

Experimental dynamic programming functions were developed in

Franz Lisp on a VAX 11/780 computer. The four files dp.l, ccm.l,

dplot.l, dptst.l appear in this appendix.

In order to use this software, you should move to directory

[sstsys.hayes.ipb] and type "lisp" (after the command prompt) and

then type "(dptst)".

To the query for path coordinates, respond with the list

"((10 10) (20 20))" or "((20 20) (30 30))".

To the query for a value for TST-F*, respond with the number

"1.0" or a value from the set (.25 .33 .5 .66 .75). This factor

controls the degree of optimal (1.0) verses direct (0.1) path

des i red.

To the query for a value for the maximum iteration count,

respond with a number (50 is a good choice).

To the query for a value for CONT, respond with "t" if you 0

want to ignore the maximum iteration count and continue, or

"nil", otherwise. The usual response is "t"

To the query about GCs, respond with "t" if you want to be S

informed about garbage collections, or "nil", otherwise.

To the query about debug output, respond with "0", if you do

not want any, "l", if you want to see the arguments passed to the 0

dynamic programming algorithm, "2", if you want to see the

coordinates of the points being processed, or "3", if you want to

see the state of the "open" and "closed" queues during

processing. If you select "2", then you automatically receive the 5

"l" output too, etc.

21

dp.l Dynamic Programming Code

j(eval-when (compile)
(load "sst$lib:util")
(load "sst$lib:ws")
)

(declare (macros t)
(special poport dp-dbg* xdisp* ydisp*)
(localf dp-insert-entry-i dp-copyl)
)

1; dpa dpa WORKSPACE for Dynamic Programming Code in file DP.L

MAIN Routines:
; DPL - Finds a route through a sequence of points
; DP - Finds a route between two points
; DPI - Internal route finder
; DPC - Continue a previously failed search

(workspace-push 'dpa)

, Abstract Data Type : XYCOORD

;(defdt XYCOORD
(names xcoord . ycoord)
(types NUMBER NUMBER)
(ident coordp)

;)

* !; coordp (coordp exp) 0

COORDP returns T if EXP is of type XYCOORD (a coordinate),
else NIL.

(de coordp (c)
(and (consp c)

(numberp (car c))
(numberp (cdr c))
)

1; xcoord (xcoord coord) 0

XCOORD returns the X coordinate associated with the
; coordinate COORD.

(de xcoord macro (exp)
(maclobber exp *(car ,(cadr exp))) S
)

22 0

!I

1; ycoord (ycoord coord)

j YCOORD returns the Y coordinate associated with the
; coordinate COORD.
1;
(de ycoord macro (exp)

(maclobber exp '(cdr ,(cadr exp)))
)

_ I
; Abstract Data Type : DPENTRYNODE

; (defdt DP ENTRY NODE
(names dp-cost dp-coord dp-node)
(types NUMBER XYCOORD DPNODE)

;)

(de dp-cost macro (exp)
(maclobber exp '(car ,(cadr exp))))

(de dp-coord macro (exp)
(maclobber exp "(cadr ,(cadr exp)))
)

(de dp-node macro (exp)
(maclobber exp '(caddr ,(cadr exp)))L)

!; dp-dbg* dp-dbg* (symbol) DP's debug print flag

If DP-DBG* is 0, then DP prints no debug information. If
; DP-DBG* is 1, then the arguments to DP are printed out. If
; DP-DBG* is 2, then the coordinates of nodes that are closed
; are listed. If DP-DBG* is 3, then queue information is also

listed.
I.

(defy dp-dbg* 0)

1; dpl (dpl open-fct weight-fct back-fct prt-fct coord-list max cont)

DPL applies DP to find a route between each adjacent pair
; of coordinates in COORD-LIST. OPEN-FCT, WEIGHT-FCT, BACK-FCT,
; MAX, and PRT-FCT are described in more detail in DP. If CONT is
; NIL and DP fails to return a route, then DPL returns NIL. If
; CONT is T, then DPC is called until a path is found. If CONT is
; anything else, then the user is asked whether to continue or
; not. If the response is "no", then DPL returns NIL, otherwise,
; DPL tries again to find a sub-path.
1;

23

(de dpl (of wf bf pf cl max cont)
(do [(al nil)

(dpans nil))
I [(null (cdr cl)) all S

(:= dpans (dp of wf bf (car cl) (cadr cl) max pf))
(cond [(car dpans) t]

((null cont) (return nil)]
[(eq cont t)

(:= dpans
- (do [(dpa (dpc nil dpans) (dpc nil dpa))] 0

[(car dpa) dpal

[(:= dpans
(do [(dpa dpans)]

[(car dpa) dpa]
(ttymsg t "Failed to find route from " 0

(car cl) " to " (cadr cl) "."

t "Try again? ")
(cond [(is-yes (read))

(:= dpa (dpc nil dpa))]
[t (return nil)])

t]
(t (return nil)]
)

(cond [al (:= al (nconc al (cdr (car dpans))))]
[t (:= al (car dpans))])

S(:= cl (cdr cl))
)

)

!; dp (dp open-fct weight-fct back-fct
U start-coord end-coord max prt-fct) 0

DP applies a dynamic programming algorithm to find a route
(path) between the coordinates START-COORD and END-COORD that

; requires the consideration of less than 2*MAX intermediate
; points. OPEN-FCT is the name of a function that creates a new
; NODE. OPEN-FCT is called with the arguments COORD B-COORD
; F-COORD ENTRY. COORD is the coordinate of the point that is to
; be opened. B-COORD is the coordinate of the starting point of
; the path to COORD. F-COORD is the coordinate of the goal for
; the path. ENTRY is a DP queue-entry to the point on the path
; that precedes COORD. (DP-NODE ENTRY) will return the NODE
; associated with ENTRY. WEIGHT-FCT is the name of a function
, that returns the "weight" or "cost" associated with a node.
; WEIGHT-FCT is called with the argument NODE, a node created by
, OPEN-FCT. BACK-FCT is the name of a function that returns a

pointer to the the entry that precedes a node. BACK-FCT is
;calledwiththeargument NODE. PRT-FCT is thenameofa
; function that prints out a node. PRT-FCT is called with the
; argument NODE. PRT-FCT is necessary since a node may contain
; circular objects or pointers to deeply nested structures. DP
; returns an object of type DPANS.
1;

24

(de dp (of wf bf cl c2 n pf)
(cond t(plusp dp-dbg*)

(ttymsg t "DP: of= " of " wf= " wf " pf= " pfa " cl= " cl " c2= " c2 " max= " n)])
(dpi of ;open-fct

wf ;weight-fct
bf ;back-fct
pf ;print-fct
cl ;start-coord
c2 ;end-coord
n ;max
0 ;count
(list (dp-make-entry of wf cl cl c2 nil)) ;sc-olst
(list (dp-make-entry of wf c2 c2 cl nil)) ;ec-olst
nil ;sc-clst
nil ;ec-clst

)

!; dpc (dpc max dp-answer)

* DPC takes the DP ANSWER DP-ANSWER, the result of a
; previously unsuccessful call to DP, and applies the DP
; algorithm again for another 2*MAX steps. If MAX is NIL or less
; than 1, then the original value of MAX (from DP-ANSWER) is
; used. If DP-ANSWER indicates that a route has already been
; found, then DPC just returns DP-ANSWER.

(de dpc (max dpans)
(cond [(car dpans) dpans]

[(and (numberp max) (plusp max))
(:= dpans (dp-copyl (cdr dpans)))
(rplaca (cddddddr dpans) max)

*(apply (function dpi) dpans)]
[t (apply (function dpi) (cdr dpans))])

)

1; dpi (dpi of wf bf pf cl c2 n c sco eco scc ecc)

DPI is the internal workhorse routine for DP. It accepts
; the necessary functions, coordinates, numbers, and queues and
; presses forward with the DP algorithm.

Io

25

(de dpi (of wf bf pf cl c2 max cnt
sc-olst ec-olst sc-clst ec-cist)

(do tin max (subl n))
(exp-node nil)
(op-node nil)
(path nil)
(stop nil)]
((minusp n) (list nil of wf bf pf ci. c2 max cnt

sc-olst ec-olst sc-clst ec-cist)]
(cond [(> dp-dbg* 2)

(ttymsg t "IDP: n ="n " cnt= 11 cnt "1 stop ="stop

t "5s-0 = "(e (dp-print pf sc-olst))
t "Is-c = "(e (dp-print pf sc-clst))
t "le-o = 11 (e (dp-print pf ec-olst))
t "le-c = " (e (dp-print pf ec-clst)))J)

0:= cnt (addi cnt)) 0
(cond [sc-olst

(:= exp-node (car sc-olst))
(cond [> dp-dbg* 1)

(ttymsg t "Closing:
(dp-coord exp-node))J)

(=sc-olst (cdr sc-olst))
(cond [(:= op-node

(dp-adjacentl (dp-coord exp-node)
ec-olst))

(=op-node (dp-least op-node))
0:= path (nconc (nreverse

(dp-path exp-node bf))
(dp-path op-node bf)))

(return (list path of wE bf pf ci c2
max cnt sc-olst ec-olst
sc-clst ec-cist))])

(for [c in (dp-step (dp-coord exp-node)
sc-olst 0 4
sc-c 1st)]

(do (=sc-olst
(dp-insert-entry

(dp-make-entry of wf c ci c2
exp-node)

sc-olst))

(0= sc-clst (cons exp-node sc-clst))

[t (:= stop tf)
(cond [ec-olst 4

(:= exp-node (car ec-olst))
(cond I(> dp-dbg* 1)

(ttymsg t "Closing:
(dp-coord exp-node))])

(=ec-olst (cdr ec-olst))

26

(cond IA-op-node
(dp-adjacentl (dp-coord exp-node)

sc-olst))
(op-node (dp-least op-node))
(=path (nconc (nreverse

(dp-path op-node bf))
(dp-path exp-node bf)))

(return (list path of wf bf pf ci c2
max cnt sc-olst ec-olst

M sc-clst ec-cist))])
(for [c in (dp-step (dp-coord exp-node)

ec-olst
ec-cist)]

(do (=ec-olst
(dp- insert-entryI
(dp-make-entry

of wf c c2 ci exp-node)
ec-olst))

* (:=ec-cist (cons exp-node ec-cist))

[stop (return (list path of wf bf pf ci c2
max cnt sc-olst ec-olst
sc-clst ec-cist)))

1dp-make-entry (dp-make-entry open-f w-f coord
start-c end-c pentry)

DP-MAKE-ENTRY constructs a DP entry with form (path-weight
COORD node). The function OPEN-F is called to create NODE.
;PATH-WEIGHT is calculated by adding the weights at PENTRY and
,NODE (using function W-F) .

(de dp-niake-entry (of wf c sc ec entry)

(:= of (funcall of c sc ec entry))
(,(plus (funcall wf (dp-node entry)) (funcall wf of)) ,c ,of)

!dp-adjacentl (dp-adjacentl coord entry-list)

DP-ADJACENTL returns a list of entries from ENTRY-LIST that
* ;are adjacent to COORD. The function DP-ADJACENT is used to

determine adjacency.

(de dp-adjacentl (c el)
(cond [(null el) nil]

[(dp-adjacent c (dp-coord (car el)))
(cons (car el) (dp-adjacentl c (cdr el)))]

[t (dp-adjacentl c (cdr el)f)

)4

27

1; dp-adjacent (dp-adjacent coordl coord2)

5 DP-ADJACENT returns T if the coordinates COORDI and COORD2
; are 4-connected, else NIL.
1;

(de dp-adjacent (cl c2)
(cond [(equal (xcoord cl) (xcoord c2))

(equal 1 (abs (difference (ycoord cl) (ycoord c2))))]
[(equal (ycoord cl) (ycoord c2))

(equal 1 (abs (difference (xcoord cl) (xcoord c2))))])
)

!; dp-least (dp-least entry-list)

DP-LEAST returns the entry on ENTRY-LIST that has the least
path-cost.

(de dp-least (el) (dp-least-l (car el) (cdr el)))

(de dp-least-I (e el)
(cond [(null el) e)

[(greaterp (dp-cost e) (dp-cost (car el)))
(dp-least-i (car el) (cdr el))]

[t (dp-least-l e (cdr el))])
)

i !; dp-coords (dp-coords entry back-function)

DP-COORDS returns a list of the coordinates from entry
; ENTRY back to its starting point. The function BACK-FUNCTION is
, used to trace back through the entries.
1-

j (de dp-coords (e bf)

(cond [(null e) nil]
(t (cons (dp-coord e)

(dp-coords (funcall bf (dp-node e)) bf))])

)

1; dp-path (dp-path entry back-function)

DP-PATH returns a list of the entries from entry ENTRY back
; to its starting point. The function BACK-FUNCTION is used to
; trace back through the entries.
1;
(de dp-path (e bf)

(cond [(null e) nil]
[t (cons e (dp-path (funcall bf (dp-node e)) bf))])

)

28

I7

1; dp-step (dp-step coord open-node-list closed-node-list)

5 DP-STEP returns a list of coordinates that are adjacent to
; the coordinate COORD but not already associated with a node on
; either of the lists OPEN-NODE-LIST or CLOSED-NODE-LIST.
i;

(de dp-step (c onl cnl)
(for [d in '(0 1 2 3)]

(when (not (or (dp-there (dp-chain c d) onl)
(dp-there (dp-chain c d) cnl)))]

(save (dp-chain c d))
)

)

I; dp-chain (dp-chain coord dir)

DP-CHAIN returns the coordinates of the point that is in
; direction DIR from COORD. DIR must be one of the numbers

{0 1 2 3) corresponding to {up right down left).
I1;

(de dp-chain (c d)
'(,(plus (xcoord c) (cxr d xdisp*))

.,(plus (ycoord c) (cxr d ydisp*)))
)

!; xdisp* xdisp*(4-hunk)i IL
xdisp* is a 4-hunk with X displacements for 4-connected chain

codes.
I.
*1

(defy xdisp* (hunk 0 1 0 -1))

II !; ydisp* ydisp*(4-hunk)

; ydisp* is a 4-hunk with Y displacements for 4-connected chain
codes.

1;

(defy ydisp* (hunk 1 0 -1 0))

1; dp-there (dp-there coord entry-list)

DP-THERE returns the entry in ENTRY-LIST with coordinates
; COORD, or NIL if there is none.
I-
-I

(de dp-there (c el)
(cond [(null el) nil]

[(equal c (dp-coord (car el))) (car el)]
It (dp-there c (cdr el))])

)
0;

29

1; dp-insert-entry (dp-insert-entry entry entry-list)

DP-INSERT-ENTRY inserts the dp-entry ENTRY into the list of
;entries ENTRY-LIST according to its path-weight.

(de dp-insert-entry (e el)
(cond [(null el) (list e)]

[t (dp-insert-entry-l e el)

el)

(de dp-insert-entry-1 (e el)
(cond ((lessp (dp-cost e) (dp-cost (car el)))

(rplacd el (cons (car el) (cdr el)))
(rplaca el e)]0

[(null (cdr el)) (rplacd el (cons e nil))]
[t (dp-insert-entry-1 e (cdr el))])

1dp-print (dp-print print-fct entry-list)

DP-PRINT uses DP-PRINT-ENTRY to print out each entry in
;ENTRY-LIST. DP-PRINT-ENTRY uses PRINT-FCT to printout the NODE
;in the entry.

(de dp-print (pf el)
(for je in ell

(do (DP-PRINT-ENTRY pf e))

1; dp-print-entry (dp-print-entry print-fct entry)

DP-PRINT-ENTRY prints out the "cost" and "coordinates" of
;the entry ENTRY and uses PRINT-FCT to print out the "node"
;associated with ENTRY.

(de dp-print-entry (pf e)
(ttymsg t (dp-cost e) ""(dp-coord e)""

(e (funcall pf (dp-node e))))

;(dp-copyl 1) returns a top-level copy of the list L.

(de dp-copyl (1)
(cond [(null 1) nil]

(t (cons (car 1) (dp-copyl (cdr 1)))])

(rernprop 'dpa 'wsviolated)
(princ "1DP Loaded")
(terpr)

30

ccm.l Cross Country Mobility Code

*(eval-when (compile)
(load "sst$lib:util")
(load "sst$lib:ws")
(load "dp")
)

(declare (macros t)
(special ccm-wv* ccm-nodes*)
(localf

(workspace-push 'ccm)

1; pathfinder (pathfinder)

PATHFINDER is the user-interface to the dynamic-programming
; algorithm in DP.L.
1;

(de pathfinder ()
(prog [map cl max cont ccm-wv* path]

(:= ccm-wv* (hunk .125 .125 .125 .125
.125 .125 .125 .125))

(:= cont 'read)
(ttymsg t "What Map are we using? ")
(:= map (read))
(ccm-init map)

newc (ttymsg t "What are the coordinates of the points that"
t "our path must include?")

(ttymsg t " Starting at: " (car cl)
t " Passing thru:

(nreverse (cdr (reverse (cdr cl))))
t " Ending at: " (car (last cl))

St " is this ok? ")
(cond [(not (is-yes (read))) (go newc)])

neww (ttymsg t "The current weight vector is :"
t ccm-wv*
t "Is it ok? ")

(cond [(not (is-yes (read)))
(ttymsg "type in an index (0 to 7) and a weight"

t)
(rplacx (read) ccm-wv* (read))
(go neww)])

nmax (ttymsg t "Please input an INTEGER value for MAX: ")
(cond [(not (fixp (:= max (read)))) (go nmax)])
(:= path (dpl 'ccm-open-f

'ccm-weight-f
'ccm-back-f
' ccm-prt-f
cl
max
cont))

(return path)
)

31

1; ccm-init (ccm-init name)

I 3 CCM-INIT reinitializes the system if we switch maps or
begin, but otherwise allows previous nodes to be remembered

; from search to search.
I$

(de ccm-init (name)
(cond [(eq name (get 'ccm-init 'ccm-init)) t]

I | [t (:= ccm-nodes* nil)
(:= (get 'ccm-init 'ccm-init) name)])

)

!; make-coord (make-coord potential-coord)

; MAKE-COORD returns the coord associated with
POTENTIAL-COORD. If POTENTIAL-COORD is (x . y), (x y), or

; (x y ...) then (x . y) is returned. Otherwise, NIL is returned.
, The "x" and "y" must be integers.

(de make-coord (1)
(cond [(and (consp 1) (fixp (car 1)) (fixp (cdr 1))) 1]

(and (consp 1) (fixp (car 1))
(consp (cdr 1)) (fixp (cadr 1)) (null (cddr 1)))

(rplacd 1 (cadr 1))]))

i I! ccm-ev-f (ccm-ev-f node)

CCM-EV-F evaluates the cost of passing through the node
; NODE with respect to a global weight vector named CCM-WV*.
1;

(de ccm-ev-f (node)
(do H(i 6 (subl i))

(w (times (cxr 7 node) (cxr 7 ccm-wv*))
(plus w (times (cxr i node) (cxr i ccm-wv*))))]

[(equal 2 i) w]
)

)

1; ccm-open-f (ccm-open-f coord start-coord end-coord
previous-entry)

CCM-OPEN-F opens a node at coordinate COORD. A NODE is an
; 8 position HUNK where index i is:

, 0 Overall weight (cost) associated with node
; 1 Pointer back to PREVIOUS-ENTRY
; 2 Coordinate of this Point
; 3 Distance from COORD to END-COORD
;4
'5
;6
7

32

(de ccm-open-f (c Sc ec node)
(let [(h (ccm-find-node c ccm-nodes*))]

(cond (h (rplacx 1 h node)
(rplacx 3 h (straight-dist c ec))
(rplacx 0 h (ccnm-ev-f h))]

It (:= h (rakhunk 8))
(rplacx 1 h node)
(rplacx 2 h c)
(rplacx 3 h (straight-dist c ec))
(rplacx 4 h 1)
(rplacx 5 h 1)
(rplacx 6 h 1)
(rplacx 7 h 1)
(rplacx 0 h (ccrn-ev-f h))

(=ccm-nodes* (cons h ccm-nodes*))])
h

(defy ccm-nodes* nil)

(de ccm-find-node (c ni)
(cond [(null ni) nil]

[(equal c (cxr 2 (car ni))) (car ni)]
(t (ccn-find-node c (cdr ni))])

;ccm-weight-f (ccm-weight-f node)

CCM-WEIGHT-F returns the cost or weight associated with
,node NODE.

(de ccrn-weight-f (node)
j I (cond [(hunkp node) (cxr 0 node)]

It 0])

Iccm-back-f (ccm-back-f node)

CCM-BACK-F

(de ccm-back-f (node)
(cond [(hunkp node) (cxr 1 node)]))

33

1; ccm-prt-f (ccm-prt-f node)

; CCM-PRT-F prints out the node NODE.
I;
(de ccm-prt-f (node)

(ttymsg t "[" (cxr 0 node) ",("
(car (cxr 2 node)) ":" (cdr (cxr 2 node)) "),"
(cxr 3 node) ","

U (cxr 4 node) ","

(cxr 5 node) ","
(cxr 6 node)
(cxr 7 node) "}")

)

1; nexto (nexto coordl coord2)

NEXTO is a predicate that returns T if coordinates COORDI
; and COORD2 are next to each other (8 connected), else NIL.
1-

(de nexto (cl c2)
(and (lessp (abs (difference (xcoord cl) (xcoord c2))) 2)

(lessp (abs (difference (ycoord cl) (ycoord c2))) 2))
)

!; straight-dist (straight-dist coordl coord2)
mI

I ; STRAIGHT-DIST returns the "straight" distance between the
; coordinates COORDI and COORD2. A coordinate has the form (x . y)

or (z x . y).
I;
(de straight-dist (cl c2)

(sqrt (plus (expt (difference (xcoord cl) (xcoord c2)) 2)
(expt (difference (ycoord cl) (ycoord c2)) 2)
(expt (difference (zcoord cl) (zcoord c2)) 2)

))

(remprop 'ccm 'wsviolated)
(princ "CCM Loaded")
(terpr)

34

; dplot.l Plotting Routines

0 (eval-when (compile)
(load "sst$lib:utii")
(load "sst$lib:ws")
(load 11dp")

*(declare (macros t)
(special poport $gcprint dplot-p* dplot-pl* dplot-ip*)
(locaif plotstrip plotyhd plotin

dplot-f-y-pnts dplot-prt-prep
mnit-next-p next-p get-p
dplot-min-x dplot-max-x dplot-min-y dplot-max-y
dplot-minx dplot-maxx dplot-rniny dplot-rnaxy)

1; dplot dplot WOR~KSPACE for Plotting Routines in file DPLOT.L

(workspace-push 'dplot)

1; prtpts (prtpts coord-list)

PRTPTS

(de prtpts (ci)
(let I($gcprint nil)]

(ttynisg "#of points= 11 (length cl) t)
(do [(c 'I

* [(null ci) (terpr)]
(:= c (list (caar ci) (cdar ci)))
(cond [(< (flatc c) nc)1

[t (terpr)
(:= nc 80)M

(princ c)
(princ 11
0:= cl (cdr cl))

1; plotpts (plotpts coord-list)

PLOTPTS
I1;
(de plotpts (ci) (plotpts2 ci nil))

35

1; piotpts2 (piotpts2 coord-listi coord-list2)

PLOTPTS2
1 ;
(de plotpts2 (ci oci)

(let [(y-max (dplot-max-y ci))
(y-min (dpiot-min-y ci))
(x-min (dplot-niin-x ci))
(x-max (dplot-max-x ci))
($gcprint nil)]
(ttymsg "Min-X= " x-min (t 11) "1 Max-Y= "y-max

(t 25) 11# of Coords= " (length ci) t
"Min-Y= It y-min (t 11) " Max-X= "1 x-max
(t 25) 11# of Strips=

(/ (+ (- x-max x-min) 79) 79)0
t)

(do [(min-x x-min (+ min-x 79))
(i 1 (1+ I)

[(> min-x x-rnax) nil]
(piotstrip min-x (min (+ min-x 78) x-max)

y-min y-max i ci oci)0

(de plotstrip (x-min x-max y-min y-max Sn ci oci)
(ttymsg "Strip # sn " Min-X= " x-min "Max-X= "x-max t)
(piotyhd x-min x-max)
(do [(i y-max (1- i))]

U<i y-min) nil]
(cond [(zerop (mod i 10))

(princ (mod (/ i 10) 10))]
[(zerop (mod i 5))0

(princ ""

[t (princ "I
(piotin i x-min x-max ci oci)

(piotyhd x-min x-max)

(de plotyhd (min max)
(princ 1+"1)
(do [(i min (1+ i))]

[(> i max) (terpr)]
(cond [(zerop (mod i 10))

(princ (mod (/ i 10) 10))l
[(zerop (mod i 5))

(Princ "I")]
(t (princ 1 I)jM

36

(de plotin (y x-rnin x-rnax ci oci)
(let ((pts (dplot-f-y-pnts y x-min x-max 0 ci))

(opts (dplot-f-y-dot-pnts y x-min x-max oci))]
0:= pts (sortcar pts (function <)

(=opts (sort opts (function <)
(=pts (dplot-prt-prep pts))
(=opts (dplot-prt-dot-prep opts pts))

(do ((i x-min (1+ i))]
w [(and (null pts) (null opts)) (terpr)]

(cond [(equal i (caar pts))
(princ (cdar pts))
(:= pts (cdr pts))]

[(equal i (car opts))
(princ 11.11)
(:= opts (cdr opts))]

[t (princ 11 I'M

(de dplot-f-y-pnts (y x xt n ci)
(cond ((null ci) nil]

[(and (equal (ycoord (car ci)) y)
(not P> x (xcoord (car ci))))
(not (< xt (xcoord (car ci))))

I (cons (cons (xcoord (car ci)) n)
(dplot-f-y-pnts y x xt (1+ n) (cdr ci)))]

[t (dplot-f-y-pnts y x xt (1+ n) (cdr ci))])

(de dplot-f-y-dot-pnts (y x xt oci)
* (cond ((null oci) nil]

[(and (equal (ycoord (car oci)) y)
(not (> x (xcoord (car oci))))
(not (< xt (xcoord (car oci))))

(cons (xcoord (car ci))
(dplot-f-y-dot-pnts y x xt (cdr oci)))]

lit (dplot-f-y-dot-pnts y x xt (cdr oci))])

(de dplot-prt-prep (pts)
(cond [(null pts) nil]

((and (cdr pts)
(eq (caar pts) (caadr pts)))

(dplot-prt-prep '((,(caar pts)) .,(cddr pts))))
((cdar pts) (cons '(,(caar pts) .,(get-p (cdar pts)))

(dpiot-prt-prep (cdr pts)))]
[t (cons '(,(caar pts) . 11*11)

(dplot-prt-prep (cdr pts)))])

37

(de dplot-prt-dot-prep (opnxs pts)
(cond ((null opnxs) nil]3 [(and (cdr opnxs)

(eq (car opnxs) (cadr opnxs)))
(dplot-prt-dot-prep '(,(car opnxs) .,(cddr opnxs))

pts)]
iHnot (assoc (car opnxs) pts))

(dplot-prt-dot-prep (cdr opnxs) pts)]
[t (cons (car opnxs)

(dplot-prt-dot-prep (cdr opnxs) pts))])

(defy dplot-p*
(0 1 2 3 4 5 6 7 8 9

(defy dplot-p1* (length dplot-p*))

(defy dplot-ip* nil)

(de mnit-next-p (
(=dplot-ip* nil)

I
(de next-p (

(:= dplot-ip* (cdr dplot-ip*))
(cond [(null dplot-ip*) (:= dplot-jp* dplot-p*f)
(car dplot-ip*)

(de get-p (n)
(:= n (mod n dplot-pl*))
(nth n dplot-p*)

(de dplot-min-x (ci)
(cond [(null ci) 0)

[t (dplot-minx (xcoord (car cl)) (cdr ci))])

(de dpiot-minx (v ci)
(cond [(null ci) v)

1<(xcoord (car ci)) v)
(dpiot-minx (xcoord (car ci)) (cdr ci))]

[t (dplot-minx v (cdr ci))])

(de dplot-max-x (ci)
(cond ((null ci) 01

[t (dplot-maxx (xcoord (car ci)) (cdr ci))])

38

(de dpiot-niaxx (v ci)
(cond ((null ci) v]

I[(P (xcoord (car ci)) v)
(dpiot-Inaxx (xcoord (car ci)) (cdr ci))]

ft (dplot-maxx v (cdr ci))])

(de dpiot-min-y (ci)
a (cond [(null ci) 0]

ft (dplot-miny (ycoord (car ci)) (cdr ci))])

(de dplot-miny (v ci)
(cond [(null ci) v]

J(< (ycoord (car ci)) v)
(dplot-miny (ycoord (car ci)) (cdr ci))]

(t (dplot-miny v (cdr ci))])

(de dplot-max-y (ci)
S (cond [(null ci) 0]

(t (dpiot-maxy (ycoord (car ci)) (cdr ci))])

(de dplot-maxy (v ci)
(cond ((null ci) v]

[>(ycoord (car ci)) v)
(dplot-maxy (ycoord (car ci)) (cdr ci))]

[t (dplot-maxy v (cdr ci))])

(remprop Idplot lwsvioiated)
(princ "DPLOT Loaded")
(terpr)

39

; dptst.l DP test case Code
;

(eval-when (compile)
(load "sst$lib:util")
(load "sst$lib:ws")
(load "dp")
)

- (declare (macros t) 0

(special dp-dbg* tst-max* tst-f* poport $gcprint)
(localf)

I

(workspace-push 'dp-test)

!; dptst (dptst)

I;

(de dptst ()
(prog [cl cont dpla path opns n opn-dmp ipt dp-dbg* $gcprint]
top (dptst-init) 0

(ttymsg t "What are the coordinates of the points that"
t "our path should pass through? ")

(cond [(:= ipt (read)) (:= cl ipt)])
(:= cl (for [x in cl]

(save (make-coord x))

(ttymsg t "Value for TST-P* (" tst-f* ") factor?")
(cond [(numberp (:= ipt (read))) (:= tst-f* ipt)])
(ttymsg t "What is the maximum iteration count? ")
(:= n (read))
(ttymsg t "Value for CONT? ")
(:= cont (read)) _0
(ttymsg t "Do you want to know about opened nodes? ")
(:= opn-dmp (is-yes (read)))
(ttymsg t "Do you want to know about GCs? ")
(:= $gcprint (is-yes (read)))
(ttymsg t "Debug output? (0=none, ... 3=full) ")

(:= dp-dbg* (read)) 0

(ttymsg t " Starting point is: " (car cl)
t " Intermediate points:

(nreverse (cdr (reverse (cdr cl))))
t " Ending point is: " (car (last cl))
t " Maximum iterations : " n
t) •

(:= dpla (dpl 'tst-op-f 'tst-w-f 'tst-b-f 'tst-p-f
cl n cont opn-dmp))

(:= path (for Ix in (car dpla)]
(save (dp-coord x))

(:= opns (for [x in (cadr dpla)J
(save (dp-coord x))

(ttymsg t "Do you want to see the coordinates? ")

40 0

(cond [(is-yes (read))
(or (memq 'dplot (workspaces))

(load 'dplot))
* (prtpts path)])

(ttyrnsg t "Do you want to see a plot? "
(cond [(is-yes (read))

(or (memq 'dplot (workspaces))
(load 'dplot))

(plotpts2 path opns)])
M (ttymsg t "DPTST again? "1)

(cond ((is-yes (read)) (go top)])

(de dptst-init (
(cond [(get 'dptst-init 'dptst-init)

t)
[t (allocate 'list 100)

(allocate 'flonunm 50)
(allocate 'fixnun 20)
(putprop 'dptst-init t 'dptst-init)])

(de rake-coord (1)
(cond [(and (consp 1) (fixp (car 1)) (fixp (cdr 1))) 1]

[(and (consp 1) (fixp (car 1))
(consp (cdr 1)) (fixp (cadr 1)) (null (cddr 1)))

(rplacd 1 (cadr 1))])

!tst-op-f (tst-op-f coord start-coord end-coord node)

TST-OP-F

(de tst-op-f (c sc ec node)
(cond [(or (< (xcoord c) 1)

(< (ycoord c) 1)
(> (xcoord c) 100)
(> (ycoord c) 100)

(=sc 1000000.0)]
[t (=sc

(times (diff tst-max*
(min (straight-dist c '(50 . 50))

(straight-dist c '(25 . 25))
(straight-dist c '(25 . 75))S 0
(straight-dist c '(75 . 25))
(straight-dist c '(75 . 57))

tst-f*)) 1)
(list (plus sc (straight-dist c ec)) sc node)

41

(defy tst-f* 1.0)

* (de tst-w-f (x)
(cond [x (car W)

It 0])

(de tst-b-f (e) (caddr e))

(de tst-p-f (n)
(ttymsg "I" (car n) "," (cadr n) ""

- I; straight-dist (straight-dist coordi coord2)

STRAIGHT-DIST returns the "straight" distance between the
;coordinates COORDi and COORD2. A coordinate has the form
;(x . y).

* (de straight-dist (ci c2)
(sqrt (plus (expt (difference (xcoord ci) (xcoord c2)) 2)

(expt (difference (ycoord ci) (ycoord c2)) 2)

(defy tst-max* (straight-dist '(0 .0) '(25 .25)))

(remprop 'dp-test 'wsviolated)
(princ "DP-TST Loaded")
(terpr)

42 0

9.0 Appendix B: Experimental Predicate Calculus Model

This code is written in DUCK [8], a non-monotonic deductive

retrieval system and language. This version is for a Symbolics

3600, but it will work in Franz Lisp on VAX 11/780 computers

after cosmetic changes. An implementation detail, the system uses

fairly elaborate forward chaining, so that route queries will be

answered more quickly.

In order to use this software, you shoula move to directory 0

[sstsys.hayes.ipb] and type "duck" (after the command prompt) and

then type "(duck)". It will take at least 5 minutes for the

"lisprc" file to load in the demo software befor you can type

"(duck)". You will be in a read, deduce, and print loop. The 0

prompt will be "g>". Interesting queries to type include:

(travel !<infantry> begin end)

(travel !<tank> begin end)

(travel !<truck> begin end)

(safe-travel !<infantry> begin end)

(safe-travel I<tank> begin end)

(safe-travel !<truck> begin end)

(travel !<infantry ?x> begin end)

(safe-travel !<infantry ?x> begin end)

Remember to respond "e", after each solution so that you can see 0

the path taken and its cost. The "e" stands for "explain". After

typing the "e", you will be in "walk mode", denoted by the prompt

"w>". Type a "q" to exit walk mode back to the read-deduce-print

loop. Now if you type an "a" (for "alternative"), the deductive 0 0

retriever will respond with the next solution path. Typing a "q"

will pop you out of the read-deduce-print loop back into Lisp.

43 0 0

*- Mode: Lisp; Package: NISP; Readtable: *nisp-readtable* -*-

4.1.84

; (workspace 'tank)
;(allocate 'list 200)

Define the data-type PLACE
; Declare a number of PLACEs on the map

(terpri) (princ "Define PLACEs :")
(defducktype PLACE SYMBOL)
(duclare begin PLACE)
; (duclare nob-hill PLACE)
;(duclare heather-field PLACE)
;(duclare pea-pass PLACE)
;(duclare ravens-croft PLACE)
(duclare river-hole PLACE)
(duclare west-bridge PLACE)
(duclare west-river PLACE)
(duclare west-ford PLACE)
(duclare east-bridge PLACE)
(duclare east-river PLACE)
(duclare east-ford PLACE)
(duclare johnson-hole PLACE)
(duclare nathen-crag PLACE)
(duclare end PLACE)

Define the coordinates of places on the map
using the "position" predicate.

(terpri) (princ "Define POSITIONs :")
I I. (duclare position (fun PROP (PLACE FIXNUM FIXNUM) ())

(/:/:/: position template /:/:/:
((position ?p ?x ?y) (?p " is at (" ?x "," ?y ")")))

(rule begin-position (position begin 0 0))
;(rule nob-hill-position (position nob-hill 5 5))
;(rule heather-field-position (position heather-field 7 1))
;(rule pea-pass-position (position pea-pass 10 7))
;(rule ravens-croft-position (position ravens-croft 11 4))
(rule river-hole-position (position river-hole 13 6))
(rule west-bridge-position (position west-bridge 14 10))
(rule west-river-position (position west-river 16 7))
(rule west-ford-position (position west-ford 18 4))
(rule east-bridge-position (position east-bridge 15 11))
(rule east-river-position (position east-river 17 8))
(rule east-ford-position (position east-ford 19 5))
(rule johnson-hole-position (position johnson-hole 17 10))
(rule nather-crag-position (position nathen-crag 19 11))
(rule end-position (position end 17 12))

44

Define the data-type UNIT
Declare different UNITs

(terpri) (princ "Define UNITs :")
(defducktype UNIT SYMBOL)
(duclare infantry UNIT)
(duclare truck UNIT)
(duclare tank UNIT)

Define the data-type SURFACE
Declare different SURFACEs

(terpri)(princ "Define SURFACEs :")
(defducktype SURFACE SYMBOL)
(duclare highway SURFACE) S
(duclare road SURFACE)
(duclare path SURFACE)
(duclare bridge SURFACE)
(duclare river SURFACE)
(duclare ford SURFACE)

Define the data-type GRADE
Declare different GRADEs

(terpri) (princ "Define GRADEs :")
(defducktype GRADE SYMBOL)
(duclare level GRADE)
(duclare grade GRADE)
(duclare steep GRADE)

Define the data-type DANGER
; Declare different DANGERs

(terpri) (princ "Define DANGERs :")
(defducktype DANGER SYMBOL)
(duclare rifle-fire DANGER)
(duclare machine-gun-fire DANGER)
(duclare mortar-fire DANGER)
(duclare artillary-fire DANGER)
(duclare bazzuka-fire DANGER)
(duclare land-mines DANGER)

Declare the Proposition "danger-to"

(terpri)(princ "Define Danger-to's :") S
(duclare danger-to

(fun PROP (UNIT DANGER) 0))
(/:/:/: danger-to template /:/:/:

((danger-to ?u ?d)
(?d " is a danger to " ?u)))

45 7

(rule infantry-danger-i (danger-to infantry rifle-fire))
(rule infantry-danger-2 (danger-to infantry machine-gun-fire))

I (rule infantry-danger-3 (danger-to infantry mortar-fire))
(rule infantry-danger-4 (danger-to infantry artillary-fire))
(rule infantry-danger-5 (danger-to infantry bazzuka-fire))
(rule infantry-danger-6 (danger-to infantry land-mines))

(rule truck-danger-i (danger-to truck rifle-fire))

(rule truck-danger-2 (danger-to truck machine-gun-fire))
(rule truck-danger-3 (danger-to truck mortar-fire))
(rule truck-danger-4 (danger-to truck artillary-fire))
(rule truck-danger-5 (danger-to truck bazzuka-fire))
(rule truck-danger-6 (danger-to truck land-mines))

(rule tank-danger-i (not (danger-to tank rifle-fire)))
(rule tank-danger-2 (not (danger-to tank machine-gun-fire)))
(rule tank-danger-3 (not (danger-to tank mortar-fire)))
(rule tank-danger-4 (danger-to tank artillary-fire))
(rule tank-danger-5 (danger-to tank bazzuka-fire))

(rule tank-danger-6 (danger-to tank land-mines))

A map

;b end

e-b * n-crag
w-b * j-hole

* e-river
* p-pass * w-river

* r-hole
* n-hill * e-ford

* r-croft * w-ford

* heather-field
* begin

Declare the Proposition "path"

(terpri) (princ "Define Path's :")
(duclare path

(fun PROP (PLACE PLACE SURFACE GRADE (Ist DANGER)) ())
(/:/:/: path template /:/:/:

((path ?pI ?p2 ?s ?g ?d)
("The " ?g ?s " from " ?pl " to " ?p2 has dangers " ?d))

)

46

This is the description of the connections in the map

" I (rule path-begin-to-west-bridge
(path begin west-bridge highway level

(tup rifle-fire)))
(rule path-begin-to-river-hole

(path begin river-hole road level (tup)))
;(rule path-begin-to-nob-hill

(path begin nob-hill highway level (tup)))
;(rule path-begin-to-heather-field

(path begin heather-field road grade (tup)))
;(rule path-nob-hill-to-pea-pass

(path nob-hill pea-pass highway level (tup)))
;(rule path-nob-hill-to-heather-field

(path nob-hill heather-field road grade (tup)))
;(rule path-heather-field-to-nob-hill

(path heather-field nob-hill road grade (tup)))
;(rule path-heather-field-to-ravens-croft

(path heather-field ravens-croft road level (tup)))
;(rule path-pea-pass-to-west-bridge

(path pea-pass west-bridge highway grade
(tup mortar-fire bazzuka-fire)))

;(rule path-pea-pass-to-river-hole
(path pea-pass river-hole road grade (tup)))

;(rule path-pea-pass-to-ravens-croft
(path pea-pass ravens-croft road level (tup)))

;(rule path-ravens-croft-to-pea-pass
(path ravens-croft pea-pass road level (tup)))

;(rule path-ravens-croft-to-west-ford
(path ravens-croft west-ford road grade (tup)))

(rule path-river-hole-to-west-bridge
(path river-hole west-bridge road grade

(tup mortar-fire bazzuka-fire)))
(rule path-west-bridge-to-river-hole

(path west-bridge river-hole road grade
(tup mortar-fire bazzuka-fire)))

(rule path-river-hole-to-west-river
(path river-hole west-river path grade (tup)))

- (rule path-river-hole-to-west-ford
(path river-hole west-ford road grade (tup)))

;(rule path-west-ford-to-river-hole
(path west-ford river-hole road grade (tup)))

(rule path-west-bridge-to-east-bridge
(path west-bridge east-bridge bridge level

(tup machine-gun-fire)))
(rule path-west-river-to-east-river

(path west-river east-river river level (tup)))
(rule path-west-ford-to-eabt-ford

(path west-ford east-ford ford level
(tup rifle-fire machine-gun-fire)))

(rule path-east-bridge-to-end
(path east-bridge end path steep (tup)))

(rule path-east-bridge-to-johnson-hole
(path east-bridge johnson-hole highway grade (tup)))

- 47

(rule path-johnson-hole-to-east-bridge
(path johnson-hole east-bridge highway grade (tup)))

(rule path-east-river-to-johnson-hole
i (path east-river johnson-hole path level (tup)))

(rule path-east-ford-to-nathen-crag
(path east-ford nathen-crag road grade (tup)))

(rule path-johnson-hole-to-nathen-crag
(path johnson-hole nathen-crag highway grade (tup)))

(rule path-nathen-crag-to-johnson-hole
- (path nathen-crag johnson-hole highway grade (tup)))

(rule path-nathen-crag-to-end
(path nathen-crag end highway level (tup)))

Different units can move over different surfaces
; with different grades at different rates.

Infantry trucks tanks

; Highway & Bridge
, -level 6 50 30
; -grade 4 30 10
; -steep 3 10 4 S
; Road
; -level 6 35 25

-grade 4 20 10
; -steep 3 8 4

Path
; -level 5 * 3
; -grade 3 * 1
; -steep 2 * *
; River
; -level 1 * *
; -grade 1 * *
; -steep * * *
; Ford
; -level 2 2 1
; -grade 2 2 1

-steep * * 1

; Declare the Proposition "travel-cost" 0

(terpri) (princ "Define Travel-cost's :")
(duclare travel-cost

(fun PROP (UNIT SURFACE GRADE FIXNUM) ())
(I:/:/: travel-cost template /:/:/:

((travel-cost ?u ?s ?g ?c) 0
(?u " moving on "?g ?s " costs " ?c)))

48 0

(rule highway-travel-cost-i
(travel-cost infantry highway level 6))

(rule highway-travel-cost-2 -
(travel-cost truck highway level 50))

(rule highway-travel-cost-3
(travel-cost tank highway level 30))

(rule highway-travel-cost-4
(travel-cost infantry highway grade 4))

- (rule highway-travel-cost-5
(travel-cost truck highway grade 30))

(rule highway-travel-cost-6
(travel-cost tank highway grade 10))

(rule highway-travel-cost-7
(travel-cost infantry highway steep 3))

(rule highway-travel-cost-8
(travel-cost truck highway steep 10))

(rule highway-travel-cost-9
(travel-cost tank highway steep 4))

(rule bridge-travel-cost
(-> (travel-cost ?unit highway ?grade ?cost)

(travel-cost ?unit bridge ?grade ?cost)))

(rule road-travel-cost-i
(travel-cost infantry road level 6))

(rule road-travel-cost-2
(travel-cost truck road level 25))

(rule road-travel-cost-3
(travel-cost tank road level 35))

(rule road-travel-cost-4
(travel-cost infantry road grade 4))

(rule road-travel-cost-5

(travel-cost truck road grade 20))
(rule road-travel-cost-6

(travel-cost tank road grade 10))
(rule road-travel-cost-7

(travel-cost infantry road steep 3))
(rule road-travel-cost-8

(travel-cost truck road steep 8)) -0
(rule road-travel-cost-9

(travel-cost tank road steep 4))

(rule path-travel-cost-i
(travel-cost infantry path level 5))

(rule path-travel-cost-2 •

(travel-cost tank path level 3))
(rule path-travel-cost-3

(travel-cost infantry path grade 3))
(rule path-travel-cost-4

(travel-cost tank path grade 1))
(rule path-travel-cost-5 4

(travel-cost infantry path steep 2))

49 0

L

(rule river-travel-cost-1
(travel-cost infantry river level 1))

(rule river-travel-cost-2
(travel-cost infantry river grade 1))

(rule ford-travel-cost-i
(travel-cost infantry ford level 2))

(rule ford-travel-cost-2
- (travel-cost truck ford level 2))

(rule ford-travel-cost-3
(travel-cost tank ford level 1))

(rule ford-travel-cost-4
(travel-cost infantry ford grade 2))

(rule ford-travel-cost-5
(travel-cost truck ford grade 2))

(rule ford-travel-cost-6
(travel-cost tank ford grade 1))

(rule ford-travel-cost-7
(travel-cost tank ford steep 1))

[1

Define function to compute distance between coordinates S

(terpri) (princ "Define Crow-fly :")
(func crow-fly FLONUM (xl FIXNUM yl FIXNUM x2 FIXNUM y2 FIXNUM)

(/:= xl (difference x2 xl))
*(/:= yl (difference y2 yl))

(sqrt (plus (times xl xl) (times yl yl)))
)

Declare the Proposition "unit-path-time"
which defines the time it takes for a unit to move
between different places on the map.

(terpri)(princ "Define Primary unit-path-time's :")
(duclare unit-path-time

(fun PROP
(UNIT PLACE PLACE FLONUM (1st DANGER) (Ist PLACE))
()))

(/:/:/: unit-path-time template /:/:/: 0
((unit-path-time ?u ?pl ?p2 ?t ?d ?i)
(?u " takes " ?t " hours"

" from " ?pl " thru " ?i " to " ?p2

" under "?d)))

so

5 9

(lisprule primary-path-cost-def -

(path ?posl ?pos2 ?surface ?grade ?dangers)
* (for-first-ans (fetch '(position ?posl ?xl ?yl))

(for-first-ans (fetch '(position ?pos2 ?x2 ?y2))
(for-each-ans

(fetch '(travel-cost ?unit ?surface ?grade ?speed))
(for-first-ans (match ?time

(quotient (crow-fly ?xl ?yl ?x2 ?y2)
* ?speed))

(add '(unit-path-time
?unit ?posl ?pos2 ?time ?dangers (tup)))

(terpri) (princ "Define Disjoint-sets function:"
(func disjoint-sets BOOLEPN (11 EXP 12 EXP)

(cond [(null 11) t]
[(member (car 11) 12) nil]
[t (disjoint-sets (cdr 11) 12)])

(terpri)(princ "Define Secondary unit-path-time's "
(lisprule secondary-path-cost-def ->

(unit-path-time ?unit ?posl ?pos2 ?timel ?dangersl (tup))
(for-each-ans

(fetch '(unit-path-time
?unit ?pos2 ?pos3 ?time2 ?dangers2 (tup)))

(for-first-ans (match ?time (plus ?timel ?time2))
(for-f irst-ans (match Mdangers

(append '(tup) ?dangersl ?dangers2))
(for-first-ans (match ?thru (list 'tup ?pos2))
(cond ((eq ?posl ?pos3) nil]

[t (add '(unit-path-time ?unit ?posl ?pos3
?time Mdangers ?thru))

(terpri) (princ "Define Tertiary unit-path-time's :"1)
(lisprule tertiary-path-cost-def -

(unit-path-time ?unit ?posl ?pos2 ?timel ?dangersl (tup))
(for-each-ans

(fetch '(unit-path-time
?unit ?pos2 ?pos3 ?time2 ?dangers2 (tup ?tl)))

(for-first-ans (match ?time (plus ?timel ?time2))
(for-first-ans (match ?dangers

(append '(tup) 7dangersl ?dangers2))
(for-first-ans (match ?thru (list 'tup ?pos2 ?tl))
(cond ((eq ?posl ?pos3) nil]

((eq ?posl ?tl) nil]
[t (add '(unit-path-time ?unit ?posl ?pos3 -

?time ?Mangers 7thru))])

51

(terpri)(princ "Define Quadiary unit-path-time's :11)
(lisprule quadiary-path-cost-def ->

(unit-path-time ?unit ?posl ?pos2 ?timel ?dangersl (tup ?tl))E (for-each-ans
(fetch
'(unit-path-time

?unit ?pos2 ?pos3 ?time ?dangers2 (tup ?t2)))
(for-first-ans (match ?time (plus ?timel ?time2))
(for-first-ans (match Mdangers

(append '(tup) ?dangersl ?dangers2))
(for-first-ans (match ?thru (list 'tup ?tl ?pos2 ?t2))
(cond [(eq ?posl ?pos3) nil]

[(eq ?posl ?t2) nil]
[(eq ?tl ?t2) nil]
[(eq ?tl ?pos3) nil]
[t (add '(unit-path-time ?unit ?posl ?pos3

?time ?dangers ?thru))])

(terpri) (Princ "Define Quiniary unit-path-time's :"1)
(lisprule quiniary-path-cost-def ->

(unit-path-time ?unit ?posl ?pos2 ?timel ?dangersl (tup ?tl))
(for-each-ans

(fetch
(unit-path-time

?unit ?pos2 ?pos3 ?time2 ?dangers2 (tup ?t2 ?t3)))
K (for-first-ans (match ?time (plus ?timel ?time2))

(for-first-ans (match ?dangers
(append '(tup) ?dangersl ?dangers2))

(for-first-ans (match ?thru (list 'tup ?tl ?pos2 ?t2 ?t3))
(cond [(eq ?posl ?pos3) nil]

[(eq ?posl ?t2) nil]
*[(eq ?posl ?t3) nil]

[(eq ?tl ?t2) nil]
[(eq ?tl ?t3) nil]
((eq ?tl ?pos3) nil]
[t (add '(unit-path-time ?unit ?posl ?pos3

?time ?dangers ?thru))])

52

(terpri)(princ "Define Sexary unit-path-time's)
(lisprule sexary-path-cost-def -

(unit-path-time
?unit ?posl ?pos2 ?timel ?dangersl (tup ?tl ?t2))I (for-each-ans

(fetch
* (unit-path-time

?unit ?pos2 ?pos3 ?time2 ?dangers2 (tup ?t3 ?t4)))
(for-first-ans (match ?time (plus ?timel ?time2))

* (for-first-ans (match Mdangers
(append '(tup) ?dangersl ?dangers2))

(for-f irst-ans (match ?thru
(list 'tup ?tl ?t2 ?pos2 ?t3 ?t4))

(cond ((eq ?posl ?pos3) nil]
((eq ?posl ?t3) nil]
[(eq ?posl ?t4) nil]
((eq ?tl ?t3) nil]
[(eq ?tl ?t4) nil]
((eq ?tl ?pos3) nil]
((eq ?t2 ?t3) nil)
[(eq ?t2 ?t4) nil)
((eq ?t2 ?pos3) nil]
(t (add '(unit-path-time ?unit ?posl ?pos3

?time Mdangers ?thru))])

(terpri) (princ "Define Septary unit-path-time's:)
* (lisprule septary-path-cost-def -

(unit-path-time
?unit ?posl ?pos2 ?timel ?dangersl (tup ?tl ?t2))

(for-each-ans
(fetch

(unit-path-time
* ?unit ?pos2 ?pos3 ?time2 ?dangers2 (tup ?t3 ?t4 ?t5)))

(for-first-ans (match ?time (plus ?timel ?time2))
(for-first-ans (match ?dangers

(append '(tup) ?dangersl ?dangers2))
(for-first-ans (match ?thru

(list 'tup ?tl ?t2 ?pos2 ?t3 ?t4 ?t5))
(cond ((eq ?posl ?pos3) nil]0

[(eq ?posl ?t3) nil)
((eq ?posl ?t4) nil]
((eq ?posl ?t5) nil]
((eq ?tl ?t3) nil]
((eq ?tl ?t4) nil]
((eq ?tl ?t5) nil]
((eq ?tl ?pos3) nil]
((eq ?t2 ?t3) nil]
((eq ?t2 ?t4) nil]
((eq ?t2 ?t5) nil]
((eq ?t2 ?pos3) nil]

L ~It (add '(unit-path-time ?unit ?posl ?pos3
?time ?Mangers ?thru))])

L 530

-O 4

(terpri)(princ "Define Octary unit-path-time's :")
(lisprule octary-path-cost-def ->

(unit-path-time 4
?unit begin west-ford ?timel ?dangersl (tup ?tl ?t2))

(for-first-ans
(fetch
'(unit-path-time ?unit west-ford end ?time2 ?dangers2

(tup ?t3 ?t4 ?t5 ?t6)))
(for-first-ans (match ?time (plus ?timel ?time2)) 4
(for-first-ans (match ?dangers

(append '(tup) ?dangersl ?dangers2))
(for-first-ans (match ?thru

(list 'tup ?tl ?t2 'west-ford
?t3 ?t4 ?t5 ?t6))

(add '(unit-path-time ?unit ?posl ?pos3
?time ?dangers ?thru)))))))

(terpri) (princ "Define Safe-units proposition")
(duclare safe-units (fun PROP ((1st UNIT) DANGER) ())
(/:/:/: safe-units template /:/:/: •

((safe-units ?units ?danger)
(?units " are safe from " ?danger)))

(rule safe-units-when-first-unit-safe
(<- (safe-units (tup ?unitl !& ?units) ?danger)

(not (danger-to ?unitl ?danger))))

(rule safe-units-when-some-unit-safe
(<- (safe-units (tup ?unitl I& ?units) ?danger)

(and (danger-to ?unitl ?danger)
(safe-units ?units ?danger))))

(terpri)(princ "Define Safe proposition")
(duclare safe (fun PROP ((Ist UNIT) (ist DANGER)) ())
(/:/:/: safe template /:/%/:

((safe ?units ?dangers)
(?units " are safe from " ?dangers)))

(rule safe-when-no-danger
(safe ?units (tup)))

(rule safe-for-one-or-more-dangers
(<- (safe ?units (tup ?danger I& ?dangers))

(and (safe-units ?units ?danger) O
(safe ?units ?dangers))))

54

S

(terpri)(princ "Defining Travel-same Proposition")
(duclare travel-same

(fun PROP ((1st UNIT) PLACE PLACE (1st PLACE)) ())
(/:/:/: travel-same template /:/:/:

((travel-same ?units ?start ?finish ?thru)
(?units " can travel from " ?start

through " ?thru " to " ?finish)))

(rule travel-same-only-no-unit
(travel-same (tup) ?start ?finish ?thru))

(rule travel-same-many-units
(<- (travel-same !<?unit I& ?units> ?start ?finish ?thru)

(and (unit-path-time
?unit ?start ?finish ?time ?dangers ?thru)

(travel-same ?units ?start ?finish ?thru))))

(terpri) (princ "Defining Travel Proposition")
(duclare travel (fun PROP ((1st UNIT) PLACE PLACE) ())
(/:/:/: travel template /:/:/:

((travel ?units ?start ?finish)
(?units " can travel from " ?start " to " ?finish)))

(rule travel-no-unit-rule
(travel (tup) ?start ?finish))

(rule travel-units-rule
(<- (travel (tup ?unit !& ?units) ?start ?finish)

(and (unit-path-time
?unit ?start ?finish ?time ?dangers ?thru)

(travel-same ?units ?start ?finish ?thru))))

(terpri)(princ "Defining Safe-travel Proposition")
(duclare safe-travel (fun PROP ((lst UNIT) PLACE PLACE) ())
(/:/:/: safe-travel template /:/:/:

((safe-travel ?units ?start ?finish)
(?units " can travel safely from " ?start " to " ?finish)))

(rule safe-travel-no-units
(safe-travel (tup) ?start ?finish))

(rule safe-travel-many-units
(<- (safe-travel (tup ?unit I& ?units) ?start ?finish)

(and (unit-path-time ?unit ?start ?finish
?time ?dangers ?thru) 0

(travel-same ?units ?start ?finish ?thru)
(safe (tup ?unit 1& ?units) ?dangers))))

(terpri)
(princ "Tank.l Loaded")

L (terpri) 0

55 A

At-

777

** -w

q~t-

V S

4r4

400

qw0

2'v
"IN Z-

